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“Cum fulminis impetus uires suas expandere dedignetur in uirgulam, uerum audaces

prouectarum arborum expugnet excessus, imperiosa uenti rabies iras non expendat in

calamum, uerum in altissimarum supercilia reurum uesani flatus inuectiones excitet

furiosas, per uitiosam nostri operis humilitatem inuidie flamma non fulminet, nostri li-

belli depressa pauperiem detractionis flatus non deprimat, ubi potius miserie naufragium,

misericordie portum expostulat , quam felicitas liuoris exposcat aculeum. In quo lector

non latratu corrixationis insaniens, uerum limam correctionis emendans, circumcidat

superfluum et compleat diminutum quatenus illimatum revertatur ad limam, impolitum

reducatur ad fabricam, inartificiosum suo referatur artifici, male tortum proprie reddatur

incudi. Sed quamuis artificii enormitas imperitiam accuset artificiis, in adulterino opere

imperitie uestigium manus relinquat opificis, opus tamen sui ueniam deprecatur erroris,

cum tenuis humane rationis igniculus multis ignorantie obnubiletur erroribus, humani

ingenii scintilla multas erroris euanescat in nebulas. ”

Alanus de Insulis, Anticlaudianus

“Whenever I look at any quantum-mechanical calculation, the basic craziness of what

we are doing rises in my gorge and I have to stop and try to find some different way of

looking at the problem, that makes physical sense.”

E.T. Jaynes

“Probability theory is nothing but common sense reduced to calculation.”

Laplace
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Preface

In 1948 W. Shockley, W. Brattain and J. Bardeen realized the first transistor at the Bell

laboratories and in 1958 Jack Kilby, an engineer at the Texas Instrument, announced

the creation of the first integrated circuit. From then on progressing in electronic engi-

neering means miniaturizing.

By continuing to shrink the dimension of electronic devices, effects of quantum confine-

ment becomes more and more relevant. In particular, in this thesis, I will deal with

double gate MOSFETs (hereafter DG-MOSFETs) and MOSFETs.

In a DG-MOSFETs the potential between the two gates and the oxide layers confines the

electrons in the transversal direction, producing a quantum well whose length is compa-

rable with the de Broglie wavelength. A similar effect is also present in hetero-structures

like AlGa-Ga. For a comprehensive review the reader is referred to [28, 63, 65].

In a purely quantum approach, electric properties of nanoscale devices, like current-

voltage curves, can be computed via the non-equilibrium Green function [44, 45]. An-

other way to tackle the problem is in the framework of quantum kinetic theory via the

Wigner function, which gives the macroscopic physical quantities of interest as expecta-

tion values [46–48]. Other approaches are based on the master equation [49]. However, in

structures like DG-MOSFETs, one has a confining effect in one direction, that transver-

sal to the oxide, while in the other directions the electrons flow from the source to the

drain. The electron transport can be treated semiclassically when the typical longitu-

dinal length is of the order of a few tenths of nanometers. In fact, in these conditions

the electrons as waves achieve equilibrium along the confining direction in a time which

is much shorter than the typical transport time, so that one can adopt a quasi-static

description along the confining direction by a coupled Schrödinger-Poisson system which

leads to a subband decomposition. The transport along the longitudinal direction is de-

scribed by a semiclassical Boltzmann equation for each subband. Numerical integration

of the Boltzmann-Schrödinger-Poisson system has been performed with Monte-Carlo

methods or deterministic schemes for solving the transport part [30, 31, 33–35, 66], but

they are very expensive, from a computational point of view, for computer aided de-

sign (CAD) purposes. This has prompted to substitute the Boltzmann equations with

i



macroscopic models like drift-diffusion or energy-transport ones [36, 38].

Here, in order to describe the electron transport, we use an energy transport model

which is deduced, under a suitable diffusion scaling, from a system of equations derived

from the Boltzmann equations by using the moment method. The moment equations

are closed by resorting to the maximum entropy principle (MEP) [19], and take into

account scattering of electrons with acoustic and non polar optical phonons. The results

fit into the framework of extended thermodynamics [67, 68]. After the formulation of

an appropriate numerical scheme for the energy transport-Schrödinger-Poisson system,

the simulation of a nanoscale silicon DG-MOSFET is presented in order to validate the

model and the robustness of the numerical scheme. DG-MOSFET with its extra gate is

considered as one of the most appropriate structures for minimizing the short channel

effects in nanometer devices, which deteriorate the transistor performance. This is due

to the enhanced gate control (two gates) over the channel and to the reduced silicon

layer thickness.

The results have been published and can be found in

• Camiola, V.D., Mascali, G., Romano, V.: Numerical simulation of a double-gate

MOSFET with a subband model for semiconductors based on the maximum en-

tropy principle, Continuum Mechanics and Thermodynamics, 24 (2012)

• Camiola, V.D., Mascali, G., Romano, V.: Simulation of a double-gate MOSFET

by a non-parabolic energy-transport subband model for semiconductors based on

the maximum entropy principle, Mathematical and Computer Modelling (2012)

The other device examined in this thesis by the method reviewed above is the MOSFET.

At variance with DG-MOSFET the symmetry of the geometric disposition of the oxide

at the two gates is no longer present. Under the gate oxide, in the channel of the device,

there is still a quantization in the transversal direction forming a 2D electron gas but

far from such a region electrons are 3D. Therefore one has to include the coexistence of

both 2D and 3D electron gas inside the channel and only 3D electrons in the remaining

part.

A crucial point is how to take into account the transition of electrons from the 3DEG

to the 2DEG. In principle one should calculate the relative transition rate by using

the Fermi golden rule, but this requires to solve the Schrödinger equation and becomes

too involved to be applied in the formulation of a hydrodynamical or energy-transport

model.

I overcome such a problem inspired by the procedure used in [18]. If an electron belonging

to the 2DEG gains an energy above a threshold value after a scattering, it is considered

as 3D and vice versa if a 3D electron gets an energy below a threshold value after an



emission process it is considered into the 2DEG.

The model here exposed has been extracted by the preprint

• Camiola, V.D., Romano, V.: 2DEG-3DEG charge transport model for mosfet

based on the Maximum Entropy Principle, (submitted)

The plan of the thesis is the following. In chapter 1 an overview of semiconductor band

structure and of the Boltzmann equation is given. In chapter 2 the Maximum Entropy

Principle (MEP) is presented in a general way focusing the attention on its meaning as

method of inference. The original part is exposed in chapters 3 and 4. In Chapter 3 the

transport model for the DG-MOSFET is developed taking into account both parabolic

and Kane dispersion relations for energy. In chapter 4 the MOSFET is examined.



Chapter 1

Band structure and Boltzmann

equation

In this chapter I will give a short overeview regarding the solid state physics of the

semiconductors and some properties of the Boltzmann equation that is the start point

for describing the semi classic transport. The reader is referred to the bibliography for

more details [1–3].

1.1 Crystal structure

The structure of a solid is given by a periodic repetition of a set of atoms, named basis,

in the three dimensional space. In this way a three dimensional crystal lattice is formed

and its translational periodicity is defined by three non complanar vectors a1,a2,a3 such

that the crystal remains identical if translated by a vector

T = n1a1 + n2a2 + n3a3, n1, n2, n3 ∈ Z.

The vectors a1,a2,a2 and the set

L = {T = n1a1 + n2a2 + n3a3 : n1, n2, n3 ∈ Z} ⊂ R
3

are called respectively primitive vectors and Bravais Lattice.

The primitive cell of L is a connected set D ⊂ R
3 whose volume equals the volume of

the parallelepiped spanned by the basis vectors vol(D) = a1(̇a2 × a3)
1 and the whole

space occupied by the solid is covered by the union of translates of D by the primitive

1the symbol ”×” denotes the vector product

1



Chapter 1. Band structure and Boltzmann equation 2

vectors. In particular, the special primitive cell

D =

{

x ∈ R
3 : x =

3
∑

n=1

αnan, αn ∈
[

−1

2
,
1

2

]

}

is called Wigner-Seitz cell.

The reciprocal lattice L∗ of L is defined by

L∗ = {G = n1a
∗
1 + n2a

∗
2 + n3a

∗
3 : n1, n2, n3 ∈ Z}

where the primitive vectors a∗1,a
∗
2,a

∗
3 ∈ R

3 are the dual basis given by

a∗1 = 2π
a2 × a3

a1 · a2 × a3
; a∗2 = 2π

a3 × a1
a1 · a2 × a3

; a∗1 = 2π
a1 × a2

a1 · a2 × a3

satisfying the relation ama∗n = 2πδmn with m,n = 1, 2, 3.

According to the previous definitions, the volume of the reciprocal primitive cell is

vol(D) = a∗1(̇a
∗
2 × a∗3), while the Wigner-Seitz cell of the reciprocal lattice is

B =

{

k ∈ R
3 : k =

3
∑

n=1

βna
∗
n, βn ∈

[

−1

2
,
1

2

]

}

(1.1)

and is called the first Brillouin zone.

To understand these definitions it is useful to review the physics of X-waves diffraction

used to investigate the crystal structure.

Because of the periodicity of the crystal, the electron number density n(r) is a periodic

function of the position r

n(r+T) = n(r)

so it is possible a Fourier expansion

n(r) =
∑

G

nG exp(iG · r)

where G’s are points in the reciprocal lattice and

nG =
1

vol(D)

∫

D
n(r) exp(−iG · r) d3r.

Now let us consider the X-ray reflections by the crystal lattice.

Let k and k′ be the wavevectors of the incoming and outgoing beams. In general the

amplitude of the electric or magnetic field vectors in the scattered electromagnetic wave

is proportional to the following scattering amplitude

F =

∫

n(r) exp(−i∆k · r) d3r



Chapter 1. Band structure and Boltzmann equation 3

where ∆k = k− k′.

Replacing n(r) with its Fourier expansion, one obtains

F =
∑

G

∫

nG exp[i(G−∆k) · r] d3r.

F is negligible when ∆k differs significantly from any reciprocal lattice vector and has

its maximum when

∆k = G. (1.2)

Considering elastic scattering, the phonon energy ~ω is conserved so the frequency ω′ =

ck′ of the emergent beam is equal to the frequency of the incident beam and k2 = k′2.

From 1.2 the diffraction condition is written as (k+G)2 = k2 or

2k ·G+G2 = 0. (1.3)

Considering that if G is a reciprocal lattice vector, so is −G, from 1.3 we obtain the

general form of the well known Bragg condition

2k ·G = G2.

Starting from this relation, it is possible to construct the first Brillouin zone 1.1 that

is the smallest volume entirely enclosed by planes that are the perpendicular bisectors of

the reciprocal lattice vectors drawn from the origin (see [1] for the details).

1.2 The energy band structure

Because of the quantum wave behavior, the energy structure of the semiconductors, as

the X-rays diffraction, is strictly correlated with the periodicity of the crystal lattice.

In semiconductors the dynamics of one electron is described by the time dependent

Schrödinger equation

i~
∂

∂t
Ψ(r, t) = HΨ(r, t)

with

H = − ~
2

2m
∆− qV (r).

where V (r) is the potential due to the crystal displacement. Impurities and many parti-

cles effects are necessary for a more realistic description in the case of low temperatures

and high densities and not will be considered here.

Assuming the ansatz Ψ(r, t) = ψ(r)e−iEt
~ , the time indipendent or stationary Schrödinger



Chapter 1. Band structure and Boltzmann equation 4

Figure 1.1: schematic one dimensional representation of the potential in a crystal
lattice.

equation is obtained

Hψ(r) = Eψ(r) (1.4)

with E ∈ R.

Regarding V (r), let us consider a one dimensional periodic potential (fig. 1.1), so

V (x± a) = V (x).

We will adopt the Dirac notation and the translation operator τ(a) which satisfies

τ †(a)xτ(a) = x+ a, τ(a)|x′ >= |x′ + a >

and

τ †(a)V (x)τ(a) = V (x+ a) = V (x)

The whole hamiltonian is invariant for translational operation

τ †(a)Hτ(a) = H or [H, τ(a)] = 0,

hence H and τ can be diagonalized together. Observing that τ is unitary but non

hermitian, it is possible to conclude that its eigenvalues will be complex numbers with

modulus equals to one.

Let |n > be the ket for an electron in the n-th cell (see fig. 1.1) with the property

τ(a)|n >= |n+ 1 > (n ∈ Z) so that the wave function < x′|n > is not zero in the n-th

cell and in its neighbors. Let us suppose that

< n|H|n >= E0, E0 ∈ R

and

< n′|H|n > 6= 0 ⇐⇒ n′ = n or n′ = n± 1.

In particular we assume the tight binding approximation and define

< n± 1|H|n >= −δ, δ ∈ R
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it follows

H|n >= E0|n > −δ|n+ 1 > −δ|n− 1 > .

The ket

|θ >=
+∞
∑

n=−∞

einθ|n >,

with θ ∈ [−π, π], is an eigenket of τ(a) and H, in fact

τ(a)|θ > =

+∞
∑

n=−∞

einθ|n+ 1 >=

+∞
∑

n=−∞

ei(n−1)θ|n >= e−iθ|θ >

and

H|θ > = E0

+∞
∑

n=−∞

einθ|n > −δ
+∞
∑

n=−∞

einθ|n+ 1 > −δ
+∞
∑

n=−∞

einθ|n− 1 >=

= E0

+∞
∑

n=−∞

einθ|n > −δ
+∞
∑

n=−∞

(

einθ−iθ + einθ+iθ
)

|n >=

= (E0 − 2∆ cos θ)

+∞
∑

n=−∞

einθ|n >

Let us observe that

< x′|τ(a)|θ >=< x′ − a|θ >

and

< x′|τ(a)|θ >=< x′|θ > e−iθ.

so < x′ − a|θ >=< x′|θ > e−iθ.

The solution of this equation is

< x′|θ >= eikx
′
uk(x

′)

with θ = ka and uk(x
′) a periodic function with period a.

At the end it is possible to conclude that the solution of 1.4 is a plane wave function

modulated by uk with k ∈
[

−π
a ,

π
a

]

and the eigenvalue of the energy E(k) depends on k.

This discussion, developed in [4], can be considered a motivation for the following

Theorem 1.1. Bloch theorem [2]

Let VL be a a periodic potential, i.e.,VL(x + y) = VL(x) for all x ∈ R
3 and y ∈ L (the

Bravais lattice). Then the eigenvalue problem for the Schrödingier operator

H = − ~
2

2m
∆− qVL(x), x ∈ R

3,
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can be reduced to an eigenvalue problem of the Schrödingier equation on the primitive

cell D of the lattice, indexed by k ∈ B (the Brillouin zone),

HΨ = EΨ inD, Ψ(x+ y) = eik·yΨ(x), x ∈ D, y ∈ L. (1.5)

For each k ∈ B, there exist a sequence En(k), n ≥ 1, of eigenvalues with associated eigen-

functions Ψn,k. The eigenvalues En(k) are real function of k and periodic and symmetric

on B. The spectrum of H is given by the union of the closed intervals
{

En(k) : k ∈ B̄
}

for n ≥ 1 (with B̄ being the closure of B).

The eigenfunction, called Bloch functions, of 1.5 can be written as

Ψn,k(x) = eik·xun,k(x), x ∈ D, k ∈ B

and they are plane waves modulated by the periodic function un,k. k is termed pseudo-

wave vector.

Inserting the above expression in the Schrödingier equation, it is possible to see that

un,k is solution of

− ~
2

2m
(∇un,k + 2ik ·∆un,k) +

(

~
2

2m
k2 − qVL(x)

)

un.k = En(k)un,k

with the periodic boundary conditions

un,k(x+ y) = un,k(x), x ∈ R
3, y ∈ L.

En(k) is an even function of k called the dispersion relation and the set {En(k) : k ∈ B}
the nth energy band. The union of ranges of En over n ∈ N is not necessary the whole

real line R, i.e. there may exist energies E∗ for which there is non number n ∈ N and no

vector k ∈ B such that En(k) = E∗. The connected components of the set of energies

with this non-existence property are called energy gaps.

It is important to remark that the quantity ~k is not in general the momentum of the

electron, but reduces to it only in the free case (VL = 0). Because its relation to the

periodicity of the crystal, ~k is called crystal momentum.

The collection of the bands gives the band structure of the material.

In general ,on account of the Pauli exclusion principle, N electrons inside the crystal are

distributed occupying different states corresponding to those with the lowest available

energies. In the single electron approximation each state is an eigenstate corresponding

to a Ψn,k solution of the Schrödinger equation.

At zero temperature the N electrons occupy the N lowest energy states (indeed we

should take into account also the spin, but for simplicity we ignore it). The Fermi
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energy εF at zero temperature is the energy of the highest occupied energy state in the

single electron scheme.

Two cases may occur:

• A certain set of bands is completely filled while the remaining ones are empty, that

is the Fermi energy does not fall inside a band. In this case the differences between

the energy of the highest occupied level and the energy of the lowest unoccupied

level is known as band gap εG. If εG is of order of 2 to few eV the solid is an

insulator while if εG is between 0.1 and 2 eV the solid is a semiconductors. Of

course the distinction between insulator and semiconductors is not sharp. The

energy bands below εF are called valence bands because determine the chemical

bindings, those above εF are called conduction bands because are responsible for

the electrical conduction property of the material .

• Some bands are partially filled, that is the Fermi energy, lies within the range of

one or more bands. The electrons have infinite states which are available with an

energy close to εF . In this case the solid is a conductor.

Semiconductors therefore are characterized by a sizable energy gap between the valence

and the conduction bands, which are almost fully filled at the thermal equilibrium. Upon

thermal excitation electrons from the valence band can jump to the conduction band

leaving behind vacancies in the valence bands. These vacancies are in turn available

free states, the electrons in the valence bands may move to. This generates a motion

of vacancies similar to that of positively charged particles that are named holes in the

language of quasi-particles. Thus the transport of charge is achieved through both

negatively charged (electrons) and positively charged (holes) carriers.

The creation of electron-hole pairs by thermal excitations increases with the temperature

and as consequence the conductivity is an increasing function of the temperature.

Usually in the crystal are present impurities, a small percentage of foreign atoms. If

these can be positively ionized additional free electron are provided to the conduction

band while if these are negatively ionized additional holes are created in the valence

bands. The impurities of the first type are called donors, those of the second type are

called acceptors.

A semiconductor with a negligible presence of impurities is said intrinsic. Instead we

speak about extrinsic semiconductor of n-type or p-type if the impurities are prevalently

donors or acceptors.

The energy band structure of crystals depend on the explicit form of the potential VL

whose determination is one of the most stringent problem in solid state physics. For the

most common semiconductors the energy band structure has been obtained at the cost
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Figure 1.2: Silicon Brillouin zone.

of intensive numerical calculations and also semiphenomenologically by quantum theory

of solids, e.g. with the pseudo potentials.

In the next section the energy band structure of the Si will be examined in view of the

application in this thesis.

1.3 The Si band structure and the semi-classical picture

The crystal has the diamond structure with cubic symmetry and therefore the first Bril-

louin zone has the shape of a truncated octahedron (fig 1.2 ). There are essentially

three conduction bands and three valence bands (fig. 1.3). The energy gap is about 1.1

eV. The lowest conduction band has six related minima along the main crystallographic

directions ∆ at about 85% from the center of the first Brillouin zone, near the X points

[1]. The valence band minimum occurs at k = 0, where two degenerates bands meet

giving rise to light holes and yeavy holes. The third valence band (the split-off band)

has a maximum at 0.044 eV below the valence band maximum.

However, in order to describe electron transport, for most applications, a simplified de-

scription of the energy bands is adopted. It based on a simple analytical approximations.

Let us consider only the conduction bands. At normal operating device conditions, it

is sufficient to take into account only the lowest conduction band, because the others
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Figure 1.3: A schematic representation of the silicon band structure along some
crystallographic directions (E(k) versus k in arbitrary units). There are reported the
valence bands and the valley of the condition bands around the minima near the X
points. For reason of symmetry the band structure presents six X-balley. Note the
presence of the maximum at the Γ point in the valence bands. The conduction bands

for holes are obtained from those of valence by reversing the sign.

are scarcely populated. Moreover, the electrons in this band are essentially located in

the neighboroods of the lowest energy local minima, the so-called valleys, e.g. Si has six

valleys termed as X-valleys.

The energy-wavevector relation in the neighborhood of the A-th extremum can be ap-

proximated by a quadratic form. Assuming k0 as a minimum point, ∇kEn(k0) = 0, and

that the energy values are shifted in such a way that En(k0) = 0. Let us also suppose

En(0) = 0, the Taylor expansion is

En(k) = En(0) +∇En(0) · k+
1

2
kT

(

d2En

dk2
(0)

)

k+O(k3)

=
~
2

2

(

k21
m∗

1

+
k22
m∗

2

+
k23
m∗

3

)

+O(k3) for k → 0

where k = (k1, k2, k3)
T and O(k3) denotes terms of order k3. m∗ is the effective mass

tensor defined by
1

m∗
=

1

~2

d2En

dk2
.



Chapter 1. Band structure and Boltzmann equation 10

In this thesis it is assumed that m∗ = m∗
1 = m∗

2 = m∗
3.

In the parabolic band approximation the dispersion relation is assumed to be

E(k) =
~
2

2m∗
k2

where now k is assumed to vary in all R3.

In order, if one considers higher applied field in the Si-devices, the electron energy is

more appropriately described by the Kane dispersion relation

E(k)[1 + αE(k)] =
~
2k2

2m∗

where α is the non-parabolicity parameter (for Silicon α = 0.5eV −1 for each X-valley).

The anisotropic version is

E(k)[1 + αE(k)] =
~
2

2

[

k21
m∗

1

+
k22
m∗

2

+
k23
m∗

3

]

.

In the semiclassical picture considered in this thesis the wave packets are assumed to be

highly localized and the electron is considered as a particle whose velocity is identified

with the group velocity of the wave packet. It is possible to show that the electron ve-

locity v(k) in a generic band depends on the energy E(k) measured from the conduction

band minimum by the relation

v(k) =
1

~
∇kE.

Explicitly in the conduction band we get in the parabolic case

v =
~k

m∗

while for the Kane dispersion relation

v =
~k

m∗ [1 + 2αE(k)]
.

1.4 The Boltzmann equation

The Boltzmann equation has been the first function to describe the evolution of a dis-

tribution in the history of the science and is the background for the development of the

semiclassical charge transport model that is going to be described.

Let us consider an electron gas of N particles. The distribution function f(r,k, t) fur-

nishes the the number of particles in the space volume dr around r and in the moment
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volume dk around k. Assuming the normalization condition

∫

dr

∫

dkf(r,k, t) = N,

∫

dkf(r,k, t) = n(r, t) is the particle density at time t.

The semiclassical Boltzmann equation for electrons in the conduction band is

∂f

∂t
+ v(k)∇f − e

~
E∇kf = C[f ] (1.6)

where v is the velocity of the electron, E the electric field and C[f ] is the collisional

term that describes the electrons scattering.

The scattering mechanism we will deal with is only the electron-phonon interaction, non

considering electron-electron interaction, impurities and roughness effects.

At nonzero temperature the crystal ions vibrate around the equilibrium position repre-

sented by the point of the ideal Bravais lattice. Several normals modes can be exited

in the lattice. The modes with a dispersion relation like that of the acoustic wave form

the acoustic branches. The modes that can interact with electromagnetic radiation and

characterize the optical properties of the material form the optical branches [3]. The

transport of energy in the dielectric solid is described in the quantum theory of crystal as

quasi-particle called phonons. At equilibrium, they obeys the Bose-Einstein distribution

NB =
1

e
~ω

KBTL − 1

where TLis the lattice temperature and ~ω stands for the phonon energy.

The interaction with the phonons produce a change in the energy and momentum of the

electrons. Therefore if initially an electron had a wave vector k, after the collision its

wave vector will be k′. The exchange of energy can leave the electron in the same band

(intraband transition) or pull it into another band (inter band transition).

In the conduction bands the electrons are essentially located in the valleys. After a

collision the electron can remain in the same valley (inter valley scattering) or be drawn

in another valley (inter valley scattering).

The expression for the collision term is obtained by the Fermi’s golden rule.

For a generic intravalley or intraband interaction C[f ] can be written as

C[f ] =

∫

B

[

P (k′,k)f(k′)(1− f(k))− P (k,k′)f(k)(1− f(k′))
]

d3k (1.7)

B is the first Brillouine zone, P (k,k′) is the transition probability from the state k to

the state k′. The first term in (1.7) represents the gain, that is the number of electron

that are scattered in the state of wave vector k. It is assumed to be proportional to f(k′)

and to 1 − f(k) on account of the Pauli exclusion principle. With analogous meaning,
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the second term is the loss.

Under the assumption that the electron gas is dilute the collision operator can be lin-

earized with respect to f and becomes

C[f ] =

∫

B

[

P (k′,k)f(k)− P (k,k′)f(k′)
]

d3k. (1.8)

At equilibrium the electron distribution must obey the Fermi-Dirac statistic

feq =

[

exp

(

−E − µ

KBTL

)

+ 1

]−1

.

Substituting it in (1.8), one obtains

∫

[

P (k′,k)feq(k
′)− P (k,k′)feq(k)

]

d3k′ = 0.

The detailed balance principle affirms that this integral is zero because the integrand is

zero, so

P (k′,k)feq(k
′) = P (k,k′)feq(k)

from which one obtains
P (k,k′)

P (k,k′)
= a

−
E(k′)−E(k)

KBT .

This result is true in the equilibrium case, but it is assumed true also in the non equi-

librium situation.

The transition probabilities for the phonons are given by the following expression:

P (ac) =
KBTLΞ

2
d

4π2~ρv2s
δ(E(k)− E(k′)) (1.9)

P (no) = Zf
(DTK)2

8π2ρω
(Nq +

1

2
∓ 1

2
)δ(E(k′)− E(k)∓ ~ω) (1.10)

respectively for acoustic and non polar optical phonons and with Nq the Bose-Einstein

distribution for phonons (for the values of the others parameter see the appendix A).

The minus (−) sign refers to absorption phenomena and plus (+) to emission.

The Boltzmann equation is an integro-differential equation and is a very hard task to

solve it both analytically and numerically. In general one is interested not in distribution

function but in macroscopic quantity as average electron density, energy velocity etc.

and macroscopic models are used to obtains equations for such microscopic quantity.

For this purpose, let us consider a function µA(k), and define the momentum

MA(r, t) =

∫

B
µA(k)f(r,k, t)d

3k. (1.11)



Chapter 1. Band structure and Boltzmann equation 13

By multiplying the equation (1.6) by the function µA(k) and integrating over B, one

finds the moment equation

∂MA

∂t
+

∫

B
µA(k)v(k)∇rfd

3k− e

~
E

∫

B
µA(k)∇kfd

3k =

∫

B
µA(k)C[f ]d

3k (1.12)

Since
∫

B
µA(k)∇kd

3k =

∫

∂B
µA(k)fndσ −

∫

B
f∇kµ(k)d

3k

with n outward unit normal vector field on the boundary ∂B of the domain B and dσ

surface element of ∂B, equation (1.12) becomes

∂MA

∂t
+ ∇r

∫

B
fµA(k)v(k)d

3k+
e

~
E

[∫

B
f∇kµA(k)d

3k−
∫

∂B
µA(k)fndσ

]

=(1.13)

=

∫

B
µA(k)C[f ]d

3k. (1.14)

The last term on the r.h.s. vanishes either when B is expanded to R
3 (because in order

to guarantee the integrability condition f must tend to zero sufficiently fast as k → ∞)

or when B is compact and µA(k) is periodic and continuos on ∂B. This latter condition

is a consequence of the periodicity of f on B and symmetry of B with respect to the

origin.

Various models employ different expression of µA(k). For example, let us consider

µA(k) = 1,

∫

B

∂f

∂t
d3k =

∂

∂t

∫

B
fd3k =

∂n(r, t)

∂t
∫

B
∇rf(k)v(k)d

3k = ∇r

∫

B
f(k)v(k)d3k = ∇ (n(r, t)V(r, t))

∫

B
fC[f ]d3k = 0

wherefrom the continuity equation

∂n(r, t)

∂t
+∇ [n(r, t)V(r, t)] = 0

where V is the macroscopic (average) velocity.

Setting J = enV (electric current) one has the charge conservation

∂n(r, t)

∂t
− 1

e
∇J = 0. (1.15)

Defining other moments it is possible to obtain a system of equations for all the macro-

scopic quantity which one is interested in.

However other complications emerge from these equations because there are more un-

knowns than equations (the closure problem). For example in 1.15 one has one equation
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and two unknowns (J and n).

The strategy used in this thesis to tackle the problem will be explained in the next

chapter.



Chapter 2

Maximum Entropy Principle

The description of a physical system requires the knowledge of some informations, for

example the motion of a point particle in classical mechanics requires the knowledge of its

instantaneous position and momentum. In the case of a great quantity of particle, i.e. of

the order of Avogadro’s number (6, 022 ·1023), the information for a detailed description

of the motion of every particle is no more available, so the distribution functions are

introduced and statistical methods describe the behavior of the complex systems.

In the context of the Bayesian interpretation of the probability, Jaynes [21, 22] showed

as it is possible to develop the Maximum Entropy Principle (hereafter MEP) as an

inference method to obtain the results achieved in the context of the statistical mechanics

or, in more general terms, in all cases where all the informations useful for a detailed

description are lost or not available.

2.1 The Entropy

The term entropy was introduced for the first time in classical thermodynamics by Clau-

sius in 1865. It was coined by the old greek ǫν (inside) and τρoπη (transformation) and

was used to indicate a thermodynamical potential. Boltzmann, by his famous expres-

sion S = KlogW , linking the entropy S to a quantity W proportional to the number of

micro states of the system, furnished a physical interpretation of the entropy and built

a bridge between the macroscopic and the microscopic world.

In 1948 Shannon [23] used the same term to indicate the amount of ignorance about a

system in the context of communication theory. The formal expression for this quantity

is the same of the statistical Boltzmann entropy in the canonical ensemble and in 1957

Jaynes showed that it is possible to obtain all the expression of the statistical mechanics

by maximizing it.

15
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To better understand this last statement it is important to underline that Clausius-

Boltzmann entropy is a property of the system while in Shannon-Jaynes point of view

it is a property of the knowledge of the observer, so the maximum state of entropy for

a system means ”the maximum state of ignorance of the observer”.

2.1.1 Properties of the Shannon-Jaynes Entropy

Let x be a discrete random variable, X the countable set of its values x1, x2, ..., xN

(N ∈ N), p(xi) = pi (i = 1, 2, ..., N) the probability that x assumes the value xi satisfying

of course the condition
∑N

i=1 pi = 1. The Shannon entropy is

S[p] = −k
N
∑

i=1

pi log pi
1 (2.1)

with the assumption 0 log 0 = 0 and k ∈ R
+ a constant depending on the unit to be

used 2.

Since the entropy represents the amount of ignorance, it has to satisfy the following

properties (or desiderata in Jaynes terms [22]):

1. Entropy is a maximum for equals probabilities, i. e.

S

(

1

N
,
1

N
, ...,

1

N

)

≥ S(p1, p2, ..., pN ), unless pi =
1

N
for all i

This means that observer’s ignorance must be maximal if all the N outcomes have

equal likelihood.

2. Entropy is unaffected by extra states of zero probability.

S(p1, p2, ..., pN−1, 0) = S(p1, p2, ..., pN−1)

If there is no possibility that an event occurs, then the ignorance is no larger than

it would have been if the observer had not included the event in the list of possible

outcomes.

3. The entropy of a system is correlated to the entropy of its parts.

This property needs a bit longer explanation.

Let us consider another random variable y taking its values in the set X by the

1indeed Shannon used log2 in his definition because he had in mind the two binary states (0 and 1)
of the information so that entropy is measured in bits, but this detail is not important for the purpose
of this thesis

2In this paragraph k = 1
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probability q(yl) = ql. Let rkl = P (xk, yl) be the joint probability for two outcomes

xk and yl and

ckl = P (xk|yl) =
P (xk, yl)

q(yl)
=
rkl
ql

the conditional probability. Naturally
∑

k P (xk|yl) =
∑

k ckl = 1.

If we suppose that the two random variables x and y describe some properties

of two interacting systems A and B, the ignorance function related to the the

compound system is given by

S(AB) = S(AB)(r11, r12, ..., r1M , r21, ..., rNM )

= S(AB)(c11q1, c12q2, ..., c1MqM , c21q1, ..., cNMqM )

and the knowledge of one outcome yl connected with the system B modifies the

ignorance regarding the system A by the amount

S(A|Bl) = S(A|Bl)(c1l, ..., cNl)

so the combined ignorance decreases from S(AB) to S(A|Bl).

At the end the expected ignorance after all the outcomes have been obtained is

furnished by the average

〈S(A|B)〉B =
∑

l

qlS(A|Bl).

Introducing the conditional entropy

S(A|Bl) = −
∑

l

ckl log ckl

one is led to the following result

S(AB) = −
∑

kl

cklql log(cklql)

= −
[

∑

kl

cklql log(ckl) +
∑

kl

cklql log(ql)

]

=
∑

l

ql

[

−
∑

k

ckl log(ckl)

]

−
∑

l

ql log(ql)

(

∑

k

ckl

)

=
∑

l

qlS(A|Bl) + S(B) = 〈S(A|B)〉B + S(B),

so

S(AB) = 〈S(A|B)〉B + S(B)
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that is the mathematical expression of the property (3).

In other words taking measures on the system B modifies the observer’s knowledge

of the system A.

If A and B are uncoupled, the probabilities are uncorrelated so S(A|Bl) = S(A) and

S(AB) = S(A) + S(B). The ignorance regarding two uncoupled systems is additive, i. e.

entropy is extensive (a well know property of the Clausiu-Boltzmann entropy).

If x is a continuous variable one has to substitute the probability pi with a probability

density function p(x) so p(x)dx is the probability that the random variable assumes

values in the range (x, x+ dx).

An extension of the definition of entropy in the continuum case is the following:

S[p(x)] = −
∫ −∞

+∞
p(x) log p(x)dx. (2.2)

However, this expression is not invariant under a transform of the coordinates systems.

To overcome this problem a measure m(x) is introduced in the definition of entropy

S[p(x)] = −
∫ −∞

+∞
p(x) log

[

p(x)

m(x)

]

dx (2.3)

Now, let us consider the transformation x = f(t) the distribution and the measure

change according to

q(t) = p(x)|f ′t |, n(t) = m(x)|f ′t |

and therefore

S[p(x)] = −
∫ +∞

−∞
q(t) log

[

p(x)|f ′t |
m(x)|f ′t |

]

dt

= −
∫ +∞

−∞
q(t) log

[

q(t)

n(t)

]

dt = S[q(t)]

so the value of S remains unchanged.

Entropy in this last expression is named relative entropy [50] and m(x) is considered

a probability distribution, in particular Jaynes considers it as ” the prior distribution

describing the complete ignorance of x” [22] (this last statement will be clear as soon as

the maximum entropy principle will be expained).

Another important difference between the continuum and discrete case is given by the

fact that 2.1 furnishes the absolute value of the uncertainty, while 2.3 can be used only

to calculate the change (increase or decrease) of the uncertainty.
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After these considerations, also the discrete form 2.1 is changed in

S[p] = −
n
∑

i=1

pi log
pi
mi
.

2.2 Maximum-entropy inference of a distribution

The properties enumerates before permit to solve the following problem.

Let us consider a random variable x having n possible outcomes x1, x2, ..., xn. We

know some averages 〈fr(x)〉 =
∑n

i=1 pifr(xi), r = 1, 2, ..,m and want to estimate the

corresponding unknown propabilities p(x1), p(x2), ..., p(xn). The solution is given by the

maximization of the entropy S = −
∑

i pi log(pi/mi) under the costraints

∑

i

pi = 1, (normalization condition)

〈fr(x)〉 =
∑

i

pifr(xi), r = 1, 2, ...,m

Introducing the Lagrange multipliers λ0, λr, r = 1, 2, ....,m, the function to maximize is

S′ = −
∑

i

pi log pi − λ0

(

∑

i

pi − 1

)

−
m
∑

r=1

λr

[

∑

i

pifr(xi)− 〈fr(xi)〉
]

.

It is simple to proof that the solution is

pi = mie
−λ0−

∑m
r=1 λrfr(xi).

Using the normalizing condition and the other costraints

pi =
mi

Z
e−

∑m
r=1 λrfr(xi),

λ0 = logZ

where

Z =
∑

i

e−
∑m

r=1 λrfr(xi)

is the partition function.

Now, assuming x to be some microscopic quantity of a macroscopic physical system, it

will be shown how it is possible to obtain all the distributions of the statistical mechanics.
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2.3 Distribution function

2.3.1 Maxwell-Boltzmann distribution

Let us consider a system at thermodynamical equilibrium having N particles and a total

energy E, our purpose is to determine the number of particle ni (
∑

i ni = N) occupying

the energy level εi (
∑

i εini = E). In the case of Maxwell-Boltzmann distribution

the particles are considered identical and distinguishable, i.e. they obey with a good

approximation to the laws of classical mechanics or, in other terms, their wavelength is

greater than the Deby wavelenght.

Considering the previous expression, pi is now the probability that a particle is found

to be in one of the Gi energy levels εi. Defining the average energy as ε = E/N , the

constraints read

∑

i

pi = 1

∑

i

piεi = ε.

The MEP solution is

pi =
Gi

Z
eλεi (2.4)

whit the partition function

Z =
∑

i

Gie
λεi

I have used the expression of entropy S = −KB
∑

i pi log pi, where KB is the Boltzmann

constant. If λ = 1/KBT , 2.4 is the Maxwell-Boltxmann distribution.

2.3.2 Fermi-Dirac and Bose-Einstein distributions

For the quantum statistical distributions the discussion is a little more involved. Here

the particles are identical and indistinguishable and the fermions have to obey to Pauli’s

exclusion principle.

pijn is the probability that the j-th quantum state of energy level εi contains n particles.

The average energy particles in energy level εi is

〈ni〉 =
Gi
∑

j=1

∑

n

pijnn.
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The entropy used is

S = −
∑

i

Gi
∑

j=1

∑

n

pijn log pijn

and the costraints

∑

n

pijn = 1, i = 1, 2, .... j = 1, 2, ...., Gi,

∑

i

Gi
∑

j=1

∑

n

pijnn = N

∑

i

Gi
∑

j=1

∑

n

pijnnpijnnεi = E

The MEP solution is

pijn =
e−(λ1+λ2εi)n

∑

n e
−(λ1+λ2εi)n

Now one has to distinguish two cases:

• Fermi-Dirac distribution. According to Pauli’s exclusion principle, n = 0, 1 and

〈ni〉 =
∑Gi

j=1

∑1
n=0 ne

−(λ1+λ2εi)n

∑1
n=0 e

−(λ1+λ2εi)n

=
Gie

−(λ1+λ2εi)

1 + e−(λ1+λ2εi)

=
Gi

1 + eλ1+λ2εi

• Bose-Einstein distribution. Here Pauli’s exclusion principle does not hold and

n = 0, 1, ...

〈ni〉 =
∑Gi

j=1

∑+∞
n=0 ne

−(λ1+λ2εi)n

∑+∞
n=0 e

−(λ1+λ2εi)n

Applying the formulae

+∞
∑

n=0

e−an =
1

1− e−a
,

+∞
∑

n=0

ne−an =
e−a

(1− e−a)2
, a > 0

the above expression becomes

< ni >=
Gi

eλ1+λ2εi − 1
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If we impose

λ1 = α = − µ

KBT

λ2 = β =
1

KBT

where µ is the chemical potential, the results obtained are the same of the statistical

mechanics.

These examples mane clear the use of the MEP as inference method and it is remarkable

to observe that the well known results in the context of the statistical mechanics are

obtained without any physical assumption (molecular chaos, ergodic hypothesis, etc.).

2.4 The Boltzmann equation and the Maximum Entropy

Principle

The MEP has been used with great success to solve the closure problem touched on in

the previous chapter.

Let us consider again the Boltzmann equation 1.6, the moments 1.11 and the derived

moment equations 1.12. Let us also assume the following expression for the entropy

S = −KB

∫

B
(f log f − f) .

Introducing the Lagrangian multipliers λA, the problem to maximize S under the con-

strains () is equivalent to maximize

S′ = S −
∑

A

λA

(∫

B
µA(k)f(r,k, t)d

3k−MA(r, t)

)

Imposing δS′ = 0 gives
(

log f +
1

KB

∑

A

λAµA

)

δf = 0

since this relation must hold for arbitrary δf , it follows

fME = e
− 1

KB

∑

A λAµA . (2.5)

In order to complete the procedure, one has to express the multipliers λA’s as functions

of the moments MA by inverting the constrains 1.11.

Once the Lagrangian multipliers have been expressed in terms of the moments, one

finds the closure relations for fluxes and production terms by replacing the original set
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of moment equations 1.12 with

∂MA

∂t
+ ∇r

∫

B
fMEµA(k)v(k)d

3k+
e

~
E

∫

B
fME∇kµA(k)d

3k =

=

∫

B
µA(k)C[fME ]d

3k.

This method will be used in the next chapter and will be discussed in detail in the

application. The reader interested in mathematical problem concerning the existence

of the solution for the MEP method applied to semiconductors transport problem is

referred to [61] , [62].



Chapter 3

The Double-Gate MOSFET

In this chapter the energy-transport model for the DG-MOSFET will be described and

the simulation showed. The results here exposed has been extracted from

• Camiola, V.D., Mascali, G., Romano, V.: Numerical simulation of a double-gate

MOSFET with a subband model for semiconductors based on the maximum en-

tropy principle, Continuum Mechanics and Thermodynamics, 24 (2012)

• Camiola, V.D., Mascali, G., Romano, V.: Simulation of a double-gate MOSFET

by a non-parabolic energy-transport subband model for semiconductors based on

the maximum entropy principle, Mathematical and Computer Modelling (2012)

3.1 The simulated device

The main aim of this chapter is to simulate the nanoscale silicon DG-MOSFET reported

in Fig. 3.1. The length of the diode is Lx=40 nm, the width of the silicon layer is Lz = 8

nm and the oxide thickness is tox = 1 nm. The n+ regions are 10 nm long. The gate

contacts have the same length as the n region and are above it. The device is supposed

to be infinite in the y direction.

The doping in the n+ regions is ND(x) = N+
D = 1020 cm−3 and in the n region is ND(x)

= N−
D = 1015 cm−3, with a regularization at the two junctions by a hyperbolic tangent

profile

ND(x) = N+
D − d

(

tanh
x− x1
s

− tanh
x− x2
s

)

,

where s = 0.1 nm, d =
N+

D

2

(

1− N−
D

N+
D

)

, x1 = 10 nm and x2 = 30 nm.

24
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Figure 3.1: Simulated double gate MOSFET. Along the y axis the device is considered
as infinite.

Due to the symmetries and dimensions of the device, the transport is, within a good

approximation, one dimensional and along the longitudinal direction with respect the

two oxide layers, while the electrons are quantized in the transversal direction. We

assume that the oxide gives rise to an infinitely deep potential barrier; in fact realistic

values of the potential barrier are more than 3 V high and it is very unlikely to find

electrons with such an energy in the device under consideration. Six equivalent valleys

are considered with a single effective mass m∗ = 0.32me, me being the free electron

mass. A possible generalization could include both longitudinal and transverse masses.

3.2 Quantum confinement and transport equations

Since electrons are quantized in the z direction and free to move in the x-y plane, it is

natural to assume the following ansatz for their wave function

ψ(k, r) = ψ(kx, ky, kz, x, y, z) =
1√
A
ϕ(z)eik||·r|| ,

with k|| = (kx, ky) and r|| = (x, y) denoting the longitudinal components of the wave-

vector k and the position vector r, respectively, and A symbolizing the area of the xy

cross-section.

Inserting the previous expression of ψ into the Schrödinger equation in the effective mass

approximation

[

− ~
2

2m∗
∆+ EC(r)

]

ψ = E ψ,
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gives the following equation for the envelope function ϕ(z)

[

− ~
2

2m∗

d2

dz2
+ EC

]

ϕ(z) = εϕ(z), tox ≤ z ≤ tox + Lz, (3.1)

where ~ is the reduced Planck constant, EC is the conduction band minimum, and ε is

the energy associated with the confinement in the z-direction. In (3.1) EC = −q(VC+V ),

where VC is the confining potential and V is the self-consistent electrostatic potential.

Under the assumption that the confining potential gives rise to an infinite barrier at the

oxide/silicon interfaces, we solve eq. (3.1) only in the silicon region setting ϕ = 0 at

z = tox and z = tox + Lz and taking EC = −q V .

One finds a countable set of eigen-pairs (subbands) (ϕν , εν), ν = 1, 2... while V is ob-

tained from the Poisson equation

∇ · (ǫ∇V ) = −q(ND(r)− n), (3.2)

where q is the absolute value of the electron charge, ǫ is the dielectric constant, ND(r)

is the doping concentration, and n is the electron density given by

n(r, t) =

+∞
∑

ν=1

ρν(x, y, t)|ϕν(z, t)|2,

with the areal density of electrons ρν of the νth subband. Of course the Schrödinger

and Poisson equations are coupled and must be solved simultaneously.

The above Schrödinger-Poisson model is able to describe only the ballistic case, because

the scattering is not included. In order to take into account this latter, several approaches

are available. One can add in the Hamiltonian a term describing the electron-phonon

interaction and solve the corresponding Schrödinger equation for the wave function in

the electron-phonon space or use a Green density function method. However for devices

with characteristic length of a few tenths of nanometers, which is the case we are going to

simulate, the transport of electrons in the longitudinal direction is semi-classical within a

good approximation. Electrons in each subband are considered as different populations

whose dynamics is described by a semiclassical distribution function. Therefore the

description of the electron transport along the longitudinal direction is included by

adding to the Schorödinger-Poisson model the system of coupled Boltzmann equations

for the distributions fν(x,y, kx,ky, t) of electrons in each subband

∂fν
∂t

+
1

~
∇k||

Eν · ∇r||
fν −

q

~
Eeff

ν · ∇k||
fν =

∞
∑

µ=1

Cν,µ[fν , fµ], ν = 1, 2, . . . (3.3)
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where Eeff
ν =

1

q
∇r||

εν(r||). ρν is expressed in terms of fν by

ρν =

∫

B2

fν(r||,k||, t)d
2k||,

with B2 indicating the 2D Brillouin zone, which will be approximated with R
2 consis-

tently with the effective mass approximation.

In each subband the energy is the sum of a transversal contribution εν and a longitudinal

(kinetic) contribution ε||

Eν = εν +
~
2

2m∗

(

k2x + k2y
)

≡ εν + ε||,

where a parabolic band approximation has been used for the longitudinal contribution.

Consequently the longitudinal electron velocity is

v|| =
1

~
∇k||

ε|| =
~k||

m∗
.

For more details the interested reader is referred to [19].

In the non degenerate approximation, each term contributing to the collision operator

has the general form

Cν,µ[fν , fµ] =

∫

B2

[

Sµν(k
′
||,k||) f

′
µ − Sνµ(k||,k

′
||) fν

]

d2k′
||.

When µ = ν we have intra-subband scatterings; when µ 6= ν we have inter-subband scat-

terings. Sµν(k
′
||,k||) is the transition rate from the longitudinal state with wave-vector

k′
||, belonging to the µth subband, to the longitudinal state with wave-vector k||, belong-

ing to the νth subband, and f ′µ ≡ fµ(r||,k
′
||, t). The relevant 2D scattering mechanisms

in Si are acoustic phonon scattering, and nonpolar phonon scattering. Scattering with

impurities will be not considered in this paper, but it is relevant only at low temperature

or low field [63].

For the acoustic phonon scattering in the elastic approximation, the transition rate is

given by

S(ac)
νµ (k||,k

′
||) = A(ac)Gνµδ(Eµ(k

′
||)− Eν(k||)),

with

A(ac) =
kBTLΞ

2
d

4π2~ρv2S
,

where kB is the Boltzmann constant, TL the lattice temperature, which will be kept con-

stant in this paper, ρ the silicon density, Ξd the acoustic phonon deformation potential
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and vS the longitudinal sound speed. Their values are reported in the appendix A. The

Gνµ’s are the interaction integrals

Gνµ =

∫ ∞

−∞
|Iνµ(qz)|2dqz, Iνµ(qz) =

∫ Lz+tox

tox

ϕν(z)ϕµ(z)e
iqzz dz,

with q denoting the 3D-phonon wave vector, and the bar indicating complex conjugation.

We note that Gνµ = Gµν holds.

Similarly for non-polar optical phonon scattering one has

S(no)
νµ (k||,k

′
||) = A(no)Gνµ

(

Nq +
1

2
∓ 1

2

)

δ(Eµ(k
′
||)− Eν(k||)∓ ~ω),

where

A(no) =
(DtK)2

8π2ρω
,

Nq is the Bose-Einstein distribution of phonons, DtK is the non-polar optical phonon

deformation potential, and ~ω is the phonon energy. Their values are reported in the

appendix A.

3.3 The moment system and its closure by the MEP

The system (3.1),(3.2),(3.3) furnishes a complete mathematical model for the simulation

of the DG-MOSFET of Fig. 3.1 (see for example [33–35]). However solving it is a daunt-

ing computational task. This has prompted the development of simpler macroscopic

models for CAD purposes. These models can be obtained as moment equations of the

Boltzmann transport equations under suitable closure relations. The moment of the νth

subband distribution with respect to a weight function a(k||) reads

Mν
a =

∫

B2

a(k||)fν(r||,k||, t)d
2k||.

In particular we take as basic moments

the areal density ρν =

∫

B2

fν(r||,k||, t)d
2k||,

the longitudinal mean velocity V =
1

ρν

∫

B2

v||fν(r||,k||, t)d
2k||,

the longitudinal mean energy W ν =
1

ρν

∫

B2

ε||fν(r||,k||, t)d
2k||,

the longitudinal mean energy-flux Sν =
1

ρν

∫

B2

ε||v||fν(r||,k||, t)d
2k||.



Chapter 3. The Double-Gate MOSFET 29

The corresponding moment system reads

∂ρν

∂t
+∇r||

· (ρνVν) = ρν
∑

µ

Cν,µ
ρ ,

∂(ρνVν)

∂t
+∇r||

· (ρνF(0)ν) + ρνG(0)ν · ∇r||
εν = ρν

∑

µ

Cν,µ
V
,

∂ρνW ν

∂t
+∇r||

· (ρνSν) + ρν∇r||
εν ·Vν = ρν

∑

µ

Cν,µ
W ,

∂(ρνSν)

∂t
+∇r||

· (ρνF(1)ν) + ρνG(1)ν · ∇r||
εν = ρν

∑

µ

Cν,µ
S
,

where





F(0)ν

F(1)ν



 =
1

ρν

∫

B2





1

ε||



v|| ⊗ v||fν(r||,k||, t) d
2k||,





G(0)ν

G(1)ν



 =
1

ρν

∫

B2







1

~
∇k||

v||

1

~
∇k||

(

ε||v||

)






fν(r||,k||, t) d

2k||,





Cν,µ
ρ

Cν,µ
W



 =
1

ρν

∫

B2





1

ε||





[

Sµν(k
′
||,k||) f

′
µ − Sνµ(k||,k

′
||) fν

]

d2k′
|| d

2k||,





Cν,µ
V

Cν,µ
S



 =
1

ρν

∫

B2





v||

ε||v||





[

Sµν(k
′
||,k||) f

′
µ − Sνµ(k||,k

′
||) fν

]

d2k′
|| d

2k||.

The above-written moment system is not closed because there are more unknowns than

equations. Therefore constitutive relations in terms of the fundamental variables are

needed for the extra-fluxes and the productions terms. The maximum entropy principle

leads to a systematic way for obtaining constitutive relations on the basis of information

theory [21, 50], and has been widely used for semiconductor modeling [24, 41, 51, 52].

According to MEP, if a given number of moments Mν
aA

, A = 1, . . . , N , are known, the

distribution functions fν can be estimated by the extremal fMEP =
(

fMEP
1 , fMEP

2 , · · ·
)

of the entropy functional under the constraints

∫

aAf
MEP
ν dk|| =Mν

aA
, A = 1, . . . , N. (3.4)

Actually, in a semiconductor electrons interact with phonons, which describe the thermal

vibrations of the ions placed at the points of the crystal lattice. However, if one considers

the phonon gas as a thermal bath, one has to extremize only the electron component of

the entropy. Moreover, since we are considering the electron gas as sufficiently dilute,

one can take in each subband the expression of the entropy obtained as semiclassical
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limit of that arising from the Fermi statistics. We define the entropy of the system as

S = −kB
+∞
∑

ν=1

|ϕν(z, t)|2
∫

B2

(

fν log
fν
y

− fν

)

d2k||, y =
2

(2π)2
,

and therefore, according to MEP, the fν ’s are estimated with the distributions fMEP
ν ’s

that solve the problem

extremize S under the constraints Mν
aA

=

∫

B2

aA(k||)f
MEP
ν d2 k||,

where Mν
aA

are the basic moments we have previously considered.

The proposed expression of the entropy combines quantum effects and semiclassical

transport along the longitudinal direction, weighting the contribution of each fν with the

square modulus of the ϕν(z, t)’s arising from the Schrödinger-Poisson block. With the

above choice of the functions aA(k||) = (1,v||, ε||, ε||v||), the resulting maximum entropy

distribution functions read (the factors kB and y have been included into the multipliers)

fMEP
ν = exp

[

−
(

λν + λνV · v|| +
(

λνW + λνS · v||

)

ε||
)]

.

In order to complete the procedure one has to insert the fMEP
ν ’s into the constraint

relations (3.4) and express the Lagrangian multipliers as functions of the basic moments

ρν , Vν , W ν , Sν . However such a procedure requires a numerical inversion, which is

not practical for numerical simulations of electron devices, since it must be performed

at each time or iteration step (see [25] for the semiclassical case). Following the same

approach as in [51, 52, 55], we assume a small anisotropy of the distribution functions

and expand them up to first order

fMEP
ν ≈ exp

[

−λν − λνW ε||
] [

1−
(

λνV · v|| + λνS · v||ε||
)]

. (3.5)

The explicit expressions of the constitutive relations are reported in the Appendix A.

By a direct calculation the following property can be proved.

The moment system of the subbands augmented with the MEP closure relations forms a

quasilinear hyperbolic system in the time direction, provided W ν > 0(the demonstration

will be furnished for the more general case of the Kane dispersion relation law) .
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3.4 Energy-transport model

The production terms of the velocities and the energy fluxes read for each subband in

the compact form (see the Appendix A)

(

Cν
V

Cν
S

)

=

(

cν11(W
ν) cν12(W

ν)

cν21(W
ν) cν22(W

ν)

)(

Vν

Sν

)

.

The coupling among the subbands in the productions of the velocities and the energy-

fluxes is therefore only through the differences of the subband bottom energies. Under

the diffusion scaling [56, 59, 60] t = O
(

1
δ2

)

, r|| = O
(

1
δ

)

, V = O (δ), S = O (δ), the

following energy transport model is obtained from the moment system

∂ρν

∂t
+∇r||

· (ρνVν) = ρνCν
ρ (W), (3.6)

∂ρνW ν

∂t
+∇r||

·(ρνSν) + ρν∇r||
εν ·Vν=ρνCν

W (W), (3.7)

where the index ν runs over the considered subbands, W = (W 1,W 2, . . . ) and

Vν = Dν
11(W)∇r||

log ρν +Dν
12(W)∇r||

W ν −Dν
13(W)∇r||

εν ,

Sν = Dν
21(W)∇r||

log ρν +Dν
22(W)∇r||

W ν −Dν
23(W)∇r||

εν ,

The coefficients Dν
ij are given by

Dν
11 =

cν22F
(0)ν − cν12F

(1)ν

cν
, Dν

12 =
cν22(F

(0)ν)′ − cν12(F
(1)ν)′

cν
, Dν

13 =
cν12G

(1)ν − cν22G
(0)ν

m∗ cν
,

Dν
21 =

cν11F
(1)ν − c21F

(0)ν

cν
, Dν

22 =
c11(F

(1)ν)′ − c21(F
(0)ν)′

cν
, Dν

23 =
cν21G

(0)ν − cν11G
(1)ν

m∗ cν
,

with cν = cν11c
ν
22 − cν12c

ν
21 and F (r)ν , G(r)ν longitudinal components of F(r)ν , G(r)ν ,

r = 0, 1. The system (3.37)-(3.38) must be coupled with the Schrödinger-Poisson block.

3.5 Boundary conditions and initial data

Regarding the boundary conditions and the initial data, we discuss separately the

Schrödinger-Poisson (SP) block and the energy-transport (ET) equations.

3.5.1 Boundary conditions and initial data for the SP-block

Dirichlet boundary conditions are taken at the gates, that is V = Vgu at the upper gate

and V = Vgl at the lower gate, with Vgu and Vgl prescribed voltages. Homogeneous
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Neumann boundary conditions are assumed at the oxide external boundaries

∂V

∂ν
= 0,

with ν unit outward normal.

More involved are the boundary conditions at source and drain contacts. In the semi-

classical case Dirichlet conditions are imposed, but they are no longer valid in a quantum

context due to the confinement. In [15] Neumann conditions are used in order to allow

the electrostatic potential to float and guarantee the charge neutrality. In [35] a different

approach has been proposed. First a one dimensional Schrödinger-Poisson problem is

solved at the boundaries representing the drain/source contacts and its solution is used

as boundary condition for the 2D problem at thermal equilibrium. Then the boundary

conditions at source and drain for arbitrary bias voltage are fixed adding Vb to the result

obtained at equilibrium. Here we employ a different approach using both the previous

ideas.

We first look for the thermal equilibrium solution, which is obtained setting VS = VD =

Vgu = Vgl = 0. In order to get the boundary condition as in [35] we proceed solving first

the SP equation at x=0. For symmetry reason, the same result holds at the contact at

x = Lx. Since the potential is defined up to an additive constant, we impose V (0, tox) =

0. Moreover we require that the normal derivative is zero at the oxide /silicon interface
∂V (0, tox)

∂z
= 0. On account of the symmetry of the device, the same conditions hold at

z = tox + Lz, that is V (0, tox + Lz) = 0 and
∂V (0, tox + Lz)

∂z
= 0. The following system

is therefore solved















[

− ~
2

2m∗

d2

dz2
− qV

]

ϕ(z) = εϕ(z), tox ≤ z ≤ tox + Lz,

∂

∂z

(

ǫ
∂V (0, z)

∂z

)

= q(n(0, z)−ND), 0 ≤ z ≤ Lz + 2 tox,
(3.8)

with the density given by the relationship

n(0, z) =

∫ tox+Lz

tox
ND(0, η) d η

Z(0)

∞
∑

ν=1

exp

(

− εν(0)

kBTL

)

|ϕν(0, z)|2 (3.9)

where Z is the partition function

Z(x) =
∞
∑

ν=1

exp

(

−εν(x)
kBTL

)

.

The formula for n(0, z) is based on the fact that the Fermi potential is constant at

thermal equilibrium. For the derivation the interested reader is referred to [35]. Note
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Figure 3.2: Boundary condition in the first slice of device.

that the Poisson equation is solved along all the strip x = 0.

Once the solution of eq.(3.8) is obtained, we pass to determine the equilibrium solution

for the whole device with a procedure where the solution of eq. (3.8) is used to specify the

boundary data at x = 0 and x = Lx as follows (the details are given only for x = 0, since

the same considerations hold for x = L). The boundary part representing the source

contact (fig. 3.2) Γ =
{

(x, z) ∈ R
2 : x = 0, 0 ≤ z ≤ Lz + 2 tox

}

is dived into two disjoint

parts (fig.3.2) Γ1 and Γ2, where Γ1 =
{

(x, z) ∈ R
2 : x = 0, tox + δ ≤ z ≤ Lz + tox − δ

}

and Γ2 =
{

(x, z) ∈ R
2 : x = 0, 0 ≤ z < tox + δ

}

∪
{

(x, z) ∈ R
2 : x = 0, Lz + tox − δ < z ≤ Lz + 2tox

}

,

with δ a positive constant less than Lz/2. We take homogeneous Neumann conditions
∂V

∂ν
= 0 along Γ2 and V (0, z) = V (0, z)1d along Γ1, with V (0, z)1d the potential aris-

ing from the solution of eq.(3.8). The natural boundary conditions, with homogeneous

Neumann conditions on the oxide and Dirichlet conditions on the contact, is recovered

setting δ = 0. However, when δ = 0, due to the loss of regularity where the boundary

conditions change type, we have a boundary layer. In order to regularize the solution,

we have extended the Neumann part also inside the contact.

With the above boundary conditions, the thermodynamical equilibrium without trans-

port is obtained by solving the SP block with the density given by

n(x, z) =

∫ tox+Lz

tox
ND(0, η) d η

Z(0)

∞
∑

ν=1

exp

(

−εν(x)
kBTL

)

|ϕν(x, z)|2. (3.10)

At the end in order to include the transport, we couple the SP block with the ET one,

taking Dirichlet boundary conditions for the electrostatic potential

V (0, z) = V (0, z)(eq), V (L, z) = V (0, z)(eq) + Vb, (3.11)
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where V (0, z)(eq) is the equilibrium potential obtained solving the SP block alone and

Vb the applied bias voltage.

3.5.2 Boundary conditions and initial data for the ET-block

At variance with the standard approach in the literature, we do not impose Dirichlet

conditions on the areal density and the longitudinal mean energy at source and drain,

but
∂

∂x
ρν(x, t) =

∂

∂x
W ν(x, t) = 0, x = 0, Lx, t > 0, ν = 1, 2, . . .

which are more flexible from a numerical point of view. Fixing Dirichlet boundary

conditions for the energy at source and drain, although common in the literature, leads

to an inconsistency with MC simulations in the semiclassical case [17].

By using Boltzmann statistics, the following initial data

ρν(x, 0) =
e−εν/kBTL

∑

µ e
−εµ/kBTL

ND(x), W ν(x, 0) = kBTL, ν = 1, 2, . . .

are taken, where TL is the lattice temperature and

ND(x) =

∫ Lz+tox

tox

ND(x, z) d z

is the integrated doping with respect to the transversal coordinate.

3.6 Numerical method

The main aim now is to simulate the DG-MOSFET of Fig. 3.1 with the model presented

above, which consists of the Schrödinger-Poisson block (3.1), (3.2) coupled to the energy-

transport equations (3.37), (3.38). The numerical method we propose advances in time

by an explicit discretization of (3.37), (3.38) with the energy subband bottoms εν frozen

at the previous time step. This allows to split the numerical scheme into two parts:

the discretization of the Schrödinger-Poisson (SP) block and the discretization of the

energy-transport (ET) equations

Along the x direction let us introduce the grid points xi, i = ia, . . . , ib, with xi+1−xi = h

= constant, and the middle points xi±1/2 = xi ± h/2. Along the z direction let us

introduce the grid points zj , j = ja, . . . , jb, with zj+1− zj = k = constant. Moreover let

us take a uniform time step ∆t and set unij = u(xi, zj , n∆t), for a generic function u. It

is straightforward to extend the scheme to a non uniform grid and time step.
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3.6.1 Discretization of the Schrödinger-Poisson equations

The discretization of the Schrödinger-Poisson equations has been performed following

standard approaches. Let suppose that time is fixed at level n, which will be omitted for

the sake of clarity in the notation. In order to couple eq.(1) with the Poisson equation,

an iterative scheme based on the Gummel method has been adopted. For each subband

let us denote with ϕ
(l)
νij the value of ϕνij at the l-iterate. The Schrödinger equation is

discretized in each slice x = xi with central differencing

− ~
2

2m∗

ϕ
(l)
i,j+1 − 2ϕ

(l)
i,j + ϕ

(l)
i,j−1

k2
− qVi,jϕ

(l)
i,j = εi ϕ

(l)
i,j , j = ja + 1, · · · , jb − 1,(3.12)

ϕi,ja = 0, ϕi,jb = 0, (3.13)

where zja = tox and zjb = tox + Lz. Known ϕ
(l)
νi,j , we reconstruct an approximation of

n(xi, zj , n∆t) as

n
(l)
i,j =

∑

ν

ρνi(xi)|ϕ(l)
νi,j |

2, (3.14)

and this latter is inserted into the discretization of a modified Poisson equation

1

h2

[

ǫi+1,j + ǫi,j
2

(

V
(l+1)
i+1,j − V

(l+1)
i,j

)

− ǫi,j + ǫi−1,j

2

(

V
(l+1)
i,j − V

(l+1)
i−1,j

)

]

+
1

k2

[

ǫi,j+1 + ǫi,j
2

(

V
(l+1)
i,j+1 − V

(l+1)
i,j

)

− ǫi,j + ǫi,j−1

2

(

V
(l+1)
i,j − V

(l+1)
i,j−1

)

]

+Q
(l)
i,j =

q2 n
(l)
i,j

kBTL

(

V
(l+1)
i,j − V

(l)
i,j

)

, i = ia + 1, · · · , ib − 1, j = ja + 1, · · · , jb − 1, plus B.C.(3.15)

where

Q
(l)
i,j =

{

q(NDi,j
− n

(l)
i,j), if i = ia · · · ib, j = ja · · · jb, (silicon body),

0, otherwise, (oxide layers),

and the dielectric constant is a piecewise constant function

ǫ =

{

ǫSi in silicon,

ǫox in the oxide.

The r.h.s. of the previous equation gives the nonlinear coupling of the Gummel method.

As V
(l)
i,j converges to the exact solution, the r.h.s. vanishes and one has the solution

of the original Poisson equation. A simple coupling with zero r.h.s. is possible but the

convergence is very slow, and therefore not practical for realistic simulations. Instead the

Gummel method assures a rather fast convergence. In the literature other approaches

have been tried, e.g. the Newton-Raphson one (the interested reader can see [35]). The
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iteration is continued until the stopping criterium

||n(l+1)
i,j − n

(l)
i,j ||∞

||n(l+1)
i,j ||∞

< tollerance,
||V (l+1)

i,j − V
(l)
i,j ||∞

||V (l+1)
i,j ||∞

< tollerance

is fulfilled. In the numerical simulation we set the tollerance equal to 10−6 and take as

initial guess ϕ
(0)
i,j the result of the previous time step. In particular for the first time step

we take as initial guess the solution of (3.12) with V
(0)
i,j = 0. At each iteration (3.12)

leads to ib−ia+1 independent eigenvalues problems, that are solved with the subroutine

DSTEVX of the LAPACK library. The linear system arising from (3.15), after ordering

the nodes by columns, is solved with the subroutine DGESV of the LAPACK library,

without preconditioner.

Remark. As discussed in section 3.5, when we integrate the SP block to get the

thermodynamical equilibrium, homogeneous Newman boundary conditions are imposed

on Γ2 and Dirichlet conditions on Γ1 in order to regularize the solution. This allows

the solution to float, but can create a spurious difference of potential between the gate

and the edges of the source and drain contacts. To avoid such a drawback, we need to

iterate the solution as follows. At each iterate, the difference of potential between the

edges of the contact (source or drain) and the gate is evaluated ∆V = V (0, zc) − Vg,

zc = tox, Lz + tox and then we impose in the 1D SP block V (0, zc) = −∆V . After few

iterations ∆V becomes negligible. As stopping criterium |∆V | < 10−5 has been adopted.

Of course, such further iterations are not necessary for non equilibrium solutions.

3.6.2 Discretization of the energy-transport equations

The key point for the formulation of the numerical scheme is the following proposition

which can be proved by a direct calculation The following relations hold

G(0)ν = λνW F (0)ν , (3.16)

G(1)ν = λνW F (1)ν . (3.17)

Thanks to the above proposition in each subband the current density J = ρV and the

energy-flux density Z = ρS can be rewritten as (the subband index is omitted)

J = J(1) − J(2), Z = Z(1) − Z(2), (3.18)
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where each term is in a drift-diffusion form

J(1) =
c22
c

[

∇r||
(ρF (0)) + ρλW F (0)∇r||

ε
]

, J(2) =
c12
c

[

∇r||
(ρF (1)) + ρλW F (1)∇r||

ε
]

,(3.19)

Z(1) =
c11
c

[

∇r||
(ρF (1)) + ρλW F (1)∇r||

ε
]

, Z(2) =
c21
c

[

∇r||
(ρF (0)) + ρλW F (0)∇r||

ε
]

.(3.20)

The drift-diffusion form is evident if one identifies
cij
c F

(r), r = 0, 1, as generalized

mobilities and qλW as the inverse of a sort of thermal potential. This fact is even more

evident in the parabolic case, which we are considering here, where λW = 1/W , which

at thermal equilibrium reads λW = 1/kBTL.

The previous consideration allows us to formulate a numerical method for the transport

part by a suitable extension of that proposed in [17] for the semiclassical MEP energy-

transport model.

We discretize the balance equations (3.37) and (3.38) in the one dimensional case as

ρn+1
i − ρni

∆t
+

(J)ni+1/2 − (J)ni−1/2

h
− ρni C

n
ρi +O(h2,∆t) = 0, (3.21)

(ρW )n+1
i − (ρW )ni

∆t
+
Zn
i+1/2 − Zn

i−1/2

h
+
Jn
i+1/2 + Jn

i−1/2

2

εni+1 − εni−1

2h
− ρni C

n
Wi

+O(h2,∆t) = 0.(3.22)

In order to evaluate the components of the currents in the middle points, let us consider

the cells Ii+1/2 = [xi, xi+1], and expand J (r), r= 0,1, in Taylor’s series in Ii+1/2 (hereafter

the variables with no temporal index have to be evaluated at the time step t = n∆t)

J (r)(x) = (J (r))i+1/2 + (x− xi+1/2)

(

∂J (r)

∂x

)

i+1/2

+ o(h).

Moreover, we introduce UT = 1
q λW

, which, as said, plays a role analogous to the thermal

potential in the drift-diffusion model (see [17] for more details), and indicate by UT its

piecewise constant approximation UT =
1

2

[

1

λW (Wi+1)
+

1

λW (Wi)

]

in the cell Ii+1/2.

Then we define the local mobilities

g11 =
c22
c
ρF (0), g12 =

c12
c
ρF (1), (3.23)

g21 =
c11
c
ρF (1), g22 =

c21
c
ρF (0), (3.24)

where cpq is a piecewise constant approximation of cpq, p, q = 1, 2, given by cpq =
cpq(Wi)+cpq(Wi+1)

2 in the cell Ii+1/2, c = c11c22− c12c21, and, as in [32], the local Slotboom

variables

skr = exp
(

ε/q UT

)

gkr k, r = 1, 2.
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Since in each cell

J (1) ≈ ∂

∂x

(

c22
c
ρF (0)

)

+
c22
c

ρF (0)

UT

∂ε

∂x
, J (2) ≈ ∂

∂x

(

c12
c
ρF (1)

)

+
c22
c

ρF (1)

UT

∂ε

∂x
,

Z(1) ≈ ∂

∂x

(

c11
c
ρF (1)

)

+
c11
c

ρF (1)

UT

∂ε

∂x
, Z(2) ≈ ∂

∂x

(

c21
c
ρF (0)

)

+
c21
c

ρF (0)

UT

∂ε

∂x
,

the local Slotboom variables satisfy

∂s1r(x)

∂x
≃ exp

(

ε/q UT

)

J (r)(x) = exp
(

ε/q UT

)







(J (r))i+1/2 + (x− xi+1/2)

(

∂J (r)

∂x

)

i+1/2

+ o(h)







.(3.25)

At each time step ε is approximated in Ii+1/2 by a piece-wise linear function

ε(x, n∆t) = εni +
x− xi
xi+1 − xi

(

εni+1 − εni
)

.

Integrating (3.25) over Ii+1/2, one has

(s1r)i+1 − (s1r)i =

∫ xi+1

xi

exp

(

ε(x)

q UT

)

J
(r)
i+1/2 dx+O(h2)

= J
(r)
i+1/2

h q UT

εni+1 − εni

(

exp

(

εi+1

q UT

)

− exp

(

εi

q UT

))

+O(h2),

which, with some algebra, gives

(J (r))i+1/2 = σi+1/2 cothσi+1/2
(g1r)i+1 − (g1r)i

h
+ σi+1/2

(g1r)i+1 + (g1r)i
h

, r = 1, 2(3.26)

where σi+1/2 =
εi+1−εi
2 q UT

.

With the same procedure the following discrete expressions for the two parts of the

energy flux are obtained

(Z(r))i+1/2 = σi+1/2 cothσi+1/2
(g2r)i+1 − (g2r)i

h
+ σi+1/2

(g2r)i+1 + (g2r)i
h

, r = 1, 2.(3.27)

The spatial error in formulas (3.26),(3.27) is O(h2).

3.7 Numerical results

A spatial grid of 65 × 37 points has been adopted. By using as units picoseconds for time,

microns for length and electron volts for energy, it is not necessary to adimensionalize

the variables. The physical parameters are reported in tables A.1, A.2 of the Appendix

A The numerical experiments indicate that it is sufficient to take into account only the
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Figure 3.3: Stationary density in the case VD = 0.2 V and Vgl = Vgu = 0 V

first three subbands since the other ones are very scarcely populated. The steady state

is reached after about 5 picoseconds.

The preliminary numerical simulation is the thermal equilibrium which represents also

the initial data for the other simulations. The 1D SP has required 288 iterations, the

adopted CFL condition has been ∆t = h/20. As first case we consider the following

applied voltages: VD = 0.2 V and Vgl = Vgu = 0 V. For this and the simulations below,

the CFL condition ∆t = h/50 has been adopted. In Fig.s 3.3, 3.4 we plot the steady

state density and the potential. The solution does not present any spurious oscillations

or boundary layer and reflects the symmetry of the problem. It is evident that the

boundary conditions at source and drain are completely different from the semiclassical

ones that are simply n = ND. In Fig. 3.5 the first three subband bottoms are shown.

We have a good qualitative agreement with the other numerical simulations known in

the literature.

Areal densities, macroscopic velocities and energies measured from the subband bottom,

and currents in the first three subbands are shown in Fig.s 3.6-3.9. The surface density

in the third subband is about 2 % of the total surface density as a confirmation that

the inclusion of further subbands has a negligible effect even far from equilibrium. It

is worth mentioning that the energy has an evidently different value between source

and drain as happens in the semiclassical case. The use of Dirichlet conditions for the

energy at the contacts misses such an effect. Observe that we have a very accurate

current conservation, proving the robustness of the numerical method.
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Figure 3.4: Stationary electrostatic potential energy in the case VD = 0.2 V and
Vgl = Vgu = 0 V

0 5 10 15 20 25 30 35 40
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

nanometer

s
u
b
b
a
n
d
 b

o
tt
o
m

 (
e
V

)

subband 1

subband 2

subband 3

Figure 3.5: First three subbands at the steady state in the case VD = 0.2 V and
Vgl = Vgu = 0 V

The mean velocity, evaluated according to the formula

V =

∑

ν ρ
νVν

∑

µ ρ
µ
, (3.28)

is shown along with the mean energy, evaluated taking as reference value the bottom of

the first subband

W =

∑

ν ρ
ν (W ν + εν − ε1)
∑

µ ρ
µ

(3.29)

It is possible to observe that the maximum velocity in the channel is more than two
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Figure 3.6: Surface densities in the first three subbands in the case VD = 0.2 V and
Vgl = Vgu = 0 V
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Figure 3.7: Average velocities in the first three subbands and global mean velocity
in the case VD = 0.2 V and Vgl = Vgu = 0 V

times the saturation velocity. In order to see the influence of the gate voltage on the

currents, we have also simulated the case with VD = 0.2 V and Vgl = Vgu = 0.1 V.

From a qualitative point of view we have stationary results similar to those obtained

in the previously considered case. The most relevant differences are in the electrostatic

potential, which is plotted in Fig. 3.10, and, as expected, in the currents which are

shown in Fig. 3.11. The gate voltages open the channel and as a consequence the

current increases, as required in the switching operation typical of the DG-MOSFET.

At last we have also considered a case with negative gate voltages: VD = 0.2 V and

Vgl = Vgu = −0.2. The electrostatic potential is plotted in Fig. 3.12 where it is evident

the influence of the boundary data. Now, as expected, the negative gate voltages close
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Figure 3.8: Average energies in the first three subbands and global mean energy in
the case VD = 0.2 V and Vgl = Vgu = 0 V
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Figure 3.9: Average areal currents in the first three subbands and global areal current
in the case VD = 0.2 V and Vgl = Vgu = 0 V

the channel and as a result the current flowing in the device is much lower than that in

the previous case (see Fig. 3.13).

3.8 The Kane dispersion relation case

Now, let us improve the model by substituting the parabolic energy dispersion relation

by the Kane one

Eν(r||,k||) = εν(r||) +
1

2α

(
√

1 + 4α
~2

2m∗

(

k2x + k2y
)

− 1

)

≡ εν(r||) + ε||(k||),
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Figure 3.10: Stationary electrostatic potential energy in the case VD = 0.2 V and
Vgl = Vgu = 0.1 V
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Figure 3.11: Average areal current in the first three subbands and global areal current
in the case VD = 0.2 V and Vgl = Vgu = 0.1 V

where α is the non-parabolicity parameter. Consequently the longitudinal electron ve-

locity is

v|| =
1

~
∇k||

ε|| =
~k||

m∗
(

1 + 2αε||
) . (3.30)

Using again the above definitions for the moments and the same procedure of the

parabolic case (see Appendix B for the details), one finds the following expressions
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Figure 3.13: Average areal current in the first three subbands and global areal current
in the case VD = 0.2 V and Vgl = Vgu = −0.2 V

for the densities and the energies in polar coordinates 1

ρ =
m∗

~2

∫ 2π

0

∫ +∞

0
exp

(

−λ− λW ε||
) (

1 + 2αε||
)

dε|| dθ,

ρW =
2πm∗

~2
exp (−λ)

∫ +∞

0
ε|| exp

(

−λW ε||
) (

1 + 2αε||
)

dε||,

1Here and whenever possible we omit the subband index , for simplicity
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wherefrom

λW =
1− 2αW +

√

(1− 2αW )2 + 16αW

2W
, λ = − ln

(

~
2

2πm∗
ρ g(W )

)

, (3.31)

with

g(W ) =

(

1

λW
+

2α

(λW )2

)−1

.

Similarly, substituting (3.5) into the remaining constraints for the velocities and the

energy-fluxes and inverting, one has

λV = b11 (W )V + b12 (W )S, λS = b21 (W )V + b22 (W )S, (3.32)

where

bij (W ) =
(−1)i+j−1m∗

b(W ) g(W )

[

γ(5−i−j)(W, 0) + αγ(6−i−j)(W, 0)
]

,

b(W ) = [γ1(W, 0) + αγ2(W, 0)] [γ3(W, 0) + αγ4(W, 0)]− [γ2(W, 0) + αγ3(W, 0)]
2 .

Note the symmetry of the coefficients, b12 = b21, which reminds us of the Onsager

reciprocity conditions [64]. The γ’s are reported in the Appendix B.

By using the explicit expressions of the fMEP
ν ’s, the needed constitutive relations are

obtained. They are reported in the Appendix A. By a direct calculation now we prove

the following property.

The moment system of the subbands augmented with the MEP closure relations forms

a quasilinear hyperbolic system in the time direction in the physically relevant range of

W ν .

Proof

Since the differential part of each subband is decoupled in the moment system, we can

limit our analysis to the study of a single subband. Let us consider the quasilinear

system of PDEs

∂

∂t
F (0)(U) +

2
∑

i=1

∂

∂xi
F (i)(U) = B(U,x, t), (3.33)

with U(x, t) vector field belonging to a connected open set Ω ⊂ R
m, ∀ t > 0 and

∀x = (x1, x2) belonging to a domain D ⊆ R
2, and

F (β) : Ω 7→ R
m, β = 0, 1, 2
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sufficiently smooth functions. Defining the Jacobian matrices

A(β) = ∇UF (β), β = 0, 1, 2,

the system (4.48) is said to be hyperbolic in the t-direction if det
(

A(0)(U)
)

6= 0 and the

eigenvalue problem

det

(

2
∑

i=1

niA(i)(U)− λA(0)(U)

)

= 0 (3.34)

has real eigenvalues and the eigenvectors span R
m for all unit vectors n = (n1, n2).

In the case under consideration, by omitting the subband index, we have

U =

























ρ

V 1

V 2

W

S1

S2

























, F (0) = ρ

























1

V 1

V 2

W

S1

S2

























, F (1) = ρ

























V 1

F (0)

0

S1

F (1)

0

























, F (2) = ρ

























V 2

0

F (0)

S2

0

F (1)

























,

and the Jacobian matrices are given by

A(0)=

























1 0 0 0 0 0

V 1 ρ 0 0 0 0

V 2 0 ρ 0 0 0

W 0 0 ρ 0 0

S1 0 0 0 ρ 0

S2 0 0 0 0 ρ

























, A(n)=
2
∑

i=1

niA(i)=

























n ·V n1ρ n2ρ 0 0 0

n1F
(0) 0 0 n1ρ(F

(0))′ 0 0

n2F
(0) 0 0 n2ρ(F

(0))′ 0 0

n · S 0 0 0 n1ρ n2ρ

n1F
(1) 0 0 n1ρ(F

(1))′ 0 0

n2F
(1) 0 0 n2ρ(F

(1))′ 0 0

























,

where the prime denotes partial derivation with respect to W .

The equation

det
(

A(n) − λA(0)
)

= 0

gives the eigenvalues

λ1,2 = 0, with multiplicity 2 (3.35)

λ3,4,5,6 = ±

√

a(W )±
√

a(W )2 − 4b(W )

2
(3.36)

where

a(W ) = F (0) + (F (1))′ −W (F (0))′, b(W ) = F (0)(F (1))′ − (F (0))′F (1).
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Figure 3.14: The eigenvalues λ3,4,5,6 (108cm/s) versus the mean longitudinal energy
W ranging from 0 eV to 1 eV

In Fig. 3.14 the eigenvalues λ3,4,5,6 are plotted in the range 0 eV ÷ 1 eV which covers

at room temperature of the crystal the physical relevant range of the longitudinal mean

energy W . The four eigenvalues λ3,4,5,6 are real and distinct. Therefore each of them

has a corresponding eigenspace of dimension one. Concerning the eigenvalue λ = 0,

we observe that whatever n we take, the first and fourth rows of A(n) are linearly

independent, the second and third rows are proportional and similarly the last two rows

since ρ > 0 and n1 and n2 cannot be both zero. We observe that

det

(

F (0) ρ(F (0))′

F (1) ρ(F (1))′

)

= ρ b(W ).

The fact that the eigenvalues λ3,4,5,6 are real implies that b(W ) > 0 and it is straight-

forward to see that the rank of A(n) is four. This implies that the eigenspace associated

to λ = 0 has dimension two and completes the proof of the hyperbolicity of the system

(4.48).

In the one dimensional case one has only the eigenvalues λ3,4,5,6 and again by similar

computations hyperbolicity is recovered.

In the particular case of parabolic energy subbands (α = 0) we explicitly have

λ3,4,5,6 = ±
√

(

2±
√
2
) W

m∗

which are real and distinct provided W > 0. �
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3.9 Energy-transport model

The method to obtain the energy transport model is the same described in the parabolic

case, so we have again

∂ρν

∂t
+∇r||

· (ρνVν) = ρνCν
ρ (W), (3.37)

∂ρνW ν

∂t
+∇r||

·(ρνSν) + ρν∇r||
εν ·Vν=ρνCν

W (W), (3.38)

where the index ν runs over the considered subbands, W = (W 1,W 2, . . . ) and

Vν = Dν
11(W)∇r||

log ρν +Dν
12(W)∇r||

W ν −Dν
13(W)∇r||

εν ,

Sν = Dν
21(W)∇r||

log ρν +Dν
22(W)∇r||

W ν −Dν
23(W)∇r||

εν .

The coefficients Dν
ij are given by

Dν
11 =

cν22F
(0)ν − cν12F

(1)ν

cν
, Dν

12 =
cν22(F

(0)ν)′ − cν12(F
(1)ν)′

cν
, Dν

13 =
cν12G

(1)ν − cν22G
(0)ν

m∗ cν
,

Dν
21 =

cν11F
(1)ν − c21F

(0)ν

cν
, Dν

22 =
c11(F

(1)ν)′ − c21(F
(0)ν)′

cν
, Dν

23 =
cν21G

(0)ν − cν11G
(1)ν

m∗ cν
,

with cν = cν11c
ν
22 − cν12c

ν
21 and F (r)ν , G(r)ν longitudinal components of F(r)ν , G(r)ν ,

r = 0, 1. The system (3.37)-(3.38) must be coupled with the Schrödinger-Poisson block.

In order to classify the ET equations, let us rewrite the system (3.37)-(3.38) as

∂

∂t







ρν

ρνW ν






+ div







(Dν
11 −W νDν

12)∇ρν +Dν
12∇ (ρνW ν)

(Dν
21 −W νDν

22)∇ρν +Dν
22∇ (ρνW ν)






+ r.t. =







0

0







where r.t. stands for the remaining lower order derivative terms. We would like to show

that the diffusion matrix

D̂ν =







Dν
11 −W νDν

12 Dν
12

Dν
21 −W νDν

22 Dν
22






(3.39)

in the relevant physical cases is negative definite, that is ξ · D̂νξ < 0, ∀ξ ∈ R
2, ξ 6=

(0, 0)T . The elements of D̂ν indeed depend on the bottom of the subbands εν and

envelope functions ϕν(z), ν = 1, 2, 3, . . . that can be evaluated only numerically in a

DG-MOSFET. However, if we consider the case of an infinite potential barrier, one has
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the explicit formulas

εν =
ν2π2~2

2L2
zm

∗
, ϕν(z) =

√

2

L z
sin

νπ

Lz
(z − tox), z ∈ [tox, tox + Lz] , ν = 1, 2, . . .

By evaluating the eigenvalues of D̂ν with the previous expressions of the bottom energy

of the first three subbands, one finds the results plotted in Fig. 3.15. No additional

subbands are considered because as will be shown in the last section, the inclusion of

more than three subbands is practically irrelevant. For the relevant range of energy W ν

we have two distinct and real negative eigenvalues in each subband. Therefore at least in

the case of an infinite potential barrier, employing the first three subbands, the ET model

is represented by two parabolic equations for each band coupled to the Poisson equation.

The reader interested in analytical questions about general ET models is referred to

[14, 47]. A recent result of existence for the semiclassical ET MEP model has been

obtained in [16].

3.10 Numerical simulations for the Kane case

Also these simulations have been performed on a Workstation with a 8 GB RAM and

a 2.67GHz Intel(R) Xeon(R) X3450 CPU. The code has been compiled using the GNU

gfortran compiler and every simulation has taken an average of 4-6 hours, depending

on the applied voltages. The numerical experiments indicate that it is sufficient to take

into account only the first three subbands. The steady state is reached after about 5

picoseconds. By using as units picoseconds for time, microns for length and electron

volts for energy, it is not necessary to adimensionalize the variables. The physical

parameters are reported in tables A.1, A.2 of the Appendix A. In order to fix the number

of grid points, some preliminary numerical simulations of the thermal equilibrium, which

represents also the initial data for the other simulations, suggest to take about 30 ÷ 40

nodes in the transversal direction. So we take 37 points along the z-axis, but we consider

along the longitudinal direction grids with 16, 32 and 64 cells (17, 33 and 65 grid points

respectively), in the case VD = 0.5 V and Vgl = Vgu = 0 V, with VD voltage applied

at the drain with respect to that at the source, and Vgl and Vgu voltages respectively

applied at the lower and the upper gate. The results relative to the areal density and the

longitudinal average energy are plotted for each subband in Fig.s 3.16. At variance with

the simplified cases considered in [20], the behaviour of the error is not uniform due to

the coupling with the Schrödinger-Poisson block. In the drain one has a degradation of

the convergence rate cR which is worse in the third subband than in the first subband.
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Figure 3.15: Eigenvalues of the matrix D̂ν for ν = 1, 2, 3 versus the mean longitudinal
energy.
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Table 3.1: Mean convergence rate by comparing meshes with 17, 33, 65 grid points
in the case VD = 0.5 V and Vgl = Vgu = 0 V

ρ1 ρ2 ρ3 W 1 W 2 W 3

cR 1.1066 0.7701 0.7302 1.4020 1.4849 1.4430

If we denote by u(k) the generic variable of the solution with k cells, at each grid point

of the coarser grid, cR can be estimated as

cRi = log2

∣

∣

∣

∣

u(16)i − u(32)i

u(32)i − u(64)i

∣

∣

∣

∣

, i = 1, 2, . . . , 17, (3.40)

while a global estimate is given by the average

cR =
1

17

17
∑

i=1

cRi. (3.41)

In table 3.1 the mean convergence rates are reported. The longitudinal energies present

a converge of high order than the areal densities. On the base of the previous consid-

erations in the following simulations a grid with 65 × 37 grid points is used.

As first case we consider a symmetric situation: VD = 0.5 V and Vgl = Vgu = −3 V.

In Fig.s 3.17 and 3.18 we plot the steady state density and the potential. The solution

does not present any spurious oscillation or boundary layer and reflects the symmetry

of the problem. It is evident that the boundary conditions at source and drain are

completely different from the semiclassical ones that are simply n = ND. In Fig. 3.21

the first three subband bottoms are shown. We have a good qualitative agreement with

the other numerical simulations known in the literature [34, 35].

As second case we take VD = 0.5 V, Vgl = −3 V and Vgu = 3 V. In Fig.s 3.19 and 3.20

we plot the density and the potential respectively, while in Fig. 3.212 the first three

subband bottoms are shown. One can note the depletion region beneath the upper gate.

From Fig.s 3.22 it is evident a very accurate current conservation, proving the robustness

of the numerical method. In the second case the current is reduced by one half due to

the gate voltage in agreement with the behaviour of the density.

Areal density, average velocity and energy measured from the subband bottom and

current in the first three subbands are shown in Fig.s 3.23-3.25. The areal density is not

symmetric between source and drain within each subband but the total areal density is

so.

The drift (mean) velocity has been evaluated according again to the formula 3.28 Sim-

ilarly the global longitudinal mean energy has been evaluated taking as reference value
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Figure 3.16: Comparison of the results for the areal density and the average longitu-
dinal energy in the case VD = 0.5 V and Vgl = Vgu = 0 V by using 17(–), 33 (*), 65 (o)

grid points
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Figure 3.17: Stationary density in the case VD = 0.5 V and Vgl = Vgu = −3 V

the bottom of the first subband according to the formula 3.29 The maximum drift ve-

locity in the channel is one and half times the saturation velocity when Vgl = Vgu = −3

V, while it is about two times the saturation velocity when Vgl = −3 V and Vgu = 3 V.

Moreover in the first case the velocity in the first subband is lower than that in the first

subband in the second case. Instead the velocity in the second and third subbands is

higher in the first case, but with a resulting lower total longitudinal current.

The energy has an evidently different value between source and drain as happens in the

semiclassical case. The use of Dirichlet conditions for the energy at the contacts misses

such an effect.

At last the characteristic curves have been calculated and shown in Fig. 3.26 by fixing

Vgl = −3 V and varying Vgu from - 3 V to 3 V. With increasing Vgu the average

longitudinal current increases as consequence of the controlling effect of the gate voltage

on the electric characteristics of the device.

The comparison with the parabolic band case regarding the current is reported in table

3.2. For moderate values of VD the currents differ of about 10 %, but at higher fields

(≈0.35 V) the difference becomes of about 25%, clearly showing the influence of the

band structure and the fact, already known in the semiclassical case, that the currents

are lower when the non-parabolicity effects are included.
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Figure 3.18: Stationary electrostatic potential energy in the case VD = 0.5 V and
Vgl = Vgu = −3 V
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Figure 3.19: Stationary density in the case VD = 0.5 V and Vgl = −3 V, Vgu = 3 V
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Figure 3.20: Stationary electrostatic potential energy in the case VD = 0.5 V and
Vgl = −3 V, Vgu = 3 V
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Figure 3.21: First three subbands at the steady state in the case VD = 0.5 V and
Vgl = Vgu = −3 V (left), VD = 0.5 V and Vgl = −3 V, Vgu = 3 V (right).
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Figure 3.22: Average areal current in the first three subbands and global areal current
in the case VD = 0.5 V and Vgl = Vgu = −3 V (left), VD = 0.5 V and Vgl = −3 V,

Vgu = 3 V (right).
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Figure 3.23: Areal density in the first three subbands in the case VD = 0.5 V and
Vgl = Vgu = −3 V (left), VD = 0.5 V and Vgl = −3 V, Vgu = 3 V (right).
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Figure 3.24: Average velocity in the first three subbands and global mean velocity
in the case VD = 0.5 V and Vgl = Vgu = −3 V (left), VD = 0.5 V and Vgl = −3 V,

Vgu = 3 V (right).
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Figure 3.25: Average total energy measured from the bottom of the first subband
W ν + εν − ε1 in the first three subbands and global mean energy in the case VD = 0.5

V and Vgl = Vgu = −3 V (left), VD = 0.5 V and Vgl = −3 V, Vgu = 3 V (right).
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Figure 3.26: Longitudinal mean current (A/cm) versus the source- drain voltage VD
with Vgl = −3 V and Vgu ranging from - 3 V to +3 V according to the arrow

Table 3.2: Total longitudinal currents (A/cm) versus VD (V), for Vgl = Vgu = 0 V in
the parabolic and non-parabolic case

VD (V) 0.15 0.2 0.25 0.3 0.35

longitudinal current: parabolic case 23.065 25.256 27.436 29.113 32.790

longitudinal current: non-parabolic case 21.026 23.289 24.597 25.391 25.939



Chapter 4

2DEG-3DEG charge transport

model for MOSFET

After the exposition of the transport model for the DG-MOSFET, in this last chapter

a charge transport model for the MOSFET will be developed taking into account the

coexistence of 2D and 3D electron gas.

The model here exposed has been extracted by the preprint

• Camiola, V.D., Romano, V.: 2DEG-3DEG charge transport model for mosfet

based on the Maximum Entropy Principle, (submitted)

4.1 Confinement effects in nanoscale MOSFET

In a MOSFET (fig.4.1), in the proximity of the Si/SiO2 interface a two dimensional

electron gas (2DEG) is created with a discrete energy spectrum along the z-direction

(fig.4.2). Above a fixed energy level, the energy spectrum is continuous and a three

dimensional electron gas (3DEG) coexists with the 2DEG. To describe the whole system,

we define a spatial quantum region RQ where the 2DEG is confined, associated with

an energy quantum region RE in the wave-vector space. Outside RQ electrons are only

belonging to the 3DEG.

In the quasi-static approximation, the 2D-charges in RQ are described by the steady

wave function

ψν(k, r) = ψν(kx, ky, kz, x, y, z) =
1√
A
φν(r||, z)e

ik||·r||

58
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Figure 4.1: Simulated MOSFET.
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Figure 4.2: Energy spectrum.

with k|| = (kx, ky) and r|| = (x, y) denoting the longitudinal components of the wave-

vector k and the position vector r, respectively, and A symbolizing the area of the xy

cross-section of RQ.

φν(r||, z) is called envelope function and, under the scaling where the ratio between

transversal and longitudinal characteristic lengths is small [31], it is solution of the

following Schrödinger equation in the effective mass approximation

[

− ~
2

2m∗

d2

dz2
− q(VC + V )

]

φν(r||, z) = ενφν(r||, z) (4.1)

where ~ is the reduced Planck constant, m∗ is the effective electron mass, VC is the

confining potential and V is the self-consistent electrostatic potential which solves the

Poisson equation. Note that in (4.1) r|| enters as a parameters.
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Under the assumption that the confining potential gives rise to an infinite barrier at the

oxide/silicon interface (z=0) and that a fictitious boundary is posed at z = tQ, we solve

eq.(4.1) only inside the RQ region by setting φ = 0 at z = 0 and z = tQ, the boundary

of RQ. Equation (4.1) with the previous boundary is a self-adjoint problem posed on

a limited domain. So one finds a countable set of normalized eigen-pairs (subbands)

(φν , εν).

In each subband the energy Eν is the sum of a transversal contribution εν(r||) and a

longitudinal (kinetic) contribution ε|| =
~2

2m∗ (k2x + k2y), that is

Eν(r||,k||) = εν(r||) + ε||(k||). (4.2)

The corresponding longitudinal velocity is

v|| =
1

~
∇k||

ε|| =
~k||

m∗
. (4.3)

We assume that above a threshold energy ET electrons are 3D and therefore only the

subbands with Eν < ET are retained. We will denote by νT the threshold subband

index. Formally let us define

RE(x) =
{

εν(r||, z) : Eν < ET

}

. (4.4)

Then k|| = (kx, ky) ∈ Bν
2 , where

Bν
2 =

{

(kx, ky) ∈ R
2 : 0 ≤ ~

2

2m∗
(k2x + k2y) ≤ ET − εν , εν ∈ RE

}

is the selected Brillouin zone for 2D electrons in the ν-th subband.

The Brillouin zone for the 3D electrons is

B∗
3 =

{

(kx, ky, kz) ∈ R
3 : E(k) ≥ ET

}

where we are assuming a Kane dispersion relation in order to take into account the

effetcs of nonparabolicity at high energies

E(k) [1 + αE(k)] = ~
2k2

2m∗
.

Under the assumption that the channel length is no shorter than few tents of nanometers,

the transport of the carriers is assumed to be well described by semiclassical Boltzmann

equations. 2D electrons in each subband are considered as different populations and for

each subband it is introduced a distribution function fν(x||,k||, t) obeying the Boltzmann
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equation

∂fν(x||,k||, t)

∂t
+ v|| · ∇rfν(x||,k||, t)−

q

~
Eeff

ν · ∇kfν(x||,k||, t) = C2D
ν , k ∈ Bν

2 (4.5)

where Eeff
ν = 1

q∇rε(r||) and C2D
ν describes the scattering with phonons, including the

mechanisms pushing 2D electrons into the 3DEG (see later for more details).

The 3DEG in the region RQ is described by the Boltzmann equation

∂f(x,k, t)

∂t
+ v · ∇rf(x,k, t)−

q

~
E · ∇kf(x,k, t) = C3D, k ∈ B∗

3 (4.6)

where v = 1
~
∇kE is the electron group velocity

v =
1

m∗

~k

1 + 2αE . (4.7)

C3D represents the scattering of 3D electrons with phonons, including the mechanisms

pushing 3D electrons into the 2DEG (see later for more details). E = −∇rV is the self-

consistent electric field which is related to the electron distributions function through

Poisson’s equation

∇ (ǫ∇V ) = −q (nd(r)− nT (r)) (4.8)

with ǫ the relative permittivity, nd(r) the doping concentration and nT (r) the total

charge density given by

nT (r, t) = n(r, t) +

νT
∑

ν=1

ρν(x, y, t)|φν(z, t)|2 (4.9)

with

n(r, t) =

∫

B∗
3

f(x,k, t)d3k (4.10)

the density of the bulk electrons, and

ρν
(

r||, t
)

=

∫

Bν
2

fν(r||,k||, t)d
2k|| (4.11)

the areal density of electrons in the ν-th subband.

Now, let us examine in more detail the collisional terms. The main scattering processes

considered in this paper are due to acoustic phonons and non polar optical phonons.

The first ones are considered in the elastic approximation so, after the scattering, a

2D electron in the ν-subband can remain in the same subband or scatter in another

subband. In any case it remains belonging to the 2DEG because the total energy (4.2)
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is conserved. The same consideration holds for the 3D electrons that remains belonging

to the 3DEG as well.

Instead the electron scattering due to non polar optical phonons is an inelastic process,

so a 2D electrons can absorb a phonon and occupy a quantum state with a total energy

greater than ET , becoming a 3D electron, while an electron of the 3DEG can be scattered

into the 2DEG after the emission of a phonon. To describe these processes, let us define

the following sets:

B∗ν
2 =

{

(kx, ky) ∈ R
2 :

~
2

2m∗
(k2x + k2y) ≥ ET − ~ω

}

B∗∗
3 =

{

(kx, ky, kz) ∈ R
3 : E(k) ≤ ET + ~ω

}

where ~ω is the phonon energy. Of course these sets depend on the specific non polar

optical phonon scattering we are dealing with.

The collisional terms of (4.5) and (4.6) can be written in the following manner

C2D
ν =

νT
∑

µ=1

C(ac)
νµ (k) +

νT
∑

µ=1

C(no)
µν (k) + C(no),3D

ν (k) (4.12)

C3D = C
(ac)
3D (k) + C

(no)
3D (k) + C(no),2D(k) (4.13)

The terms C
(ac)
νµ and C

(ac)
3D describe the scattering due to acoustical phonons; C

(no)
µν and

C
(no)
3D describe the scattering with non polar optical phonons, respectively in 2DEG

and 3DEG; C
(no),3D
ν (k) and C(no),2D(k) describe the scattering with non polar optical

phonons from the ν-subband to the 3DEG and vice versa. Note that when µ = ν one

has an intra-subband scattering, otherwise an inter-subband scattering.

The general expression for acoustic collision terms are the following

C(ac)
νµ =

∫

Bν
2

[Sµν(k
′
||,k||)fµ(k

′)− Sνµ(k||,k
′
||)fν(k)]d

3k (4.14)

C
(ac)
3D =

∫

B∗
3

[

P (k′,k)f(k′)− P (k,k′)f(k)
]

d3k (4.15)

Regarding the non polar optical phonons, figure (4.3) shows the energy ranges of the

scattering for each term.

The non polar phonon scattering intra the 2DEG and intra the 3DEG are given by

C(no)
ν =

∫

Bν
2

[Sµν(k
′
||,k||)fµ(k

′)− Sνµ(k||,k
′
||)fν(k)]d

3k (4.16)

C(no) =

∫

B∗
3

[

P (k′,k)f(k′)− P (k,k′)f(k)
]

d3k (4.17)
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2DEG

3DEG

Figure 4.3: Schematics representation of scattering between 2DEG and 3DEG

Figure 4.4: Schematic representation of B∗ν
2

which is the energy region above ET −~ω

Now, let us note that 2D-electrons in the energy interval (ET − ~ω,ET ) can absorb a

non polar optical phonon and go into the 3DEG. This process is described by the term

C(no),3D
ν =

∫

B∗ν
2

[Sµν(k
′
||,k||)fµ(k

′)− Sνµ(k||,k
′
||)fν(k)]d

3k (4.18)

where the integral is calculated on B∗ν
2 , that can be viewed as an extension of the 2D

zone (fig. 4.4).

At the same time, a 3D electron in the energy interval (ET , ET +~ω) can loose energy by

the emission of a phonon and became a 2D charge. In this case the process is described

by

C(no),2D =

∫

B∗∗
3

[

P (k′,k)f(k′)− P (k,k′)f(k)
]

d3k (4.19)

where the integration is performed on B∗∗
3 (see fig.4.5).
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Figure 4.5: Schematic representation of B∗∗

3
which is the energy region below ET +~ω

For the electron-acoustic phonon scattering in the elastic approximation, the transition

rate is given by

S(ac)
µν (k||,k

′
||) =

kBTLΞ
2
d

4π2~ρv2S
Gνµδ(Eµ(k

′
||)− Eν(k||)). (4.20)

where kB is the Boltzmann constant, TL the lattice temperature, which will be kept con-

stant in this paper, ρ the silicon density, Ξd the acoustic phonon deformation potential,

and vS the longitudinal sound speed. Their values are the same reported in the Table

??. The Gµν ’s are the interaction integrals

Gµν =

∫ +∞

−∞
|Iνµ(qz)|2dqz, Iµν(qz) =

∫ tQ

0
φν(z)φµ(z)e

iqzzdz (4.21)

with q denoting the 3D-phonon wave vector, and bar indicating complex conjugation.

Let us note that Gµν = Gνµ holds.

Similarly for non-polar optical phonon scattering one has

S(no)
µν (k||,k

′
||) = Zf

(DtK)2

8π2ρω

(

Nq +
1

2
∓ 1

2

)

δ(Eµ(k
′
||)− Eν(k||)∓ ~ω) (4.22)

Nq is the Bose-Einstein distribution of phonons, DtK is the non polar optical phonon

deformation potential and Zf is the degeneracy of the final valley. Their values are

reported again in the Tables ??. Note that there are six types of non polar optical

phonon. The total scattering is the sum of the contribution of each type.
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In the same manner for the 3DEG

P (ac)(k,k′) =
kBTLΞ

2
d

4π2~ρv2S
δ(E(k)− E(k′)) (4.23)

P (no)(k,k′) = Zf
(DtK)2

8π2ρω

(

Nq +
1

2
∓ 1

2

)

δ(E(k′)− E(k)∓ ~ω) (4.24)

4.2 The moment system and its closure by the MEP

The system (4.1),(4.5),(4.6),(4.8) furnishes a complete mathematical model for the sim-

ulation of the carrier transport in the channel of a MOSFET and we use them to develop

a macroscopic model as in the previous chapter.

The generic moment associated with electrons in the subband ν with respect to a weight

function a(k||) is defined as

Ma

(

r||, t)
)

=

∫

a(k||)f(r,k||, t)d
2k||.

In particular we take as basic moments for the 2DEG the following ones

areal density ρν
(

r||, t)
)

=

∫

Bν
2

fν(r||,k||, t)d
2k||

longitudinal mean velocity Vν
(

r||, t)
)

=
1

ρν
(

r||, t
)

∫

Bν
2

v||fν(r||,k||, t)d
2k||

longitudinal mean energy W ν
(

r||, t)
)

=
1

ρν
(

r||, t
)

∫

Bν
2

ε||fν(r||,k||, t)d
2k||

longitudinal mean energy flux Sν
(

r||, t)
)

=
1

ρν
(

r||, t
)

∫

Bν
2

ε||v||fν(r||,k||, t)d
2k||

The corresponding moment system is obtained by multiplying the Boltzmann equation

(4.5) by the weight functions entering into the definition of the fundamental moments

and by integrating with respect to d2k||. Explicitly we get

∂ρν

∂t
+∇r||

· (ρνVν) + ρνLν
0 = ρνC(ac)

ρν + ρνC(no)
ρν + ρνC(no),3D

ρν (4.25)

∂

∂t
(ρνVν) +∇r||

· (ρνF(0)ν) + (ρνG(0)ν) · ∇r||
εν = ρνC

(ac)
V

ν + ρνC
(no)
V

ν + ρνC
(no),3D
V

ν (4.26)

∂

∂t
(ρνW ν) +∇r||

· (ρνSν) + (ρνVν) · ∇r||
εν + ρνLν

1 = ρνC
(ac)
W + ρνC

(no)
W + ρνC

(no),3D
W(4.27)

∂

∂t
(ρνSν) +∇r||

· (ρνF(1)ν) + (ρνG
(1)ν) · ∇r||

ǫν = ρνC
(ac)
S
ν + ρνC

(no)
S
ν + ρνC

(no),3D
S
ν (4.28)
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where





F(0)ν

F(1)ν



 =
1

ρν

∫

Bν
2





1

ε||



v|| ⊗ v|| fν(r||,k||, t) d
2k||,





G(0)ν

G(1)ν



 = − 1

ρν

∫

Bν
2







1

~
v||∇k||

1

~
ε||v||∇k||






fν(r||,k||, t) d

2k||,





Cρν

CWν



 =
1

ρν

∫

Bν
2





1

ε||





[

Sµν(k
′
||,k||) f

′
µ − Sνµ(k||,k

′
||) fν

]

d2k′
|| d

2k||,





CVν

CSν



 =
1

ρν

∫

Bν
2





v||

ε||v||





[

Sµν(k
′
||,k||) f

′
µ − Sνµ(k||,k

′
||) fν

]

d2k′
|| d

2k||

Lν
0 = − 1

~ρν
∇r||

εν

∫

Bν
2

∇k||
fνd

2k||

Lν
1 = − 1

~ρν
∇r||

εν

∫

Bν
2

∇k||
(ε||fν)d

2k||.

It is worth to underline here that the two last drift terms (Lν
0 and Lν

1) are due to the

anisotropy of the distribution function. Usually they do not appear in the constitutive

equations of the carriers transport because the boundary of the first Brillouin zone is

moved to infinity or the distribution function is symmetric on this boundary.

For the 3DEG the expression of the moment associated to a weight function b(k) is

Mb (r, t) =

∫

B∗
3

b(k) f(r,k, t)d3k

The basic moments we take for 3D electrons are the following ones

density n(r, t) =

∫

B∗
3

f(r,k, t)d3k

mean velocity V(r, t) =
1

n(r, t)

∫

B∗
3

v(k)f(r,k, t)d3k

mean energy W (r, t) =
1

n(r, t)

∫

B∗
3

ε(k)f(r,k, t)d3k

mean energy flux S(r, t) =
1

n(r, t)

∫

B∗
3

ε(k)v(k)f(r,k, t)d3k.
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and the corrisponding moments system reads

∂n

∂t
+∇r

(

n(r, t)v(n, t)
)

= nC(ac)
n + nC(no)

n + nC(no),2D
n (4.29)

∂

∂t
(nv) +∇r

(

nF(0)
)

+ qE
(

nG(0)
)

= nC
(ac)
V

+ nC
(no)
V

+ nC
(no),2D
V

(4.30)

∂

∂t
(nW ) +∇r

(

nS
)

+ qE
(

nV
)

= nC
(ac)
W + nC

(no)
W + nC

(no),2D
W (4.31)

∂

∂t
(nS) +∇r(nF

(1)) + qE(nG(1)) = nC
(ac)
S

+ nC
(no)
S

+ nC
(no),2D
S

(4.32)

with





F(0)

F(1)



 =
1

n

∫

B∗
3





1

ε



v⊗ v f(r,k, t) d2k,





G(0)

G(1)



 = − 1

n

∫

B∗
3







1

~
v · ∇k

1

~
εv · ∇k






f(r,k, t) d2k,





Cn

CW



 =
1

n

∫

B∗
3





1

ε





[

S(k′,k) f ′ − S(k,k′) f
]

d2k′ d2k,





CV

CS



 =
1

n

∫

B∗
3





v

εv||





[

S(k′,k) f ′ − S(k,k′) f
]

d2k′ d2k.

Let us observe that nT (r, t) must be conserved so

dnT (r, t)

dt
= 0

and from (4.9) we has

dn(r, t)

dt
+

νT
∑

ν=1

dρν
dt

|φν |2 +
νT
∑

ν=1

ρν
d

dt
|φν |2 = 0 (4.33)

Now we use again the MEP to close the above written moment system.

According to the MEP, if a given number of moments of fν

Mν
aA

(

r||,k||, t)
)

, A = 1, ....., Nν and ν = 1, 2 . . .

are known along with a given number of moments of f

MbB (r,k, t) B = 1, 2, . . . N
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the distribution functions f (r,k, t), fν
(

r||,k||, t)
)

, ν = 1, 2 . . . , can be estimated by the

extremal (fMEP , fMEP
1 , fMEP

2 , ...) of the entropy functional under the constrains

∫

Bν
2

aA(k||)f
MEP
ν

(

r||,k||, t)
)

dk =Mν
aA

(

r||, t)
)

A = 1, ..., Nν , ν = 1, 2, . . .

∫

B∗
3

bB(k) f
MEP (r,k, t)d3k =MbB (r, t) B = 1, 2, . . . N.

Also in this case, the phonons gas is considered as a thermal bath.

We define the entropies of the two subsystems, 2DEG and 3DEG, as

S2D = −kB
+∞
∑

ν=1

|φν(z, t)|2
∫

Bν
2

(

fν log
fν
y

− fν

)

d2k||, y =
2

(2π)2,

S3D = −kB
∫

B∗
3

f(k) [log f(k)− 1] d3k

The total entropy is of course

S = S2D + S3D.

The proposed expression of the entropy of the 2DEG combines quantum effects and

semiclassical transport along the longitudinal direction, weighting the contribution of

each fν with the squared modulus of the φν(z, t)’s arising from the Schrödinger-Poisson

block. Therefore, according to MEP and our choice of the basic moments in the case we

are dealing with, f and the fν ’s are estimated with the distributions fMEP and fMEP
ν ’s

that solve the problem:

maximize S under the constraints

∫

B∗
3

fMEP (r,k, t)d3k = n(r, t),

∫

B∗
3

v(k)fMEP (r,k, t)d3k = n(r, t)V(r, t) (4.34)

∫

B∗
3

ε(k)fMEP (r,k, t)d3k = n(r, t)W (r, t),

∫

B∗
3

εvfMEP (r,k, t)d3k = n(r, t)S(r, t)(4.35)

and for ν = 1, 2, . . .

∫

Bν
2

fν(r||,k||, t)d
2k|| = ρν

(

r||, t
)

,

∫

Bν
2

v||fν(r||,k||, t)d
2k|| = ρν

(

r||, t
)

Vν
(

r||, t)
)

(4.36)

∫

Bν
2

ε||fν(r||,k||, t)d
2k|| = ρν

(

r||, t
)

W ν
(

r||, t
)

,

∫

Bν
2

ε||v||fν(r||,k||, t)d
2k|| = ρν

(

r||, t
)

Sν
(

r||, t
)

(4.37)
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In order to solve the above problem, we introduce the Legendre transform

S ′ = S2D +
∞
∑

ν=1

4
∑

A=1

λνaA |ϕν(z, t)|2
[

Mν
aA

−
∫

Bν
2

aAf
MEP
ν d2k||

]

+

S3D +
4
∑

B=1

λbB

[

MbB −
∫

B∗
3

bBf
MEBd3k

]

where λbB , B = 1, 2, . . . , 4, and λνaA , A = 1, 2, . . . , 4, and ν = 1, 2, . . . are the lagrangian

multipliers associated to the constraints (4.34)-(4.37) while (bB(k)) = (1,v, ε, εv) and

(aνA(k||)) = (1,v||, ε||, ε||v||) for each ν.

Requiring that the first variations must be zero, δS ′ = 0, one has

fMEP
ν = exp

[

−
(

λν + λνV · v|| +
(

λνW + λνS · v||

)

ε||
)]

ν = 1, 2, . . . (4.38)

and

fMEP = exp [−(λ+ λV · v+ (λW + λS · v)ε)] (4.39)

To complete the procedure one has to insert the fMEP
ν ’s into the constraint relations

(4.36)-(4.37) and express the lagrangian multipliers λνaA ’s as functions of the basic mo-

ments ρν , Vν , W ν , Sν . Similarly, by inserting fMEP into the constraints (4.34)-(4.35)

one can write the lagrangian multipliers λbB ’s in terms of the basic moments n,V,W,S.

Following the same previous approach, we assume a small anisotropy of the distribution

functions and expand them up to first order with respect to the lagrangian multipliers

relative to velocity and energy-flux

fMEP
ν ≈ exp

(

−λν − λνW ε||
) [

1−
(

λνV · v|| + λνS · v||ε||
)]

, (4.40)

fMEP ≈ exp(−λB − λBW ε)[1− (λBV · v+ λBS · vε)] (4.41)

Inserting the above-written expansions into the constraints (4.34)-(4.37), it is possible

to get analytical explicit expressions of the lagrangian multipliers and in turn to get the

closure relations for the moment system.
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4.3 Closure relations for the 2DEG

Inserting (4.40) into (4.36) and (4.37) one finds the following relations for Lagrange’s

multipliers of the subbands into the 2DEG

ρν =
2πm∗

~2
e−λν

Iν0 (4.42)

W ν =
1

λνW

[

1 +
λνW (ET − εν)

1− eλ
ν
W (ET−εν)

]

, (4.43)

λνV = b11(W
ν)Vν + b12(W

ν)Sν , λS = b21(W
ν)Vν + b22(W

ν)Sν (4.44)

where

b11 = −m
∗Iν

0

∆ν
Iν
3 , b12 = b21 =

m∗Iν
0

∆ν
Iν
2

b22 = −m
∗Iν

0

∆ν
Iν
1 , ∆ν = Iν

1Iν
3 − (Iν

2 )
2

with

Iν
0 =

1− e−λν
W (ET−εν)

λνW

Iν
n = (−1)n

dn

d(λνW )n
Iν
0 , n = 0, 1, 2, ....

We remark that letting ET → +∞ in (4.43), one obtains W ν =
1

λνW
as in the parabolic

case. In general (4.43) must be solved numerically. However it must be done once and

for all and for computational purposes, a numerical table λνW versus W ν can be easily

evaluated. In a numerical code, the actual values can be recovered by interpolation. In

Fig. 4.6 λνW is plotted versus the energy W ν for several values of ET −εν . By increasing

ET − εν , λ
ν
W tends to the case ET − εν → ∞ (dashed line in the figure) where only

the 2DEG is present in the parabolic band approximation as in [26]. Note that for each

ET − εν there exists a threshold energy W ν
c such that λνW vanishes, which, according to

the definition of W ν , is given by

W ν
c = lim

λν
W 7→0+

∫ ET−εν
0 ε exp (−λνW ε) d ε
∫ ET−εν
0 exp

(

−λνW ε
)

d ε
=
ET − εν

2
.

This implies that the region of realizability [61] is characterized by kBTL < W ν < W ν
c

with TL lattice temperature, kept constant in this paper.
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Figure 4.6: Plot of λνW versus the energy W ν for the 2DEG for ET − εν = 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7 eV. The dashed line represents the case ET − εν → ∞ where only

the 2DEG is present.

Once the lagrangian multipliers have been obtained, we can calculate the extra fluxes

and the drift and production terms. For the fluxes one gets

F(0)ν =
Iν
1

m∗Iν
0

I

F(1)ν =
Iν
2

m∗Iν
0

I

G(0)ν = −ET − εν
m∗Iν

0

e−λν
W (ET−εν)I+

1

m∗
I

G(1)ν = −(ET − εν)
2

m∗Iν
0

e−λν
W (ET−εν)I+ F(0)ν +

W ν

m∗
I

where I is the identity tensor.

The expression of the tensors present in the drift terms are

Lν
0 =

1

m∗Iν0
(εT − εν)e

−λν
W (εT−εν){[b11 + (εT − εν)b21]V

ν + [b12 + (εT − εν)b22]S
ν}∇r||

εν

Lν
1 =

1

m∗Iν0
(εT − εν)

2e−λν
W (εT−εν){[b11 + (εT − εν)b21]V

ν + [b12 + (εT − εν)b22]S
ν}∇r||

εν
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Concerning the production terms, for the acoustic phonons scattering one has

C(ac)
ρν =

2πm∗

~2

∑

µ

Cνµ

{

ρµ
ρν

1

λµWIµ
0

e−λµ
W∆νµ

[

e−λµ
W aνµ − e−λµ

W (ET−εµ)

]

− 1

λνWIν
0

[

e−λν
W aνµ − e−λν

W (ET−εν)

]}

C
(ac)
Wν

=
2πm∗

~2

∑

µ

Cνµ

[

ρµ

ρνIµ
0

e−λµ
W∆νµB(1)(aνµ, ET − εν , λ

µ
W )− 1

Iµ
0

B(1)(aνµ, ET − εν , λ
ν
W )

]

C
(ac)
Vν

=
2π

~2Iν
0

∑

µ

Cνµ

[

(b11B
(1)(aνµ, ET − εν , λ

µ
W ) + b12B

(2)(aνµ, ET − εν , λ
µ
W ))Vν +

b12B
(1)(aνµ, ET − εν , λ

µ
W ) + b22B

(2)(aνµ, ET − εν , λ
µ
W ))Sν

]

C
(ac)
Sν

=
2π

~2Iν
0

∑

µ

Cνµ

[

(b11B
(2)(aνµ, ET − εν , λ

µ
W ) + b21B

(3)(aνµ, ET − εν , λ
µ
W ))Vν +

(b12B
(2)(aνµ, ET − εν , λ

µ
W ) + b22B

(3)(aνµ, ET − εν , λ
µ
W ))Sν

]

with

B(n)(x, y, α) =

∫ y

x
εne−αεdε n = 0, 1, 2, ...

and

∆νµ = εν − εµ, aνεν = max{0, εµ − εν}.

The coupling constants are given by Cνµ =
kBTLΞ

2
d

4π2~ρv2S
Gνµ = A(ac)Gνµ.

For non polar optical phonon scattering intra the 2DEG we find

(

C
(no)
ρν

C
(no)
Wν

)

=
2πm∗

~2

(

Nq +
1

2
∓ 1

2

)

∑

µ

Dνµ

{

ρµ

ρνIµ
0

e
−λµ

W (∆µν±~ω)± ~ω
KBT ·

(

B(0)(a∓νµ, E
∓
ν , λ

µ
W )

B(1)(a∓νµ, E
∓
ν , λ

µ
W )

)

−

1

Iν
0

·
(

B(0)(a∓νµ, E
∓
ν , λ

µ
W )

B(1)(a∓νµ, E
∓
ν , λ

µ
W )

)

}

(

C
(no)
Vν

C
(no)
Sν

)

=
2π

~2

(

Nq +
1

2
∓ 1

2

)

1

Iν
0

∑

µ

Dνµ

{[

b11

(

B(1)(a∓νµ, E
∓
ν , λ

µ
W )

B(2)(a∓νµ, E
∓
ν , λ

µ
W )

)

+b21

(

B(2)(a∓νµ, E
∓
ν , λ

µ
W )

B(3)(a∓νµ, E
∓
ν , λ

µ
W )

)

]

Vν +

[

b12

(

B(1)(a∓νµ, E
∓
ν , λ

µ
W )

B(2)(a∓νµ, E
∓
ν , λ

µ
W )

)

+ b22

(

B(2)(a∓νµ, E
∓
ν , λ

µ
W )

B(3)(a∓νµ, E
∓
ν , λ

µ
W )

)

]

Sν

}

with

a∓νµ = max{0, εµ − εν ∓ ~ω}, E∓
ν = min{ET − εν ∓ ~ω,ET − εν}.
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The coupling constants for each type of non polar phonon are given byDνµ = Zf
(DtK)2

8π2ρω
Gνµ =

A(no)Gνµ.

Analogously, the production terms which arise from scattering due to absorption process

and push the 2DEG into the 3DEG, are given by

(

C
(no),3D
ρν

C
(no),3D
Wν

)

=
2πm∗

~2
Nq

∑

µ

Dνµ

[

e
~ω

KBT
−λµ

W (∆νµ+~ω) ρµ

ρνIµ
0

·
(

B(0)(ET − εν − ~ω,ET − εν , λ
µ
W )

B(1)(ET − εν − ~ω,ET − εν , λ
µ
W )

)

−

1

Iν
0

(

B(0)(ET − εν − ~ω,ET − εν , λ
µ
W )

B(1)(ET − εν − ~ω,ET − εν , λ
µ
W )

)

]

(

C
(no),3D
Vν

C
(no),3D
Sν

)

=
2π

~2
Nq

1

Iν
0

∑

µ

Dνµ

{

[

b11

(

B(1)(ET − εν − ~ω,ET − εν , λ
ν
W )

B(2)(ET − εν − ~ω,ET − εν , λνW )

)

+

b21

(

B(2)(ET − εν − ~ω,ET − εν , λ
ν
W )

B(3)(ET − εν − ~ω,ET − εν , λνW )

)

]

Vν +

[

b12

(

B(1)(ET − εν − ~ω,ET − εν , λ
ν
W )

B(2)(ET − εν − ~ω,ET − εν , λνW )

)

+ b22

(

B(2)(ET − εν − ~ω,ET − εν , λ
ν
W )

B(3)(ET − εν − ~ω,ET − εν , λνW )

)

]

Sν

4.4 Closure relations for the 3DEG

In the same manner as for the 2DEG, explicit formulas for the closure relations of the

3DEG part of the moment system are obtained. The lagrangian multipliers are given

by the following relationships

n =
4πm∗

√
2m∗

~3
e−λBI(ET , λ

B
W ) (4.45)

W = − d

dλBW
ln I(ET , λ

B
W ) (4.46)

λBV = B11V+B12S, λBV = B21V+B22S (4.47)
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Figure 4.7: Plot of λνW versus the energy W ν for the 3DEG for ET = 0.0, 0.01,
0.02, 0.03 eV. The dashed line represents the case ET = 0 in the parabolic band

approximation where λνW =
3

2W
.

with

B11 = −3m∗

2∆
I(ET , λ

B
W )L(2)(ET , λ

B
W ),

B12 = B21 =
3m∗

2∆
I(ET , λ

B
W )L(1)(ET , λ

B
W ),

B22 = −3m∗

2∆
I(ET , λ

B
W )L(0)(ET , λ

B
W ),

∆ = L(0)(ET , λ
B
W )L(2)(ET , λ

B
W )− (L(1)(ET , λ

B
W ))2

I(x, β) =

∫ +∞

x
(1 + 2αε)

√

ε(1 + αε)e−βεdε

L(0)(x, β) =

∫ +∞

x
e−βε [ε(1 + αε)]3/2

1 + 2αε
dε

L(n)(x, β) = (−1)n
dn

d(β)n
L(0)(x, β)

Again (4.46) must be solved numerically. However a numerical table λW versus W

can be easily evaluated and in a numerical code, the actual values can be recovered by

interpolation. In Fig. 4.7 λW versus W is plotted for several vaues of ET . At variance

of the 2DEG, no threshold energy arises.
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Once λW has been obtained, the extra fluxes and production terms can be obtained.

The fluxes are given by

F(0) =
2

3m∗I(ET , λBW )
L(0)(ET , λ

B
W )

F(1) =
2

3m∗I(ET , λBW )
L(1)(ET , λ

B
W )

G(0) =
2

3m∗

[

I(ET , λ
B
W )
]−1 [ET (1 + αET )]

3/2

1 + 2αET
e−λB

W εI+

− 1

m∗

[

I(ET , λ
B
W )
]−1

{

∫ +∞

ET

e−λB
W ε
√

ε(1 + αε)dε+

−4α

3

∫ +∞

ET

[ε(1 + αε)]3/2

(1 + 2αε)2
e−λB

W εdε

}

I

G(1) =
~
2

m∗2

[

I(ET , λ
B
W )
]−1 E3

T

√

ET (1 + αET )

1 + 2αET
eλ

B
WET I

The production terms for acoustic phonons are given by

(

C
(ac)
n

C
(ac)
W

)

=

(

0

0

)

(

C
(ac)
V

C
(ac)
S

)

=
8π

√
2m∗

3~3
A(ac)

I(ET , λBW )

{[

B11

(B(0)(ET , λ
B
W )

B(1)(ET , λBW )

)

+B21

(B(1)(ET , λ
B
W )

B(2)(ET , λBW )

)

]

V+

[

B12

(B(0)(ET , λ
B
W )

B(1)(ET , λBW )

)

+B22

(B(1)(ET , λ
B
W )

B(2)(ET , λBW )

)

]

S

}

with

B(n)(x, β) =

∫ +∞

x
εn+2(1 + αε)2e−βεdε.

For non polar optical phonons intra the 3DEG one gets

(

C
(no)
n

C
(no)
W

)

=
4πm∗

√
2m∗

~3

D(no)

I(ET , λBW )

(

Nq +
1

2
∓ 1

2

)[

e
∓
(

λB
W− 1

KBT

)

~ω − 1

](

Γ
(0)
∓ (b∓,+∞, λBW )

Γ
(1)
∓ (b∓,+∞, λBW )

)

(

C
(no)
V

C
(no)
S

)

=
8π

√
2m∗

3~3
D(no)

I(ET , λBW )

(

Nq +
1

2
∓ 1

2

)

{[

B11

(

Λ(0)(b∓,+∞, λBW )

Λ(1)(b∓,+∞, λBW )

)

+

B21

(

Λ(1)(b∓,+∞, λBW )

Λ(2)(b∓,+∞, λBW )

)

]

V+

[

B12

(

Λ(0)(b∓,+∞, λBW )

Λ(1)(b∓,+∞, λBW )

)

+B22

(

Λ(1)(b∓,+∞, λBW )

Λ(2)(b∓,+∞, λBW )

)

]

S

}

with

Λ(n)(x, y, β) =

∫ y

x
εne−βε [ε(1 + αε)]3/2

1 + 2αε
[1 + 2α(ε± ~ω)]

√

(ε± ~ω)[1 + α(ε± ~ω)]dε

Γ
(n)
∓ (x, y, β) =

∫ y

x
εne−βε[1 + 2α(ε± ~ω)](1 + 2αε)

√

ε(1 + αε)(ε± ~ω)[1 + α(ε± ~ω)]dε
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and

a∓ = ET ∓ ~ω, b∓ = max{a∓, ET }.

The coupling constant is given by D(no) = Zf
(DtK)2

8π2ρω
.

At last the production terms arising from the scattering due to emission processes and

pushing 3D electrons into the 2DEG are given by

(

C
(no),2D
n

C
(no),2D
W

)

=
4πm∗

√
2m∗

~3

D(no)

I(ET , λBW )
(Nq + 1)

[

e

(

λB
W− 1

KBT

)

~ω − 1

](

Γ
(0)
+ (Eext, ET + ~ω, λBW )

Γ
(1)
+ (Eext, ET + ~ω, λBW )

)

(

C
(no),2D
V

C
(no),2D
S

)

=
8π

√
2m∗

3~3
D(no)

I(ET , λBW )
(Nq + 1)

{[

B11

(

Λ
(0)
+ (Eext, ET + ~ω, λBW )

Λ
(1)
+ (Eext, ET + ~ω, λBW )

)

+

+B21

(

Λ
(1)
+ (Eext, ET + ~ω, λBW )

Λ
(2)
+ (Eext, ET + ~ω, λBW )

)

]

V+

[

B12

(

Λ
(0)
+ (Eext, ET + ~ω, λBW )

Λ
(1)
+ (Eext, ET + ~ω, λBW )

)

+

+B22

(

Λ
(1)
+ (Eext, ET + ~ω, λBW )

Λ
(2)
+ (Eext, ET + ~ω, λBW )

)

]

S

}

with Eext = max{ET , ~ω}.

4.5 Mathematical structure of the moment system closed

with MEP

We want to give a strong numerical evidence that the moment system of the subbands and

bulk electrons augmented with the MEP closure relations forms a quasilinear hyperbolic

system in the time direction in the physically relevant range of W ν .

Since the differential part of each subband and of the 3DEG is decoupled in the moment

system, we can limit our analysis to the study of a single subband and the 3DEG. Let

us consider the quasilinear system of PDEs

∂

∂t
F (0)(U) +

2
∑

i=1

∂

∂xi
F (i)(U) = P(U,x, t), (4.48)

with U(x, t) vector field belonging to a connected open set Ω ⊂ R
m, ∀ t > 0 and ∀x

belonging to a domain D ⊆ R
k with k = 2 for th 2DEG or k = 3 for the 3DEG, and

F (β) : Ω 7→ R
m, β = 0, . . . , k

sufficiently smooth functions. Defining the Jacobian matrices

A(β) = ∇UF (β), β = 0, . . . , k,
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the system (4.48) is said to be hyperbolic in the t-direction if det
(

A(0)(U)
)

6= 0 and the

eigenvalue problem

det

(

2
∑

i=1

niA(i)(U)− λA(0)(U)

)

= 0 (4.49)

has real eigenvalues and the eigenvectors span R
m for all unit vectors n = (n1, . . . , nk)

of Rk. Will first treat the case of a generic subband and then the 3DEG case.

4.5.1 Iperbolicity of the generic subband subsystem

In the case under consideration, by omitting the subband index, we have

U =

























ρ

V 1

V 2

W

S1

S2

























, F (0) = ρ

























1

V 1

V 2

W

S1

S2

























, F (1) = ρ

























V 1

F (0)

0

S1

F (1)

0

























, F (2) = ρ

























V 2

0

F (0)

S2

0

F (1)

























,

and the Jacobian matrices are given by

A(0)=

























1 0 0 0 0 0

V 1 ρ 0 0 0 0

V 2 0 ρ 0 0 0

W 0 0 ρ 0 0

S1 0 0 0 ρ 0

S2 0 0 0 0 ρ

























, A(n)=
2
∑

i=1

niA(i)=

























n ·V n1ρ n2ρ 0 0 0

n1F
(0) 0 0 n1ρ(F

(0))′ 0 0

n2F
(0) 0 0 n2ρ(F

(0))′ 0 0

n · S 0 0 0 n1ρ n2ρ

n1F
(1) 0 0 n1ρ(F

(1))′ 0 0

n2F
(1) 0 0 n2ρ(F

(1))′ 0 0

























,

where the prime denotes partial derivation with respect to W .

The equation

det
(

A(n) − λA(0)
)

= 0

gives the eigenvalues

λ1,2 = 0, with multiplicity 2 (4.50)

λ3,4,5,6 = ±

√

a(W )±
√

a(W )2 − 4b(W )

2
(4.51)
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where

a(W ) = F (0) + (F (1))′ −W (F (0))′, b(W ) = F (0)(F (1))′ − (F (0))′F (1).

In Fig. 4.8 the eigenvalues λ3,4,5,6 are plotted against the longitudinal mean energy W

for several values of ET − εν . Since the four eigenvalues λ3,4,5,6 are real and distinct,

each of them has a corresponding eigenspace of dimension one.

Concerning the eigenvalue λ = 0, we observe that whatever n we take the first and

fourth rows of A(n) are linearly independent, the second and third rows are proportional

and similarly the last two rows since ρ > 0 and n1 and n2 cannot be both zero. We

observe that

det

(

F (0) ρ(F (0))′

F (1) ρ(F (1))′

)

= ρ b(W ).

The fact that the eigenvalues λ3,4,5,6 are real implies that b(W ) > 0 and therefore the

rank of A(n) is four which means that the eigenspace associated to λ = 0 has dimension

two, leading to the hyperbolicity of the system (4.48).

In the one dimensional case one has only the eigenvalues λ3,4,5,6 and again by similar

computations hyperbolicity is recovered.

λ3,4,5,6 = ±
√

(

2±
√
2
) W

m∗

which are real and distinct provided W > 0 according to the previous case.

4.5.2 Hyperbolicity of the 3DEG subsystem

In a similar way we have for the 3DEG

U =



































ρ

V 1

V 2

V 3

W

S1

S2

S3



































, F (0) = n



































1

V 1

V 2

V 3

W

S1

S2

S3



































, F (1) = n



































V 1

F (0)

0

0

S1

F (1)

0

0



































, F (2) = n



































V 2

0

F (0)

0

S2

0

F (1)

0



































,F (3) = n



































V 3

0

0

F (0)

S3

0

0

F (1)


































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Figure 4.8: Plot of λ3,4,5,6 versus the longitudinal mean energy for ET − εν = 0.125
(upper left), 015 (upper right), 02 (bottom left), 03 (bottom right) eV. Note the range

of the energy changes according to the discussion regarding λW .

and the Jacobian matrices are given by

A(0) =



































1 0 0 0 0 0 0 0

V 1 n 0 0 0 0 0 0

V 2 0 n 0 0 0 0 0

V 3 0 0 n 0 0 0 0

W 0 0 0 n 0 0 0

S1 0 0 0 0 n 0 0

S2 0 0 0 0 0 n 0

S3 0 0 0 0 0 0 n



































,

A(n)=
2
∑

i=1

niA(i) =



































n ·V n1n n2ρ n3n 0 0 0 0

n1F
(0) 0 0 0 n1n(F

(0))′ 0 0 0

n2F
(0) 0 0 0 n2n(F

(0))′ 0 0 0

n3F
(0) 0 0 0 n3n(F

(0))′ 0 0 0

n · S 0 0 0 0 n1n n2n n3n

n1F
(1) 0 0 0 n1n(F

(1))′ 0 0 0

n2F
(1) 0 0 0 n2n(F

(1))′ 0 0 0

n3F
(1) 0 0 0 n3n(F

(1))′ 0 0 0



































,
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where the prime denotes partial derivation respect to W . The equation

det
(

A(n) − λA(0)
)

= 0

gives the eigenvalues

λ1,2,3,4 = 0, with multiplicity 4 (4.52)

λ5,6,7,8 = ±

√

a(W )±
√

a(W )2 − 4b(W )

2
(4.53)

where, assuming the same notation of the previous case,

a(W ) = F (0) + (F (1))′ −W (F (0))′, b(W ) = F (0)(F (1))′ − (F (0))′F (1).

In Fig. 4.9 the eigenvalues λ5,6,7,8 are plotted against the longitudinal mean energy W

for several values of ET . Since the four eigenvalues λ5,6,7,8 are real and distinct, each of

them has a corresponding eigenspace of dimension one.

Concerning the eigenvalue λ = 0, we use arguments similar to that used previously and,

assuming n1 = 1, n2 = n3 = 0, observe that

det















nV n1n 0 0

n1F
(0) 0 n1n(F

(0))′ 0

nS 0 0 n1n

n1F
(1) 0 n1n(F

(1))′ 0















= n3b(W ).

The fact that the eigenvalues λ5,6,7,8 are real implies that b(W ) > 0 and therefore the

rank of A(n) is four which means that the eigenspace associated to λ = 0 has dimension

four, leading to the hyperbolicity of the system (4.48).

4.6 Energy-transport model

As seen in the previous section, the moment system closed wit MEP has a nice mathe-

matical structure. However, from a computational point of view, it is still present some

difficulty related in particular to the boundary conditions for the energy-flux and for the

possible loss of regularity. We will give a formulation of energy-transport type which is

more suited for a numerical integration.
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Figure 4.9: Plot of λ3,4,5,6 versus the longitudinal mean energy for ET = 0.00 (upper
left), 0.10 (upper right), 0.20 (bottom left), 0.30 (bottom right) eV. Note the range of

the energy changes according to the discussion regarding λW .

To derive an energy-transport model, let us assume as in [56, 59, 60] and according to

the small anisotropy assumption that the following scaling holds

t = O
(

1

δ2

)

, r = O
(

1

δ

)

,V = O (δ) ,S = O (δ) . (4.54)

Then, by introducing this scaling into systems (4.25),(4.29) and equating to zero at the

several orders in δ, one obtains again the balance equation for the superficial density

and longitudinal mean energy in each subband along the balance equations of density

and energy density for the 3DEG

∂ρν

∂t
+∇r||

· (ρνVν) + ρνLν
0 = ρνCν

ρ (W) (4.55)

∂(ρνWν)

∂t
+∇r||

· (ρνSν) + ρνVν · ∇r||
εν + ρνLν

1 = ρνCν
W (W) ν = 1, 2, . . .(4.56)



Chapter 4. 2DEG-3DEG charge transport model for MOSFET 82

∂n

∂t
+∇r · (nV) = nCn(W ) (4.57)

∂(nW )

∂t
+∇r · (nS) + nV · (qE) = nCW (W ) (4.58)

and the following constitutive equations for Vν , Sν , V, S

∇r||

(

ρνF (0)ν
)

+
(

ρνG(0)ν
)

· ∇r||
εν = ρνCν

V (4.59)

∇r||

(

ρνF (1)ν
)

+
(

ρνG(1)ν
)

· ∇r||
εν = ρνCν

S (4.60)

∇r

(

nF (0)
)

+ qE ·
(

nG(0)
)

= nCV (4.61)

∇r

(

nF (1)
)

+ qE ·
(

nG(1)
)

= nCS (4.62)

By rewriting the production terms of (4.59) and (4.60) in a compact form

(

Cν
V

Cν
S

)

=

(

cν11(W
ν) cν12(W

ν)

cν21(W
ν) cν22(W

ν)

)(

Vν

Sν

)

(4.63)

(

CV

CS

)

=

(

g11(W ) g12(W )

g21(W ) g22(W )

)(

V

S

)

(4.64)

with an obvious meaning of the coefficients cνij(W
ν) and gij(W ), one gets a linear system

with respect to Vν , Sν , V, S which can be easily solved obtaining

Vν = Dν
11(W )∇r||

log ρν +Dν
12∇r||

W ν −Dν
13∇r||

εν (4.65)

Sν = Dν
21(W )∇r||

log ρν +Dν
22∇r||

W ν −Dν
23∇r||

εν (4.66)

V = M11∇r log n+M12∇rW −M13qE (4.67)

S = M21∇r log n+M22∇rW −M23qE (4.68)

where the coefficients Dν
ij and Mij are given by

Dν
11 =

c22F
(0)ν − c12F

(1)ν

cν
, Dν

12 =
c22(F

(0)ν)′ − c12(F
(1)ν)′

cν
, Dν

13 =
c22G

(0)ν − c12G
(1)ν

cν

Dν
21 =

c11F
(1)ν − c21F

(0)ν

cν
, Dν

22 =
c11(F

(1)ν)′ − c21(F
(0)ν)′

cν
, Dν

23 =
c21G

(0)ν − c11G
(1)ν

cν

M11 =
g22F

(0) − g12F
(1)

g
, M12 =

g22M
(0)′ − g12F

(1)′

g
, M13 =

g22G
(0) − g12G

(1)

g

M21 =
g11F

(1) − g21F
(0)

g
, M22 =

g11F
(1)′ − g21F

(0)′

g
, M23 =

g21G
(0) − c11G

(1)

g

with cν = cν11c
ν
22 − cν12c

ν
21 and g = g11g22 − g12g21.
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Equations (4.55)-(4.58) coupled with the Schrödinger-Poisson block along with the con-

stitutive relations (4.65)-(4.68) represent our energy-transport model based on MEP

(hereafter ET-MEP model) for the 2DEG\3DEG physical system. In the steady state

case the original moment system and the ET-MEP model are equivalent at least for

smooth solutions.

4.7 Mathematical properties of the ET-MEP model

In this section we analyse the mathematical structure of the ET-MEP model. As for

the study of the hyperbolicity, the 2DEG and the 3DEG are treated separately.

4.7.1 2DEG ET-MEP subsystem

The main difference with respect to section 4.5 is that in the coefficients of the diffusion

matrix the energy subbands εν ’s and interaction integrals Gνµ’s appear but they in

general can be evaluated only numerically. To overcome the problem we consider two

particular but significant cases where the solution of the Schrödinger equation is known

[28, 63]: the infinite potential well, which is appropriate for a DG-MOSFET, and the

triangular well, which is a reasonable approximation in the channel of a MOSFET.

In order to classify the ET equations, let us rewrite for each subband the system (4.55)-

(4.56) as

∂

∂t







ρν

ρνW ν






+ div







(Dν
11 −W νDν

12)∇ρν +Dν
12∇ (ρνW ν)

(Dν
21 −W νDν

22)∇ρν +Dν
22∇ (ρνW ν)






+ r.t. =







0

0







where r.t. stands for the remaining lower order derivative terms. We would like to show

that the diffusion matrix

D̂ν =







Dν
11 −W νDν

12 Dν
12

Dν
21 −W νDν

22 Dν
22






(4.69)

is negative definite, that is ξ · D̂νξ < 0, ∀ξ ∈ R
2, ξ 6= (0, 0)T . The elements of D̂ν

indeed depend on the bottom of the subbands εν and the interaction terms Gνµ through

the envelope functions ϕν(z), ν = 1, 2, 3, . . . .
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• In the case of an infinite potential barrier, one has the explicit formulas

εν =
ν2π2~2

2L2
zm

∗
, ϕν(z) =

√

2

L z
sin

νπ

Lz
(z − tox), z ∈ [0, Lz] , ν = 1, 2, . . .

where Lz is the length of the confining direction

• In the case of a triangular potential well one has the explicit formulas [65]

εν = ĉνε0, ϕν(z) = Ai

(

eFz − εν
ε0

)

, z ∈ [0, Lz] , ν = 1, 2, . . .

where eF = eV
Lz

is the strength of the constant confining field, ε0 =
[

(eF~)2

2m∗

]1/3
and

Ai(y) represents the Airy function of first type while the ĉν ’s are its zeros with

reverse sign. In particular we recall that ĉ1 = 2.338, ĉ2 = 4.088 and ĉ3 = 5.521

[65].

By evaluating the eigenvalues of D̂ν with the previous expressions of the bottom energy

and envelope functions of the first three subbands, one finds the results plotted in Fig.s

4.10 - 4.12. Of course additional subbands can be considered but as obtained in [26] the

inclusion of more subbands is in many cases superfluous. For the relevant range of energy

W ν we have two distinct and real negative eigenvalues in each subband. Therefore

at least in the case of an infinite potential barrier or a triangular potential barrier,

employing the first three subbands, the ET model is represented by two parabolic equations

for each subband coupled to the Poisson equation in a suitable range of the longitudinal

mean energy.

4.7.2 3DEG ET-MEP model

Similarly to the 2DEG case, we rewrite the ET equations for the 3DEG as

∂

∂t







n

nW






+ div







(M11 −WM12)∇n+M12∇ (nW )

(M21 −WM22)∇n+M22∇ (nW )






+ r.t. =







0

0






.

Again one finds that the diffusion matrix

M̂ =







M11 −WM12 M12

M21 −W νM22 M22






(4.70)

is negative definite, that is ξ ·M̂ ·ξ < 0 ∀ξ ∈ R
2, ξ 6= (0, 0)T , by a numerical inspection.

The results are plotted in Fig. 4.13.
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Figure 4.10: Eigenvalues of the matrix D̂ν for ν = 1, 2, 3 versus the mean longitudinal
energy. On the left column the case of the infinite potential well when ET − εν = 0.15
eV and Lz = 8 nanometers. On the right column the case of the triangular potential
well with ET −εν = 0.2 eV , Lz = 20 nanometers and field strength eF = 10 eV/micron.
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Figure 4.11: Eigenvalues of the matrix D̂ν for ν = 1, 2, 3 versus the mean longitudinal
energy. On the left column the case of the infinite potential well when ET −εν = 0.2 eV
and Lz = 8 nanometers. On the right column the case of the triangular potential well
with ET − εν = 0.2 eV , Lz = 20 nanometers and field strength eF = 10 eV/micron.
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Figure 4.12: Eigenvalues of the matrix D̂ν for ν = 1, 2, 3 versus the mean longitudinal
energy. On the left column the case of the infinite potential well when ET −εν = 0.3 eV
and Lz = 8 nanometers. On the right column the case of the triangular potential well
with ET − εν = 0.3 eV , Lz = 20 nanometers and field strength eF = 10 eV/micron.
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Figure 4.13: Eigenvalues of the matrix M̂ versus the mean longitudinal energy for
ET = 0.00 (upper left), 0.10 (upper right), 0.20 (bottom left), 0.30 (bottom right) eV.



Appendix A

Closure relations for the parabolic

case and physical parameters

In this Appendix, for the sake of self-consistency, we report the closure relations for the

extra-fluxes and the production terms. Inserting expressions (3.5) into the constraints

for the densities and the energies, one finds in polar coordinates

ρν =

∫ 2π

0

∫ +∞

0
exp

(

−λν − λνW
~
2k2||

2m∗

)

k|| dk|| dφ,

ρνW ν =

∫ 2π

0

∫ +∞

0

~
2k2||

2m∗
exp

(

−λν − λνW
~
2k2||

2m∗

)

k|| dk|| dφ,

wherefrom λν = − log
~
2 ρν

2πm∗W ν
and λνW =

1

W ν
.

Similarly, substituting (3.5) into the remaining constraints for the velocities and the

energy-fluxes, one has

λνV = −3m∗

W ν
Vν +

m∗

(W ν)2
Sν , λνS =

m∗

(W ν)2
Vν − m∗

2(W ν)3
Sν .

Note the symmetry of the coefficients which reminds us of the Onsager [64] reciprocity

conditions. The obtained distribution functions are used to get the needed closure

relations for the fluxes and the production terms. For the fluxes we find

F
(0)ν
ij =

1

m∗
W νδij , F

(1)ν
ij =

2

m∗
(W ν)2I,

G
(0)ν
ij =

1

m∗
δij , G

(1)ν
ij =

2

m∗
(W ν)I,

with I the identity.
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Concerning the production terms, for the acoustic phonon scattering one has

Cν
ρ =

2πm∗

~2

+∞
∑

µ=1

Cνµ

[

ρµ
ρν

exp

(

−∆νµ + aνµ
Wµ

)

− exp
(

−aνµ
W ν

)

]

,

Cν
V =

2π

~2

+∞
∑

µ=1

Cνµ exp

(−aνµ
W ν

)

[

λνV (aνµ +W ν) + λνS
(

a2νµ + 2aνµW
ν + 2(W ν)2

)]

,

Cν
W =

2πm∗

~2

+∞
∑

µ=1

Cνµ

[

ρµ
ρν

exp

(

−∆νµ + aνµ
Wµ

)

(aνµ +Wµ)− exp
(

−aνµ
W ν

)

(aνµ +W ν)

]

,

Cν
S =

2π

~2

+∞
∑

µ=1

Cνµ exp

(−aνµ
W ν

)

[

λνV
(

a2νµ + 2aνµW
ν + 2(W ν)2

)

+λνS
(

a3νµ + 3a2νµW
ν + 6aνµ(W

ν)2 + 6(W ν)3
)]

,

where ∆νµ = εν − εµ, aνµ = max(0, εµ − εν) and Cνµ = A(ac)Gνµ.

For the non-polar optical phonon scattering one has

Cν
ρ =

2πm∗

~2

+∞
∑

µ=1

DνµNop

[

ρµ
ρν

(

exp

(

~ω

kBTL
−

∆+
νµ + a−νµ
Wµ

)

+ exp

(

−
∆−

νµ + a+νµ
Wµ

))

− exp

(

~ω

kBTL
−
a+νµ
W ν

)

− exp

(

−
a−νµ
W ν

)]

,

Cν
V =

2π

~2

+∞
∑

µ=1

DνµNop

[

λνV

(

exp

(

~ω

kBTL

)

η(1)
(

λνW , a
+
νµ

)

+ η(1)
(

λνW , a
−
νµ

)

)

+λνS

(

exp

(

~ω

kBTL

)

η(2)
(

λνW , a
+
νµ

)

+ η(2)
(

λνW , a
−
νµ

)

)]

,

Cν
W =

2πm∗

~2

+∞
∑

µ=1

DνµNop

[

ρµ
ρν

(

exp

(

~ω

kBTL
−

∆+
νµ

Wµ

)

η(1)
(

λµW , a
−
νµ

)

+ exp

(

−
∆−

νµ

Wµ

)

η(1)
(

λµW , a
+
νµ

)

)

−exp

(

~ω

kBTL

)

η(1)
(

λνW , a
+
νµ

)

− η(1)
(

λνW , a
−
νµ

)

]

,

Cν
S =

2π

~2

+∞
∑

µ=1

DνµNop

[

λνV

(

exp

(

~ω

kBTL

)

η(2)
(

λνW , a
+
νµ

)

+ η(2)
(

λνW , a
−
νµ

)

)

+λνS

(

exp

(

~ω

kBTL

)

η(3)
(

λνW , a
+
νµ

)

+ η(3)
(

λνW , a
−
νµ

)

)]

,

where a∓νµ = max(0, εµ − εν ∓ ~ω), ∆±
νµ = εν − εµ ± ~ω, Dνµ = A(no)Gνµ and

η(n) (x, y) = (−1)n x
dn

dxn

∫ ∞

0
e−x(t+y) d t

= x−1−n exp (−x y)Γ(n+ 1), for x > 0,

with Γ the gamma function.
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Table A.1: Values of the physical parameters

me electron rest mass 9.1095 × 10−28 g
m∗ effective electron mass 0.32 me

TL lattice temperature 300 K
ρ density 2.33 g/cm3

vs longitudinal sound speed 9.18 × 105 cm/sec
Ξd acoustic-phonon deformation potential 9 eV
ǫr Si relative dielectric constant 11.7
ǫrO SiO2 relative dielectric constant 3.9
ǫ0 vacuum dieletric constant 8.85 × 10−18 C/V µm

Table A.2: Coupling constants and phonon energies for the inelastic scatterings in
silicon

A Zf ~ω (meV) DtK(108 eV/cm)

1 1 12 0.5
2 1 18.5 0.8
3 4 19.0 0.3
4 4 47.4 2.0
5 1 61.2 11
6 4 59.0 2.0

We remark that there are six types of non polar optical phonons (see Table A.2). The

complete expression of the production terms is the sum of the contribution for each type

of phonon. From the previous expressions it is straightforward to infer the elements cij

appearing in the ET model for each subband.



Appendix B

Closure relations for the Kane

case

By inserting the MEP distribution functions into the definitions of the fluxes and the

production terms one gets the needed closure relations. Some relationships useful from

a computational point of view are given in the Appendix C. For the fluxes we find

F(i)ν =
g(W ν)

m∗
[γ1+i(W

ν , 0) + αγ2+i(W
ν , 0)] I, i = 0, 1, (B.1)

G(i)ν = iF(0)ν +
g(W ν)

m∗

[

(

1

λνW

)i+1

− ζi+1(W
ν)− α ζi+2(W

ν)

]

I, i = 0, 1.(B.2)

where I is the identity operator,

γn(x, y) :=

∫ ∞

0

(t+ y)n

1 + 2α(t+ y)
exp [−λW (x)(t+ y)] dt, n = 0, 1, . . . , (B.3)

defined for the values of y such that the integral there exists, and

ζn(x) :=

∫ ∞

0

2α tn

(1 + 2αt)2
exp (−λW (x) t) dt = −2α (nγn(x, 0)− λWγn+1(x, 0)) .(B.4)

Concerning the production terms, for the acoustic phonon scattering one has

Cν
W(i)

=
2πm∗

~2

+∞
∑

µ=1

Cνµ

[

ρµg(W
µ)

ρν
exp

(

−∆νµλ
µ
W

)

B(i)(Wµ, aνµ,∆νµ)− g(W ν)B(i)(W ν , aνµ,∆νµ)

]

,(B.5)

Cν
V(i)

=
2π g (W ν)

~2

+∞
∑

µ=1

Cνµ

{

λνV

[

η(1+i)(W ν , aνµ,∆νµ)
]

+ λνS

[

η(2+i)(W ν , aνµ,∆νµ)
]}

, i = 0, 1, (B.6)
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where W(0) = ρ, W(1) =W , V(0) = V, V(1) = S, ∆νµ = εν − εµ, aνµ = max(0, εµ− εν),
and Cνµ = A(ac)Gνµ. The functions B(i) are given by

B(i)(x, y, z) :=

∫ ∞

0
(t+ y)i exp (−λW (x) (t+ y)) (1 + 2α(t+ y) [1 + 2α (t+ y + z)]) dt

=
i
∑

j=0

(−1)j exp (−λW (x) y)

(

i

i− j

)

∂jp (λW , y, z)

∂λjW

∣

∣

∣

∣

∣

λW=λW (x)

yi−j , i = 0, 1, . . .(B.7)

with

p (x, y, z) =
8α2

λ3W (x)
+

4α (1 + α (2y + z))

λ2W (x)
+

[

1 + 2α (2y + z) + 4α2
(

y2 + yz
)]

λW (x)
.

The functions η(n)(x, y, z) are defined by

η(n)(x, y, z) = (1 + 2α z)γn(x, y) + (3α+ 2α2 z)γn+1(x, y) + 2α2γn+2(x, y). (B.8)

Regarding the non-polar optical phonon scattering one has

Cν
W(i)

=
2πm∗

~2
Nop

+∞
∑

µ=1

Dνµ

{

ρµ
ρν
g (Wµ)

[

exp

(

~ω

kBTL
−∆+

νµλ
µ
W

)

B(i)
(

Wµ, a−νµ,∆
+
νµ

)

+exp
(

−∆−
νµλ

µ
W

)

B(i)
(

Wµ, a+νµ,∆
−
νµ

)

]

− g(W ν)

[

exp

(

~ω

kBTL

)

B(i)
(

W ν , a+νµ,∆
−
νµ

)

+B(i)
(

W ν , a−νµ,∆
+
νµ

)

]}

, (B.9)

Cν
V(i)

=
2π

~2
Nop g (W

ν)
+∞
∑

µ=1

Dνµ

{

λνV

[

η(1+i)
(

W ν , a−νµ,∆
+
νµ

)

+ exp

(

~ω

kBTL

)

η(1+i)
(

W ν , a+νµ,∆
−
νµ

)

]

+λνS

[

η(2+i)
(

W ν , a−νµ,∆
+
νµ

)

+ exp

(

~ω

kBTL

)

η(2+i)
(

W ν , a+νµ,∆
−
νµ

)

]}

, i = 0, 1, (B.10)

where a∓νµ = max(0, εµ − εν ∓ ~ω), ∆±
νµ = εν − εµ ± ~ω, Dνµ = A(no)Gνµ.
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Useful computational relations

In this section some formulas which allow a fast evaluation of the functions γn(x, y)

are presented, along with the physical parameters present in the model. Recalling the

definition

γn(x, y) :=

∫ ∞

0

(t+ y)n

1 + 2α(t+ y)
exp [−λW (x)(t+ y)] dt, n = 0, 1, . . . , (C.1)

and noting that

γn(x, y) = (−1)n
∂n

∂ λnW

∫ ∞

0

1

1 + 2α(t+ y)
exp [−λW (t+ y)] dt

∣

∣

∣

∣

λW=λW (x)

,

one has

γ1(x, y) = − 1

2α
γ0(x, y) +

exp (−λW (x) y)

2αλW (x)
,

and by recursion the following formula is obtained

γn(x, y) =

(

1

2α

)n+1

γ0(x, y)+
1

2α

(

n−1
∑

i=0

(

1

2α

)n−i i
∑

k=0

i!

k!

yk

(λW (x))i−k

)

e−λW (x)y

λW (x)
.(C.2)

In particular, γ0 can be expressed in terms of the exponential integral

En(x
′) :=

∫ ∞

1

exp (−x′ t)
tn

dt, n = 0, 1, . . . .

as

γ0(x, y) =
1

2α
exp

(

λW (x)

2α

)

E1

(

λW (x)

2y

)

,

with y =
α

1 + 2αy
.
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We remark that there are six types of non polar optical phonons (see Table A.2). The

complete expression of the production terms is the sum of the contribution for each type

of phonon. From the previous expressions it is straightforward to infer the elements cij

appearing in the ET model for each subband.
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