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Abstract 
 

Fragile X syndrome (FXS) is a genetic cause of intellectual disability and autism. Fmr1 knockout (Fmr1 

KO) mice, a murine model of FXS, exhibit impairment in mitochondrial activity and in synaptic 

plasticity, with an exaggerated long‐term depression induced by activation of metabotropic 

glutamate receptors (mGluR‐LTD). Our research group has previously demonstrated that activation 

of serotonin 5-HT7 receptors reverses the mGluR-LTD in the hippocampus of wild-type (WT) and 

Fmr1 KO mice.  

Here I highlighted some molecular mechanism involved in 5-HT7 -mediated reversal of mGluR‐LTD 

in the synapse between CA3 and CA1 pyramidal neurons using the patch clamp technique on 

hippocampal slices from wild-type and Fmr1 KO mice. My data indicate that the blockade of cyclin‐

dependent kinase 5 (Cdk5) enhanced mGluR‐LTD in WT hippocampal neurons to the level observed 

in Fmr1 KO neurons and abolished the 5-HT7 -mediated reversal of mGluR‐LTD both in WT and Fmr1 

KO neurons, showing that Cdk5 is involved in 5-HT7 –mediated reversal effect. In addition, my data 

indicate that Akt inhibition abolished the mGluR-LTD in WT, but not in Fmr1 KO mice, pointing out 

that Akt is essential for mGluR-LTD only in WT slices. Moreover, in presence of an inhibitor of Akt, 

the effect induced by the activation of 5-HT7 receptor on mGluR-LTD was not abolished; thereby 5-

HT7 -mediated reversal of mGluR‐LTD does not require Akt activation. Then, I evaluated the role of 

protein synthesis on mGluR-LTD. When the inhibitor of mRNA translation anisomycin was present 

in the intracellular solution, mGluR‐LTD was abolished in WT but not in Fmr1 KO neurons, indicating 

that protein translation is necessary for mGluR-LTD only in WT neurons. Additionally, my data show 

that 5-HT7 -mediated effect on mGluR-LTD was abolished in the presence of anisomycin, thus 

required protein translation.  

Lastly, I demonstrated for the first time that 5-HT7 receptors are present in mitochondria of a 

neuroblastoma cell line and the application of a 5-HT7 inverse agonist weakly influenced the 

mitochondrial cytochrome c oxidase.  
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Sommario 
 

La sindrome del cromosoma X fragile (FXS) è una malattia genetica ereditaria che causa disabilità 

intellettiva e autismo. Il modello murino della patologia, il topo Fmr1 knock-out (KO), presenta 

alterazioni nella attività mitocondriale e nella plasticità sinaptica, fra cui una esagerata depressione 

a lungo termine mediata dall’attivazione dei recettori metabotropi per il glutammato (mGluR-LTD). 

Il nostro gruppo di ricerca ha precedentemente dimostrato che l’attivazione del recettore 5-HT7 per 

la serotonina reverte mGluR-LTD nell’ippocampo di topi wild-type (WT) e Fmr1 KO. Pertanto, 

durante il mio dottorato ho studiato alcuni meccanismi molecolari intracellulari implicati nella 

reversione della mGluR-LTD indotta dalla attivazione di recettori 5-HT7 , utilizzando la tecnica del 

patch clamp in fettine di ippocampo di topi WT e Fmr1 KO. I nostri dati indicano che il blocco della 

chinasi ciclina dipendente (Cdk5) aumentava mGluR-LTD in neuroni ippocampali WT ad un livello 

comparabile rispetto a quello osservato in neuroni Fmr1 KO e aboliva la reversione della mGluR-LTD 

mediata dal recettore 5-HT7 sia in neuroni WT che in Fmr1 KO, indicando che l’attivazione di Cdk5 è 

necessaria per il meccanismo di reversione indotto dal recettore 5-HT7.  

Successivamente, ho valutato il ruolo della chinasi Akt nei meccanismi alla base della mGluR-LTD e 

nella sua reversione mediata da recettori 5-HT7. L’inibizione di Akt aboliva la mGluR-LTD in neuroni 

WT ma non in neuroni Fmr1 KO. Inoltre, l’attivazione del recettore 5-HT7 era in grado di revertire 

mGluR-LTD nonostante la presenza di un inibitore della chinasi Akt, quindi l’attivazione di Akt non è 

necessaria per il meccanismo di reversione indotto dal recettore 5-HT7.  

Inoltre ho valutato il ruolo della sintesi proteica nella mGluR-LTD utilizzando l’anisomicina (un 

inibitore della sintesi proteica). In presenza di anisomicina, la mGluR-LTD era abolita in neuroni WT 

ma non in neuroni Fmr1 KO e la reversione di mGluR-LTD mediata dall’attivazione del recettore 5-

HT7 era abolita, dimostrando che l’effetto indotto dai recettori 5-HT7 richiede sintesi proteica.  

Infine, i miei dati hanno dimostrato per la prima volta la presenza del recettore 5-HT7 nei mitocondri 

isolati da una linea cellulare di neuroblastoma. L’attività di un agonista inverso per il recettore 5-HT7 

influenzava l’attività dell’enzima citocromo c ossidasi, conosciuto come il complesso IV della catena 

respiratoria mitocondriale. 

  



7 
 

CHAPTER 1: Introduction  
 

Fragile X Syndrome (FXS) is a genetic form of intellectual disability associated with autism, mood 

disorders and epilepsy in about one third of patients (Berry-Kravis et al., 2011; Hagerman et al., 

2017b). In FXS, the FMR1 gene is silenced; as a consequence, the expression of its gene product, the 

Fragile X Mental Retardation Protein (FMRP), is strongly reduced or entirely absent. FMRP rules the 

expression of a large number of synaptic proteins (Sidorov et al., 2013), which are essential for the 

correct function of cerebral circuits and for synaptic plasticity. Synaptic plasticity represents the 

ability of the nervous system to remodel the connectivity between neurons, modifying the 

functionality of synaptic networks. Among the different forms of synaptic plasticity described in the 

hippocampus, long‐term depression induced by activation of metabotropic glutamate receptors 

(mGluR‐LTD) plays an important role in learning and behaviour (Lüscher and Huber, 2010). In FXS, 

the congenital lack of the FMRP protein causes abnormalities in the morphology of synapses and in 

synaptic plasticity in brain areas responsible for learning and memory, including the frontal cortex 

and hippocampus. In Fmr1 knockout (KO) mice, a murine model of this disease, dendritic spines 

display abnormal and immature morphology (Bakker et al., 1994; Comery et al., 1997), mGluR-LTD 

is exaggerated (Huber et al., 2002) and cortical mitochondria show an altered oxidative 

phosphorylation (D'Antoni et al., 2020; Griffiths et al., 2020; Licznerski et al., 2020).  

Serotonin, or 5-hydroxytriptamine (5-HT), is a neurotransmitter involved in many physiological 

processes such as mood, perception, aggression, anxiety, appetite and respiratory stability (Abela 

et al., 2020; Cervantes-Durán et al., 2013; Cummings and Leiter, 2020; Hannon and Hoyer, 2008; 

Nichols and Nichols, 2008; Paulus and Mintz, 2016). 5-HT activates several receptor subtypes that 

influence the excitability of hippocampal neurons (Ciranna, 2006) and modulates hippocampus-

dependent cognitive functions (King et al., 2008; Perez-Garcia and Meneses, 2008). The research 

group with whom I have worked during my PhD has demonstrated that activation of serotonin 5‐

HT7 receptors is able to reduce the excessive mGluR‐LTD in Fmr1 KO hippocampal neurons (Costa 

et al., 2012) and rescue learning and behaviour impairment in Fmr1 KO mice (Costa et al., 2018), 

thus might became a novel pharmacological strategy for FXS therapy.  

In the experimental work for my PhD thesis, I have studied the effects of activation of serotonin 5-

HT7 receptors on long term synaptic plasticity in a murine model of FXS and on mitochondrial 

functions in an immortalized neuronal cell line.   
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1.1  Fragile X syndrome: genetic view  
 

Fragile X Syndrome (FXS, OMIM #300624), also known as Martin-Bell Syndrome, was first described 

by Martin and Bell in 1943 as a form of intellectual disability (ID) following an X-linked inheritance 

(Martin and Bell, 1943). The disease takes its name from a rare fragile site called FRAXA (Xq27.3) on 

the X chromosome (Sutherland and Baker, 2000). A chromosome fragile site is a chromosomal locus 

that tends to form a gap or break in condensed metaphase chromosome following exposure of cells 

to DNA replication stress (Bjerregaard et al., 2018; Durkin and Glover, 2007). Using folate deficiency, 

it was possible to recognise the FRAXA fragile site at the tip of the X chromosome long arm, in Xq27.3 

locus. Folic acid plays a critical role in maintaining genomic stability; it is required for DNA repair, to 

prevent chromosome breakage and to reduce DNA methylation. In case of folate deficiency, the 

incorporation of uracil into DNA rather than thymine leads to accumulation of dUMP, causing single-

and double-stranded DNA breaks, chromosome breakage, and micronucleus formation (Leopardi et 

al., 2006; Lindberg et al., 2007). In 1969, Lubs reported a fragile site on the X chromosome and the 

association of the Xq27.3 fragile site with X-linked intellectual disability was confirmed in 1991 (Lubs, 

1969; Verkerk et al., 1991).  

Fragile X mental retardation protein (FMRP), the protein coded by FMR1 gene silenced in FXS, is an 

RNA binding protein with a prominent role in the regulation of many mRNAs in neuronal post-

synaptic membranes (Hagerman et al., 2017a). The absence of FMRP is due to the expansion of a 

CGG triplet repeat in the 5′ untranslated region of the fragile X mental retardation 1 (FMR1) gene. 

This expanded CGG repeat coincided with the fragile site at the end of the X chromosome (Verkerk 

et al., 1991; Xie et al., 2016). 

The FMR1 gene has about 40 kilobases (kb), encoding an mRNA of 3.9 kb, consisting of a ∼0.2 kb 

5′ untranslated region, a 1.9 kb protein coding region, and a 1.8 kb 3′ untranslated region (Verkerk 

et al., 1991). It is composed of 17 exons and its pre-mRNA transcript is subjected to alternative 

splicing of exons 12 and 14 (Ashley et al., 1993; Verkerk et al., 1993): those lacking the exon 12 

sequences are major products, while those lacking exon 14 appear expressed at a very low level 

(Sittler et al., 1996). The longest human FMR1 mRNA, which shares 97% sequence identity with the 

mouse Fmr1 ortholog, at the amino acid level encodes for a protein of 71 kDa (kilodaltons) with 632 

aminoacids that contains a variety of functional sequences and domains, many of which are 

influenced by alternative splicing of the pre-mRNA (Denman et al., 2004; Dolzhanskaya et al., 2006; 

Sittler et al., 1996).  

https://www.sciencedirect.com/topics/neuroscience/untranslated-region
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The expansion of the trinucleotide CGG located in the 5’-untranslated promoter region of FMR1 

gene above normal range (greater than 54 repeats) is responsible for the development of fragile X- 

associated disorders in individuals carrying the premutation (55–200 CGG repeats), including fragile-

X associated tremor/ataxia syndrome (FXTAS) (Hagerman et al., 2001; Jacquemont et al., 2003), 

fragile X-associated primary ovarian insufficiency (FXPOI) (Sherman, 2000) and fragile X-associated 

neuropsychiatric disorders (FXAND) (Hagerman et al., 2018) and causes Fragile X Syndrome (FXS) in 

patients carrying the full mutation (greater than 200 CGG repeats) leading to methylation, 

transcriptional silencing and to either the absence or a deficiency of FMRP (Salcedo-Arellano et al., 

2020). FMR1 premutation is associated with disorders that are caused by excessive transcription of 

FMR1 (Tassone et al., 2007), in contrast to the gene silencing caused by the full mutation in 

individuals with FXS (Tassone et al., 2000).  

Some individuals with FXS have mosaicism of CGG repeat lengths, with some cells harbouring full 

mutation alleles and others harbouring premutation alleles (Hagerman et al., 2017a). Other 

individuals with FXS have methylation mosaicism, with some cells containing methylated FMR1 

alleles and others with unmethylated FMR1 alleles. Both types of mosaicism will support the 

production of some FMRP, so those individuals might have less-severe cognitive and behavioural 

defects than patients with a full mutation that is completely methylated, in whom FMRP is absent. 

With the frequent use of high-throughput targeted screening techniques and whole-exome 

sequencing in clinical practice, an increasing number of individuals with a deletion or point mutation 

in FMR1 have been reported, which represent <1% of individuals with FXS (Myrick et al., 2014; 

Quartier et al., 2017). These mutations lead to a dysfunction or absence of FMRP, inducing FXS 

features which can be either different or similar to those of FXS patients with the full mutation. 

Males with a full mutation almost invariably express some features of FXS, whereas females with a 

full mutation have a broad spectrum of symptoms ranging from severe impairment to apparently 

normal function (Zeesman et al., 2004). Although the repeat is highly stable when transmitted from 

individuals with normal alleles (6–44 CGGs), premutation alleles (55–200 CGGs) are unstable and 

tend to increase in size when passed from generation to generation and frequently expand to the 

full mutation in one generation (Fu et al., 1991; Nolin et al., 2003). This risk of full mutation 

expansion increases with maternal CGG repeat length to nearly 100% for mothers with >90 CGGs 

(Nolin et al., 2011), whereas a 56-repeat allele is the smallest known to expand to a full mutation in 

one generation (Fernandez-Carvajal et al., 2009). Nevertheless, the AGGs interspersed within the 
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FMR1 repeat region increase the stability of the gene (Eichler et al., 1994). The presence of even a 

single AGG significantly reduced the risk of full mutation expansions for alleles with <80 repeats 

(Nolin et al., 2015). This effect is most evident for alleles <70 repeats. As the total repeat length 

increases beyond 70, the allele instability is substantial despite the presence of the AGG 

interruptions they may contain. Once the repeat length exceeds 90 repeats, there is no apparent 

effect of AGG interruptions.  

 

The gender of the transmitting parent is an important factor in the transmission of fragile X 

syndrome. It has long been accepted that individuals with fragile X syndrome have received their 

mutant allele from their mothers: the expansion to a full mutation occurs in maternal transmissions;  

virtually all premutation alleles from males are passed to daughters as premutation alleles (Nolin et 

al., 2003; Nolin et al., 2008; Nolin et al., 2019) although two rare examples of full mutation 

transmissions from fathers have been reported  (Alvarez-Mora et al., 2017; Zeesman et al., 2004). 

Males with full mutations have full mutation alleles in their somatic cells, but only premutation size 

alleles are present in sperm (Reyniers et al., 1993; Willems et al., 1992). 

 

1.2 Clinical aspects of Fragile X Syndrome 
 

In FXS,  the lack of FMRP, a regulator of translation, leads to dysregulation of hundreds of proteins 

that affect synaptic plasticity and connectivity in the developing brain, leading to intellectual 

disability (ID) and other clinical features of the syndrome (Danesi et al., 2018; Gatto et al., 2014; 

Higashimori et al., 2013; Pilaz et al., 2016; Wang et al., 2004). 

 

The manifestations of FXS are variable and depend on sex, age, background genetic effects, 

environmental influence, level of gene methylation and presence of mosaicism, which lead to 

differences in FMRP level production (Dyer-Friedman et al., 2002; Hagerman, 2002; Loesch et al., 

2004). Females typically have less-severe manifestations than males, as FMR1 on the other X 

chromosome can produce FMRP. Cognition impairment involves 30% of individuals with an IQ less 

than 70 (intellectual disability), 30% with an IQ in the borderline range (Kates et al., 1997; Reiss et 

al., 1994) and 30% with an IQ in the normal range (above 80), but anxiety and attentional problems 

frequently occur (Hagerman et al., 2017a). 
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The physical features of FXS include long face, broad forehead, high palate, prominent ears, and in 

males macroorchidism that develops during the puberty (Hagerman, 2002; Heulens et al., 2013; 

Kidd et al., 2014). However, classic facial characteristics have differences inherent to age and 

ethnicity (Lubala et al., 2018). In addition to commonly recognized characteristics, patients can 

present variable alterations of connective tissue, attributed to FMRP dysregulation of essential 

components of the extracellular matrix, including elastin. Other manifestations of FXS related to 

loose connective tissue include hernias, joint dislocations and flat feet with pronation (Hagerman, 

2002; Kidd et al., 2014). Phenotypic findings related to connective problems include soft velvet-like 

skin, joint hyperextensibility, particularly in the fingers, double jointed thumbs, flat feet with 

pronation, mitral valve prolapse, dilated aortic root and occasional scoliosis (Ramírez‐Cheyne et al., 

2019).  

Infants with FXS are often affected by hypotonia, emesis due to frequent reflux events, an initial 

poor latch or suck with breastfeeding (Hagerman, 2002). Most patients present delays in language 

development and emerging hyperactivity, anxiety and sensory over-reactivity in the second year of 

life (Berry-Kravis et al., 2010; Cordeiro et al., 2011; Hogan et al., 2017). Recurrent otitis media is 

observed in >60% of patients in the first few years of life and usually requires the insertion of 

ventilation tubes (pressure-equalization tubes) to normalize hearing. After the first year of life, 

tactile defensiveness begins to emerge, individuals have poor eye contact and a tendency to hand-

flap with excitement; hand biting or chewing on clothes are also common. Up to 20% of patients 

have crossed eyes or lazy eyes and if this persists after the first year of life, ophthalmological 

treatment is needed (Hagerman, 2002). Many children with FXS have emerging anxiety and sensory 

hyperarousal in their second year of life, and once they are able to walk, they typically become 

hyperactive (Verkerk et al., 1991). Indeed, 80% of boys with FXS have substantial hyperactivity by 

3–4 years of age and are diagnosed with attention-deficit/hyperactivity disorder (ADHD), whereas 

only 40% of girls with FXS are diagnosed with ADHD by school age (Cornish et al., 2013; Cornish et 

al., 2007). Subjects with FXS have stronger and more frequent responses and reduced habituation 

to sensory stimulations (e.g., olfactory, auditory, visual, tactile, and vestibular stimuli) as measured 

by electrodermal responses (Miller et al., 1999). Children begin overstuffing their mouth with food 

because of sensory deficits by 3 years of age, and obesity is reported in ~35% of patients by 

adolescence (McLennan et al., 2011). If hypotonia is a substantial problem during infancy, motor 

delays in sitting and walking might occur. Seizures occur in ~8–16% of males and 3–7% of females 

with FXS, typically present in the first 5 years of life, and are the most substantial medical problem 
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for children with FXS (Berry-Kravis et al., 2010; Kidd et al., 2014; Musumeci et al., 1999). Seizures 

are most commonly partial complex seizures but can also be generalized tonic–clonic or absence 

seizures. Symptoms of autism spectrum disorder (ASD) can develop during early childhood, and 

~50–60% of males and 20% of females with FXS also have ASD (Harris et al., 2008; Kaufmann et al., 

2004; Kaufmann et al., 2017; McDuffie et al., 2015; Roberts et al., 2009). Intellectual disability is 

common in males with FXS, although ~15% of males (predominantly those with mosaicism) and 70% 

of females have an IQ in the borderline to normal range but have learning and emotional problems 

(De Vries et al., 1996; Loesch et al., 2004). After puberty, there is a tendency for improvement of 

the most problematic behaviours during childhood, including aggression, hyperactivity and 

irritability. Nevertheless, many of the initial symptoms of FXS, such as anxiety and poor attention, 

persist into adulthood, and ~86% of males and 77% of females with FXS meet the diagnostic criteria 

for an anxiety disorder (Cordeiro et al., 2011). During adulthood, patients with FXS seem to have an 

increased risk of hypertension, obesity, gastrointestinal disorders, mood disorders and anxiety.  17% 

of patients with FXS can present with symptoms of parkinsonism and dementia (Sauna-Aho et al., 

2018; Utari et al., 2010). However, patients with FXS have a normal life span. Individuals with FXS 

can also have sleep disturbances, mainly waking up in the middle of the night and not being able to 

go back to sleep, especially in the first 3–4 years of life (Hagerman, 2002). 

1.3 Fragile X Syndrome diagnostic criteria 

  

The diagnosis of FXS can only be confirmed using genetic testing through the identification of the 

CGG expansion. Prior to the identification of the FMR1 gene, culturing cells in a folate-deficient 

medium followed by cytogenetic analysis was the method of choice for FXS diagnosis. However, this 

approach, while assessing for the presence of “fragile sites” (visualized as discontinuity of staining 

in the region of the gene) on the long arm of the X chromosome, proved to be difficult (Sutherland 

et al., 1985) as the fragile site was often seen only in small percent of cells. This was not as much as 

of a problem in males, where the fragile site could generally be seen in at least 10% of cells, but 

rather in female, where the mutation often could not be visualized.  

The gold standard DNA methodologies for the diagnosis of FXS use a combination of polymerase 

chain reaction (PCR), particularly useful for CGG sizing within the premutation range and, Southern 

blot analysis for sizing larger alleles and for determining their methylation status (Tassone, 2015).  

The genomic DNA (gDNA) can be isolated from whole blood, tissue, saliva or culture cells. Isolated 

gDNA can be amplified by PCR or digested with methylation sensitive restriction enzymes for 
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Southern blot analysis. Conventional PCR using primers that flank the CGG repeat can 

amplify FMR1 alleles containing CGG repeat usually up the lower premutation range. The alleles can 

be visualized either on an agarose gel, on an acrylamide gel or by capillary electrophoresis (CE).  

In particular, the use of the triplet-primed PCR assay is the preferred test worldwide, because it 

detects alleles throughout the expanded range, including the premutation in both males and 

females, and provides a much more accurate determination of allele size within the premutation 

range. Triple primer PCR assay utilizes two FMR1 specific primers that flank the CGG repeat as well 

as a third primer that is complementary to the CGG repeat element (CGG primer). The PCR produces 

both full-length gene-specific FMR1 amplicons as well as triplet repeat-specific products visualized 

on CE as a series of peaks.  In addition, triplet-primed PCR enables the mapping of AGG interruption 

sequences, which are interspersed and present within the CGG region of FMR1.  

Although several methodologies can amplify alleles throughout the full mutation range (Chen et al., 

2010; Lyon et al., 2010; Saluto et al., 2005; Strom et al., 2007) they cannot determine methylation 

status, the epigenetic modification leading to FXS. This is of relevance for the diagnosis of FXS as the 

degree of methylation has been shown to be associated with the degree of intellectual disabilities 

and/or of the clinical involvement (Hagerman, 2002; Hagerman et al., 1994; McConkie-Rosell et al., 

1993; Pretto et al., 2014; Snow et al., 1993). Methylation specific PCR approaches using bisulfite 

modification of the CGG repeat sequence are based on the conversion of unmethylated cytosine 

into uracil residues, with methylated cytosine remaining resistant to this modification (Susan et al., 

1994). When amplified and sequenced, this “modified DNA” can provide information about 

methylation at specific CpG sites within the amplified DNA sequence (Laird, 2010).  

1.4 Fragile X mental retardation protein (FMRP) 
 
The origin of all changes that lead to the molecular, pathological and clinical symptoms shown by 

individuals with FXS is the absence or the deficiency of Fragile X mental retardation protein (FMRP). 

FMRP is the Fmr1 gene product that belongs to the family of the heterogeneous nuclear 

ribonucleoproteins (hnRNPs), whose function is the regulation of mRNA metabolism (Bassani et al., 

2013). FMRP is distributed in neurons throughout the mouse brain at all ages (Gholizadeh et al., 

2015). The expression patterns of FMRP during development shows a decrement in mice, with high 

levels of expression at PN 7–14 and thereafter a progressive reduction (Bonaccorso et al., 2015; 

Gholizadeh et al., 2015; Lu et al., 2004). During this period, FMRP is mainly present in neurons of 

cingulate cortex, hippocampus, striatum and cerebellum but it is also present in astrocytes, 
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microglia and oligodendrocytes precursor cells in the developing brain (Gholizadeh et al., 2015). The 

correlation of peak levels of FMRP expression with synaptic formation, consistent with FMRP 

localization in synaptic structures, highlight a crucial role for FMRP in the formation, maturation, 

stabilization and elimination of synapses. Consistent with this idea, loss of FMRP results in increased 

synaptic number and morphological differences during early postnatal development (Antar et al., 

2006; Bilousova et al., 2009; Nimchinsky et al., 2001). 

 

The FMR1 gene encodes a total of 11 known FMRP isoforms in humans, as a result of alternative 

splicing (Zhang et al., 2019). These FMRP isoforms share a highly conserved N-terminal block of ~400 

residues and variable C-terminal sequences with varying mRNA-binding affinities.  

 

The most prevalent form of FMRP in humans contains 632 amino acids and is a classic RNA binding 

protein containing at least three canonical RNA binding motifs : two hnRNP K homology (KH1 and 

KH2) domains and an arginine-glycine-glycine (RGG) box in the C-terminal region (Nelson et al., 

2013). A GXXG loop in the KH1 and KH2 domains of FMRP is conserved in many RNA-binding KH 

domains, such as the KH-type splicing regulatory protein (KSRP) and neuro-oncological ventral 

antigen (Nova-1 and 2) proteins, further suggesting that FMRP KH domains play a role in binding-

specific RNAs (Hollingworth et al., 2012; Nicastro et al., 2015). A third KH domain was discovered 

upstream of the KH1 domain through x-ray crystallography, termed KH0 (Fu et al., 1991; Hu et al., 

2015; Myrick et al., 2015). FMRP predominantly binds long mRNA (Li et al., 2020; Sawicka et al., 

2019; Van Driesche et al., 2019) to the coding regions of mRNAs rather than 5’ or 3’-UTRs, unlike 

most other RNA binding proteins (Richter and Zhao, 2021).  

 

The amino terminal region of FMRP contains two Agenet/Tudor domains that interact with RNA, 

chromatin and other proteins (Adinolfi et al., 2003; Myrick et al., 2015; Myrick et al., 2014). FMRP 

also contains nuclear localization (NLS) and nuclear export sequences (NES) that direct its shuttling 

between nucleus and cytoplasm (Eberhart et al., 1996). At steady state, however, the protein is 

predominantly cytoplasmic.  

Unlike other KH motif-containing RNA binding proteins, all three FMRP KH domains weakly bind 

single stranded RNAs and may require higher order secondary structures to confer specificity (Athar 

and Joseph, 2020). In an initial study, 432 FMRP-bound RNAs were identified through a 

ribonucleoprotein Immunoprecipitation (RIP) and 8 of the 12 top ranked recognized targets have a 
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G-quadruplex (G4) structure (Brown et al., 2001; Schaeffer et al., 2001). The RNA G-quadruplex is a 

secondary structure formed by sequences where guanine is the predominant base (Fay et al., 2017). 

G-tetrads are formed when guanines are organized into planar quartets where each base is 

connected to two other bases. When three or more G-quartets stack onto one another, they form 

a stable righthanded helical structure and in such vertical stacking, metal ions such as monovalent 

cations can intercalate into the central anionic core of a G-tetrad to coordinate, stabilize hydrogen-

bonded tetrads, and enhance base-stacking interactions. The G-quadruplex regulates different steps 

of RNA metabolism; concerning FMRP interaction, it has also been shown to be involved in not only 

the regulation of translation but also mRNA transport along dendrites and axons (Beaudoin and 

Perreault, 2013; Melko and Bardoni, 2010). The FMRP RGG box can bind the G-quadruplex (Melko 

and Bardoni, 2010) which is present in several mRNAs, among which mRNAs coding for MAP1B 

(MicrotubuleAssociated Protein 1B), PP2Ac (Protein Phosphatase 2A catalytic sub-unit), APP, 

CamKIIa and Semaphorin3F (Darnell et al., 2001; Melko and Bardoni, 2010; Schaeffer et al., 2001).  

 

The interaction between FMRP and the RNAs through a G-quadruplex structure was confirmed by 

another study where FMRP antibody-directed amplification of mRNA sequestered in FMRP-

containing mRNPs (APRA) found G4 structures in many FMRP-bound mRNAs (Miyashiro et al., 2003).  

Nevertheless, RIP and APRA are lacking specificity and do not recognize the mRNA binding sites. In 

order to identify RNA-FMRP interaction, a crosslinking-immunoprecipitation (CLIP) was performed 

and a very large number of FMRP mRNA targets were identified in the mouse brain, most of which 

have been previously linked to autism  (Maurin et al., 2018a).   

Through a cumulative distribution of analysis, mRNA targets of FMRP carry a G4 forming motif. Thus 

FMRP regulates translation of mRNAs with G-quadruplex Structures (Edwards and Joseph, 2022) but 

not all mRNA targets harbour this motif (Melko and Bardoni, 2010). 

The molecular bases of interaction between FMRP and RNA are still unknown.  The sequence ACUK 

(K = G or U) and WGGA (W = A or U) are enriched in FMRP targets (Ascano et al., 2012) but they are 

essential but not sufficient to mediate the FMRP-RNA interactions (Maurin and Bardoni, 2018; 

Maurin et al., 2015; Suhl et al., 2014). Maurin and collegues identified a consensus sequence CTGKA 

bound by FMRP and two other less prominent motifs TAY and GWRGA (Maurin et al., 2018a). All the 

sequences can negatively modulate FMRP translational regulation consistent with the repressor 

function on translation made by FMRP. Nevertheless, FMRP was also found to stimulate translation 

of some target mRNAs. In addition to the RNA G-quadruplex secondary structure, FMRP can bind 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/protein-secondary-structure
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/guanine
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/guanine
https://www.sciencedirect.com/topics/neuroscience/protein-rna-binding
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mRNA through a SoSLIP (Sod1 Stem Loop Interacting with FMRP) structure (Bechara et al., 2009). 

SoSLIP is a triple stem-loop structure and acts as an FMRP-dependent translational enhancer and as 

a mild internal ribosome binding site (IRES) in an FMRP-independent manner. FMRP enhances 

translation of the superoxide dismutase 1 (Sod1) mRNA when it interacts with the SoSLIP structure. 

Sod1 is an oxidative-stress-mitigating enzyme and in absence of FMRP, the enzyme expression is 

reduced, leading to an increased oxidative stress in the brain. 

 

FMRP target mRNAs encode for proteins involved in cell signalling and in cell communication 

(Miyashiro et al., 2003), synaptic transmission and neuronal activity (Darnell et al., 2011; Maurin et 

al., 2018a; Van Driesche et al., 2019), transcription signalling (Sawicka et al., 2019), microtubule 

organization for axon transport (Maurin et al., 2018a; Sawicka et al., 2019; Van Driesche et al., 2019), 

mechanisms of circadian rhythm (Sawicka et al., 2019), neurogenesis and both axonal and dendritic 

morphogenesis (Li et al., 2020; Sawicka et al., 2019). 

 

FMRP is widely detected in all mammalian tissues, with the highest expression levels in the brain 

and testes (Devys et al., 1993). In the adult brain, FMRP is highly expressed in the hippocampus, 

nucleus basalis and in the granule layer of the cerebellum (Bardoni et al., 2001; Cornish et al., 2007; 

Kim et al., 2009). In neurons, FMRP is detectable in the nucleus as well as in dendrites and axons, at 

both pre- and postsynaptic sites (Christie et al., 2009). In addition, FMRP was detected in the 

developing processes of oligodendroglia progenitor cells (OPCs) and immature oligodendrocytes in 

the neonatal brain, in primary cultures of oligodendrocytes, as well as in oligodendrocyte cell lines.  

FMRP belongs to the fragile X-related (FXR) family proteins, together with fragile X-related protein 

1 (FXR1) and fragile X-related protein 2 (FXR2), which are the highly homologous RNA binding 

proteins (Majumder et al., 2020). The genes codifying for these proteins are Fragile X mental 

retardation 1 (FMR1), FMR1 autosomal homolog 1 (FXR1) and FMR1 autosomal homolog 2 (FXR2), 

and are located on different chromosome, respectively in Xq27.3, 3q26.33 and 17p13.1.  The FXR 

proteins share approximately 60% amino acid sequence identity (Siomi et al., 1996). All three 

proteins have conserved regions for nuclear localization (NLS) and nuclear export (NES), which 

suggests a function in shuttling between cytoplasm and nucleus (Eberhart et al., 1996; Feng et al., 

1997; Siomi et al., 1995; Zhang et al., 1995). They are involved in RNA binding by their two KH 

domains and an RGG box (Siomi et al., 1995; Zhang et al., 1995). The paralogs FXR1 and FXR2 are 

expressed in the same tissue and share the cellular profile of FMRP with only slight differences 
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(Agulhon et al., 1999; Bakker et al., 2000).  FXR1 is expressed more abundantly in cardiac and skeletal 

muscle compared with FMRP and FXR2 (Bakker et al., 2000; Mientjes et al., 2004). In adult human 

brain, the FXRs protein have a cytoplasmic localization and a high expression in Purkinje, cortical 

and brainstem neurons (Tamanini et al., 1997). They have been observed in the nucleus of 

hippocampal neurons (Bakker et al., 2000). In foetal human brain, FXR2, like FMRP, is expressed in 

the cytoplasm of the neurons, but the FXR2 expression is lower than in adult brain. In  adult  brain  

FXR1  is  only  found  in  the  cytoplasm  of  the neurons, while in foetal brain a substantial number 

of neurons also showed a nuclear localization (Tamanini et al., 1997). In brain tissues of FXS patients, 

FXR1 and FXR2 expression is unchanged compared to the normal control (Tamanini et al., 1997). 

The   three   proteins   have RNA-binding properties and a ribosomal association, which indicates a 

role in the ribosomal and RNA metabolism of neurons. (Tamanini et al., 1997) However, the absence 

of FMRP in FXS leads to mental retardation despite the normal expression of FXR1 and FXR2 in 

neurons of FXS patients. Therefore, FXR1 and FXR2 are not able to compensate the lack of FMRP, 

having independent, although similar, cellular functions. 

 

FMRP loss caused by FMR1 gene mutation leads to an alteration of translation. The observation that 

hippocampal slices derived from Fmr1 knockout mice, an animal model of FXS, incorporate 15–20% 

more 35S-methionine into protein compared to wild type mice has supported the suggestions that 

FMRP is primarily a translational inhibitor (Dölen et al., 2007; Feng et al., 1997; Khandjian et al., 

1996). It is widely believed that excessive protein synthesis is a major contributor to the 

pathophysiology in FXS.  

 

FMRP can regulate the translation of its target mRNAs through multiple mechanisms: it can directly 

bind RNAs, regulate the translation initiation, bind polyribosomes and interact with RNA-Induced 

silencing complex (RISC).  

 

Translation involves three broad steps: initiation, elongation and termination (Groppo and Richter, 

2009). Initiation of translation begins with the eukaryotic initiation factor 4F (eIF4F), a multiprotein 

complex formed by eIF4E, eIF4G and eIF4A: eIF4E, also known as cap-binding protein, is responsible 

for binding the 5′-terminal 7-methyl-GTP (m7GTP) cap found on all eukaryotic mRNAs; eIF4A is a 

subunit of an RNA helicase that unwinds secondary structure in the mRNA and eIF4G is the 

scaffolding subunit to which the other subunits bind and has a binding site for eIF3, which links the 

eIF4F-mRNA complex to the 40S ribosomal subunit. The 40S subunit scans the 5′ untranslated region 



18 
 

until the initiation codon, after which the 40S subunit is joined by the 60S ribosomal subunit to form 

an 80S ribosome that can elongate the polypeptide chain. Finally, the termination of translation 

occurs when the 80S ribosome dissociates from the mRNA at the termination codon, releasing the 

completed polypeptide. The inhibition of the translation process occurs when eIF4E-binding 

proteins (4E-BPs) bind to eIF4E. If 4E-BPs are phosphorylated by mammalian target of rapamycin 

complex 1 (mTORC1), the translation can start through the association of eIF4E with eIF4G (Gingras 

et al., 2001). In addition to this, eIF4E can be phosphorylated by MAP kinase-interacting 

serine/threonine-protein kinase 1 and 2 (MNK1-2), increasing the affinity of eIF4E for capped mRNA 

and for an associated scaffolding protein, eIF4G. This process leads to an enhancement of mRNA 

translation (Waskiewicz et al., 1999). 

FMRP-mediated repression of translation requires an interaction 

with Cytoplasmic FMRP Interacting Protein CYFIP1 (Schenck et al., 2003; Schenck et al., 2001), which  

is known to be a non-canonical 4E-BP (Napoli et al., 2008). In the brain, FMRP helps recruit and 

stabilize CYFIP1 on the 5′ end of specific mRNAs to repress translation. This interaction is modulated 

by the activation of MNK1-2, which have a regulatory effect on long lasting synaptic plasticity (Panja 

et al., 2014). In Fmr1-KO mice, interactions between eIF4E and eIF4G are increased (Ronesi et al., 

2012; Sharma et al., 2010), as well as eIF4E phosphorylation (Gkogkas et al., 2014). Thus, FMRP can 

directly and indirectly regulate translation initiation.  

FMRP has a role in regulation of protein elongation through an interaction with polyribosomes: 

different studies have shown that FMRP co-sediments with polyribosomes during a sucrose gradient 

ultracentrifugation, suggesting a direct interaction with the translational apparatus (Corbin et al., 

1997; Khandjian et al., 2004; Stefani et al., 2004). FMRP might inhibit translation at the level of 

polypeptide elongation slowing or stalling ribosome transit, thereby reducing the rate of the protein 

synthesis (Stefani et al., 2004). FMRP-regulated translation on polypeptide elongation might occur 

through the direct binding of the protein to the RNA, acting as a simple roadblock. In addition to 

this, FMRP can blocks tRNA association with the ribosome and regulate RNA degradation by optimal 

codon recognition (Shu et al., 2020). The use of 3-letter codons in mRNA leads to 64 codons that 

encode for 20 amino acids and translation stop signals (Hanson and Coller, 2018). This has caused 

the degeneracy in the genetic code, where different codons code for a single amino acid. These 

codons are recognized by the ribosome, which is characterized by a property called codon 

optimality, which refers to the non-uniform decoding rate of the ribosome. A codon can be defined 

as optimal or non-optimal depending on how efficiently the appropriate tRNA can be selected from 
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the cytoplasmic pool of tRNAs by the ribosomes. Codon bias is the propensity for some codons to 

be disproportionately represented in the transcriptome for codifying an aminoacidic and it is 

partially defined by codon optimality. This phenomenon affects ribosome translocation and RNA 

stability (Ascano et al., 2012; Hanson and Coller, 2018). Ribosome stalling has been shown to occur 

on RNAs with nonoptimal codons. The role of FMRP is to modulate the relationship between 

ribosome stalling and codon optimability (Shu et al., 2020); in particular, FMRP associates with 

optimal codons on the RNAs. Moreover, FMRP also prevents RNA degradation by inhibition of not 

yet known nucleases. FMRP does not associate with the translational machinery on RNAs with 

nonoptimal codons. On these RNAs, ribosome translocation is normal, but the mRNAs tend to be 

unstable because there is no FMRP to block nuclease attack. In FMRP-deficient cortex, RNAs with 

optimal codons are associated with normally translocating ribosomes, but the RNAs are unstable 

because there is no FMRP to block nucleases. Therefore, FMRP deficiency can lead to either 

increased or decreased RNA stability depending on their codon optimality status, which impacts the 

gene network controlling cellular functions (Shah et al., 2020b). 

 

FMRP also regulates translation through its interactions with micro RNAs (miRNAs), the Argonaute 

Ago, also called Eif2c (Sasaki et al., 2003), protein of the RNA-induced silencing complex (RISC) 

(Edbauer et al., 2010; Jin et al., 2004; Muddashetty et al., 2011), Dicer and miRNA precursors 

(Cheever and Ceman, 2009).  

 

In mice, FMRP is associated with the RISC and/or miRNAs such as miR-125a, miR-125b and miR-

132 that cooperate to regulate protein synthesis involved in dendritic spine morphology (Edbauer 

et al., 2010; Muddashetty et al., 2011). FMRP regulates the accessibility of miRNA target sequence 

that are involved in the secondary structure of mRNA (Stefanovic et al., 2015). In absence of 

FMRP, dysregulation of miRNAs was demonstrated in Fmr1-KO mice (Liu et al., 2015) and in 

human FXS induced pluripotent stem cell derived neurons (Halevy et al., 2015).  

 

FMRP also has deep effects on nuclear events such as DNA damage response, transcription, and 

splicing. Different studies point out that FMRP controls RNA synthesis through regulated translation 

of critical transcriptional factors or chromatin modulators (Korb et al., 2017; Shah et al., 2020a). 

Most of the RNA identified by Darnell and colleagues  (Darnell et al., 2011) code for proteins with 

nuclear functions (110 out of 842), many of which modify chromatin, particularly histone acetylation 
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and methylation (Korb et al., 2017). Indeed, Fmr1-KO neurons have an enhancement of methylation 

on the lysin in position 4 of the Histon H3 (H3K4me3) and an increment of acetylation on the lysin 

in position 8 and 19 of Histone H4 (H4K8ac and H4K19ac). FMRP regulates chromatin-modifying 

proteins in addition to synaptic proteins. In particular, Brd4 is overexpressed in Fmr1 KO mice and 

JQ1, a molecule that is able to inhibit Brd4, reduced gene expression of critical genes in Fmr1 KO 

neurons. JQ1 also reversed behavioural phenotypes of Fmr1 KO mice and mitigated aberrant 

dendritic spine density. Another chromatin modifier SETD2 is regulated by FMRP (Shah et al., 

2020b). This protein induces trimethylation of lysine 36 on histone H3 (H3K36me3), mediating 

alternative splicing. When FMRP is absent, translation of SETD2 mRNA is elevated with an 

enhancement of H3K36me3 in Fmr1 KO hippocampus, leading to mis-splicing events, which were 

also observed in human postmortem autistic brain (Corley et al., 2019).  

 

Not only does FMRP modify chromatin through the regulation of mRNAs encoding for epigenetic 

and transcription factors, it also acts directly in the nucleus to bind and alter chromatin structure 

85. By way of its Agenet domain, FMRP regulates the levels and positioning of gammaH2A.x, a 

histone H2 subtype associated with cell death, in response to replicative stress in mouse embryo 

fibroblasts and mammalian spermatocytes. Without FMRP, spermatocytes are unable to undergo 

DNA repair and resolve single stranded chromatin intermediates at the pachytene stage, a necessary 

event for meiotic progression. Whether FMRP directly regulates chromatin in neurons and if so 

whether it plays a role in activity and/or stress-induced cellular responses has not been assessed. 

 

1.5 Animal models of Fragile X Syndrome  
 
A better understanding of Fragile X Syndrome has been achieved thanks to the development of 

animal models, providing an increased knowledge about molecular, cellular and behavioural 

mechanisms underlying the pathology.  

Animal models of FXS have been developed in various species, such as the Drosophila fruit fly, 

zebrafish, mouse, and rat (Bakker et al., 1994; Hamilton et al., 2014; McBride et al., 2012; Tucker et 

al., 2004).  They show several symptoms in common with human patients such as defects in 

neuronal development, dendritic spine morphology, synaptic plasticity, and behaviour.  

Much effort has focused on the characterization of mouse models of FXS, in particular 

the Fmr1 knockout (KO) mouse. Mice and men share almost 99% of their genes (Waterston et al., 

2002) as well as most physiological functions and pathogenic mechanisms (Eilam, 2014; Tecott, 
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2003).  Since mice are also easy to keep, they became the most widely used model organism in life 

sciences.  

The first Fmr1 KO mouse was created and characterized by the Dutch-Belgian Fragile X Consortium 

(Bakker et al., 1994). The model was generated using a homologous recombination targeting vector, 

pMG5, containing a disrupted Fmr1 DNA: exon 5 was interrupted by the positive selection marker 

gene neomycin (neo) while the negative selection marker inserted was the thymidine kinase gene. 

The vector pMG5 was introduced into the embryonic stem cells (ES). A clone was injected into 

C57BL/6J blastocysts and transferred to pseudo-pregnant females. This Fmr1 KO mice harbouring 

this mutation did not produce FMRP protein but did possess detectable levels of Fmr1 mRNA 

because of the presence of Fmr1 promoter (Yan et al., 2004). To remove the Fmr1 mRNA, a second 

generation model was created known as Fmr1-KO2 (Mientjes et al., 2006), where the first exon was 

modified to remove the promoter region. This second-generation model has been largely used for 

brain studies, focusing on understanding the neurobiological underpinnings of FXS. 

Fmr1 KO2 mice share different features with FXS patients such as having significantly heavier testes 

than wildtype controls, but normal structural morphology (Mientjes et al., 2006), probably due to 

an increase in the proliferative activity of Sertoli cells in the seminiferous tubules, which increases 

the number of germs cells in the testicles, and therefore, their weight.  

In spite of patients suffering from FXS, Fmr1 KO mice have not been reported to display spontaneous 

seizures, but are more susceptible to audiogenic seizures, induced by exposure to a 125 decibel, 

high-intensity siren (Musumeci et al., 2000). This audiogenic seizure vulnerability in Fmr1 KO mice 

is a readout of seizure susceptibly in FXS patients. Electrophysiological recordings from auditory 

cortex of Fmr1 KO mice revealed an enhancement of responses to auditory tones, demonstrating 

that neurons of Fmr1 KO mice are hyper-responsive to stimuli (Rotschafer and Razak, 2013). These 

data are consistent with the increased responses to pure tones seen in individuals with FXS (Rojas 

et al., 2001). 

In line with the clinical features of FXS patients, attention and impulsivity were evaluated in Fmr1 

KO mice through the five choice serial reaction time test (Winstanley et al., 2006). This test assesses 

attentional performance by the detection of a brief visual stimulus presented randomly across 

several spatial locations, in five nose-poke holes box: the animal is required to perform a nose-poke 

response to obtain a food response in one of five response apertures only when a stimulus light 

located there is illuminated. After beginning a trial and prior to illumination of a stimulus light, there 

is a 5-s inter-trial interval during which the animal must withhold from responding in the apertures. 
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Any responses made during this time are described as premature responses and are punished. These 

premature responses provide another way of measuring motor impulsivity. At the end, mice were 

subjected to two final tests, one to measure sustained attention and one to measure inhibitory 

control. Fmr1 KO mice were impaired in the acquisition of a visuospatial discrimination task but did 

not display deficits in sustained attention or inhibitory control compared to wild-type mice. In 

addition to this, Fmr1 KO mice demonstrated heightened perseveration and responding during 

novel rule acquisition, which normalized with training (Kramvis et al., 2013). 

Nevertheless, in other attention tests, Fmr1 KO mice displayed altered inhibitory control, having a 

higher rate of premature responses than wildtype mice (Moon et al., 2006). This was associated 

with changes in task contingencies, suggesting that inhibitory control in Fmr1 KO mice may be 

affected by stress or novelty. In addition to this, Fmr1 KO mice are characterized by an enhancement 

of locomotor activity compared to wild-type controls in the open field test (Bakker et al., 1994; 

Dahlhaus and El-Husseini, 2010; Ding et al., 2014; Mineur et al., 2002; Peier et al., 2000; Pietropaolo 

et al., 2011; Restivo et al., 2005; Spencer et al., 2005). 

Fmr1 KO mice also exhibited higher levels of self-grooming, a repetitive behaviour, than wild-type 

controls (McNaughton et al., 2008; Pietropaolo et al., 2011). These behavioural features are 

consistent with perseveration and repetitive behaviour found in FXS patients (Hagerman et al., 

2017b). Additionally, as a ratio of repetitive behaviour (Thomas et al., 2009), in the marble burying 

test Fmr1 KO mice buried more marbles (Gholizadeh et al., 2014; Spencer et al., 2011). 

Anxiety is a main trait of FXS in young and adult patients. Evaluation of anxiety levels in Fmr1 KO 

mice leads to contrasting results depending on the different protocols, genetic background and on 

tested age. To evaluate the level of anxiety it is possible to use the elevated plus-maze: this test uses 

an elevated, plus-shaped (+) apparatus with two open and two enclosed arms: the animals prefers 

to spend more time in darker enclosed arms rather than stay in the lighted open arms (Lister, 1987) 

and exploration in open area is associated with decreased anxiety. Some studies show that Fmr1 KO 

mice spent significantly more time in the open arms and less time in the closed arms compared to 

wild-type littermates (Heulens et al., 2012; Liu et al., 2011; Peier et al., 2000; Yuskaitis et al., 2010), 

suggesting reduced anxiety which is contrary to human findings (Cordeiro et al., 2011; Ezell et al., 

2019). It has been suggested that increased open arm exploration is potentially indicative of 

increased locomotor activity or hyperactivity rather than decreased anxiety (Heulens et al., 2012). 

Otherwise in some studies, no behavioural differences were detected in Fmr1 KO mice as compared 

to wild-type littermates in the elevated plus-maze (Mineur et al., 2002; Nielsen et al., 2002; Yan et 
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al., 2004). Using the zero-maze test, a modification of the plus-maze with the advantage of lacking 

the ambiguous central area of the elevated plus-maze, Fmr1 KO mice spent more time in the open 

area (Liu et al., 2011; Liu and Smith, 2009). Results obtained using the open field test are contrasting. 

In this test, wild-type mice display a natural aversion to brightly lit open areas, thereby the time 

spent in the centre of the open arena is considered as an indicator for low anxiety. In some studies, 

Fmr1 KO mice spent more time in the centre of the open field (Peier et al., 2000; Spencer et al., 

2005; Yan et al., 2004; Yuskaitis et al., 2010), but in others Fmr1 KO mice avoid to stay in the centre 

of the open field (Restivo et al., 2005) and in others no differences were noticed between Fmr1 KO 

and wild-type (Veeraragavan et al., 2011a; Veeraragavan et al., 2011b; Veeraragavan et al., 2012).  

Individuals affected by FXS suffer from social phobia and avoidance (Cohen et al., 1988; Cordeiro et 

al., 2011; Hagerman et al., 2017b; Hall et al., 2009). Studying the social behaviour of FXS murine 

model, data show contradictory results. In the three-chamber sociability test, which aims to assess 

cognition in the form of general sociability and interest in social novelty, rodents normally prefer to 

spend more time with another rodent (sociability) and will investigate a novel intruder more often 

than a novel object stimulus (Yang et al., 2011). In some studies, Fmr1 KO mice have normal social 

behaviour, preferring to spend more time exploring the novel mouse (Liu et al., 2011; Liu and Smith, 

2009; McNaughton et al., 2008; Pietropaolo et al., 2011). On the other hand, other studies show 

that Fmr1 KO mice do not display a preference for the novel mouse over the novel object (Dahlhaus 

and El-Husseini, 2010) and spend less time to sniff the novel mouse during social interactions 

(McNaughton et al., 2008; Pietropaolo et al., 2011). Another readout of social interactions in mice 

is the pup ultrasonic vocalization (Ehret, 2005; Fischer and Hammerschmidt, 2011): Fmr1 KO pups 

show a decrease in terms of emitted vocalization (Gholizadeh et al., 2014; Rotschafer et al., 2012; 

Roy et al., 2012) 

Several cognitive tests were performed to characterize the intellectual ability of the murine FXS 

model. Passive avoidance is an associative learning task depending on hippocampus (Lorenzini et 

al., 1996) and amygdala (Slotnick, 1973), in which the animal makes an active choice to avoid 

entering in a dark compartment associated with an aversive event like a foot shock. Passive 

avoidance appears to be disrupted in Fmr1 KO mice (Ding et al., 2014; Michalon et al., 2014; 

Michalon et al., 2012; Veeraragavan et al., 2011a; Yuskaitis et al., 2010). In addition to this, passive 

avoidance extinction happens faster in Fmr1 KO mice than in wild-type (Dölen et al., 2007; Michalon 

et al., 2014).  Fear conditioning is another behavioural test used to characterize emotional aspects 

of cognition in rodents. It could be contextual or delay-cued: the first requires the amygdala and the 
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hippocampus, while the second solely depends on the amygdala (Fanselow et al., 1994; Logue et al., 

1997; Phillips and LeDoux, 1992). In delay-cued fear conditioning, an altered behaviour was 

reported in Fmr1 KO mice (Ding et al., 2014; Paradee et al., 1999), but other studies did not observe 

any difference between wild-type and Fmr1 KO mice (Dobkin et al., 2000; Uutela et al., 2012; Van 

Dam et al., 2000). In contextual fear conditioning, results are also contrasting: some studies have 

shown a deficit in contextual discrimination (Auerbach et al., 2011) but in other studies no 

differences were detected (Dobkin et al., 2000; Peier et al., 2000; Van Dam et al., 2000). In the water 

maze test, a hippocampus-mediated task where visual spatial abilities are tested, mice must learn 

to find a hidden platform in a pool of opaque water. A learning deficit for Fmr1 KO mice was 

observed in the reversal phase of the test where the position of the hidden platform is suddenly 

changed (Bakker et al., 1994; Boda et al., 2014; Kooy et al., 1996; Nolan and Lugo, 2018). To test the 

cortex- and hippocampus-dependent novelty detection ability, novel object recognition test was 

performed (Broadbent et al., 2010). This test is based on the spontaneous tendency of mice to spend 

more time exploring a novel object than a familiar one. The choice to explore the novel object 

reflects the efficiency of learning and recognition memory, which are impaired in Fmr1 KO mice 

(Costa et al., 2018; Franklin et al., 2014; Gomis-González et al., 2016; King and Jope, 2013; Ventura 

et al., 2004), since less time is spent exploring the novel object. This data is consistent with human 

studies demonstrating alterations of novelty preferences in autism spectrum disorder (Hagerman 

et al., 2017b). 

 

1.6 Synaptic plasticity in the hippocampus 
 

The hippocampus is a brain region playing a crucial role in the formation and storage of episodic and 

semantic declarative memories (Scoville and Milner, 1957; Squire et al., 2004). A famous study 

conducted by Dr. Brenda Milner on H.M. patient confirmed that two different kinds of memory 

exist: the declarative memory, allowing the formation of memories about experiences, and the 

procedural memory, which controls behaviour without awareness of learning. H.M. suffered from 

epilepsy not pharmacologically treatable, therefore his hippocampus was surgically removed in both 

brain hemispheres. After the surgery, the epilepsy improved but an anterograde amnesia for 

declarative memory was manifested, while procedural memory remained intact. This study revealed 

that the hippocampus plays a critical role in formation and retrieval of declarative memory. 
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The hippocampus consists of dentate gyrus (DG), cornu ammonis (CA) 1, CA2, CA3 and CA4 (Amaral 

and Witter, 1989; Swanson et al., 1978). Input from the entorhinal cortex (EC) is transmitted to the 

DG, CA1 and CA3 regions via perforant path fibers; DG neurons project to CA3 pyramidal neurons 

via mossy fibers, CA3 neurons send fibers to CA1 pyramidal neurons via Schaffer collaterals), and 

CA1 neurons in turn project back to the cortex unidirectionally forming the “tri-synaptic 

hippocampal circuit”. Each pathway contributes to synaptic transmission and plasticity in the 

hippocampus, by forming synaptic circuits for storage, consolidation and retrieval of declarative, 

spatial, and associative long-term memory (Burgess et al., 2002; Gold and Kesner, 2005; Nakazawa 

et al., 2001; Squire et al., 2004). The main source of excitatory glutamatergic signals to the 

hippocampus come from the EC. The EC directs spatial and non-spatial information to the 

hippocampus (Van Strien et al., 2009), in particular layer 3 cells project to CA1 as the 

temporoammonic pathway, while layer 2 cells of EC project excitatory axons through the perforant 

path (PP) to granule cells in the DG (Kerr et al., 2007). The hippocampal CA1 region  provides an 

output from the hippocampus, sending signals to several parts of the brain, such as the subiculum, 

lateral septum, ventral striatum, amygdala, prefrontal cortex and retrosplenial cortex (McNaughton 

et al., 1996; Squire et al., 2004; Van Groen and Wyss, 1990; Wyass and Van Groen, 1992). All 

together this studies show that the hippocampus recruits several brain regions to form learning and 

memory circuits (Duncan et al., 2012; Lisman and Grace, 2005). 

Memory formation and learning require a plastic arrangement of synaptic connectivity based on 

modifications in the strength and number of synapses (Kessels and Malinow, 2009; Middei et al., 

2014). By modifying the synaptic connection network and the structural and morphological 

organization of neurons, the nervous system can either strengthen or weaken the efficacy of a 

specific neuronal circuit, based on functional requests. Synaptic plasticity in the hippocampus assists 

with consolidation and storage of long-lasting memories. 

 

Synaptic strengthening and weakening depend on exocytosis and endocytosis of glutamatergic a-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) for glutamate (Malinow 

and Malenka, 2002). In excitatory synapses, AMPARs go through translocation into or removal from 

synapses (Lu et al., 2009). These receptors are made of tetramers of GluA1-4 subunits. In the 

hippocampus, the main subunits are GluA1 and GluA2 and in the CA1 region GluA1/2 heterodimer 

is predominant (Clem and Barth, 2006; Plant et al., 2006). The presence of GluA2 leads to lack of 

permeability to Ca2+ flux through AMPARs. Sensory experience or long-term potentiation plasticity 
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cause an expression of AMPARs without GluA2 in hippocampal region. Exocytosis and endocytosis 

of AMPARs are influenced by the activity of kinase and phosphatase: phosphorylation of GluA1 

induces the exposure of AMPARs to synapses, whereas GluA1 de-phosphorylation is associated with 

AMPARs endocytosis and related synaptic weakening. Increased expression and phosphorylation of 

GluA1 subunit in AMPARs in brain regions involved in long-term plasticity support the persistent of 

memory. For example, inhibitory avoidance (IA) learning (a hippocampus-dependent task during 

which rodents learn to avoid the dark compartment of a two-chamber apparatus after 

administration of an electric foot-shock delivered during the IA training) induced an increase of 

AMPARs trafficking into hippocampal synapses (Whitlock et al., 2006). In particular, a fast and 

transient increase of GluA1 and GluA2 subunits in synaptosomal fractions were observed with an 

enhancement of phosphorylation of GluA1 at Ser831, a reaction that is associated with AMPARs 

delivery to synapses  (Hayashi et al., 2000; Heynen et al., 2000). Fear memory also leads to synaptic 

trafficking of GluA1-containing AMPARs into dendritic spines, which are going to grow to support 

the formation of a new memory circuit. In different fear conditioning protocols, rodents learn to 

associate an electric foot-shock with a sound (tone fear conditioning, TFC), or with a context 

(contextual fear conditioning, CFC) in which the shock takes place. 24 hours after TFC, newly 

synthesized GluA1 are recruited in dendritic spines of hippocampal CA1 neurons due to memory 

formation, going back to the control condition 72 h after TFC training (Matsuo et al., 2008). The 

same results were obtained during the CFC, with an enhancement of dendritic spines density 

(Restivo et al., 2008), GluA1 levels and phosphorylation of Ser845 and Ser831 in isolated CA1 

hippocampal Post Synaptic Densities (PSDs), a dense ore of dendritic spines containing receptors 

and scaffolding proteins (Middei et al., 2012).  

 

After the acquisition, a memory can be consolidated, becoming a medium- or a long-term memory: 

following re-exposition to reminders of the original episode, a stored memory can be recalled. 

Thereby memory can either stabilize to persist, a process known as reconsolidation, or be 

extinguished. The expression of GluA1 is also involved in consolidation, since the level of GluA1 in 

the hippocampus follows a two wave fluctuation: a peak happens 1 hour after the FC training in 

mice, followed by a decrease 3 days after and back to an enhancement 28 days later (Thoeringer et 

al., 2012). 

Reconsolidation and extinction can be tested in fear conditioning or in inhibitory avoidance 

protocols. During reconsolidation, a fluctuation is observed in the expression of GluA2, which are 
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removed from hippocampal synapses 1 h after protocol re-exposure. GluA2 internalization is 

associated to a synaptic weakening, measured by recordings of glutamate-mediated post synaptic 

current in the CA3-CA1 synapse. During the maintenance of reconsolidation phase, the level of 

GluA2 become stable (Rao-Ruiz et al., 2011). 

Both potentiation and depression of synaptic plasticity lead to structural changes such as 

modulation of the number, size and shape of dendritic spines (Matsuzaki et al., 2004; Okamoto et 

al., 2004), which are specialized for synaptic transmission.  

Other forms of plasticity occurring in hippocampus are short-term plasticity phenomena, which can 

either potentiate or weaken a circuit from milliseconds to several minutes, being respectively a 

short-term facilitation and short-term depression. These forms of plasticity are considered to be 

important for short-term memory (Citri and Malenka, 2008; Zucker and Regehr, 2002). 

Metaplasticity, an additional kind of synaptic plasticity,  was also discovered in the hippocampus 

(Abraham and Bear, 1996) and is also called “the plasticity of synaptic plasticity”, because it involves 

activity-dependent changes in neuronal function that modulate synaptic plasticity. However, several 

reports have indicated that it may also serve to stabilize synapses (Baione et al., 2020; Crestani et 

al., 2019; Gebhardt et al., 2019; Hegemann and Abraham, 2019; Lutzu and Castillo, 2021; Yang et 

al., 2014).  

A further type of plasticity that controls the total synaptic strength of a neuron is homeostatic 

plasticity (Turrigiano and Nelson, 2004). It can either increase or decrease the strength of all synaptic 

inputs of a neuron to keep homeostasis over a wide range of spatial and temporal scales. 

Homeostatic plasticity regulates synaptic scaling and is thought to stabilize synaptic strength at the 

level of a single neuron. 

Synaptic strengthening and weakening persisting for several hours are respectively defined as long 

term potentiation (LTP) or long term depression (LTD) (Kessels and Malinow, 2009). LTP and LTD are 

two well-known cellular events for synaptic changes thought to occur during mnesic processes.  

LTP and LTD can be elicited by activation of N-methyl-D-aspartate receptor (NMDAR) (Collingridge 

et al., 1983). NMDARs are ionotropic receptors permeable to sodium, potassium and calcium: at 

negative membrane potentials close to the resting membrane potential, magnesium ions enter the 

pore of the NMDAR, blocking the passage for all other ions (Lüscher and Malenka, 2012). Upon 

depolarization the magnesium is expelled from the pore, allowing sodium, potassium, and, 

importantly, calcium ions to pass. The activation mode of NMDA and the amount of Ca2+ influx are 

the discriminating factors to induce LTP or LTD. For example, in acute hippocampal slices, high 
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frequency stimulation (100 Hz) of Schaffer collateral fibers causes a large depolarization of the 

postsynaptic cell that is sufficient to remove the Mg2+ block of NMDARs and allow increases of 

cytosolic Ca2+ up to 5 μM in CA1 neurons, inducing the activation of protein kinases which are 

responsible for induction and maintenance of LTP. Conversely, stimulation at 1 Hz causes a Ca2+ 

influx across NMDARs up to 1 μM, leading to activation of protein phosphatases which 

dephosphorylate AMPA receptors, increasing their endocytosis. 

Moreover, LTD or LTP can be induced by activation of different types of G protein-coupled receptors, 

such as M1 and M3 muscarinic receptors or I group metabotropic glutamate receptors (mGluR1 and 

mGluR5). Acetylcholine (ACh) muscarinic receptors (mAChRs) can induce plasticity at excitatory and 

inhibitory synapses and are essential in learning and memory processes (Fernández de Sevilla et al., 

2021). M1 and M3 mAChRs are coupled to phospholipase C (PLC) via G-proteins (Gq/11). The 

activation of PLC catalyzes the phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5- 

trisphosphate (IP3) and diacylglycerol are produced. IP3 receptor (IP3R) activation induces Ca2+ 

release from endoplasmic reticulum (ER) stores (Rose and Konnerth, 2001). It has been shown that 

M1 and M3 mAChRs activation triggers IP3 production and Ca2+ release from the ER in CA1 

pyramidal neurons, resulting in LTP at Schaffer’s collaterals synapses. This LTP is NMDAR 

independent and is expressed postsynaptically by an increase of AMPARs in spines and an enhanced 

NMDA response. In addition, activation of mAChRs can also induce LTD (mAChR-LTD) of excitatory 

synaptic transmission in various brain regions, such as visual cortex (McCoy et al., 2008), perirhinal 

cortex (Jo et al., 2006) and hippocampus (Volk et al., 2007). The activation of M1 receptors results 

in an LTD that is dependent on the activity of protein tyrosine phosphatases (PTPs), but is 

independent of Ca2+, PKC, serine/threonine protein phosphatases and protein synthesis (Dickinson 

et al., 2009).  

As well as muscarinic receptor, group I metabotropic glutamate receptors (mGluRs) can induce LTP 

and LTD. The mGluR-LTP activation of Type I mGluRs and depends crucially on protein synthesis 

controlled by Fragile X Mental Retardation Protein and on Arc signaling (Wang et al., 2016a). 

Although group I of mGluRs modulate the induction of NMDAR-LTP in different synapses (Abraham, 

2008), LTP that exclusively needs the mGluRs but not NMDARs has only been identified in the 

subiculum (Fidzinski et al., 2008). 
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1.7 Metabotropic Glutamate receptor-induced long-term depression (mGluR-LTD) 
 
 
A particular form of LTD can be triggered by the activation of group I metabotropic glutamate 

receptors (mGluRs), which includes mGluR1 and mGluR5 (Palmer et al., 1997). mGluR1 expression 

is high in Purkinje cells in the cerebellum, in mitral and tufted cells in the olfactory bulb and in the 

cell body of hippocampal stratum radiatum neurons (Ferraguti and Shigemoto, 2006). In addition, 

they are expressed in cell body neurolateral septum, pallidum and in the thalamus. mGluR5 is 

present in the cerebral cortex, subiculum, olfactory bulb, striatum, nucleus accumbens, lateral 

septal nucleus and in dendrites of stratum radiatum of hippocampus. Both receptors are mainly 

expressed in postsynaptic neurons in an area surrounding the ionotropic receptors (Lujan et al., 

1996). 

 

mGluR-LTD was first described at the granule cell parallel fiber (PF) synapses onto Purkinje cells (PC) 

in the cerebellum and was later observed in diverse brain regions such as the hippocampus, 

neocortex, dorsal and ventral striatum and spinal cord (Bellone et al., 2008; Gladding et al., 2009).  

 

Hippocampal long-term depression has an important role in hippocampal-dependent learning: 

administration of group I mGluR antagonists or even deletion of group I mGluRs in animal models 

alters the acquisition and extinction of hippocampus-dependent learning tasks, such as radial arm 

maze or Morris water maze (Manahan-Vaughan and Braunewell, 2005; Naie and Manahan-

Vaughan, 2004; Xu et al., 2009). Hippocampal localization of LTD induction can change based on the 

nature of the novel cues: small novel features induce LTD in the CA1 region, suggesting that LTD in 

CA1 play a role to encode spatial arrangement of novel objects; on the other side, large novel 

orientation cues facilitate LTD in the dentate gyrus (Kemp and Manahan-Vaughan, 2008). 

Long-term depression mediated by group I mGluRs can be induced either pharmacologically or 

through synaptic stimulation. In hippocampal CA1 pyramidal neurons, mGluR-LTD takes place when 

CA3 Schaffer axons are stimulated either at low frequency (between 1–3 Hz for 5–15 min) or by 

pharmacologic application of R,S-dihydroxyphenylglycine (DHPG), a selective group I mGluR agonist 

(Bolshakov and Siegelbaum, 1994; Huber et al., 2000; Kemp and Bashir, 1999; Manahan-Vaughan, 

1997; Naie and Manahan-Vaughan, 2005; Palmer et al., 1997; Volk et al., 2007). 

mGluR1 and mGluR5 are coupled to a heterometric Gαq/11 protein (Ferraguti and Shigemoto, 

2006), which activates phospholipase C (PLC), inducing the production of inositol trisphosphate (IP3). 
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This event leads to the release of Ca2+ from intracellular stores and subsequent Protein Kinase C 

(PKC) activation. Hippocampal mGluR-LTD occurs independently of postsynaptic Ca2+ increases, 

IP3 sensitive Ca2+ stores, PLC or PKC activity (Fitzjohn et al., 2001; Moult et al., 2006). Nevertheless, 

the presence of the endoplasmic reticulum is essential in dendrites to induce synaptic functional 

changing: dendritic spines with endoplasmic reticulum are susceptible to mGluR-LTD, have a greater 

volume, respond to glutamate with bigger post-synaptic currents and show larger mGluR-mediated 

Ca2+ increases with respect to dendritic spines that do not have endoplasmic reticulum proteins. 

This suggests that Ca2+ in the intracellular endoplasmic reticulum plays a role in hippocampal mGluR-

LTD (Holbro et al., 2009). 

 

The expression mechanism of mGluR-LTD in CA1 neurons consists of an increase in the endocytosis 

of AMPA receptors containing GluA1 and GluA2 subunits, which are removed from the post-synaptic 

membrane (Nakamoto et al., 2007). This event relies on tyrosine dephosphorylation of the GluA2 

subunit. In addition to this, mGluRs activation stimulates the matrix metalloproteinase (MMP) TACE 

(tumor necrosis factor-α-converting enzyme): TACE cleaves the intramembrane protein NPR 

(neuronal pentraxin receptor), releasing the extracellular pentraxin domain, which in turns 

stimulates the endocytosis of AMPARs through an extracellular interaction (Cho et al., 2008). 

 

The cellular mechanism of hippocampal mGluR-LTD crucially relies on rapid (in minutes) protein 

synthesis that occurs in dendrites (Huber et al., 2000; Waung and Huber, 2009): mGluRs activation 

stimulates the rapid synthesis of new proteins, known as LTD proteins, that participate in the 

regulation of AMPARs endocytosis (Volk et al., 2007). However, it is important to note that protein 

translation dependence of mGluR-LTD was reported to change with age: inhibition of protein 

translation did not affect mGluR-LTD induction in neonatal rats (Nosyreva and Huber, 2005) and in 

hippocampal slices obtained from 10 to 15 week rats mGluR-LTD occurred independently of protein 

translation, using either synaptic induction protocols or DHPG (Moult et al., 2008). 

Group I mGluRs regulate translation during initiation and elongation processes (Costa-Mattioli et 

al., 2009; Waung and Huber, 2009). Translation initiation is stimulated by mGluRs through ERK-

MAPK and PI3K–Akt-mTOR pathways (Gallagher et al., 2004; Hou and Klann, 2004). mGluRs induce 

phosphorylation of eukaryotic initiation factor 4E (eIF4E) and eIF4E binding protein (4EBP), 

stimulating the association of translation initiation (eIF4F) complex and increasing protein synthesis 

(Banko et al., 2006; Ronesi and Huber, 2008). Activation of Akt and ERK pathways also induces 
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phosphorylation of ribosomal S6 kinase (RSK); RSK in turn increases translation of a subset of mRNAs 

that encode ribosomes and translation factors (Antion et al., 2008; Ronesi and Huber, 2008).  

One of the LTD proteins synthetized in response to mGluR-mediated pathways is Arc (Activity-

regulated cytoskeletal associated protein) (Park et al., 2008; Waung et al., 2008). Arc associates with 

dynamin 2 and endophilin, inducing AMPAR endocytosis from the post—synaptic membrane 

(Chowdhury et al., 2006; Shepherd et al., 2006; Verde et al., 2006). Activation of group I mGluRs 

leads to the rapid translation of Arc in dendrites and this rapid synthesis is required to maintain 

decreases in surface AMPARs (Link et al., 1995; Steward et al., 1998; Steward and Worley, 2001). 

Consistent with its role in the induction of mGluR-LTD, Arc levels remain elevated for the duration 

of LTD (Park et al., 2008).  

Another LTD protein is microtubule-associated protein 1B (MAP1B) and its mRNA is a FMRP target 

(Waung and Huber, 2009). DHPG treatment of hippocampal neurons increases MAP1B levels in 

dendrites (Davidkova and Carroll, 2007). MAP1B interacts with GluR2 with the scaffold GRIP1, a 

protein that stabilizes surface GluRs. The synthesis of MAP1B serves to sequester GRIP1 away from 

the synapse and destabilize GluR surface expression.  

PSD-95 is a scaffold protein which regulates the trafficking of AMPARs at the synapse (Opazo et al., 

2012; Won et al., 2017). AMPARs interact with the PSD-95 through transmembrane AMPAR 

regulatory proteins (TARPs), (Chen et al., 2000). The TARP—PSD-95 interaction reduces the mobility 

of AMPARs at the synapse, and disrupting this interaction allows AMPARs to diffuse away from the 

synapse, still bound to TARPs (Bats et al., 2007).  

FMRP contributes to group I mGluR-induced translational activation of specific mRNAs (Ronesi and 

Huber, 2008; Waung and Huber, 2009) and regulates mGluR-dependent protein synthesis and 

plasticity acting predominantly as translational suppressor. Indeed many of the mRNAs that are 

translated in response to group I mGluRs interact with FMRP, including PSD-95  (Todd et al., 2003), 

amyloid precursor protein (APP) (Westmark and Malter, 2007), elongation factor 1a (Ef1a)  (Huang 

et al., 2005),  MAP1b (Davidkova and Carroll, 2007; Hou et al., 2006) and Arc (Park et al., 2008; 

Waung et al., 2008).  

In Fmr1 KO mice, the absence of FMRP causes an overproduction of LTD proteins, which in turn 

induce excessive AMPARs internalization. As a result of this process, Fmr1 KO mice show an increase 

in hippocampal mGluR-LTD (Huber et al., 2002), which in turn affects learning and memory (Malenka 

and Bear, 2004).  
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1.8  Alterations of dendritic morphology in Fragile X Syndrome 

 

Dendritic spines, small protrusions along neuronal dendrites, are the sites receiving excitatory 

synaptic input: they contain receptors and signalling molecules that are essential for synaptic 

neurotransmission (Nimchinsky et al., 2002). Dendritic spines undergo shrinkage following 

endocytosis of AMPARs and decreases in AMPAR-mediated synaptic transmission in mGluR-LTD. At 

dendritic spines, actin is in monomeric globular (G)-actin form and  filamentous (F)-actin form, and 

the shift between these two arrangements leads to changes in spine morphology (Cingolani et al., 

2008). Dendritic spine morphology is strictly associated with synaptic plasticity: indeed, molecules 

that inhibit both polymerization and depolymerization of actin have been shown to block mGluR-

LTD (Morishita et al., 2005; Moult et al., 2006; Xiao et al., 2001). Moreover, AMPAR endocytosis 

after the induction of mGluR-LTD and actin reorganization are correlated (Eales et al., 2014; 

Vanderklish and Edelman, 2002; Zhou et al., 2004).  

An important regulator of cytoskeleton structure during mGluR-LTD is cofilin1. Preventing the 

activation of cofilin1 blocks mGluR-LTD (Asrar and Jia, 2013; Zhou et al., 2011), showing a role of 

cofilin1 in actin remodelling for synaptic plasticity (Hotulainen and Hoogenraad, 2010; Mizuno, 

2013). Some upstream regulators of cofilin1 during mGluR-LTD have been identified, among which 

Ras-related C3 botulinum toxin substrate 1 (Rac), p-21-activated kinase, and LIM kinase (Chevy et 

al., 2015).  In addition, p38-MK2 cascade is required to regulate cofilin1 activity in hippocampal 

neurons (Eales et al., 2014). These results are consistent with the idea that mGluR-LTD is associated 

with cytoskeleton reorganization resulting in spine morphological changes. 

Essential for mGluR-LTD is the interaction of AMPAR subunit GluA2 with N-cadherin, a cell adhesion 

element (Zhou et al., 2011). This interaction is important to stimulate the cofilin1-dependent actin 

reorganization during the mGluR-LTD. Moreover, the activation of the ERK1/2 pathway could also 

induce changes in actin reorganization via the STEP-βcatenin-Rac-p-21-activated kinase pathway to 

regulate cofilin1 activity (Asrar and Jia, 2013). 

In post-mortem analysis of human cortical tissue, individuals who suffered from Fragile X Syndrome 

had an increased density of dendritic spines with elongated and immature shape (Galvez and 

Greenough, 2005; Greenough et al., 2001; Hinton et al., 1991; McKinney et al., 2005; Rudelli et al., 

1985; Wisniewski et al., 1991). Similar altered dendritic spine density and morphology have been 
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found in Fmr1 KO mice (Comery et al., 1997; Grossman et al., 2006; Irwin et al., 2002; Nimchinsky 

et al., 2001).  

Developmental studies revealed an increase in spine density and length in brain cortex of Fmr1 KO 

mice compared to controls (Nimchinsky et al., 2001). In addition, a hippocampal CA1-specific altered 

protrusion phenotype was observed, which was absent in the CA3 region of the hippocampus 

(Levenga et al., 2011), indicating that the lack of FMRP differently influences dendritic spine 

morphology in distinct brain areas.  

To summarize, as a negative regulator of mRNA translation, FMRP influences protein synthesis and 

therefore affects the synaptic components located in dendritic spines. Given the importance of 

FMRP for the regulation of synaptic proteins, it is unsurprising that loss of FMRP results in 

abnormalities in the structure and functionality of neuronal synapses.  

1.9  Mitochondrial alterations in Fragile X Syndrome 
 

Mitochondria are present in axons and dendrites of neurons and are play a prominent role in 

synaptic plasticity (Mattson, 2007). Indeed, synaptic activation and LTP induce changes in 

mitochondria (Mattson and Liu, 2003), such as an enhancement of energy production (Wieraszko, 

1982), of calcium pump activity (Stanton and Schanne, 1986) and of gene expression (Williams et 

al., 1998).  

Mitochondria are ubiquitous dynamically motile organelles with their own DNA and independent 

mitochondrial translation system (Protasoni and Zeviani, 2021; Trigo et al., 2022). They are involved 

in energy metabolism as main cellular ATP producers and regulate cellular functions such as 

Ca2+ homeostasis in cooperation with the endoplasmic reticulum (Rowland and Voeltz, 2012) and 

reactive oxygen species (ROS) signalling, which modulates immune responses (Singer and Chandel, 

2019). 

Mitochondria have two phospholipidic membranes, the outer and the inner mitochondrial 

membrane, which divide the organelle into two spaces, the matrix and the intermembrane space 

(Kühlbrandt, 2015). The two membranes show a different lipid composition: the outer membrane 

is more similar to eukaryotic cell membranes, whereas the inner membrane is characterized by a 

higher protein/lipid ratio and forms highly packed invaginations in the matrix, called cristae (Ernster 

and Schatz, 1981). Anchored in the cristae, respiratory chain complexes perform oxidative 
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phosphorylation (OXPHOS) (Trigo et al., 2022). During this process, oxygen is metabolized to 

generate energy in form of ATP through a series of reductive steps at the inner mitochondrial 

membrane via the electron transport chain, composed by the respiratory chain complexes I to IV, 

associated with transport of protons across the mitochondrial membrane (van der Bliek et al., 2017).  

The first complex, NADH dehydrogenase, catalyses the oxidation of nicotinamide adenine 

dinucleotide (NADH) into NAD+ by ubiquinone, also called as coenzyme Q10, conserving the free 

energy of the reaction as a transmembrane proton gradient (Hirst, 2009). Complex II, or succinate 

dehydrogenase, has a role in the tricarboxylic acid cycle and in the electron transport chain, linking 

the two essential energy-producing processes of the cell (Ackrell, 2000; Cecchini, 2003; Saraste, 

1999). In tricarboxylic acid cycle, it oxidises the succinate to fumarate, while as a component of the 

respiratory complex, it transfers electrons from succinate to ubiquinone, through flavin adenine 

dinucleotide (FAD) (Tomitsuka et al., 2009). Ubiquinone provides electrons from complexes I and II 

to complex III (ubiquinone-cytochrome c oxidoreductase), which in turn brings electrons to 

cytochrome c, a mobile protein that transfers them to complex IV (cytochrome c oxidase) (Solmaz 

and Hunte, 2008). Finally complex IV enables the terminal reduction of O2 to H2O. Complexes I, III, 

and IV pump H+ into the mitochondrial intermembrane space, creating a strong proton gradients 

that drives ATP synthesis by complex V or ATP synthase complex (Payne and Chinnery, 2015).  

The by-products of oxidative phosphorylation are ROS, generating from a premature electron leak 

along the electron transport chain from complex I, II and III (Liu et al., 2002; Zhao et al., 2019). These 

electrons are transferred to O2, producing superoxide (O2
−). This is an extremely reactive free radical 

which is turned into H2O2 by the mitochondrial or cytosolic superoxide dismutase (SOD) (Cadenas 

and Davies, 2000; Chance et al., 1979). O2
− and H2O2 are kept at low concentrations (from 10−11 to 

10−8 M) (Chance et al., 1979; Giorgio et al., 2007; Sies et al., 2017), but when they reach high levels,  

ROS cause oxidative damage of proteins, lipids and nucleic acids (Sies, Berndt, & Jones, 2017). 

FMRP specifically binds Superoxide Dismutase 1 (Sod1) mRNA via a motif called SoSLIP, composed 

of three stem loops separated by a short sequence (Bechara et al., 2009). The absence of FMRP 

results in decreased expression of Sod1 in polyribosomes, leading to a reduced expression in the 

brain of Fmr1 KO mice. The decreased expression of Sod1 leads to a more sensitive mitochondrial 

oxidative stress in neurons.  

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/electron-transport
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ubiquinone
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ubiquinone
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The human brain necessitates of 20% of the whole organism metabolic production (Attwell and 

Laughlin, 2001), using glucose that undergoes glycolysis and oxidative phosphorylation to produce 

ATP and to assist synaptic transmission (Yin et al., 2016).  

Thanks to generating energy, mitochondria rule important processes in neuron such as 

neuroplasticity, neurotransmitter release, axonal polarity and outgrowth (Cheng et al., 2010; Lee 

and Peng, 2008; Mattson, 2007; Verstreken et al., 2005). Dendritic, axonal, and presynaptic regions 

have different energy requests, which mean an adaptation of ATP production due to a strict 

connection between neuronal and mitochondrial activity (Kann and Kovács, 2007). Mitochondria 

are present along the length of axons and in presynaptic terminals; they are located mainly in the 

dendritic shafts and occasionally associated with spines (Popov et al., 2005). To adapt to variable 

energy requests, mitochondria move within and between neural regions involved in neuroplasticity.  

During neurogenesis, a process in which neuronal stem cells differentiate into neurons, there is an 

involvement of mitochondria in regulating an adaptive response to environmental energy demand 

(Kempermann et al., 2004; Kitamura et al., 2009). In neurogenesis, neurons start to make axons, 

dendrites and synapses and mitochondria bunch up at the active growing cone of the developing 

neurites  (Mattson and Partin, 1999). As soon as the axon is made, mitochondria migrate into the 

new neurite, following an anterograde movement in growing axons and retrograde movement in 

non-growing axons (Ruthel and Hollenbeck, 2003). 

When ATP production is altered in mitochondria, axogenesis is abolished although the growth of 

dendrites remains unaffected (Mattson and Partin, 1999). The axonal and dendritic behaviour of 

mitochondria are also different in hippocampal neuron cultures, where mitochondria are more 

motile but less active in axons, whereas in dendrites they are less motile but more metabolically 

active (Overly et al., 1996). An altered mitochondrial ATP production and an enhancement of free 

radicals due to a leak of electrons from the mitochondrial chain complexes are key aspects in a large 

amount of neurological diseases (Breuer et al., 2013; Sai et al., 2012) characterized by 

developmental delay (Gibson et al., 2010). Defective mitochondria especially affect tissues that are 

more sensitive to oxidative stress, particularly the brain (Wallace and Fan, 2010). Alterations in 

dendritic spine densities due to dysfunctional mitochondria or impaired ROS homeostasis are 

indicated to be culprits in neurodevelopment diseases such as Down syndrome, Rett syndrome, 

Fragile X Syndrome (Valenti et al., 2014). 
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In the last years increasing attention was paid to mitochondrial dysfunctions. Growing evidence 

suggests that mitochondrial dysfunctions and defects in oxidative phosphorylation play a central 

role in Fragile X syndrome. FMRP regulates microtubules formation in neurites (De Diego Otero et 

al., 2002) and recently it has been reported that drosophila FMRP regulates microtubule network 

formation and axonal transport of mitochondria (Yao et al., 2011). Moreover, it has been recently 

demonstrated an altered expression of mitochondrial genes and increased oxidative stress that 

contribute to deficits in dendritic maturation and behaviour in Fmr1 KO mice (Shen et al., 2019). 

Consistent with the latter result, an increased oxidative stress has been described in Drosophila 

lacking FMRP (Weisz et al., 2018).  An alteration in the balance between fission and fusion was also 

shown in Fmr1 KO mice, leading to structural and functional abnormalities in mitochondria (Shen et 

al., 2019) which might compromise mitochondrial bioenergetic efficiency. This hypothesis was 

confirmed by a significant reduction in the rate of mitochondrial ATP production in the brain cortex 

of Fmr1 KO mice (D'Antoni et al., 2020). Analysing the activity of mitochondrial respiratory chain 

complexes, there was an increasing activity of all five complexes in the range between 40% and 50% 

in the cortex of post-natal day 21- and 12-month-old Fmr1 KO mice. In line with these results, an 

enhancement in the activity of mitochondrial complexes was observed in the striatum and in the 

cerebellum of 12-month-old Fmr1 KO mice (D'Antoni et al., 2020). These data are consistent with 

the evidence of mitochondrial hyperactivity and greater susceptibility to oxidative stress reported 

in ASD (Rose et al., 2017). The hyperactivation of mitochondrial complexes could be caused by FMRP 

absence, since FMRP is able to bind mRNAs encoding for some components of mitochondria 

respiratory chain complexes (Ascano et al., 2012; Maurin et al., 2018a). One of FMRP targets is the 

mRNA coding for mitochondrial glycerol-3-phosphate dehydrogenase (mG3P-DH) (Ascano et al., 

2012; Maurin et al., 2018a), an enzyme of glycerophosphate shuttle which links lipid and glucose 

catabolism to OXPHOS (Mráček et al., 2013). In the brain cortex of Fmr1 KO mice, increased activity 

and expression of mG3P-DH have been observed, that likely lead to glycerophosphate shuttle 

potentiation (D'Antoni et al., 2020), with possible metabolic implications. Indeed, glycerol-3-

phosphate dehydrogenase competes with glycerol-3-phosphate acyltransferase, which is implicated 

in lipid synthesis, leading to a defect in lipid production and storage in FXS (Weisz et al., 2018). In 

addition, the mitochondrial respiratory chain and mitochondrial glycerol-3-phosphate 

dehydrogenase are producer of ROS, and their hyperactivation induced an increased oxidative stress 

(Bechara et al., 2009; Davidovic et al., 2011; de Diego-Otero et al., 2009; El Bekay et al., 2007).  
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Beyond the increased activity of the mitochondrial respiratory chain complexes, fragile X neurons 

show an enhancement in some glycolytic enzymes including hexokinase II, pyruvate kinase M2 

variant and lactate dehydrogenase and also in enzymes required for tri-carboxylic acids cycle and 

NAD+/NADH metabolism, including enzymes of the malate/aspartate shunt and isocitrate 

dehydrogenase (Licznerski et al., 2020). High glycolytic activity and lactate production, but also 

increases in TCA cycle enzymes are hallmark features of immature and developing cells (Fame et al., 

2019), suggesting that mitochondrial abnormalities could be emblematic of neuronal immaturity 

(Licznerski et al., 2020). It was recently shown that forebrain mitochondria from the Fmr1  knock out 

mice brains have inefficient thermogenic respiration due to a coenzyme Q-regulated proton leak, 

leading to synaptic spine and behavioral abnormalities (Griffiths et al., 2020).  Fmr1 KO forebrain 

mitochondria show an increased Complex II and Complex V kinetic activity compared to control, 

whereas the activities of Complex I + III and Complex II + III within forebrain mitochondria were 

significantly decreased than control, suggesting CoQ deficiency. Consistent with these results, levels 

of CoQ via HPLC were quantified, showing a decreased level of this CoQ in Fmr1 KO mitochondria. 

A readout of the appropriate function of the electron transport chain is the mitochondrial inner 

membrane potential (Licznerski et al., 2020).  The mitochondrial membrane potential is generated 

by proton pumps (Complexes I, III and IV) and it serves as an intermediate form of energy storage 

which is used by ATP synthase to make ATP. (Zorova et al., 2018). FXS mitochondria has less than 

half of the membrane potential in WT mitochondria (Licznerski et al., 2020).  

To produce ATP, H+ ions move across the mitochondrial ATP synthase (complex V) and cause a 

conformational change in the enzyme, making ATP.   ATP synthase (F0F1) is a large protein complex 

located in the inner membrane, where it catalyzes ATP synthesis from ADP, Pi, and Mg2+ at the 

expense of an electrochemical gradient of protons generated by the electron transport chain 

(Pedersen et al., 2000). The mammalian ATP synthase has 15 subunit types (BUCHANAN and 

WALKER, 1996; Catterall and Pedersen, 1971; Ko et al., 2000), forming the F1 catalytic unit (Catterall 

& Pedersen, 1971), an ATP hydrolysis-driven motor and F0. F0, containing subunits a and c, is 

anchored in the inner membrane to form a proton-driven motor, and a second part composed of 

subunits b and F6 (Collinson et al., 1994; Golden and Pedersen, 1998; Ko et al., 2000). Pathological 

opening of the channel may occur upon conformational change of the ATP synthase (Gerle, 2016; 

Gu et al., 2019; Mnatsakanyan and Jonas, 2020; Vlasov et al., 2019), separation of the F1 from the 

FO (Alavian et al., 2014) or loss of F1 (Chen et al., 2019).  
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In Fmr1 KO neurons, the level of ATP synthase, b-subunit and c-subunit levels were highly elevated 

compared to those measured in control mitochondria (Licznerski et al., 2020). The mRNA of b-

subunit is a target of FMRP (Darnell et al., 2011). Through RT-PCR experiment, the mRNAs codifying 

for b-subunit and c-subunit were increased in Fmr1 KO synapses compared to those of WT synapses 

(Licznerski et al., 2020). These results elucidate the influence of the lack of FMRP on the transcription 

of ATP synthase subunits: only b-subunit, but not c-subunit, translation is to be regulated by FMRP. 

The abnormal levels of ATP synthase c-subunit in FXS mitochondria lead to a mitochondrial inner 

membrane leak.  

 

1.10 5-HT7 receptors 
 

Serotonin (5-hydroxytryptamine, 5-HT) acts as a monoamine neuro-hormone and neurotransmitter 

in the central nervous system (CNS), with a role in regulation of mood, perception, circadian rhythm, 

nociception, hormone secretion, aggression, anxiety, appetite and sexual behaviour, (Abela et al., 

2020; Cervantes-Durán et al., 2013; Cummings and Leiter, 2020; Hannon and Hoyer, 2008; Nichols 

and Nichols, 2008; Paulus and Mintz, 2016), and in peripheral nervous system (PNS), where it 

controls intestinal motility (Foxx-Orenstein et al., 1996) and immune/inflammatory response 

(Ahern, 2011). 5-HT has also been linked to cognition, memory, learning, and attention 

(Pourhamzeh et al., 2021). 

During neuronal development, 5-HT influences synapse formation and has a modulatory role in 

proliferation, migration, differentiation, maturation of postmitotic neurons (Daubert and Condron, 

2010). Notably, 5-HT also regulates cell adhesion molecules, which influences neuronal plasticity in 

both developing and adult brains (Dalva et al., 2007) and controls adult hippocampal neurogenesis 

(Duman and Monteggia, 2006). 

In the CNS, serotonergic neurons are located in two groups of nuclei of dorsal and median raphe 

(DRN and MRN), and in part of the reticular formation in the brain stem (Abela et al., 2020) and 

project their axons to cortical, limbic, midbrain, and hindbrain regions (Huang et al., 2019). 

In the PNS, 5-HT is synthesized by both gut neurons and enterochromaffin cells, located in the 

gastrointestinal (GI) system, and serves several roles as a hormone, autocrine, or paracrine factor. 

Because 5-HT cannot cross blood–brain barrier (BBB), these two central and peripheral 5-HT 

systems are entirely independent (Sahu et al., 2018). 
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5-HT exerts a large number of effects by activation of seven subtypes of transmembrane receptors 

(5-HT1–7). 5-HT3 receptors are ligand-gated ion channels mediating fast depolarization (Sugita et al., 

1992). All the other 5-HT receptors are G protein-coupled metabotropic receptors: 5-HT1 and 5-HT5 

receptors inhibit adenylate cyclase, 5-HT4, 5-HT6 and 5-HT7 receptors instead stimulate adenylate 

cyclase, whereas the 5-HT2 receptor family is positively linked to phospholipase C (Hannon and 

Hoyer, 2008; Millan et al., 2008; Pytliak et al., 2011). Autoreceptors are present presynaptically on 

the soma (5-HT1ARs) or on axon terminals (5-HT1B and 5-HT1D receptors) of serotonergic neurons 

and control 5-HT release via regulation of neuronal firing rate and negative feedback in concordance 

with the function of 5-HT transporters. Moreover, the activity of serotonergic neurons is regulated 

by 5-HT2BRs (Belmer et al., 2018) and 5-HT7Rs (Martín‐Cora and Pazos, 2004). 

5-HT7R belongs to the family of G protein-coupled receptors (GPCRs) (Hoyer et al., 2002). It is 

expressed in different area of mice and rat brain, among which thalamus, hypothalamus, 

hippocampus, prefrontal cortex, amygdala, raphe nuclei, suprachiasmatic nucleus, and spinal cord 

(Dogrul and Seyrek, 2006; Hedlund and Sutcliffe, 2004; Thomas and Hagan, 2004). 5-HT7R 

expression in the human brain is similar to that found in mice (Hagan et al., 2000; Martín‐Cora and 

Pazos, 2004; Varnäs et al., 2004). However the human 5-HT7R is also expressed in caudate nucleus, 

putamen and substantia nigra (Martín‐Cora and Pazos, 2004), where mice have no expression of 

this receptor. 5-HT7R brain expression level is age-related: in mice, the amount of 5-HT7R in neurons 

is high at birth and then decreases progressively during development (García-Alcocer et al., 2006; 

Kobe et al., 2012; Muneoka and Takigawa, 2003). However 5-HT7 receptors exert important 

functions also in the adult: it has been implicated in the regulation of sleep, circadian rhythm, body 

temperature control, learning, memory and cognition (Gellynck et al., 2013; Matthys et al., 2011). 

The role of 5-HT7 receptors has been studied using the 5-HT7 receptor knock-out (5-HT7 KO) mice 

(Guscott et al., 2005; Roberts et al., 2004; Sarkisyan and Hedlund, 2009; Witkin et al., 2007). 

Behavioural studies on 5-HT7 KO mice (Roberts et al., 2004; Sarkisyan and Hedlund, 2009) and on 

wild-type animals (Eriksson et al., 2012; Manuel-Apolinar and Meneses, 2004; Perez-García and 

Meneses, 2005) point out a pro-cognitive action exerted by activation of 5-HT7 receptors. 5-HT7 KO 

mice have no memory alteration in operant food conditioning tests, a kind of hippocampus-

independent memory, and Barnes maze, which in contrast is a hippocampus-dependent spatial 

learning. However, these mice displayed a memory deficit in the fear conditioning test, which 

involves hippocampus-dependent contextual learning with an emotional component. These studies 

suggest that 5-HT7 receptors do not influence hippocampus-independent memory, whereas they 
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have a specific role in hippocampus-dependent learning with a strong emotional part. The specific 

contextual learning impairment of 5-HT7 KO mice was consistent with a decrease of CA1 

hippocampal LTP. However, 5-HT7 KO mice show normal recognition of novel objects (Sarkisyan and 

Hedlund, 2009), which is a cortex – dependent memory based on visual stimuli and that correspond 

to human declarative episodic memory. A study on allocentric spatial memory (a hippocampus-

dependent memory which encodes information about the location of an object respect to other 

objects in the space and independent from the observer), showed that either 5-HT7 KO mice or wild 

type mice treated with the 5-HT7 antagonist SB-269970 have an impairment in the recognition of a 

novel location, whereas no alteration was found about the egocentric memory, which is a striatum-

dependent memory in which the location of an object is related to the observer (Sarkisyan and 

Hedlund, 2009). During the passive avoidance test, a contextual learning, in vivo administration of 

a 5-HT7 agonist induced a pro-cognitive effect; this effect was abolished and replaced with a learning 

impairment when 5-HT1 receptors were activated (Eriksson et al., 2008; Eriksson et al., 2012). 5-HT7 

receptors are able to influence learning based on Pavlonian and instrumental tasks (Perez-García 

and Meneses, 2005). During an instrumental learning task, a rodents pressed a lever and a food 

reward was rapidly delivered, while a food reward was delivered with a short delay following a light 

signal during conditioned learning. The activation of 5-HT7 receptors by a subcutaneous injection of 

agonist AS-19 increased memory formation in adult rats.  

The 5-HT7 receptor gene contains several introns in the coding region (Ruat et al., 1993) that cause 

a significant number of functional splice variants. Three 5-HT7 isoforms were identified in human 

tissues which possess different C-terminal tails: 5-HT7a (445-aa), 5-HT7b (432-aa) and 5-HT7d (479-aa) 

(Heidmann et al., 1997). All the isoforms are coupled to Gs protein and also interact with G12 protein 

(Kvachnina et al., 2005; Riobo and Manning, 2005; Strathmann and Simon, 1991).  

The activation of Gs protein, leads to the stimulation of Adenylate Cyclase (AC), which in turn causes 

an increase in intracellular cAMP level  (Shen et al., 1993). The 5-HT7R can also stimulate ACs without 

the activation of Gs proteins: the 5-HT7(a) isoform stimulates ACI and ACVIII, which are present 

exclusively in the brain and are Gs-insensitive (Wirth et al., 2017); their activation depends on 

intracellular calcium concentration and on Ca2+/calmodulin-dependent signalling pathways. The 

activation of all types of AC produces cAMP, which stimulates protein kinase A (PKA), triggering the 

activation of the kinases ERK and Akt, both depending on the activation of Ras and involved in 

morphogenic changes. In particular, Akt activation necessitates an enhancement of both [cAMP] 

and intracellular [Ca2+], while ERK is inhibited by Ca2+ increasing level and can be induced in a PKA-
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independent pathway or by EPAC exchange protein that is directly activated by cAMP (Grimes et al., 

2015; Lin et al., 2003). Another kinase linked to ERK is Cdk5: this kinase activates ERK by 

phosphorylation at threonine 202 and tyrosine 204, leading to neurite outgrowth in cortical and 

striatal neurons isolated from embryonic rats, as well as in cortical, striatal, and hippocampal 

neurons from embryonic mice (Speranza et al., 2013). Stimulation of 5-HT7Rs can also activate 

mTOR-mediated pathway; this mechanism was shown to influence the expressions of proteins 

involved in synaptogenesis such as CamKII and Shank3 (Bhattacharya et al., 2012) and to modulate 

synaptic plasticity and memory formation (Odajima et al., 2011).  

As already mentioned, in addition to Gs the 5-HT7R is coupled to the Ga12 subunit of the G12/13 

protein family (Wirth et al., 2017). The main downstream effectors of the G12/13 proteins are Rho 

small G proteins (Chen et al., 2005; Fukuhara et al., 1999). The Rho family of GTPases belongs to a 

subfamily of the Ras superfamily (Boureux et al., 2007). The major members of the Rho family are 

Cdc42, Rac1, and RhoA (Fukuhara et al., 2001). These Rho GTPases modulate cell morphology and 

in particular actin cytoskeleton organization, influencing the neural branch dynamics, dendritic 

development, and neurite outgrowth through the cell rounding and filopodia formation in the 

neurons (Li et al., 2000; Ruchhoeft et al., 1999; Sit and Manser, 2011; Zipkin et al., 1997). Rac1 and 

Cdc42 activities promote neurite extension and branching, while RhoA causes neurite retraction and 

growth cone collapse (Ponimaskin et al., 2007). 

Conditions determining a preferential activation of either Gs or G12 by 5-HT7Rs are not clear, but 

some indication exists. Palmitoylation of 5-HT7 receptors can influence the Gs-mediated constitutive 

activity but has no effect on G12-mediated stimulation (Gorinski and Ponimaskin, 2013; Kvachnina 

et al., 2009), suggesting that post-translational modifications of 5-HT7 receptors are able to 

influence the intracellular pathway activated, thus changing their final effect. In addition, there is a 

different expression of G proteins coupled to 5-HT7R during neuro-development: the amount of G12 

is higher at early post-natal age, whereas the expression of Gs remains constant during development 

(Kobe et al., 2012).  

5-HT7 receptors play an important role in actin cytosketon remodelling: 5-HT7R activation in cultured 

hippocampal neurons enhanced neurite length, promoted dendritic spine formation, enhanced the 

number of structurally intact synapses, and increases both the general level of AMPA receptor 

expression as well as the number of synaptic AMPA receptors, increasing the amplitude of excitatory 

postsynaptic potentials (Kobe et al., 2012; Kvachnina et al., 2005). In addition, the number of 
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dendritic protrusions and synapse density in Gα12 knockout (KO) neurons were reduced compared 

to wild type neurons, showing that morphogenic synaptic changes are mediated by 5-HT7R/G12 

(Kobe et al., 2012). 

Activation of 5-HT7R increased neurite length, the number of dendritic protrusions, and the number 

of synaptic contacts in cultured striatal and cortical neurons (Speranza et al., 2017), consistent with 

results on primary hippocampal neurons (Kobe et al., 2012; Kvachnina et al., 2005). Moreover, 

Speranza and colleagues observed that cyclin-dependent kinase 5 (Cdk5) and Cdc42 are required to 

maintain 5-HT7R-mediated spine formation, acting as downstream effectors of 5-HT7R of striatal 

neurons (Speranza et al., 2017).  

5-HT7-mediated effects on synapse morphology also involve extracellular matrix remodelling: a very 

interesting study shows that 5-HT7 receptors increase neuronal outgrowth and promote elongation 

of dendritic spines by activation of  matrix metalloproteinase 9 (MMP-9), leading to cleavage of 

CD44 followed by Cdc42 activation (Bijata et al., 2017). 

5-HT7R/G12 signalling influences neuronal morphology especially during early development 

(Herlenius and Lagercrantz, 2001). As already mentioned, the expression of 5-HT7R and G12 are 

downregulated during later development (Kobe et al., 2012). Therefore, 5-HT7R/G12 signalling 

influences dendrite morphogenesis, synaptogenesis, and functional plasticity of hippocampal 

networks during early stages of development and a disruption of serotonergic transmission 

participates to the onset of neurodevelopmental disorders. 

Nevertheless, 5-HT7R-mediated modulation of neural plasticity is not restricted to embryonic and 

early postnatal development but also occurs in adulthood (Ciranna and Catania, 2014).  

 

1.11 The cAMP theory in Fragile X syndrome 

 

Several studies have reported an aberrant cAMP pathway in patients suffering from FXS (Berry‐

Kravis and Huttenlocher, 1992; Kelley et al., 2007). Blood platelets from FXS patients have a reduced 

basal level of cAMP (Berry‐Kravis and Huttenlocher, 1992; Berry‐Kravis and Sklena, 1993) and a 

reduced cAMP production induced by forskolin (Kelley et al., 2007). Importantly, as already 

mentioned, in absence of FMRP, PDE2A, a cAMP degradative enzyme and FMRP target, is over-

expressed in cortical and hippocampal FXS neurons leading to low cAMP levels (Maurin et al., 
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2018a). Consistent with the cAMP theory for FXS, exaggerated mGluR LTD in Fmr1 KO mice was 

corrected by blockade of mGluR2  (Choi et al., 2016; Choi et al., 2011), by inhibition of PDE4 (Choi 

et al., 2016; Choi et al., 2015) and by inhibition of PDE2A (Maurin et al., 2018b),  all increasing 

intracellular cAMP level. 

In agreement with the studies above indicated, results from our laboratories show that excessive 

mGluR-LTD in Fmr1 KO mice was corrected by activation of 5-HT7R and PACAP receptors, both 

stimulating adenylate cyclase (Costa et al., 2018). In the same work, we show that in WT neurons, 

following blockade of adenylate cyclase the amount of mGluR-LTD became comparable to that 

observed in Fmr1 KO slices, suggesting that exaggerated mGluR-LTD in Fmr1 KO mice might be 

related to reduced cAMP production.  

Taken together these results suggest that Gs-coupled receptors might correct the cAMP deficit in 

FXS and represent a new pharmacological strategy for FXS therapy.  

 

1.12 Cyclin-dependent kinase 5 (Cdk5) 
 

Cyclin‐dependent kinase 5 (Cdk5) belongs to a large family of cyclin‐dependent kinases and is 

involved in 5‐HT7 receptor-mediated effects on axonal and dendritic growth (Speranza et al., 2013; 

Speranza et al., 2015; Speranza et al., 2017). Cdk5 is a proline-directed serine/threonine protein 

kinase, which was first discovered thanks to its close sequence homology to the human cell division 

cycle protein 2 (Cdc2, also known as Cdk1), a regulator protein of cell cycle (Hellmich et al., 1992; 

Lew et al., 1992; Meyerson et al., 1992). Unlike the other cyclin-dependent kinases, Cdk5 is not 

involved in the cell cycle, being mostly expressed in post‐mitotic neurons, and plays a crucial role in 

the brain controlling neuronal differentiation and migration during development, cytoskeletal and 

microtubule regulation and synaptic plasticity (Kawauchi, 2014; Shah and Rossie, 2018; Ximerakis 

et al., 2019). Unlike other Cdks, which are expressed at high levels during development, Cdk5 is 

expressed not only during development (Pao and Tsai, 2021) but also in adult mouse brain (Tsai et 

al., 1993). As a Cdk family member, Cdk5 activity relies on the association with specific partners to 

become active. Cdk5 activators present only in neurons are the intracellular membrane‐bound 

peptides p35 and p39 (Ko et al., 2001). The expression of Cdk5 and p35 match during the same 

period in the developing mouse neocortex, and p35 is primarily expressed in the post-mitotic 

neurons like Cdk5 (Tsai et al., 1994). The other regulatory subunit, p39, was discovered thanks to its 

high sequence identity to p35 (Tang et al., 1995). P39 is highly expressed in the brain (Humbert et 
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al., 2000; Ko et al., 2001; Tang et al., 1995), but shows differences from p35: during neural 

development, the expression of p35 is high from embryonic stage to postnatal stage, whereas p39 

is more expressed postnatally (Takahashi et al., 2003). In addition, p35 and p39 are differently 

located in the brain: p35 is most present in the cerebral cortex and cerebellum, whereas p39 is 

predominantly localized in the cerebellum, brain stem, and spinal cord. Moreover, p39 protein is 

more stable than p35 but has lower binding affinity for Cdk5 (Minegishi et al., 2010; Yamada et al., 

2007). The lack of p39 or Cdk5 in cultured neurons causes impairment in dendritic morphogenesis 

whereas no alteration was observed in cultured neurons lacking p35 expression (Ouyang et al., 

2020). Cdk5/p39 also plays an important role in Rac1-induced remodelling of cytoskeleton (Ito et 

al., 2014).  

Cdk5 has different roles in neuronal migration, neurite outgrowth, axonal guidance, and synaptic 

plasticity (Pao and Tsai, 2021). In particular, this kinase influences microtubule and cytoskeleton-

related function (Xie et al., 2003), promoting axon formation (Fang et al., 2011) (Nikolic et al., 1998) 

(Duhr et al., 2014) (Furusawa et al., 2017), and regulating neural migration (Nikolic et al., 1998; 

Nishimura et al., 2014; Perlini et al., 2015; Xie et al., 2003; Ye et al., 2014). Moreover Cdk5 was 

shown to affect synaptic functions increasing clathrin-mediated endocytosis (Floyd et al., 2001; 

Tomizawa et al., 2003), increasing vesicle release (Shuang et al., 1998), regulating synaptic plasticity 

(Huang et al., 2017; Lai et al., 2012; Li et al., 2001; Morabito et al., 2004; Seeburg et al., 2008; Wang 

et al., 2003) and calcium influx (Su et al., 2012; Tomizawa et al., 2002). p35-null mice show 

impairment in axonal and dendritic organization (Chae et al., 1997) and in long-term depression and 

display a depotentiation of long-term potentiation (Ohshima et al., 2005), showing a role for the 

Cdk5/p35 complex in synaptic plasticity.  

Cdk5 is also involved in BDNF-TrkB signalling phosphorylation of TrkB on Ser 478 by Cdk5 increases 

activity-dependent structural plasticity and spatial memory (Lai et al., 2012).   

In some pathological conditions, the cleavage of p35 to a shorter activator peptide p25 causes an 

aberrant Cdk5 activity. Moreover, p25 lacks the myristoylation signal that normally anchors Cdk5 to 

the membrane. Neurotoxic insults cause calcium influx and trigger the activation of a cysteine 

protease named calpain (Lee et al., 2000). p35 is cleaved by calpain at Phe98/Ala99  sequence 

producing an accumulation of p25 into cytoplasm and nucleus, causing an constitutive activation 

and a mislocalization of Cdk5 (Allnutt et al., 2020) due also to a 5- to 10-fold longer protein half-life 

compared to p35 (Patrick et al., 1999). Aberrant p25/Cdk5 signalling is involved in neurotoxicity, 
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neuroinflammation (Sundaram et al., 2012), neurodegeneration (Cheung and Ip, 2004), Alzheimer's 

disease (Patrick et al., 1999; Shukla et al., 2012; Tseng et al., 2002) and Parkinson's disease (He et 

al., 2020).  

Moreover, Cdk5 has an influence in regulation of mitochondrial fission. Mitochondria are 

dynamically interconnected, allowing them to share membranes, solutes, metabolites and proteins 

(Liu et al., 2020).  Mitochondria separate and merge using fission and fusion processes to respond 

to changes in energy and stress status: fusion happens when two adjacent mitochondria join, while 

fission separates one mitochondria into two, facilitating the removal of damaged components 

through mitophagy (Giacomello et al., 2020). Cdk5 hyperactivity leads to abnormal mitochondrial 

fission in pathological conditions, such as neurotoxic insults and neurodegenerative diseases 

(Cherubini et al., 2015; Jahani-Asl et al., 2015; Meuer et al., 2007; Park et al., 2019; Park et al., 2020; 

Rong et al., 2020; Sun et al., 2008; Yang et al., 2020). Excessive mitochondrial fission is associated 

with mitochondrial defects and neuronal death.  
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CHAPTER 2: Aim of the study 
 

FXS is classified as a synaptopathy, since the lack of FMRP, an mRNA binding protein regulating 

translation of a large amount of synaptic protein(Pfeiffer and Huber, 2009), leads to alterations of 

synaptic morphology and function. The murine model of the disease, the Fmr1 KO mouse, shows 

abnormal synaptic plasticity, aberrant maturation of dendritic spines and altered mitochondrial 

functions. At present, no specific therapy is available for FXS patients: the failure of numerous 

clinical trials underlines the urgency to identify new therapeutic targets.  

Our research group has demonstrated that activation of 5-HT7 receptors is able to reverse mGluR-

LTD in wild type mouse hippocampal neurons and to reduce excessive mGluR-LTD in Fmr1 KO mouse 

neurons, thus correcting a typical synaptic malfunction in a FXS mouse model. Moreover, in vivo 

administration of a selective agonist for 5-HT7 receptors, LP-211, can rescue learning and behaviour 

in Fmr1 KO mice, suggesting that 5-HT7 receptor agonists might became pharmacological tools for 

a possible therapy of Fragile X syndrome.  

In this perspective, the aim of my PhD studies was to investigate the intracellular molecular 

pathways involved in 5-HT7 receptor-mediated reversal of mGluR-LTD. On this purpose, I used the 

patch clamp technique on hippocampal slices from wild-type and Fmr1 KO mice to record mGluR-

LTD in the synapse between CA3 and CA1 pyramidal neurons. In particular, I focused on two main 

points: 1) a possible involvement of Cdk5 and Akt kinases, which were shown to be involved in 5-

HT7 receptor-mediated effects on maturation of dendritic spines; 2) a possible role of protein 

translation in 5-HT7-mediated reversal of mGluR-LTD. 

In addition, Fmr1 KO neurons show an enhancement of oxidative stress, an aberrant mitochondrial 

respiratory chain activity and an alteration in the ATP production (D'Antoni et al., 2020). Therefore, 

I have investigated whether the activation of 5-HT7 receptors could influence mitochondrial activity. 

On this purpose, I have studied 5-HT7 receptor expression and effects in a neuroblastoma cell line, 

a widely used in-vitro cellular model to study neuro-pathologies. 

During my abroad period at the IPMC (Institute Pharmacology Moléculaire Et Cellulaire) in 

Valbonne, I have characterized a new murine model of intellectual disability. The Dr. Bardoni’s 

research group identified a spontaneous R857G mutation in the Kcc2 gene (unpublished data). The 

new variant causes the onset of seizures only in 4 months old mice with just the movement of the 

cage. Therefore, I investigated if this spontaneous mutation in the Kcc2 gene could affect the 
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expression of KCC2 protein in different brain region and influence neural activity and dendritic spine 

shape in the brain of Kcc2 mutated mice. 
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CHAPTER 3: Materials and methods 

3.1 Electrophysiology 

Experiments were performed on mice Fmr1 KO mice from C57BL/6J strain from a breeding colony 

kept at the University of Catania. Mice were maintained with a controlled temperature (21◦C ± 1◦C) 

and humidity (50%) on a 12 h light/dark cycle, with ad libitum food and water. Acute hippocampal 

slices were prepared from wild type and Fmr1 KO mice (postnatal age 14 – 23 days). The brains were 

removed, placed in oxygenated ice-cold artificial cerebrospinal fluid (ACSF; in mM NaCl 124; KCl 3.0; 

NaH2PO4 1.2; MgSO4 1.2; CaCl2 2.0; NaHCO3 26; D-glucose 10, pH 7.3) and cut into 300 µm slices 

with a vibratome. Slices were continually perfused with oxygenated ACSF and viewed with infrared 

microscopy. Schaffer collaterals were stimulated with negative current pulses (duration 0.3 ms, 

delivered every 15 s). Evoked excitatory post synaptic currents (EPSCs) were recorded under whole-

cell configuration from CA1 pyramidal neurons (holding potential −70 mV). Data were acquired and 

analysed using Signal software. The recording micropipette was filled with intracellular solution (in 

mM: K-gluconate 140; HEPES 10; NaCl 10; MgCl2 2; EGTA 0.2; Mg-ATP 3.5; Na-GTP 1; pH 7.3). To 

isolate AMPA receptor-mediated EPSCs, bath solution contained (-)-bicuculline methiodide (5 µM) 

and D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5, 50 µM). (S)-3,5-dihydroxyphenylglycine 

(DHPG; 100 µM) and LP-211 (10 nM) were dissolved in ACSF and applied by bath perfusion, whereas 

anisomycin (10 µM), Akt inhibitor III (1 µM) or roscovitine (1.6 µM) were included in the intracellular 

solution in different sets of experiments.  

Experiments of spiking activity were performed in brain slices from mice obtained from a breeding 

colony kept at the IPMC (Institute Pharmacology Moléculaire Et Cellulaire) in Valbonne. We used 

Kcc2 mutant and WT mice from C57BL/6J strain. Mice were maintained with a controlled 

temperature (21◦C ± 1◦C) and humidity (50%) on a 12 h light/dark cycle, with ad libitum food and 

water. Acute hippocampal slices were prepared from wild type and Kcc2 mutant mice on a C57BL/6J 

background (postnatal age 20 –30 days). The brains were removed, placed in oxygenated ice-cold 

cutting solution (cutting solution; in mM; Sucrose 195 KCl 5.0; NaH2PO4 1.25; MgCl2 1.0; CaCl2 2.0; 

NaHCO3 25; D-glucose 25, Sucrose pH 7.3) and cut into 300 µm slices with a vibratome. Individual 

slices were transferred into store chamber with oxygenated artificial cerebrospinal fluid (ACSF, in 

mM NaCl 125; KCl 5.0; NaH2PO4 1.25; MgCl 1; CaCl2 2.0; NaHCO3 25; D-glucose 15, pH 7.3) at 37°C. 

Cell-attached recording was performed on CA3 neurons using long-shank borosilicate micropipettes 

(5–10 MΩ), that were pulled with a P-97 puller (Sutter) and filled with ACSF. Micropipettes were 

installed on a MultiClamp 700B headstage (Molecular Devices). Minimal seal resistance was 20 MΩ. 
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Data were acquired under ‘I = 0’ mode (zero current injection) with a Multiclamp 700B. CA3 neurons 

were recorded for 5 minutes to obtain a stable baseline, isoguvacine (10 uM) was bath applied for 

3 minutes and washed out for at least 10 minutes. 

3.2 Cell Culture 

SH-SY5Y neuroblastoma cells were cultured in a 1:1 mixture of Eagle’s Minimum Essential Medium 

and Ham’s F12 Medium. This medium was supplemented with 10% (v/v) heat-inactivated Fetal 

Bovine Serum, 1% (v/v) Glutamine and 1% (v/v) Penicillin – Streptomycin. Cells were cultivated in 

T75 flasks at 37°C with 5% CO2 at saturated humidity and kept below 25 passage to avoid 

senescence. 

3.3 Mitochondrial Enriched Fraction 

The medium was removed from T75 flasks and collected in a 50 ml polypropylene tube. Cells were 

washed once with DPBS and detached using 0.05% (wt/v) trypsin – EDTA. After cell detachment, 

trypsin was blocked adding medium and the cell suspension was transferred in a 50 ml 

polypropylene tube. Then the medium and cell suspension were centrifugated at 125 g for 5 

minutes, the supernatant was discarded and cells were resuspended in Ringer NaCl buffer (NaCl 135 

mM, HEPES 20 mM, MgSO4 0.8 mM, KCl 3 mM, CaCl2 1.8 mM, D-Glucose 11 mM, pH=7.5) (Palacino 

et al., 2004). Afterward cells were centrifuged at 125g for 5 minutes, suspended in A buffer (Sucrose 

320 mM, Tris-HCl 5 mM, EGTA 2 mM, pH=7.4) and homogenized with a glass-teflon grinder kept in 

ice. The homogenate was centrifuged at 4°C for 6 minutes at 2000 g to removed nuclei and tissue 

particles, while the supernatant was collected and centrifuged at 4°C for 15 minutes at 12000 g to 

pellet mitochondria. Finally, the pellet was washed with A Buffer to reduce the cytosolic 

contamination. 

3.4 Western Blot analysis 

The mitochondrial enriched fraction, obtained as above described, was treated with RIPA buffer and 

protease inhibitor cocktail. The mitochondrial lysate was centrifugated at 4°C for 15 minutes at 

12000 g and protein concentration in the supernatant was dosed with DC protein Assay. Denatured 

proteins were separated through SDS-PAGE using Mini protean TGX stain free gels at 10% of 

polyacrylamide and transferred in a 0.2 um PVDF membrane using Trans Turbo Blot Transfer System. 

The membranes were blocked with 5% non-fat milk in TBS-Tween 20 0.1% for 1 hour at room 

temperature and incubated overnight with an anti-5-HT7, anti-β-tubulin and anti-β-ATP synthase 

antibody. The membranes were rinsed three times in TBS-Tween 20 0.1% and incubated with anti-
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mouse or anti-rabbit antibody. Blots were revealed using Clarity Western ECL Substrate through 

UVITEC Cambridge Chemiluminescence imaging system. 

Denaturated protein gel electrophoresis on hippocampal and cortex of Kcc2 mutant and WT mice 

was performed with NuPAGE Bis-Tris Mini Gel. Samples were combined with NuPAGE LDS Sample 

Buffer (4x) and NuPAGE Reducing Agent (10x) and incubated at 95°C for 10 minutes. Samples were 

run for about 1,5 h (150V; 1x NuPAGE MOPS SDS Running Buffer). After gel electrophoresis, proteins 

were transferred on a NC-membrane for 1.5 h (at 0,25A). Subsequently, membranes were saturated 

in 5% milk for 1 h and incubated with primary antibodies overnight anti-GAPDH (calbiochem, 

1:5000); anti-KCC2 (Invitrogen, 1:1000). Membranes were washed 3 times in PBS-0.1 % Tween and 

incubated with secondary antibodies (1:5000) for 1h. After 3 washes in PBS-0.1% Tween, 

membranes were revealed with Immobilon Western (Millipore Ref. P90720). 

3.5 Complex IV activity measurements 

To estimated cytochrome c oxidase (complex IV) activity, we performed spectrophotometric assays 

with and without administration of 5-HT7 agonist LP-211 (1 µM) and 5-HT7 antagonist SB-269970 

(1µM) using a standard method (Spinazzi et al., 2012) with some modifications. Isolated 

mitochondria, obtained as described above, were subjected to three cycles of freeze and thaw in 

hypotonic potassium phosphate buffer (20 mM, pH = 7,4) to maximize the enzymatic rates. Then 

mitochondria were added to 250 µl of potassium phosphate buffer (0.1 M, pH= 7.5), 5 µl of n-

dodecyl-β-D-maltoside 150 mM and distilled water in a 1 ml cuvette. The reactions started with the 

addition of 50 μl of reduced cytochrome c (1 mM) and it was followed by a decrease in absorbance 

at 550 nm due to oxidation of cytochrome c. Complex IV specific activity was checked by adding 20 

µl of KCN 60 mM. LP-211 and SB-269970 at 1 µM in ethanol 10% were incubated with mitochondria 

for 3 minutes before to start reaction by adding reduced cytochrome c. 

3.6 SH-SY5Y Membrane Preparation for Saturation-Binding Assay  

The membrane preparation was carried out as described by Colabufo et al. with minor modifications 

(Colabufo et al., 2004). SH-SY5Y cells were cultured to 80% confluence; then, the medium was 

removed, and cells were rinsed in PBS. After detaching, cells were suspended in ice-cold 10 mM Tris-

HCl (pH 7.4), containing 0.32 M of sucrose and homogenized in a Potter-Elvehjem homogenizer 

(Teflon pestle). The homogenate was centrifuged at 31,000 g for 15 min at 4 ◦C, and the supernatant 

was discarded. The final pellet was resuspended in ice-cold 10 mM Tris-HCl (pH 7.4) and stored at 

−80 ◦C until use. 4.7. Saturation-Binding Assay Saturation experiments were carried out as 
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previously reported with minor modification (Lacivita et al., 2020). 5-HT7Rs were radiolabeled using 

[3H]-SB269970 (PerkinElmer Life and Analytical Sciences, Boston, MA, USA) at concentrations in the 

range of 0.1–20 nM. Samples containing 100 µg of SH-SY5Y cells membranes or 70 µg of SH-SY5Y 

cells mitochondrial-enriched fraction, radioligand, and 10 µM SB-269970 (Tocris Bioscience, Bristol, 

UK) to determine nonspecific binding were incubated in a final volume of 0.5 mL (50 mM Tris-HCl, 

pH 7.4, 4 mM MgCl2, 0.1% ascorbic acid, 10 µM pargyline hydrochloride) for 20 min at 37 ◦C. The 

suspension was filtered through a Whatman GF/C glass microfiber filter (presoaked in 0.3% 

polyethylenimine for at least 20 min prior to use). Filters were washed 3 times with 1 mL of ice-cold 

buffer (50 mM Tris-HCl, pH 7.4). Scatchard parameters (Kd and Bmax) and Hill slope (nH) were 

determined by nonlinear curve fitting, using Prism version 5.0 GraphPad software. 

3.7 Saturation-Binding Assay  

Saturation experiments were carried out as previously reported with minor modification (Lacivita 

et al., 2020). 5-HT7Rs were radiolabeled using [3H]-SB269970 (PerkinElmer Life and Analytical 

Sciences, Boston, MA, USA) at concentrations in the range of 0.1–20 nM. Samples containing 100 

µg of SH-SY5Y cells membranes or 70 µg of SH-SY5Y cells mitochondrial-enriched fraction, 

radioligand, and 10 µM SB-269970 (Tocris Bioscience, Bristol, UK) to determine nonspecific binding 

were incubated in a final volume of 0.5 mL (50 mM Tris-HCl, pH 7.4, 4 mM MgCl2, 0.1% ascorbic 

acid, 10 µM pargyline hydrochloride) for 20 min at 37 ◦C. The suspension was filtered through a 

Whatman GF/C glass microfiber filter (presoaked in 0.3% polyethylenimine for at least 20 min prior 

to use). Filters were washed 3 times with 1 mL of ice-cold buffer (50 mM Tris-HCl, pH 7.4). Scatchard 

parameters (Kd and Bmax) and Hill slope (nH) were determined by nonlinear curve fitting, using 

Prism version 5.0 GraphPad software. 

3.8 Rapid Golgi staining 

Golgi Staining was perfomed as described in (Du, 2019). Kcc2 mutant and WT mice brains were 

removed, rinsed twice in Milli-Q water and immersed in impregnation solution, prepared by mixing 

equal volume of solution A and B. The samples were stored at room temperature for two weeks. 

Then, samples were transferred into Solution C and stores at room temperature in the dark. After 3 

days, the brains were cut into 100 µm sections using a vibratome (Leica VT 1000 S). Slices were 

rinsed twice in Milli-Q water and placed in the staining solution, composed by solution D and E, for 

10 minutes. Then slices were rinsed in Milli-Q water 2 times for 4 min each rinse and dehydrated in 

sequential rinses of 50%, 75%, 95% and 100% ethanol, 4 min each rinse.  Afterward, the sections 
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were cleared in xylene 3 times for 4 min each rinse.  The slices were analysed through a bright-field 

microscope. Spine density and length were quantified using ImageJ as software.  

3.9 Genotyping 

Fragments of mouse tails were incubated overnight at 55 °C in lysis buffer (Tris pH=8 0,1M, EDTA 

10mM; 0,1% SDS; 0,5% NP40) with addition of proteinase K. After inactivation of proteinase K for 

10 min at 96 °C, DNA was diluted 10x and used directly for PCR reaction with primers (Seq-mSIc12a5-

Rev = 5'-TCATCCACTGACGGCTATGG; Seq-mSIc12a5-For = 5'-ACGGGACCTTTCTTTTGGGA). PCR 

products were purified with QIAGEN MinElute PCR Purification Kit (Cat. No. 28004) and subjected 

to Sanger sequencing. Chromatograms were analyzed with SnapGene Viewer. 

 

3.10 Statistical analysis 

For electrophysiology experiments, peak amplitude values of EPSCs were averaged over 1 min and 

expressed as % of baseline EPSC amplitude (calculated from EPSCs recorded during at least 15 min 

before DHPG application). % EPSC values from groups of neurons were pooled (mean ± standard 

error of mean, SEM) and graphically represented as a function of time (GraphPad Prism 7). One-way 

ANOVA and Tukey's multiple comparisons test were used to compare three groups of data, whereas 

unpaired Student’s t test was used to compare two groups of data. Statistical significance was 

accepted at p < 0.05 (*p < 0.05; ***p < 0.001). 

Spiking activity measured by current clamp (I=0) recordings in loose patch configuration were 

normalized and analysed through the the one-sample Wilcoxon signed rank test and Mann-Whitney 

test (*p < 0.05).  

Scatchard analysis data were analysed by applying one-way repeated-measures analysis of variance 

(ANOVA test), and unpaired t test followed as a post hoc test. Results were reported as mean ± SEM 

(standard error of the mean) of at least two to three independent experiments, performed in 

triplicate. Statistical significance was accepted at p < 0.05. 

Cytochrome c oxidase activity data, represent mean rates (nmol/min/mg) ± SEM obtained from at 

least four independent experiments. *, p < 0.05, nonparametric Wilcoxon test between 

mitochondria administered with LP-211 and SB-269970, and nontreated mitochondria. 
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CHAPTER 4: Results 

4.1 Blockade of Cyclin-dependent Kinase 5 (Cdk5) in WT neurons enhanced mGluR-LTD and 

abolished 5-HT7 receptor-mediated reversal of mGluR-LTD  
 

Excitatory post synaptic currents (EPSCs) mediated by AMPA receptors were recorded from CA1 

pyramidal neurons in whole-cell patch clamp. In wild-type hippocampal slices, application of DHPG 

(100 µM, 5 min), an agonist of group I metabotropic glutamate receptors (mGluRs), induced a 

long-term depression (mGluR-LTD) of AMPA receptor-mediated EPSCs (EPSC amplitude 40 min 

after DHPG: 79 ± 10% with respect to baseline EPSC amplitude prior to DHPG application, n = 11; 

Figure 1 A). In another group of recordings, the Cdk5 inhibitor ro scovitine (1.6 µM) was included in 

the intracellular pipette solution. In this condition, the amount of mGluR-LTD induced by DHPG was 

significantly enhanced respect to control conditions (EPSC amplitude: 51 ± 9%, n = 7, versus 79 ± 

10%, n = 11, wild-type DHPG + roscovitine versus wild-type DHPG, p = 0.04, t = 1.821, df = 16; 

unpaired t test; Figure 1 A and B). We have previously shown that activation of 5-HT7 receptors 

reverses mGluR-LTD in wild-type and in Fmr1 KO neurons (Costa et al., 2018; Costa et al., 2015; 

Costa et al., 2012). In the presence of intracellular roscovitine (1.6 μM), application of the 5-HT7 

receptor agonist LP-211 (10 nM, 5 min) was unable to reverse mGluR-LTD in wild-type slices (EPSC 

amplitude: 51 ± 9%, n = 7, versus 49 ± 9%, n = 6; wild-type DHPG + roscovitine  versus wild-type DHPG 

+ roscovitine + LP-211, p = 0.42, t = 0.1895, df = 11, Figure 1 A and B).  
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4.2 Blockade of Cyclin-dependent Kinase 5 (Cdk5) abolished 5-HT7 receptor-mediated 

reversal of mGluR-LTD also in Fmr1 KO neurons 
 

In Fmr1 KO slices, the amount of mGluR-LTD induced by application of DHPG (100 µM, 5 min) in 

control conditions and in the presence of intracellular roscovitine (1.6 µM) was similar (EPSC 

amplitude: 53 ± 10%, n = 8 versus 50 ± 3%, n = 6; Fmr1 KO DHPG versus Fmr1 KO DHPG + roscovitine; 

p = 0.39, t = 0.2670, df = 12; Figure 2 A and B). The intracellular presence of roscovitine induced a 

comparable amount of mGluR-LTD in Fmr1 KO and WT neurons (EPSC amplitude 51 ± 9%, n = 7 

versus 50 ± 3%, n = 6; wild-type DHPG + roscovitine versus  Fmr1 KO DHPG + roscovitine; p = 0.78, t 

= 0.2817, df = 11;   compare the grey dots columns in Figure 2 B and Figure 2 B). In Fmr1 KO neurons, 

application of LP-211 (10 nM, 5 min) significantly reversed mGluR-LTD (Costa et al., 2018; Costa et 

al., 2015; Costa et al., 2012) but had no effect in the presence of roscovitine, (EPSC amplitude: 51 ± 

12%, n = 7, versus 50 ± 3, n = 6; Fmr1 KO DHPG + roscovitine + LP-211 versus Fmr1 KO DHPG + 

Figure 1 Blockade of Cdk5 enhanced mGluR-LTD in CA1 neurons from wild-type mice and abolished 5-HT7 receptor-mediated 

reversal on mGluR-LTD. AMPA receptor-mediated excitatory post-synaptic currents (EPSCs) were recorded in the presence of 

D-AP5 (50 µM) and bicuculline (5 µM) under whole-cell patch clamp in the CA3-CA1 synapses in hippocampal slices from wild-

type mice. (A) Bath application of the group I mGluR agonist DHPG (100 µM, 5 min) induced a long-term depression (mGluR-

LTD) of EPSC amplitude (white dots, n = 11). When the Cdk5 inhibitor roscovitine (1.6 µM) was added to intracellular solution, 

DHPG-induced mGluR-LTD was enhanced (light grey dots, n = 7) respect to control. In the presence of intracellular roscovitine 

(1.6 µM), application of LP-211 did not modify the amount of mGluR-LTD (black dots, n = 6). (B) The bar graph shows that the 

amount of mGluR-LTD measured 40 min after DHPG application (mean EPSC amplitude in all tested neurons, expressed as % of 

baseline EPSC amplitude; EPSC values of single neurons are displayed for each bar) in the three different experimental conditions 

(One-way ANOVA followed by Tukey's multiple comparisons test; *p < 0.05; ***p < 0.001). 
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roscovitine; p = 0.47, t = 0.07344, df = 11; Figure 2 A and  B).  5-HT7-mediated reversal of mGluR-

LTD was completely abolished by roscovitine  in wild-type and in Fmr1 KO to a comparable extent 

(EPSC amplitude: 49 ± 9%, n = 6, versus 51 ± 12%, n = 7, wild-type DHPG + LP-211 + roscovitine versus 

Fmr1 KO DHPG + LP-211 + roscovitine, p = 0.896, t = 0.1336, df = 11; un- paired t test; compare 

Figures 1 B and 2 B). 

 

 

 

 

 

 

Figure 2 Blockade of Cdk5 did not modify mGluR-LTD in CA1 neurons from Fmr1 KO mice and abolished 5-HT7 receptor-mediated 

reversal on mGluR-LTD. AMPA receptor-mediated excitatory post-synaptic currents (EPSCs) were recorded from CA1 neurons in 

the presence of D- AP5 (50 µM) and bicuculline (5 µM) in hippocampal slices from Fmr1 KO mice. (A) Bath application of DHPG 

(100 µM, 5 min) induced mGluR- LTD (white dots; n = 8). In the presence of intracellular roscovitine (1.6 µM) the amount of 

mGluR-LTD was not modified (grey dots, n = 6) respect to control conditions. The application of LP-211 (10 nM, 5 min) had no 

effect on mGluR-LTD in the presence of intracellular roscovitine (black dots, n = 7). (B) The bar graph shows the amount of mGluR-

LTD measured 40 min after DHPG application (mean EPSC amplitude in all tested neurons, expressed as % of baseline EPSC 

amplitude; EPSC values of single neurons are displayed for each bar) in the three different experimental conditions (One-way 

ANOVA followed by Tukey's multiple comparisons test; *p < 0.05; ***p < 0.001). 
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4.3 Inhibition of Akt abolished mGluR-LTD in wild-type but not in Fmr1 KO neurons.   
 

To study the role of Akt kinase in the mGluR-LTD pathway, we measured the amount of mGluR-LTD 

in Fmr1 KO and WT slices in presence of intracellular Akt inhibitor III (1µM). When Akt inhibitor III 

was present in the intracellular solution, mGluR-LTD was inhibited in WT (Figure 3 A) but not in Fmr1 

KO neurons (Figure 3 B), indicating that Akt activation is necessary for mGluR-LTD only in WT slices 

(EPSC amplitude after 40 min from application of DHPG: 106.5 ± 35.19%, n = 6, versus 43.66 ± 

14.09%, n = 6; WT DHPG + Akt inhibitor III versus Fmr1 KO DHPG + Akt inhibitor III; p = 0,029;  

t=2.641; df=8; Figure 3 C).  

 

Figure 3 Blockade of Akt abolished mGluR-LTD in WT but not in Fmr1 Knockout (KO) slices. AMPAR-mediated excitatory post-synaptic 

currents (EPSCs) were recorded in the presence of D-AP5 (50 µM) and bicuculline (5 µM) under whole-cell configuration in the CA3–

CA1 synapses in hippocampal slices from Fmr1 KO and WT mice in presence of intracellular Akt inhibitor III (1μM). (A) Bath application 

of DHPG (100 µM, 5 min) induced mGluR- LTD. In the presence of intracellular Akt III inhibitor, mGluR-LTD was abolished in wild-type 

neurons (white dots, n = 6). (B) DHPG-mediated mGluR-LTD was still observed in Fmr1 KO slices in the presence of intracellular Akt III 

inhibitor (black dots, n=6). (C) The bar graph shows the amount of mGluR-LTD in WT and Fmr1 KO neurons in the presence of Akt 

inhibitor III (mean EPSC amplitude in all tested neurons, expressed as % of baseline EPSC amplitude) (Unpaired t test; *p < 0.05; ***p 

< 0.001). 
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4.4 5-HT7 receptor-mediated reversal of mGluR-LTD in Fmr1 KO neurons did not require 

activation of Akt  

We studied a possible involvement of Akt in 5-HT7 receptor-mediated reversal of mGluR-LTD. Bath 

application of LP-211, was still able to reverse mGluR-LTD in presence of intracellular Akt inhibitor 

III (1 μM) in Fmr1 KO neurons (EPSC amplitude after 40 min from application of DHPG: 44,71 ± 

14,09%, n=6, versus 85,44 ± 9,138%, n=6; Fmr1 KO DHPG + Akt inhibitor versus Fmr1 KO DHPG + Akt 

inhibitor + LP-211; p = 0,0359; t=2,425 df=10; Figure 4 B). This result indicates that 5-HT7 receptor-

mediated reversal of mGluR-LTD in Fmr1 KO neurons does not require Akt. 
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Figure 4 Blockade of Akt did not influence the 5-HT7 receptor-mediated reversal of mGluR-LTD in CA1 neurons from Fmr1 KO mice. 

AMPA receptor-mediated excitatory post-synaptic currents (EPSCs) were recorded from CA1 neurons in the presence of D- AP5 (50 

µM) and bicuculline (5 µM) in hippocampal slices from Fmr1 KO mice. Bath application of DHPG (100 µM, 5 min) induced mGluR- 

LTD. The application of LP-211 (10 nM, 5 min) reversed mGluR-LTD in the presence of intracellular Akt inhibitor III (grey dots, n = 

8). (B) The bar graph shows the amount of mGluR-LTD measured 40 min after DHPG application in Fmr1 KO neurons (mean EPSC 

amplitude in all tested neurons, expressed as % of baseline EPSC amplitude), without and with the application of LP-211 in the 

presence of Akt inhibitor III (Unpaired t test; *p < 0.05; ***p < 0.001). 
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4.5 mGluR-LTD requires protein translation in wild-type but not in Fmr1 KO neurons 
 

We measured the amount of mGluR-LTD in hippocampal Fmr1 KO and WT neurons in the presence 

of intracellular anisomycin (10 μM), a protein translation inhibitor. mGluR-LTD was inhibited in WT 

(Figure 5 A) but not in Fmr1 KO neurons (Figure 5 B) when anisomycin was present in the intracellular 

solution (EPSC amplitude after 40 min from application of DHPG: 102 ± 10.69%, n = 4, versus 60.58 

± 7.96%, n = 5; WT DHPG + anisomycin versus Fmr1 KO DHPG + anisomycin; p = 0,0214;  t=2 ; df=9; 

Figure 5 C).  This result confirms previous data (Nosyreva and Huber, 2005) showing that protein 

translation is necessary for mGluR-LTD in WT but not in Fmr1 KO slices.  
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Figure 5 Inhibition of protein synthesis abolished mGluR-LTD in WT but not in Fmr1 Knockout (KO) slices. AMPAR-mediated 

excitatory post-synaptic currents (EPSCs) were recorded in the presence of D-AP5 (50 µM) and bicuculline (5 µM) under whole-

cell configuration in the CA3–CA1 synapses in hippocampal slices from Fmr1 KO and WT mice in the presence of intracellular 

anisomycin (10 μM). (A) Bath application of DHPG (100 µM, 5 min) induced mGluR- LTD. In the presence of intracellular anisomycin 

the mGluR-LTD was abolished (white dots, n = 4) in wild-type neurons. (B) The DHPG-mediated mGluR-LTD in hippocampal Fmr1 

KO neurons was maintained in Fmr1 Knockout (KO) slices in presense of intracellular anisomycin (black dots, n=6). (C) The bar 

graph shows the amount of mGluR-LTD measured 40 min after DHPG application (mean EPSC amplitude in all tested neurons, 

expressed as % of baseline EPSC amplitude) in the two different conditions (Unpaired t test; *p < 0.05; ***p < 0.001). 

 

 

A 
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4.6 5-HT7 receptor-mediated reversal of mGluR-LTD in Fmr1 KO neurons required protein 

translation  
 

We tested the effect of LP-211 on mGluR-LTD in presence of intracellular anisomycin (10 μM): in 

these conditions, activation of 5-HT7 receptors was unable to reverse mGluR-LTD in Fmr1 KO slices 

(Fig. 6 A and B), indicating that 5-HT7 receptor-mediated effect required protein synthesis (EPSC 

amplitude 40 min after application of DHPG: 70.8 ± 15.89%, n = 6, versus 50.15 ± 10.25%, n = 6; 

Fmr1 KO DHPG + anisomycin versus Fmr1 KO DHPG + anisomycin + LP-211; p = 0,29  t=1.13 ; df=9; 

Figure 6 B).  

 

4.7 Two different isoforms of 5-HT7 receptors are located in the cytosolic and mitochondrial 

fractions in SH-SY5Y 
 

We first investigated 5-HT7 receptor localization in SH-SY5Y cell line through an immunoblotting 

analysis of the cytosolic and the mitochondrial enriched fractions using a rabbit polyclonal antibody 

against a sequence identical for all human receptor splice variants. To ensure that there were no 

issues in our western blotting protocol, as positive control we used membranes obtained from HEK 

293 cells, stably transfected with cDNA for 5-HT7 receptor. These membranes were used in 

radioligand binding assay. The Western Blot analysis revealed that 5-HT7 receptor was present in 

both cytosolic and mitochondrial fractions (Fig. 7 A). Two bands, with molecular masses of 40 and 

50 KDa, were detected: the 50 KDa isoform in mitochondrial enriched fraction and the 40 KDa 

Figure 6 Activation of 5-HT7 receptors did not reverse mGluR-LTD in Fmr1 KO neurons when protein synthesis was inhibited. AMPA 

receptor-mediated excitatory post-synaptic currents (EPSCs) were recorded from CA1 neurons in the presence of D- AP5 (50 µM) and 

bicuculline (5 µM) in hippocampal slices from Fmr1 KO mice. Bath application of DHPG (100 µM, 5 min) induced mGluR- LTD. The 

application of LP-211 (10 nM, 5 min) had no effect on mGluR-LTD in the presence of intracellular anisomycin (grey dots, n = 6). (B) 

The bar graph shows the amount of mGluR-LTD measured 40 min after DHPG application (mean EPSC amplitude in all tested neurons, 

expressed as % of baseline EPSC amplitude), without and with the application of LP-211 in presence of anisomycin (Unpaired t test; 

*p < 0.05; ***p < 0.001). 

A 
B 
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isoform localizing in the cytosol. This pattern of data was observed in at least three independent 

experiments. Therefore, the results show that two protein forms of the 5-HT7 receptor are 

expressed in human neuroblastoma cells. In order to rule out cytosolic contamination in 

mitochondrial fraction and vice-versa, we performed western blot analysis on the different fractions 

using an anti β-ATP synthase and an anti β-tubulin antibodies (Fig. 7 B). β ATP synthase is a 

mitochondrial protein while β- tubulin is mainly expressed in the cytosol.  Our results show that the 

β ATP synthase band was absent in the cytosolic fraction (Fig. 7 B) and the β- tubulin band was not 

detected in the mitochondrial fraction (Fig. 7 B), indicating that there was no contamination in the 

analysed fractions. 

 

 

4.8 Saturation-Binding Assay confirms the presence of 5-HT7Rs in mitochondria 
 

The presence of 5-HT7R in the SH-SY5Y cell line was investigated with saturation-binding analysis. The 

assay was performed on both whole SH-SY5Y cell membranes and SH-SY5Y cell mitochondrial 

fractions. Results demonstrated the presence of 5-HT7R in both preparations, albeit with different 

expressions. SH-SY5Y cell membrane Bmax was 0.51 pmol/mg of protein (Fig. 8 A), whereas SH-SY5Y 

cell mitochondrial fraction Bmax was 0.081 pmol/mg of protein (Fig.  8 B). Furthermore, 

experiments gave different Kd values for [3H]SB-269970 in whole SH-SY5Y cells (Kd = 6.55 nM) and 

Figure 7 (A) Expression of 5-HT7R in cytosolic (cyto) and mitochondrial (mito) enriched fractions obtained from SH-SY5Y cell line. 

Positive control represented by membranes (mem) obtained from 5-HT7R-stably transfected HEK 293 cells. (B) Same fractions of SH-

SY5Y analyzed to detect β-ATP synthase (mitochondria marker) and β-tubulin (cytosol marker) expression by sequential reprobing on same 

blot. Molecular mass markers (KDa) indicated on the left. 



61 
 

SH-SY5Y cells mitochondrial-enriched fraction (Kd = 1.90 nM). For comparative purposes, 

saturation-binding analysis, performed with membranes obtained from HEK 293 cells stably 

transfected with cDNA for 5-HT7R, is reported in Figure 8 C. Schild regression analysis indicated the 

presence of a single binding site in the SH-SY5Y cells’ mitochondrial-enriched fraction and the 

presence of an additional binding site in whole SH-SY5Y cell membranes. 

 

4.9 Administration of SB-269970 (but not LP-211) to mitochondria weakly influences 

Mitochondrial Respiratory Chain (MRC) Cytochrome c Oxidase activity 

 

To investigate whether mitochondrial functions are influenced by activation of 5-HT7 receptors 

located on mitochondria in human neuroblastoma cell line SH-SY5Y, we measured the MRC 

complex IV activity of mitochondria after incubation with selective 5-HT7 agonist LP-211 and the 5-

HT7 antagonist SB-269970 (Fig. 9). Cytochrome c oxidase activity was 258.6 ± 4.28 nmol/min/mg 

in H2O and 286.9 ± 29.41 nmol/min/mg in 10% ethanol in H2O. Lastly, we studied the effect of the 

selective 5-HT7 antagonist SB-269970 on the mitochondrial enriched fraction. The incubation of 

mitochondria with SB-269970 resulted in a weak increase in cytochrome c oxidase activity 

compared to control. Upon treatment with SB-269970, cytochrome c oxidase activity was 303.63 

± 30.48 nmol/min/mg (Fig. 9). 

  

Figure 8 Scatchard analysis with selective 5-HT7R radioligand [3H]SB-269970 on (A) whole SH-SY5Y cell membranes, (B) 

mitochondrial-enriched fractions obtained from SH-SY5Y cell line, and (C) membranes of 5-HT7R-transfected HEK 293 cells. 
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4.10 Activation of GABAA receptors induced comparable inhibitory effects in WT and Kcc2 

mutant hippocampal neurons 
 

To evaluate whether the spontaneous mutation R857G detected in the Kcc2 gene SIc12a5 can 

influence the neural activity of hippocampus, we analysed the effect of this mutation on spiking 

activity of CA3 hippocampal neurons in acute slices prepared from WT and Kcc2 mutant mice. The 

effect of a brief application of the GABAA agonist isoguvacine on neuronal firing recorded in cell-

attached mode inhibited neuronal activity in WT neurons with respect to the baseline (Wilcoxon 

matched-pairs signed rank test; p<0.0001; two-tailed; sum of positive - negative ranks 0, -153; sum 

of signed ranks -153; n=17; Fig. 10 A). The selective activation of GABAA receptor also induced a 

reduction in the spiking activity of pyramidal CA3 neurons recorded in Kcc2 mutant hippocampal 

slices (Wilcoxon matched-pairs signed rank test; p=0.0039; two-tailed; sum of positive - negative 

ranks 0, -45; sum of signed ranks -45; n=10; Fig. 10 B). To determine if there was any difference in 

terms of inhibition of action potential frequency between WT and Kcc2 mutant neurons, we 

performed a Mann‐Whitney test: spiking activity of CA3 neurons under isoguvacine was not 

significantly different between WT and Kcc2 mutant neurons (Mann Whitney test; p=09803; Two‐

Figure 9. SB-269970 weakly stimulate cytochrome c oxidase activity, which was spectrophotometrically measured in 

mitochondrial fractions from SH-SY5Y cells incubated with LP-211 and SB-269970 3 min before measurements. Values 

represent mean rates (nmol/min/mg) ± SEM obtained from at least four independent experiments. * p < 0.05, nonparametric 

Wilcoxon test between mitochondria administered with SB-269970 and nontreated mitochondria in two controls. Ctrl-

EtOH, 10% EtOH in H2O. 
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tailed; Mann‐Whitney U 84; sum of rank in Kcc2 mutant neurons, WT neurons 139,239; median of 

WT neurons 0.209 n=17; median of Kcc2 neurons 0.1246 n=10; Fig 10 C). 

 

 

 

 

 

4.11 R857G mutation in Kcc2 gene does not influence the KCC2 protein expression in 

hippocampus and in cortex 
 

To investigate if the mutation R857G in the Kcc2 gene affects the KCC2 protein level in hippocampus 

and cortex, we performed a Western blot analysis in wild type and Kcc2 mutant mice at the age of 

12 months.  

Through the quantification of the intensity of KCC2 signal in hippocampus, we highlighted that gene 

mutation did not influence protein expression between WT and Kcc2 mutant mice in hippocampus 

(Mann Whitney test; p= 0.4206; two-tailed; sum of ranks in WT and Kcc2 mutant hippocampus 32, 

23; Mann-Whitney U 8; median of WT hippocampus 1.032 n=5; median of Kcc2 mutant 

hippocampus 0.7794 n=5; Fig. 11 A, B) or in cortex (Mann Whitney test; p= 0.4206; two-tailed; sum 

of ranks in WT and Kcc2 mutant cortex 23, 32; Mann-Whitney U 8; median of WT cortex 0.9616 n=5; 

median of Kcc2 mutant cortex 1.268 n=5; Fig 11 C, D). 

Figure 10 The activation of GABA A receptors has an inhibitory effect on WT and Kcc2 CA3 neurons. Spiking activity measured by 

current clamp (I=0) recordings in loose patch configuration in Wild-type (A) and Kcc2 (B) mutant mice. Cells were recorded for 5 

minutes to obtain a stable baseline, isoguvacine (10 uM) was bath applied for 3 minutes and washed out for at least 10 minutes. 

The graphs show the analysis of spiking frequency (s-1) normalized on baseline of WT (n=17) (A) and Kcc2 mutant mice (n=10) (B) 

CA3 pyramidal neurons upon isoguvacine application. The one-sample Wilcoxon signed rank test, *p<0,05; Mann-Whitney test, 

*p<0,05.  

A B C 
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4.12 R857G mutation in Kcc2 gene does not influence the morphology of dendritic spines 

in terms of density and length in hippocampus and cortex between wild type and Kcc2 

mutant mice. 
 

Lastly, we studied a possible influence of the mutation R857G in Kcc2 gene on dendritic spine 

morphology. Using the Golgi staining technique, we highlight the structure of dendritic spines in 

wild type and in Kcc2 mutant mice (Fig. 12 A, D, G, L). Quantifying the density and the length of the 

dendritic spines through the software ImageJ, we discovered that the presence of the mutation does 

not affect the dendritic spine morphology in cortex (Fig 12 M, N) and neither in the three regions of 

hippocampus DG, CA1 and CA3 (Fig. 12 B, C, E, F, H, I) in Kcc2 mutant mice compared to wild-type.  
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Figure 11. The mutation R857G in Kcc2 gene does not affect the expression of the protein in hippocampal and cortical region 

between wild-type and Kcc2 mutant (Kcc2 mut) mice. (A) Western blot analysis of KCC2 protein in hippocampus of wild-type and 

Kcc2 mutant mice at the age of 12 months. (B) Quantification of western blot analysis of KCC2 protein in hippocampus of wild-type 

(n=5) and Kcc2 mutant mice (n=5) at the age of 12 months. (C) Western blot analysis of KCC2 protein in cortex of wild-type and Kcc2 

mutant mice at the age of 12 months. (D) Quantification of western blot analysis of KCC2 protein in cortex of wild-type (n=5) and 

Kcc2 mutant mice (n=5) at the age of 12 months. Mann-Whitney test, *p<0,05.  
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Figure 12 The mutation R857G in Kcc2 gene does not influence the morphology of dendritic spines in cortical and hippocampal 

region in wild-type and Kcc2 mutant mice. Pictures of wild type (n=3) and Kcc2 mutant (n=3) dendritic spine morphology in the 

dentate gyrus DG (A), cornu ammonis 1 CA1 (B), cornu ammonis 3 CA3 (B) and cortex Cx (C). Spine density and length were 

quantified in the dentate gyrus DG (B, C), cornu ammonis 1 CA1 (E, F), cornu ammonis 3 CA3 (H, I) and cortex Cx (M, N). Mann-

Whitney test, *p<0,05.  
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CHAPTER 5: Discussion 

Fmr1 KO mice, a murine model of Fragile X Syndrome, display a large number of malfunctions in 

synaptic transmission and plasticity, among which exaggerated mGluR-LTD in the hippocampus  

(Huber et al., 2002). The abnormal enhancement of mGluR-LTD in Fmr1 KO neurons is considered 

as a readout of synaptic malfunction and is believed to account for learning and behavioural 

impairment (Sanderson et al., 2016).  

Our research group has previously shown that mGluR-LTD in Fmr1 KO mice can be rescued by 

activation of serotonin 5-HT7 receptors, which activate adenylate cyclase leading to stimulation of 

protein kinase A (Costa et al., 2018; Costa et al., 2015; Costa et al., 2012). The rescue effect of 5-HT7 

receptors is in line with with the “cAMP theory” of Fragile X syndrome (Kelley et al., 2007) and with 

the important finding that phosphodiesterase 2 (PDE) is a major FMRP target and is overexpressed 

in Fmr1 KO neurons, leading to reduced cAMP levels (Maurin et al., 2018b). 

In my PhD experimental work, I have studied additional intracellular mechanisms involved in 5-HT7R-

mediated reversal of mGluR-LTD, focusing on the role of the kinases Cdk5 and Akt. Cdk5 is related 

to synaptic plasticity and to the development of dendritic spines and was found to be involved in 

several effects mediated by 5-HT7 receptors. As a matter of fact, Cdk5 is involved in 5-HT7 receptor-

induced axonal outgrowth and dendritic spine formation in cultured neurons from rodent brain 

cortex, hippocampus and striatum (Speranza et al., 2013; Speranza et al., 2015; Speranza et al., 

2017). Interestingly, Cdk5 activation might be related to the cAMP pathway, since cAMP elevation 

induced by 5-HT7 receptors was shown to stimulate p35 expression and Cdk5 activity in rat cultured 

neurons (He et al., 2016).  

Therefore, I investigated the role of Cdk5 on mGluR-LTD and on 5-HT7R-mediated reversal of mGluR-

LTD. Our results show that in physiological conditions Cdk5 exerts a negative modulation on mGluR-

LTD, since the Cdk5 inhibitor roscovitine increased mGluR-LTD in WT neurons to a level similar to 

exaggerated mGluR-LTD measured in Fmr1 KO slices. Our results also suggest that either the 

expression or the function of Cdk5 in Fmr1 KO neurons might be reduced compared to wild‐type 

and that reduced Cdk5 function might account for enhanced mGluR‐LTD. Consistent with our 

hypothesis, the expression of Cdk5 in the hippocampus of Fmr1 KO mice was found to be reduced 

(Zhang et al., 2020).  

Then we tested if application of LP-211, a selective agonist for 5-HT7 receptors, was able to rescue 

mGluR-LTD in presence of the Cdk5 inhibitor roscovitine. Following Cdk5 blockade, 5-HT7R activation 
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did not reverse mGluR-LTD either in wild type or in Fmr1 KO neurons, leading to the conclusion that 

Cdk5 activation is involved in 5-HT7 receptor mediated reversal of mGluR-LTD.  

We next studied a possible involvement of Akt in 5-HT7 receptor-mediated reversal of mGluR-LTD 

in wild-type and in Fmr1 KO mice. Akt is a serine/threonine kinase with three isoforms (Akt I,II,III) 

encoded by different genes, although the proteins share a high degree of structural homology 

(Kumar and Madison, 2005). The kinase regulates cell growth, proliferation and metabolism; in 

neurons, the Akt pathway has a significant impact on stress responses, neurotransmission and 

synaptic plasticity (O'Neill, 2013). Akt is involved in the mammalian target of rapamycin (mTOR) 

pathway controlling protein synthesis. In addition, Akt activation has been correlated with different 

forms of LTP and LTD (Horwood et al., 2006; Hou and Klann, 2004), including mGluR-LTD (Levenga 

et al., 2017). Our results show that Akt inhibition abolished mGluR-LTD in WT but not in Fmr1 KO 

neurons, leading to the conclusion that Akt is necessary for mGluR-LTD only in WT slices. As a 

possible explanation, it was shown that in FMRP-deficient neural cells de novo protein synthesis is 

elevated and this increase is associated with elevated ERK1/2 and Akt signalling (Utami et al., 2020). 

In line with these findings, we might speculate that inhibition of Akt that we induced in Fmr1 KO 

neurons might have been unable to compensate the aberrant and hyperactivated of Akt signalling, 

resulting in the persistence of mGluR-LTD in Fmr1 KO slices.  

We next tested if Akt plays a role in 5-HT7 receptor-mediated reversal of mGluR-LTD, since Akt 

activation is involved in other effects mediated by 5-HT7 receptors, among which actin filament 

remodelling (Guseva et al., 2014). On this purpose, we used Fmr1 KO slices because, in the presence 

of Akt inhibitor III, mGluR-LTD was present only in Fmr1 KO: in these conditions, 5-HT7 receptor 

activation was still able to reverse mGluR-LTD, thus did not require Akt activation.  

Another important aim of our study was to investigate a possible role of 5-HT7 receptors on neuronal 

protein syntesis. FMRP is a RNA binding protein with a predominant inhibitory effect on mRNA 

translation; as a matter of fact, impaired local dendritic translation was recognized as a major 

mechanism of pathogenesis in FXS, where FMRP is absent (Osterweil et al., 2010). In our study, we 

tested the hypothesis that dendritic mRNA translation is required for 5-HT7 receptor-mediated 

effect on mGluR-LTD. In the presence of intracellular anisomycin, a protein translation inhibitor, 

mGluR-LTD was inhibited in WT but not in Fmr1 KO neurons, indicating that protein translation is 

necessary for mGluR-LTD only in WT slices. This result is consistent with previous data, showing that 

mGluR-LTD was abolished by protein synthesis inhibitors in WT neurons but persisted in Fmr1 KO 

neurons (Nosyreva and Huber, 2005). Therefore, we confirm data from Huber and colleagues, 
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suggesting that mGluR-LTD in Fmr1 KO neurons does not need new protein synthesis because an 

excess of “LTD proteins” is already present in dendrites. In the presence of intracellular anisomycin, 

activation of 5-HT7 receptors was unable to reverse mGluR-LTD in Fmr1 KO slices, indicating that 5-

HT7 receptor-mediated effect required protein synthesis. This result indicates that 5-HT7 receptor 

activation stimulates the synthesis of one or several proteins, which ultimately reverse mGluR-LTD; 

the protein(s) involved in 5-HT7R-mediated effect remain to be investigated. 

The 5-HT7 receptor is a G-protein coupled receptor, positively linked to adenylate cyclase through 

the stimulatory Gs protein and additionally linked to G12 (Kvachnina et al., 2005). Some GPCRs are 

associated with mitochondria: for example purinergic receptors were shown to influence the 

regulation of mitochondrial Ca2+ uptake (Belous et al., 2004) and serotonin 5-HT3 and 5-HT4 

receptors, both present on cardiac mitochondria, regulate mitochondrial activities and cellular 

functions (Wang et al., 2016b). Interestingly, the 5-HT7 receptor agonist LP-211 is able to rescue the 

mitochondrial respiratory chain dysfunction and the oxidative phosphorylation deficiency in murine 

models of Rett syndrome (Valenti et al., 2017) and CDKL5 deficiency (Vigli et al., 2019); the 

mechanism of action remains unclear. We demonstrate for the first time that 5-HT7 receptors are 

present in both cytosol and mitochondria of a SH-SY5Y cell line. In our results, two bands with 

molecular masses of approximately 40 and 50 KDa were detected, the former present in the 

cytosolic fraction and the latter in the mitochondrial fraction. As a possible explanation, 5-HT7R 

undergoes alternative splicing at the second intron, located in the carboxyl terminus, giving rise to 

three splice variants in humans (a,b,d) (Heidmann et al., 1997). The 45–50 KDa range that we 

detected was consistent with the expected molecular mass of 5-HT7R. It should also be considered 

that 5-HT7 receptors undergo different post-translational modifications, having two consensus 

sequences for N-linked glycosylation sites in the extracellular N-terminal region (Lovenberg et al., 

1993) and for attachment of saturated fatty acids (i.e., palmitate) to cysteine residues within the 

protein via thioesterification (S-palmitoylation) (Gorinski and Ponimaskin, 2013). The 40 KDa 

cytosolic form that we detected might be explained by the presence in SH-SY5Y cells of a form of 

the receptor not subjected to post-translational modifications (Mahé et al., 2004).  

To our knowledge, this is the first demonstration that 5-HT7Rs are expressed in the mitochondrial 

membrane of SH-SY5Y cells.  

Subsequently, we tested if the 5-HT7R agonist LP-211 or the 5-HT7R antagonist (inverse agonist) SB-

269970 influenced the activity of cytochrome c oxidase, which is a critical regulator of oxidative 

phosphorylation and is used as a marker of neural functional activity (Hevner and Wong-Riley, 1989; 
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Hüttemann et al., 2012). Recently, it has been demonstrated that activation of mitochondrial 

cannabinoid receptor 1 in mouse hippocampus, which is coupled to an intracellular Gi protein, 

reduced the mitochondrial level of cAMP, causing a decrease of oxidative phosphorylation and 

thereby of ATP production (Hebert-Chatelain et al., 2016). Our result demonstrated that 5-HT7R 

antagonist (inverse agonist) SB-269970 weakly increased cytochrome c oxidase activity, as 

estimated on mitochondria isolated and purified from the investigated cells. The weak increase in 

cytochrome c oxidase activity elicited by 5-HT7R inverse agonist SB-269970 might be linked to a 

reduction in the intramitochondrial levels of cAMP, consistent with previous findings in which 

variations of intramitochondrial cAMP levels may upregulate or downregulate cytochrome c oxidase 

activity (Valsecchi et al., 2013). 

Mitochondrial impairments are also present in a murine model of Fragile X syndrome. The murine 

model of the pathology shows an increased oxidative stress in neurons (Shen et al., 2019), 

impairments in mitochondrial respiratory chain and altered ATP production (D'Antoni et al., 2020). 

FMRP binds mRNAs of the mitochondrial respiratory chain components and its absence causes an 

enhancement of the mitochondrial complex activity (Ascano et al., 2012; Maurin et al., 2018a). In 

future studies, it would be interesting to test whether LP-211 can rescue the mitochondrial 

impairment in a mouse model of Fragile X syndrome. 

During the period that I spent abroad at the IPMC (Institute Pharmacology Moléculaire Et Cellulaire), 

I was involved into a project based on the characterization of a new spontaneous mutation in the 

Slc12a5 gene codifying for the K+- Cl- cotransporter KCC2, affecting the C-terminal region of the 

protein (Bardoni et al., unpublished). The same KCC2 variant was also found in a human patient 

affected by epilepsy and intellectual disability (Saito et al., 2017). Other variants in the C-terminal 

region have been identified and most of them are related to the ASD and neurodevelopmental 

phenotype in patients, suggesting that alteration in the KCC2 functions contributes to the 

pathogenesis of ASD. ASD show well-established strong associations with other neuropsychiatric 

disorders, such as epilepsy (Keller, Basta, Salerno, & Elia, 2017). Both epilepsy and autism have as 

major hallmark altered synaptic structure and function and for this reason are often named as 

synaptopathies (Bagni and Zukin, 2019). KCC2 is a cotransporter implicated in brain 

excitation/inhibition balance; thus mutations of Kcc2 gene might impair the transporter function. In 

other to investigate the influence of the Kcc2 mutation on the function of KCC2 transporter, I 

recorded the spiking activity of CA3 neurons in acute hippocampal slices from adult wild-type and 

Kcc2 mutant mice. After isoguvacine application (a selective agonist of GABAA receptors), the firing 
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activity of wild-type and KCC2 mutated CA3 neurons decreased, but there was no significant 

difference between the action potential frequency in WT respect to KCC2 mutated hippocampal 

neurons.  This absence of difference in the firing frequency could depend on the same amount of 

KCC2 expressed in the two strains. Our hypothesis was confirmed through a western blot analysis 

of the hippocampal region: the mutation in Kcc2 gene does not influence the expression of protein 

in cortex and hippocampus. KCC2 regulates a number of processes that are crucial for development, 

such as maturation of dendritic spines (Fiumelli et al., 2013; Gulyás et al., 2001; Li et al., 2007), 

remodelling the actin filament through the interaction between its C-terminal domain and the 

synaptic protein, independently from its role as cotransporter (Llano et al., 2015). For this reason, I 

studied the influence of KCC2 mutated protein on dendritic spine morphology; however, the 

mutation did not influence dendritic spine morphology in WT and Kcc2 mutant mouse brain, neither 

in hippocampus nor in cortex. Further studies should be performed to study how the mutations in 

Kcc2 gene might affect the activity of KCC2 transporter. 
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Conclusions 

To date, no specific therapy is available for patients who suffer from Fragile X syndrome and the 

clinical treatment focuses on the symptomatic treatment of psychiatric problems and of 

comorbidities. Several clinical trials in FXS are currently being carried out, although many trials have 

failed (Berry-Kravis et al., 2016; Youssef et al., 2018). Sertraline, a selective serotonin reuptake 

inhibitor (SSRI), is widely used to treat anxiety in patients with FXS, in line with the finding that 

serotonin production is reduced in the brains of young children with autism (Chugani, 2002; Hanson 

and Hagerman, 2014) and metabolomic studies of lymphoblastoid lines of all types of ASD, including 

those with FXS, demonstrate down-regulation of the enzymes leading to serotonin production from 

tryptophan (Boccuto et al., 2013). Sertraline may therefore be considered a targeted treatment for 

FXS. Our results suggest that in addition to SSRIs, enhancing overall serotonergic transmission, a 

selective activation of 5-HT7 receptors using specific agonists may represent a novel strategy for a 

possible therapy of Fragile X Syndrome. 

In the next future it will be interesting to study the role of 5-HT7 receptors in the mitochondrial 

respiratory chain of the murine model of FXS, investigating the possibility to rescue the 

mitochondrial impairments typical of the pathology using a 5-HT7 agonist.  

In addition, our data on the molecular mechanisms of 5-HT7-mediated rescue of synaptic plasticity 

in Fmr1 KO mice might be translated to human models, using iPSC-derived neurons obtained from 

FXS patients.  
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