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Abstract: This study aimed to highlight the distinctive features of four Traditional Agri-food Products
(TAP), namely, Caprino, Pecorino, Vaccino, and Cacioricotta cheeses produced at the same dairy
plant to reveal any possible relationships between their microbiological and biochemical character-
istics. Two distinct natural whey starter (NWS) cultures were used during Caprino and Vaccino
cheesemaking, whereas no starter was used for the other cheeses. Cacioricotta retained the highest
concentrations of salt and residual carbohydrates. Lactic acid bacteria dominated the microbiota of
the cheeses. Furthermore, staphylococci represented an additional dominant microbial population in
Cacioricotta. Although culture-dependent analysis showed that the use of NWS cultures only slightly
affected the microbial community of cheeses, 16S metagenetic analysis showed that Lactobacillus
helveticus dominated both the NWS cultures and the corresponding Caprino and Vaccino cheeses. This
analysis indicated that Staphylococcus equorum and Streptococcus thermophilus dominated Cacioricotta
and Pecorino cheeses, respectively. The highest peptidase activities were found in either Caprino or
Vaccino. Enzymes involved in the catabolism of free amino acids and esterase showed the highest
activity in Pecorino cheese. Each cheese showed a distinct profile of volatile organic compounds,
with Pecorino being the richest cheese in carboxylic acids, ketones, and esters, related to lipolysis.
The results of this study contribute to valorizing and safeguarding these TAP cheeses, sustaining
local farming.

Keywords: cheese microbiota; cheese quality; cheese safety; cheesemaking technology; metage-
netic analysis; natural whey starter cultures; TAP cheeses; traditional agri-food products; volatile
organic compounds

1. Introduction

Nowadays, consumers living in Western countries show a dichotomic aptitude to-
wards food tradition and innovation: on the one hand, they are genuinely interested in food
innovation, and on the other hand, they are attracted by traditional food. The mistrust about
food manufactured at the industrial level using cutting-edge technologies could be one of
the reasons for the renewed interest in traditional food. It is undeniable that traditional
food, along with typical food, besides being referenced starting blocks for food innovation,
represent an invaluable legacy to be protected [1]. European Policy on agri-food quality
includes the protection of agricultural and food products through appropriate designations,
namely, Protected Designation of Origin (PDO), Protected Geographical Indication (PGI),
and Traditional Specialty Guaranteed (TSG). These labels are explicitly meant to provide
consumers with detailed information about a given product, thus protecting them from the
risk of imitation [2].
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Besides the above-mentioned labels, the Italian Ministry of Agriculture and Forest
Politics (MIPAAF) defined the Traditional Agri-food Products (TAP or, elsewhere, TFPs;
in Italian language, Prodotti Agroalimentari Tradizionali, PAT), as those agriculture or food
products “obtained with processing methods, storage and maturation over time consoli-
dated, homogeneous throughout the territory concerned, according to traditional rules, for
a period not less than twenty-five years” [3]. Different to PDO/PGI/TSG products, TAP
face some limitations: (i) small amounts of production; (ii) production is referred to limited,
and sometimes fringe, areas; (iii) production protocols may be not in conformity with
hygiene regulations and/or show slight variations within the same geographical area [4].
Within the last updated list of TAP, around 500 are represented by cheeses [5], perhaps
the most heterogenous group of fermented food. The distinctive traits of a given cheese
result from several factors, such as type of milk, production protocol, and microbiota [6].
Among the 17 TAP cheeses referred to the Apulia region (Southern Italy), we focused on
Caprino, Pecorino, Vaccino, and Cacioricotta, which have been on the list since 2000 [7].
Caprino, manufactured from goats’ milk, is a long ripened hard cheese. Pecorino is the
oldest Apulian cheese, strictly related to the seasonal transhumance from the Abruzzo
mountains to the Apulian plain, named Tavoliere delle Puglie, extending from the foot of the
Gargano promontory and the Dauno Apennine to the Adriatic Sea. Pecorino cheese is man-
ufactured from ewes’ milk and has a semi-hard or hard texture, depending on the length of
the ripening period. Vaccino cheese, manufactured from cows’ milk, is characterized by a
semi-hard or hard texture. Cacioricotta cheese is manufactured from a blend of milk (often
goats’, cows’ and/or ewes’ milk), frequently sold after short (two months) ripening. It is
related to seasonal transhumance [8].

The European Commission, in view of a tentative labeling scheme for local farming,
suggested that “a new label could add value to products generated from local agriculture
if it went beyond direct sales and if Member States were to ensure that it is integrated
with or linked to other measures” [9]. The adoption of the TAP label for traditional food
products, such as cheese, could represent a concrete acceptance of this suggestion. However,
first, it seems necessary to increase knowledge about TAP [4]. A very limited number of
studies have focused on TAP cheeses [10,11]. Although those studies depicted an overall
picture about the quality of some TAP cheeses, which were either provided by temporary
aggregations of dairy farms or purchased from the retail market of dairies, they did not
consider the detailed production protocols or the many biochemical and microbiological
traits of each cheese.

This study aimed to highlight the distinctive traits of four different TAP cheeses
(Caprino, Pecorino, Vaccino, Cacioricotta) manufactured at the same semi-industrial plant.
For this purpose, the cheeses were analyzed at the end of ripening to assess the microbiota,
enzymatic activities, degree of proteolysis, and concentrations of the main compounds
involved in their sensory traits. We chose a cross-sectional experimental plan, rather than a
longitudinal one (i.e., sampling cheeses throughout ripening time), because for ripened
cheeses the highest degree of distinctiveness is especially found at the end of ripening.
In addition, we chose sampling the four cheeses from the same dairy plant, rather than
from different plants, aiming to minimize the influence of house microbiota on cheeses’
distinctive traits.

2. Materials and Methods
2.1. Cheese and Natural Whey Starter Sampling

Caprino (goats’ milk cheese), Pecorino (ewes’ milk cheese), Vaccino (cows’ milk
cheese), and Cacioricotta (50% cows’ and ewes’ milk cheese) TAP cheeses were manufac-
tured at a semi-industrial dairy plant located at Putignano, Bari, Southern Italy, according
to traditional protocols (Figure 1), which were characteristic for each cheese, but shared the
following aspects: (i) coagulation parameters were identical (including the microbial rennet
used) for all the cheeses, except for a slightly higher renneting temperature adopted for
curding Cacioricotta; (ii) except for Cacioricotta cheese, curd was scalded in the “scotta”,
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the hot, whey-based by-product of ricotta manufacturing; (iii) cheeses were salted in brine,
except for Cacioricotta (dry salting); (iv) they were ripened at the same temperature.
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Figure 1. Protocols for the manufacture of Caprino, Pecorino, Vaccino, and Cacioricotta TAP cheeses.

Three batches were sampled for each cheese. Besides cheeses, natural whey starter
(NWS) cultures used during production of Caprino (CNWS) and Vaccino (VNWS) cheeses
were sampled.

Each sample of cheese and the NWS cultures was divided into two aliquots, one of
which was stored at 4 ◦C and subjected (within 18 h from collection) to microbiological and
biochemical analyses (primary and secondary proteolysis, residual enzymatic activities,
volatile organic compounds). The second aliquot was stored at −80 ◦C and destined for
16S metagenetic analysis and profiling of volatile organic compounds (VOC).

2.2. Compositional Analysis

The moisture and residual solids content were evaluated using Moisture Analyzer
MA35 (Sartorius Stedim Biotech GmbH, Göttingen, Germany). Water activity (Aw) was
determined through the Aqua Lab Decagon Dewires system (Pullman, WA, USA). The pH
value was measured with a pH-meter equipped with a Foodtrode (Hamilton, Bonaduz,
Switzerland) electrode. Cheeses were also analyzed for total carbohydrates through
HPLC [12], proteins through Kjeldahl method [13], fat content [14], and salt [15]. The
residual concentration of lactose and galactose was estimated through the Megazyme
Lactose and D-Galactose assay kit K-LACGAR (Megazyme Int. Ireland Ltd., Bray, Ireland),
following the producer’s instructions.

Concentration of lactic acid was estimated analyzing acid-soluble extract of cheese
through HPLC Äkta Purifier System (GE Healthcare Biosciences, Uppsala, Sweden) equipped
with a cation exchange column (Aminex HPX-87H), a Cation H+ Microguard (Bio-Rad-
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Laboratories, Hercules, CA, USA), and a UV detector (UV100) set at a wavelength of 210 nm.
Acid-soluble extracts of cheese were obtained upon homogenization (through Stomacher,
for 10 min) of five grams of cheese and 25 mL of H2SO4 0.01 N. After centrifugation
(2500× g for 5 min) of the homogenate, the supernatant, representing the cheese extract,
was filtered using 0.20 µm pore size membrane filter (Sartorius AG, Gottingen, Germany)
and injected in the column. Lactic acid was eluted isocratically with H2SO4 0.01 N at a flow
rate of 0.6 mL min−1, keeping the column at 60 ◦C [16].

2.3. Cultivable Microbiota

Ten grams of cheese were homogenized with 90 mL of sterile saline (NaCl, 9 g L−1)
solution using a 400P Bag Mixer (180 s of treatment), while further serial dilutions were con-
tinued in Ringer quarter-strength solution and plated on different culture media purchased
from Oxoid (Basingstoke, UK). Cell density of total mesophilic aerobic microorganisms
was determined using Plate Count agar after incubation at 30 ◦C. Presumptive mesophilic
lactobacilli and cocci were enumerated using de Man, Rogosa, and Sharpe (MRS) and lac-
tose M17 agar plates, respectively, supplemented with cycloheximide (0.1% wt/vol), after
incubation at 30 ◦C. Presumptive thermophilic lactobacilli and streptococci were enumer-
ated on MRS and lactose M17 agar media, respectively, supplemented with cycloheximide
(0.1% wt/vol) after incubation at 45 ◦C. Presumptive enterococci were enumerated on
Slanetz and Bartley agar, after inoculating by spreading technique, and incubation of plates
at 37 ◦C. Plates of Baird Parker agar, supplemented with egg yolk tellurite (5% vol/vol),
inoculated by spreading and incubated at 37 ◦C, were used to enumerate presumptive
staphylococci. Presumptive Enterobacteriaceae were counted on Violet Red Bile Glucose
Agar (VRBGA) plates incubated at 37 ◦C. Plates of Pseudomonas agar, supplemented with
cetrimide (10 mg L−1), Fucidin (10 mg L−1), and cephalosporin (50 mg L−1), were spread
inoculated and used to enumerate presumptive Pseudomonas spp. after incubation at 30 ◦C.
Yeasts were enumerated on Sabouraud Dextrose Agar plates supplemented with chloram-
phenicol (0.1% wt/vol) after incubation at 25 ◦C. The CNWS and VNWS cultures were
diluted and plated on MRS and lactose M17 plates supplemented with cycloheximide
(0.1% wt/vol) and were incubated as above for estimating cell densities of mesophilic
and thermophilic lactobacilli and coccus-shaped lactic acid bacteria (LAB), respectively.
All plates were incubated for 48 h, except for VRBGA and Pseudomonas agar, which were
incubated for 24 h [17].

2.4. 16S Metagenetic Analysis

Total DNA from three batches of each cheese and NWS was extracted using the
FastDNA Spin Kit (MP Biomedicals, Solon, OH, USA) according to the manufacturer’s
instructions. All DNA samples were quantified by Nanodrop ND-1000 spectrophotometer
(Thermo Fisher Scientific, Inc., Waltham, MA, USA). For each cheese and NWS, DNA was
pooled [18] and used as a template for 16S metagenetic analysis, which was carried out at
the Research and Testing Laboratory (RTL, Lubbock, TX, USA) by using the Illumina MiSeq
platform. A fragment of the 16S rRNA gene for analysis of diversity inside the phylum
of Firmicutes was amplified using the primers Firm350F/Firm814R [19]. Sequence data
for each sample were processed using RTL’s in-house pipeline (https://rtlgenomics.com/
documents (last accessed on 3 February 2020)). Briefly, the sequenced reads were (i) merged
by PEAR Illumina paired-end merger [20]; (ii) trimmed using an internally developed
quality trimming algorithm; (iii) grouped by using the USEARCH [21] algorithm into
clusters (4% dissimilarity among sequences of the same cluster); (iv) the clusters were
classified to Operational Taxonomic Unit (OTU) by using the UPARSE-OTU [22]; and
finally checked using the UCHIME software [23]. The relative abundance of each bacterial
OTU was analyzed individually within each sample [24].

https://rtlgenomics.com/documents
https://rtlgenomics.com/documents
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2.5. Assessment of Enzymatic Activities

Water-soluble cheese extracts were prepared according to the method of Kuchroo and
Fox [25]. The extracts were dialyzed (Dialysis Tubing, cut-off 12,000 Da, Sigma Company,
Milan, Italy) for 24 h at 4 ◦C against 0.05 M phosphate buffer, pH 7.0, to eliminate inter-
ference from salt and peptides. To avoid interference due to cellular activity, the dialyzed
extracts were subjected to sterile filtration (0.22 µm pore size, Syrfil Filter, Nucleopore,
Costar Corporation, Cambridge, MA, USA) [26]. Aminopeptidase (EC 3.4.11.11) and pro-
line iminopeptidase (EC 3.4.11.9) assays were carried out as described by Gobbetti et al. [26],
using leu-p-nitroanilide and pro-p-nitroanilide as substrates. Endopeptidase type O (EC
3.4.23) was measured using Z-Gly-Pro-NH-trifluoromethyl coumarin as a substrate [27].
One unit of enzymatic activity was defined as the amount of enzyme that produced an
increase in absorbance at 410 nm of 1 (aminopeptidase) and 0.1 (proline iminopeptidase
and endopeptidase) AU min−1 at 37 ◦C and pH 7.0. Glutamate dehydrogenase (EC 1.4.1.2)
activity was assayed by measuring the glutamate-dependent reduction in NADP+ or NAD+

at 492 nm [28]. One arbitrary unit of enzymatic activity was defined as the amount of
enzyme that gave an increase in absorbance at 492 nm of 0.1 AU min−1 at 37 ◦C and pH
7.0. Cystathionine lyase (EC 4.4.1.1) activity was determined by measuring the amount of
ketoacids, ammonia, and free thiols released from cystathionine [29]. One arbitrary unit
of enzymatic activity was defined as the amount of enzyme that caused an increase (at
412 nm) of 1 AU min−1 at 37 ◦C and pH 7.0. Esterase (acetyl ester hydrolase, EC 3.1.1.6)
activity was determined as described by Gobbetti et al. [30] using β-naphthyl butyrate as
substrate and expressed as 1 µmol of β-naphthol released per min at 37 ◦C and pH 7.0.

2.6. Assessment of Proteolysis

The pH 4.6-soluble and pH 4.6-insoluble nitrogen fractions of cheeses were obtained
according to the method described by Kuchroo and Fox [25]. The insoluble fraction
was analyzed by denaturing urea polyacrylamide gel electrophoresis (urea-PAGE), using
sodium caseinates from goats’, ewes’, and cows’ milk as standard references. The gels
were stained using Coomassie Brilliant Blue G250, and destained according to Blakesley
and Boezi [31]. Peptides contained in the pH 4.6-soluble nitrogen fraction were analyzed
through an FPLC system (GE Healthcare Biosciences, Uppsala, Sweden) equipped with
a Resource RPC reverse phase column and a UV detector operating at 214 nm [32]. The
analysis was performed with a flow rate of 1 mL min−1 in gradient elution; the mobile
phase consisted of water, acetonitrile, and trifluoroacetic acid (0.05%, v/v). The acetonitrile
percentage was constantly increased from 5 to 46% between 16 min and 62 min from
injection, to reach a final concentration of 100% between 62 and 72 min. The number and
areas of peaks were recorded. Concentration of total free amino acids (FAA) in the pH
4.6-soluble fraction was determined through the cadmium-ninhydrin method [33] and
expressed as mg g−1.

2.7. VOC Analysis

Four grams of grated cheese were added with 10 µL of internal standard solution
(2-octanol, at 10 ppm), placed into 20 mL glass vials, and sealed with polytetrafluoroethylene-
coated silicone rubber septa (20 mm diameter) (Supelco, Bellefonte, PA, USA). To obtain the
best extraction efficiency, the micro-extraction procedure was performed as described in
Salum et al. [34], with slight modifications. After sample equilibration (10 min at 54.75 ◦C),
a conditioned 50/30 µm DVB/CAR/PDMS fiber (Supelco, Bellefonte, PA, USA) was ex-
posed for 60 min. The temperature was kept constant during analysis, and the vials were
maintained on a heater plate (CTC Analytics, Zwingen, Switzerland) of a CombiPAL system
injector autosampler (CTC Analytics). The extracted VOC were desorbed in splitless mode
(3 min at 220 ◦C) and analyzed through a Clarus 680 (Perkin Elmer) gas-chromatography
(GC) system equipped with a capillary Rtx-WAX column (30 m × 0.25 mm i.d., 0.25 µm
film thickness) (Restek, Bellfonte, PA, USA). The column temperature was set initially at
35 ◦C for 8 min, then increased to 60 ◦C at 4 ◦C min−1, to 160 ◦C at 6 ◦C min−1, and finally
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to 200 ◦C at 20 ◦C min−1 and held for 15 min. Helium was used as the carrier gas at flow
rate of 1 mL min−1. A single quadrupole mass spectrometer (MS) Clarus SQ 8C (Perkin
Elmer) was coupled to the GC system. The source and transfer line temperatures were kept
at 250 and 230 ◦C, respectively. Electron ionization masses were recorded at 70 eV in the
mass-to-charge ratio (m/z) interval 34–350 [35]. Each chromatogram was analyzed for peak
identification using the NIST (National Institute of Standard and Technology) 2008 library.
A peak area threshold of 1,000,000 and at least 85% probability of match were used for
dentification, followed by visual inspection of the fragment patterns when required. The
concentrations of VOC (calculated on internal standard base) were expressed as mg kg−1.

2.8. Statistical Analysis

Data collected from the analyses, performed at least in duplicate on three batches of
cheese sampled at the same dairy plant, were subjected to one-way analysis of variance
(ANOVA), and pair comparison of treatment means was achieved by Tukey’s procedure at
p < 0.05, using the statistical software Statistica v. 7.0 for Windows. Principal component
analysis (PCA) was also performed using Umetrics Simca 14.1.

3. Results
3.1. Compositional Analysis of TAP Cheeses

The highest and lowest moisture percentages were found in Cacioricotta (ca. 38%) and
Pecorino (ca. 31%) cheeses, respectively (Table 1).

Table 1. Gross chemical composition (expressed in percentage, w/w), values of water activity (Aw),
and pH of Caprino, Pecorino, Vaccino, and Cacioricotta TAP cheeses.

Caprino Pecorino Vaccino Cacioricotta

Moisture (%) 34.18 b ± 1.18 30.98 cd ± 1.59 31.99 c ± 1.32 38.10 a ± 1.24
Fat (%) 29.42 b ± 0.50 35.14 a ± 0.5 34.25 ab ± 0.5 27.08 c ± 0.5

Protein (%) 26.14 ab ± 0.30 27.09 a ± 0.20 24.54 b ± 0.30 22.13 c ± 0.30
Carbohydrates (%) 0.71 c ± 0.20 1.40 b ± 0.20 1.43 b ± 0.30 4.20 a ± 0.20

NaCl (%) 0.61 c ± 0.20 0.91 b ± 0.20 0.90 b ± 0.20 6.23 a ± 0.20
Aw 0.879 b ± 0.05 0.868 c ± 0.03 0.858 d ± 0.04 0.905 a ± 0.07
pH 5.22 b ± 0.02 5.23 b ± 0.04 5.30 b ± 0.03 5.93 a ± 0.03

a–d Values in the same row with different letters are significantly different (p < 0.05).

Fat content ranged from 27% (Cacioricotta) to ca. 35% (Pecorino); the same trend was
found for protein content, varying between ca. 22% (Cacioricotta) to ca. 27% (Pecorino).
Cacioricotta cheese was characterized by the highest (p < 0.05) amount of NaCl, whereas
the other cheeses contained ca. 0.6 to ca. 0.9% of NaCl. Values of Aw ranged from ca.
0.86 (Vaccino) to ca. 0.90 (Cacioricotta). The highest (p < 0.05) pH value was found for
Cacioricotta cheese (ca. 5.9), whereas no significant (p > 0.05) differences were found for
the other cheeses (Table 1).

No residual lactose was detected in all the cheeses, except for Cacioricotta cheese (ca.
860 mg kg−1). The latter was also distinguished by the highest (p < 0.05) concentration of
residual galactose, which was ca. 210 mg kg−1 vs. 20–50 mg kg−1 detected in the other
cheeses. On the opposite, Cacioricotta cheese was characterized by the lowest (p < 0.05)
concentration (ca. 2 mg kg−1) of lactic acid. The other cheeses contained 16–18 mg kg−1 of
lactic acid, with no significant (p > 0.05) differences.

3.2. Cultivable Microbiota of TAP Cheeses

The cell density of total mesophilic microorganisms ranged from 4.6 (Pecorino) to 6.3
(Cacioricotta cheese) log CFU g−1 (Figure 2).
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Vaccino, and Cacioricotta TAP cheeses. Bar-plots marked with different letters (a, b, c, d), within each
microbial group, are significantly different (p < 0.05).

Presumptive mesophilic lactobacilli varied between 4.3 (Pecorino) and 5.7 (Vaccino
cheese) log CFU g−1. The highest (p < 0.05) number of mesophilic coccus-shaped LAB was
found in Cacioricotta cheese (ca. 7.4 log CFU g−1), whereas the lowest (p < 0.05) was found
in Caprino cheese (ca. 3.6 log CFU g−1). Presumptive thermophilic lactobacilli ranged from
ca. 4.0 (Pecorino and Cacioricotta) to ca. 5.0 (Caprino and Vaccino cheeses) log CFU g−1.
Thermophilic streptococci were found at cell densities varying from 3.0 (Caprino) to 4.9
(Pecorino cheese) log CFU g−1. The cell density of presumptive enterococci ranged from
2.8 (Pecorino) to 5.2 (Cacioricotta cheese) log CFU g−1. The highest (p < 0.05) number of
presumptive staphylococci was found in Cacioricotta cheese (5.3 log CFU g−1), whereas
these bacteria were found to have the lowest (p < 0.05) number in Caprino and Vaccino
cheeses (order of magnitude: 2 log CFU g−1). No colonies grown on Baird-Parker could be
presumptively attributed to Staphylococcus aureus, based on their aspect and the absence
of a clear halo surrounding them. Enterobacteriaceae were in the order of 2 log CFU g−1 in
all the cheeses, except for Cacioricotta, where they were found at 3.3 log CFU g−1. No
presumptive Pseudomonas sp. were detected in all the cheeses. Yeasts number was ca. 2.5 log
CFU g−1 and did not differ (p > 0.05) among Caprino, Pecorino and Vaccino cheeses. The
lowest (p < 0.05) number of yeasts (1.0 log CFU g−1) was found in Cacioricotta (Figure 2).

Presumptive mesophilic and thermophilic lactobacilli and cocci were found in NWS
cultures used for Caprino (CNWS) and Vaccino (VNWS) cheeses at an order of magnitude
of 6.0 log CFU g−1, without any statistical (p > 0.05) differences between the cultures (data
not shown).

3.3. Culture-Independent Analysis of the Bacterial Community of TAP Cheeses

A total of 740,650 sequences resulted from the 16S metagenetic analysis within the
phylum of Firmicutes. The number of sequences ranged from ca. 50,000 to ca. 70,000 per
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sample. The core microbiota of Caprino cheese seemed to be dominated by Lactobacillus
helveticus with a relative abundance of 95% (Figure 3a).
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Figure 3. Relative abundance (%) of Firmicutes OTU, assigned to the highest possible taxonomic level,
found in Caprino (a), Pecorino (b), Vaccino (c), and Cacioricotta (d) TAP cheeses.

In this cheese, Streptococcus thermophilus (Streptococcus salivarius ssp. thermophilus)
was also found as the sub-dominant OTU (ca. 3.3% of relative abundance). This species
seemed to dominate the bacterial biota of Pecorino cheese, with a relative abundance of
ca. 91% (Figure 3b). In this cheese, Streptococcus sp. (ca. 3.9%) and Lactobacillus sp. (ca.
2.4%) were found as the subdominant OTU. Bacterial biota of Vaccino cheese seemed
to be dominated by L. helveticus (ca. 87% of relative abundance) and, to a minor extent,
Staphylococcus equorum (ca. 11.3%) (Figure 3c). In Cacioricotta cheese, S. equorum was
dominant, with a relative abundance of ca. 94% (Figure 3d). Lactobacillus sp. (ca. 4.3%)
and Lactococcus sp. (ca. 1.2%) were found in this cheese as subdominant OTU. Lactococcus
sp. and Lactococcus lactis were detected in all the cheeses at a very low relative abundance.
Other OTU were variously found (at relative abundance below 1%), depending on the
cheese: Limosilactibacillus fermentum (formerly Lactobacillus fermentum) and Lacticaseibacillus
rhamnosus (Caprino and Vaccino cheeses), Streptococcus parauberis (Caprino, Pecorino, and
Cacioricotta), Lactococcus piscium (Caprino and Cacioricotta), Leuconostoc lactis (Caprino),
and Staphylococcus sp. (Vaccino and Cacioricotta cheeses) (Figure 3a–d).

L. helveticus dominated the bacterial biota of both the NWS cultures, namely, CNWS
(used for Caprino) and VNWS (for Vaccino cheese), where it was detected at a relative
abundance of 85.3% and 99.8%, respectively. L. fermentum was found as a subdominant
OTU (relative abundance of 5.8%) in CNWS (data not shown).

3.4. Residual Enzymatic Activities in TAP Cheeses

The highest (p < 0.05) residual activity for aminopeptidase type N (pepN) was found
in Caprino cheese (ca. 150 U kg−1, Figure 4a).
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Very low pepN activity (ca. 6 U kg−1) was found in Cacioricotta cheese. The two
other cheeses showed intermediate values. Regarding the iminopeptidase, the highest
(p < 0.05) activity was found in Vaccino (ca. 29 U kg−1), followed by Caprino cheese
(Figure 4b). Cacioricotta and Pecorino cheeses showed very low values (1–3.5 U kg−1) of
iminopeptidase activity. Vaccino cheese was characterized by the highest (p < 0.05) activity
for type O endopeptidase (ca. 40 U kg−1, Figure 4c). Compared to Vaccino, the values of this
enzyme activity were from 4-fold (Pecorino cheese) to 10-fold (Cacioricotta cheese) lower.
The highest (p < 0.05) glutamate dehydrogenase activity was found in Pecorino cheese (ca.
60 U kg−1, Figure 4d). The other cheeses showed activity values about 10-fold lower than
Pecorino cheese, with no significant (p > 0.05) difference among them. Cystathionine lyase
ranged from ca. 30 (Cacioricotta) to ca. 65 (Pecorino cheese) U kg−1 (Figure 4e). The highest
(p < 0.05) esterase activity was found in Pecorino (ca. 13 U kg−1), followed by Caprino and
Vaccino cheeses (without any significant differences between them) (Figure 4f). Cacioricotta
cheese showed the lowest (p < 0.05) esterase activity (ca. 8 U kg−1).

3.5. Proteolysis in TAP Cheeses

The urea-PAGE of pH 4.6-insoluble nitrogen fractions showed the presence of protein
bands with low electrophoretic mobility in all the cheeses, except for Cacioricotta cheese
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(Figure S1). These bands presumably corresponded to products of hydrolysis of β-casein
(γ-caseins). A large amount of non-hydrolyzed β-casein was found in all the cheeses, except
for Pecorino. Protein bands corresponding to αS1-casein showed different electrophoretic
mobility, depending on the type of milk (goats’, ewes’, cows’ milk) used for cheesemaking.
Notwithstanding that all the cheeses, except for Pecorino, showed non-hydrolyzed αS1-
casein, intense protein bands, corresponding to peptides derived from hydrolysis of αS1-
casein, were detected, especially in Vaccino cheese (Figure S1).

The RP-FPLC analysis of the pH 4.6-soluble nitrogen fractions highlighted that Pecorino
cheese was characterized by the highest number of peptide peaks (ca. 36) and total area (ca.
3600 mAU min) (Figure S2b). About 30 peptide peaks were found for Caprino and Vaccino
cheeses, with a total area of ca. 2800 and 2500 mAU min (Figure S2a,c). Cacioricotta cheeses
showed ca. 26 peptide peaks and a total area of ca. 1850 mAU min (Figure S2d).

The highest (p < 0.05) concentration of total FAA was found in Vaccino cheese
(21.45 ± 0.62 mg g−1). Compared to Vaccino, Caprino cheese contained a lower (p < 0.05)
concentration of FAA (16.40 ± 0.541 mg g−1, respectively), but higher than Pecorino cheese
(6.43 ± 0.52 mg g−1). Cacioricotta cheese was characterized by the lowest (p < 0.05) level of
total FAA (0.09 ± 0.002 mg g−1).

3.6. VOC Profile of TAP Cheeses

GC-MS was carried out to profile the VOC of the four TAP cheeses object of study.
Forty-eight compounds were detected, belonging to seven chemical classes (Table 2).

Eleven carboxylic acids were detected: acetic, butanoic, hexanoic, octanoic, and de-
canoic acids were the most representative ones. In Pecorino cheese, concentrations of
those acids exceeded 100 mg kg−1. Among the nine esters found in the cheeses, overall
ethyl and butyl esters of octanoic acid were detected at the highest concentrations. Methyl
ester of butanoic acid and ethyl ester of hexanoic acid were only detected in Pecorino and
Vaccino cheeses. Ethanol (ranging from ca. 3 to ca. 7 mg kg−1) and 2,3-butanediol (ca.
2–5 mg kg−1) were the most abundant alcohols (12 compounds). Among the six detected
ketones, 2-heptanone ranged from ca. 7 (Vaccino) to ca. 28 (Pecorino cheese) mg kg−1 and
2-nonanone from ca. 8 (Cacioricotta) to ca. 34 (Pecorino cheese) mg kg−1. The most repre-
sentative aldehyde among the five detected was nonanal, ranging from ca. 1.1 (Caprino
and Cacioricotta cheeses) to ca. 1.6 (Pecorino cheese) mg kg−1. Three pyrazines were
only found in Caprino cheese. The only two lactones detected were caprolactone (only in
Pecorino) and dodecalatone (only in Cacioricotta cheese) (Table 2).

Concentrations of VOC in the cheeses were used as entries for PCA. Considering the
two first principal components, the various VOC showed different score contributions,
depending on the cheese. Pyrazines, butanal-2-methyl and acetaldehyde characterized
Caprino cheese (Figure S3). Some ketones (2-heptanone, 2-undecanone, 2-pentanone, and 2-
nonanone), alcohols (e.g., 2-propanol and 2-butanol), and, especially, carboxylic acids (e.g.,
hexanoic and decanoic acids), contributed to the distinct VOC profile of Pecorino cheese
(Figure S4). Nonanoic acid, nonanal, 2,3-butanediol, and some esters (ethyl acetate, ethyl
ester of hexanoic acid, methyl ester of butanoic acid, and 1-cyclopentylethyl hexanoate)
were characteristic VOC of Vaccino cheese (Figure S5). Some alcohols (1-butanol,3-methyl,
ethanol, phenylethyl alcohol), ketones (2-butanone and 2-butanone,3-hydroxy, alias acetoin),
and butanoic acid-3-methyl characterized Cacioricotta cheese (Figure S6).



Foods 2022, 11, 425 11 of 20

Table 2. Concentration (in mg kg−1) of volatile organic compounds detected in Caprino, Pecorino,
Vaccino, and Cacioricotta TAP cheeses.

Compounds Caprino Pecorino Vaccino Cacioricotta

Acetic acid 36.170 b 84.573 a 53.141 b 4.558 c

Butanoic acid 113.145 b 266.107 a 87.824 b 22.280 c

Butanoic acid, 3-methyl- 0.585 b 0.402 c 0.447 bc 0.915 a

Pentanoic acid 1.404 b 3.170 a 0.982 c 0.649 d

Hexanoic acid 221.612 b 485.377 a 95.968 c 49.290 d

Heptanoic acid 3.548 b 15.290 a 0.378 c 0.502 c

Octanoic acid 153.853 b 344.211 a 13.183 d 20.891 c

Nonanoic acid 6.257 c 7.722 a 7.891 a 3.638 d

Decanoic acid 58.208 b 136.895 a 3.186 c 5.905 c

Decenoic acid 1.197 b 5.427 a 0.212 c 0.132 c

Dodecanoic acid 2.368 b 6.826 a 0.440 c 0.306 c

Total acids 598.35 1356 263.65 109.06

Acetic acid, ethyl ester 0.232 b 0.425 a 0.314 ab 0.256 b

Butanoic acid, methyl ester n.d. 1 0.612 b 0.981 a n.d.
Butanoic acid, ethyl ester 1.390 b 3.205 a 1.101 bc 0.786 c

Hexanoic acid, ethyl ester n.d. 1.155 b 2.183 a n.d.
Octanoic acid, ethyl ester 3.014 b 7.249 a 1.666 c 1.380 c

Decanoic acid, ethyl ester 1.042 b 4.076 a 0.229 c 0.226 c

Butanoic acid, butyl ester 0.771 b 2.910 a 0.753 b 0.321 b

Octanoic acid, butyl ester 4.460 b 6.420 a 1.169 c 0.883 c

Hexanoic acid, 1-cyclopentylethyl ester 0.396 b 0.406 c 0.535 a 0.234 d

Total esters 11.3 26.46 8.93 4.08

2-Propanol n.d. 0.931 a n.d. n.d.
Ethanol 2.506 c 4.215 b 3.167 bc 7.204 a

2-Butanol n.d. 2.042 n.d. n.d.
2-Pentanol 0.499 c 6.616 a 0.614 b n.d.

1-Butanol, 3-methyl- 0.673 c n.d. 1.097 b 5.794 a

2-Heptanol 0.392 c 1.410 a 0.518 c 0.737 b

1-Hexanol n.d. 0.473 a n.d. 0.291 b

2-Ethylhexanol 0.574 a 0.292 c 0.323 c 0.405 b

2-Nonanol 0.389 c 0.736 a 0.514 b 0.442 c

2,3-Butanediol 3.040 b 2.463 b 5.146 a 2.138 b

Phenylethyl alcohol n.d. n.d. n.d. 0.392 a

2-Furanmethanol 0.382 a n.d. n.d. n.d.

Total alcohols 8.46 19.18 11.38 15.27

2-Butanone n.d. 0.449 b 0.427 b 0.601 a

2-Pentanone 5.769 b 10.458 a 2.195 c 1.062 d

2-Heptanone 15.373 b 28.399 a 6.658 c 7.901 c

2-Butanone, 3-hydroxy- (Acetoin) 1.679 b 1.605 b 1.630 b 5.273 a

2-Nonanone 19.974 b 34.366 a 19.541 b 7.763 c

2-Undecanone 2.212 b 7.200 a 2.930 b 0.185 c

Total ketones 45.01 82.48 33.38 22.78

Acetaldehyde 1.081 a n.d. 0.298 b n.d.
Butanal, 2-methyl- 0.237 a n.d. n.d. n.d.
Butanal, 3-methyl- 0.755 a 0.344 d 0.598 b 0.390 c

Nonanal 1.116 b 1.633 a 1.469 ab 1.171 b

Benzaldehyde 0.938 a 0.831 b n.d. 0.249 c

Total aldehydes 4.13 2.81 2.37 1.81

Pyrazine, 2,5-dimethyl- 0.480 a n.d. n.d. n.d.
Pyrazine, 2,6-dimethyl- 1.226 a n.d. n.d. n.d.

Pyrazine, trimethyl- 0.438 a n.d. n.d. n.d.

Total pyrazines 2.14 n.d. n.d. n.d.

Caprolactone n.d. 2.669 a n.d. n.d.
Dodecalactone n.d. n.d. n.d. 0.235 a

Total lactones n.d. 2.67 n.d. 0.23
1 n.d., not detected. a–d Values in the same row with different letters are significantly different (p < 0.05).
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3.7. Correlations between Microbiota and Biochemical Characteristics of TAP Cheeses

PCA based on the microbiota (cell densities of bacteria and yeasts, relative abundance
of OTU) and biochemical characteristics (pH, Aw, moisture, fat, carbohydrates, enzymatic
activity, proteolytic activity, FAA, and VOC) of TAP cheeses accounted for 83% of the
total variance (PC1: 49.7% and PC2: 33.3%) (Figure S7). The main distinctive traits of
the four cheeses are visually presented in Figure 5. Some high correlations were found
among variables. L. helveticus was positively correlated with aminopeptidase (r = 0.92),
iminopeptidase (0.96), and FAA (0.93). S. equorum was positively correlated with butanoic
acid,3-methyl (0.92) and acetoin (0.99). Negative correlations were observed between
L. helveticus and ethanol (r = −0.80), 2-heptanol (−0.79), and 1-hexanol (−0.94), between
S. equorum and aminopeptidase activity (−0.81), cystathionine lyase activity (−0.86), and
most of the VOC. In addition, S. thermophilus was negatively (r = −0.62) correlated with
iminopeptidase activity.
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Figure 5. Main distinctive traits (compositional, metabolites, microbiological, enzymatic activities)
of Caprino, Pecorino, Vaccino, and Cacioricotta TAP cheeses produced at the same dairy plant.
Pointed-up and pointed-down arrows flanking each trait indicate high and low values, respectively.
Abbreviations: FFA, free fatty acids; GDH, glutamate dehydrogenase activity.

4. Discussion

Four traditional Apulian cheeses (Caprino, Pecorino, Vaccino, Cacioricotta), manu-
factured at the same dairy plant, were analyzed to highlight their distinctive traits. The
influence of house microbiota on cheeses’ traits [36] was minimal because the same equip-
ment and ripening rooms were used for all the cheeses. Yet, the experimental plan suffered
from one main limitation, represented by the limited number of samples for each cheese,
which hinders gaining a collective overview on each TAP cheese.

The gross composition of the cheeses approached that previously reported for similar
types of cheese [32,37,38]. Cacioricotta cheese retained the highest percentage of sodium
chloride, in agreement with previous studies [39]. High salt concentration in Cacioricotta
could account for its relatively high content in carbohydrates, with special regard to
lactose, which was only detected in this cheese. Indeed, the high salt concentration in
Cacioricotta may have slowed down lactose catabolism of LAB [40], as reflected by the
lowest concentration of lactic acid and highest pH value of the Cacioricotta cheese subjected
to study. Although the highest salt concentration was found in Cacioricotta, this cheese was
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characterized by the highest value of Aw. This important cheese parameter is affected not
only by salt concentration [41] but also by water content and concentration of proteolysis
products [42–44]. We may hypothesize that the highest value of Aw found in Cacioricotta
could be due to the shorter ripening time of this cheese (9 months), compared to that
applied for the other cheeses (12 months), as well as to low aptitude to syneresis observed
for curds originating from milk treated at 90 ◦C (as was the case for Cacioricotta cheese) [45].
In addition, the low concentration of proteolysis products estimated in this cheese could
have determined higher values of Aw, compared to the other cheeses, showing higher
proteolysis levels.

Based on culture-dependent analysis using selective agar media (e.g., MRS, lactose-
M17, Slanetz and Bartley), LAB (especially mesophilic) dominated the microbiota of the
four cheeses, the object of study. Furthermore, staphylococci represented an additional
dominant microbial population in Cacioricotta. Enterobacteriaceae and yeasts represented
minority microbial populations of cheeses. The use of NWS cultures during the manufac-
turing of two cheeses (Caprino and Vaccino) only slightly affected the microbial community
of those cheeses. This result could be explained considering that most LAB inoculated
in cheese milk through the addition of starter cultures declines throughout ripening [46].
Culture-independent analysis showed that L. helveticus dominated the bacterial biota of
both the NWS (CNWS and VNWS) cultures and the corresponding Caprino and Vaccino
cheeses. L. helveticus is a thermophilic LAB species, capable of growing at 45 ◦C, commonly
inhabiting NWS cultures, alone or together with S. thermophilus, Lactobacillus delbrueckii,
and L. fermentum [6,47,48]. We may hypothesize that L. helveticus, originating from NWS
cultures, adapted its physiology [49] during the cooking step (45 ◦C for 10–40 min) of
Caprino and Vaccino curds. Then, it survived scalding (a few seconds at 80–85 ◦C) and
probably dominated cheese microbiota during the first days of ripening [46]. It is probable
that, although L. helveticus could have declined during ripening, it contributed to biochem-
ical pathways characterizing the ripening of Caprino and Vaccino cheeses, thanks to its
early cell autolysis, releasing peptidases and other enzymes [50–52]. In partial agreement
with results from culture-dependent analyses, S. equorum seemed to largely dominate the
bacterial biota of Cacioricotta cheese object of the current study. This could be explained
considering that, after cheese milk had undergone quite a drastic heat treatment that should
have inactivated almost all microorganisms inhabiting raw milk, no starter culture was
used. In these conditions, the manipulation of cheese by workers (surface dry-salting and
daily overturning and washing) could have been one important driver of the microbial
community. Given that staphylococci are found on the skin and mucosa of humans [53], the
high abundance found for S. equorum in the Cacioricotta cheese analyzed in this study could
originate from human contamination. S. equorum is a common component of the microbial
communities of high-salt-fermented foods such as meat products and smear-ripened and
semi-hard and hard cheeses [36,54,55]. Although this coagulase-negative staphylococcal
species is regarded as a “class of risk 2” pathogen, several strains of S. equorum acted as
flavor and color enhancers of surface-ripened cheeses [56–58]. This species withstands
relatively high salt concentrations (such as those encountered in Cacioricotta cheese), uses
different carbon sources, and does not harbor gene coding for amino acid decarboxylase,
related to release of biogenic amines [59]. Thus far, food-derived strains of S. equorum did
not show any pathogenic traits [60]. S. thermophilus was the dominant bacterial OTU of
Pecorino cheese. This result disagreed with the diversity of bacterial community (staphylo-
cocci and enterococci, and especially rod- and coccus-shaped LAB) of this cheese emerging
from the culture-dependent analysis. In general, discrepancies between the results obtained
from the two approaches could derive from some limitations inherent to the DNA-based
approach, such as (i) different lysis efficiencies during extraction of DNA, (ii) preferential
PCR amplification, and (iii) different numbers of copies of 16S rRNA operons among bacte-
ria [61]. Considering that the Pecorino cheese analyzed in this study was manufactured
using pasteurized milk and without starter cultures, we may hypothesize that S. ther-
mophilus could have considerably contaminated the equipment of the dairy plant [36,62].
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This bacterial species, originating from raw milk and/or starter cultures, could colonize
the dairy environment, thanks to its capacity to produce biofilm [63,64]. During cheese
ripening, S. thermophilus usually decreases over time [54,65,66]. However, it may still
inhabit Pecorino cheese, at cell densities of 5–6 log CFU g−1, even after 6–12 months of
ripening [67–69]. Overall, the actual contribution of microbiota to the characteristics of the
cheeses object of study remains hazy due to culture-independent analysis performed on
DNA (instead of RNA) and only targeted at the Firmicutes bacterial phylum.

In this study, the highest peptidase activities were found in either Caprino or Vaccino
cheeses, probably due to NWS cultures, which add microbial biomass and related enzyme
activities to cheese [70]. In line with these findings, L. helveticus as the dominant LAB
species detected in Caprino and Vaccino cheeses can count on a potent proteolytic system
producing short peptides and liberating FAA from the casein matrix [71]. Indeed, positive
correlations were found between L. helveticus and some variables related to the proteolysis
level of cheeses. The lowest enzyme activities, found in Cacioricotta cheese, could be caused
by the high salt concentration of this cheese. Indeed, an increase in salt concentration
lowered some peptidase activities [72]. Contrarily, Møller et al. [73] reported higher levels
of aminopeptidase activities in Cheddar cheese with increasing salt concentrations. The
lowest iminopeptidase activity (pro-pNA) detected in Pecorino could be ascribed to the
dominance of S. thermophilus, as remarked by the negative correlation between this species
and enzyme activity. S. thermophilus does not harbor the proline iminopeptidase within
its enzymatic portfolio [70,74]. Enzymes involved in the catabolism of FAA and esterase
showed the highest activity in Pecorino cheese. In particular, the highest GDH activity could
be ascribed to S. thermophilus, as evidenced by a positive correlation between these variables,
and in agreement with Peralta et al. [75] Caprino and Vaccino cheeses were characterized
by a relatively high concentration of FAA, consistently with their high peptidase activities.
The low concentration of FAA and total area and number of pH 4.6-soluble peptides
found in Cacioricotta cheese reflected its low peptidase activities, as well as the minor
hydrolysis degree of β-casein estimated through urea-PAGE. Salt inhibits hydrolysis of β-
casein [73]. Vaccino cheese showed hydrolysis products from αS1-casein, probably because
the proteolytic enzymes of microbial rennet could have a higher affinity towards cow
αS1-casein, compared to the same fraction of other milk species [76].

Besides microbiological, enzymatic and proteolytic traits, we compared the VOC
profiles of the four TAP cheeses, using the solid phase micro-extraction followed by GC-
MS, well known for two decades as a reliable tool to detect some flavor compounds that,
although at low concentrations, strongly impact on aroma and odor of cheese [77]. VOC
profiling highlighted that carboxylic acids (free fatty acids, FFA), resulting from hydrolysis
of triacylglycerols, were the VOC found at the highest concentrations. Although they
(especially those with less than 12 carbon atoms) affect the odor and taste of cheese, ketones,
alcohols, and esters, produced upon catabolism of FFA, have an even greater influence
on sensory traits, due to their lower flavor threshold [78]. Methyl ketones (alkan-2-ones),
the VOC class found at the highest (after FFA) concentration in our cheeses, derive from
β-oxidation and decarboxylation of carboxylic acids [78]. For instance, 2-heptanone and
2-nonanone derive from octanoic and decanoic acids, respectively. They confer fruity, floral,
musty, or “blue cheese” notes [79]. Among alcohols, our cheeses were rich in ethanol (from
lactose fermentation and/or amino acid metabolism) [80,81] and some secondary alcohols.
The latter may result from the reduction of methyl ketones [82]. For instance, 2-pentanol
could derive from 2-pentanone. Other secondary alcohols, such as 1-butanol,3-methyl, and
phenylethyl alcohol (alias 2-phenylethanol), could derive from the microbial driven Ehrlich
pathway of FAA [83]. Esters may derive from either esterification of FFA with ethanol or
the transfer of fatty acid from glycerides (especially mono- and di-glycerides) to ethanol
(alcoholysis) [84]. They have a 10-fold lower flavor threshold than their alcohol precursor,
often ethanol [85], and confer sweet, fruity, and floral notes to cheese [86].

All the cheeses subjected to this study showed distinct VOC profiles. This depends on
milk type and quality, microbial activity [87,88] and processing operations. Specific dairy
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processing affects the VOC profile of a cheese so much that this distinctive trait can be used
as marker of product and process [89]. In a recent study, several VOC characterizing the
profile of model cheeses were associated, through linear discriminant analysis, to cheese
milk obtained from different breeding systems [90]. In the present study, Pecorino was
the richest cheese in VOC related to lipolysis, i.e., FFA, ketones, and esters. Given that
this cheese was produced from pasteurized milk and without starters, we might exclude
milk lipoprotein lipase and enzymes from microbial starters acting as lipolytic agents of
Pecorino cheese. A possible explanation worthy of investigation could be the esterase
activity of S. thermophilus, which seemed to dominate the bacterial biota of Pecorino cheese.
Among the strains of dairy origin and belonging to seven different LAB species, those
of S. thermophilus showed the highest esterase activity in alcoholysis [84]. Given that
esterase from S. thermophilus showed ester-synthesizing capacity [84], we may hypothesize
that S. thermophilus could have been the source of esterase contributing to lipolysis and
catabolism of FFA in the Pecorino cheese object of study. The VOC profile of Caprino
(from goats’ milk) included pyrazine derivatives as a distinctive trait. Only a few studies
have assessed the presence of pyrazines in goats’ milk cheeses [77,91]. Although pyrazines
have been frequently detected in ewes’ milk cheeses [38,92,93], in our study this class of
compounds was not detected in Pecorino cheese (from ewes’ milk). Pyrazines confer to
cheese a mild to intense roast nut aroma, and originate during Maillard reaction, which
depends on many factors, such as temperature and the availability of sugars [77]. Caprino,
along with Vaccino cheese as the object of the current study, were characterized by high
levels of FAA and peptidase activities, which may have impacted on pyrazines formation
in Caprino cheese, in agreement with a previous study [94]. Although we found that
Caprino and Vaccino cheeses shared several traits (e.g., high abundance of L. helveticus
and level of peptidase activity), the VOC profiles markedly differed between these two
cheeses, Caprino cheese being richer in, besides pyrazines, aldehydes, some medium chain
fatty acids and their derived ethyl esters. We may hypothesize that this could be due to
differences in the type of milk and in the cheese-making protocols. 1-Butanol,3-methyl
and phenylethyl alcohol were the distinctive VOC of Cacioricotta cheese. In addition,
this cheese was characterized also by the highest concentration of 3-hydroxy-2-butanone
(acetoin), originating from either diacetyl (2,3-butanedione) reduction or metabolism of
pyruvate, lactose, or citrate [95]. 3-methyl butanoic acid was another distinctive compound
of Cacioricotta cheese. The highest amount of acetoin and 3-methyl butanoic acid found in
Cacioricotta could be ascribed to the presence of S. equorum, which has been recognized as
a potential producer of acetoin and branched chain fatty acids, which are important flavor
compounds [59,96].

5. Conclusions

The results of this study highlight that, even if manufactured at the same dairy plant,
the four TAP cheeses clearly distinguished one from each other, especially due to the
presence/absence of the thermal treatment of milk, use of NWS cultures, manipulation
during ripening and, supposedly, milk species. In addition, some VOC could be distinctive
traits of cheeses. Future studies aiming to valorize and safeguard TAP cheeses will have
to consider cheeses of the same variety sampled at different dairy plants throughout
manufacturing and ripening processes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11030425/s1, Figure S1: Urea-Polyacrylamide Gel Elec-
trophoresis (PAGE) of pH 4.6-insoluble nitrogen fractions extracted from Caprino, Pecorino, Vaccino,
and Cacioricotta TAP cheeses. Lanes: 1, sodium caseinate from goats’ milk; 2, Caprino cheese;
3, sodium caseinate from ewes’ milk; 4, Pecorino cheese; 5, sodium caseinate from cows’ milk; 6,
Vaccino cheese; 7, Cacioricotta cheese. Figure S2: Reverse-Phase Fast Protein Liquid Chromatography
(RP-FPLC) peptides profiles of the pH 4.6-soluble nitrogen fractions of Caprino (a), Pecorino (b),
Vaccino (c), and Cacioricotta (d) TAP cheeses. Figure S3: Loadings of the first two principal compo-
nents after the principal component analysis (PCA) of the volatile organic compounds detected in
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Caprino TAP cheese. Figure S4: Loadings of the first two principal components after the principal
component analysis (PCA) of the volatile organic compounds detected in Pecorino TAP cheese.
Figure S5: Loadings of the first two principal components after the principal component analysis
(PCA) of the volatile organic compounds detected in Vaccino TAP cheese. Figure S6: Loadings
of the first two principal components after the principal component analysis (PCA) of the volatile
organic compounds detected in Cacioricotta TAP cheese. Figure S7: Score and loading plots of first
and second principal components after principal component analysis on cell densities of bacteria
and yeasts, the relative abundance of OTU and biochemical characteristics (pH, Aw, moisture, fat,
carbohydrates, enzymatic activities, total area of peptide peaks, FAA, and VOC) of Caprino, Pecorino,
Vaccino, and Cacioricotta TAP cheeses.
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