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January 31, 2023

i



Contents

1 Introduction 2

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related work 7

2.1 Driver identification . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Context-aware IDS . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Background 11

3.1 Vehicle anatomy and connectivity . . . . . . . . . . . . . . . 11

3.2 Habits of driver . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.2 Neural Network at a glance . . . . . . . . . . . . . . . 17

3.4 Intelligent Transportation System Infrastructure . . . . . . . . 19

4 Secure Routine 22

4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Model Generation Dataset . . . . . . . . . . . . . . . . 24

4.1.2 FS paradigm . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.3 Model Generation Algorithm . . . . . . . . . . . . . . . 25

4.1.4 SR Identification strategy . . . . . . . . . . . . . . . . 26

4.2 Secure Routine Evaluation . . . . . . . . . . . . . . . . . . . . 26

4.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 29

ii



5 Private Secure Routine 33

5.1 Privacy preserving Machine Learning techniques . . . . . . . . 34

5.1.1 Federated Learning . . . . . . . . . . . . . . . . . . . . 34

5.1.2 Split Neural Network . . . . . . . . . . . . . . . . . . . 34

5.1.3 SplitFedv1 . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.4 SplitFedv2 . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.5 SplitFedv3 . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.6 Secure Multi-Party Computation . . . . . . . . . . . . 40

5.2 Focus on Private Secure Routine . . . . . . . . . . . . . . . . . 41

5.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Model Generation . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.1 A new vehicle joins the PSR infrastructure . . . . . . . 46

5.3.2 A new driver joins the PSR infrastructure . . . . . . . 48

5.3.3 Driver identification on a vehicle of the infrastructure . 51

5.4 Private Secure Routine Implementation . . . . . . . . . . . . . 53

5.4.1 Labelling Generation Algorithm . . . . . . . . . . . . . 53

5.4.2 Dataset preparation for training . . . . . . . . . . . . . 55

5.4.3 Model Generation Algorithm . . . . . . . . . . . . . . . 57

5.4.4 Model Training Algorithm . . . . . . . . . . . . . . . . 59

5.5 Private Secure Routine Evaluation . . . . . . . . . . . . . . . 61

5.5.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 61

6 CAHOOT 65

6.1 Attack Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 CAHOOT algorithm . . . . . . . . . . . . . . . . . . . . . . . 68

6.2.1 Intruder’s Behaviour . . . . . . . . . . . . . . . . . . . 68

6.2.2 Instances Extraction Paradigm . . . . . . . . . . . . . 74

6.2.3 Model Generation . . . . . . . . . . . . . . . . . . . . . 78

iii



6.3 CAHOOT Evaluation . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.1 Machine Learning algorithms . . . . . . . . . . . . . . 80

6.3.2 Experiments setup . . . . . . . . . . . . . . . . . . . . 82

6.3.3 Evaluation without data augmentation . . . . . . . . . 83

6.3.4 Evaluation with data augmentation . . . . . . . . . . . 89

7 CAHOOTv2 98

7.1 Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2 CAHOOTv2 algorithm . . . . . . . . . . . . . . . . . . . . . . 99

7.2.1 Intruder’s Behaviour . . . . . . . . . . . . . . . . . . . 99

7.2.2 Hyperparameters Tuning Paradigm . . . . . . . . . . . 104

7.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.4 CAHOOTv2 Evaluation . . . . . . . . . . . . . . . . . . . . . 108

7.4.1 Machine Learning algorithms . . . . . . . . . . . . . . 109

7.4.2 Experiments setup . . . . . . . . . . . . . . . . . . . . 110

7.4.3 Evaluation of hyperparameters tuning . . . . . . . . . 110

7.4.4 Evaluation of CAHOOTv2 . . . . . . . . . . . . . . . . 113

8 Conclusions and future work 118

9 Publications 120

iv



List of Figures

1 Comparison of two possible DT for solving the same problem. 15

2 Communication Layers in the transportation infrastructure . . 19

3 ITS subsystems. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Driver distributions on the datasets. . . . . . . . . . . . . . . . 30

5 Federated Learning. . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Split Neural Network. . . . . . . . . . . . . . . . . . . . . . . . 36

7 SplitFedv1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8 SplitFedv2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9 SplitFedv3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

10 Secure Multi-Party Computation. . . . . . . . . . . . . . . . . 41

11 The PSR Model Generation Workflow . . . . . . . . . . . . . 45

12 Simulation sequence workflow of the vehicle . . . . . . . . . . 79

13 Plot loss of the MLP trained using human and AI drivings. . . 85

14 Plot loss of the MLP trained using only human drivings. . . . 89

15 Accuracy, precision and recall comparison of Attack Identifica-

tion test bed with test set augmented. . . . . . . . . . . . . . 96

16 Accuracy, precision and recall comparison of Attack Identifica-

tion test bed trained using only human drivings with test set

augmented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

17 Boxplots of genders. . . . . . . . . . . . . . . . . . . . . . . . 109

18 Histogram of the ages. . . . . . . . . . . . . . . . . . . . . . . 110

v



List of Tables

1 Common features description . . . . . . . . . . . . . . . . . . 28

2 Comparing SR using J48 and Random Forest over the multi-

driver identification problem. . . . . . . . . . . . . . . . . . . . 30

3 Comparison of Secure Routine with M , K and G for multi-

driver identification on dataset Θ. . . . . . . . . . . . . . . . . 31

4 Comparison of Secure Routine with M for owner identification

on dataset Θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Comparison of Secure Routine with M for multi-driver identi-

fication on dataset Ψ. . . . . . . . . . . . . . . . . . . . . . . . 32

6 Comparison of Secure Routine with M for owner identification

on dataset Ψ. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Accuracy comparison for SOI test bed with the state of the art 61

8 Accuracy comparison for SOI test bed to measure MPC impact 63

9 Accuracy comparison for TOI test bed with the state of the art 63

10 Accuracy comparison for TOI test bed to measure MPC impact 64

11 Comparison of features between CAHOOT and the main

context-aware IDS . . . . . . . . . . . . . . . . . . . . . . . . 66

12 Example of instances before run Instances Extraction Paradigm 75

13 Example of instances after run Instances Extraction Paradigm 76

14 Features description . . . . . . . . . . . . . . . . . . . . . . . . 81

15 Features selected by CAHOOT (percentage of each rank with

respect to the sum of the ranks of the features) . . . . . . . . 84

16 Accuracy, precision and recall comparison of CAHOOT using

Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . 86

17 Accuracy, precision and recall comparison of CAHOOT using

J48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

vi



18 Accuracy, precision and recall comparison of CAHOOT using

MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

19 Comparison of lowest and highest accuracies on spoofing attack

between CAHOOT and the main context-aware IDSs . . . . . 89

20 Hyperparameters tested in hyperparameters tuning paradigm . 111

21 Features selected by CAHOOT on α (percentage of each rank

with respect to the sum of the ranks of the features) . . . . . 112

22 Accuracy, precision and recall comparison on α of CAHOOT

with default and best hyperparameters . . . . . . . . . . . . . 113

23 Features selected by CAHOOTv2, with default and best hy-

perparameters, and CAHOOT on β (percentage of each rank

with respect to the sum of the ranks of the features) . . . . . 115

24 Accuracy, precision and recall comparison on β between CA-

HOOTv2, CAHOOTv2 with default hyperparameters and CA-

HOOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

25 Accuracy, precision and recall comparison of CAHOOT on β . 117

vii



Listings

1 Feature Selection Paradigm . . . . . . . . . . . . . . . . . . . 24

2 Secure Routine Model Generation . . . . . . . . . . . . . . . . 25

3 Labelling generation . . . . . . . . . . . . . . . . . . . . . . . 54

4 Generation of dataset shares - Vehicle . . . . . . . . . . . . . . 55

5 Preparation of dataset for training - RUs . . . . . . . . . . . . 56

6 Model generation algorithm - Vehicle . . . . . . . . . . . . . . 58

7 Model training algorithm - RUs . . . . . . . . . . . . . . . . . 60

8 Prepare Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9 Launch Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 70

10 Spoofing Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 72

11 Replay Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

12 Instances Extraction Paradigm . . . . . . . . . . . . . . . . . 76

13 Model Generation . . . . . . . . . . . . . . . . . . . . . . . . . 78

14 Preparation for Data Augmentation . . . . . . . . . . . . . . . 91

15 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . 92

16 Apply attacks on the augmented dataset . . . . . . . . . . . . 93

17 Generate Intrusion . . . . . . . . . . . . . . . . . . . . . . . . 95

18 Prepare Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 99

19 Launch Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 100

20 Limit value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

21 Additive Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 102

22 Selective Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 103

23 Model Generation . . . . . . . . . . . . . . . . . . . . . . . . . 104

24 Hyperparameters Tuning Paradigm . . . . . . . . . . . . . . . 106

viii



Abstract

The introduction of Information and Communication Technology

(ICT) in transportation systems leads to several advantages like effi-

ciency of transport, mobility, traffic management. Vehicles circulating

on roads generate huge amount of data about both the driver and

the vehicle itself. Such data can be used for different purposes, e.g.,

data generated may indicate the type of driving style or may be used

to identify drivers. Hence, software in modern vehicles is becoming

increasingly complex and subject to vulnerabilities that an intruder

can exploit to alter the functionality of vehicles. Also, in the last

decades attempts to characterize drivers’ behaviour have been mostly

targeted. Each driver has his/her own routine made of locations of

most visited places. According to the GDPR, users’ data are sensitive

and should not disclosed out. For instance, the driver’s most visited

places could be used to identify the driver.

This thesis presents several solutions to improve cyber-security in

modern vehicles. The first one is Secure Routine, a paradigm that uses

driver’s habits to driver identification and, in particular, to distinguish

the vehicle’s owner from other drivers. We evaluate Secure Routine in

combination with other three existing research works based on machine

learning techniques. Results are measured using well-known metrics

and show that Secure Routine outperforms the compared works.

Then, we present Private Secure Routine (PSR) as a paradigm with

two main goals: i) identify drivers depending on their habits/routine

and ii) keep drivers’ data private. We implemented PSR exploit-

ing the secure Multi-Party Computation (MPC) technique against a

honest-but-curious attacker model. Moreover, we evaluated PSR by

establishing its accuracy in combination with other existing research

works based on machine learning techniques. Evaluation of PSR is per-

formed on different test-beds, considering single-owner and two-owners
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identification.

Next, we introduce CAHOOT, a novel context-aware Intrusion

Detection System (IDS) capable of detecting potential intrusions in

both human and autonomous driving modes. In CAHOOT, context

information consists of data collected at run-time by vehicle’s sensors

and engine. Such information is used to determine drivers’ habits

and information related to the environment, like traffic conditions. To

evaluate CAHOOT, we create and use a dataset by using a customised

version of the MetaDrive simulator capable of collecting both human

and Artificial Intelligence(AI) driving data. Then, we simulate several

types of intrusions while driving: denial of service, spoofing and replay

attacks. As a final step, we use the generated dataset to evaluate

the CAHOOT algorithm by using several machine learning methods.

The results show that CAHOOT is extremely reliable in detecting

intrusions.

Finally, we present CAHOOTv2, that improves the accuracies of

intrusion detection with respect to CAHOOT and is also trained on

two additional attacks type. To validate the goodness of the paradigm,

we also expanded the dataset with additional human drivings.

1 Introduction

Intelligent Transport System (ITS) indicates the use of information and

communication technologies applied to road transportation [90]. ITS of-

fers applications to users such as road safety, traffic efficiency and services.

The European Telecommunications Standards Institute (ETSI) defines the

applications in ITS environment [22].

In 2019, around 56k vehicles were targeted by thieves in UK [43]. It

equates to one car stolen every 9 minutes and 45% of thefts occurred between

midnight and 6 AM.
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In 2020 New York City and Los Angeles have seen a soaring of car

thefts [67]. In New York City around 7k of vehicles were stolen with an

increment of 70% respect to the previous year. A similar trend was in Los

Angeles where around 6k cars were stolen with an increment of 60% respect

the previous year.

In 2022 Kia and Hyundai cars have been targeted by thieves in America [54].

Several videos have been uploaded on TikTok platform explaining how to

steal cars of these two brands using a phone charger or a USB cable. In

particular, Chicago has seen Kia and Hyundai car thefts increase of 767%

compared to the previous year. Our opinion is that driver identification may

help the detection of a theft.

Over the years, vehicles functionalities are managed by increasingly com-

plex software. For instance, vehicles made by Volkswagen nowadays contain

one hundred millions lines of code [17]. Level 5 autonomous vehicles will

contain up to one billion lines of code [17] because all vehicles’ functionalities

will be electronically managed. Moreover, during the driving experience, a

vehicle is able to collect a lot of information from its sensors, the Electronic

Control Units (ECUs), and also from the environment. The driver can exploit

the connectivity of the vehicle to read this information through OBD-II and

a mobile connection, while the multimedia functionalities can be accessed

via USB, disc, SD-card, Bluetooth and WiFi. The European Union Agency

for Network and Information Security (ENISA) defines today’s vehicles as

smart cars, i.e., vehicles that offer enhanced users experience and safety, and

provide connectivity and added-value features [1].

In the last decade, there are several papers in literature that present work

on vehicle’s attacks. The most famous one has been presented at the Black

Hat USA 2015 by Miller and Valasek [20]. In particular, the two researchers

were able to exploit the In-Vehicle Infotainment (IVI) of a Jeep Cherokee
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uploading and flashing a modified firmware [64]. This firmware allowed

researchers to remotely control or disable many safety relevant systems of the

target vehicle, including brakes, steering and the power unit. Vulnerabilities

not only damage the reputation of car manufacturers but also their profits

(the attack to the Jeep Cherokee forced the manufacturer Fiat-Chrysler to

recall 1,4 million cars in the USA[6]).

1.1 Motivation

Modern vehicles can be considered as computer on wheels. The mechani-

cal parts are often controlled by software components and communication

protocols are in charge of exchanging data among vehicle’s components. For

this reason, modern vehicles can be classified as Cyber Physical Systems

(CPS) in which used technologies bring countless advantages in terms of, for

instance, efficiency of city operations and services. An example among all is

the Internet connectivity.

Within this context, a problem of particular interest is how to leverage

vehicular and/or smartphone data to characterize driver identification. Its

characterization finds application in the development of software, which can

be used by insurance companies to check and identify drivers or, for instance,

to discourage auto theft.

Another very common and interesting scenario based on driver’s identifi-

cation is the one related to insurance and financial applications that are also

presented by ETSI. Usually, insurance companies determine premium charges

according to several statistical factors, e.g., male drivers tend to drive more

aggressively than female [11]. Other risk factors are, e.g., age, installation

of a theft deterrent system, driving behaviour [49][38]. Within this context,

driver identification may provide premium charges based on who is actually

driving the car.
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Also, as for Personal Computer years ago, nowadays, guaranteeing the

security of vehicles is becoming a strong requirement. The standard ISO/IEC

27039:2015 [39] and the regulation number 155 of the UNECE (UNECE

R155), delivered in 2021, of the United Nations [68] prescribed the use of

Intrusion Detection and Prevention Systems (IDPS) to monitor the vehicles

from intrusions. In particular, an Intrusion Detection System (IDS) is able

only to alert when intrusions are detected, while an Intrusion Prevention

System (IPS) tries also to prevent the detected intrusions.

1.2 Contribution

This thesis contribute to the state of the art proposing two driver identifi-

cation algorithms and two context-aware IDSs:

• Secure Routine, a driver identification algorithm. It exploits routines of

the drivers to train a model using a machine learning algorithm

• Private Secure Routine, the first privacy-preserving algorithm that

identifies drivers using neural networks models trained with the Secure

Multi-Party Computation technique. Like in Secure Routine, Private Se-

cure Routine exploits the routines of the drivers to improve identification

accuracy

• CAHOOT is the first context-aware IDS that identifies spoofing, DoS

and replay attacks. It is able to detect intrusions when the driver is a

human or an Artificial Intelligence. The semantic of the CAN messages

are used to train a model to detect intrusions on throttle, brake and

steering.

• CAHOOTv2 is a context-aware IDS based on CAHOOT and trained to

better recognize two spoofing attack variants and use an hyperparameter

tuning technique to improve accuracies with respect to CAHOOT
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1.3 Thesis organization

This thesis is organized as follows: Section 2 presents the state of the art,

Section 3 introduces the fundamentals to understand the following sections.

Section 4 presents Secure Routine, an algorithm for driver identification.

Section 5 presents Private Secure Routine, an algorithm for driver identifi-

cation in an ITS environment that preserves privacy of the drivers. Section

6 presents CAHOOT, a context-aware IDS that identifies several attacks.

Section 7 presents CAHOOTv2, a context-aware IDS that improves CAHOOT

on accuracy and attack types. Section 8 presents the conclusions of this thesis.

Finally, Section 9 lists the publications made in the course of the doctoral

program.
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2 Related work

2.1 Driver identification

In literature, there are several solutions based on ML techniques for the

identification of driver’s behaviour. Bernardi et al. [7] used a Multi Layer

Perception (MLP) to identify drivers. They used three datasets obtaining

respectively 94%, 95% and 92% of accuracy. In particular, these results were

obtained using a Start&Stop sliding window. A sliding window combines

several consecutive instances in a single instance. Thus, Start&Stop joins

instances starting when the car is moving until the car stops.

Gao et al. [26] discriminated drivers through Stop-and-Go events using a

voting strategy. A Stop-and-Go event occurs when the car slowdowns until

stops (stop phase), it stands still for five or more seconds and then speeds up

(go phase).

Wang et al. [100] identified 30 drivers by using the voting strategy and

Random Forest algorithm. Authors split data and tests into different window

sizes. They use six sensor signals and three derived sensor’s signals along with

five statistical features. With 5 minutes of testing data this model achieves

almost 93% of accuracy. With a sliding window of 5 seconds and 6 minutes

of testing data they achieve 100% of accuracy.

Girma et al. in [28] used the Long Short-Term Memory (LSTM) algorithm

with sliding windows and tested their model on [33] and [78] datasets with

precision and recall of 98%.

Kwak et al. in [51] selected 15 features to identify drivers behaviour.

For each feature they computed the mean, median and standard deviation

according to a reference sliding window. Thus, the total number of features

is 45. They used different ML algorithms and achieved the best accuracy of

99,6% applying Random Forest on [33] dataset.
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Martinelli et al. in [60] tested several Decision Tree algorithms with the

same dataset [33] using all 51 features. They obtained a precision and recall

equal to 99,2% with J48. The same authors in [61] used only six features out

of 51 features of [33] dataset. In this case, precision and recall decreased to

98,9% due to under-fitting.

Uvarov et al. [99] highlight the issue of car manufacturers that use non

standard IDs of sensors’ data of the CAN messages. It is not always possible

to obtain the databases with the IDs information of each vehicle. Hence,

authors verified how accurate can be driver identification models using only

public sensors’ data available with every OBD-II dongle. In the experiments,

they use the dataset Θ and removed every feature not publicly available.

Authors best result is 79% of accuracy using Random Forest in multi-driver

identification, i.e. identify who is actually driving the car, whereas on the

owner identification problem authors obtained 99% of accuracy.

Feng et al. [25] predict human mobility by using Federated Learning

technique. Vehicles work together to create a model with the help of a server.

Each vehicle customizes the model using a “personal adaptor” to better

predict personal mobility patterns.

Other research works refer to driving style recognition. However, driving

style recognition is different from driving identification: the former divides

drivers into similar driving styles subgroups, the latter uses specifics driving

styles singleness to uniquely identify drivers. Rizzo et al. [81] use secure

Multi-Party Computation to distinguish aggressive from defensive behaviors

in driving style. They consider a scenario in which an insurance company,

first, builds a decision tree using labelled past vehicles’ data. Then, the

insurance company uses the model to classify driving style of a new driver.

The built model and the unseen data are kept private.

Costantino et al. [14] propose a driver reputation characterization calcu-
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lated in a privacy preserving way by using secure Multi-Party Computation.

They collect vehicles’ sensor data to calculate the Reputation score. The au-

thors describe some example of ITS services that can be customized according

to the reputation of the driver. The reputation score is calculated without

machine learning.

Compared to Secure Routine and Private Secure Routine, [7], [26], [100],

[51], [60], [61] and [99] do not look for frequency. Also, LSTM in [28]

obtained lower scores in comparison with a Decision Tree (DT) algorithm

( [60], [61], and [51]) on the same dataset. As shown by [61], certain features

discriminate better than others for some drivers. Hence, Secure Routine and

Private Secure Routine must use the best feature set for each driver. [7], [61]

and [60] are the only ones that make owner-driver identification, they select

the same feature set for all drivers. Also, Secure Routine and Private Secure

Routine breaks down the timestamp in fine grained units to detect frequency

in order to increase the accuracy. With respect to Private Secure Routine,

none of the related work process data and models in a privacy preserving

way. Finally, Private Secure Routine is the only algorithm capable of detect

multiple authorized drivers of the same target vehicle.

2.2 Context-aware IDS

Jiang et al. [42] and Kondratiev et al. [48] developed an IDS that estab-

lishes valid messages based on the road-context for autonomous vehicles. In

particular, authors combines CAN messages with images recorded from the

camera to establish the validity of the messages. Public available datasets

are used for the evaluation. The proposed IDSs are trained to recognize

spoofing attacks variants on the steering wheel through two convolutional

neural networks.

Wasicek et al. [101] uses a Bottleneck Neural Network to read sensors’
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values and to determine a vehicle’s anomalous behaviour. The evaluation is

made on a car with installed a chip tuning into the Engine Control Module

(ECM) that changes its behaviour.

Casillo et al. [12] present a Bayesian Network to detect malicious CAN

messages. The dataset used for the training is generated by the autonomous

driving CARLA simulator [19] whose AI periodically receives attacks.

The methods for the detection of sequence context anomalies comprise

different approaches. Rieke et al. [80] used process mining. Levi et al. [55]

and Narayanan et al. [66] proposed works that use hidden Markov models.

Theissler et al. [94] used OCSVM, while in the Kang et al. [45] work neural

networks are used. Marchetti et al. [59] used detection of anomalous patterns

in a transition matrix. Taylor et al. [91] and Kalutarage et al. [44] used

frequency of appearance of a sequence of CAN messages.

Grimm et al. [31] provide a comprehensive survey on context-aware security

approaches in the vehicular and related domains, while Al-Jarrah et al. [3]

extensively survey the current state of the art on IDS systems for in-vehicle

networks. Al-Jarrah et al. conclude that currently the area of context-aware

systems is still under-investigated.

Compared to CAHOOT and CAHOOTv2, the related context-aware IDSs

are able to detect only Spoofing attacks ( [101] and [12]) or its variants ( [42]

and [48]). Also, several works are able to detect forged messages in steering

( [42], [48] and [12]) while [101] detects intrusions only on the engine. The

work [12] is able to detects intrusions also in brakes. None of these works

are capable to detect intrusions on engine, steering and brake. Finally, none

of these works are able to detects intrusions for human and AI drivings.
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3 Background

In the following, we introduce some preliminary notions about the compo-

nents present in the vehicles and how they communicate with other entities.

Next, we explain the habits of the driver concept on which the works pre-

sented in this thesis are based. Then, we introduce several Machine Learning

algorithms. Finally, we explain the communication layers present in the

transportation infrastructure of this thesis.

3.1 Vehicle anatomy and connectivity

Vehicles are like computers on wheels. A lot of information circulate into

vehicles and are communicated to the vehicles from outside. This is possible

thanks to the amount of ICT systems that are installed in modern vehicles.

A car contain various sensors to keep track of the environment and the

vehicle status [107]. In case of an autonomous car, these sensors are processed

by Graphics Processing Units (GPUs) and Field Programmable Gate Arrays

(FPGAs), i.e., programmable components that integrate several basic logical

electronic elements [18], to make driving decisions.

Inside the vehicle, there are also several Electrical Control Units (ECUs)

that provide functionalities to the car [29].

Examples of ECUs are:

• The Engine Control Module (ECM) is responsible for the engine and

manages the fuel supply, air management of the engine, fuel injection

and ignition [8].

• The ECM manages the fuel while the air is managed by the Electronic

Throttle Controller (ETC) [13].

• The Hydraulic Control Unit (HCU) receives the brake’s pedal input and
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manages the braking systems of the four wheels, the Anti-lock Braking

System (ABS) and the Electronic Stability Control (ESC) [106].

• The power steering systems handles the torque of the wheels based on

the torque of the steering wheel. There are two types of power steering

systems: the Hydraulic Power Steering and the Electric Power Steering

(EPS). The first one uses an hydraulic system to torque the wheels

whereas the EPS uses an electric motor that reduces the numbers of

components needed to steering. Nowadays, the EPS is the most used

power steering system. The EPS calculates the forces needed to torque

the wheels based on the position and the force applied to the steering

wheel and the velocity of the vehicle.

The ECUs are connected to each other through multiple buses, e.g.,

Controller Area Network (CAN), CAN-FD, FlexRay and Automotive Ethernet.

Different partitions of these busses are connected each other through gateways.

The sensors’ data can be accessed from the internal using the CAN bus

protocol or from the external using an OBD-II device connected to the OBD-II

diagnostic port [88].

Modern vehicle are also connected with extra vehicle entities, such us

other vehicles or the Roadside Units of the infrastructure, through V2X

communications. Using V2X communications, each vehicle is able to get

information about the surrounding environment. These pieces of information

may influence driving decisions, e.g., change route planning because of an

accident.

Also, many newer vehicles are connected through LTE or 5G to the

carmakers’ server. The carmakers collect information of the car to offer

services, e.g., sensors’ data, air conditioning management, route planning

and history, insurance premium charges, maintenance history and battery

management for electrical vehicles. In particular, carmakers can offer to third
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party the access to the sensors’ data.

3.2 Habits of driver

To complete a task, people repeat sequences of actions previously saw

from others or done by themselves, no matter how tough the task is [52]. Two

persons may accomplish the same task with similar actions but with little

fundamental differences [52]. Routines can describe how people organize their

lives: daily commute, weekly, meetings, holidays. Routines can also describe

how a driver approaches to an intersection [4]. People routines are not fixed,

they can evolve over time [52].

Based on the habits concept, Routine based classification is a type of

classification [103] that aims to find actions that are frequently repeated in

time.

3.3 Machine Learning

Machine Learning (ML) is the study of computer algorithms that improve

automatically through experience. ML algorithms build a mathematical

model to make predictions or decisions without being explicitly programmed

to do so. At the basis of the model there is a dataset that has to be processed.

Such dataset can be considered as a table in which all data are listed. Each

row of the table is called instance and each column represents a feature of the

instance. The dataset is usually split into two parts, the training dataset and

the test dataset. The model is created on the basis of the training dataset.

Instead, a test dataset represents all instances adopted to verify how much

accurate our model is in doing the classification.

ML techniques are largely adopted for the identification and classification

of users.
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3.3.1 Decision Trees

In the following, we introduce an example of ML algorithm based on

Decision Tree (DT) predictive modelling approach. A DT consists on a tree

data structure that contains rules to classify the instance. For each level of

the tree, the value of a feature of the instance is tested, for example, through

a specific question. Each internal node of the tree contains a test. Depending

on the answer, the model follows a different edge: the left edge if the result of

the test is true, otherwise the right edge is followed. Finally, the leaf nodes,

i.e., the nodes with no children, contain the prediction. A DT algorithm

must create a tree with the minimum number of levels. This allows the ML

algorithm to classify the instance as fast as possible. To build a DT with a

low number of levels, it is necessary to select the best tests for the model.

This is done by selecting the appropriate Formula to make the selection. A

Formula specifies the criterion chosen to establish which is the next test to

perform in the DT.

For instance, let Alice and Bob be two drivers that are used to going

on the Sixth Avenue. Alice goes on the Sixth Avenue all days of the week,

instead Bob goes only from Monday to Friday. Bob drives slightly faster

than Alice, with a speed up to 55 Km/h. A possible DT model is the one in

Figure 1(a) that is built by putting on the tree root the following test:

“Is today Saturday or Sunday?”

Following the root test, we have that the left child is taken by Alice instead

the right child corresponds to the following test:

“Is the vehicle speed lower than 55 Km/h?”

Again the left child is a leaf node that represents Alice, whereas the right

child is the leaf node representing Bob.

14



Despite the above DT model is a valid model for our example, we may

produce a better tree in which a root node is configured with the following

test (Figure 1(b)):

“Is the vehicle speed lower than 55 Km/h?”

In this case, the left child is the leaf node Alice and the right child is the

leaf node Bob. Hence, a ML algorithm concludes its prediction with only one

test.

A DT has to be simple. This allows the DT to be flexible enough to

represent also further instances. Thus, if the built model is too complex, it

may not represent new labelled instances, i.e., for instance those ones present

in a test-set. This may cause a high error rates, generating the over-fitting

error. To reduce the over-fitting error, the pruning technique can be adopted

to obtain a simpler version of the tree by pruning some nodes. Another

solution to mitigate the over-fitting error is the feature selection that works by

removing features. However, pruning too many nodes and removing too many

features or relevant ones may lead to higher error rates, aka under-fitting.

Several DT algorithms were developed to generate models. The C4.5 was

proposed in 1993 [76] and it uses the Gain Ratio (GR) of a feature “X” of

the training set (T) to establish which is the best test to perform.

GR =
H(T )−H(T |X)

H(X)

Is today 
Saturday or Sunday?

Alice Is the vehicle speed 
lower than 55 km/h?

Alice Bob

(a) DT with two levels.

Is the vehicle speed 
lower than 55 km/h?

Alice Bob

(b) DT with one level.

Figure 1: Comparison of two possible DT for solving the same problem.
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where:

• H(T ) indicates the entropy of T, i.e., the quantity of information carried

by the probability distribution of labels in T [85], calculated as:

H(T ) = −
k∑

j=1

freq(Cj , T )

|T |
× log2

(
freq(Cj , T )

|T |

)
where:

– k is the number of classes;

– freq(Cj, T ) is the number of instances in the j-th class;

– |T | is the number of instances of T.

• H(T |X) indicates the entropy after partitioning T in “n” parts, where

“n” is the number of possible values assumed by X:

H(T |X) =
n∑

i=1

|Ti|
|T |
×H(Ti)

where:

– |Ti| is the number of instances with the i-th value assumed by the

feature X;

– H(Ti) indicates the entropy of the set of instances with the i-th

value assumed by the feature X.

• H(X) indicates the entropy of X:

H(X) = −
n∑

i=1

|Ti|
|T |
× log2

(
|Ti|
|T |

)

Note that C4.5 can handle features with unknown values and real numbers

and may make use of the pruning technique.

Random Forest (RF) [15][10] is an algorithm formed by a set of DTs. Each

tree is built from a random sampling with replacement of the training-set.

Each node of a tree is the best test defined on a subset of features, instead of
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on all available ones. Trees are not pruned. In prediction phase, an instance

is run on each tree and each tree makes a prediction. The most predicted

value becomes the prediction of RF. Also, RF includes a procedure in case of

unknown values in the dataset.

3.3.2 Neural Network at a glance

Neural Networks (NNs) [36] are computing systems that tries to resemble

a human brain to perform a specific task. Neural Networks are composed of

simple process units, referred as neurons, that resembles the human neurons to

constitute a network. Each neuron can receive input information as weighted

signal from other neurons of the network through links. The inputs of a

neuron are combined with a function that combines the weighted inputs with

an extra element called bias. Weights and bias are called parameters. The

output of the neuron is the result of the activation function that limits the

range of output values of the neuron.

The structure of a Neural Network is called network architecture and

describes how the neurons are arranged and linked. Networks are organized

in layers and can be listed by the number of layers in single-layer network

and multi-layer. A single-layer network has an input layer and an output

layer. The term “Single-layer” denotes that there is only one computational

layer on the network. The input layer is not a computational layer because

no computation is performed in these neurons. A multi-layer network has an

input layer, an output layer and one or more intermediate layers known as

hidden layers.

Hence, to define a NN architecture we need to define the number of layers,

number of neurons of each layer, the links between neurons, the combiner

function and the activation functions of the neurons. Then, the parameters of

NN are established through a learning process [82] starting from the definition
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of a dataset. A dataset is a collection of data, represented by means of a table,

that contains samples regarding the task. The rows of the table are called

instances and the columns are the features of each instance. The dataset is

split into two partitions: the training dataset and the test dataset. Training

dataset represents all instances adopted to make experience and evolve the

model. Instead, instances of a test dataset is employed to verify how much

accurate the model is in doing the predictions. The learning phase follows

the step described below:

1. The parameters of NN are randomly initialized;

2. Run the network presenting data of the training set as input;

3. Using a loss function, the output of the network, i.e., the predictions,

are compared with the expected answer, i.e., the labels, obtaining the

loss value. This indicates how bad the network is to make predictions.

4. The parameters are corrected according to the loss value by using an

optimizer [104]. The correction is limited by a learning rate multiplier.

The optimizer searches the best parameters that minimize the loss value.

5. The procedures from 2 to 4 are repeated depending on training prefer-

ences, for instance a specific training accuracy is reached.

To make the training faster, the training set is split in so called batches.

Each optimization step is executed on the instances of a batch. Once the

optimization step is applied to all training data, an epoch is completed. The

epochs [96] are the number of times the training data is passed through the

training process.

18



3.4 Intelligent Transportation System Infrastructure

We model the transportation infrastructure on three different layers that

communicates one another (Figure 2).

Cloud layer

Fog layer

Ground layer

Figure 2: Communication Layers in the transportation infrastructure

The Ground layer is composed by drivers and vehicles. Modern vehicles are

equipped with devices such as the In-Vehicle Infotainment (IVI) system able

to collect, store and communicate information generated by car sensors. While

a driver uses the vehicle, this one requests and stores pieces of information

about the driver. Such data are collected via OBD-II [93] or the CAN bus [40]

protocol, which transport the data related to vehicle’s sensors. Using these

data, a dataset is generated. It is represented as a table in which all instances

referred to a driver are collected. An instance is made of timestamp recorded

with the following template: (day, month, year, hour, minute, second and day

of the week) and pieces of information about vehicle’s components, e.g., oil

engine temperature, throttle position, speed and so on.

The Fog layer contains all the Roadside Units able to collect and process

information coming from the ground layers. RUs are able to offload computa-

tional tasks from the ground levels, enabling the distribution of tasks among

the fog layer devices. Because fog and ground layer are close, the network

between these two layers are fast and present low latency.

19



The Cloud layer provides massive computational power and storage but

the network speed is slower than the fog layer as well as the latency is much

higher.

The Ground layer, the Fog layer and the Cloud layer correspond in the ITS

environment to the vehicle ITS subsystem, the road ITS subsystem and the

central ITS subsystem, respectively. Each subsystem has a station that allows

it to communicate with other sub-systems of the ITS, called ITS station [23].

In each vehicle, an ITS station is installed (Figure 3(a)) . The gateway

inside the station provides access to the vehicle internal network, e.g. the

CAN bus [40]. In the majority of the network scenario of the ITS, vehicles

can directly communicate only with nearby devices [24]. The Roadside Units

(RUs) (Figure 3(b)) are computing devices located aside the road and provide

long distance connectivity and internet connectivity to the vehicles acting as

an intermediary. Finally, the Central ITS provides to the vehicles applications

(Figure 3(c)), e.g., traffic information, SOS service, Diagnosis service and so

on.

The three main standard technologies for short range communications

among the stations are the IEEE 802.11p, the LTE-V2X and the 5G-V2X.

The first two work at 5.9 GHz [2] while 5G-V2X also works at mmWave that

ranges between 24 GHz and 100 GHz. The IEEE 802.11p is based on the

Wi-Fi standard 802.11a [2] for communications vehicles to vehicles (V2V)

and communications vehicles to RUs (V2I). The LTE-V2X [2] is based on the

LTE, known also as 4G. LTE-V2X allows communications V2V, V2I, vehicle

to pedestrian (V2P) and direct internet connection. The 5G-V2X [34] is

similar to LTE-V2X, replacing LTE with 5G. The network latency is reduced

and the network speed is higher.
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(a) Vehicle ITS subsystem (b) Roadside ITS subsystem

(c) Central ITS subsystem

Figure 3: ITS subsystems.
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4 Secure Routine

Based on the aspects of routine introduced in the Subsection 3.2 , here

we introduce the paradigm of Secure Routine (SR) that takes into account

not only what the user does but also how much frequently. We use the SR

paradigm within the automotive context with the aim to identify drivers.

To achieve this, we elaborate and implement the SR algorithm that exploits

sensors’ car data, obtained, for instance, through the OBD-II diagnostic port.

The SR algorithm, which runs in the cloud layer, evaluates the recorded data

and, in particular, uses the timestamp to make an accurate classification of

drivers. Then, SR leverages a Machine Learning (ML) technique to establish

driver’s routines and to properly identify the driver.

To test the goodness of the Secure Routine algorithm, we compare it with

other research works in literature. The comparison is done on two different

datasets and the results are evaluated using three metrics: accuracy, precision

and recall.

4.1 Algorithm

We define SR and present its application into the automotive context

to perform driver’s behavioural identification. To this aim, SR analyses

all tracking data recorded by vehicle’s sensors while the user is driving it.

Tracked data are organized in separate instances according to the sensor that

collects them and the timestamps when the event occurs. Hence, SR firstly

decomposes the timestamp of each instance and extracts seconds, minutes,

hours, day of week, day, month and year. Then, SR removes less relevant

features, as we will describe below using the Feature Selection (FS) technique.

Successively, the data collected by sensors are correlated with the timestamp

previously decomposed. Then, a ML algorithm examines these data. The

output is a model representing users’ Secure Routine. As final step, the
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obtained model is compared with an observed user’s driver behaviour for

his/her identification.

To show the value added by the Secure Routine to identify drivers, we

introduce the following example. Let us consider Alice and Bob who are used

to going on the Sixth Avenue. Alice usually goes there at 12PM, and Bob at

7PM. If we do not consider the timestamp information, the resulting model of

Alice and Bob will contain only the information “The user is used to going on

the Sixth Avenue”. In this situation, the observed behaviour will be compared

to understand whether the driver is Alice or Bob. However, this selection

is quite difficult since the missing timestamp information is fundamental to

distinguish between the drivers. On the contrary, if we consider also the

timestamp in which the event happens, the identification will be unique in

this case. In fact, if the vehicle is at 7PM on the Sixth Avenue, therefore the

driver is Bob.

This is what Secure Routine does considering daily routines as well as

monthly and yearly ones. Hence, SR may be very useful, for instance, to

mitigate scenarios as the one depicted in Section 1: in UK cars are often

stolen at night. If the vehicle’s owner does not usually drive during the night,

SR can easily detect the weird behaviour. In particular, the SR paradigm

is built upon a ML algorithm that uses as training-set the data recorded

through an OBD-II device. A closer working mechanism of SR is presented

in [86]. Here, the authors prefer to involve the interval between a rerun of the

same action. Let us consider this other example in which Alice goes on the

Sixth Avenue every 24 hours for the whole week, instead Bob every 24 hours

from Monday to Friday. In this case, the routine of Bob will be modelled as

intervals of 24 and 72 hours. So, if we consider a driver moving on Saturday,

we would not be able to identify the driver, neither Alice nor Bob, since the

interval is set to 24 hours. On the contrary, if the day of the week is taken
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into account, Alice will be correctly identified.

Let us consider a target vehicle belonging to a driver d. The SR algorithm

acts in four phases.

4.1.1 Model Generation Dataset

Whenever a vehicle is used, its sensors register pieces of information about

several features, e.g., the water temperature, the speed, the brake pressure,

and so on. We assume to take trace of all these data in combination with

the timestamp in which each instance of data is generated. Data are taken

from the OBD-II port by using an OBD-II interface [21]. Each instance of

data is called interaction of the driver d with the vehicle and it is denoted as

ini,d where i is the timestamp. Interactions are composed by the timestamp,

recorded with the following template: (day, month, year, hour, minute, second

and day of the week) plus the others features obtained from the OBD-II.

4.1.2 FS paradigm

To mitigate the possible over-fitting error, we implement the FSParadigm

(Listing 1).

Listing 1: Feature Selection Paradigm

1 function FSParadigm(instances)

2 ranking ← GR(instances)

3 rankingordered ← order ranking ascending

4 features>0 ← discard features with rank = 0 from rankingordered

5 (featuresno timestamp correlated, featurestimestamp correlated)← features>0

6 rankingno timestamp correlated ← ranking from rankingordered of features

present in featuresno timestamp correlated

7 averageranking ← mean(rankingno timestamp correlated)

8 subsetno timestamp correlated ← discard features sum is less than or equal

to the averageranking from rankingno timestamp correlated
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9 subset ← subsetno timestamp correlated ∪ featurestimestamp correlated

10 return subset

FSParadigm is designed to select the best features to use. It firstly ranks

all features applying the Gain Ratio approach and then features are sorted

in ascending order. Those features with rank equal to zero are discarded.

Then, the average-rank among all features not correlated to the timestamp

is calculated. The FS discards those features, except those related to time,

whose rank sum is less than or equal to the average-rank.

4.1.3 Model Generation Algorithm

Let us consider that a vehicle may be driven by d but also by other people,

e.g., friends or relatives of d. In the modelling phase, our algorithm (Figure 2)

considers all the past interactions recorded by the vehicle and labels with 1

each interaction that belongs to d, 0 otherwise. The labelled interactions are

sent to a DT algorithm that generates the model for the driver d.

Listing 2: Secure Routine Model Generation

1 function generate_model(d)

2 insd ← get interactions from db made by d, labeling 1

3 inso ← get interactions from db made by others, labeling 0

4 insall ← insd ∪ inso

5 subset ← FSParadigm(insall)

6 model ← MLAlgorithm(insall with features from subset)

7 return model

In particular, in line 5, FSParadigm is the Feature Selection paradigm we

described above as part of SR and line 6 (MLAlgorithm) indicates the ML

algorithm in use with the subset of features obtained before.
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4.1.4 SR Identification strategy

Once the model is generated, SR makes the identification evaluating each

interaction. In particular, SR links an interaction to the vehicles’ owner if

the ML algorithm predicts and labels it as 1, otherwise 0.

4.2 Secure Routine Evaluation

We evaluated Secure Routine in two steps: first, we run it using two ML

algorithms and we verified which of them best performs to identify drivers.

Then, we compared Secure Routine with the following research works:

• Martinelli et al. [61] referred in the following as M .

• Kwak et al. [51] referred in the following as K.

• Girma et al. [28] referred in the following as G.

4.2.1 Datasets

We run the experiments using two datasets presented in [33], referred as

Θ, and [5], referred as Ψ. The former is a dataset used also by M , K and

G in their research works. So we can fairly make a comparison. However,

the Θ dataset does not contain a fundamental feature used by SR, this is the

timestamp of each represented instance. Nevertheless, Θ dataset contains the

engine runtime that provides the minutes to be used as timestamp needed

for SR to work.

On the other hand, Ψ dataset contains a timestamp for each instance

by default. This feature allows Secure Routine to fully work by using all

available pieces of information. In particular, SR expands the timestamp to

generate all time dependent features. As far as we know, the other compared

research works do not make use of this dataset to evaluate their proposal. So,
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to evaluate SR even in this case, we were able to re-run the work proposed by

Martinelli et al. and calculate the results for the owner-driver identification.

On the other side, the works K and G did not calculate the owner-driver

identification and, also, it was not possible to re-run their algorithms since

the implementation is not publicly available. In the specific case of G, the

authors published only the pre-built model and we were not able to use it.

Dataset Θ. It contains data from 10 drivers. Figure 4(a) shows the driver

instances’ distribution. Drivers have 9438 instances on average: Driver 4 has

the highest number of instances with 13244 samples while Driver 1 has the

lowest number with 7240 instances. In addition, drivers drove two times in

the same path in similar time-window. Dataset instances are recorded per

second.

Dataset Ψ. This contains data from 14 drivers. Figure 4(b) shows that

drivers’ instances are not equally distributed. For example, Driver 1 has the

highest number of instances with 13617 samples, whereas Driver 10 has the

lowest number with only 7 instances. This may depend on the fact that some

users drive frequently whereas other users rarely. However, 7 instances are

not enough to build a model for the Driver 10. So, we decided to exclude

Driver 10 instances in our experiments to not alter the final result. Also,

many instances contain empty values because of errors on gathering data.

Instances are recorded every 7 seconds.

Compared to the Θ dataset, Ψ contains by default 32 features. Never-

theless, five of these features are timestamp related and are minute, hour,

day of the week, month, year. Other features, such as, model, car year, are

removed since they do not give any useful information about the user driving

style. The dataset also contains engine runtime from which we extract en-

gine runtime minute. Also, these datasets have 9 features in common (Table
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Table 1: Common features description

Feature Description Example

Throttle pos Percentage of throttle opening 25%

Short term fuel trim bank 1 Percentage of ratio air/fuel in the first bank

of cylinders instantaneous

-3,00%

MAF The air flow mass in the engine 8,12g/s

Engine RPM Number of revolutions per minute

crankshaft makes

2100RPM

Speed Speed of the vehicle 55km/h

Timing advance Percentage of crankshaft rotation when

spark plug fires in advance

0,423%

Engine coolant temp Temperature of the coolant/antifreeze liquid

mix of engine

90C

engine runtime minutes Minutes elapsed from engine start 39m

engine runtime second Seconds elapsed from engine start 10s

1).

4.2.2 Metrics

To get a comparable result of SR with M , K and G, we evaluate accu-

racy [96], precision and recall [61].

• Accuracy represents how often the model is making a correct prediction.

It is the ratio between the number of correct predictions and the number

of predictions:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where:

– TP (True Positive) is the number of instances belonging to the

vehicle’s owner that are correctly predicted;
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– TN (True Negative) is the number of instances not belonging to

the vehicle’s owner that are correctly predicted;

– FP (False Positive) is the number of instances belonging to another

person but incorrectly predicted;

– FN (False Negative) is the number of instances belonging to the

vehicle’s owner but incorrectly predicted.

• Precision measures how often the predicted instances belonging to the

vehicle’s owner are true. It is calculated as the ratio between TP and

TP + FP :

Precision =
TP

TP + FP
(2)

• Recall identifies how often the instances belonging to vehicle’s owner

are correctly predicted. It is calculated as the ratio between TP and

TP + FN :

Recall =
TP

TP + FN
(3)

To better estimate the three metrics depicted above, in our experiments

we used the 10-fold cross-validation [47] approach. First, we split the dataset

on 10 equal size subsets D1, D2, ..., D10. Each instance of the dataset is

randomly inserted in a subset. Then, we constructed 10 training sets Tr1, Tr2,

..., Tr10 and 10 testing sets Te1, ..., Te10. Tri is made of all subsets except

Di and Tei is made of Di with i ∈ {1, 2, ..., 10}. For each pair (Tri, T ei) is

calculated accuracyi, precisioni and recalli. Finally, we calculated the final

value of accuracy, precision and recall as the mean of accuracyi, precisioni

and recalli, respectively.

4.2.3 Experiments

We performed four types of experiments to evaluate Secure Routine. The

first experiment is related to multi-driver identification problem [61], i.e.,
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(a) Number of instances for each driver in

Θ

(b) Number of instances for each driver in

Ψ

Figure 4: Driver distributions on the datasets.

Table 2: Comparing SR using J48 and Random Forest over the multi-driver

identification problem.

J48 Random Forest

All features Feature selection All features Feature selection

Precision Recall Precision Recall Precision Recall Precision Recall

99,2% 99,2% 99,3% 99,3% 99,3% 99,3% 99,6% 99,6%

properly identify who is the driver. However, as step zero, we decided to find

the most suitable ML algorithm with the best features set to evaluate SR. We

leverage on Weka [102] as software that contains a collection of visualization

tools and algorithms for data analysis and predictive modelling. So, we used

the available Gain Ratio method to rank each feature. Then, we employed

J48, which is the implementation of the C4.5 algorithm, and RF algorithm

over the driver identification.

Table 2 shows the results obtained comparing SR implemented into J48

and RF algorithms applied to the driver identification using Θ dataset. RF

algorithm with feature selection (37 features) obtained the best precision and

recall.

After selecting SR with RF and the most appropriate features ranked by

the Gain Ratio method, we show the first experiment results obtained by
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comparing SR with the work in M , K and G on the Θ dataset. As shown in

Table 3, Secure Routine and K achieves the best results. Note that M did not

calculate the accuracy in the paper, so we established this value through the

replication of their experiment. Instead, K did not provide on their research

precision and recall. Finally, for G we were not able to retrieve the exact

accuracy.

Table 3: Comparison of Secure Routine with M , K and G for multi-driver

identification on dataset Θ.

Secure Routine M K G

Precision Recall Precision Recall Precision Recall Precision Recall

99,6% 99,6% 99,2% 99,2% N.A. N.A. 98,8% 98,1%

Accuracy Accuracy Accuracy Accuracy

99,6% 99,2% 99,6% N.A.

As we can see in Table 4, SR achieves almost a perfect precision, i.e.,

100%, but with the worst recall and this depends on the features selection.

In fact, if we increment the number of features, we increase the recall but the

precision is decreased. Here, we decided to obtain a higher precision selecting

the most appropriate features using the Gain Ratio.

Table 4: Comparison of Secure Routine with M for owner identification on

dataset Θ.

Secure Routine M

Avg. precision Avg. recall Avg. precision Avg. recall

99,8% 98,5% 99,3% 99,3%

The second experiment is related to the Owner Driver identification, i.e.,
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does the instance belong to the vehicle’s owner? In this case, we compared SR

only with M since K and G did not calculate the owner driver identification.

As stated by the authors of M [61], they use the same features for both the

multi-driver and owner driver identification.

The third experiment that we propose is related to the multi-driver

identification on the Ψ dataset. In this case, we used the GR method for

features selection. Starting from pruned Ψ dataset, we evaluated SR. As

previously stated, we know that there are no other research works that use

this dataset. So, we had only the possibility to replicate the best solution

proposed by M .

Table 5 shows that Secure Routine with feature selection achieves the best

result both for precision and recall.

Table 5: Comparison of Secure Routine with M for multi-driver identification on

dataset Ψ.

Secure Routine M

Precision Recall Precision Recall

99,4% 99,4% 90,4% 89,8%

To conclude the evaluation, last experiment focused on the owner driver

identification. Table 6 indicates that SR with features selection has the best

performance when compared with M . SR obtained an average precision of

99,6%, which means that for 8 drivers SR established a perfect precision

whereas M achieved this precision only for 4 drivers with an average precision

of 95,1%. Regarding the recall, SR largely outperformed M in percentage and

SR achieved a perfect recall score for one driver, whereas M never obtained a

perfect recall.
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Table 6: Comparison of Secure Routine with M for owner identification on

dataset Ψ.

Secure Routine M

Avg. precision Avg. recall Avg. precision Avg. recall

99,6% 98,1% 95,1% 82,9%

5 Private Secure Routine

In the previous works similar to Secure Routine, identification of the

drivers is obtained using sensors’ data from the vehicle. These data are stored

in servers that build Machine Learning models of driver’s behaviour. Hence,

the server stores a massive amount of sensible driver’s data. However, the

General Data Protection Regulation (GDPR) requires that the organisations

operating in EU protect user’s personal data.

This section presents Private Secure Routine (PSR) paradigm for driver

identification that distinguishes authorized drivers of a car from the others

in a privacy preserving way. PSR identifies drivers using cars’ sensors data

gathered, for instance, using OBD-II [93] interface or directly from the CAN

bus [40] of the vehicle. Through the data sharing within an ITS architecture,

PSR is able to build an accurate model of authorized drivers. Moreover,

according to General Data Protection Regulation (GDPR) such data, can

be considered sensitive data. Hence, PSR exploits the secure Multi-Party

Computation (MPC) technique to guarantee that drivers’ data are exchanged

in a privacy preserving way. We experiment the Private Secure Routine

paradigm on two different test-beds and the results are quite promising.
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5.1 Privacy preserving Machine Learning techniques

5.1.1 Federated Learning

Federated Learning (FL) [62] is a learning technique to train shared models

among users’ devices (Figure 5). These devices are referred as clients. FL

does not need to centrally store users’ data, instead, data remains on clients.

A central server coordinates the clients. Firstly, the server sends a model,

called global model, to the clients. Each client trains the received global

model using its data. The obtained model is then uploaded to the server. The

server merges the received models to obtain the new global model and sends

the model to the clients. An example of merge algorithm is the average of

the model’s parameters. This learning cycle is repeated several times. Users

data remain private, however FL does not guarantee privacy of the models:

the server sees the model updates of each client and all the clients have a

copy of the global model.

In the driver identification, each vehicle needs a model able to detect a

not authorized driver. In particular, the model should be able to identify and

distinguish authorized from each other. Hence, the models of the vehicles

are also sensible data that must be kept private. FL is vulnerable to several

attacks that allows an attacker to get information on the training data used

by the clients or even reconstructs the data used for the training [65].

5.1.2 Split Neural Network

In Split Neural Network (SplitNN) [32] the layers are distributed among

multiple agents, each agent trains only its subset of layers. No agent has a

complete view of the neural network. There are two types of agents: the

data agents and the computing agents. The first ones are data sources, while

the computing agents only perform computations (Figure 6). To preserve

data privacy, each data agent has the first subset of the neural network, so it
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Figure 5: Federated Learning.

does not send its data to the other agents. The neural network training is

distributed between the agents.

Training of a model using Split Neural Network. In the following,

we will briefly explain the training process. Let us suppose that there are

two data source agents and one computing agent: the first data source agent

uses its data on the subset of layers in its possession applying the forward

propagation. The output of its last layer is then sent to the computing agent

in possession of the next subset of layers of the neural network. This agent

applies the forward propagation in its layers’ subset using in input the data

received. Because the computing agent possesses the output layer, the output

of agent’s subset is the output of the neural network, i.e., the prediction

made by the neural network for the input data of the first data source. To

calculate the loss, the data source sends to the computing agent the labels.

Once the computing agent calculates the loss, the backpropagation procedure

starts. The computing agent computes the gradients of its layers’ subset,

then sends the gradients of the first layer of its subset and sends it to the

first data source agent. This agent uses the received gradients to compute
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the backpropagation of the layers in its possession. The agents source and

computing apply the corrections to their layers according to the gradients.

Now the neural network is trained with the data of the first data source.

To complete the neural network training, the first data source sends to the

second one its layers’ subset. The second data source and the computing

agent applies the forward and backpropagation to complete the training of

the network using the data of the second data source.

Figure 6: Split Neural Network.
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5.1.3 SplitFedv1

SplitFedv1 [92] is a combination between the SplitNN and Federated

Learning. Like in SplitNN, the layers of the network are split between

the data source agents and the computing agents. However, in SplitFedv1

(Figure 7) multiple copies of the neural network are trained in parallel, one per

data source agent. Each data source agent applies the forward propagation

to a copy of the first layers’ subset using its data. The agent sends the

output of its subset to the computing source in possession of the next subset.

This computing source has all the copies of the second subset and applies

the forward propagation to each copy using the output of the corresponding

data source agent. The procedure continues until the forward propagation is

applied to all the copies of the last subset. Then, the loss and the gradients

are calculated for each last subset’s copy. Next the backward propagation is

executed for each copy of each subset layer and their parameters are corrected

according to their gradients. Finally, the trained neural network copies are

merged like in federated learning. Each computing node merges each layer

in its possession. Each data source agent sends its layers to an external

server called “fed server”which computes the merge of all the layers received.

Training in SplitFedv1 is faster than the training in SplitNN because the

copies of the neural network can be trained in parallel.

5.1.4 SplitFedv2

SplitFedv2 [92] is a variant of SplitFedv1: each computing agent has only

a single copy of its own subset copy instead of having a copy for each source

agent. The outputs of the forward propagation are sent source agent by

source agent to the first computing source. The training process is slower

than the SplitFedv1 because the layers owned by the computing agents can

not be trained in parallel (Figure 8).
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Figure 7: SplitFedv1.

5.1.5 SplitFedv3

Finally, SplitFedv3 [27] algorithm is almost identical to SplitFedv1. The

only difference is in the merging phase: the “fed server”is not necessary
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Figure 8: SplitFedv2.

because the subset layers of the data source agents are not merged (Figure 9).
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Figure 9: SplitFedv3.

5.1.6 Secure Multi-Party Computation

Secure Multi-Party Computation [30, 9] is a cryptography technique where

n parties wants to compute a function f(x1, x2, ..., xn), where input xi is held
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by the party i to maintains private each party input. In a function secret

sharing, the functions are split in n secrets, called shares. To reconstruct the

secret, an attacker must collect the majority of the shares. MPC maintains

private either the data and the models.

In the example of Figure 10, the nodes that compute the function, i.e.,

the computation nodes, differ from the ones that provide the data input,

i.e., the input parties. Moreover, the node that reconstructs the result of

the computation, i.e., the result party, differs from the other nodes of the

example.

Figure 10: Secure Multi-Party Computation.

5.2 Focus on Private Secure Routine

Private Secure Routine (PSR) is a paradigm to identify authorized drivers

belonging to the same vehicle in a privacy-preserving manner. Private Secure

Routine is built on top of the Secure Routine (SR) paradigm [63]. The

advantages of PSR with respect to SR are twofold:

• PSR distinguishes among several authorised drivers depending on their

routine. While SR is able to identify only one authorized driver for a
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target vehicle, i.e., the owner of the vehicle, PSR identifies more than

one authorized driver for a target vehicle.

• PSR guarantees that information about drivers and vehicles are ex-

changed in a privacy-preserving way.

5.2.1 Architecture

The PSR paradigm takes as input all pieces of information about drivers

and vehicles circulating in the infrastructure and generates models of each

driver in each vehicle using a privacy preserving machine learning algorithm.

Each model identifies the drivers that are authorized to drive the vehicle.

We evaluated which privacy preserving ML algorithms choose for PSR

from the ones presented in the section 5.1. Federated Learning keeps private

only the data, while the model is shared between the devices. In PSR, the

model is a representation of the drivers of a target vehicle. The model could

be used by the attacker to obtain sensitive information of these drivers. Hence,

we discarded FL.

SplitNN and all SplitFed variants keep private also the model through the

distribution of the NN layers between the agents. In PSR, the source agents

are the vehicles. The data of each driver is present in few cars while the

majority of the car do not present any data of the driver. We run preliminary

experiments on SplitNN and SplitFed variants where each driver’s data is

distributed to one vehicle. Each vehicle contains data of two drivers. The

experiments show that all these ML algorithms tend to generate dummy

models that detect all drivers as unauthorized. We speculate that the cause is

the presence of data of each target driver only on few vehicles with the respect

to the majority of the vehicles that does not have any data of the target

driver. In SplitNN and in the SplitFed variants the model is incrementally

trained using the data of a vehicle at time. Hence, the limitation of data
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implies that what the model learns from the data of the vehicle containing the

target driver is forgotten to make room for what is learned from the data of

all other vehicles. On the other hand, Secure Multi-Party Computation does

not suffer of the data distribution because the computation nodes collaborate

each other using the entirety of data to generate the model. For these reasons,

the PSR paradigm uses Secure Multi-Party Computation as ML method.

Private Secure Routine works using all three layers present in the trans-

portation infrastructure. Each vehicle collects data and has an unique identi-

fier “ID”, which is represented as a random string, that we employ as data

addressing during the model training phase that we show in Section 5.3.

RUs are the computational party acting as a bridge between peers of

the ground and cloud layer and between vehicles connected to different RUs.

In addition, RUs are in charge of share data among entities in a privacy-

preserving way by running the MPC technique. Still in this layer, RUs are

involved by vehicles to retrieve needed information to train and create drivers’

model as described in Section 5.3. Furthermore, as for vehicles even roadside

units have a single identifier “ID” that we use as data addressing during the

model training phase.

The cloud layer provides cloud storage resources maintaining a database

for the association between drivers and vehicles. Moreover, cloud resources

send to RUs the labels for the training of models and also they store roadside

units and vehicles public keys.

In this work, we consider the cloud and the vehicles as untrusted entities:

their intent is to obtain the data of other vehicles. Instead, RUs are trusted

entities, i.e., Trusted Third Party (TTP). If one or more RUs are compromised,

the vehicles’ data and models are kept private by using MPC. Moreover, we

assume that all communications among layers happen through secure channels.

This will overcome possible active attacks. Also, we use an asymmetric
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cryptography protocol [89]. The cloud layer publishes the public keys of all

the RUs to the Internet.

5.2.2 Threat Model

The cornerstone of Private Secure Routine are the pieces of information

about drivers that circulate among the entities belonging to one of the three

layers of the depicted scenario. Thus, a possible attacker can play the following

attacks:

• Honest-but-Curious (HBC): Also known as Passive Attack; an attacker

may exploit the information legitimately gleaned by capturing informa-

tion exchanged among the three layers of the infrastructure, but he/she

will not perform any malicious activity to harvest it.

• Fully Malicious (FM): Also known as Active Attack; an attacker is able

to change drivers’ information to alter the capability of PSR to identify

the drivers. So, the attacker strategy is to succeed in at least one of the

following attacks: i) Impersonation attack in which attacker forges or

alters driver’s information that are considered valid by the recipient; II)

Sniffing attack where the attacker reads the content of any messages

exchanged among the layers.

5.3 Model Generation

To identify drivers in a vehicle, PSR creates a model able to identify each

driver of a target vehicle that circulates on the PSR infrastructure. Model

generation depends on different situations that can occur and involve both

drivers and vehicles. Hereafter, we highlight three different scenarios and

for each of them, we explain how PSR identifies drivers in the infrastructure

presented above.
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Figure 11: The PSR Model Generation Workflow

In the PSR paradigm we know that drivers’ routines are not fixed, they can

evolve over time [52], e.g., a mother who takes for the first time her child to

school. Also, drivers’ style can be different in particular situations, e.g., heavy

rain, snowfall, and so on. If driver identification should fail, a vehicle can use

a traditional authentication method e.g., password, voice recognition, and

so on, as a fallback method to identify the driver. When a fallback method,

out of scope of this thesis, is used, a vehicle labels the recent sensors’ data

as belonging to the authenticated driver. Even if traditional authentication

methods fail, sensors’ data are labelled as belonging to a non-authorized

driver. Moreover, the PSR paradigm transparently authenticates the driver,

i.e., PSR continuously compares the actual driving style with its model. Each

vehicle periodically issues a new training model to improve the learning of

new routines and driving styles.
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5.3.1 A new vehicle joins the PSR infrastructure

When a driver di with her vehicle vi join the PSR infrastructure for the

first time, the creation of a new model is needed to identify di. To do this, our

PSR requires that the vehicle collects data from its sensors related to driver

di. Upon the collection of these data, the vehicle vi generates two labels: one

label li tied to driver di and another label lother to consider data for other

drivers different from di that may use vehicle vi. The collected data will be

sent to the RUs that will be in charge to train the model for vi.

Hereafter, we detail how data are collected, shared with the PSR infras-

tructure and how the model is trained.

Model Initialization: A vehicle does not share the labels directly with

the cloud layer. So, vi first contacts the nearest roadside unit to share its

labels and its ID (Step 1 in Figure 11). When the RU receives li, lother and the

vehicle’s ID from vi, it may forward the labels and the ID to the cloud layer

that can grab sensitive information belonging to vi, e.g., the geographical

position of the nearest RU may provide indication about the vehicle location.

To avoid this, the roadside unit close to vi sends the labels and the ID to

an intermediary RU randomly chosen (Step 2). Only now, the intermediary

forwards the labels and the ID to the server (Step 3) at cloud layer. We

assume that the intermediary RU is trusted. When labels and the ID are

received at the cloud layer, they are stored on a local repository, for instance

a database. From now on, vi and di are part of the PSR infrastructure.

However, vi is not yet ready to identify di since the model has not been

trained.

The vehicle requests the training of its model: The vehicle vi sends

a request to train its model to identify di. This step is obtained through

a request that is sent to the nearest RU, (Step 4). This one forwards the

training request to an intermediary RU, (Step 5). This RU sends the training

46



request at the cloud layer (Step 6). It, then, identifies the label to use, i.e.,

lother. Note that label lother is identified but not yet sent to RU.

The cloud layer requests the training for vi’s model: To train vi’s

model, the lother label is sent from the cloud layer to other vehicles involved

in the PSR infrastructure. So, lother is sent, first, to the intermediary roadside

unit (Step 7) that forwards the label to the RU closest to vi (Step 8) and

sends lother alongside with the vi’s ID (Step 11) to other RUs within a certain

radius, whose size is not relevant here. Finally, each RU forwards the lother

label to their connected vehicles together with the IDs of the roadside units

involved in the training (Step 12). Note that, the label li is not sent because

there are no vehicles that have data belonging to the driver di. Hence, the

only vehicle that has the label li is the vehicle vi itself. At step 12, vi receives

the IDs of the RUs involved in the training.

Vehicles send their shares to train vi’s model: To train vi’s model,

each vehicle belonging to the PSR infrastructure must share its collected data

sensors. First, each vehicle, except vi, labels its sensors’ data with the lother

label. The sensors’ data of vehicle vi are already labelled. Then, each vehicle

obfuscates its data splitting them in shares. Next, each vehicle sends these

shares to the nearest RU. Since a roadside unit may reconstruct the original

data with all the shares received, the vehicle must encrypt the shares so that

only the right RU can have them in plaintext. In the PSR infrastructure, we

assume that the channel kept secret the shares using asymmetric cryptography

protocol, e.g., OpenPGP [97]. Hence, a vehicle, before sending each share to a

RU, must obtain the public key of the recipient roadside unit (Step 13) from

the cloud layer. Once the corresponding RU public key is retrieved (Step 14),

the vehicle uses the key to encrypt the share before sending it to the nearest

RU (Step 15). Always at Step 15, the vehicle vi sends its encrypted shares to

the nearest RU. Then the vehicle sends all encrypted shares, the nearest RU
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will forward them to the other RUs belonging to the infrastructure to train

the model (Step 16).

Training vi’s model: All roadside units, involved in the training, decrypt

the shares and train vi’s model using the data received from all vehicles in

the previous steps.

The vehicle vi receives the updated model: At the end of training,

the roadside units send to vi the shares containing the new model of di. To

do this, each RU encrypts the shares with the public key of vi and sends the

resulting shares to the vehicle. From now on, vi is able to identify di and

distinguishes her from other drivers (Step 17).

5.3.2 A new driver joins the PSR infrastructure

This is the case when a new driver di is identified on a vehicle vi already

present in the PSR infrastructure. The vehicle vi has already a model trained

for another driver dj, with dj ̸= di, and sensors’ data used for dj are labelled

as lj. Driver dj must authorize the new driver. The procedure to give di the

permission to drive the vehicle vi is out of scope. The vehicle vi must update

the current model to identify also the new driver di. To perform this task, we

proceed similarly to the previous scenario and the following steps occur.

Model Initialization: The vehicle vi generates the label li. Labels lother

and lj already exist on vehicle vi since they were created for driver dj. Then,

the vehicle sends the label li and its ID to the nearest RU (Step 1). This one

forwards the label li and vehicle’s ID to an intermediary RU randomly chosen

(Step 2). Finally, the cloud layer receives li and the ID from the intermediary

RU and stores them on a database (Step 3). Now, the new driver di is part

of the transportation infrastructure. However, the vehicle vi is not yet able

to identify di since its model has not been trained.

The vehicle requests the training of its model: In this phase,
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the vehicle vi sends to the nearest RU a training request (Step 4). The

RU forwards this request to an intermediary RU (Step 5) and, then the

intermediary sends the request to the cloud layer (Step 6).

The server request the training for vi’s model: The cloud layer

sends a training request to all vehicles on the PSR infrastructure within a

certain radius. Cloud layer knows the label of driver di from Step 3 and the

label lj due to past training for driver dj. As next step, from the cloud layer

the labels lother, lj and the ID of vehicle vj are sent to the intermediary RU,

(Step 7) which provides to the closest roadside unit of vehicle vi the labels

and the ID (Step 8).

Roadside Unit searches vehicles with authorized drivers in com-

mon with vi: This is a new step with respect to the previous training scenario.

We introduce this step since it may happen that driver dj may be a driver

of another vehicle vj different from vi. Keeping track of the driver across

different vehicles may be useful for car sharing: the car sharing company

provides several cars to drive that could be the same model from the same

carmaker. The driver may drive at each driving session a different vehicle

but maintaining the same driving style. In case the driver is not tracked

between the vehicles, the model will contain the driving sessions of dj in the

vehicle vi as authorized while the driving sessions in vj has not authorized

that may lead to a model not able to correctly identify dj. Also, in the case

the vehicles vj and vi are different models of different carmakers, the driver

could maintain some similarities in driving style between the vehicles. So,

we need to consider this situation by collecting also data coming from other

vehicles. In this phase, the RU ri, to which vi is connected, looks for the

vehicle vj and contacts it through its nearest roadside unit, which we label

as rj. The PSR infrastructure uses a Distributed Hash Table (DHT) [105]

to keep track of the nearest roadside unit of each vehicle present in the PSR
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infrastructure. A DHT provides a lookup table, distributed between peers

of a network, to quickly locate data. The Roadside Units are peers of the

network. The lookup algorithm uses a key to locate the peer using {key,

value} pairs. In particular, the key is the vj’s ID hash and value represents

the ID of the nearest Roadside Unit to vj (Step 9). The RU ri receives the

ID of rj closest to vehicle vj (Step 10). Then, rj receives from ri the labels

lother, lj and the IDs of vi and vj (Step 11). Always at Step 11, ri sends the

label lother and the ID of vi to the other roadside units. The roadside unit rj

forwards the labels to vehicle vj and the IDs of the roadside units involved

in the model training (Step 12). Also at the same step, each roadside unit

sends the label lother and the RUs’ identifiers to other vehicles of the PSR

infrastructure. Finally, ri sends only the identifiers to vi, at the same Step 12.

Vehicles send their data to train the vi’s model: Now, each vehicle

shares the data collected from its sensors with the RUs to train vi’s model.

First, the vehicle vj labels with lj sensors’ data that belong to driver dj. All

remaining data not belonging to dj are labelled as lother. Vehicle vi sensors’

data are already correctly labelled. The other vehicles label their sensors’

data as lother. Then, all vehicles get the RUs’ public key from the cloud layer

(Steps 13 and 14). Then, each vehicle of the PSR infrastructure sends the

data, through encrypted shares, to its nearest roadside unit for training (Step

15). Then, these shares will be exchanged among the RUs before the training

session (Step 16).

Training vi’s model: Each roadside unit decrypts the received shares

and trains the model.

The vehicle vi receives the updated model: When the training is

concluded, the roadside units send to vi the encrypted shares of the new

model exploiting the closest roadside unit ri (Step 17). Then, the vehicle

decrypts and combines all received shares to obtain the new model. From
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now on, vehicle vi is able to identify di and dj.

5.3.3 Driver identification on a vehicle of the infrastructure

This scenario considers the case in which a driver di has already a model in

a vehicle vi and we wish to identify the driver into a different vehicle vj . Since,

data related to driver di already exist in the transportation infrastructure,

we can directly train her corresponding model. However, even if the model of

vehicle vj is trained using previously di driving sessions in vi, the driver may

use a driving style completely different, e.g., a city car is driven in a different

way than a sports car. The fallback authentication allows PSR to register

the different driving style to later update vj’s model.

Model Initialization: To train the new model, RUs use driver di’s past

data collected by other vehicles of the platform. The resulting model allows

vehicle vj to identify driver di. First, vehicle vj generates a random label li

for driver di. The label lother already exists so it is not necessary to create a

new one. Then, vehicle vj shares the new label alongside with its ID using

the nearest roadside rj (Step 1). Upon label and ID reception, the roadside

unit chooses randomly an intermediary RU and forwards the label and the

ID to it (Step 2). The intermediary RU forwards the label li and the ID to

the cloud layer that stores them (Step 3).

Request to train vj’s model: The cloud layer knows vj has already a

model for a driver dj , with dj ≠ di. Assuming that driver dj is already known

on the vehicle vj with the label lj, vj’s model should include also driver di in

addition to dj. Driver dj could be also known in the vehicle vk, with vk ̸= vj.

Next, a training request for vj ’s model with the labels li, lj , lother and the IDs

of vehicles vj, vi and vk is sent to the intermediary RU (Step 7). This sends

the labels and the IDs to nearest RU rj (Step 8).

Searching vehicles that already know dj and di: The roadside unit
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close to vj looks for those vehicles that already know one or both drivers di

and dj. In Step 9, the roadside unit rj looks for the other RUs that are close

to vehicles vi and vk to be able to contact them. Then, in Step 10 the roadside

unit rj receives the “IDs” of ri and rk respectively nearest to vi and vk. On

Step 11, ri receives the labels lother, li and the “ID” of vehicles vi and vj while

rk receives the labels lother, lj and the “ID” of vehicles vk and vj . At the same

step, rj sends to the other RUs the label lother and the “ID” of vehicle vj . At

Step 12, the roadside units ri and rk share the labels respectively with vi and

vk and the identifiers of RUs involved in the training. At the same time, all

the roadside units send the label lother and the IDs to other vehicles of the

PSR infrastructure, except vj that receives only the identifiers.

Vehicles send their data to train vj’s model: Each vehicle sends its

data to the RUs involved in the training: vehicle vi labels with li sensors’ data

that belong to driver di and, similarly, vehicle vk labels with lj sensors’ data

that belong to driver dj . All remaining sensors’ data of vehicles vi and vk get

the label lother. Also, the other remaining vehicles of the infrastructure label

their data with lother. The data of vehicle vj are already correctly labelled,

hence no changes are needed. Each vehicle retrieves the public keys of the

RUs involved in the training (Step 13 and 14). Then, the vehicle splits data

in shares, encrypts the shares with the public keys retrieved in the previous

step and sends them to the vehicle’s nearest roadside unit for training (Step

15). Such shares are then shared among the RUs (Step 16).

Training vj’s model: All the RUs involved in the training receive the

shares, decrypt them and train the model.

Vehicle vj receives the updated model: At the end of training, the

RUs send to vj the encrypted shares of the new model through rj, Step 17.

Here, vj decrypts the shares and combine them to obtain the model. From

this moment on, the vehicle vj is able to identify di, dj.
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5.4 Private Secure Routine Implementation

The Private Secure Routine paradigm is implemented by using PySyft

framework, a Python library that implements the secure Multi-Party Compu-

tation (MPC) for private training of Neural Networks [83]. The framework

maintains both parameters of the model and the dataset private.

The PySyft implementation of MPC is secure against the honest-but-

curious adversaries [83] but can not guarantee security against active attackers.

Some parties could exchange their shares and potentially reconstruct the

original values. The maximum number of corrupted parties before the MPC

security is violated depends on the MPC scheme in use. A scheme can be

secure up to n− 1 elements, where n is the number of parties [83].

We aim to evaluate the impact of MPC on the accuracy results. Hence,

we simulate the chain of computations of the parties belonging to the PSR

infrastructure without the bottleneck of communications over the network.

To do this, we simplify the behaviour of both instances of ground and cloud

layer. At ground layer, vehicles generate the dataset and label the instances.

At cloud layer, the server sends requests to vehicles to trigger the labelling

activity. In our implementation, we employ three roadside units, two of

them train the neural network, while the third RU acts as the Crypto-Store,

i.e., it provides the necessary elements for the computation in the MPC

environment [70]. All parties are Virtual Workers, i.e., they run on the same

computer.

5.4.1 Labelling Generation Algorithm

The labelling generation involves the situation in which vehicles generate

their dataset to train the vehicle v’s model in the different training scenarios

described in Section 5.3. Once the dataset is created, vehicle labels the dataset

instances (ins) depending on the experiment we are going to setup.
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Listing 3 shows how the labelling of the experiments is generated. The

algorithm uses the label “Other” to every instances with a label not present

in drivers, i.e., list of the authorized drivers: if each vehicle is owned by only

one driver, d, the list drivers contains only d. In case each vehicle is owned

by more than one driver, e.g., two drivers, d1 and d2, the list drivers contains

these two labels.

Listing 3: Labelling generation

1 function generate_owner_labelling(drivers, ins)

2 inslabelled ← for each instance in ins set label "Other" to instances not

made by one of the drivers in driver

3 return inslabelled

The dataset has to be shared with the RUs to train the models. Each

vehicle creates a private dataset by generating the shares (Listing 4) of both

training set (85% of instances) and test set (the remaining 15%). The function

receives in input the workers’ references, one for each RU: the virtual workers

that train the model and the crypto provider that setups the Function Secret

Sharing algorithm.

The training set and test set are split in batches (Listing 4, lines 5 and

8) with size equal to 1024. To better train the network, the labels are

converted into the one-hot encoding [104] (Listing 4, lines 6 and 9). A one-hot

encoding is a vector of length equal to the number of possible labels, e.g., in

case of two owner, the vector size is three: d1, d2 and “Other”. In Private

Secure Routine, the vehicles must create vector of size much bigger than the

number of drivers of v: for instance suppose that the one-hot vector is of

size number owners drivers + 1, where the first components of the vector

represent the owners of the vehicle and the last component represents the

other drivers. A malicious vehicle could easily set its past driving instances

has belonging to one of the legit v’s owner, e.g., set all instances in the first
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component as if they belong to the first owner. In case the vector size is too

big and the components that represent the legit owners are chosen randomly,

the attacker does not know which components represent the legit owners.

Hence, she is not able to create fake instances belonging to a legit owner.

Then, vehicle creates the shares of training and test set for each virtual worker

(Listing 4, lines 7 and 10).

Listing 4: Generation of dataset shares - Vehicle

1 function generate_private_dataset(inslabelled, workers, crypto provider)

2 (instrain, instest) ← choose randomly 85% of instances as training and

the remaining as testing from inslabelled

3 (xtrain, ytrain) ← separate features of the instrain instances from the

respective label

4 (xtest, ytest) ← separate features of the instest instances from the

respective label

5 loadertrain ← split xtrain and ytrain in batches. Data are shuffled

6 loader one hottrain ← labels in loadertrain are one hot encoded

7 loader privatetrain ← create shares of labels and features in

loader one hottrain, distributing them between workers with the help

of crypto provider

8 loadertest ← split xtest and ytest in batches

9 loader one hottest ← labels in loadertest are one hot encoded

10 loader privatetest ← create shares of labels and features in

loader one hottest. Return the pointers to the shares

11 return (loader privatetrain, loader privatetest)

5.4.2 Dataset preparation for training

Once RUs have received the private dataset of each vehicle, they are

in charge of running the secure multi-party computation technique. Train

dataset of each vehicle are combined in a single dataset (Listing 5, line 2). We

concatenate the datasets of different vehicles to run the average imputation.
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The procedure handles the, eventually, missing values with the average value of

each feature. Also, neural networks require that training dataset is randomly

shuffled for an optimal training [104]. Without the dataset concatenation,

the average imputation should be run separately for each vehicle dataset,

obtaining different averages. Also, at training phase, the neural network

should sequentially train each vehicle training dataset. Finally, managing a

single training dataset is simpler than managing multiple training datasets.

Similarly, test datasets are combined too (line 3).

The average imputation in the training set replaces missing values with

the average value of each feature, whereas in the test set null values are filled

with the same averages obtained from the training set [50]. First, we calculate

the average value of each feature in loader privatetrain (line 4). Then, we

fill null values with the respective average (line 6) and create new feature

columns to keep track of the rows that have null values for each feature (line

5) and the columns of the rows with null values and we apply the average

imputation in the test set (lines 7 and 8).

Next step is the normalization of training and test set to speed up the

process of model training [35]. We use the Min-Max Normalization proce-

dure: for each feature f the dataset values are transformed from the range

[minf
loader privatetrain

, maxf
loader privatetrain

] to the range [min, max] arbitrary

using the equation:

vnew =
vold −minf

loader privatetrain

maxf
loader privatetrain

−minf
loader privatetrain

(max−min) +min (4)

We choose min equal to −1 and max equal to 1. In Listing 5 line 9, we get the

minimum and maximum value for each feature in loadertrain filled. Then, we

apply the Equation 4 to normalize the loadertrain filled. Similarly, we normalize

the loadertest filled using the same [minf
loadertrain filled

, maxf
loadertrain filled

].
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Listing 5: Preparation of dataset for training - RUs

1 function training_preparation_dataset(array loader privatetrain,

array loader privatetest)

2 loader privatetrain ← concatenate loaders in array loader privatetrain in a

single loader

3 loader privatetest ← concatenate loaders in array loader privatetest in a

single loader

4 averages ← calculate average of each feature in loader privatetrain

5 loadertrain cols na ← add a column for each feature, each row contains

TRUE if the value is null, FALSE if the value is present

6 loadertrain filled ← fill null values in loadertrain cols na with the average

in averages of the respective feature

7 loadertest cols na ← add a column for each feature in loader privatetest with

null value, each row contains TRUE if the value is null, FALSE

if the value is present

8 loadertest filled ← fill null values in loadertest cols na with the average in

averages of the respective feature

9 scaler ← for each feature in loadertrain filled get minimum and maximum

values

10 loadertrain normalized ← normalize loadertrain filled in range (-1, 1)

according to scaler

11 loadertest normalized ← normalize loadertest filled in range (-1, 1) according

to scaler

12 return (loadertrain normalized, loadertest normalized)

5.4.3 Model Generation Algorithm

Each vehicle v creates a new model as described in Listing 6. As a first

step, a vehicle creates the initial model, (line 2). To optimize the training

speed, we adopt a multi-layer Neural Network with three layer architecture:

two linear hidden layers with dropout [37], as method of regularization, and

the rectified linear unit (ReLU) [104] as activation function defined as follows:
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ReLU(x) =

x if x ≥ 0

0 if x < 0

(5)

The first hidden layer is made of 128 neurons and the second hidden layer

contains 64 neurons. The output layer is linear and its size depends on the

experiment.

Once the model is created (line 2), the vehicle v generates the shares

for the model (line 3). Such shares are sent to RUs in a privacy preserving

way. To train the model is required an optimizer that adjusts the model

parameters at each epoch to reduce the loss and to increase the accuracy [104].

Then, v defines the optimizer and its parameters (line 4). The model and

the optimizer parameters are converted from float to fixed precision (line

3 and 5) according to PySyft requirements [84]. Fixed precision represents

values with two components: an integer, i.e., the coefficient and the position

of the radix point, i.e., the exponent. A value is represented as value =

coefficient ∗ 10exponent [69]. Having a low value for the exponent allows RUs

to speed up the training but it reduces the accuracy. In the experiments,

we keep 3 decimals from the value. Once the model is split into shares and

optimizer parameters are converted in fixed precision, the vehicle sends the

shares to all the RUs.

Listing 6: Model generation algorithm - Vehicle

1 function initialize_model_shares(workers, crypto provider, lr)

2 model ← create Neural Network

3 model private ← create shares of model, distributing them between

workers with the help of crypto provider

4 optim ← define the Stochastic Gradient Descent optimizer with the

learning rate lr

5 optim private ← convert the optimizer parameters in fixed precision

6 return (model private, optim private)
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5.4.4 Model Training Algorithm

Roadside units are in charge of training the model (Listing 7). As a first

step, RUs search the best Learning Rate (LR) for the model running a known

algorithm [87] that returns shares of the learning rate. The size of the LR

influences how much the optimizer adjusts the parameters at each epoch. The

smaller is the LR the more are the epochs necessary for training. On the

other hand, the training may never converge to a good accuracy if LR is too

high [104].

Once the LR is found, the roadside units send the learning rate shares to

vehicle v. The vehicle initializes a new model and a new optimizer, as seen in

Listing 6, and set the learning rate value with the LR found by the roadside

units. From line 5 to 14, roadside units train the model. We set the number

of epochs of training (equal to 2 in our experiments). For each epoch i, the

parameters of the model change and the accuracy is calculated. Hence, the

roadside units must return to the vehicle the most accurate model. First,

we define the variables that will contain the best model with the correlated

accuracy (lines 5 and 6). For each epoch, we train the model with the training

dataset, the optimizer and the loss function MSE (line 8) [16].

MSE =
1

n

n−1∑
i=0

(ŷi − yi)
2 (6)

where: n is the number of predictions; ŷi is the i-th value predicted by the

NN; yi is the i-th actual value.

Then, the accuracy of making predictions over the test set is calculated by

comparing the results with the correct labels. Next, the stored best accuracy

is compared with the last obtained accuracy (line 10). In case there is no

best accuracy stored, the current accuracy and the current model are stored

(lines 11 and 12). In case the current accuracy is greater than the stored one,

the current accuracy and the current model are saved. Otherwise, they are
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discarded. After the model is trained for all the epochs, the RUs send the

shares of the best model and the relative accuracy shares to v (line 15). The

vehicle combines the shares and obtains the model trained and the accuracy.

Note that the RUs do not need to disclose the accuracy values to make the

comparisons. Only v will know how well the model performs.

Listing 7: Model training algorithm - RUs

1 function find_lr(workers, crypto provider, loadertrain normalized,

model private, optim private)

2 lr private ← find the best learning rate to train model using the

training dataset loadertrain normalized, the optimizer optim private and

the loss function MSE

3 return lr private

4 function train_model(workers, crypto provider, loadertrain normalized,

loadertest normalized, model private, optim private)

5 best accuracy private ← NULL

6 best model private ← NULL

7 for epoch = 1 to 2 then:

8 train model private using the training dataset loadertrain normalized and the

optimizer optim private and the loss function MSE

9 accuracy private ← make predictions using the values of features in

loadertest normalized and calculate the accuracy shares using the

aforementioned predictions and the label in loadertest normalized

10 if best accuracy private is NULL OR best accuracy private < accuracy private

then:

11 best accuracy private ← accuracy private

12 best model private ← model private

13 end if

14 end for

15 return best model private, best accuracy private
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5.5 Private Secure Routine Evaluation

We compare PSR paradigm with Secure Routine [63] and the work in [61],

hereafter denoted with M . We experiment PSR on two examples: 1) single

owner identification and 2) two owners identification. Then, we evaluate

the NN of PSR comparing it alongside an architecture trained without the

application of secure multi-party computation. This is because PySyft with

MPC is time consuming due to the fact that parties need to exchange several

messages within the training phase and that PySyft uses the CPU instead of

the GPU that is not yet supported.

5.5.1 Experiments

To evaluate PSR, we performed eight experiments on two datasets: Θ

[33] and Ψ [5].

The experiments run on a Virtual Machine with an Intel(R) Xeon(R)

Gold 6140M using 8 threads, 32 GB of RAM and Ubuntu 18.04 as OS. Our

experiments compare PSR with Secure Routine and M on the Accuracy

metric, previously introduced in paragraph 4.2.2.

Single Owner identification (SOI). We aim at identifying if a target

instance belongs to the vehicle’s owner.

Table 7: Accuracy comparison for SOI test bed with the state of the art

(a) SOI in Ψ

PSR SR M

93,79% 99,84% 98,46%

(b) SOI in Θ

PSR SR M

89,96% 99,83% 99,62%

As first experiment, we compare PSR with Secure Routine and M on

the Ψ dataset. We select the best feature set in PSR. Since MPC is time
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consuming, we trained PSR only for two epochs (Listing 7). Secure Routine

achieves the best results (Table 7(a)). PSR is 6,05% of accuracy lower in

comparison with Secure Routine and 4,67% less than M . Note that M do not

use this dataset in their work, so we replicated their experiments to establish

the accuracy. Despite PSR model being trained only two epochs, it scores an

high accuracy keeping private the used data.

We repeat the same experiment on Θ. We use the same feature selected

in [63]. The work of M adopted the dataset Θ but they do not calculate

the accuracy, so we replicates their experiments to retrieve the accuracy.

Table 7(b) shows that PSR obtains 89,96% of accuracy, SR achieves the best

accuracy. PSR obtains 9,87% of less accuracy than SR.

To measure the impact of MPC on the accuracy of PSR, we evaluate the

PSR network comparing the results of the same neural network trained for 2

and 4000 epochs but without the support of MPC.

Then we consider the dataset Ψ. Table 8(a) shows that PSR without

MPC scores 99,91% of accuracy while PSR with MPC has lost 2,58% of

accuracy in comparison with the model trained in plain for 2 epochs. This

loss of accuracy may be caused by the conversion of input data and model

parameters in fixed precision required by PySyft.

Moving on Θ, Table 8(b) shows PSR scores slightly lower (0,04%) than

the PSR without MPC with two epochs.

Two Owners Identification (TOI). Here, we test PSR in case a vehicle

is owned by two drivers. Neither Secure Routine nor M were designed and

work with two owners identification. Since we are not able to replicate the

work in M to test this scenario, we compare PSR only with a slightly modified

version of SR able to manage also this case. Once again SR achieves the

best result, i.e., 99,69% (Table 9(a)). PSR obtains a respectable 87,51%, i.e.,

12,18% less than the same model trained 2 epochs with plain data.

62



Table 8: Accuracy comparison for SOI test bed to measure MPC impact

(a) SOI in Θ

PSR 2 epochs PSR 2 epochs PSR 4000 epochs

(no MPC) (no MPC)

93,79% 96,37% 99,91%

(b) SOI in Θ

PSR 2 epochs PSR 2 epochs PSR 4000 epochs

(no MPC) (no MPC)

89,96% 90% 97,77%

Table 9: Accuracy comparison for TOI test bed with the state of the art

(a) TOI in Ψ

PSR SR

87,51% 99,69%

(b) TOI in Θ

PSR SR

80,08% 99,71%
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Table 10: Accuracy comparison for TOI test bed to measure MPC impact

(a) TOI in Ψ

PSR 2 epochs PSR 2 epochs PSR 4000 epochs

87,51% 92,31% 99,88%

(b) TOI in Θ

PSR 2 epochs PSR 2 epochs PSR 4000 epochs

80,08% 80,04% 95,21%

Then, we repeat the experiment also on the other dataset. Table 9(b)

indicates that SR obtained an average Precision of 99,71%. In comparison,

PSR loss 19,63% of accuracy. This results depends on the NN poorly trained,

i.e., trained for only 2 epochs. An higher number of epochs will increase the

accuracy as shows the table 9(b), but more on that later.

Also in this case, we evaluate the impact of MPC on PSR. Let us consider

the dataset Ψ. Again PSR without MPC achieves an high score, (99,88%),

Table 10(a).

With MPC, PSR loses 4,8% comparing with the same model trained two

epochs with plain data.

Moving on the dataset Θ, PSR obtained a better result than the public

trained on 2 epochs, i.e., 0,04% more accurate (Table 10 (b)). The best result

is obtained by the PSR without MPC fully trained (95,21%).
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6 CAHOOT

Software in modern vehicles is becoming increasingly complex and subject

to vulnerabilities that an intruder can exploit to alter the functionality of

vehicles. The United Nations requires automakers to detect intrusions [68].

Also, an exploit may alter the operation of Secure Routine and Private Secure

Routine. To this purpose, we introduce CAHOOT, a novel context-aware

Intrusion Detection System (IDS) capable of detecting potential intrusions

in both human and autonomous driving modes. In CAHOOT, context

information consists of data collected at run-time by vehicle’s sensors and

engine. Such information is used to determine drivers’ habits and information

related to the environment, like traffic conditions.

CAHOOT extends the existing literature because it is the first IDS based

also on context information able to detect replay and DoS attack in addition

to the spoofing attack. Moreover, the simulation environment and activity

we present is the only one that take into account simultaneously brakes,

steering and throttle parameters. Table 11 shows a comparison with the main

context-aware IDS.

In this section, we create and use a dataset by using a customised version

of the MetaDrive simulator capable of collecting both human and AI driving

data. Then we simulate several types of intrusions while driving: denial of

service, spoofing and replay attacks. As a final step, we use the generated

dataset to evaluate the CAHOOT algorithm by using several machine learning

methods. The results show that CAHOOT is extremely reliable in detecting

intrusions.

6.1 Attack Model

In the last decade, the literature presents several examples of vehicle’s

attacks like the attack made by Miller and Valasek presented in Section 1.
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Table 11: Comparison of features between CAHOOT and the main context-aware

IDS

CAHOOT RAIDS [42] [48] CAIDS [101] [12]

Attacks

DoS ✓ ✗ ✗ ✗ ✗

Spoofing ✓ ✓ ✓ ✓ ✓

Replay ✓ ✗ ✗ ✗ ✗

Sensors attacked

Engine ✓ ✗ ✗ ✓ ✗

Steering ✓ ✓ ✓ ✗ ✓

Brake ✓ ✗ ✗ ✗ ✓

This attack highlighted, for the first time, the vulnerability of the CAN

busses as in-vehicle communication protocol and, consequently, the importance

of studying cyber-security issues in this domain. In fact, all the attacks in

literature leverage the lack of confidentiality for data in transit on the intra-

vehicle CAN bus network, which are, consequently, exposed to several threats.

An intruder may exploit local or remote vulnerabilities of a car to gain some

digital access to the car, either locally or remotely. She may then modify

the behaviour of a target vehicle by sending customized CAN frames that

triggers a specific functionality on a receiving ECU.

A lot of information circulate inside and outside vehicles by using ICT

systems that are installed on it. An autonomous car contains various sensors to

keep track of the environment and the vehicle status [107]. Inside the vehicle,

there are also several ECUs that provide functionalities to the car. Such

ECUs are connected one another through multiple buses, e.g., CAN, CAN-FD,

FlexRay and Automotive Ethernet. Different partitions of these busses are

connected each other through gateways. Thus, vehicles are computers on

wheels and as normal computer can be subject to remote attacks. An intruder
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may exploit local or remote vulnerabilities of a vehicle to gain some digital

access to it, either locally or remotely.

In CAHOOT, we consider an intruder able to run the following attacks:

• DoS attack: the intruder is able to deny the driver’s input through the

generation of CAN frames where payloads values are set to zero for

steering, throttle and brakes.

• Spoofing attack: the intruder is able to generate a valid CAN frame.

For example, the forged frame may generate a valid signal to active an

ECU functionality.

• Replay attack: the intruder is able to re-use valid CAN frames with a

malicious or fraudulent aim.

When an intruder launches a spoofing attack, a valid pair steering and

throttle/brake is randomly generated. Although it may be the case that

randomly generated pair corresponds to a pair previously generated by a

driver, the probability of this occurring is very low. In CAHOOT, the

attacks are coded in Python 3 using the random library[73]. Steering and

throttle/brake values in the simulator assume float values in the interval [−1, 1].

To generate spoofing attacks, we use the uniform function[75] that generates

random float numbers in [a, b] where a and b are in our case respectively −1

and 1. The uniform function is based on the random function[74] with the

following equation:

a+ (b− a) ∗ random() (7)

where random() returns a random float number in the interval [0, 1).

However, the random function returns only multiples of 2−53[72]. Thereby,

the uniform function returns only a subset of [a, b] and may not be able to

reproduce all the possible values generated by the AI and a human driver.

In the Python documentation [72] is also presented an alternative random
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function, known as full random, able to return all the possible float numbers

in [0, 1). Hence, we introduce a uniform function variant called full uniform

function with the following equation:

a+ (b− a) ∗ full uniform() (8)

In our experiments, we collected 10492 unique steering values and 6629

unique throttle/brake values on 157318 driving instances. We generated

314636 random values, i.e., 157318 values represent the steering wheel and the

remaining 157318 represent the throttle/brake, using the uniform function

and the full uniform function. These functions never generated a legit value

because the legit values are a really small fraction of all the possible float

values. Also, the random function never returned 0 as value. Hence, a spoofing

attack using a random number is unlikely to generate replay and DoS attack.

Finally, the replay attack contains sequences of 0 messages in either

steering wheel and throttle/brake like the DoS attack. Hence, DoS attack

is a subset of sequences contained in the set of possible sequences of replay

attack.

6.2 CAHOOT algorithm

The CAHOOT algorithm aims to detect an intruder that performs both

single or multiple attacks while a car is moving. It is also able to detect a

possible intrusion also when both the intruder and the driver generated a

CAN message with the same values.

CAHOOT uses machine learning (ML) techniques to generate a model

capable to detect intrusions from the value of the vehicle sensors.

6.2.1 Intruder’s Behaviour

To create a model that is as accurate as possible, we assume that the

intruder is able to frequently change the attacks among the three attacks
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described in Section 6.1. The duration of each attack is randomly chosen

with an arbitrary minimum and maximum of steps duration. In addition, the

type of attack is randomly chosen, e.g., the attacker launches a replay attack

followed by two consecutive spoofing attacks and then launches a DoS attack.

This allows us to identify both single and multiple attacks within a target

driving session.

Listing 8 and Listing 9 describe our model of the intruder’s behaviour.

Listing 8: Prepare Attack

1 function prepare attack(steering, throttle brake, current attack, steering history,

throttle brake history, index history, prev steering, prev throttle brake,

stop attack time, min duration, max duration, slot time)

2 should attack change ← stop attack time <= Current timestamp

3

4 if should attack change

5 num slots ← Select an integer number between min duration and

max duration

6 stop attack time ← Current timestamp + num slots ∗ slot time

7

8 current attack = None

9

10 (steeringforged, throttle brakeforged, current attack, index history, prev steering,

prev throttle brake) = launch attack(current attack, steering history,

throttle brake history, index history, prev steering, prev throttle brake)

11

12 steering history ← Append steering to steering history

13 throttle brake history ← Append throttle brake to throttle brake history

14

15 return (steeringforged, throttle brakeforged, current attack, stop attack time,

steering history, throttle brake history, index history, prev steering,

prev throttle brake)

Listing 8 shows the algorithm prepare attack that plans the duration of
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each vehicle intrusion. In detail, it checks if the attack in progress should

continue or should be changed, i.e., the algorithm compares the current time

with the time on which the attack must be suspended (line 2). In case the

attack should end and be changed with a new type, the algorithm defines the

duration of the new attack as slots of time. The algorithm randomly choose

the number of slots between the minimum and maximum (line 5). Hence,

the attack will stop at the sum between the actual time and the product

between the number of slots and the length of each slot (lines 6). The attacks

are periodically stopped and substituted with new ones to simulate multiple

attacks in a single driving session.

Regardless of the attack should change or not, the function launch attack

is called (line 10) and returns the new forged messages alongside with the

current type of attack, the index of the next messages that the replay attack

must repeat, i.e., index history, and the last forged messages that the spoofing

attack must repeat, i.e., prev steering and prev throttle brake. Next, the

inputs steering and the throttle brake of human/AI are registered in the

arrays steering history and throttle brake history (lines 12 and 13). These

arrays may be used later on for the replay attack. The attack inputs are

never appended in the arrays because the replay attack goal is to mimic the

human/AI inputs so the attack should replay only human/AI inputs.

As final step, the algorithm returns the values of steering and throt-

tle brake generated by the intruder, the type of attack actually in progress,

the time on which the attack will be suspended, the history values of steering

and throttle brake, the index history, prev steering and prev throttle brake

(line 15).

Listing 9: Launch Attack

1 function launch_attack(current attack, steering history, throttle brake history

, index history, prev steering, prev throttle brake)
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2 bootstrap ← False

3 if current attack = None

4 bootstrap ← True

5

6 current attack ← Randomly select one from "DoS", "Spoofing" and

"Replay"

7

8 if current attack = "DoS"

9 (steering, throttle brake) ← dos_attack()

10 if current attack = "Spoofing"

11 (steering, throttle brake) ← spoofing_attack(bootstrap, prev steering,

prev throttle brake)

12

13 prev steering ← steering

14 prev throttle brake ← throttle brake

15 if current attack = "Replay"

16 (steering, throttle brake, index history) ← replay_attack(bootstrap,

steering history, throttle brake history, index history)

17

18 return (steering, throttle brake, current attack, index history, prev steering

, prev throttle brake)

Listing 9 depicts the algorithm launch attack. It is in charge of maintaining

active and in progress attack or decide which attack should be run. The

Spoofing and Replay attack need the variable bootstrap that represents if

the attack is in progress or not, i.e., the variable tracks if a new attack

must be launched or a previous attack must continue. The variable is False

in case the attack is in progress (line 2) and True when the attack is not

running (line 4). In case an attack is not in progress, the type of attack

is randomly chosen between DoS, Spoofing and Replay (line 6). Once the

bootstrap variable is established, based on the current attack value, an attack

is launched (lines 8 to 16). Keep note that in case of spoofing attack, the
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prev steering and prev throttle brake variables are updated with the most

recent forged messages generated (lines 13 and 14).

Finally, the launch attack returns the steering and throttle brake values

chosen by the attack, the current type of attack, the index history selected

by the Replay attack function last time it is launched and the previous pair

of steering and throttle brake used by the Spoofing attack (line 18).

Denial of Service Attack. The last attack function is the dos attack that

sets the steering and the throttle brake to 0

Spoofing Attack. The spoofing attack function set the steering and the

throttle brake with random values (Listing 10). In case the attack is not yet

started, the algorithm randomly choose values between -1 and 1 (lines 2 to 4).

In case the attack is in progress, the steering and the throttle brake are the

same values that the function set in the previous step (lines 5 to 7). Finally,

the function returns the steering and throttle brake values (line 9).

Listing 10: Spoofing Attack

1 function spoofing_attack(bootstrap, prev steering, prev throttle brake)

2 if bootstrap = True

3 steering ← Choose randomly a float number between -1 and 1

4 throttle brake ← Choose randomly a float number between -1 and 1

5 else

6 steering ← prev steering

7 throttle brake ← prev throttle brake

8

9 return (steering, throttle brake)

Replay Attack. The replay attack function repeat a sequence of steering

and throttle brake values previously seen and contained respectively in the
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arrays steering history and throttle brake history (Listing 11). These arrays

can be empty, i.e., previously human/AI inputs does not exist because the

driving session is just started. In case the arrays are empty, there are no

previous inputs to repeat so the steering and throttle brake are set to 0

(lines 4 and 5). In case the arrays are not empty and the attack is not yet

started, the algorithm randomly select from which position of the array start

to repeat the previous input through the setting of index history variable

(line 8).

Whether or not the attack has already been launched, the algorithm use

the index history to select the steering and throttle brake values from the

respective arrays history (line 10 and 11). Then, the index history variable is

updated by 1 so, in case the attack continues, the replay attack function will

use in the following steering and throttle brake of the history (line 13). Keep

note that the index history will never point to a non existing element of the

arrays history because a new pair (steering, throttle brake) will be added in

the arrays history by the function simulate attack at lines 12 and 13. This

pair will contain the last input of the driver. Finally, replay attack function

returns the inputs and the new index history (line 15).

Listing 11: Replay Attack

1 function replay_attack(bootstrap, steering history, throttle brake history,

index history)

2 history len ← Size of the array steering history

3 if history len = 0

4 steering ← 0

5 throttle brake ← 0

6 else

7 if bootstrap = True

8 index history ← Choose randomly an integer number between 0

and history len-1

9

73



10 steering ← steering history[index history]

11 throttle brake ← throttle brake history[index history]

12

13 index history ← index history + 1

14

15 return (steering, throttle brake, index history)

6.2.2 Instances Extraction Paradigm

To train the model for intrusion detection, CAHOOT requires a dataset,

i.e., a collection of data that contains both legit and forged messages for

each functionalities we aim to consider, i.e., steeringlegit, steeringforged,

throttle brakelegit and throttle brakeforged, alongside with the sensors’ values

(Table 12).

The instances of the dataset are extracted to generate the final dataset

on which the messages are organized in pairs and, each pair is labelled as

T when it is composed by steeringlegit and throttle brakelegit or as F in all

the other cases (Table 13). The organization in pairs allows CAHOOT to

detect possible intrusion that may happen when the intruder is going to

send the same message sent by the driver. Let us suppose that the driver

wants to go straight, i.e., steeringlegit is equal to 0, and the intruder starts a

DoS attack, i.e., steeringforged is equal to 0 (Table 12, row 3). The steering

message sent by the intruder is considered as legit because it is equal to the

driver’s one. However, the algorithm raises an alert based on the values of

throttle brakelegit and throttle brakeforged that should be different (Table 13,

rows 9 and 10). On the other hand, if both the messages in the pair are equal

(Table 12, row 4), for instance because the intruder is trying to perform a DoS

attack, then CAHOOT only inserts into the dataset one instance labelled

with T (Table 13, row 11). In this way, it prevents the DoS by discarding

the flow of not legit messages.
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Table 12: Example of instances before run Instances Extraction Paradigm

timestampsteeringlegit steeringforged throttle brakelegit throttle brakeforged ...

01/01/2022

12:00:00.000

0,695 0,403 0,020 -0,001 ...

01/01/2022

12:00:00.100

0,045 0,494 -0,042 -0,533 ...

01/01/2022

12:00:00.200

0,0 0,0 -0,042 0,0 ...

01/01/2022

12:00:00.300

0,0 0,0 0,0 0,0 ...

Hence, on the initial dataset we run the instances extraction function

(Listing 12) whose output is the dataset insextracted that contains the final

created dataset.

As first step, the algorithm reads each instance of the initial dataset ins

(line 3) to organize the messages in two arrays. The first array contains

tuples composed by steering message alongside with a boolean value repre-

senting message’s legitimacy. The second array contains tuples composed by

throttle brake message alongside with a boolean value representing message’s

legitimacy.

The two arrays are used to organize all the instances in the initial dataset

in such a way that legit and forged messages are clearly distinguishable:

the legit messages are inserted in the arrays (lines 12 and 13), while the

forged messages are inserted only if they are other than the respective le-

git ones (lines from 15 to 18). From instance the messages steeringlegit,

steeringforged, throttle brakelegit and throttle brakeforged are removed (line

20). Thus, instance now contains the engine runtime and the sensors’ values.

The algorithm creates several instances based on instance, one instance
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Table 13: Example of instances after run Instances Extraction Paradigm

timestamp steering throttle brake ... label

01/01/2022 12:00:00.000 0,695 0,020 ... T

01/01/2022 12:00:00.000 0,695 -0,001 ... F

01/01/2022 12:00:00.000 0,403 0,020 ... F

01/01/2022 12:00:00.000 0,403 -0,001 ... F

01/01/2022 12:00:00.100 0,045 -0,042 ... T

01/01/2022 12:00:00.100 0,045 -0,533 ... F

01/01/2022 12:00:00.100 0,494 -0,042 ... F

01/01/2022 12:00:00.100 0,494 -0,533 ... F

01/01/2022 12:00:00.200 0,0 -0,042 ... T

01/01/2022 12:00:00.200 0,0 0,0 ... F

01/01/2022 12:00:00.300 0,0 0,0 ... T

per each combination of the steering and throttle brake messages present

respectively in steering array and throttle brake array (lines 25 and 26).

Then, each generated instance is labeled “T” in case it contains only messages

from the driver or “F” in case it contains at least one message from the

intruder (lines from 28 to 31). Next, each labeled instance is added to the

insextracted dataset (line 33). After all the instances present in ins are read,

the algorithms return the dataset insextracted (line 35).

Listing 12: Instances Extraction Paradigm

1 function instances_extraction(ins)

2 insextracted ← empty array

3 for each instance in ins

4 steeringlegit ← instance[“steeringlegit”]

5 steeringforged ← instance[“steeringforged”]

6 throttle brakelegit ← instance[“throttle brakelegit”]
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7 throttle brakeforged ← instance[“throttle brakeforged”]

8

9 steering array ← empty array

10 throttle brake array ← empty array

11

12 steering array ← steering array
⋃

(steeringlegit, True)

13 throttle brake array ← throttle brake array
⋃

(throttle brakelegit, True)

14

15 if steeringlegit != steeringforged

16 steering array ← steering array
⋃

(steeringforged, False)

17 if throttle brakelegit != throttle brakeforged

18 throttle brake array ← throttle brake array
⋃

(throttle brakeforged,

False)

19

20 remove from instance the columns “steeringlegit”, “steeringforged”,

“throttle brakelegit”, “throttle brakeforged”

21

22

23 for each (steering, is steering legit) in steering array

24 for each (throttle brake, is throttle brake legit) in

throttle brake array

25 instance[“steering”] ← steering

26 instance[“throttle brake”] ← throttle brake

27

28 if is steering legit == True and is throttle brake legit == True

29 instance[“label”] ← "T"

30 else

31 instance[“label”] ← "F"

32

33 insextracted ← insextracted
⋃

instance

34

35 return insextracted
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6.2.3 Model Generation

The Model Generation paradigm uses the Instances Extraction paradigm

to generate the training and the test datasets (Listing 13). Going more into

detail, once the dataset is randomly split in a training set and a test set (line

2), the instances are extracted for the training and test (lines 3 and 4). We

run the extraction paradigm separately on the training set and the test set

to make sure that all combinations of steering and throttle brake messages

from the same original instance are not distributed between the training set

and the test set, but remain in the same set. The appearance of extracted

instances of the same original in both training and test sets causes a data

leakage [46]. Data leakage happens when information present in the training

set is unexpectedly present also in the test set.

Next, the best features are selected using a Feature Selection (FS) paradigm

that ranks all features applying the Gain Ratio [76] (GR) approach (line 6).

Those features with rank equal to zero are discarded (line 7). Finally, these

features are passed to the ML algorithm which returns a trained model (line

9).

Listing 13: Model Generation

1 function generate model(inslabelled)

2 (instrain, instest) ← split randomly the instances as training and testing sets from

inslabelled

3 ins extractedtrain ← instances extraction(instrain)

4 ins extractedtest ← instances extraction(instest)

5

6 ranking ← GR(ins extractedtrain)

7 features>0 ← discard features with rank = 0 from ranking

8

9 model ← MLAlgorithm(ins extractedtrain with features features>0)

10 return model
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Figure 12: Simulation sequence workflow of the vehicle

6.3 CAHOOT Evaluation

To evaluate CAHOOT, we exploited the driving simulator MetaDrive [56].

It is a driving simulator written in Python to train a neural network for

autonomous driving through Reinforcement Learning[57]. MetaDrive is able

to generate infinite driving scenarios with procedural generation of maps and

different traffic flows. Inside the simulator is present a pre-trained Artificial

Intelligence (AI).

We modify the MetaDrive simulation workflow with the introduction of an

intruder represented in dark green in Figure 12. The in vehicle communication

is simulated by a set of messages made of two different Python lists: the

first one contains the steering messages, instead the second list contains

the throttle/brake messages sent. Both lists represent messages sent by the

intruder and the driver. The intrusion workflow for each step of the simulation

(Figure 12) works as follows:

• While the driver sends the inputs, an intruder forges fake messages of

steering wheel and throttle/brake.

• The steering wheel and the throttle/brake messages of the intruder and

the driver are sent to the set of messages.

• CAHOOT reads from the set the messages and establishes which ones

are the legit messages and which ones are the forged messages.
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• Steering wheel and throttle/brake messages from the set are transmitted

to the wheels and the vehicle component responsible for applying the

throttle/brake.

• The set of messages is emptied and ready to be filled with messages

from the next step.

Keep note that even if in the intrusion workflow are present both the

messages forged by the intruder and the messages legit, CAHOOT do not

need both legit and forged messages for the detection phase. In case the

intruder stops forging messages, CAHOOT would receive only the legit

messages and establishes their legitimacy. On the other hand, CAHOOT

requires both legit and forged messages for training phase to run the Instances

Extraction Paradigm as described in section 6.2.2. Moreover, in the training

and evaluation phases, the dataset always contains legit and forged messages,

because the simulator creates both.

The dataset generated using the MetaDrive simulator contains the features

in Table 14.

6.3.1 Machine Learning algorithms

The CAHOOT paradigm is implemented by using several Python libraries

to implement different ML algorithms. We test several methods: Random

Forest, J48, and Neural Network Multi-Layer Perceptron (MLP). Random

Forest and J48 techniques do not require any settings of parameters. Even

with the default ones, the performance obtained by these methods could be

satisfactory. However, MLP requires that some parameters must be set and

fine-tuned to obtain the best results, e.g., the architecture of the layers, the

number of batches and so on.

We normalize training and test set to speed up the model training process

using the z-score normalization [35] procedure: the values of each feature f
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Table 14: Features description

Feature Description Example Unit

Speed Speed of the vehicle 55 km/h

Throttle brake Amount of throttle or

braking

0,55 N/A

Steering Rotation of the steering

wheel

-0.25 N/A

Last position x/y Position of the vehicle

at coordinate x/y

125 N/A

Dist to left/right side Distance from the left-

/right lane

0,423 m

Fuel consumption Fuel consumption since

the start of the driving

session

33,12 N/A

Engine runtime minute

/ second / millisecond

Minutes / seconds /

milliseconds elapsed

from engine start

39 minutes / s / ms

Yaw rate Angular acceleration

on vertical axis

0.089661 N/A

Project distance / ve-

locity to vehicle n x /

y

Vehicle’s projection dis-

tance / velocity to the

n-th nearest vehicle on

coordinate x / y

0.187 N/A
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are transformed based on the mean v̄f and the standard deviation σf of f in

the training set. The transformation is applied to the training set and test

set using the same pair (v̄f , σf ). The equation applied is:

vnew =
vold − v̄f

σf

(9)

To improve the neural network performance, we use the embeddings for

categorical values as explained in [77]. Categorical values are the engine

runtime milliseconds, engine runtime seconds and the engine runtime minutes.

The remaining features are continuous.

We then create data loaders for training set and test set with batches of

size equal to 2048.

The architecture of the MLP contains 4 layers and the sizes of the hidden

layers are respectively 2048, 1024 and 512. We then search the best learning

rate using the algorithm LRFinder present in FastAI [87]. Finally, we use

this learning rate in the model training. Based on the plot loss of training

and test sets, we trained the model for 480 epochs. On each experiment will

be shown the relative plot loss.

6.3.2 Experiments setup

The experiments run on a Virtual Machine with an Intel(R) Xeon(R)

using 16 threads, 157 GB of RAM and CentOS Linux 7 as OS. To evaluate

CAHOOT, in the experiments we use the metrics: accuracy, precision and

recall, introduced in paragraph 4.2.2. In the IDS context, TP is the number

of instances where at least one sensor’s value is forged that are correctly

predicted, TN is the number of instances where all the sensors’ values are

legit that are correctly predicted, FR is the number of instances where all the

sensors’ values are legit but incorrectly predicted and FN is the number of

instances where at least one sensor’s value is forged but incorrectly predicted.
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We randomly split the dataset in a training set of 85% of instances and a

test set of the remaining 15%. We have fed each ML method with the same

training set and tested with the same test set. The dataset contains drivings

made by an AI and 5 human drivers using a Thrustmaster TMX [95]. In the

dataset are present 107 driving sessions made by humans. To demonstrate

the validity of CAHOOT, we also simulated further human drivings using

data augmentation techniques. Data augmentation are methods to generate

synthetic patterns starting from a dataset[41].

While the driver is driving the simulated vehicle, the intruder sends

steering and throttle brake messages. We decided to simulate attacks with

several success rates, i.e., 0%, 20% and 40%. Also, to simulate multiple

attacks on each driving session, we set the maximum and minimum duration

of an attack respectively to 2 and 1 slots.

We aim to detect the instances that contain at least one sensor’s value

forged from the steering and the throttle brake.

6.3.3 Evaluation without data augmentation

In the following, we first evaluate CAHOOT training it by using the

human and AI driving sessions. Then, the training is done by using only

human driving sessions. Table 15 contains the list of features selected by

CAHOOT. To better distinguish features rankings, each feature rank is shown

as a percentage of the sum of all the ranks.

Training CAHOOT using human and AI drivings, the steering and

throttle brake messages are the most important features. The worse fea-

tures are the distance from the right lane and the projection of velocity of the

nearest vehicle in the y axis. The engine runtimes minutes and seconds are

at the half of the table while the engine runtime milliseconds was discarded.

The MLP is trained with a learning rate of 0,00023. The plot loss (Figure
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Table 15: Features selected by CAHOOT (percentage of each rank with respect to

the sum of the ranks of the features)

Features
Rank percentage

Train

Human and AI

Train

Human

steering 46,7% 43,0%

throttle brake 32,4% 37,3%

speed 7,4% 7,3%

yaw rate 6,6% 5,6%

fuel consumption 2,3% 2,0%

last position y 1,3% 1,2%

last position x 0,9% 0,9%

engine runtime minute 0,5% 0,2%

engine runtime second 0,5% 0,5%

dist to left side 0,4% 1,1%

project distance to vehicle 1 y 0,3% -

dist to right side 0,2% 0,5%

project velocity to vehicle 0 y 0,2% 0,3%

13) shows that even if the validation loss converges earlier, the train loss

converges around epoch 480. Note that the MLP results are about the model

of the epoch that obtained the best accuracy. Hence, extra epochs only have

an impact on the extra time to train the model.

In Tables 16 17 18, we make a comparison among Random Forest, J48

and MLP. When CAHOOT is trained using human and AI drivings, the table

shows that Random Forest (Table 16) obtained the best accuracy while J48

(Table 17) obtained the worst accuracy. MLP (Table 18) is the most balanced

model, obtaining similar precision and recall.
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Figure 13: Plot loss of the MLP trained using human and AI drivings.

To better understand on which circumstances Random Forest best per-

forms, we calculated the accuracy grouped by entity, i.e., human or the AI is

driving the car, and by type of attack, i.e., DoS, spoofing and replay. Table

16 shows that the model has difficulty in the identification of the instances

where the AI drives the car. On the other hand, the model has an excellent

accuracy on instances where the human is driving. AI makes continuous

and sudden driving adjustments, whereas humans tend to make gradual

changes. Graduality makes human drivings predictions more accurate. The

most difficult type of attack to identify is the replay attack while the spoofing

is the most easiest to identify.

Because on human drivings the algorithm obtains high accuracy, we tried

to improve the results by training and testing using only drivings made by

humans.

Table 15 contains the list of features selected by CAHOOT. As in the

previous experiment, the first six highest ranked features are steering, thrott-

le brake, speed, yaw rate, fuel consumption and last position y. However,

engine runtimes seconds and minutes are no longer at the half of the table

and ranking fourth to last and last respectively. Also, the projection with the
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Table 16: Accuracy, precision and recall comparison of CAHOOT using Random

Forest

Random Forest

Acc Prec Rec Acc Prec Rec

Train Human and AI drivers Train Human drivers

95,50% 95,98% 97,87% 97,03% 97,30% 98,60%

Test only human drivers

97,25% 97,57% 98,64% N/A

Test only AI drivers

82,70% 85,54% 92,46% N/A

Test only Replay attack

93,36% 95,34% 95,46% 95,49% 96,69% 97,05%

Test only DoS attack

96,26% 95,83% 98,90% 97,15% 97,15% 98,74%

Test only Spoofing attack

96,73% 96,62% 99,11% 98,24% 97,91% 99,78%
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Table 17: Accuracy, precision and recall comparison of CAHOOT using J48

J48

Acc Prec Rec Acc Prec Rec

Train Human and AI drivers Train Human drivers

90,43% 92,74% 94,14% 92,47% 94,13% 95,49%

Test only human drivers

92,24% 93,82% 95,52% N/A

Test only AI drivers

77,25% 84,97% 84,48% N/A

Test only Replay attack

85,46% 91,33% 88,21% 88,37% 92,85% 90,81%

Test only DoS attack

93,11% 93,25% 97,08% 93,75% 94,09% 96,98%

Test only Spoofing attack

92,56% 93,45% 96,87% 94,94% 95,16% 98,25%

nearest vehicles obtained a rank equal to zero, except for the projection of

velocity to the nearest vehicle in the y axis.

The MLP is trained with a learning rate of 0,00016 obtained using the

LRFinder algorithm. The plot (Figure 14) shows that training and validation

loss converge. In this case, Tables 16, 17 and 18 show that Random Forest

obtained the best accuracy while J48 obtained the worst accuracy.

Testing only the human drivings, the model trained with both human and

AI drivings obtains slightly better accuracy with respect to the model trained

using only human drivings. The AI reacts almost instantly to intrusions
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Table 18: Accuracy, precision and recall comparison of CAHOOT using MLP

MLP

Acc Prec Rec Acc Prec Rec

Train Human and AI drivers Train Human drivers

93,81% 95,74% 95,70% 95,30% 96,84% 96,63%

Test only human drivers

95,73% 97,23% 96,83% N/A

Test only AI drivers

79,86% 85,60% 87,80% N/A

Test only Replay attack

90,32% 94,59% 91,83% 92,14% 95,55% 93,42%

Test only DoS attack

94,70% 95,57% 96,85% 95,58% 96,68% 96,87%

Test only Spoofing attack

96,12% 96,79% 98,07% 97,77% 97,97% 99,08%

making it the ideal driver. Thus, the model trained with also AI drivings is

better at detecting legitimate messages.

Moreover, Table 16 shows that replay attack is the most difficult to

recognize, while spoofing attack is the simplest to recognise with a recall

nearly perfect, i.e., 99,78%.

We compare the scores on spoofing attack obtained by CAHOOT using

Random Forest with the lowest and highest scores obtained in several exper-

iments by the main context-aware IDSs present in the literature. Table 19

shows that CAHOOT trained with only humans obtained the second best
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Figure 14: Plot loss of the MLP trained using only human drivings.

Table 19: Comparison of lowest and highest accuracies on spoofing attack between

CAHOOT and the main context-aware IDSs

CAHOOT

(Human & AI

- Human only)

RAIDS [42] Kondratiev et

al. [48]

Casillo et al. [12]

Accuracy 96,73% - 98,24% 89,5% - 99,9% 73,22% - 74,17% 96,64% - 96,91%

Precision 96,62% - 97,91% N/A N/A 83,00% - 87,00%

Recall 99,11% - 99,78% N/A N/A 78,38% - 82,18%

result. Overall, CAHOOT obtains the most consistent accuracies. Consider

that in [101], the authors use a metric that is not comparable with the metric

used in CAHOOT and the other previous works. In addition, each work uses

a different dataset and features are not always present in all the datasets.

6.3.4 Evaluation with data augmentation

In the previous tests, we collected data from a limited number of drivers

in a virtual environment. The best way to evaluate CAHOOT should be
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with a real car. However, driving sessions that involve several human drivers

is an onerous and expensive task. In addition, the simulator allows us to

launch intrusions that alter the behaviour of the car without endangering the

drivers. Hence, we preferred run simulated drivings in a safe environment for

the drivers and validate the simulations using data augmentation.

There are several data augmentation techniques on literature [41]. How-

ever, some techniques may produce dataset not realistic. For example, jittering,

i.e. the application of noise to the dataset, may produce driving sessions in

which the driver never comes to a complete stop at stop signs. To synthesize

additional human driving sessions, we use data augmentation techniques

which guarantee that at each driving session the fuel consumed by a vehicle

since the start of the driving session can not decrease over time, i.e., at the

i-th instance of the session fuel consumption[i] ≥ fuel consumption[i− 1].

Hence, we simulate additional human driving sessions using two data augmen-

tation techniques: time warping uses a cubic spline that stretches or contracts

the temporal dimension of the driving session [98], window warping stretches

by 2 or contracts by 1
2
a random window of the time series [53].

The procedure to generate the augmented test set is the following:

Preparation of the dataset for Data Augmentation. Since we want

to augment human drivings to generate new synthetic human drivings, every

AI drivings from the entire dataset are discarded (Listing 14, line 2). Either

the training set and the test set contain forged messages of steering and

throttle brake. We do not need to augment the forged messages because

we can simply randomly generate new forged messages. Hence, the forged

messages are discarded and the resulting dataset saved in dataset legit (line

4). New forged messages of the augmented data will subsequently be randomly

generated. The data augmentation methods that will be used contract and/or

stretches the time. Hence, even the features which represent the engine
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runtime will be consequently altered. The stretching and contracting is made

by the data augmentation to generate new driving sessions that represent

respectively a longer and smaller driving route in a time frame equal to the

time before the data augmentation occurs. The engine runtime stretched and

contracted will report to the machine learning method these time changes

defeating the purpose of the data augmentation in the first place. To address

this issue, the original engine runtime features are stored in a separate array

and subsequently be used for the augmented datasets (line 6). Finally, the

function returns the dataset legit, the array of engine runtimes and the index

of the driving sessions (line 8).

Listing 14: Preparation for Data Augmentation

1 function prepare data augmentation(dataset, test set)

2 dataset human ← from dataset remove the instances on which the driver is an AI

3

4 dataset legit ← from dataset human remove the forged messages

5

6 engine runtimes ← from dataset legit get the columns engine runtime millisecond,

second and minute

7

8 return (dataset legit, engine runtimes)

Augmentation of the dataset. The data augmentation method

augmented function will be applied to the original dataset, i.e., either train-

ing and test set. The augmented training set will be used to simulate the

replay attacks, but will not be used to train the model. First, an array with

the augmented datasets is created (Listing 15, line 2). To increase further the

dataset, each data augmentation method can be performed multiple times

(line 4). At each repetition, an array dataset augmented that will contain

the dataset augmented is created (line 5). Then, at each driving session is
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applied the function contained in augmented function and the augmented

driving session is appended to dataset augmented (lines 6 to 9). Next, the

augmented engine runtimes are substituted with the original engine runtimes

(line 10). Then, the augmented dataset is added to the array of augmented

datasets (line 12). Once the augmented function is repeated repeat times,

the array of augmented datasets is returned (line 14).

Listing 15: Data Augmentation

1 function data augmentation(dataset legit, engine runtimes, repeat,

augmented function)

2 datasets augmented ← empty array

3

4 repeat repeat times

5 dataset augmented ← empty array

6 for each dataset session in dataset legit

7 dataset augmented session ← augmented function(dataset session)

8

9 dataset augmented ← dataset augmented ∪ dataset augmented session

10 apply engine runtimes to dataset augmented

11

12 datasets augmented ← datasets augmented ∪ dataset augmented

13

14 return datasets augmented

Insert of forged messages. The augmented instances that are part of

the test set need forged messages. Hence, we will create a test set from

each augmented dataset on which the instances have attached new forged

messages. First, the array that will contains the augmented test set is created

(Listing 16, line 2). To populate this array, the procedure must pick from

each augmented dataset in datasets augmented the corresponding augmented

instance of each test set instance (lines 3 to 7). Note that the procedure
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use instances from the test set of human drivings only. Then, the index

of the augmented instance is obtained and passed to the function gener-

ate intrusion responsible for the generation of new forged messages for the

augmented instance (lines 9 and 10). The function is explained later on.

Then, the instance augmented attacked is defined as an empty instance that

will contain the augmented values alongside with the forged messages (line

12). Next, the messages in steeringlegit, steeringforged, throttle brakelegit

and throttle brakeforged are inserted into the instance augmented attacked

(lines from 14 to 17). Then, all the features present in the augmented in-

stance are added into instance augmented attacked (line 18). Consider that

steering and throttle brake are already in instance augmented attacked.

Now, instance augmented attacked contains all the augmented values and

the forged messages. Hence, instance augmented attacked can be now ap-

pended to the augmented test set (line 20). Once all the augmented test set

instances are appended, the original test set is appended to the augmented

test set (line 22). Finally, the augmented test set is returned by the algorithm

(line 24).

Listing 16: Apply attacks on the augmented dataset

1 function apply attacks augmented(datasets augmented, test set)

2 test set augmented ← empty array

3 for each dataset augmented in datasets augmented

4 for each instance in test set

5 if instance driver is AI

6 continue

7 instance augmented ← get the augmented version of instance in

dataset augmented

8

9 index ← index of the row instance augmented

10 steeringforged, throttle brakeforged ←

generate intrusion(dataset augmented, dataset sessions index, index)
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11

12 instance augmented attacked ← empty instance

13

14 instance augmented attacked[“steeringlegit”] ←

instance augmented[“steering”]

15 instance augmented attacked[“steeringforged”] ← steeringforged

16 instance augmented attacked[“throttle brakelegit”] ←

instance augmented[“throttle brake”]

17 instance augmented attacked[“throttle brakeforged”] ←

throttle brakeforged

18 instance augmented attacked ← insert all the features in

instance augmented except features “steering”, “throttle brake”

19

20 test set augmented ← test set augmented ∪ instance augmented attacked

21

22 test set augmented ← test set augmented ∪ test set

23

24 return test set augmented

The last function to explain is generate intrusion (Listing 17). The func-

tion randomly generates forged messages for the augmented test set instance.

First, an attack between DoS, replay and spoofing attacks is randomly chosen

(line 2). Then, the chosen attack is launched (lines from 4 to 14). In particular

in the spoofing attack (line 6), the attack is launched with input values “True”

and the zeroes (line 7). The “True” value represents bootstrap which ensure

the function choose randomly a steering and a throttle brake values. The

zeroes are respectively prev steering and prev throttle brake which can be

set to any value because they are overwritten by the spoofing attack function.

In case the attack is Replay attack (line 8), the arrays with driver’s history

of previous steering and throttle brake values must be built. The procedure

determines the index start of the current driving session based on the variable

index, i.e., the index of the augmented test instance (lines 9). The previous
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augmented instances for the current driving session are the instances starting

from the instance with the index start index and ending with the instance

that has index index minus 1. Then, the procedure collects the previous

steering and throttle brake values of the augmented instances for the current

driving session (lines 11 and 12). Next, the procedure executes the function

“replay attack” and returns the result (line 14). The input values “True”

and 0 of the function are respectively the bootstrap and the index history.

The bootstrap ensures that the function choose randomly an instance index

from the current driving session. The index history can be set to any value

because is overwritten by the replay function.

Listing 17: Generate Intrusion

1 function generate intrusion(dataset augmented, index)

2 attack chosen ← choose randomly an attack between spoofing attack, dos attack,

replay attack

3

4 if attack chosen == dos attack

5 return dos attack()

6 else if attack chosen == spoofing attack

7 return spoofing attack(True, 0, 0)

8 else

9 start index ← get the first index of the driving session that has index

10

11 steering history = dataset augmented[start index:index−1][steering]

12 throttle brake history = dataset augmented

[start index:index−1][throttle brake]

13

14 return replay attack(True, steering history, throttle brake history, 0)

We evaluate CAHOOT using a test set augmented by 3x, 5x, 7x and 9x,

i.e., the test set is made by the original test set and the augmented test sets

using the window and time warp methods repeated respectively 1 time, 2
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times, 3 times and 4 times. The number of human driving session presents in

the test sets augmented by 3x, 5x, 7x and 9x are respectively 321, 535, 749

and 963 human driving sessions. We use Random Forest as ML algorithm

because it obtained the best accuracy in all the previous tests.

In the first experiment, CAHOOT is trained using the human drivings

and the AI drivings (Figure 15).

Figure 15: Accuracy, precision and recall comparison of Attack Identification

test bed with test set augmented.

The bar plot shows that the test set without data augmentation, i.e.,

1x, loose 9,49% of accuracy with the respect to the test set augmented

3x. The use of data augmentation amplify noises present on the dataset

which leads to a deterioration in identification. On the other hand, the

accuracies, the precisions and recalls of the 5x, 7x and 9x are similar. Hence,

CAHOOT’s accuracy degradation is less affected by noise as the dataset grows.

The attack type that obtained the lowest accuracy is replay attack with a

minimum accuracy of 75,08% and a maximum of 79,92%. The attack type

with the highest accuracy is spoofing attack with an accuracy that ranges
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between 86,72% and 89,39%.

In the last experiment, CAHOOT is trained and tested using only the

human drivings (Figure 16).

Figure 16: Accuracy, precision and recall comparison of Attack Identification

test bed trained using only human drivings with test set augmented.

The bar plot shows that the test set without data augmentation, i.e.,

1x, loose 10,82% of accuracy with the respect to the test set augmented 3x.

Accuracies, precisions and recalls measures of the 5x, 7x and 9x are similar as

previously seen in the previous experiments. The attack type that obtained

the lowest accuracy is replay attack with a minimum accuracy of 74,87%

and a maximum of 80,26%. On the other hand, the attack with the highest

accuracy is once again the spoofing attack in a range between 86,76% and

89,86%.
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7 CAHOOTv2

In this section, we present CAHOOTv2 as an improvement of CAHOOT.

The advantages of CAHOOTv2 with respect to CAHOOT are twofold:

• CAHOOTv2 is trained to detect two variants of spoofing attack.

• CAHOOTv2 improves intrusion detection accuracies compared to CA-

HOOT. The Machine Learning algorithms presents parameters that

must be set before the training process starts and may influence the gen-

erated model. These parameters are called hyperparameters [104]. The

process of searching the hyperparameters that improve the performance

of the models is called hyperparameters tuning [104]. In CAHOOTv2,

we design a paradigm that select the best hyperparameters to use.

Finally, to validate the performance of the CAHOOTv2, we expanded the

dataset collecting driving data from 39 humans.

7.1 Attacks

In CAHOOTv2, we consider an intruder able to perform the following

attacks:

• DoS attack: the intruder is able to deny the driver’s input through the

generation of CAN frames where payloads values are set to zero for

steering, throttle and brakes.

• Replay attack: the intruder is able to re-use valid CAN frames with a

malicious or fraudulent aim.

• Spoofing attack: the intruder is able to generate a valid CAN frame.

For example, the forged frame may generate a valid signal to active an

ECU functionality.

98



• Additive attack: the intruder is able to use the current valid CAN frame

payload and add a random value in ±[0.2, 0.9].

• Selective attack: the intruder is able to use the current valid CAN frame

payload and flip the sign if the payload absolute value is greater than

0.3 or add a random value in ±[0.5, 1].

Additive and selective attacks are originally presented in the work [42].

These attacks are spoofing attack generation strategies because each attack

needs the generation of a random value.

7.2 CAHOOTv2 algorithm

The CAHOOTv2 algorithm is built on top of CAHOOT. CAHOOTv2

aims to detect more attacks and increases the accuracy on the older ones. In

the following, we describe the pseudocodes of the new attacks and how we

integrate them on the intruder’s behaviour. Then, we explain the paradigm

responsible for improving accuracy.

7.2.1 Intruder’s Behaviour

Listing 18 and Listing 19 describe our model of the intruder’s behaviour.

Listing 18: Prepare Attack

1 function prepare attack(steering, throttle brake, current attack, steering history,

throttle brake history, index history, prev steering, prev throttle brake,

stop attack time, min duration, max duration, slot time)

2 should attack change ← stop attack time <= Current timestamp

3

4 if should attack change

5 num slots ← Select an integer number between min duration and

max duration

6 stop attack time ← Current timestamp + num slots ∗ slot time
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7

8 current attack = None

9

10 (steeringforged, throttle brakeforged, current attack, index history, prev steering,

prev throttle brake) = launch attack(steering, throttle brake, current attack,

steering history, throttle brake history, index history, prev steering,

prev throttle brake)

11

12 steering history ← Append steering to steering history

13 throttle brake history ← Append throttle brake to throttle brake history

14

15 return (steeringforged, throttle brakeforged, current attack, stop attack time,

steering history, throttle brake history, index history, prev steering,

prev throttle brake)

Listing 18 shows the algorithm prepare attack that plans the duration

of each vehicle intrusion. The algorithm is the same of the prepare attack

presented in CAHOOT except for line 10 where steering and the throttle brake

of human/AI are sent to the function launch attack. These values may be

used to perform an additive or selective attack.

Listing 19: Launch Attack

1 function launch_attack(steeringlegit, throttle brakelegit, current attack,

steering history, throttle brake history, index history, prev steering,

prev throttle brake)

2 bootstrap ← False

3 if current attack = None

4 bootstrap ← True

5

6 current attack ← Randomly select one from "DoS", "Spoofing",

"Replay", "Additive", "Selective"

7

8 if current attack = "DoS"

100



9 (steering, throttle brake) ← dos_attack()

10 if current attack = "Spoofing"

11 (steering, throttle brake) ← spoofing_attack(bootstrap, prev steering,

prev throttle brake)

12

13 prev steering ← steering

14 prev throttle brake ← throttle brake

15 if current attack = "Replay"

16 (steering, throttle brake, index history) ← replay_attack(bootstrap,

steering history, throttle brake history, index history)

17 if current attack = "Additive"

18 (steering, throttle brake) ← additive_attack(steeringlegit,

throttle brakelegit)

19 if current attack = "Selective"

20 (steering, throttle brake) ← selective_attack(steeringlegit,

throttle brakelegit)

21

22 return (steering, throttle brake, current attack, index history, prev steering

, prev throttle brake)

Listing 19 depicts the algorithm launch attack. It is in charge of maintain-

ing active and in progress attack or decide which attack should be run. In

CAHOOTv2, launch attack should randomly choose an attack between DoS,

spoofing, replay, additive and selective (line 6). The additive and selective

attacks need the legit steering and throttle brake and apply to them mathe-

matical operations to generate forged steering and throttle brake (lines from

17 to 20).

New Attacks. Additive and selective attack add a random value to the

steering and the throttle brake of the user. The sum operation may lead to a

value that is not valid. Function limit value (Listing 20) ensures that values

greater than the upper bound are changed in upper bound (lines 5 and 6) and
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values lower than the lower bound are changed in lower bound (lines 7 and

8). In case the value is in [lower bound, upper bound], the function returns

the value as it is (line 10). In Metadrive, upper bound and lower bound are

respectively 1 and -1.

Listing 20: Limit value

1 function limit_value(value)

2 upper bound ← maximum acceptable value

3 lower bound ← minimum acceptable value

4

5 if value > upper bound:

6 return upper bound

7 if value < lower bound:

8 return lower bound

9

10 return value

The additive attack function set the steering and the throttle brake with

random values (Listing 21). First, two values are randomly generated in

±[0.2, 0.9] (lines 2 and 3). Then, these values are added to the legit steering

and throttle brake. Next, steering and throttle brake are sent as input to

the limit function (lines 8 and 9). Finally, the function returns the limited

steering and throttle brake values (line 11).

Listing 21: Additive Attack

1 function additive_attack(steeringlegit, throttle brakelegit)

2 random value 1 ← random value in ±[0.2, 0.9]

3 random value 2 ← random value in ±[0.2, 0.9]

4

5 steering ← steeringlegit + random value 1

6 throttle brake ← throttle brakelegit + random value 2

7
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8 steeringlimited ← limit_value(steering)

9 throttle brakelimited ← limit_value(throttle brake)

10

11 return (steeringlimited, throttle brakelimited)

The selective attack function create a steering and throttle brake pair

based on the value of the legit ones (Listing 22). In case, the legit steering is

in ±[0, 0.3], a random value in ±[0.5, 1] is added to the legit steering (lines

from 2 to 4). In case the legit steering is not in ±[0, 0.3], the forged steering

is the legit one with the sign flipped (lines 5 and 6). Similarly, the forged

throttle brake is generated (lines from 8 to 12). Then, limit value is launched

on steering and throttle brake (lines 14 and 15). Finally, the limited forged

steering and throttle brake are returned (line 17).

Listing 22: Selective Attack

1 function selective_attack(steeringlegit, throttle brakelegit)

2 if steeringlegit in ±[0, 0.3]

3 random value ← random value in ±[0.5, 1]

4 steering ← steeringlegit + random value

5 else

6 steering ← -steeringlegit

7

8 if throttle brakelegit in ±[0, 0.3]

9 random value ← random value in ±[0.5, 1]

10 throttle brake ← throttle brakelegit + random value

11 else

12 throttle brake ← -throttle brakelegit

13

14 steeringlimited ← limit_value(steering)

15 throttle brakelimited ← limit_value(throttle brake)

16

17 return (steeringlimited, throttle brakelimited)
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7.2.2 Hyperparameters Tuning Paradigm

Listing 23 and Listing 24 describe how the model is trained using the best

hyperparameters. The Model Generation paradigm in CAHOOTv2 differs

with respect to the paradigm in CAHOOT starting from line 9: from the

train and test sets the worst features are removed (lines 9 and 10). Then, the

hyperparameters tuning function is called (line 12). Next, a random forest

classifier is initialized using the hyperparameters received (line 14). Finally,

a random forest model is trained using the train dataset ins bftrain which

returns a trained model (line 16).

Listing 23: Model Generation

1 function generate model(inslabelled, num iterations, cross validation,

params distrandom search)

2 (instrain, instest) ← split randomly the instances as training and testing sets from

inslabelled

3 ins extractedtrain ← generate dataset(instrain)

4 ins extractedtest ← generate dataset(instest)

5

6 ranking ← GR(instances)

7 features>0 ← discard features with rank = 0 from ranking

8

9 ins bftrain ← ins extractedtrain with features features>0

10 ins bftest ← ins extractedtest with features features>0

11

12 paramsbest ← hyperparameters tuning(ins bftrain, ins bftest, num iterations,

cross validation, params distrandom search)

13

14 rf ← initialize a Random Forest using paramsbest

15

16 model ← train rf using ins bftrain

17 return model
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Listing 24 depicts hyperparameters tuning paradigm. Because there are

several possible combinations of hyperparameters, it is not feasible to try all

the possible combinations to find the best one. In the first phase, the paradigm

creates several random forests with random combinations of hyperparameters

and searches a subset of the best hyperparameters (lines from 2 to 23). Then,

try every combinations of hyperparameters present in the subset to find

the hyperparameters with the best accuracy (lines from 25 to 34). Each

combination is tested using the cross validation technique to ensure that the

hyperparameters are valid for the entire dataset and not only for a specific

test set. The random forests generated in the first phase are trained and

tested using the training dataset. Instead, in the second phase the random

forests are trained using train and test set. Although the first phase is

performed on a limited number of hyperparameter combinations, this phase is

computationally very onerous especially for large datasets. We apply the first

phase only to the train set, without the test set, to speed up the computation.

In the following, we explain in detail the first and the second phase. In

the inputs of hyperparameters tuning is present params distrandom search, a

bi-dimensional array that contains for each type of hyperparameter a list of

possible values that should be tried by the paradigm. First, the paradigm

creates a list with the name of the hyperparameters that will be tested (line 2).

Then, the array params accuraciesrandom search, that will contain the pairs

of hyperparameters chosen and the accuracy obtained by the random forest

algorithm, is defined (line 4). The num iterations variable defines how many

random combinations of hyperparameters are tested in the first phase.

To generate a combination of hyperparameters, a list of hyperparameters

is created (from line 6 to 9). For each type of hyperparameter present in

params distrandom search, an hyperparameter is uniformly randomly chosen

between all the possible values. Then, a random forest rf is initialized using
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the hyperparameters chosen. Next, rf is trained using the cross validation

technique on the training dataset with the best features. The cross validation

variable defines the number of folds. The average accuracy is registered, along-

side the list of the hyperparameters, in params accuracy[“accuracy”] (lines

9 and 12). Then, the tuple is appended to the array of pairs hyperparameter-

s/accuracy params accuraciesrandom search (line 14).

Once the params accuraciesrandom search is populated, the paradigm looks

for a subset of the best features. First, the array params distexhaustive search

that will contain the subset of the best hyperparameters is defined (line 16).

Then, the paradigm selects the best hyperparameters of each type. For each

hyperparameter type paramname, the accuracies present in params accura-

ciesrandom search are grouped by paramname to obtain the average accuracy

of each group (line 18). Then, the third quartile [58] is calculated on the

average accuracies of the groups (line 20). The hyperparameters that have

an average accuracies greater or equal to the third quartile are inserted in

params distexhaustive search (line 23). Hence, about 25 percent of the highest

accuracies are selected for each type of hyperparameter.

Next, the train and test set are combined to obtain the entire dataset

(line 25). The variables that will contain the best hyperparameters and

the relative accuracy are defined (lines 27 and 28). Then, each possible

combination of hyperparameters in params distexhaustive search is tested using

cross validation on the entire dataset (lines from 29 to 31). In case the

accuracy obtained is greater than the actual one present in accuracybest, the

best hyperparameters and accuracy variables are updated (lines from 32 to

34). Finally, the paradigm returns the hyperparameters that obtained the

best accuracy.

Listing 24: Hyperparameters Tuning Paradigm

1 function hyperparameters_tuning(ins bftrain, ins bftest, num iterations,
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cross validation, params distrandom search)

2 paramsname ← get the names of parameters in params distrandom search

3

4 params accuraciesrandom search ← empty array

5 for num iterations:

6 params ← Empty array

7 for each paramname in paramsname:

8 params[paramname] ← choose uniformly random a hyperparameter

in params distrandom search[paramname]

9 params accuracy["params"] ← params

10

11 rf ← initialize a Random Forest with params as hyperparameters

12 params accuracy["accuracy"] ← train rf using cross validation-fold

cross validation applied to ins bftrain

13

14 params accuraciesrandom search ← append params accuracy in

params accuraciesrandom search

15

16 params distexhaustive search ← empty array

17 for each paramname in paramsname:

18 grouped accuracies ← group params accuraciesrandom search by paramname

and calculate the average accuracy of each group

19

20 third quartile ← calculate the third quartile on grouped accuracies[

"accuracy"]

21

22 params accuraciesbest subset ← get the elements in grouped accuracies

on which grouped accuracies["accuracy"] ≥ third quartile

23 params distexhaustive search[paramname] ← params accuraciesbest subset[

"params"]

24

25 ins bf ← ins bftrain ∪ ins bftest

26

27 paramsbest ← None
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28 accuracybest ← 0

29 for each params combination in params distexhaustive search:

30 rf ← initialize a Random Forest with params as hyperparameters

31 accuracy ← train rf using cross validation-fold cross validation

applied to ins bf

32 if accuracy > accuracybest:

33 paramsbest ← params

34 accuracybest ← accuracy

35

36 return paramsbest

7.3 Dataset

As in CAHOOT, the dataset is generated using the driving simulator

MetaDrive. The dataset contains data made by an AI and 39 humans.

In particular, one human uses a keyboard while the remaining 38 use a

Thrustmaster TMX [95]. Regarding the gender of the drivers, four drivers

are females while the remaining 35 are males.

Figure 17 shows the ages grouped by the gender. Female drivers ages are

between 19 and 27 in average 22,25 years old and median of 21,5 while male

drivers ages are between 20 and 44 in average 24 years old and median of 22.

Overall, the drivers’ ages are between 19 and 44 with an average of 23,82 and

median of 22.

The histogram of the ages (Figure 18) shows that the majority of the

drivers are 21 and 22 years old.

7.4 CAHOOTv2 Evaluation

The sequence workflow of MetaDrive and the features of the dataset are

the same present in CAHOOT (Figure 12 and Table 14).
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Figure 17: Boxplots of genders.

7.4.1 Machine Learning algorithms

The CAHOOTv2 paradigm is implemented by using python-weka-wrap-

per3 [79] for the feature selection algorithm GainRatio and scikit-learn [71]

that efficiently implements Random Forest [10].

Models generated using Random Forest technique obtain good results.

However, tuning the hyperparameters, RF is able to achieve the best results.

In the first experiment, we run the hyperparameters tuning paradigm on

CAHOOT algorithm with the dataset present in Chapter 6.3, hereafter called

α. In the second experiment, we run CAHOOT and CAHOOTv2 on the

dataset presented in the previous subsection, hereafter called β. Finally, we

compare the result on the new attacks of CAHOOTv2 with the related work.
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Figure 18: Histogram of the ages.

7.4.2 Experiments setup

The experiments run on the same environment used in CAHOOT. To

evaluate CAHOOTv2, in the experiments we use several metrics: accuracy,

precision and recall.

We randomly split the dataset in a training set of 85% of instances and a

test set of the remaining 15%.

While the driver is driving the simulated vehicle, the intruder sends

steering and throttle brake messages. Also, to simulate multiple attacks on

each driving session, we set the maximum and minimum duration of an attack

respectively to 2 and 1 slots.

Table 20 shows the hyperparameters that we test in hyperparameters tuning

paradigm. We use 100 as number of iterations in the first phase.

We aim to detect the instances that contain at least one sensor’s value

forged from the steering and the throttle brake.

7.4.3 Evaluation of hyperparameters tuning

In the following, we evaluate the model trained using the default hyper-

parameters with the model trained using the best hyperparameters. The

experiment is conducted on the same train and test set on dataset α.
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Table 20: Hyperparameters tested in hyperparameters tuning paradigm

Hyperparameter Description Values

num estimators The number of trees that make

up the forest

[100, 200, 300, 400, 500, 600,

700, 800, 900, 1000]

max features The number of features consid-

ered for the split

[“log2”, “sqrt”]

min samples split The minimum number of sam-

ples required to split an internal

node

[2, 7, 12, 18, 23, 28, 34, 39, 44,

50]

min samples leaf The minimum number of sam-

ples required to be at a leaf node

[1, 6, 11, 17, 22, 28, 33, 39, 44,

50]

bootstrap Whether to use the entire

dataset to build each tree or a

bootstrap sample

[true, false]

criterion The function used to measure

the quality of a split

[“gini”, “entropy”]
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Table 21: Features selected by CAHOOT on α (percentage of each rank with

respect to the sum of the ranks of the features)

Features Rank percentage

steering 46,7%

throttle brake 32,4%

speed 7,4%

yaw rate 6,6%

fuel consumption 2,3%

last position y 1,3%

last position x 0,9%

engine runtime minute 0,5%

engine runtime second 0,5%

dist to left side 0,4%

project distance to vehicle 1 y 0,3%

dist to right side 0,2%

project velocity to vehicle 0 y 0,2%

In this dataset, we decided to simulate attacks with several success rates,

i.e., 0%, 20% and 40%.

Table 21 contains the list of features selected for the two models. To better

distinguish features rankings, each feature rank is shown as a percentage of

the sum of all the ranks.

The steering and throttle brake messages are the most important features.

The worse features are the distance from the right lane and the projection

of velocity of the nearest vehicle in the y axis. The engine runtimes minutes

and seconds are at the half of the table while the engine runtime milliseconds

was discarded.

Table 22, shows that the search of hyperparameters increase the accuracy
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of 1,5%. The recall is 0,3% lower than the model trained with the best

hyperparameters, but the precision is 0,9% higher, i.e., the false negative are

slightly increased but false positive are decreased.

To better understand on which circumstances the customized hyperpa-

rameters best perform, we calculated the accuracy grouped by entity, i.e.,

human or the AI is driving the car, and by type of attack, i.e., DoS, spoofing

and replay. The model trained with custom hyperparameters is 1,2% more

accurate with respect to the model trained with default hyperparameters

on the AI drivings. The attack that obtains the best accuracy increase is

spoofing attack, i.e., 0,7%. On the other hand, the accuracy of replay attack

increases only of 0,1%.

Table 22: Accuracy, precision and recall comparison on α of CAHOOT with

default and best hyperparameters

CAHOOT with best hyperparameters CAHOOT with default hyperparameters
Accuracy Precision Recall Accuracy Precision Recall

96% 96,9% 97,6% 95,5% 96,0% 97,9%

Test only human drivers

97,6% 98,2% 98,5% 97,2% 97,6% 98,6%

Test only AI drivers

83,9% 88,1% 90,7% 82,7% 85,5% 92,5%

Test only Replay attack

93,5% 96,2% 94,8% 93,4% 95,3% 95,5%

Test only DoS attack

96,8% 96,6% 98,8% 96,3% 95,8% 98,9%

Test only Spoofing attack

97,4% 97,7% 98,9% 96,7% 96,6% 99,1%

7.4.4 Evaluation of CAHOOTv2

In the following experiment, we compare three models: a model trained

using CAHOOTv2 paradigm, i.e., a model trained to detect DoS, spoofing,

replay, additive and selective attacks using the best hyperparameters, a model
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trained using CAHOOTv2 with the default hyperparameters and a model

trained using CAHOOT paradigm, i.e., a model trained to detect only DoS,

spoofing and replay attacks using the default hyperparameters.

In this dataset, we decided to simulate attacks with zero percent of success

rates, because the creation of a dataset with several success rate for 39 human

drivers would have been too expensive.

Table 23 contains the list of features selected for the three models.

Keep note that CAHOOTv2 uses the same features regardless the hyper-

parameters selected. The table shows that CAHOOTv2 and CAHOOT

discard only engine runtime millisecond. While in CAHOOTv2 steering

and throttle brake together represent the 55,35% of the entire feature set,

in CAHOOT steering and throttle brake together represent the 82,62% of

the entire feature set. Consequently, the remaining features are more im-

portant in CAHOOTv2. In all the models, the most important features are

steering, throttle brake and speed. While in CAHOOTv2 dist to left side

and yaw rate are respectively the fourth and fiveth most important fea-

tures, in CAHOOT they are only the ninth and the eighth most important

features. In CAHOOT, the fourth and fiveth most important features are

energy consumption and last position x.

In this case, Tables 24 and 25 show that CAHOOTv2 tuning the hyper-

parameters obtains the best accuracy, i.e., 0,3% of accuracy higher than the

default hyperparameters and 8,2% of accuracy higher than CAHOOT. The

model trained with the best hyperparameters increases the precision of 0,3%

while maintaining equal the recall with respect to default hyperparameters.

Considering tests only on humans, the model with the best hyperparame-

ters obtains accuracy and precision scores greater than the ones obtained by

the default hyperparameters and CAHOOT. Considering tests only on the

AI instances, the model with best hyperparameters has an accuracy slightly
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Table 23: Features selected by CAHOOTv2, with default and best hyperparameters,

and CAHOOT on β (percentage of each rank with respect to the sum of the ranks

of the features)

Features
Rank percentage

CAHOOTv2 CAHOOT

steering 31,83% 52,31%

throttle brake 23,52% 30,31%

speed 9,0% 3,91%

dist to left side 4,93% 0,4%

yaw rate 4,47% 1,16%

last position y 3,92% 1,66%

last position x 3,33% 1,95%

energy consumption 3,27% 2,1%

dist to right side 3,07% 1,89%

project distance/velocity to vehicle n x/y from 1,24% to 0,14% from 0,39% to 0,05%

engine runtime second 0,69% 0,18%

engine runtime minute 0,56% 0,17%

lower with respect to default hyperparameters, i.e., 0,1%, but the model is

more balanced. The difference between precision and recall with the best

hyperparameters is 3,5% while in the default hyperparameters is 5,5%.

The replay attack is the most difficult attack to detect but CAHOOTv2

increases the accuracy up to 0,4% sacrificing some of the recall to increase

the precision. The DoS attack is better identified by the model with the

best hyperparameters, i.e., 0,3% more accuracy. However, CAHOOT is 0,1%

more accurate but precision and recall are more unbalanced with respect

to the best hyperparameters. The spoofing attack is the easiest to detect.

All three algorithms obtain really high results, in particular CAHOOTv2
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with the best hyperparameters, i.e., up to 0,3% more accurate. The additive

attack and selective attack are easy to detect for CAHOOTv2 regardless the

hyperparameters. However, the best hyperparameters allow the accuracy to

increase up to 0,4%. CAHOOT is able to detect these attacks but with lower

scores with respect to CAHOOTv2.

Table 24: Accuracy, precision and recall comparison on β between CAHOOTv2,

CAHOOTv2 with default hyperparameters and CAHOOT

CAHOOTv2 CAHOOTv2 default hyperparameters
Accuracy Precision Recall Accuracy Precision Recall

97,9% 98,8% 98,2% 97,6% 98,5% 98,2%

Test only human drivers

98,0% 99,0% 98,3% 97,8% 98,7% 98,3%

Test only AI drivers

87,3% 89,9% 93,4% 87,4% 88,7% 95,2%

Test only Replay attack

94,8% 96,9% 95,4% 94,5% 96,3% 95,6%

Test only DoS attack

96,5% 97,1% 97,4% 96,3% 96,8% 97,4%

Test only Spoofing attack

99,6% 99,5% 99,9% 99,4% 99,3% 99,9%

Test only Additive attack

97,7% 99,5% 97,3% 97,3% 99,2% 97,1%

Test only Selective attack

99,6% 99,7% 99,8% 99,5% 99,5% 99,8%
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Table 25: Accuracy, precision and recall comparison of CAHOOT on β

Accuracy Precision Recall

91,7% 92,7% 95,9%

Test only human drivers

91,8% 92,8% 96,0%

Test only AI drivers

83,6% 85,4% 94,1%

Test only Replay attack

94,4% 95,9% 95,7%

Test only DoS attack

96,6% 96,6% 98,0%

Test only Spoofing attack

99,3% 99,1% 99,9%

Test only Additive attack

83,5% 87,1% 91,3%

Test only Selective attack

86,7% 87,9% 95,4%
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8 Conclusions and future work

Worldwide, car theft is on the rise due to a combination of lack of pro-

tection by automakers [54], recklessness of thieves [54, 67] and negligence of

owners [67]. Also, the high complexity of newer vehicles increases the attack

surfaces on which a vulnerability could be present. An intrusion while the

vehicle is in motion could endanger the lives of the driver and passengers.

In this thesis, we contributed to the state of the art proposing several

novel algorithms in driver identification and context-aware IDS fields. In the

first two works, we presented two novel algorithm for driver identification.

First, we shown the Secure Routine paradigm to identify the vehicle’s

owner taking into account the routines of the driver. We compared SR with

other three existing research papers Findings showed that SR obtains the

best results compared with the other algorithms.

Based on Secure Routine, we created Private Secure Routine as a privacy-

preserving paradigm able to identify drivers in an ITS infrastructure. We

evaluated the accuracy of PSR in comparison with two research works present

in literature. Although the goal of PSR is on privacy-preserving and multi-

owner identification, it obtained elevate accuracy values when compared with

the other two research works.

In the last two works, we presented two algorithms for context-aware IDS.

First, we shown CAHOOT, a context-aware IDS able to detect intrusions

into a sequence of in-vehicle messages related to a driver’s driving style. We

evaluated the performance of CAHOOT using several metrics. Compared

respectively to the lowest and the highest score of the main context-aware

IDSs, CAHOOT performed on spoofing attack the best and second best score

proving its reliability. Moreover, we adopted data augmentation techniques

to increase the number of human drivings to demonstrate that CAHOOT

performs well even with larger datasets.
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Finally, we introduced CAHOOTv2 that improves the ability on intrusion

detection of CAHOOT generating more balanced models thanks to the best

hyperparameters used for the training phase. We also expanded the dataset

with additional drivers to better validate the results. In addition, we shown

how well CAHOOTv2 detects the additional attacks compared to related

work.

In future, we will design an algorithm that is able to detect intrusions and

also is able to identify drivers while preserving their privacy. Rather than

endangering the lives of the driver and passengers in the vehicle, the intruder

might want to introduce CAN messages to mislead the driver identification

system present in the vehicle to impersonate an authorized driver. To pre-

vent this, the intrusion detection component of the algorithm may identify

the hacked messages and prevent them to reach the driver identification

component.
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[101] Wasicek, A., Pesé, M., Weimerskirch, A., Burakova, Y., and

Singh, K. Context-aware intrusion detection in automotive control

systems. In Proc. 5th ESCAR (06 2017), p. 1–14.

[102] Witten, I., Hall, M., Frank, E., Holmes, G., Pfahringer, B.,

and Reutemann, P. The weka data mining software: An update.

SIGKDD Explorations 11 (11 2009), 10–18.

[103] Xiong, Y., and Lin, H. Routine based analysis for user classification

and location prediction. In 2012 9th International Conference on

133

https://torres.ai/first-contact-deep-learning-practical-introduction-keras/
https://torres.ai/first-contact-deep-learning-practical-introduction-keras/


Ubiquitous Intelligence and Computing and 9th International Conference

on Autonomic and Trusted Computing (Sep. 2012), pp. 96–103.

[104] Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. Dive into

Deep Learning. 2020. https://d2l.ai [retrieved: 11, 2022].

[105] Zhang, H., Wen, Y., Xie, H., and Yu, N. Distributed Hash Table.

01 2013.

[106] Zhao, X., Li, L., Song, J., Li, C., and Gao, X. Linear control

of switching valve in vehicle hydraulic control unit based on sensor-

less solenoid position estimation. IEEE Transactions on Industrial

Electronics 63, 7 (July 2016), 4073–4085.

[107] Zheng, B., Liang, H., Zhu, Q., Yu, H., and Lin, C.-W. Next

generation automotive architecture modeling and exploration for au-

tonomous driving. In 2016 IEEE Computer Society Annual Symposium

on VLSI (ISVLSI) (July 2016), pp. 53–58.

134

https://d2l.ai

	Introduction
	Motivation
	Contribution
	Thesis organization

	Related work
	Driver identification
	Context-aware IDS

	Background
	Vehicle anatomy and connectivity 
	Habits of driver
	Machine Learning
	Decision Trees
	Neural Network at a glance

	Intelligent Transportation System Infrastructure

	Secure Routine
	Algorithm
	Model Generation Dataset
	FS paradigm
	Model Generation Algorithm
	SR Identification strategy

	Secure Routine Evaluation
	Datasets
	Metrics
	Experiments


	Private Secure Routine
	Privacy preserving Machine Learning techniques
	Federated Learning
	Split Neural Network
	SplitFedv1
	SplitFedv2
	SplitFedv3
	Secure Multi-Party Computation

	Focus on Private Secure Routine
	Architecture
	Threat Model

	Model Generation
	A new vehicle joins the PSR infrastructure
	A new driver joins the PSR infrastructure
	Driver identification on a vehicle of the infrastructure

	Private Secure Routine Implementation
	Labelling Generation Algorithm
	Dataset preparation for training
	Model Generation Algorithm
	Model Training Algorithm

	Private Secure Routine Evaluation
	Experiments


	CAHOOT
	Attack Model
	CAHOOT algorithm
	Intruder's Behaviour
	Instances Extraction Paradigm
	Model Generation

	CAHOOT Evaluation
	Machine Learning algorithms
	Experiments setup
	Evaluation without data augmentation
	Evaluation with data augmentation


	CAHOOTv2
	Attacks
	CAHOOTv2 algorithm
	Intruder's Behaviour
	Hyperparameters Tuning Paradigm

	Dataset
	CAHOOTv2 Evaluation
	Machine Learning algorithms
	Experiments setup
	Evaluation of hyperparameters_tuning
	Evaluation of CAHOOTv2


	Conclusions and future work
	Publications

