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A B S T R A C T

Electronic Control Units (ECUs) communicate with each other to accomplish the functionalities of modern
vehicles. ECUs form an in-vehicle network that is precisely regulated and must be adequately protected from
malicious activity, which has had several outbreaks in recent years. Therefore, we present CINNAMON, an
AUTOSAR-based Basic Software Module that aims at confidentiality, integrity and authentication, all at the
same time, for the traffic exchanged over the bus protocols that AUTOSAR supports. CINNAMON in fact stands
for Confidential, INtegral aNd Authentic onboard coMmunicatiON.

This article introduces the requirements and specification of CINNAMON in a differential fashion with
respect to the existing Secure Onboard Communication Basic Software Module, which does not include confi-
dentiality. As a result, CINNAMON exceeds SecOC at least against information gathering attacks. The article
then defines three security profiles, regulating also the freshness attribute appropriately. Most importantly,
CINNAMON is not a simple academic exercise because it is implemented in a laboratory environment on
commercial ECUs, thus reaching the level of TRL 4, ‘‘Component and/or breadboard validation in laboratory
environment’’. The runtimes obtained on inexpensive devices are reassuring, paving the way for a possible
large-scale application.
1. Introduction

Modern vehicles embed so much digital technology that they resem-
ble a network of computers. Each car, in particular, hosts several Elec-
tronic Control Units (ECUs), which need to exchange a huge amount
of data for the various functions of the car to work smoothly. Compo-
nents such as air-bags, power doors and the advanced driver-assistance
systems (ADAS), need to communicate to ensure the synergistic func-
tioning of all. To communicate one another, ECUs may adopt several
buses, such as the Controller Area Network (CAN) [1], FlexRay [2],
Ethernet [3].

Cars may also handle driver’s personal data such as driving style [4],
location history [5] and even more general data such as cabin pref-
erences, music preferences and credit card details [6]. Each type of
data normally travels on a separate network: for example, while the
driving style can be gathered from data transported on the frame bus,
music and other similar preferences and are normally transported on
the infotainment network, which is often isolated through a security
gateway. In consequence, the in-vehicle network should be designed
and partitioned with care, enforcing well-defined security policies in
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each subnetwork much the same way as it is routinely done in an
institutional network.

However, experience shows that in-vehicle networks are not always
hardened appropriately. The most popular example is the attack of
2015 by Miller and Valasek to drive a Jeep Cherokee off track [7].
The researchers first reverse-engineered the target ECUs to understand
what functionality was associated to what frame, then flashed the
control units to control them and ultimately send arbitrary frames.
Similarly, hackers exploited a vulnerability of the infotainment system
of a General Motors car to steal data from the infotainment system
via the Internet [8]. In 2016, researchers discovered a number of
vulnerabilities that, when combined, allowed them to remotely violate
a Tesla Model S [9]. In 2018, the Keen Security Lab presented a set
of vulnerabilities on BMW cars enabling an attacker to inject Unified
Diagnostic Services (UDS) frames into the CAN network bypassing
the central gateway [10]. Another relevant example is a 2020 attack
that exploited a Bluetooth vulnerability on a Toyota Lexus and then
continued with frame reverse engineering [11].
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It is clear that exploiting such vulnerabilities always required the
attacker to reverse engineer the association of a frame with a specific
signal for an ECU hence with a precise functionality [12]. Therefore,
the attacks leverage the lack of confidentiality for data in transit within
the vehicle network, and such a lack permits information gathering.
We therefore contend that confidentiality ought to be added by design
to in-vehicle communications, and we set out to reach it by means of
encryption. Encryption is the de facto standard to protect data from
disclosure while in transit. Many examples confirm this claim, such as
client–server communications over HTTPS and popular chat services
pervasively exposed via mobile apps. Encryption is also one of the
measures that (art. 32 of) the General Data Protection Regulation
advocates to protect personal data in any application scenario that
treats such data [13], and driver profiling is a risk [4,5]. Additional
motivation to our work comes from Addendum 154 to UN Regulation
155, which postulates that ‘‘Confidential data transmitted to or from the
vehicle shall be protected’’ [14].

AUTOSAR is a partnership of industries aimed at open and stan-
dardised software architectures for ECUs. It provides a Classic Platform,
which is a Software Platform defined for deeply embedded systems
and Application Software with high demands regarding predictability,
safety and responsiveness. Regarding security, AUTOSAR defines the
Secure Onboard Communication BSW module, named

SecOC, through its requirements [15] and specifications [16]. In
short, SecOC aims at integrity of onboard communications and authen-
tication of ECUs that act as senders; by contrast, it does not consider
confidentiality. This article presents in full detail the CINNAMON Basic
Software module (for brevity, CINNAMON module in the following), an

AUTOSAR-based module that exceeds SecOC by providing also
encryption over the communication bus.

CINNAMON rests on our conference paper [17] and extends it in
(various directions) as follows:

1. The requirements and the specification of CINNAMON are gen-
eralised and no longer limited to the CAN bus.

2. The definitions of the three security profiles are largely extended
and clarified.

3. The implementations of Message Authentication Code (MAC)
and of encryption are combined on all three (rather than on just
one) security profiles.

4. The definitions of suitable data structures in support of two
different treatments of freshness, known as Single Counter and
Multiple Counter, are provided and made available.

5. The full prototype implementations of all three (rather than
just one) security profiles on CAN bus are reached on STM32
boards resembling automotive ECUs, then experimented with,
producing promising runtimes, and finally publicly released.

As a result, the present manuscript is almost twice as long as our latest
publication [17]; most importantly, the contribution to knowledge
developed in this article makes CINNAMON reach the development
level of TRL 4, ‘‘Component and/or breadboard validation in laboratory
environment’’.

The structure of this article is simple. Section 2 introduces the
assumed threat model. Section 3 presents the requirements of CIN-
NAMON and Section 4 its specification and integration in AUTOSAR
Classic Platform. Section 5 details the CINNAMON Security profiles.
Sections 6 and 7 discuss the implementation of the CINNAMON archi-
tecture prototype and CINNAMON security profiles, respectively. Sec-
tion 8 shows the runtimes obtained through our experiments. Section 9
treats the related work. Section 10 draws conclusions.

2. Threat model

This paper assumes a threat model with an active attacker who may
exploit some vulnerabilities of in-vehicle network to gain some digital
access to the car, either locally or remotely. More precisely, our attacker
attempts to carry out two sets of malicious activities:
2

• Malicious activity set 1, the injection of frames she altered or
built from scratch using known data, thus manipulating the data
processed by the target ECUs to trigger specific functionalities.
This activity set includes:

– tampering, the manipulation of frames with the aim of inval-
idating their contents so that receiving ECUs cannot perform
execute the operations that were originally meant;

– fuzzing, the manipulation of frames with the aim of studying
the behaviour of target ECUs;

– forging, the generation of a valid frame with the aim of
generating a valid signal and activating a specific ECU
functionality;

– replaying, the reuse of valid frames with the aim of repeating
the generation of a valid signal and reactivating a specific
ECU functionality.

– masquerading, the generation of a valid frame with the aim
of abusing the identifier of another, genuine ECU.

• Malicious activity set 2, the collection of information about the
running protocols and other mechanisms in place in the network
she observes, in particular acquire exchanged data. This activity
set includes:

– sniffing, the capture of frames in transit with the aim of
learning the data they carry;

– information gathering, the capture of frames in transit with
the aim of identifying and interpreting the full set of data
they carry, such as payloads and their associated ECU func-
tionalities.

The attacker’s malicious activities are clearly related to the security
properties and attributes that we would like to establish, in the sense
that each set of malicious activities attempts to undermine a set of
security properties and, in turn, that set of security properties attempts
to thwart the given set of malicious activities. In particular:

• Malicious activity set 1 relates to security property and attributes:

– authentication, the identity of the sender of a given frame
can be verified;

– integrity, the content of a given frame is not altered during
transmission;

– freshness, it can be verified whether a given frame was
already received.

• Malicious activity set 2 relates to security property set:

– confidentiality, the content of a given frame is not disclosed
to unauthorised entities.

Our attacker is limited in the sense that she only has partial control
of ECUs, hence she cannot:

• obtain privileged access to any ECUs and, in particular,
• access the keys to be used for MACs and cryptographic operations,

which are assumed to be deployed on each ECU and protected by
a Crypto Service Manager (CSM) or similar solutions.

3. CINNAMON requirements

This section introduces the requirements of CINNAMON and posi-
tions the new module within the AUTOSAR Classic Platform. CINNA-
MON inherits most of its requirements from AUTOSAR Secure On-Board
Communication module (SecOC) without modifications, hence those
are not discussed here. By contrast, CINNAMON inherits and modifies
some requirements from SecOC in order to account for encryption. Such
new requirements are presented below with the caveat that the mod-
ifications determined by the new module are highlighted in boldface;
also, the new requirements coherently preserve the numbering of the
old ones.
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Table 1
CINNAMON_00003 requirement.

Functional
Requirement

Configuration of different security
properties/requirements

Type: Valid

Description: Different security properties, notably including
confidentiality, shall be configurable.

Rationale: The assessment may vary in several parameters and
its security needs.
Thus the level of protection shall be configurable to
adapt to these needs by means of a set of adequate
parameters.

Use case: Security experts define the different security
properties.
For every message with security protection needs,
the appropriate properties may be selected.

Corresponding
SecOC Requirement SRS_SecOC_00003

Table 2
CINNAMON_00005 requirement.

Initialisation Initialisation of security information

Type: Valid

Description: The CINNAMON module’s security configuration shall get
initialised at module start-up.

Rationale: The CINNAMON module needs security configuration
information (Key-IDs for calculating MACs, Freshness
Values, encryption initialisation parameters and Key-IDs
for encryption) to perform its operations. Therefore, this
information shall get recovered and configured before it
starts its processing operation.

Use case: CINNAMON loads the ID of the messages, the authorised
authentication retry counter and the properties, including
confidentiality, that are used for the processing of its
incoming
communications from upper and lower layers.

Corresponding
SecOC Requirement SRS_SecOC_00005

3.1. Functional requirements

Requirement CINNAMON_00003 (Table 1) configures different se-
curity properties, with the noteworthy inclusion of confidentiality. In,
essence, it prescribes that security experts be able to define the level
of protection of onboard communication messages and the parame-
ters needed to configure the functionalities of the module, including
encryption and decryption.

3.2. Initialisation requirements

Requirement CINNAMON_00005 (Table 2) initialises the security
information and also covers encryption. In fact, the requirements ex-
plicitly refers to encryption initialisation parameters and keys needed
for the encryption phase. Such phase aims at including confidentiality
among the set of CINNAMON security properties.

Requirement CINNAMON_00030 (Table 3) inherits from SecOC that
it shall be possible to extract the payload from secured messages
without authentication and insists on this to be possible even if the
payload is encrypted.

3.3. Non-functional requirements

Requirement CINNAMON_00025 (Table 4) refers to performance,
thus it regulates the computation time to perform security operations,
in particular for dealing with cipher-texts.
3

Table 3
CINNAMON_00030 requirement.

Normal Operations Support of capability to extract Authentic PDU without
Authentication

Type: Valid

Description: CINNAMON shall be capable to extract the payload from
Secured frames, without Authentication, even if the payload
is encrypted.

Rationale: CINNAMON can be used as an extractor of payload from
Secured frames, to enable low latency GW behaviour when
a part of downstream communication clusters does not
require authentication of frames.

Use case: Gateway.

Corresponding
SecOC Requirement SRS_SecOC_00030

Table 4
CINNAMON_00025 requirement.

Non-functional requirements Authentication and verification processing
(Timing) time

Type: Valid

Description: Authentication, verification, encryption and
decryption processing shall be performed in a
timely fashion so that the real time critical
signals do not get affected.

Rationale: Transmission and reception of the time critical
message between the running applications of
two or more peers shall not get penalised by the
additional processing of their underlying
communication software layers such that the
signals are finally rejected.
It is necessary that when time critical messages
are transmitted and received through secured
messages, the additional processing required by
CINNAMON remains under a value that is
predictable and compatible with the
time constraints of the concerned signals.

Use case: A legitimate encrypted and authenticated
message is decrypted, verified and passed to
the receiving ECU within the expected
time-frame without experiencing
signal monitoring errors.

Corresponding
SecOC Requirement SRS_SecOC_00025

4. CINNAMON specification

The CINNAMON module is a Basic Software (BSW) module capable
of protecting on-board CAN Bus communications and is based on
AUTOSAR in the sense that it extends AUTOSAR in terms of possible
functionalities provided and can be integrated into the current AU-
TOSAR architecture. Moreover, CINNAMON is designed as a single
module that is built to provide security functionalities within the
AUTOSAR framework. Thus, it is designed and implemented (Sec-
tions 6 and 7) to work with the other modules already present into
the AUTOSAR Classic Platform.

4.1. Integration with AUTOSAR

CINNAMON is, as SecOC, part of the Communication Services of
the AUTOSAR Classic Platform, as depicted in Fig. 1. It encapsulates
the SecOC module and inherits its API to interact with the Protocol
Data Units (PDU) Router component and with the cryptographic ser-
vices provided by the Crypto Service Manager (CSM). Also, our module
interacts with the Run-Time Environment to manage counters and keys.
More specifically, the PDU Router module provides services for routing
Protocol Data Units between modules such as the communication and
transport modules. As for the Crypto Service Manager, it provides
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Fig. 1. Integrating the CINNAMON BSW module within AUTOSAR Classic Platform.

Fig. 2. SecOC MAC generation and verification [16].

services to allow single access to basic cryptographic functionality for
all software modules. Hence, CSM provides a standardised interface at
the software levels to access these features. Since CINNAMON is based
on AUTOSAR, it is able to use other AUTOSAR components to carry out
communication and security operations.

CINNAMON acts as a middle-layer between the low-layer com-
munication module, i.e., TP, and the upper layer software module,
i.e., AUTOSAR COM. In addition, our module internally manages the
communication with the lower level to build and send the secured
data using a single PDU. Differently, the last version of SecOC spec-
ification [16] suggests to use two PDU, one dedicated to store infor-
mation used to authenticate the sender of the frame, and another one
containing the secured frame.

4.2. Authentication and integrity

CINNAMON inherits SecOC authentication and integrity mecha-
nisms, reviewed in Fig. 2.

AUTOSAR assumes that all ECUs have the cryptographic keys to
handle Message Authentication Codes (MACs) (see [18]). Moreover, an
external Freshness Value Manager provides counters to both sender and
receiver to support the freshness of exchanged frames.

CINNAMON inherits the same prerequisites, briefly recalled here.
Let us consider a sender ECU and a receiver ECU. Before sending a
payload, the sender generates the MAC starting from the payload and
possibly the Freshness Value calculated according to the Monotonic
Counter (Fig. 2) provided by the Freshness Value Manager (an ECU
may decide to ignore the Freshness Value). So, the secured frame is
composed by the payload, the truncated MAC (MACT in Fig. 2) and,
optionally, the truncated freshness value (FVT).

The receiver has to validate the frame before accepting it and does
this by verifying the MAC. In fact, the receiver generates a fresh-
ness value for verification (FVV) starting from the Monotonic Counter
(Fig. 2) received by the Freshness Value Manager and the previously
received freshness value (the latest received counter in Fig. 2). Then,
it calculates the MAC by using the received payload and the FVV. If
the outcome equals the received MACT, then the payload is accepted,
otherwise it is discarded.
4

h

4.3. Confidentiality

While MAC operations are normally fast, hence not problematic
on inexpensive ECUs, it can be anticipated that the implementation
of encryption and decryption primitives may cause a computational
bottleneck. In consequence, the choice of the cryptographic scheme will
have to be made with care.

Also, this specification purposely is not prescriptive with respect
to the choice between the encrypt-then-MAC or MAC-then-encrypt ap-
proaches. This will be made at implementation level, depending on the
adopted cryptographic scheme, its features and possible vulnerabilities.
Another factor for this choice will be the specific transport protocol of
the application scenario.

4.4. Freshness

The freshness value refers to a Monotonic Counter (MC), termed
Freshness Counter (FC), which is used to guarantee the freshness of
communication and must be provided by a Freshness Value Manager
(FVM) unit which regularly distributes the freshness values on the
network. In addition, the FVM takes care of synchronising and updating
the freshness values in the ECUs appropriately. The FVM also allows
the FC to be refreshed in a way that mitigates possible attacks such as
replay and MiTM.

CINNAMON implements the freshness mechanism using two dif-
ferent ways that follows the AUTOSAR specifications. Note that, in
total AUTOSAR describes three different approaches to building the
freshness counter, two based on counters (single or multiple) and one
on timestamps.1

In the approach based on Single Freshness Counter, the FVM supplies
he FV to nodes connected to the network and increases the counter
ach time a frame is sent in the communication channel. To guarantee
reshness, the FCs of the sender and receiver should be increased
ynchronously. Thus, the FC must be incremented for each outgoing
rame that has been validated on the receiving side.

The approach based on Multiple Freshness Counters uses four coun-
ers: Trip Counter, Reset Counter, Message Counter and Reset Flag. The
VM manages two of them, the Trip and Reset Counter. These coun-
ers are incremented according to specified criteria [16]. For exam-
le, the Reset Counter is incremented by 1 at regular time inter-
als. The multiple freshness counter approach requires the use of a
learAcceptanceWindow parameter that represents an admissible

reshness interval to counter potential lack of synchronisation.

. CINNAMON security profiles

As in the Secure On Board Communication module, also in the
INNAMON module it is possible to define and manage various security
rofiles.
Security Profiles provide a consistent set of values for a subset of

onfiguration parameters that are relevant for the configuration of
INNAMON. This is in line with the Secure Onboard Communica-
ion module [16]. A CINNAMON Security Profile is defined as the
onfiguration of the following mandatory parameters.

• algorithmFamily:String [0..1] is the first parameter that
characterises the used authentication algorithm. This parameter
identifies the family of authentication algorithms.

• algorithmMode:String [0..1] is the second parameter that
characterises the used authentication algorithm. This parameter
identifies which MAC algorithm of the family is used.

1 In this article, we do not consider the FV based on timestamp due to
ardware constrains.
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Table 5
CINNAMON Security Profile 1.

Parameter Configuration value

algorithmFamily Chaskey
algorithmMode Chaskey_MAC
algorithmSecondaryFamily Not set
SecOCFreshnessValueLength Not set
SecOCFreshnessValueTruncLength Not set
SecOCAuthInfoTruncLength 24 bit
algorithmFreshnessValue Not set
algorithmEncryption SPECK64/128

• algorithmSecondaryFamily:String [0..1] is the third pa-
rameter that characterises the used authentication algorithm. This
parameter identifies a secondary family of the chosen algorithm,
if any.

• authInfoTxLength:PositiveInteger denotes the length of
the truncated MAC.

• freshnessValueLength:PositiveInteger denotes the length
of generated freshness value.

• freshnessValueTruncLength:PositiveInteger denotes the
length of the truncated freshness value.

• algorithmFreshnessValue:String [0..1] denotes the algo-
rithm used to generate the freshness value.

• algorithmEncryption:String [0..1] denotes the encryption
algorithm.

ote that the first six parameters are inherited from SecOC, while the
ast two are typical of CINNAMON. This paper defines three example
ecurity profiles.

.1. Security Profile 1

The CINNAMON Security Profile 1 is in Table 5. It does not set any
arameters related to the FV and only uses the MAC and encryption
lgorithm parameters set as:

• Chaskey [19] with freshnessValueTruncLength of 24 bits.
Chaskey is a Message Authentication Code (MAC) algorithm
whose design is thought for 32-bit micro-controller architectures.
It is robust under truncation and, since it is employed to produce
a tag size of 128 bits, a choice that largely satisfies the official
recommendation of exceeding 64 bits, it does not suffer neither of
tag guessing (finding counter-images) nor tag collision (birthday
attacks).

• SPECK64/128, that is a lightweight block cipher publicly released
by the NSA in 2013 [20]. Note that no successful attack on full-
round SPECK64/128 (27-rounds) is known. By contrast, reducing
the number of rounds invites differential cryptanalysis attacks in
the standard attack model, which succeed when rounds are re-
duced to approximately 70%–75%; still, such attacks are only
marginally faster than brute-force [21].

.2. Security Profile 2

Security Profile 2 introduces a freshness value, so it is designed
o avoid replay attacks on the communication channel, as shown in
able 6. As before, we define the parameters used by this profile with

ts respective values. It can be seen that FV is based on Single Counter,
hat freshnessValueLength is of 64 bits and freshnessVal-
ueTruncLength:PositiveInteger of 8 bits, so FVT is 8 bit long.
Finally, the choices of MAC function and the cryptographic scheme
remain the same as in Security Profile 1.
5

Table 6
CINNAMON Security Profile 2.

Parameter Configuration value

algorithmFamily Chaskey
algorithmMode Chaskey_MAC
algorithmSecondaryFamily Not set
SecOCFreshnessValueLength 64 bit
SecOCFreshnessValueTruncLength 8 bit
SecOCAuthInfoTruncLength 24 bit
algorithmFreshnessValue Single Counter
algorithmEncryption SPECK64/128

Table 7
CINNAMON Security Profile 3.

Parameter Configuration value

algorithmFamily Chaskey
algorithmMode Chaskey_MAC
algorithmSecondaryFamily Not set
SecOCFreshnessValueLength 64 bit
SecOCFreshnessValueTruncLength 8 bit
SecOCAuthInfoTruncLength 24 bit
algorithmFreshnessValue Multiple Counter
algorithmEncryption SPECK64/128

5.3. Security Profile 3

Security Profile 3 is a modification of the previous one by means of
a different method to generate the FV, as shown in Table 7. The method
relies on Multiple Counters (see Appendix).

Once the FV is generated, the sending ECU calculate the MAC of the
payload and truncate the output by taking only 3 bytes. Also, the FV
is truncated to 8 bits and assigned to the FVT variable, which is to be
inserted in the payload.

On the other side, the receiver must perform the reverse operations.
So, it first decrypts the received payload, then executes the freshness
value verification algorithm (see Appendix) to obtain a FV of 32 bits
starting from the 8 bits of FVT. This operation is needed to check that
the counters are synchronised. Once the FV is obtained, the receiver
builds its payload to calculate the MAC and carry out the verification.

6. CINNAMON implementations setup

This section describes the CINNAMON prototype implementations
by presenting its integration with the AUTOSAR Classic Platform and
the implementation choices to fulfil the Security Profiles requirements.

The CAN protocol is designed originally for multiplex electrical
wiring within vehicles. Messages are commonly named CAN frames
and each frame contains various fields. These include an Arbitration
field carrying the frame ID, also used for arbitration, a Control field for
control signals and a Data field for the payload that spans over up to 64
bits of data, and carries the payload of the frame. The latest version is
CAN2.0, dating back to 1991. The 2.0A version carries an 11 bit frame
identifier.

The main drawback of the CAN bus protocol is that it has been
designed without security on top of it. Hence, in order to provide our
prototype implementation of CINNAMON, we use the CAN protocol as
example of a real protocol completely unsecured but widely used in the
automotive domain.

6.1. Testbed resembling AUTOSAR classic platform

In order to resembling the architecture of the AUTOSAR Classic
Platform, we set up our testbed consisting of two ECUs and a laptop
interconnected via CAN bus. The laptop can send and receive frames
in the channel, which can in turn be connected to other networks,
for example also through the PDU Router, as in modern automotive

networks. Then, the other two are on STM32F407 Discovery boards



Computer Networks 218 (2022) 109377G. Bella et al.
connected to the laptop through a USB-to-CAN device. The boards come
with an ARM Cortex M4 processor each, physical input buttons and
light emitting diodes (LED) for visual outputs. Additionally, the boards
are equipped with an additional STM32F4 DISCOVERYCOMM shield to
provide CAN bus connectivity.

The laptop acts as FVM in the experiments that are explained
below, and it is assumed that all participating ECUs are provided
with the necessary cryptographic keys. We can therefore conjecture
that all cryptographic operations require interaction with the Crypto
Service Manager. The laptop runs software IXXAT canAnalyser 3 [22]
to manage the USB-to-CAN device, while the two boards run our code
discussed in the sequel of this manuscript. Moreover, we can input to
canAnalyser 3 specific frames that we want the laptop to send, and
this is useful to test broadcast reception, namely by both boards in our
setup.

The laptop may also send manually crafted frames so that we can
check broadcast reception, namely by both boards in our testbed.

6.2. Implementation complexities

Our initial choice to use Chaskey as a MAC function upon the basis
of its specifications was a lucky one. The function was reasonably easy
to implement and appreciably fast since the initial experiments. Tags
were truncated to 24 bits.

However, the encryption algorithm had to be chosen with care.
Our obvious, initial candidate was AES but it produced a data field
of at least 128 bits, while we aimed at a data field of 64 bits only
so that it could be accommodated in just one frame. On the other
hand, a 64 bit version of AES would be weaker and is not standardised.
We also experimented with DES, 3DES and Blowfish, but their main
drawback for our application was the computational overhead. By
contrast, SPECK64/128 [20] uses a 128 bit key, produces a 64 bit
output and is lightweight, so it turns out the optimal candidate here.

Further complexity derived from the implementation of the FVM,
which, of course, behaves differently from all other boards. We had
to decide whether and how to simulate it or whether to program it
specifically as with the other boards. While our original impulse was
towards the first route, we soon found a convenient way to take the
second, as we shall see.

Our implementations are publicly available under MIT license [23]
so they are fully reproducible.

6.3. Implementation choices

In light of what we just discussed, our implementations adopt
SPECK64/128 [20] to encrypt and decrypt CAN frames, Chaskey to
calculate MACs and the two FV mechanisms introduced above at speci-
fication level. A CINNAMON secured CAN frame is formed by reducing
the dimension of the payload. Then, a freshness value is used to
guarantee that the frame content is fresh. To complete the data field, an
additional block is used for the Message Authentication Code (MAC),
which ensures authentication and integrity. Finally, the entire 64 bits of
the payload are encrypted to ensure confidentiality. Therefore, our im-
plementations of CINNAMON and its current profiles on CAN bus take
the MAC-then-Encrypt approach, as specified in Fig. 3. In operational
terms, the sender ECU extracts a key, Keym, from the CSM and uses it
to generate the MAC of payload and FVT; it then truncates the MAC
as MACT, extracts another key, Keye from the CSM to encrypt payload,
FVT and MACT. The receiver ECU extracts its copy of the key Keye
(SPECK implements symmetric cryptography) and uses it to decrypt the
data field; it then selects payload and FVT, extracts its copy of the key
Keym to re-compute their MAC, hence it truncates that MAC and checks
its correspondence with the received MACT.

We are aware that, in general, depending on the chosen algorithm
and on the length of the frames, the MAC-then-encrypt approach may
6

Fig. 3. Complying with CINNAMON on CAN bus.

turn out less secure than the encrypt-then-MAC approach due to mes-
sage padding, which may allow an attacker to break the security of
the message rebuilding [24]. However, this risk is zeroed in our case
because there is no padding needed due to the fixed length of the
considered messages.

There is a second reason in support of our choice. The MAC-
then-encrypt approach encrypts 64-bit long frames (using encryption
algorithms with 64-bit block size and no need for padding). By con-
trast, using the encrypt-then-MAC approach according to the AUTOSAR
specification, the payload (or payload plus FVT) is shorter than 64 bits
hence padding would be needed. Most importantly, in frames where
the 64 bits are already taken, adding a MAC would necessarily require
the transmission of an additional frame to contain it [25].

Another effective choice made through our implementations is
about the FVM. We opt to simulate it through IXXAT canAnalyser
3 [22], which works well off-the-shelf on our laptop to forward CAN
frames back and forth between the two boards. However, it does
not provide adequate management of the FC in Single Counter style,
namely for Security Profile 2. In the homologous SecOC profile, AU-
TOSAR adopts a centralised management, precisely by the FVM, of the
FC for all frames. On one hand, it is convenient to just use canAnalyser
3 as is but, still, the management of the FC has to be implemented
from scratch. So, we take a distributed state matrix approach to enable
each ECU to keep track of the FC value associated with each frame ID.
Therefore, each ECU implements a state matrix to store the FC currently
associated to each of the frame IDs the ECU can handle.

6.4. Visual cues

Once CINNAMON is deployed on our boards, we can observe the
visual cues from its leds to get a confirmation of the operations that
the boards performed. In particular, Fig. 4 shows four notable scenarios.
The red led can be noticed on the left hand side of all boards, near the
Mini B power connector, indicating operation.

• Fig. 4(a) may refer to all security profiles. The left board sent a
frame successfully hence turned on the green led. The right board
receives that frame successfully hence turns on the blue led.

• Fig. 4(b) may refer to all security profiles. The laptop sent a frame,
both boards received it successfully hence turn on their respective
blue led.

• Fig. 4(c) may only refer to Security Profile 2 and Security Profile
3. Both boards received updated FVs from the FVM hence turn on
their respective orange led.

• Fig. 4(d) may only refer to Security Profile 2 and Security Profile
3. Both boards were originally synchronised, then the left board
was reset and, after that, sent a frame successfully hence turned
on the green led. The right board is no longer synchronised
because the left board was reset, hence the right board discards
the received frame and turns on the red led.

These scenarios will be recalled below to demonstrate our imple-
mentations of CINNAMON Security profiles.
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Fig. 4. Led colours representing various board states. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
7. CINNAMON Security Profile Implementation

In this section, we provide the description of our prototype imple-
mentation of CINNAMON Security Profiles. For each profile we include
also some exemplified code snippets to show the implementation of the
most relevant functions.

7.1. Security Profile 1 implementation

Our implementation of CINNAMON Security Profile 1 on CAN bus
reviews the CAN frame structures as depicted in Fig. 5, with 40 bits
for the payload and 24 bits for the MAC. These fields are encrypted co-
herently with the profile specification and our implementation choices
seen above.

7.1.1. Sending function
Once the code (Code 1) is deployed on the ECUs, the experiment

starts when we press the blue button on the sending board to trigger
the preparation of a CINNAMON secured CAN frame. This computes
the MAC and performs encryption, building a new frame with a data
field as seen in Fig. 5. The board then sends the frame on the CAN
bus to its peer. More specifically, the sender executes the first memcpy
which takes as input respectively: the resMAC variable which will
contain the MAC result, the chas_mac_create function which takes
the frame as input and returns the MAC and finally the third parameter
concerns the size of the resMAC variable. Next, the second memcpy is
performed which is necessary for creating the frame encryption. The
first parameter of the memcpy is result_Enc which is the variable
that will contain the whole encrypted frame. The second parameter is
the speck_Enc function which takes the frame as input and calcu-
lates its encryption and the third parameter concerns the size of the
result_Enc variable. Finally, the CAN_send function is executed
to manage the transmission of the frame on the bus. If the function
CAN_send is successful, then the green LED will light up, otherwise
the red one will light up.
7

Code 1: Code snippet from sender in Security Profile 1

1 memcpy(resMAC, chas_mac_create(frame),
sizeof(resMAC));

2 memcpy(result_Enc, speck_Enc(frame),
sizeof(result_Enc));

3 if(CAN_send(1, &result_Enc, 0x0F00) == CAN_OK){
4 GPIOD->BSRRH = 0xF000;
5 GPIOD->BSRRL = 0x1000;
6 }else{
7 GPIOD->BSRRH = 0xF000;
8 GPIOD->BSRRL = 0x2000;
9 }

7.1.2. Receiving function
The receiver board performs the reverse operations (Code 2). It

decrypts the frame (speck_Dec function), executes the memcpy func-
tion which takes as input the result variable which will contain the
decoded frame, and uses the 40 bits of the payload to calculate the
MAC, truncates it and compares it to the version stored in the last 24
bits of the data field. The outcomes of this experiment can be seen in
Fig. 4(a): if the MAC check gives a positive result, the blue LED will
light up, otherwise the red one will light up.

Code 2: Code snippet from receiver in Security Profile 1

1 memcpy(result, speck_Dec(msg.data), sizeof(result));
2 if(chas_mac_can(result)){
3 GPIOD->BSRRH = 0xF000;
4 GPIOD->BSRRL = 0x8000;
5 }else{
6 GPIOD->BSRRH = 0xF000;
7 GPIOD->BSRRL = 0x4000;
8 }

To check that both boards can receive a secured frame, we generate
one and assign it to a frame ID accepted by both boards. Then, we
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Code 3: Code snippet from sender in Security Profile 2

1 if (isPressed() == 0x01){
2 for(i=0; i<stateMatrixLength; i++){
3 if (freshMatrix[i][0] == 0x602){
4 freshMatrix[i][1] = freshMatrix[i][1]+1;
5 tmp_frame[4] = freshMatrix[i][1]; //Freshness Value
6 break;
7 }
8 }
9 tmp_frame[0]=0x20; tmp_frame[1]=0x21; tmp_frame[2]=0x22; tmp_frame[3]=0x23; //example and temporary payload for a

MAC
0 memcpy(resMAC,chas_MAC_create(tmp_frame),
1 sizeof(resMAC)); //resMAC has the chaskey MAC tag
2 for (h=0; h<8;h++){ //concatenation of the payload with the truncated MAC tag
3 frame[h] = tmp_frame[h];
4 if (h == 5){
5 frame[5]=resMAC[0];
6 frame[6]=resMAC[1];
7 frame[7]=resMAC[2];
8 break;
9 }
0 }
1 memcpy(result_Enc,speck_Enc(frame),sizeof(result_Enc)); //Encryption of the frame with SPECK
2 for (h=0; h<8;h++) //result of the encryption copied to the data structure for transmission
3 can.data[h] = result_Enc[h];
4 if(CAN_send(1, &can, 0x0F00) == CAN_OK){
5 GPIOD->BSRRH = 0xF000;
6 GPIOD->BSRRL = 0x1000;
7 }else{
8 GPIOD->BSRRH = 0xF000;
9 GPIOD->BSRRL = 0x2000;
0 }
1 }
Fig. 5. Data field of a Security Profile 1 frame.

Fig. 6. Data field of a Security Profile 2 frame.

manually input such a frame to canAnalyser 3 and both boards receive
it successfully hence turn on the blue led (Fig. 4(b)).

7.2. Security Profile 2 implementation

CINNAMON Security Profile 2 extends Security Profile 1 by inte-
grating a FV into the secured frames. Hence the structure of the secured
frame generated by Security Profile 2 is the one in Fig. 6: a payload of
32 bits, a FV of 8 bits based on Single Counter and a MAC of 24 bits.
Encryption remains the final step prior to sending the frame.

We conventionally use frame ID 602 to carry the FV sent by the
FVM.

Each ECU implements a state matrix to store the FC currently
associated to each of the frame IDs the ECU can handle, e.g. #10 and
#40 in Table 8. The synchronisation among the ECUs is managed by
the FVM using the FC value.
8

Fig. 7. Data field of a Security Profile 3 frame.

Fig. 8. Structure of counters in multiple freshness counter approach.

7.2.1. Sending function
When a vehicle is powered on, the FVM generates a random value

that represents the freshness value FV. Then, the FVM communicates FV
to all ECUs, which are all assumed to be able to receive frames from
the FVM.

When an ECU wants to send new frames it has to generate them
with a certain frame ID. In our testbed, that operations are triggered
upon pressing the onboard button (Code 3).

Then, the board increases by one the FV associated with a given ID
and assigns it to a specific position of variable tmp_frame, the array
used for all preliminary operations needed to create the secured frame.

According to the structure of the DBC file, each ECU can handle a
specific set of frame IDs and, in turn, each frame ID can be associated
with a set of signals. Table 8 provides an example.

Because each ECU stores the last value of the FC that was set for
a frame ID, the state matrix of an ECU may look, at some point, as
the one in Table 9. When an ECU wants to send payload on a specific
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Table 8
Example DBC fragment.

ECU No. Frame identifier Signal

#10 201 EngineSpeed
OilLevel
FuelConsumption
...

205 RHHighBeamFail
LHHighBeamFail
...

... ...

205 RHHighBeamFail
LHHighBeamFail
...

#40 305 RainSensor
LowFuelWarning
...

... ...

... ... ...

Table 9
Example state matrix for ECU #10.

ECU #10

Frame identifier Freshness counter

201 15
205 7
... ...

frame with a certain ID, it queries its state matrix to get the FC value
associated with that ID. Then, the ECU increases the retrieved FC by
one and assigns it as the new FV for the frame to be sent. At the same
time, the ECU updates by one also the FC stored in its state matrix for
that frame ID. For example, considering the state matrix of Table 9,
when ECU #10 wants to send the frame whose ID is 201, it finds its
associated FC of 15, assigns 16 as FV and updates the stored FC as 16.

Then, the board sets a temporary payload to assist the computation
of the final payload. Then, the board executes the chas_MAC_create
function to calculate the corresponding MAC that will be stored in
the temporary payload. Moreover, the board truncates the MAC and
concatenates it to compose the final payload. After that, the board
invokes the cryptographic function speck_Enc thereby encrypting the
4 bit payload. Finally, it can be seen that the CAN_send API sends
he frame just built and the green LED is turned on to signal that all
perations have been successfully completed.

.2.2. Receiving function
On the receiving side, upon reception of a frame, the board decrypts

t and stores its contents in the frame variable (Code 4).

Code 4: Code snippet from receiver in Security Profile 2

1 memcpy(frame, speck_Dec(can.data), sizeof(frame));
//the "frame" variable contains the decrypted frame

2 if(chas_MAC_check(frame)){ //function that verifies
the MAC, returns 1 if the operation was successful

3 for(i=0; i<stateMatrixLength; i++){
4 if (stateMatrix[i][0] == can.id &&

stateMatrix[i][1]+1 == frame[4]){ //check the FV
5 stateMatrix[i][1] = stateMatrix[i][1]+1;
6 GPIOD->BSRRL = 0x8000; // turn on Blue LED
7 break;
8 }else
9 GPIOD->BSRRL = 0x4000; // turn on Red LED
0 }
1 }
9

Table 10
Example state matrix for ECU #40.

ECU #40

Identifier Freshness counter

201 15
305 3
... ...

Then, the board verifies the MAC using the chas_MAC_check
unction, which returns 1 if verification succeeds, 0 otherwise. At this
oint, the board searches for the frame ID in its own State Matrix to
heck the frame freshness. For example, let us consider the state matrix
llustrated in Table 10.

To validate the FV that comes with a received frame, the receiving
CU compares it to the incremented (by one) version of the FC stored
n its state matrix for the ID of the received frame. If they differ, then
he ECU rejects the frame and turns on the red led to indicate lack of
ynchronisation on FV and discards the frame (Fig. 4(d)). Otherwise, it
s accepted and then the boards stores the updated FC in its table and
witches on the blue led. For example, if ECU #40 receives a frame with
D 201 and FV of 16, and if its state matrix is as in Table 10, then the
CU accepts the frame and updates as 16 the FC stored for the frame.
he outcomes of this experiment can be seen, once more, in Fig. 4(a).

If an ECU receives a frame from the FVM, it follows a different
rocedure. It overwrites its FC values as the frame dictates. This aims
t improving synchronicity, and in fact the FVM sents out its frames
eriodically. For example, if ECU #40 receives a frame from the FVM
ictating that the current FV for frame ID 201 is 20, then the ECU
pdates as 20 the value 15 its example state matrix seen in Table 10.

.3. Security Profile 3 implementation

This Security Profile manages the FV using the multiple freshness
ounter approach, so there is a sender-side function to generate the FV
nd a receiver-side function to reconstruct and verify the FV. Therefore,
he data field resembles that of the previous Security Profile with the
nly difference on the FV counter, as shown in Fig. 7.

The generation and validation algorithms of FV based on Multiple
ounter take into account four counters that are increased according
o specific conditions provided by AUTOSAR [16]: Trip Counter, Reset
ounter, Message Counter and Reset Flag, as Fig. 8 shows.

.3.1. Sending function
The sending function of Security Profile 3 is coded as shown in

ode 5. When a new frame is transmitted, the sender ECU executes the
enFreshSender() function. It takes four variables as inputs: the

ast Trip Counter value received by the FVM, the last Reset Counter value
eceived by the FVM, the values sent previously of the Trip Counter and
eset Counter. The function checks whether the Trip Counter and Reset
ounter values received by the FVM are the same as those previously
ent. Based on this check, the FV generation algorithm is performed:

• The Trip Counter is increased by one when the FVM starts, resets
and when the power status changes.

• The Reset Counter is increased by one at regular time intervals.
• The Message Counter is increased by one value for each message

transmission.
• The Reset Flag is represented by the two least significant bits of

the Reset Counter.

he resulting FV consists of the Trip Counter, Reset Counter, Message
ounter and Reset Flag. Note that, the FVM maintains only the Trip
ounter and the Reset Counter that are initialised to one. Instead, the
CU slaves use all four counters which are initialised to zero.
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Code 5: Code snippet from generation of the FV multiple counter

1 if( latestTrip == PrevTrip && latestRst == PrevRst ){
2 TripCntSender = PrevTrip;
3 RstCntSender = PrevRst;
4 MsgCntSender = MsgCntSender+1;
5 for (i = 7; i >= 0; i--){
6 aBitResetFlag[index]=MID(RstCntSender,i,i+1);
7 aBitMsgCnt[index]=MID(MsgCntSender,i,i+1);
8 index++;
9 }
0 ResetFlagSender = aBitResetFlag[6]*10 +aBitResetFlag[7];
1 FVTrunk = ((aBitMsgCnt[6]*10 +aBitMsgCnt[7])*100)+ResetFlagSender;
2 FVTrunk = BinToHex(FVTrunk);
3 ResetFlagSender = BinToHex(ResetFlagSender);
4 }else{
5 TripCntSender = latestTrip;
6 RstCntSender = latestRst;
7 MsgCntSender = 0x01;
8 for (i = 7; i >= 0; i--){
9 aBitResetFlag[index]=MID(RstCntSender,i,i+1);
0 aBitMsgCnt[index]=MID(MsgCntSender,i,i+1);
1 index++;
2 }
3 ResetFlagSender = aBitResetFlag[6]*10 +aBitResetFlag[7];
4 FVTrunk = ((aBitMsgCnt[6]*10 +aBitMsgCnt[7])*100)+ResetFlagSender;
5 FVTrunk = BinToHex(FVTrunk);
6 ResetFlagSender = BinToHex(ResetFlagSender);
7 }
In addition, the aforementioned function also generates the FVT
alue, which is represented by the last less significant bits of the Mes-
age Counter and the Reset Flag. The FVT value will be subsequently
nserted in the fifth byte of the frame and will be used by the receiver
o build again the FV. Once it is generated, the module builds a frame
ade up of four bytes of payload and four bytes of FV. At this point,

he function to calculate the MAC is invoked. Subsequently, we build a
ecure frame consisting of four bytes for the payload, the fifth byte is
sed for the FVT and the remaining three bytes for the truncated MAC.
inally, the entire frame is encrypted with SPECK64/128 and sent into
he bus.

.3.2. Receiving function
Upon receiving the frame, the ECU performs the decryption oper-

tion and obtains the frame containing the payload, FVT and MAC.
he receiver invokes the genFreshReceiver() function that takes
s input the Trip Counter and Reset Counter parameters received by
he FVM and Trip Counter and Reset Counter previously received
y the FVM. In addition, the function takes as input the FVT value
ontained in the fifth byte of the received frame. Hence, the FVV is
enerated by performing various comparisons on the four counters. All
uch comparisons may produce 15 different relative conditions among
he counters [16], and the value of the receiver’s FV is specifically
onstructed in each case (see Appendix).

Then, a data structure is built to maintain the payload and the FV
iven as output by the aforementioned function.

We implemented the extraction of the various counters from the
V Multiple counter by means of a function that transforms hexadec-
mal into an array containing its binary representation. For example
f we have the hexadecimal value 87, our method will execute the
inToHex function and build the array 1|0|0|0|0|1|1|1.

The MAC is calculated on the data structure to carry out the
erification. If the check ends successfully, then the ECU will turn on a
lue LED to indicate a positive result, otherwise it will turn on the red
ED.
10
Table 11
Runtimes per primitive.

Algorithm Time [μs]

Chaskey (MAC) 0.43
SPECK 64/128 (Enc/Dec) 5.36
FV Gen/Ver Single Counter 0.02
FV Gen/Ver Multiple Counter 0.04

To verify that the complex synchronicity demanded in this security
profile worked, we successfully run all four experiments whose visual
cues are in Fig. 4. In particular, we also cross-checked that, by resetting
the sender board hence breaking synchronicity, the receiver board
would discard the frame. The outcomes of the latter experiment can
be seen in Fig. 4(d).

8. Runtimes

We measured the runtimes of our prototype implementations of
CINNAMON and report them here. In our preliminary work [26], we
provided a first quantitative evaluation of a CAN-based protocol. In
[26], we presented the performance evaluation only of Profile 1, that
was designed and implemented in a different way to establish the MAC
and frame encryption with respect to what is shown in Section 5.1.
Therefore, we improved the CINNAMON design by choosing different
encryption algorithms, MAC and freshness and this has allowed us to
obtain better computation results related to Profile 1.

All of this leads us to conclude that the additional computations
that our module induces only slightly affect the overall performances,
despite the fact that our code is only a proof-of-concept and our testbed
only contains inexpensive hardware.

Table 11 shows the runtimes of each algorithm in microseconds on
a board at 168 MHz. Not surprisingly, encryption and decryption take
longer than the other operations but the excess seems acceptable.

It is also interesting to assess the total runtimes of sending or

receiving operations for each security profile. We found out that both
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Code 6: Code snippet from verification of the FV multiple counter

1 if (latestvalRFlag == rcvRFlag){
2 //Format 1 2
3 if (LatestTripCntFVM == PrevTrip && LatestRstCntFVM == PrevRst){
4 for (i = 7; i >= 0; i--){
5 aBitPrevMsgReceiver[index]=MID(PrevMsgCnt,i,i+1);
6 index++;
7 }
8 index = 0;
9 PrevRcvUpper = (aBitPrevMsgReceiver[4]*10 +aBitPrevMsgReceiver[5]);
0 PrevRcvUpper = BinToHex(PrevRcvUpper);
1 PrevRcvlower = (aBitPrevMsgReceiver[6]*10 +aBitPrevMsgReceiver[7]);
2 PrevRcvlower = BinToHex(PrevRcvlower);
3 rcvLower = (aBitFVTrunk[4]*10 +aBitFVTrunk[5]);
4 rcvLower = BinToHex(rcvLower);
5 if(PrevRcvlower < rcvLower){ //Format 1
6 TripCntReceiver = PrevTrip;
7 RstCntReceiver = PrevRst;
8 MsgCntReceiver = PrevRcvUpper*100+rcvLower;
9 MsgCntReceiver = BinToHex(MsgCntReceiver);
0 ResetFlagReceiver = (aBitFVTrunk[6]*10 +aBitFVTrunk[7]);
1 ResetFlagReceiver = BinToHex(ResetFlagReceiver);
2 }
3 else if(PrevRcvlower >= rcvLower){
4 TripCntReceiver = PrevTrip;
5 RstCntReceiver = PrevRst;
6 MsgCntReceiver = PrevMsgCnt+0x01+rcvLower;
7 MsgCntReceiver = BinToHex(MsgCntReceiver);
8 ResetFlagReceiver = (aBitFVTrunk[6]*10 +aBitFVTrunk[7]);
9 ResetFlagReceiver = BinToHex(ResetFlagReceiver);
0 }
1 }
2 //Format 3
3 else if (LatestTripCntFVM >= PrevTrip && LatestRstCntFVM >= PrevRst){
4 TripCntReceiver = LatestTripCntFVM;
5 RstCntReceiver = LatestRstCntFVM;
6 MsgCntReceiver = 0x00+(aBitFVTrunk[4]*10 +aBitFVTrunk[5]);
7 MsgCntReceiver = BinToHex(MsgCntReceiver);
8 ResetFlagReceiver = (aBitFVTrunk[6]*10 +aBitFVTrunk[7]);
9 ResetFlagReceiver = BinToHex(ResetFlagReceiver);}
operations take the same runtimes for each profile, a non-surprising
finding due to the fact that the computational overhead is the same
in both cases. Then, Table 12 shows the total runtimes of sending or
receiving operations, including frame generation upon sending or frame
validation upon receiving.

These runtimes remain unvaried over subsequent executions. It can
be concluded that CINNAMON adds less than 6 μs to generate or
alidate a secured frame in any of its security profiles, a finding that
e deem very promising for applications demanding a secure CAN bus.

. Related work

In this section, we discuss novelties and advantages of CINNAMON
ith respect to the state of the art. The discussion identifies and

evolves around the following six features F1 … F6, which are relevant
o the industrial uptake of secure CAN communication:

F1. Standard CAN. This feature holds of a protocol when all fields
of the frame, which the protocol defines, conform to size and
contents as specified by the CAN standard [35].

F2. Frame rate equal to CAN’s. This is true for a protocol that does
not need to increase the CAN’s frame rate.

F3. Payload size not smaller than CAN’s. This holds of a protocol
that preserves the standard CAN size of 64 bits for the payload
11

size.
Table 12
Runtimes per profile.

Profile Time [μs]

CINNAMON Security Profile 1
(SPECK + Chaskey) 5.79

CINNAMON Security Profile 2
(SPECK + Chaskey + FV Single Counter) 5.81

CINNAMON Security Profile 3
(SPECK + Chaskey + FV Multiple Counter) 5.83

F4. Standard AUTOSAR. This holds of a protocol that conforms to
the prescriptions of the latest AUTOSAR standard [16]. Note that
profiles were introduced in the AUTOSAR standard only in 2014.

F5. No ECU hardware upgrade. This holds of a protocol when it
requires no upgrade to the ECUs that can run the CAN protocol,
hence no additional features or computational power are needed
for the units.

F6. No infrastructure upgrade. This is similar to the previous fea-
ture but concerns the network and the overall infrastructure that
supports the protocol. Therefore, it is true for a protocol that
executes on the same network that underlies the CAN, without

additional, dedicated nodes.
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Table 13
Contrastive analysis of CINNAMON w.r.t. the related work.

CANAuth [27] MaCAN [28] LCAP [29] Libra-CAN [30] TACAN [31] CaCAN [32] LeiA [33] CANcrypt [34] CINNAMON

F1. Standard CAN ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓

F2. Frame rate equal to CAN’s. ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓

F3. Payload size not smaller than CAN’s. ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗

F4. Standard AUTOSAR ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

F5. No ECU hardware upgrade ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓

F6. No infrastructure upgrade ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓

1 0 3 1 3 2 5 4 5
Table 14
Construction of freshness value for transmission [16].
Trip Counter and Reset
Counter comparison

Construction of freshness value for transmission

Trip Counter Reset Counter Message Counter Reset Flag

Latest value =
Previously sent value

Previously
sent value

Previously
sent value

Previously sent
value +1

The value from the lower end
of the reset counter
(previously sent value)

Latest value ≠
Previously sent value

Latest
value

Latest
value

Initial Value +1 The value from the lower end
of the reset counter (latest
value)
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Since the current version of SecOC module has been introduced in
014 and slightly revised and improved till 2021, the existing solutions
o secure the CAN bus can be naturally divided into ante and post 2014.

Among the ante 2014 solutions there are:

• CANAuth [27], 2011. It is based on CAN + [36], which is an
extension of the basic CAN protocol in which the data rate is
extended in such a way that more bytes can be sent (up to 16 CAN
+ bytes for each CAN byte) in the same frame. The drawback of
this protocol is that it requires to change the transceivers, which
must be more powerful to manage the CAN + data rate. This
implies that using CANAuth has an impact on hardware, which
must be upgraded.

• LCAP [29], 2012, aimed to guarantee message authentication,
resistance to replay attacks, and backward compatibility at the
same time. It is based on some out-of-band protocol like CAN + .
The main drawback is the use of broadcast-based authentication,
which increases the traffic in a way directly proportional to the
number of nodes in the network.

• MaCAN [28], 2012, is a centralised authentication protocol based
on broadcast-based authentication, so it requires CAN + or CAN
FD. However, the same protocol was found to be flawed [37].

• Libra-CAN by Groza et al. [30], 2012, a protocol based on a MAC
calculated using MD5. Its main drawbacks are high bandwidth
and the introduction of hardware capable of understanding and
manage the new frame format: Libra-CAN protocol is based on
CAN + instead of on CAN.

Referring to the AUTOSAR standard, all solutions listed above do
ot appear to be based on the requirements and guidelines described
n the SecOC module requirements and specification. Moreover, most
f them require to redesign the vehicle network architecture to or
ntroduce new nodes or upgrade the ECUs to manage new protocols.
he solutions proposed after 2014 are the following ones:

• TACAN [31] shares a master key between an ECU and the Mon-
itor Node to generate shared session keys. These are assumed
to be stored in a Trusted Platform Module (TPM) [38]. Each
ECU embeds unique authentication frames into CAN frames and
continuously transmits them through covert channels, which can
be received and verified by the Monitor Node. TACAN aims at
mitigating suspension, injection and masquerade attack. TACAN
12

does not address confidentiality. A
• CaCAN [32] introduces a key distribution phase. Hence, the
protocol needs a new component in the architecture to act as a
monitoring node. Frames are not sent in broadcast but on a peer-
to-peer basis. The protocol is simulated but not implemented on
micro-controllers.

• LeiA [33] uses MAC to authenticate messages: for each message,
the protocol sends a message in plaintext and another one with
the MAC of the message. LeiA rests on a 29-bit message identifier,
which is coherent with CAN 2.0B [35].

• CANcrypt [34], 2017, is closely related to our work but does not
follow AUTOSAR guidelines. Also TLS-based approaches are valid
but demand extra-vehicular Internet connectivity and are limited
to time-critical applications due to performance overhead [39].

All these protocols present pros and cons. Table 13 represents a
ontrastive analysis of the main entries in the related work with respect
o all six features. Notably, no protocol ticks all features, but LeiA and
INNAMON are the only ones that are both CAN compliant, based on
he AUTOSAR guidelines and, at the same time, require no upgrade
o each ECU, or network augmentation with additional components.
ANcrypt does not strictly follow all AUTOSAR profiles. In fact, it
oes not implement any freshness values algorithm able to mitigate the
eplay attack. Moreover, LeiA and CINNAMON have alternate features
2 and F3. While LeiA keeps the CAN payload size of 64 bits, it
oubles each frame, a feature that may produce some safety concerns,
s discussed elsewhere [40]. On the contrary, both CINNAMON and
ANCrypt satisfy F2 but not F3. Both protocols rely on the CAN frame
ize of 64 bit. The main difference is that CANcrypt is designed to be
pplied to only a subset of messages in a quite small network due to
he high introduced overhead. Contrarily to most of the other protocols,
uch as CaCAN, we implement CINNAMON on micro-controller boards
esembling the real behaviour and computational power of ECU. The
btained performances are very promising because the new modules
oes not introduce additional overhead on the communication bus.

Moreover, recent work analyses the impact of introducing security
ver functional properties of vehicles. Dariz et al. [40,41] presented a
rade-off analysis between security and safety when a security solution
ased on encryption is applied on CAN messages. The analysis is pre-
ented considering different attacker models, packet fragmentation is-
ues and the residual probability of error of the combined scheme. Also
roza et al. [42] and Stabili et al. [43] targeted the delicate relation
etween security and safety. Also, a framework for the specification and
utomatic generation of security features for communications among

UTOSAR-compliant components must be mentioned [44]. It allows
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AUTOSAR designers to add security specifications to the communica-
tion model through a dedicated software tool. However, it has not yet
been practically used to advance new components or protocols that
would combine confidentiality with authentication and integrity.

10. Conclusions

What digital technologies are going to support the functioning and
exposed services of the cars we will be driving in the future?

The features and internal diversity of such functioning and services
cannot be overestimated. However, it is our belief that they will need
to withstand malicious activities hence will need to achieve adequate
non-functional properties to thwart those activities.

We began our works (and then opened this article) by arguing that
confidentiality is an essential property also in the automotive domain,
and that the use of the technical security measure to achieve it, encryp-
tion, already is pervasive and also in line with the current European
regulation on data treatment. So, such a use of encryption should be
extended over the automotive domain, and the recent Addendum 154
to UN Regulation 155 underlines this [14].

Therefore, this article presented CINNAMON, an AUTOSAR-based
basic software module aims at confidentiality, integrity and authenti-
cation combined together
and, at the same time, enhanced with the freshness attribute. In par-
ticular, the introduction of confidentiality makes reverse engineering
operations of an attacker harder. For example, understanding commu-
nications would require brute-forcing cipher-texts, a daunting task that
would, in turn, require the gathering of several pieces of information,
such as encryption key, encryption algorithm and general frame se-
mantics. It is reassuring that, because all these activities are unlikely
to succeed, the attacker will be unable to forge valid frames and
practically abuse real cars the way the news have reported so far.

CINNAMON is general and we have reached a TRL 4 prototype im-
plementation on CAN bus that complies with it. The observed runtimes
are promising and only negligibly increase those of SecOC, which does
not use encryption. This result supports the claim that securing in-
vehicle communications cryptographically is currently possible hence
viable for large-scale deployment.
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Appendix. Freshness value based on multiple counter

The generation and validation algorithms of FV based on Multiple
Counter take into account four counters: Trip Counter, Reset Counter,
Message Counter and Reset Flag (Fig. 8). These counters are increased
ccording to specific conditions provided by AUTOSAR [16]. In partic-
lar, the Trip Counter is increased by one when the FVM starts, resets
nd when the power status changes. The Reset Counter is increased
y one at regular time intervals. The Message Counter is increased by
ne value for each message transmission. Instead, the Reset Flag is
epresented by the two least significant bits of the Reset Counter.

It is important to note that the all counters can assume the states of
‘Latest’’ and ‘‘Previous’’, more specifically:

• Latest Trip Counter or Reset Counter refer to the values received
from the FVM.

• Previous Trip Counter, Reset Counter, Message Counter and Reset
Flag refer to the individual freshness values used for previous
authentication generation or verification.

The above counters are stored in volatile memory with the ex-
eption of the Trip Counter which is stored in non-volatile memory
o reduce data loss in the event of a sudden stop of the ECU. The
VM maintains only the Trip Counter and the Reset Counter that are
nitialised to 1. Instead, the ECU slaves use all four counters which are
nitialised to 0.

.1. Generation phase

The FV generation algorithm performs a comparison between the
atest and previously sent value of both Trip Counter and Reset Counter.
n particular, it checks whether the latest value is equal to the previ-
usly sent value of the two counters. Based on this comparison the FV is
uilt. For simplicity, Table 14 shows the construction of the freshness
alue for the transmission. For example, if the comparison returns a
ositive result, then the FV is composed of the previously sent value
s regards the Trip Counter and the Reset Counter, while the Message
ounter will be equal to previously sent value plus one and the Reset
lag will be equal to the value from the lower end of the reset counter
f the previously sent value as shown in Table 14.

.2. Verification phase

At verification, the FVV is built and used to validate the frame. The
VV is generated by performing three comparisons: Reset Flag, Trip
ounter and Reset Counter and finally on the Message Counter. Based
n the result of these comparisons, the value of the receiver’s FV is
onstructed. For clarity, we report Table 15 (see [16]), which describes
he algorighm on the possible scenarios. For example, if we consider
he ‘‘Format 1’’ (first row of Table 15), we note that the algorithm
hecks whether the latest value of the Reset Flag is equal to the received
alue. Then, it checks whether the latest value of the Trip Counter and
eset Counter is equal to the previously received value. Finally, the
reviously received value of Message Counter is checked to be less that
he received value. If all the checks explained above are successful, then
he FVV will be composed of the previously received value as regards
he Trip Counter, the Reset Counter and the Message Counter (Upper),
hile the Message Counter (Lower) will be equal to the received value
Message Counter Upper refers to the range that is not included in the

runcated freshness value for Message Counter transmission, Message
ounter Lower refers to the range that is included in the truncated

reshness value for Message Counter transmission.
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Table 15
Construction of Freshness Value for Reception [16].

Construction
format

Condition Construction of freshness value for verification

(1) Reset Flag
comparison

(2) Trip Counter
and Reset Counter
comparison

(3) Message Counter
(lower end) comparison

Trip
Counter

Reset
Counter

Message
Counter
(Upper)

Message
Counter
(Lower)

Format 1

Latest value =
Received value

Latest value =
Previously
received value

Previously received value <
Received value (no carry)

Previously
Received
value

Previously
Received
value

Previously
Received
value

Received
value

Format 2 Previously received value ≥
Received value (with carry)

Previously
Received
value

Previously
Received
value

Previously
received
value+1

Received
value

Format 3 Latest value >
Previously
received value

– Latest
value

Latest
value

0 Received
value

Format 1

Latest value-1 =
Received value

Latest value-1 =
Previously
received value

Previously received value <
Received value (no carry)

Previously
Received
value

Previously
Received
value

Previously
Received
value

Received
value

Format 2 Previously received value ≥
Received value (with carry)

Previously
Received
value

Previously
Received
value

Previously
received
value+1

Received
value

Format 3 Latest value-1 >
Previously
received value

– Latest
value

Latest
value-1

0 Received
value

Format 1

Latest value+1 =
Received value

Latest value+1 =
Previously
received value

Previously received value <
Received value (no carry)

Previously
Received
value

Previously
Received
value

Previously
Received
value

Received
value

Format 2 Previously received value ≥
Received value (with carry)

Previously
Received
value

Previously
Received
value

Previously
received
value+1

Received
value

Format 3 Latest value+1 >
Previously
received value

– Latest
value

Latest
value+1

0 Received
value

Format 1

Latest value-2 =
Received value

Latest value-2 =
Previously
received value

Previously received value <
Received value (no carry)

Previously
Received
value

Previously
Received
value

Previously
Received
value

Received
value

Format 2 Previously received value ≥
Received value (with carry)

Previously
Received
value

Previously
Received
value

Previously
received
value+1

Received
value

Format 3 Latest value-2 >
Previously
received value

– Latest
value

Latest
value-2

0 Received
value

Format 1

Latest value+2 =
Received value

Latest value+2 =
Previously
received value

Previously received value <
Received value (no carry)

Previously
Received
value

Previously
Received
value

Previously
Received
value

Received
value

Format 2 Previously received value ≥
Received value (with carry)

Previously
Received
value

Previously
Received
value

Previously
Received
value+1

Received
value

Format 3 Latest value+2 >
Previously
received value

– Latest
value

Latest
value+2

0 Received
value
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