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1 Abstract
This doctoral dissertation explores the fusion of deep learning and state-of-the-art

models, to advance the fields of audio forensics, audio intelligibility, and enhancement.
In an era where audio recordings hold critical significance across multiple domains, the
ability to authenticate and enhance them is paramount.Deep learning models, such
as convolutional and recurrent neural networks, are harnessed to detect tampered
audio recordings, enhancing the authentication process. Additionally, cutting-edge
Transformers, renowned for their sequence-to-sequence capabilities, are employed
to tackle the challenges of audio intelligibility and enhancement. These models
can effectively denoise and clarify audio recordings, improving their overall quality.
Practical tools and methodologies are developed to address real-world scenarios,
accounting for noise, compression artifacts, and variations in recording devices. The
research contributes significantly to the reliability of audio evidence, benefiting fields
like law enforcement, legal proceedings, and digital media forensics. In summary, this
doctoral research represents a substantial advancement in the realm of audio forensics,
intelligibility, and enhancement. By combining deep learning state-of-the-art models,
it offers comprehensive solutions to the authentication, clarity, and enhancement of
audio recordings in the information-driven era.
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Chapter 1

Introduction

This PhD has a research theme proposed that aims to develop novel algorithms
for audio analysis with the specific purposes of forensic investigations.

Audio Forensics, a subcategory of forensic acoustics, has taken on an increasingly
prominent role in the field of law enforcement, criminal investigation, and justice over
the past few decades. This specialized branch of forensic science, dedicated to the
capture, analysis, and interpretation of audio recordings within the context of legal
investigations, has enabled the provision of decisive evidence in an ever-increasing
number of legal cases.

Audio forensic investigations focus on three core aspects: authenticity, enhance-
ment, and interpretation. Ensuring the authenticity of audio recordings is crucial as
investigator deductions rely on the recording conditions. Examiners must validate
the chain of custody, detect intentional tampering, and prevent accidental modifi-
cations. Audio enhancement is commonly requested to address non-ideal acoustic
environments, emphasizing features of interest for court presentations. Interpretation
involves reconstructing timelines, transcribing dialogues, and identifying unknown
sounds, considering other evidence and testimonies.

Recently, applications of novel deep learning solutions to forensics investigations
have experienced unprecedented growth in interest and obtained results, with many
researchers developing innovative algorithms and models to solve these complex
problems.

The proposed research activity aims to operate on the state of the art to identify
and improve the techniques to identify people, recognize emotion, automatic speech
recognition, etc.. starting from audio. The technological opportunity of the proposed
research topic is offered by the recent achievements of Deep Learning which offers an
optimal starting point for solving the problems highlighted.

A study of the state of the art is necessary to identify the best solutions available
for solving the main tasks such as speaker verification, emotion recognition, automatic
speech recognition, etc .. of people by exploiting the union of the two disciplines of
Deep Learning Audio Models and Digital Forensics.

The research activity will be focused on the creation of audio analysis processes
for the tasks of identifying people using audio and extracting information from it,
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which will flow, at first, in the acquisition of different databases relating to monitoring.

Another important problem that is considered from this PhD is reproducing
published experiments and results remain a significant challenge due to the needed
programming skills required. This is a problem because often is not possible to verify
other scientists’ experiments.

This challenge is further compounded by the lack of (or an extremely limited)
standardization in the way experiments are conducted. This issue results in a signifi-
cant amount of time being spent by researchers trying to get other researchers’code
to work, which leads to a significant waste of resources. Open-source toolkits have
largely driven the development of speech-processing technologies.

With the emergence of general-purpose deep learning libraries, more flexible
speech recognition frameworks have emerged and hubs where scientists load trained
models for others to download.

The main goal (as described in the PhD project) is to create a tool that integrates
these new technologies and enables users to analyze audio data through the visual-
ization audio features, running several different models of Deep Learning, evaluate
the performance of pre-trained models and create new audio analysis workflows
by combining deep neural network models. These features will be implemented by
combining the usability needed for the user and the experiments’ reproducibility,
with the hope of encouraging scientists to standardize and share deep learning models
or audio pipeline processes with the research community.

For these reasons, we will develop a platform called Deep Audio Analyzer. With
this platform examiners and researchers can perform these features without develop-
ing any code.
The tool also provides dedicated modules to test state-of-the-art models on cus-
tomized data and combine models to create a new deep learning audio processing
pipeline, combing for tasks such as Automatic Speech Recognition, Speech Enhance-
ment, Speaker Separation, Speaker Verification and Voice Activity Detection, Sound
Source Localization.

The present study will contribute to examinates what are the main Deep Neural
Networks that can help the Audio Forensic field in a better way than the traditional
methods. This research aims to provide a tool that covers Enhancement, Interpreta-
tion and Localization, which are part of the three main goals of Audio Forensics.

To explore Sound Source Localization several studies will be conducted to identify
the microphones’ position for forensic purposes.

To achieve the aims of the project, the following activities are envisaged:

1. Study of the State of the Art.

2. Definition of system requirements in a specific application context.

• Preprocessing Audio Via Classical methods in literature present in librosa
library to have the capability to have a visual analysis of the features
extracted
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• Applying State-of-the-art Models via online search and/or uploading
private pre-trained models (Upload of private models via dictionary is
done, model search )

• Combine Deep Neural Network models to create customized audio analysis
pipelines to extract the interested information.

• Create a pipeline for a single task that uses all models for that task to
compare all the SOTA models for a task in the interested audio files.

• Save, Share and Reuse pipelines in different files or datasets.

3. Collection of data to be used for the design and testing of the algorithms.

4. Definition of the measures useful to evaluate the algorithms in the considered
context.

5. State-of-the-art testing considering the system requirements and the application
context.

6. Design, development and evaluation of innovative algorithms in the reference
context.

7. Development of a demonstrator.

8. Dissemination of results through the publication of scientific articles, the
exhibition of the work at international scientific events and the production of
patents useful for technology transfer.

The project includes a period of study abroad at the research group of Dr.
Salvatore Livatino, University of Hertfordshire, UK and a period of study at the
company iCTLab s.r.l. (https://www.ictlab.srl/) spinoff of the The University of
Catania, specialized in digital investigations over the years has developed know-how
on the current issue.

The remainder of the PhD thesis is organized as follows. In Chapters 2 and
3, we explore introduction topics comprising the Sound Principles, Digital Audio
Forensics and Deep learning models used in the audio context. Chapter 4 reports
the research studies done during the PhD project that comprehend the state of the
art of tasks that can be used for audio forensic analysis. Chapter 65 delves into the
implementation and development of new technology from previous studies and works
done for Sound Source Localization. Chapter 7 is the conclusion of the PhD Thesis.
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Chapter 2

Introduction to Sound

1 The Sound
Sound in the gaseous medium emanates from vibrational perturbations. In

contradistinction to wind, where air particles engage in continuous motion over
considerable distances, the oscillation of a surface elicits localized reciprocating
excursions among particles. While the vibratory surface undergoes outward motion,
neighbouring air particles experience condensation due to impelling forces. Inversely,
during the alternate phase of vibration, wherein the surface retracts, air particles
near it undergo rarefaction or expansion. The oscillatory pattern of compression
and rarefaction contiguous to the vibrating interface precipitates analogous cycles
of push and pull among adjacent air particles, cascading the effect onward through
successive air layers. The emergent outcome is a disseminating wave characterized by
alternating domains of elevated and diminished pressure, as depicted in Figure 2.1.

Figure 2.1: Air particle motion in a sound wave: longitudinal (forward and backward)
parallel to the direction of propagation [164]

The sound wave, epitomizing a longitudinal perturbation, entails oscillatory
motions wherein air particles oscillate to and fro from their equilibrium configurations
in alignment with the propagating wavefront’s trajectory. This longitudinal modality
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proves intricate to delineate visually. Conventional visual representation manifests
as a bi-dimensional graph encapsulating the temporal evolution of acoustic pressure,
albeit inadvertently fueling misapprehensions of vertical oscillations as the wave
propagates. An enhanced comprehension perceives particle oscillations as directed
"in and out," correlating with commensurate fluctuations in acoustic pressure during
wave transmission [125].

Pertinent to acknowledge is that acoustic pressure deviations remain minute when
compared to ambient atmospheric pressure. Earth’s gravitational force sustains an
approximately 100 km expanse of our atmospheric strata in proximity to the planet’s
surface, engendering nominal sea-level air pressure, denoted as 1atm = 101.325kPa ≈
1 × 105Pa. By contrast, characteristic pressure fluctuations engendered by sonic
vibrations are infinitesimal, often confined within the millipascal range ( 10−3Pa).
In actuality, the faintest perceivable auditory manifestations manifest pressure
amplitudes approximating 20µPa(2× 10−5Pa), tantamount to a mere fraction of 1
part in 5 billion when compared to nominal atmospheric pressure.

Contrastingly, exceedingly intense sonic phenomena, such as those encountered in
rock-and-roll concerts or proximate to industrial machinery, may exhibit amplitudes
surpassing 1Pa. Notably, despite their ear-piercing resonance, these events constitute
merely 1 part in 50,000 relative to nominal atmospheric pressure.

2 Sound Pressure Level: SPL
The numerical range of audible acoustic pressures, spanning from 2 × 10−5Pa

to 1Pa, entails figures of considerable magnitude, rendering them less practical for
concise notetaking and printing. As a convention, the audible spectrum of sound
pressures is commonly expressed logarithmically. In this representation, the faintest
perceptible auditory signal assumes a level of zero, while the most resonant ambient
sound is denoted by just a few digits. This scientific portrayal is accomplished
through the utilization of the bel[B], being the logarithm to the base 10 of the power
or intensity ratio, often expressed in watts[W ] or intensity [W/m2]:

B = log10

(
power1
power0

)
[W ] = log10

(
intensity1
intensity0

)
[W/m2] (2.1)

For the conversion of the bel representation to sound, a transition from acoustic
pressure [pascal] to acoustic intensity [watts/m2] is necessary. This transition rests
on the relationship wherein acoustic intensity is proportionate to the square of
acoustic pressure. Consequently, the bel can be formulated in terms of pressure:

bel = log10

(
power21
power20

)
[pascal] = log10

(
power1
power0

)
[watts/m2] (2.2)

The customary mode of expression involves the decibel [dB], denoting a precision
that is a tenth of a bel. Given the equivalence of 10 dB to 1 bel, measurements in
decibels amount to 10 times the measurement represented in bel:

decibel[dB] = 20log10

(
power1
power0

)
(2.3)

The sound pressure level (SPL) in decibels employs the stipulation that pressure0
equals 20µPa(20µPa = 0.00002Pa), while pressure1 signifies the effective pressure
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(root-mean-square or RMS) as gauged by a microphone.

The selection of 20 µPa as the reference pressure is apt, as it approximately
aligns with the threshold of human auditory perception. Specifically, an acoustic
signal possessing an effective pressure of 20 µPa corresponds to zero dB SPL. A
signal rated at 100 dB SPL is profoundly resonant, nearly attaining the threshold
of pain for the auditory system. Ergo, the spectrum of viable sound levels within
the realm of human audibility spans from 0 to 100 dB SPL. It is imperative that
measurements using a sound level meter consistently bear the dB label and reference
to sound pressure, as exemplified by "60 dB SPL re 20 µPa [100].

Given the nonuniform sensitivity of the human ear across the frequency spectrum,
sound pressure level assessments frequently entail the use of weighting filters that
approximate the frequency-dependent characteristics of auditory sensitivity.

The sound wave, signifying alternating high and low-pressure disturbances, prop-
agates through the air at a rate termed the speed of sound. This speed is contingent
upon the interplay between acoustic pressure and the ensuing vibratory motion
(particle velocity) of air particles. At 20 °C (room temperature), the speed of sound
in air approximates 343m/s. In contrast, the speed of light reaches 3 × 108m/s,
rendering it nearly a million times faster than sound.

For the sake of practical estimations in sound propagation, several heuristic
approximations exist. Notably, the American approximation posits that sound
traverses about 1 foot per millisecond and requires approximately 5 seconds to
cover a mile. Meanwhile, the metric heuristic suggests a rate of about 35 cm per
millisecond, translating to roughly 3 seconds for sound to traverse a kilometre.

3 Wavelength, Frequency, and Spectrum
In the context of oscillating sound sources, such as a loudspeaker cone executing

to-and-fro motions or a guitar string undergoing cyclic vibrations, the resultant
sound manifests as alternating cycles of elevated and diminished pressure.

3.1 Wavelength

The temporal extent required for one complete oscillation cycle is defined as
the vibration’s period. For instance, in the case of a vibrating string, the period
signifies the duration taken for the string to traverse from one extremity to the
opposite extremity and back to its initial position, accomplishing a single oscillation
cycle. During the span of a single oscillation (i.e., one period), the ensuing sound
pressure perturbation advances through the air at the speed of sound, traversing a
specific distance termed the wavelength, expressed in [meters/cycle]. Conceptually,
the wavelength denotes the distance traversed by the sound wave within the temporal
expanse of one oscillation cycle.

3.2 Frequency

Sound oscillations find their commonplace expression in terms of an oscillation
rate: the count of oscillation cycles occurring within a second [cycles/second]. This
oscillation rate is conventionally denoted as the frequency of the oscillation and is
quantified in hertz (abbreviated as Hz), denoting cycles per second.
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In instances where oscillation transpires at a lower frequency, each cycle’s period
expands, consequently fostering greater inter-cycle wave travel. In effect, lower
frequency begets longer wavelengths. Conversely, when oscillation attains heightened
frequency, the temporal margin for pressure disturbance propagation between cycles
diminishes, resulting in a shorter wavelength at a higher frequency.

Mathematically, the interrelation between frequency [f , cycles per second or Hz]
and wavelength [λ, meters] is expressed as

c = fλ ⇒ f =
c

λ
⇒ λ =

c

f
(2.4)

where c represents the speed of sound [meters/second]. Thus, higher-frequency sound
phenomena correspond to shorter wavelengths, whereas lower-frequency manifesta-
tions align with longer wavelengths (Fig. 2.2).

Figure 2.2: The product of frequency (cycles per second) and wavelength (meters
per cycle) is the speed of sound (meters per second)[164]

3.3 Pure Tone Waveform

The most elementary manifestation of enduring sound encapsulates energy charac-
terized by a solitary frequency, constituting what is termed a "pure tone". Graphical
representation of the waveform for such single-frequency sound finds illustration in
Figure 2.3. This waveform, under mathematical purview, is identified as a sine wave
or a sinusoid.

The vertical axis of the graphical depiction in Figure 2.3 is attributed to a pertinent
parameter, such as pressure, voltage, or displacement, whereas the horizontal axis
delineates time. The visualization portrays a solitary cycle of the sine wave, taking
a span of 1 ms (1/1000th of a second) in this particular instance. Given that one
complete cycle corresponds to a period T = 1ms, the frequency intrinsic to this
waveform (1/T) stands at 1kHz, encompassing 1000[cycles/second].

As a result of a pure tone’s (sinusoidal waveform) energy being concentrated
solely at its repetition rate frequency, the spectrum plot of a sinusoid takes on the
appearance of a solitary "frequency line." Theoretical depiction of the spectrum
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Figure 2.3: Single cycle of a 1 kHz sinusoidal wave, also known as a pure tone,
consisting of sound energy at a single frequency[164]

about a 1 kHz sinusoid aligns with the illustration presented in Figure 2.4 where the
spectrum harbours energy solely at the frequency of 1 kHz, with no energy presence
across any other frequency range.

Figure 2.4: The frequency spectrum magnitude of a 1 kHz pure tone. The spectrum
of a pure sinusoid contains energy only at the single frequency of that tone[164]

3.4 Periodic Waveform

Persistent auditory patterns characterized by recurrent waveforms, as exemplified
in the vocalization of the vowel sound "ahhh" at a consistent pitch, exhibit a spectrum
of heightened intricacy when contrasted with the straightforward, single-frequency
composition of a pure tone [100]. Such periodic waveforms give rise to a spectrum
featuring harmonics, a characteristic wherein energy is exclusively concentrated at
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frequencies that constitute integer multiples of a fundamental frequency, denoted as
F0. This configuration is illustrated in Figure 2.5.

Figure 2.5: Example periodic waveform with fundamental frequency 1 kHz[164]

The spectral amplitude distribution corresponding to the periodic waveform
depicted in Figure 2.5 is visualized in Figure 2.6. It’s noteworthy that the constituent
spectral components align exclusively with harmonics, which are integer multiples of
the fundamental frequency of 1 kHz (1 kHz, 2 kHz, 3 kHz, 4 kHz, and so forth).

For a waveform that embodies pure periodicity, akin to the waveform presented
in Figure 2.5, the computational determination of harmonic amplitudes as depicted
in Figure 2.6 can be executed through a mathematical methodology recognized as
the Fourier series.

3.5 Non-periodic Waveform

Conversely, the evaluation of the spectrum for a non-periodic waveform can be
achieved by employing the Fourier transform, another mathematical technique. The
Fourier transform serves as a pivotal tool for comprehending the spectral attributes
of a diverse array of signals pertinent to the realm of audio forensicsn[100].

To elucidate further, consider an illustrative excerpt of a male speech recording,
displayed in Figure 2.7. Notably, the waveform assumes a quasi-periodic semblance;
however, each cycle diverges from being a precise replica of its counterparts. The
Fourier transform magnitude of this waveform is delineated in Figure 2.8.

Unlike the pristine harmonic sequence of monofrequency spikes characterizing
the spectrum of the theoretically boundless waveform in Figure 2.5 and the corre-
sponding spectrum in Figure 2.6, the Fourier analysis of a finite-length quasi-periodic
speech waveform manifests broadened spectral lines and inharmonicity. This di-
vergence emanates from cycle-to-cycle variation inherent to the speech waveform
and the finite temporal domain for signal observation within the Fourier transform [8].

In scenarios involving the coexistence of multiple sound sources, the discerned
spectrum (Fourier transform magnitude) encompasses an additive amalgamation
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Figure 2.6: The frequency spectrum magnitude of a 1 kHz pure tone. The spectrum
of a pure sinusoid contains energy only at the single frequency of that tone[164]

Figure 2.7: A quasiperiodic section of approximately 5 cycles of a recorded speech
signal[164]

of spectral constituents originating from diverse sources. This intermixture arises
deliberately when musical instruments converge as an ensemble. To expound, a
musical signal with a fundamental frequency of 100 Hz will engender harmonic energy
within its spectrum at 200, 300, 400, 500, 600, 700, 800, 900 Hz, and so on. Should
a simultaneous musical signal bearing a fundamental frequency of 150 Hz be present,
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Figure 2.8: Fourier transform magnitude of the quasiperiodic speech waveform of
Fig. 2.7. Vertical grid depicts approximate harmonic spacing of 93.75 Hz[164]

its spectral energy will be manifest at 150, 300, 450, 600, 750, 900 Hz, and so forth.

This entails that alternate frequency components of the 150 Hz tone will align
harmoniously with the harmonics of the 100 Hz tone (300, 600, 900 Hz). Within
the realm of music theory, the harmonic relationship between a 100 Hz tone and
a 150 Hz tone is denoted as a "perfect fifth," an appellation rooted in a broader
context beyond the scope of this discourse. Suffice it to acknowledge that harmonic
frequency relationships wield significant influence across a multitude of global musical
traditions.

4 Wave Propagation and Spherical Spreading
Sound waves in the air exhibit a propagation pattern where they disperse uni-

formly in all directions from their source. When the source dimensions are much
smaller than the sound wavelength, a balanced distribution of sound pressure waves
emerges in a spherical manner, constituting what is termed spherical wave propaga-
tion.

This phenomenon entails the dispersion of sound energy over the progressively
expanding surface of the encompassing sphere, leading to a reduction in sound power
in a given direction as the distance increases. In the absence of sound reflections,
the surface area of the sphere theoretically grows proportionally to the square of the
radius (surface area = 4πr2), consequently causing the wave intensity (measured in
watts per unit area) to decline following a 1

r2
relationship.

Concomitantly, the acoustic intensity, which is proportionate to the square of the
acoustic pressure, results in the sound pressure amplitude diminishing with a 1/r
pattern. It’s important to note that this analysis disregards any potential influence
of sound reflections.
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The consequence in practice is the commonly observed phenomenon that as
the distance of observation from a sound source increases, its perceived loudness
diminishes (Kinsler et al., 2000). This attenuation follows a 1/r relationship, leading
to a reduction of 6 decibels in Sound Pressure Level (SPL) for each doubling of the
distance. Mathematically, this can be expressed as

20 log10 (
1

r
× P

Pref

) = 20 log10 (
P

Pref

)− 20 log10 r (2.5)

where a change in distance from 1 to 2 (doubling of distance) yields a decrease of
approximately -6.02 dB, nonetheless, practical scenarios typically involve the presence
of boundary surfaces, such as walls, the ground, and other physical obstructions,
causing deviations from the simple spherical wave prediction due to the interaction
between the direct sound path and the reflections from these surfaces.

4.1 Sound propagation and temperature

It is evident that the velocity of sound propagation within the air is contingent
upon the air’s temperature. Warmer air facilitates faster sound transmission, whereas
colder air engenders slower sound propagation. Consequently, for a given frequency,
the wavelength of sound waves elongates in warmer air, where velocity is elevated,
and contracts in colder air, where velocity is diminished (Fig. 2.9).

Figure 2.9: Speed of sound in air as a function of air temperature[164]

In the majority of instances, the temperature-dependent nature of sound velocity
remains inconspicuous in practical scenarios, except when varying air layers possess
distinct temperatures [125]. Disparate temperatures among air layers lead to differ-
ential sound velocities. For instance, during a chilly winter morning, a temperature
gradient often prevails in the air, characterized by colder air proximate to the ground
and warmer air at higher altitudes. Consequently, sound waves experience decelera-
tion in the proximity of the ground and acceleration within the warmer upper air
layers. This situation results in horizontal sound wave fronts undergoing downward
refraction, wherein the segment traversing the colder near-surface air advances more
sluggishly compared to the portion advancing through the warmer air above. This
discrepancy induces a downward bending of the sound wavefront.

25



Conversely, during the early evening subsequent to a sun-warmed day, the tem-
perature in the vicinity of the sun-exposed ground surface surpasses the temperature
aloft.

Consequently, the sound wavefront will undergo upward refraction, induced by
the higher velocity of the wavefront within the warm air layer proximate to the
ground, in contrast to the segment of the sound wave advancing through the cooler,
slower air at greater heights.

The outcome of this phenomenon (as depicted in Fig. 2.10) manifests as follows:
during colder mornings, a distant sound might exhibit enhanced audibility owing to
the refractive focusing effect. Conversely, when the air in proximity to the surface is
heated, a distant sound’s audibility might be diminished due to the upward curvature
of the wavefront.

Figure 2.10: Refraction occurs when the air near the ground is colder, leading to
a downward curvature of the sound wavefront. Conversely, if warmer air is near
the ground while colder air resides aloft, the result is an upward curvature of the
wavefront.[164]

In conjunction with the factors of spherical spreading and potential refraction,
the process of sound propagation could entail energy losses attributed to air humidity
and temperature [99]. These intricacies within the realm of sound physics hold
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significance in the context of audio forensic analysis, particularly concerning outdoor
sounds observed from substantial distances away from the source.

4.2 Reflections and Reverberation

A microphone registers the immediate acoustic pressure, encompassing sound
waves that directly propagate from a sound source to the microphone’s position, as
well as waves that reach the microphone subsequent to bouncing off surfaces like the
ground and walls, in addition to reverberant sound stemming from multiple surface
reflections. As a result, an acoustic recording encompasses insights into both the
sound source and the acoustic characteristics of the surrounding physical environment
during recording. In cases where distinctive background sounds such as mechanical
noises, music, or alarm signals are present, these secondary sounds are also captured
by the microphone in addition to the more prominent foreground sounds.

The temporal discrepancy between the direct sound and its reflections relies on
the variance in the travel path lengths between the sound source and the microphone.
When there exists a line-of-sight path connecting the source and the microphone,
the shortest path corresponds to the direct route (refer to Fig. 2.11).

Figure 2.11: The sound directly emanating from a source and the initial reflections
received by a microphone.[164]

Significant reflections arise when the reflecting surface is relatively distant from
both the source and the microphone. Increased distance of reflection implies a notable
temporal lag in the arrival of reflected sound in comparison to the direct sound,
resulting in an audible echo. Conversely, if the source and microphone are in close
proximity to the reflecting surface, such as being near the ground in an open area,
the delay between the direct sound and its reflection is minimal, often imperceptible.
Despite being undetectable to a human listener, such reflections can still be discerned
within an audio recording, as will be expounded upon later in this text.

The knowledge of sound speed or its estimation renders the time gap between the
arrival of the direct sound and the reflected sound a "measuring stick" for discerning
the difference in path lengths. This type of information can aid in deducing event
geometry in certain investigations, particularly in forensic contexts.
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It should be noted that sound propagation within an enclosed space, such
as a room, leads to the microphone capturing a combination of direct and re-
flected/reverberant sounds. In a spacious environment with a continuous sound
source, like a lecture hall speaker or a musical ensemble, the energy of reverberant
sound is generally distributed evenly. Since these reflections emerge from diverse
directions, the sound field is characterized as diffuse.

In recordings where the microphone is close to the sound source, the dominant
element is typically the direct sound from the source, overshadowing the reverbera-
tion. Conversely, when the microphone is moved farther away from the source, the
background reverberation level remains relatively constant, but the sound pressure
amplitude of the direct sound diminishes due to the 1/r effect associated with spheri-
cal propagation. As a consequence, the recording’s equilibrium between the direct
sound and room reverberation shifts from direct sound dominance to reverberation
dominance as the source-to-microphone distance increases. This transition is shown
in Figure 2.12.

Figure 2.12: Alteration in sound pressure level as the microphone is progressively
distanced from a continuous source within a room characterized by reverberation.
In scenarios devoid of reverberation, the relative sound level adheres to the inverse
1/r trend (a decrease of 6 dB for each doubling of distance) attributable to spherical
spreading. However, in the presence of room reverberation, the sound level converges
with the background reverberation level as the microphone’s separation from the
source increases.[164]

4.3 Microphone Directionality

The directional attributes of a microphone contribute significantly to the recorded
signal. Microphones generally respond to the acoustic pressure exerted on their
diaphragms; however, microphone engineers may intentionally engineer devices to
favour certain incoming wave directions or to suppress responses from other directions,
aiming to mitigate unwanted background noises.
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Three prevalent directional characteristics for microphones are omnidirectional,
bidirectional, and unidirectional. These characteristics are often depicted through
polar diagrams illustrating the relative sound capture across different directions the
microphone is oriented towards (as exemplified in Fig. 2.13).

Figure 2.13: Polar diagrams depicting the directional characteristics of three prevalent
microphone types: (a) omnidirectional, (b) bidirectional, and (c) unidirectional.
These diagrams illustrate the variation in sound pickup relative to the angle concerning
the microphone’s pointing direction.[164]

The term "omni" signifies all, reflecting the omnidirectional microphone’s capac-
ity to capture sounds from all angles, resulting in a circular directional pattern. A
bidirectional microphone predominantly captures sound from two directions: the
forward direction (0°) and the opposite direction (180°), while attenuating sensitivity
to the sides (90° and 270°). The directional pattern of the bidirectional microphone
thus exhibits unity in the forward and backward directions and zero on the sides.

Conversely, a unidirectional microphone captures sound from one direction, which
coincides with the microphone’s pointing direction (0°). The design of the unidi-
rectional microphone aims to minimize sensitivity to sounds originating from the
opposite direction (180°).

The bidirectional microphone is sometimes referred to as a "figure eight" micro-
phone due to its directional pattern resembling the numeral 8. The unidirectional
microphone is commonly known as a cardioid microphone, as its directional pattern
somewhat resembles a mathematical cardioid.

When a directional microphone is oriented towards a sound source (0°), the
recorded signal’s level tends to be higher compared to instances where the sound
source is situated at an angle to the microphone, rendering the microphone less
sensitive. Consequently, two distinct recorded sounds with varying levels in a forensic
recording might originate from disparate sources or could potentially stem from the
same source, assuming there was microphone or source movement resulting in a
directional change.

Similarly, if a directional microphone is directed towards a sound source within a
reverberant room, the recording equilibrium will emphasize the direct sound from
the source in contrast to the reverberant room sound. This disparity emerges as the
microphone’s directional selectivity attenuates the reverberant sound arriving from
off-axis directions, thereby favouring the direct sound originating from the source.
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5 Human Hearing Characteristics
Audio forensic investigations often revolve around issues of audibility: determining

whether a specific sound would have been perceivable by a human listener given the
contextual circumstances. For instance, inquiries might arise regarding the audibility
of an alarm signal at a particular distance or in the presence of known interfering
noises. Addressing such queries necessitates an understanding of the capabilities and
limitations of the human auditory system. The following two subsections offer a
concise and simplified overview of (1) the anatomy and physiology of the auditory
system, encompassing the ear and its neural connections to the brain, and (2) the
subjective dimensions of hearing (psychoacoustics), encompassing the ability to
identify a signal of interest amidst competing sounds and noise.

5.1 Anatomy and Physiology of the Ear

The auditory system is closely associated with the ear, which functions to convert
sound energy into neural signals that undergo processing within specialized cerebral
structures. The ear’s fundamental anatomical divisions consist of the outer ear,
middle ear, and inner ear ([125, 204]).

The outer ear constitutes the externally visible segment of the auditory system.
The pinna, known as the external ear flap, encircles the entrance to the external
auditory canal. Certain animals, like deer or cats, possess mobile pinnae that can be
intentionally oriented in a specific direction. In humans, however, the pinnae are not
typically movable in a practical manner, except through the rotation of the entire
head. The term "concha" pertains to the central recess within the pinna, which
connects to the external opening of the auditory canal.

The ear canal, slightly curved along its central axis, boasts a diameter of around
0.8 cm and a length of 2.5 cm. Positioned to the exterior of the head, the ear
canal is exposed to external air, aligning its average pressure with the ambient air
pressure. The innermost end of the auditory canal is hermetically sealed by the
airtight and waterproof tympanic membrane (eardrum). This canal plays a role in
safeguarding the eardrum and the delicate structures of the middle and inner ear,
while simultaneously facilitating direct acoustic transmission of external sound.

The architecture and positioning of the external ear, coupled with the ear’s
orientation with respect to the head and upper body, result in acoustic diffraction
that is contingent on the sound source’s direction (both azimuth and elevation) as
well as the sound’s wavelength. Localizing a sound source within the azimuthal
(left-right) plane predominantly hinges on binaural hearing—the ear’s sensory mech-
anisms independently encode sounds before higher-order neural processing takes place.

When engaging with sounds in open spaces or when using circumaural (covering
the ear) or supra-aural (on-ear) headphones, the auditory route from the concha to
the eardrum comes into play. However, when employing insert headphones (earbuds),
the acoustical pathway involving the concha of the external ear is not utilized.

The middle ear, positioned between the eardrum and the inner ear, encompasses
three minuscule ossicles (tiny bones) and a tympanic cavity nestled within the
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temporal bone of the human skull. These ossicles comprise the malleus (hammer),
which connects to the eardrum’s inner surface, the incus (anvil), and the stapes
(stirrup), linked to the oval window of the inner ear (refer to Fig. 2.14).

Figure 2.14: Human Hearing System in a simplified way[164]

The stapes, the tiniest and lightest bone within the human body, is situated
within the inner ear’s ossicular assembly. These ossicles are interconnected within
the middle ear cavity by ligaments and two diminutive muscles—the tensor tympani
and the stapedius. The tensor tympani is linked to the malleus (hammer), while the
stapedius, measuring approximately 1 mm in length and representing the smallest
skeletal muscle in the human body, is connected to the stapes. These auditory
muscles contribute to a physiological response termed the acoustic reflex, which will
be elucidated in the subsequent section.

The Eustachian tube, depicted in Figure 2.14, constitutes a conduit connecting
the middle ear cavity with the rear section of the nasopharynx, which serves as the
juncture between the throat and the nasal passage. Ordinarily, the Eustachian tube
(for each ear) remains closed, briefly opening during swallowing to permit gradual
air movement to and from the middle ear through this passage. In cases where a
consistent air pressure discrepancy exists between the air confined within the middle
ear and the air within the nasopharynx, the tube facilitates air passage, thereby equal-
izing the pressure on both sides of the eardrum. Instances of rapid ambient pressure
alterations, such as swift ascents or descents during air travel, lead to accelerated air-
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flow through the Eustachian tubes, generating the familiar sensation of "ear popping."

Typically, the air in the middle ear cavity maintains a pressure level roughly
equivalent to the ambient atmospheric pressure. However, temporary blockages of
the Eustachian tube, inflammation, or illnesses can cause air pressure variations
within the middle ear cavity in relation to the surrounding atmosphere. This leads
to an imbalance in pressure across the eardrum, causing its stiffening and influencing
the mechanical sensitivity of the ossicular chain.

The inner ear encompasses the cochlea, functioning as the auditory organ, as well
as three semicircular canals and associated structures that constitute the vestibular
organ responsible for maintaining balance.

While not directly pertinent to audio forensic analysis, the three semicircular
canals exhibit sensitivity to angular accelerations in three spatial dimensions, and
smaller vestibular structures detect linear accelerations in relation to gravity. These
motions are neurologically encoded to form the foundation for an individual’s sense
of balance, spatial orientation, and the capacity to harmonize physical movement
with equilibrium.

The cochlea serves as the principal neurosensory organ within the auditory system.
It takes the form of a spiral-shaped bony cavity, encapsulating and safeguarding
the delicate biological tissues that respond acutely to sound-induced vibrations.
Internally, the cochlea is divided into multiple fluid-filled chambers and minuscule
neural structures. The stapes bone from the middle ear connects to the cochlea’s
oval window. Within the cochlear structure, microscopic hair cells within the organ
of Corti are responsible for detecting sound-induced vibrations and translating them
into neural signals. Roughly 3500 inner hair cells and about 12,000 outer hair cells
are present in the human cochlea. Inner hair cells perform the neural transduction of
vibrational stimuli, while outer hair cells are believed to serve as a cochlear amplifier
and gain compressor. Neurons of the auditory nerve are linked from the base of each
inner hair cell to specific locations in the brainstem.

The subsequent phases of processing along the auditory physiological pathway are
briefly outlined in the remainder of this section. Since sound comprises small pressure
fluctuations above and below ambient pressure, sound waves surrounding the head
result in alternating pressure within the ear canals, which subsequently induces the
eardrum to move in and out in response to these pressure variations. Oscillatory
sound energy that displaces the eardrum induces motion within the ossicles, including
the malleus. Consequently, the middle ear functions as a transducer, converting
acoustic energy into mechanical energy via oscillatory transmission of forces and
torques throughout the ossicular chain. In essence, the ossicular chain acts as a
mechanical lever system, transferring the force from the comparatively large eardrum
to the minute aperture of the oval window, thus engaging the fluid-filled cochlea’s
mechanical components.

A pivotal role of the middle ear is to efficiently transmit energy from air-based
sound waves to mechanical displacement within the cochlea’s sensory structures.
While serving as an impedance transformer in terms of mechanical action, the middle
ear notably concentrates sound energy from the larger area of the pinna to the
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substantially smaller area of the stapes footplate. In summary, the external and
middle ear structures alleviate, to a significant extent, the acoustic impedance dis-
parity between air pressure and particle velocity and the corresponding mechanical
displacements within the cochlea [7, 204].

The aforementioned account provides a succinct overview of the auditory pathway
for one ear. This pathway exists in both of our ears, with specialized brain regions
facilitating the combination of neural information across both ears for binaural
processing. The higher-level processing within the auditory system encompasses
nerves and structures that exchange information between the two ears, enabling us
to estimate the direction and distance of specific sound sources relative to our heads.
For those interested, more comprehensive explanations of auditory anatomy and
physiology are accessible [84, 204].

5.2 Psychoacoustics

The human auditory system exhibits numerous notable strengths and limitations
as a sound detector. Commonly acknowledged, the sense of hearing spans a frequency
range from approximately 20 Hz to around 20 kHz under controlled laboratory
conditions. However, the ear’s sound detection capacity is contingent upon the
pressure amplitude at a given frequency, stimulus complexity, and individual-specific
factors. While this book does not delve into the broader scope, there are accessible
and intriguing resources available that delve into the human auditory system, en-
couraging interested readers to explore this captivating domain [22, 173].

Audio forensic examiners generally do not extensively delve into the intricacies
of human auditory physiology. Yet, on occasions, the perception of sound becomes
pertinent in cases involving matters of audibility, intelligibility, speaker identification,
and earwitness testimony (Koenig, 1986)[128]. Human psychoacoustics encompasses
numerous fascinating facets. For the present context, we will focus on three: fre-
quency sensitivity, frequency masking, and speech detection in noise.

In contrast to sound pressure level, which possesses a precise and objective
definition, sound loudness is a perceptual attribute contingent upon the listener’s
perception. Rigorous tests involving human subjects demonstrate that subjective
evaluations of sound loudness rely on both the frequency and amplitude of the sound
perceived by the ears. Acousticians employ empirical equal-loudness contour charts
like the Fletcher-Munson or Robinson-Dadson graphs to illustrate average sensitivity
patterns. During these investigations, a substantial cohort of healthy young individ-
uals were engaged in subjective loudness evaluations. Participants heard a sinewave
tone at 1 kHz with a consistent sound pressure level and adjusted the loudness of a
tone at a different frequency until it was perceived as equally loud as the reference
1 kHz tone. This process was replicated across a range of sound pressure levels for
the 1 kHz reference tone, and the collective outcomes of all participants were averaged.

The resultant average response (refer to Fig. 2.15) demonstrates that generally,
healthy young listeners require higher sound pressure levels for frequencies below 1
kHz to achieve a perceived loudness on par with the 1 kHz tone. Notably, the typical
healthy ear is less sensitive to low-frequency sounds compared to tones in the 2–4

33



Figure 2.15: Equal-loudness contours for human hearing based on International
Organization for Standardization standard 226:2003 (ISO 2003)[164]

kHz range (ISO, 2003). Optimal sensitivity is observed for sound frequencies around
3 kHz, aligning with the wavelength that triggers the auditory canal’s tube resonance.

The human auditory system exhibits variations in sensitivity across different
frequencies. The average ear displays reduced sensitivity at frequencies exceeding
4 kHz, progressively diminishing to little or no sensation beyond 20 kHz. Another
noteworthy insight offered by equal-loudness curves is that sensitivity alterations are
not only frequency-dependent but also amplitude-dependent. As the reference loud-
ness at 1 kHz increases, the equal-loudness curves tend to become flatter, implying a
more consistent sensitivity across frequencies. Consequently, when comparing louder
tones across frequencies, their perceived loudness tends to be more uniform than
when comparing quieter tones.

Beyond the frequency-related effects, temporal changes in sensitivity occur when
the auditory system is exposed to high-level sounds. This results in the acoustic
reflex, a neural response triggered by intense sounds like gunshots. The stapedius
muscle contracts, modifying the coupling of the stapes footplate to the cochlea’s
oval window. This serves to shield the inner ear from potential damage. Despite
its protective nature, the reflex’s delay precludes immediate defence against abrupt,
impulsive sounds. Hearing sensitivity’s decline with increasing age is a widely ob-
served phenomenon known as presbycusis. Individual differences, mainly arising from
injuries, diseases, or neurological damage to the middle and inner ear structures, can
also alter hearing characteristics.

In audio forensics, it is imperative to recognize that the ear operates as a non-
linear and time-varying detector. This consideration applies to both earwitness
testimony and examiners using their ears to analyze audio evidence. Regular hearing
screenings are recommended for forensic examiners to monitor changes in hearing
acuity. Masking refers to the phenomenon where the presence of one sound makes it
difficult for the ear and brain to perceive another sound presented simultaneously,
especially if they share similar frequency content. While masking can be frustrating

34



in some situations, it is useful for estimating the human hearing system’s ability to
detect unwanted background sounds.

The masking effect finds utility in contemporary perceptual audio coding systems
like MP3, AAC, and WMA, allowing for reduced bit usage while maintaining audio
quality. However, forensic audio examiners must be cautious when interpreting
the reconstructed signal’s waveform and spectrum, as perceptual encoding might
introduce inaudible features that could interfere with objective analysis.

For further elaboration on these topics, refer to Section 2.8.

5.3 Frequency Weighting in SPL Measurements

Due to the nonuniform sensitivity of the human ear across various frequencies,
sound pressure level assessments commonly incorporate a filter approximating the
ear’s sensitivity. This filter, known as a weighting filter, accentuates (or "weights")
sound energy within the frequency range where the ear is most responsive, while
attenuating this emphasis in less sensitive frequency ranges. The resulting filter is
termed a bandpass filter, allowing the transmission of the signal within a specific
frequency range or band. The widely adopted A-weighting filter approximates the
average equal-loudness curve for a 40 dB reference signal. Standard sound level
meters generally feature an A-weighting option, while some may include additional
weighting choices like C-weighting and an "unweighted" (flat) frequency selection.
When utilizing a weighting filter for sound level measurements, the result should be
specified, such as "the meter reading was 45 dBA re 20 µPa," with "dBA" indicating
the application of the A-weighting filter (Kinsler et al. 2000)[125] (see Fig. 2.16).

5.4 Speech Intelligibility

Audio forensic analyses frequently involve the interpretation of audio recordings
containing human speech. In certain scenarios, the task may encompass assessing
the probability that a spoken statement was comprehensible given the conditions
provided by a witness or established through other evidence. As a primary channel
of communication, human speech has evolved to incorporate substantial redundancy,
thereby enabling listeners to grasp a speaker’s message even when confronted with
concurrent sounds and noise. Linguistic structures contribute context and semantics,
facilitating the listener’s comprehension of the main idea of a statement without
requiring a full understanding of each individual word. Nevertheless, noise has a
tendency to disrupt the intelligibility of speech communication (Quatieri 2002)[210].

Noisy speech is often characterized by its signal-to-noise ratio (SNR) expressed
in decibels. SNR estimation generally relies on assumptions regarding speech and
noise levels. A 0 dB SNR indicates that the signal (speech) level matches the noise
level, while a negative dB SNR signifies that the noise surpasses the speech in intensity.

Subjective evaluations of noisy speech intelligibility typically align with the
pattern illustrated in Fig. 2.17.

Intelligibility, measured as the percentage of accurate transcription by a listener,
remains nearly 100% for SNRs exceeding 10 dB but rapidly diminishes to essentially
zero when the SNR deteriorates below −10 dB.
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Figure 2.16: Equal-loudness contours for a human hearing based on International
Organization for Standardization standard 226:2003 (ISO 2003)[164]

Human speech encompasses substantial signal energy within a bandwidth of
approximately 200 Hz to 4 kHz. This bandwidth corresponds to the audio range
transmitted by common telephones and mobile radio systems optimized for speech
transmission. While widening the audio bandwidth generally enhances perceived
speech quality, it doesn’t necessarily enhance intelligibility, even if listeners perceive
improved quality. This observation is crucial for audio forensic experts addressing
the enhancement of noisy speech recordings: post-processing can sometimes lead to
reduced speech intelligibility, even if listeners believe the quality has improved.

6 Signal Processing
Similar to the human ear, audio engineering systems capture air pressure fluctua-

tions and transform acoustic energy into mechanical motion and electrical signals.
Physicists and engineers use the term ’transduction’ to describe this energy conver-
sion process, with microphones and loudspeakers serving as audio transducers.

Microphones feature a diaphragm akin to the eardrum. Instantaneous air pressure
on one side of the diaphragm, facing the sound source, differs from fixed air pressure
on the other side. This difference generates a force that moves the diaphragm in
response to sound pressure cycles. The diaphragm’s motion activates a generating
element, converting it into an electrical signal. Over time, audio engineers have
developed various generating elements for microphones, such as variable resistance,
electromagnetic induction, variable capacitance, and piezoelectric materials.
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Figure 2.17: Equal-loudness contours for a human hearing based on International
Organization for Standardization standard 226:2003 (ISO 2003)[164]

The microphone’s electrical signal, produced in response to sound, is an analog
signal. The continuous variation in electric output over time corresponds linearly to
the continuous variation in the acoustic pressure wave affecting the diaphragm. This
analog audio signal can undergo processes like amplification, filtration, recording,
reproduction, modulation, broadcasting, and other electrical communication treat-
ments.

Loudspeakers perform inverse transduction, converting analog electrical signals
into sound. A typical loudspeaker driver includes a motor element generating force
proportional to the audio signal, and a diaphragm effectively translating the motor’s
mechanical motion into acoustic waves. Loudspeakers often include a driver (motor
and diaphragm) within a specifically designed resonant enclosure (cabinet) to enhance
system linearity and efficiency. The enclosure, driver, and sometimes the amplifier
in powered speakers are collectively designed. Modern loudspeakers often employ
multiple drivers of varying sizes to optimize sound reproduction across the extensive
range of wavelengths audible to humans (from wavelengths exceeding 17 m for 20
Hz to under 2 cm for 20 kHz)."
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7 Digital Audio
In modern audio systems, digital signal processing and storage are prevalent,

although microphones produce analog signals. The conversion to digital involves an
analog-to-digital converter (ADC) performing two key processes. The first is time
sampling, where the analog audio signal’s instantaneous value is rapidly measured
multiple times per second, creating time samples. The rate of time sampling is the
sampling rate, measured in samples per second (Hz). The second process is quanti-
zation, where each waveform sample is represented by an integer value. Precision
is determined by the number of digital bits used per sample; for instance, 16-bit
quantization provides 65,536 values.

Consider the standard audio CD as an example. It has stereo channels, each
sampled at a 44.1 kHz rate with 16-bit resolution per sample. Unlike analog signals,
digital signals can be stored in memory, transmitted digitally, and safeguarded with
error-correcting codes. Digital recordings allow perfect copying. However, it’s vital
to ensure digitization offers sufficient audio bandwidth through a fast sampling rate
and ample amplitude precision through an adequate number of quantization bits.
Mathematical theory dictates that the sampling rate should exceed twice the analog
signal’s bandwidth (Nyquist rate), accommodating the audible 20 kHz bandwidth.
Quantization precision is determined by the required signal-to-quantization noise
ratio (SQNR), which can vary.

SQNR stands for "Signal-to-Quantization Noise Ratio." It is a metric used to
quantify the quality of a digitized signal, such as audio or other continuous signals,
after they have been converted from analog to digital form through quantization.
The SQNR measures the ratio between the strength of the desired signal (the original
analog signal) and the unwanted noise introduced during the quantization process.
A higher SQNR value indicates that the quantization noise is relatively lower in
amplitude compared to the original signal, implying better signal quality and fidelity
in the digitized representation. It is typically measured in decibels (dB) and is
an important factor in determining the bit depth (number of quantization bits)
needed for accurate digitization while minimizing perceptible noise in the signal.
Telephone-quality speech might use 8 or 12-bit quantization (45–75 dB SQNR), while
high-fidelity music often demands at least 16-bit quantization (>90 dB SQNR).

The complementary process, the digital-to-analog converter (DAC), reconstructs
the analog signal from its digital form. This reconstruction usually occurs just before
the power amplifier that drives speakers or headphones used for listening.

8 Perceptual Audio Coding
The conventional process of audio sampling, quantization, and reconstruction

described earlier is effective but results in a high bitrate, which may be impractical for
compact transmission and storage systems. Since the late 1980s, digital audio signal
processing systems have harnessed the characteristics of human auditory perception
to achieve excellent perceptual quality at significantly lower bitrates than traditional
systems.

Perceptual audio coding techniques, like MP3 (MPEG-1, Layer 3), Dolby Digital,
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and MPEG Advanced Audio Coding (AAC), capitalize on the masking effect in hu-
man psychoacoustics. These methods utilize lower bitrates while effectively masking
the quantization noise during intervals with strong signal components.

While the reconstructed audio maintains good quality for human listeners, it’s
crucial to recognize that perceptual audio coding involves lossy compression. Unlike
conventional digital audio systems, where discrepancies between the original and
reconstructed signals are bounded by quantization levels, discrepancies in percep-
tually encoded signals can be considerably larger, even if they are inaudible to humans.

The field of audio forensics is increasingly dealing with recording systems that
generate perceptually encoded audio.
Caution must be exercised when conducting waveform analysis on content encoded
with lossy methods. Another concern arises when decoding a lossy-encoded signal
and then subjecting it to subsequent lossy re-encoding.

Even if the same encoding/decoding algorithm is used, the repeated cycle of lossy
compression, reconstruction, and compression again leads to the accumulation of
audible artifacts and distortion.

Generally, it is advised not to equalize or re-encode perceptually encoded audio,
as these processes alter the spectral characteristics exploited by perceptual encoding
algorithms.
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Chapter 3

Digital Audio Forensics

The first instances of audio files being scrutinized for forensic purposes can be
traced back to the 1950s, following the advent of live recording systems not confined
to the recording studio. By the early 1960s, the U.S. Federal Bureau of Investigation
began cultivating expertise in audio forensics, specifically focusing on refining the
clarity of speech, improving the quality, and validating the authenticity of recorded
files[164, 300]. While the investigative benefits of tape recordings were evident, their
legal admissibility raised questions. The surreptitious acquisition of recordings raised
concerns about violating the accused’s rights against self-incrimination. Moreover,
issues like uncertainty in identifying voices and other details due to poor recording
quality, the possibility of fakes, or alterations in the recordings further complicated
the matter. These practical and legal challenges became crucial considerations in
the field of audio forensics.

Digital audio forensic analysis consists of the acquisition, analysis and evaluation of
audio recordings admissible to a court of law as evidence or for forensic investigations.
Digital multimedia forensic analysis is commonly used to determine the authenticity
and verify the integrity of the evidence submitted to court involving civil or criminal
proceedings. The main objective of the audio forensic analysis process is to achieve
one or more of the following tasks:

• Authenticity: The element of authenticity holds critical importance in these
investigations, given that the significant deductions drawn by the investigator
from the audio recording largely rely on the conditions in which the recording
was carried out. If the recording has been intentionally or accidentally altered
before the investigation, it could throw the entire examination into disrepute.
Moreover, if there’s an intentional or accidental error about the location or time
of the recording, the examination could be rendered moot. Consequently, audio
forensic examiners are required to validate the evidence’s chain of custody,
take measures to detect intentional tampering, and ensure safeguards against
accidental modification.

• Enhancement: In cases involving audio forensic evidence, requests for audio
enhancement are commonplace. Owing to non-ideal acoustic environments,
many audio recordings of forensic relevance may face issues like poor micro-
phone positioning, strong or fluctuating background noise, unclear enunciation
by speakers, and weak signal strength. Under such circumstances, the audio
data of investigative interest must be processed to emphasize the features of
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interest. Enhancements become especially crucial when audio forensic evidence
is to be presented in court, as most judges and jury members are not accus-
tomed to listening and interpreting noisy audio, and lack the time to replay
the material at different volumes. Given that courtroom audio presentations
often don’t happen under ideal conditions, the degree of enhancement must be
chosen wisely.

• Interpretation: The interpretation of audio evidence can entail a range of
forensic questions, from reconstructing event timelines to transcribing dialogues,
and identifying unknown sounds. Questions addressed by audio forensic ex-
amination are usually founded on an investigator’s hypothesis about a crime’s
circumstances, or in relation to other physical evidence and witness testimonies.

Despite potential shortcomings, such as the general difficulty in pinpointing the sound
source’s direction and orientation relative to the recording microphone (particularly
if a single, monophonic recording is available), and the limited dynamic range of the
recording, audio recordings provide several advantages for an investigation compared
to film, video, and eyewitness observations. These include gathering information
from all directions, rather than just within a specific field of view, and providing an
objective, sequential timeline of events, as opposed to a witness’s subjective recall.

1 Historical cases

1.1 McKeever Case

The McKeever case (United States v. McKeever, 1958)[1] is a notable legal case
involving forensic audio in US federal courts. Defendants Thomas McKeever and
Lawrence Morrison were indicted for extortion under federal anti-racketeering laws.
McKeever secretly recorded conversations with the Ball Company’s representatives to
impeach a prosecution witness, George Ball. The court refused to admit the recording
as evidence without establishing its authenticity, leading to the formulation of the
Seven Tenets of Audio Authenticity. According to the court’s statement (United
States District Court 1958):

1. The recording device had the capability to capture the conversation now being
presented as evidence.

2. The person operating the device possessed the necessary competence to operate
it effectively.

3. The recording is genuine and accurate.

4. No alterations, additions, or deletions have been made to the recording.

5. The recording has been preserved in a manner that can be verified by the court.

6. The individuals speaking in the recording are clearly identified.

7. The conversation in question was conducted voluntarily and in good faith,
without any form of coercion.
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8. Within the forensic audio community, these seven criteria are informally known
as the "Seven Tenets of Audio Authenticity."

These tenets include confirming the recording device’s capability, operator compe-
tence, authenticity, absence of alterations, preservation manner, speaker identification,
and voluntary, uncoerced conversation. The court recognized the increasing use
of sound recordings as evidence and stressed the need for safeguards against fraud
or abuse in this scientific development. Notably, the case highlighted the impor-
tance of technical aspects in tape recording and ensuring the reliability of audio
evidence, which remains relevant today. It also emphasized the court’s role in han-
dling electronic evidence to benefit litigants while upholding rigorous standards for
its admission.

1.2 McMillan Case

In the McMillan case of 1974, a federal narcotics conviction faced an appeal due to
the use of audio recordings in the trial. Federal informant Beverly Johnson’s telephone
conversations were recorded by agents during her involvement in heroin trafficking.
Some of these conversations involved suspect Harold McMillan in arranging heroin
purchases. In the trial, the prosecutor played excerpts of the recordings and had
an agent read the written transcripts to the jury. The defense objected, citing a
lack of established authenticity and legal foundation. Similar to the McKeever case,
the appeal’s court upheld the fundamental principles of audio forensic admissibility
and addressed concerns about authenticity and talker identification. The case
highlights the importance of adhering to the Seven Tenets of Audio Authenticity
and ensuring proper authentication and identification procedures for audio evidence
in legal proceedings.

1.3 FBI Procedures

In the early 1960s, the US Federal Bureau of Investigation (FBI) initiated audio
forensic analyses and enhancements. Building upon the McKeever tenets, the FBI
devised a 12-step procedure for processing audio recordings [129]. These steps include

1. Evidence marking.

2. Physical inspection.

3. Recorded track position and configuration.

4. Azimuth alignment determination.

5. Playback speed analysis.

6. Proper playback setup.

7. Overall aural review.

8. Overall FFT review.

9. Setup of enhancement devices.

10. Copying process.
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11. Work notes.

12. Reporting complete the procedure.

Steps 3 to 6 focused on challenges related to analog magnetic tape recordings, which
were the prevalent recording medium during that era.

1.4 The Watergate Tapes

In 1972, the discovery of duct tape on a basement access door at The Watergate
Hotel in Washington, D.C., by security guard Frank Wills led to the apprehension of
five burglars in the Democratic National Committee offices. This seemingly isolated
event set off a chain of events that exposed a larger conspiracy involving the Nixon
reelection campaign and White House officials.

Amid suspicions of a cover-up, White House aide Alexander Butterfield’s testi-
mony before the Senate Committee revealed the existence of audiotape recordings
of conversations between President Nixon and his advisors. These recordings were
made secretly using audiotaping systems installed in various locations, including the
Oval Office and the Cabinet Room. [149]

A crucial tape recording from June 20, 1972, which possibly contained discussions
about the Watergate cover-up between Nixon and Haldeman, came under scrutiny.
Investigators found an 18 1/2-minute gap in the recording, raising suspicions of
deliberate erasure to destroy incriminating evidence. Chief Judge John J. Sirica
determined that forensic study was necessary to assess the potentially altered tape.

A special Advisory Panel on White House Tapes, comprising technical experts,
was formed to conduct a systematic analysis. They examined the physical and
mechanical aspects of the tape, looking for signs of alteration or damage. Critical lis-
tening and signal processing techniques were employed for intelligibility enhancement.

The panel’s May 1974 report concluded that magnetic erasures caused the 18
1/2-minute gap and identified overlapping erasures from a different tape recorder
than the original. The "smoking gun" recording, released by the US Supreme Court,
revealed President Nixon’s attempt to obstruct justice, leading to his resignation on
August 8, 1974, to avoid impeachment and removal from office. The Watergate Tapes
became a crucial milestone in audio forensic analysis, demonstrating the importance
of authenticity assessment in legal proceedings.

1.5 Reevaluation of the Assassination of President Kennedy

The assassination of President John F. Kennedy on November 22, 1963, in Dallas,
Texas, has been a subject of extensive interest, scrutiny, and speculation. The Warren
Commission’s official finding was that Lee Harvey Oswald fired three shots from
a sixth-floor window of the Texas School Book Depository. However, inconsistent
earwitness testimonies about the number of shots and their direction complicated
the investigation.
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The Zapruder film, though silent, provided critical evidence regarding the timing
of gunshots and the injuries sustained by the President and Governor Connally.
Investigators attempted to use audio recordings from Dallas Police radios to gather
sound from Dealey Plaza during the assassination. The audio from two radio channels
was recorded using the dictabelt and audograph machines. A theory emerged that an
"open microphone" recording from a malfunctioning police motorcycle could contain
the sound of gunshots.

In 1978, the House Select Committee on Assassinations engaged experts from Bolt,
Beranek, and Newman (BBN) to analyze the dictabelt recording. BBN concluded
that there were three gunshots from the Book Depository and a likely fourth shot
from the "grassy knoll" area, suggesting a second gunman and conspiracy. This
finding was corroborated by an independent analysis performed by Mark R. Weiss
and Earnest Aschkenasy.

However, subsequent investigations raised questions about the acoustic evidence,
the location of the open microphone, and the methodology used to assess the findings.
The US Justice Department requested a review by the National Academy of Sciences,
which challenged the earlier conclusions. Moreover, private citizen Steve Barber
identified cross-talk in the dictabelt recording, raising further doubts about the
grassy knoll theory.

Despite numerous scientific examinations and rebuttals, debates about the Dallas
dictabelt evidence persist to this day. The case remains an enduring subject of
investigation and analysis.

1.6 Talker Identification and “Voiceprints”

The term "voiceprint" was first used in Bell Telephone Laboratories publications
in 1944. Lawrence Kersta of Bell Labs published a paper in 1962 proposing that
speech spectrograms, based on individual dimensions of the talker’s oral, pharyngeal,
and nasal cavities, could be used for voice identification, akin to fingerprinting. Initial
testing showed promising results [260].

During the 1960s and 1970s, the aural-spectrographic method emerged in au-
dio forensics for comparing an unknown talker’s spectrogram with known talkers.
Examiners used critical listening and visual comparison of spectrograms to make
determinations. They would report five possible opinions: positive identification,
probable identification, no decision, probable elimination, or positive elimination.

However, concerns about the reliability and dependability of this technique
emerged. Studies challenged assumptions of spectrographic uniqueness and time-
invariance of speech, raising doubts about false identification or elimination [29, 30,
31].

In response to ongoing controversies, the FBI requested a special panel from
the National Research Council to study the scientific principles and reliability of
aural-spectrographic voice identification in 1976. The panel highlighted technical
uncertainties and recommended approaching forensic applications with caution. They
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suggested clearly explaining the method’s limitations in testimony before judges or
juries [32].

Recent discussions of the aural-spectrographic method still echo these concerns,
emphasizing the need for caution when utilizing voice identification evidence.

2 Audio Examiner role
The audio forensic examiner plays a crucial role in court proceedings by providing

an objective and scientifically grounded understanding of the nature and reliability
of the audio evidence. Their primary responsibility is to educate the court, ensuring
that all involved parties have a clear understanding of the audio evidence presented.
The examiner refrains from taking any side in the legal process and remains impartial
throughout the examination.

During their testimony, the audio forensic examiner addresses three main aspects
of the audio evidence: the facts, the methods used for analysis, and the interpretation
of the findings. This comprehensive approach ensures that the court receives a
well-rounded perspective on the audio evidence’s credibility and relevance.

After the audio forensic examination is requested by a law enforcement organi-
zation or an attorney, the examiner may encounter various scenarios. They may
need to determine the availability of the original audio recording or work with a
duplicate if the original is unavailable. The examiner may assess the circumstances
under which the recording was made to understand its context better.

An essential part of the examiner’s role is evaluating the quality of the audio
recording, categorizing it as either good, marginal, or poor. Additionally, they may
need to address any disputes or concerns about the authenticity of the recording
that may have arisen during the investigation.

Sometimes, prior audio forensic examinations have already been conducted, and
the examiner must identify the reasons for requesting further analysis. Lastly, the
examiner focuses on the specific audio forensic questions raised by the parties involved,
which helps direct their analysis and ensure that the court receives the most pertinent
information.

3 Audio Examination procedure
In the realm of forensic analysis, the challenge lies in maintaining impartiality

during the interpretation process. Within audio forensic examination, bias can often
stem from external non-audio information linked to a case, suspects, circumstances,
and investigator’s suspicions. Such information, originating outside of the audio
evidence, might include the arrest history of a suspect, physical evidence details,
preferred conclusions, or potentially incriminating comments by involved individuals.
While these details might be relevant to the court or jury, they can also prejudice
the audio forensic examination. This extraneous information has the potential to
consciously or unconsciously influence the examiner’s work.

As previously mentioned, the role of the forensic examiner is to provide the court
with an objective understanding of the audio evidence’s nature and reliability from
a scientific perspective. The examiner is neither an advocate for a specific side in
the legal process nor a participant in the adversarial proceedings. Instead, they are
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an expert who testifies solely about the presented audio evidence. The examiner’s
testimony covers the facts, methodologies, and interpretations related to the audio
evidence, leaving law enforcement and attorneys to weave together different evidence
pieces to support their case theories.

The process of audio forensic examinations usually starts with a request from
law enforcement or an attorney. The requester’s familiarity with audio forensics
varies, making a checklist valuable. This checklist should address factors such as the
availability and quality of the original audio recording, circumstances of recording,
disputes regarding authenticity, prior examinations, and specific questions requiring
audio forensic analysis. It’s important that analysis requests align with the exam-
iner’s expertise, and engagements exceeding their knowledge level should be declined.

Comprehensive notes and documentation for forensic engagements are essential.
These records should be detailed enough to recollect requests and processes over
extended periods. Documentation should be comprehensive enough that another
examiner could understand the procedures and conclusions without ambiguity.

Beginning with the original recorded media and, if possible, the original recording
system, while creating verified digital copies, is highly recommended before engaging
in enhancement or interpretation. The original recording system can provide valuable
settings, data, timestamps, and other relevant information. For devices with spe-
cial cables, connectors, and power supplies, these details should also be communicated.

Certain recording devices possess volatile memory, losing recorded content in case
of power loss. It’s crucial to safeguard this memory from potential power disruptions.
The examiner should advise the sender to use "write protection" and other overwrite
prevention mechanisms.

Formal laboratory protocols dictate the standard procedure for audio forensic
examinations, specifying the required evidence and accompanying information. This
includes the original recording or an exact digital duplicate, equipment details, main-
tenance records, recording methods and circumstances, previous reports, transcripts,
investigator notes, and more (Scientific Working Group on Digital Evidence 2008).

Upon receiving the audio forensic evidence or equipment, the audio forensics
examiner must adhere to laboratory standard protocols (Audio Engineering Society
1996). These protocols encompass several key practices:

• Ensuring the chain of custody: Document the date and circumstances of
evidence receipt, and maintain secure handling throughout the review process
to prevent potential damage or loss.

• Observing data carrier details and metadatae any signs of damage
like cracks, marks, scratches, etc.: Employ photographs and written notes
to comprehensively document all submitted materials, including packaging
specifics, model and serial numbers, formats, and more. Not

• Initial labeling nondestructively : Abide by laboratory guidelines for
uniquely marking evidence for future identification. Some labs use case numbers
and date marks, while others rely on the examiner’s initials and date. Special
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caution is necessary when marking items like CD/DVD media to prevent harm.
If marking isn’t feasible, store the data carrier in a suitable sealable container
and mark the container.

• Utilize a verified digital copy, reserving the original only for necessary
cases: When dealing with analog evidence, generate a high-quality digital
copy from the analog original. This may involve locating appropriate playback
equipment, aligning it with the tape, and ensuring the tape’s integrity to
prevent damage during playback. Seeking assistance from an analog specialist
is recommended in such scenarios.

• For digital audio evidence, create direct digital "bitstream" copies
that are verified: Ensuring that the copying process preserves the original
content is crucial. Many digital forensics labs employ hardware write blocker
devices between the storage device and control computer. These blockers
intercept any commands that could modify storage contents, thus preserving
the integrity of the material.

3.1 Fundamental tools

Contemporary audio forensic examination relies on a set of fundamental tools:
a high-quality audio playback system, a waveform display program, and a spectro-
graphic display program. These essential functions are typically executed on standard
desktop or laptop computers.

Audio Playback System

The audio playback system employed must possess both quality and versatility
that surpass the frequency range and dynamic range of the forensic audio material
under scrutiny. In simpler terms, any limitations in audio quality should be attributed
to the original recording and not to issues with the playback system.

The computer’s integrated audio subsystem, soundcard, or externally connected
USB converter must offer support for a wide range of sampling rates and formats.
Additionally, it should be equipped with the necessary audio format decoding and
reconstruction software modules required to handle the native format of the audio
evidence. Typically, reliable manufacturers of professional general-purpose recording
studio monitors supply suitable loudspeakers. A reasonable benchmark for the stated
frequency response is around 50 Hz to 20 kHz.

For many audio forensic tasks, it is advisable to use headphones. They help
mitigate the influence of room reverberation, computer fan noise, and other audible
distractions that may be present in the playback environment. When selecting
headphones, opt for professional-grade ones with comfortable earpieces that create a
complete seal around the ears. Ensure that the playback system includes a separate
volume control knob for the headphone system.

While there might be a temptation to increase the sound level when attempting
to discern potentially significant sounds in low-quality audio forensic recordings, it is
crucial to avoid elevating the volume to a point where it induces decreased sensitivity
in the ears (known as the acoustic reflex). Furthermore, listening to the recording
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Figure 3.1: Digital audio display of a time span sufficiently short to show individual
samples, with “connect-the-dots” lines between the sample points

should be done in a manner that guards against unexpected loud sounds that could
be harmful to the ears.

Waveform Visualization

In audio forensic analysis, aural interpretation is fundamental, but visual aids can
significantly assist in the process. One crucial visual tool is the graphical waveform
display, which represents an audio recording as a graph with time on the horizontal
axis (abscissa) and amplitude on the vertical axis (ordinate). These waveform display
programs offer the capability to view specific time intervals and provide controls for
zooming in or out on both the time and amplitude axes.

Typically, the graphical display represents individual waveform samples as dots
when dealing with very short time intervals. Some programs employ a "connect-
the-dots" approach, creating lines between these sample points (fig. 3.1). In cases
where there are more samples than horizontal pixels on the screen due to longer
time intervals, most display programs show the maximum and minimum sample
amplitudes within that short time span, effectively outlining the audio signal’s
envelope (fig. 3.2).

The most valuable waveform display programs offer simultaneous audio playback,
allowing users to select playback start and stop positions using cursors or select-and-
drag highlighting. This iterative process enables a combined auditory and visual
assessment of waveform details.

While these programs often include features like waveform editing, format conver-
sion, and audio effects processing, it’s critical to safeguard and preserve the original
reference copy of the audio. Special care should be taken to avoid unintentional
alterations during the viewing and initial assessment stages.
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Figure 3.2: Waveform display of a time span that is too long to depict every individual
sample: the display shows the signal envelope

A significant concern arises when dealing with encoded audio files, such as MP3.
To facilitate viewing and listening, the display program must decode the MP3 file
into standard pulse-code modulation (PCM) samples. However, caution must be
exercised when editing such files and subsequently saving them as MP3 again, as
this process re-encodes the PCM samples into MP3 format, effectively generating
a second encoding cycle. It’s crucial to recognize that perceptual coders like MP3
are lossy, meaning that each decode/re-encode/decode iteration tends to accumulate
audible distortion due to the lossy encoding steps.

As previously emphasized, it is imperative to avoid the practice of decoding,
modifying, and then re-saving the edited file in an encoded format. This ensures the
preservation of audio quality and minimizes the introduction of additional distortions
that may compromise the forensic analysis process.

Spectrographic Visualization

A valuable method for visually representing audio forensic recordings is the spec-
trogram. The spectrogram is a specialized graph created by computing the magnitude
of the short-time Fourier transform (referred to as the spectrum) for consecutive,
brief time intervals within the input signal and displaying these sequentially across
the screen. This process involves selecting successive short blocks or frames from the
audio signal recording, as illustrated in Fig. 3.3.

Similar to the waveform display, the spectrogram offers a graph of audio signal
energy, with the horizontal axis representing time. However, unlike the waveform
display, the vertical axis of the spectrogram is the signal’s frequency scale in hertz.
The spectrogram’s color or brightness at specific time and frequency coordinates
within the graph indicates the relative amount of audio signal energy.
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Figure 3.3: The concept of the Short-Time Fourier Transform (STFT) involves the
segmentation of the audio signal into overlapping blocks or frames. Subsequently,
the Fast Fourier Transform (FFT) is applied to calculate the short-time spectral
magnitude of each individual block [164].
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Figure 3.4: The provided image illustrates a combined time domain and spectro-
graphic display of a stereo (2-channel) audio recording featuring a rock-and-roll
instrumental combo composed of electric guitar, bass, and drums. The total duration
of the recording is 10 seconds, with consistent time scales across all four displayed
panels. The frequency range in the lower two panels, represented on the vertical
axis, spans from 0 to 20 kHz, utilizing a logarithmic scale. The upper two panels,
characterized by a light green hue, portray the time domain envelope, which denotes
signal amplitude against time, for both the left channel (top row) and right channel
(second row). Meanwhile, the lower two panels, marked with an orange hue, depict
the spectrograms of the left and right channels, respectively. In these spectrogram
panels, the vertical axis represents frequencies from 0 to 20 kHz, while the horizontal
axis represents time. Brightness of colors in the spectrograms corresponds to spec-
tral energy: darker-colored pixels represent less energy at the respective time and
frequency, while brighter-colored pixels indicate higher energy at the corresponding
time and frequency. Notably, there is a recurring pattern of vertical reddish bars
in the spectrogram, attributed to drum hits, and horizontal yellow stripes at lower
frequencies, originating from harmonics of the electric guitar and bass lines [164].

For this reason, the spectrogram is often referred to as depicting the signal in
the frequency domain, while the waveform display portrays the signal in the time
domain, as depicted in Fig. 3.4. The upper section of the display exhibits the time
waveform envelope for both stereo channels, while the lower section presents the
spectrogram for each channel.

In the spectrographic view, impulsive sounds like clicks or gunshots manifest as
vertical lines, signifying energy across a range of frequencies (broad along the vertical
axis) but of brief duration (short along the horizontal axis). Conversely, a whistle or
a continuous hum tone appears as a horizontal line, indicating that the sound energy
is relatively concentrated in its frequency range but persists over a longer duration.

Spectrographic display programs enable users to specify both a time range and a
frequency range. Nevertheless, it’s crucial to comprehend the fundamental mathe-
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matical trade-off between signal resolution in time and frequency. Zooming in on
a very brief time segment of a signal inherently sacrifices fine frequency resolution,
while zooming out to encompass a longer time duration offers better frequency
detail but diminishes temporal precision. In essence, the spectrogram presents a
trade-off between the selectivity of display for separating signal components of similar
frequencies and the level of detail in timing (Fig. 3.5).

Figure 3.5: The provided images display two spectrograms of the same speech
utterance, delivered by a male speaker, thereby illustrating the fundamental trade-off
between time and frequency resolution. In the upper frame, longer time block lengths
are employed, resulting in improved resolution in frequency, allowing for a more
detailed representation of harmonic partials. However, this enhancement in frequency
resolution comes at the expense of clarity in rendering the sound’s attack and release
characteristics, which appear somewhat blurred in the spectrogram. Conversely, the
lower frame utilizes shorter time block lengths, providing superior resolution in time,
which highlights the "edges" occurring when the signal undergoes changes. However,
this advantage in time resolution comes at the cost of reduced frequency detail. The
overall duration of the audio segment depicted in both frames is 2.5 seconds, with
the frequency range spanning from 0 to 10 kHz, utilizing a linear scale for reference
[164].
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3.2 Initial Aural Evaluation

The primary step in an audio forensic assessment involves listening to the verified
work copy of the audio material. Conduct this initial listening session in a quiet
environment, setting the playback volume to a comfortable level. If the playback area
is devoid of distractions, using loudspeakers for this purpose is satisfactory. During
this initial comprehensive auditory review, it’s customary to jot down preliminary
notes about the audio material. These notes should encompass initial impressions
regarding quality, any noticeable defects, or audible occurrences within the recording.

Many forensic examiners may additionally opt to examine successive spectrograms
of the recording, employing appropriate time and frequency ranges. Spectrograms
often aid in identifying subtle signal attributes and background sounds in the
recording, facilitating further evaluation. Following the preliminary listening and
spectrogram analysis, the examiner then addresses the audio forensic queries raised
by the inquiring party. The essential set of analysis techniques comprises attentive
listening, waveform analysis, and spectral analysis.

3.3 Critical Listening

Known as critical listening, this method involves attentive evaluation of the
forensic recording. Critical listening sessions require a quiet environment without
distractions, preferably using quality headphones. Playback levels are maintained
moderately to prevent auditory fatigue and minimize triggering the acoustic reflex.
The critical listening process is iterative, involving repeated playback of significant
sections. Many examiners choose to use waveform display software during critical
listening, making it easier to add time markers and annotations.

An essential aspect of critical listening is deliberately focusing on foreground
sounds, such as speech dialog. Subsequent replays shift the focus to background
sounds, including ambient noise, distant conversations, and subtle noises. In spe-
cific situations, background sounds can help identify the recording’s context, while
anomalies in background sounds might indicate editing or alterations.

However, examiners must be cautious when repeatedly listening to a short looped
segment to avoid forming a perception based on the loop’s rhythm rather than the
actual audio evidence.

3.4 Waveform Analysis

The ears excel at detecting and recognizing sounds, but they may struggle with
precise time and amplitude measurements. Visual aids, like waveform display pro-
grams, offer a graphical representation of the audio signal. This display assists in
identifying audible events, time intervals, signal variations, and other signal charac-
teristics.

Forensic examiners commonly employ waveform displays to start with a wide time
range, potentially spanning several minutes, to gain an overall understanding of the
signal’s waveform. The approach then involves progressively zooming in on specific
time intervals for closer examination, accompanied by note-taking and preliminary
observations. Significant signal elements relevant to the investigation, such as specific
utterance times or distinct background sounds, receive particular attention during
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this phase.

An effective strategy combines visual identification of signal features with audi-
tory analysis. While zoomed in, the examiner should scrutinize the signal for any
anomalies like discontinuities, dropouts, sudden clicks, or waveform irregularities.
These irregularities could indicate issues with the recording system or the potential
manipulation or deletion of content.

3.5 Spectral Analysis

In addition to the time domain waveform display, examining the spectrogram can
aid in identifying significant signal attributes. With practice, one can extract crucial
signal characteristics and changes from the spectrogram and then cross-reference
with the corresponding audio signal.

Considering the trade-off between time and frequency inherent in the spectro-
gram, the examiner might alternate between different frequency and time resolution
settings. Adjusting the analysis block length offers a better indication of when a sonic
event occurred in the spectrographic display. However, increasing the block length
enhances frequency resolution but reduces time resolution, potentially obscuring the
start and end of sound events.

Another user choice in spectrographic display software is the window function.
This involves applying an amplitude weighting that smoothly fades in and out the
short-time audio block for each spectrographic segment, preventing abrupt spectral
effects from starting or stopping the data block. Various amplitude window functions,
like triangular, Bartlett, Hann, Hamming, Kaiser, Blackman-Harris, and others, can
be utilized. If no tapering is applied, the implicit window is known as "rectangular."

While the amplitude window addresses abrupt boundaries, it also slightly dimin-
ishes spectral resolution. The exact shape of the amplitude window function has
nuanced impacts on frequency resolution, prompting experimentation with different
window functions and block lengths to visualize relevant spectrographic details in a
specific investigation (Fig, 3.6).

Some display programs offer simultaneous presentation of the time waveform,
spectrogram, and audio playback, enhancing critical listening and visual assessment
of signal characteristics. This feature is highly recommended.

As previously emphasized, thorough and detailed work notes should be maintained
during the auditory and visual assessment. Given the potential time lapse between
initial evidence observation and subsequent steps like report writing and testimony,
recording even seemingly obvious details is crucial for future reference, rather than
relying solely on memory.
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Figure 3.6: Subtle trade-offs involving time-frequency resolution are observed. The
uppermost two rows feature spectrograms of the left and right channels in a stereo
audio recording, displaying a marginal refinement in frequency resolution. Conversely,
the lowermost two rows portray spectrograms of the identical stereo recording,
showcasing a marginal enhancement in time resolution. The recording spans a total
duration of 14 seconds and encompasses frequencies ranging from 0 to 4 kHz, with a
linear scale representation [164].
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Chapter 4

Background & State of the Art

1 A brief history of Deep Learning
Deep Learning, a branch of computer science that deals with training deep neural

networks to learn from complex data and recognize abstract patterns and represen-
tations, has a fascinating history marked by key breakthroughs and technological
advancements.

In its early days, before the term "Deep Learning" became popular, the con-
cept of artificial neural networks emerged as a way to mimic the functioning of
neurons in the human brain. Researchers explored the idea of using interconnected
nodes, or "neurons," to process information and perform tasks. However, due to
limited computational power and small datasets, progress in neural networks was
slow, and the field faced challenges in training and optimizing these models effectively.

The "AI Winter" of the 1960s and 1970s was a period when artificial intelligence
research faced scepticism and funding reductions. Neural networks, being part of the
AI landscape, also experienced setbacks during this time. Researchers struggled to
demonstrate their practicality and efficiency in real-world applications, which led to
a decline in interest in neural networks and machine learning in general.

A major breakthrough came in the 1980s with the rediscovery of the backpropaga-
tion algorithm, a method for training neural networks by adjusting the weights of the
connections between neurons. This algorithm allowed for more efficient training of
neural networks, and it reignited interest in the field. However, even with backpropa-
gation, training deeper networks remained challenging due to the "vanishing gradient"
problem. This problem occurs when gradients (sensitivities of the output with respect
to the input) diminish rapidly as they are propagated backwards through layers of
the network, making it difficult to update the weights of early layers effectively.

The mid-2000s witnessed a turning point for Deep Learning when researchers,
notably Geoff Hinton and his team, developed techniques to address the vanishing
gradient problem. One such technique was "pre-training," where neural networks
were first trained on simpler tasks before being fine-tuned for the main task. An-
other crucial innovation was "dropout," a regularization technique that randomly
disables neurons during training, reducing overfitting and improving generalization
performance.
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Around the same time, the availability of large datasets, fueled by the rise of
the internet and advances in data storage, proved instrumental in training more
complex and deeper neural networks. Moreover, the development of powerful graphi-
cal processing units (GPUs) and the emergence of cloud computing infrastructures
significantly accelerated the training process, making it feasible to train large-scale
deep neural networks in reasonable timeframes.

Deep Learning models started showcasing impressive results in various applica-
tions, such as image classification, speech recognition, and natural language processing.
Convolutional Neural Networks (CNNs) demonstrated remarkable performance in
image analysis tasks, while Recurrent Neural Networks (RNNs) showed promise in
processing sequential data like language and time series.

This success and the potential for even greater advancements led to a surge of
interest and investments in Deep Learning, making it a transformative technology
across multiple industries. In healthcare, it aided in medical image analysis and
disease diagnosis. In finance, it improved fraud detection and predictive modeling. In
automotive, it accelerated the development of autonomous vehicles. In entertainment,
it enabled innovative applications in virtual reality and augmented reality.

The ongoing research and innovations in Deep Learning continue to expand
its capabilities. Advanced architectures like transformer-based models have revo-
lutionized natural language processing, enabling machines to understand context
and semantics with exceptional accuracy. Generative Adversarial Networks (GANs)
have opened up new possibilities in generating realistic images, videos, and other
creative content. Reinforcement learning techniques have shown tremendous promise
in training machines to make decisions and control complex systems.

2 Deep Learning Models

2.1 FFNNs: Feed Forward Neural Networks

The FFNN was the first and simplest type of artificial neural network to be
designed. In such a network, data move in one direction from the input layer to
the output layer, possibly via a series of hidden layers (Goodfellow et al., 2016 [86];
LeCun et al., 2015 [142]). Non-linear activation functions are usually used after
each layer (possibly except for the output layer). While this definition of FFNN
is very general and may include architectures such as CNNs (discussed in the next
subsection), here we mainly focus on architectures made of fully-connected layers
known as Perceptron and Multi-Layer Perceptron (MLP) (Goodfellow et al., 2016
[86]; LeCun et al., 2015 [142]). A Perceptron has no hidden layer, while the notion
of MLP is a bit ambiguous: some authors state that an MLP has one hidden layer,
while others allow more hidden layers.

2.2 CNNs: Convolutional Neural Networks

CNNs are a popular class of DNNs widely used for pattern recognition due to
their property of being translation equivariant (Cohen et al., 2019[51]; Goodfellow et
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al., 2016[86]). They have been successfully applied to various tasks, such as image
classification (e.g., Krizhevsky et al., 2017)[134], natural language processing (NLP)
(e.g., Kim, 2014)[122], or automatic speech recognition (e.g., Waibel et al., 1989)[277].
CNNs have also been used for Sound Source Localization.

2.3 RNNs: Recursive Neural Networks

RNNs are neural networks designed for modeling temporal sequences of data
(Goodfellow et al., 2016[86]; LeCun et al., 2015[142]). Particular types of RNNs
include long short-term memory (LSTM) cells (Hochreiter and Schmidhuber, 1997)
and gated recurrent units (GRUs) (Cho et al., 2014)[45]. These two types of RNNs
have become very popular thanks to their capability to circumvent the training diffi-
culties that regular RNNs face, in particular, the vanishing and exploding gradient
problems (Goodfellow et al., 2016 [86]; LeCun et al., 2015 [142]).

2.4 CRNNs: Convolutional Recursive Neural Networks

CRNNs are neural networks containing one or more convolutional layers and one
or more recurrent layers. CRNNs have been regularly exploited for SSL since 2018
because of the respective capabilities of these layers: The convolutional layers have
proven to be suitable for extracting relevant features and the recurrent layers are
well-designed for integrating the information over time

2.5 Residual Neural Networks

Residual neural networks were originally introduced by He et al. (2016)[101],
who highlighted that the design of deep networks can trigger issues like gradient
explosion or vanishing gradients due to non-linear activation functions, leading
to overall performance degradation. Residual connections were formulated as a
solution to this predicament, permitting a feature to circumvent a layer block while
concurrently adhering to the standard pathway through that layer block. This
strategic arrangement facilitates the direct flow of gradients throughout the network,
generally contributing to improved training outcomes.

2.6 Encoder-Decoder Neural Networks

An encoder-decoder network constitutes an architectural framework consisting of
two fundamental components: an encoder and a decoder. The encoder, fueled by
input features, generates a distinct representation of the input data. Subsequently,
the decoder translates this novel data representation, acquired from the encoder,
into the desired output data. Architectures adhering to this paradigm have been
extensively investigated within the Deep Learning (DL) domain, primarily for their
adeptness in yielding concise data representations through unsupervised methods
(Goodfellow et al., 2016)[86].

1. Autoencoder (AE): An AE represents a type of encoder-decoder neural
network designed to produce an output identical to its input. Frequently,
the encoder’s final layer output has a smaller dimension compared to the
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data’s dimension. This specific layer, termed the bottleneck layer, serves as
a compressed encoding of the input data. Originally constructed with feed-
forward layers, the term "AE" is also contemporarily applied to networks
featuring other layer types, such as convolutional or recurrent layers.

2. Variational Autoencoder (VAE): A VAE represents a generative model
that originated from the work of Kingma and Welling (2014)[124] and Rezende
et al. (2014)[218], gaining significant popularity within the DL community.
It can be perceived as a probabilistic adaptation of an AE. In contrast to a
conventional AE, a VAE learns not only the data’s probability distribution at
the decoder’s output but also models the probability distribution of the latent
vector at the bottleneck layer. This characteristic strongly ties the VAE to
the notion of unsupervised representation learning (Bengio et al., 2013)[21].
Consequently, the decoder can generate new data by sampling from these
distributions.

3. U-Net Architecture: The U-Net architecture, initially introduced by Ron-
neberger et al. (2015)[225] for biomedical image segmentation, constitutes a
distinctive fully-convolutional neural network design. In U-Net, input features
undergo successive decomposition into feature maps within encoder layers and
then recomposition into symmetrical feature maps within decoder layers, akin
to CNNs. Consistent feature map dimensions at corresponding levels in the
encoder and decoder permit the direct propagation of information through
residual connections, giving rise to the characteristic U-shape configuration.

2.7 Attention-based NN

An attention mechanism is a technique that empowers a neural network to priori-
tize vectors within a temporal sequence that bears greater relevance to a specific task.
Bahdanau et al. (2016)[15] initially introduced attention to enhancing sequence-to-
sequence models, particularly Recurrent Neural Networks (RNNs), in the context of
machine translation. The core principle involves assigning distinct weights to input
sequence vectors when combined to estimate output sequence vectors. The model
learns optimal weights reflecting both the interconnections among input sequence
vectors (self-attention) and the significance of input vectors in elucidating each
output vector (decoder attention). This pioneering work served as a foundation
for the widely acclaimed Transformer architecture by Vaswani et al. (2017)[266],
which substantially elevated machine translation performance. The Transformer
architecture completely replaces RNNs with attention models.

3 Speech Recognition
Speech recognition is an interdisciplinary subfield of computer science and com-

putational linguistics that develops methodologies and technologies that enable the
recognition and translation of spoken language into text by computers with the main
benefit of searchability. It is also known as automatic speech recognition (ASR),
computer speech recognition or speech-to-text (STT). It incorporates knowledge and
research in the computer science, linguistics and computer engineering fields. The
reverse process is speech synthesis. Some speech recognition systems require "train-
ing" (also called "enrollment") where an individual speaker reads text or isolated
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vocabulary into the system. The system analyzes the person’s specific voice and uses
it to fine-tune the recognition of that person’s speech, resulting in increased accu-
racy. Systems that do not use training are called "speaker-independent" [228] systems.

Systems that use training are called "speaker dependent". Speech recognition
applications include voice user interfaces such as voice dialing (e.g. "call home"), call
routing (e.g. "I would like to make a collect call"), domotic appliance control, search
key words (e.g. find a podcast where particular words were spoken), simple data
entry (e.g., entering a credit card number), preparation of structured documents
(e.g. a radiology report), determining speaker characteristics,[180] speech-to-text
processing (e.g., word processors or emails), and aircraft (usually termed direct voice
input).

From the technology perspective, speech recognition has a long history with
several waves of major innovations. Most recently, the field has benefited from
advances in deep learning and big data. The advances are evidenced not only by
the surge of academic papers published in the field, but more importantly by the
worldwide industry adoption of a variety of deep learning methods in designing and
deploying speech recognition systems.

3.1 Deep feedforward and recurrent neural networks

Deep Neural Networks and Denoising Autoencoders [158] are also under investiga-
tion. A deep feedforward neural network (DNN) is an artificial neural network with
multiple hidden layers of units between the input and output layers.[108] Similar to
shallow neural networks, DNNs can model complex non-linear relationships. DNN
architectures generate compositional models, where extra layers enable composition
of features from lower layers, giving a huge learning capacity and thus the potential
of modeling complex patterns of speech data.[67] A success of DNNs in large vocabu-
lary speech recognition occurred in 2010 by industrial researchers, in collaboration
with academic researchers, where large output layers of the DNN based on context-
dependent HMM states constructed by decision trees were adopted.[299, 58, 64].

See comprehensive reviews of this development and of the state of the art as of
October 2014 in the recent Springer book from Microsoft Research.[298] See also
the related background of automatic speech recognition and the impact of various
machine learning paradigms, notably including deep learning, in recent overview
articles.[65] One fundamental principle of deep learning is to do away with hand-
crafted feature engineering and to use raw features. This principle was first explored
successfully in the architecture of deep autoencoder on the "raw" spectrogram or
linear filter-bank features,[66] showing its superiority over the Mel-Cepstral features
which contain a few stages of fixed transformation from spectrograms. The true
"raw" features of speech, waveforms, have more recently been shown to produce
excellent larger-scale speech recognition results.[262]

3.2 End-to-end automatic speech recognition

Since 2014, there has been much research interest in "end-to-end" ASR. Tra-
ditional phonetic-based (i.e., all HMM-based model) approaches required separate
components and training for the pronunciation, acoustic, and language models.
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End-to-end models jointly learn all the components of the speech recognizer. This
is valuable since it simplifies the training process and deployment process. For
example, a n-gram language model is required for all HMM-based systems, and a
typical n-gram language model often takes several gigabytes in memory making them
impractical to deploy on mobile devices.[118] Consequently, modern commercial ASR
systems from Google and Apple (as of 2017) are deployed on the cloud and require a
network connection as opposed to the device locally.

The first attempt at end-to-end ASR was with Connectionist Temporal Classifi-
cation (CTC)-based systems introduced by Alex Graves of Google DeepMind and
Navdeep Jaitly of the University of Toronto in 2014.[88] The model consisted of
recurrent neural networks and a CTC layer. Jointly, the RNN-CTC model learns
the pronunciation and acoustic model together, however, it is incapable of learn-
ing the language due to conditional independence assumptions similar to a HMM.
Consequently, CTC models can directly learn to map speech acoustics to English
characters, but the models make many common spelling mistakes and must rely on
a separate language model to clean up the transcripts.

Later, Baidu expanded on the work with extremely large datasets and demon-
strated some commercial success in Chinese Mandarin and English.[9]

In 2016, the University of Oxford presented LipNet,[13] the first end-to-end
sentence-level lipreading model, using spatiotemporal convolutions coupled with an
RNN-CTC architecture, surpassing human-level performance in a restricted grammar
dataset.[13]

A large-scale CNN-RNN-CTC architecture was presented in 2018 by Google
DeepMind achieving 6 times better performance than human experts.[242]

An alternative approach to CTC-based models are attention-based models.
Attention-based ASR models were introduced simultaneously by Chan et al. of
Carnegie Mellon University and Google Brain and Bahdanau et al. of the University
of Montreal in 2016.[42, 15]

The model named "Listen, Attend and Spell" (LAS), literally "listens" to the
acoustic signal, pays "attention" to different parts of the signal and "spells" out
the transcript one character at a time. Unlike CTC-based models, attention-based
models do not have conditional-independence assumptions and can learn all the
components of a speech recognizer including the pronunciation, acoustic and language
model directly. This means, during deployment, there is no need to carry around a
language model making it very practical for applications with limited memory.

By the end of 2016, the attention-based models have seen considerable success
including outperforming the CTC models (with or without an external language
model).[47] Various extensions have been proposed since the original LAS model.

Latent Sequence Decompositions (LSD) was proposed by Carnegie Mellon Univer-
sity, MIT and Google Brain to directly emit sub-word units which are more natural
than English characters; University of Oxford and Google DeepMind extended LAS
to "Watch, Listen, Attend and Spell" (WLAS) to handle lip reading surpassing
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human-level performance.[49]

4 Speaker Identification & Verification
The term voice recognition or speaker identification refers to identifying the

speaker, rather than what they are saying. Recognizing the speaker can simplify the
task of translating speech in systems that have been trained on a specific person’s
voice or it can be used to authenticate or verify the identity of a speaker as part
of a security process. In parfticular in speaker identification, an utterance from an
unknown speaker is analyzed and compared with speech models of known speakers.
The unknown speaker is identified as the one whose model best matches the input
utterance.

Figure 4.1: Speaker Identification and Speaker Verification Processes

In speaker verification, an identity is claimed by an unknown speaker, whose
utterance is compared with a model for the registered speaker (customer) whose
identity is being claimed. [82]

5 Speech Enhancement
In the survey [155], researchers have tackled the issue of speech enhancement over

the years have been presented. The earliest works done in this domain consist of
the various kinds of spectral enhancement methods, statistical based algorithms and
subspace enhancement methods. These have performed well under test conditions
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but in practical scenarios each comes with its own sets of drawbacks.

Adaptive noise cancellation is another popular domain in this regard. It has made
itself an evergreen topic for research by being customizable through the use of ma-
chine learning techniques of optimization to tune its coefficients.
Machine learning algorithms are quite vast in nature. It is not possible to cover
them all in this PhD Thesis. In [155] the authors discussed a few prominent ones
and enlisted the strong points of each.
Advances in the field of Artificial intelligence have yielded fruitful results in speech
enhancement. Neural networks have proven to be a strong tool in this regard. After
simple NN, came DNN which was stronger in results but showed poor real world
generalization upon encountering noise and speech signals that were unseen to it
during training phase. Then came the era of the deep learning with CNN, RNN,
LSTM and Attention mechanism[249] which has finally proven to be a reliable tool
for generalization of real world noise cancellation problems. It can effectively deal
with noise signals of all kinds, whether seen or unseen to it during training phase.

6 Speech Separation
Speech separation is the task of separating target speech from background inter-

ference. Traditionally, speech separation is studied as a signal processing problem. A
more recent approach formulates speech separation as a supervised learning problem,
where the discriminative patterns of speech, speakers, and background noise are
learned from training data. Over the past decade, many supervised separation
algorithms have been put forward. In particular, the recent introduction of deep
learning to supervised speech separation has dramatically accelerated progress and
boosted separation performance.
On the important survey on speech enhancement made on 2018 [278], the authors
provide a comprehensive overview of the research on deep learning based supervised
speech separation in the last several years.
Much of the overview is on separation algorithms where we review monaural methods,
including speech enhancement (speech-nonspeech separation), speaker separation
(multitalker separation), and speech dereverberation, as well as multimicrophone
techniques.
In the recent literature, the Deep Learning State Of The Art (SOTA) Models for
Speech Separation are based on deep learning and attention methods, like: Con-
vTasNet (2019)[154], Dual-Path RNN (2020)[153], WaveSplit (2021)[301], Sepformer
(2021)[249]

7 Emotion Recognition
Emotion recognition from speech signals is an important but challenging com-

ponent of Human-Computer Interaction (HCI). In the literature of speech emotion
recognition (SER), many techniques have been utilized to extract emotions from
signals, including many well-established speech analysis and classification techniques.
Deep Learning techniques have been recently proposed as an alternative to traditional
techniques in SER [172, 233, 232, 27]. In [120] the researchers present an overview of
Deep Learning techniques and discusses some recent literature where these methods
are utilized for speech-based emotion recognition. The review covers databases used,
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Model SI-SNRi SDRi Num.Param
ConvTasnet 12.7 13.1 5.1M
DualPathRNN 14.7 N.a. 2.6M
VSUNOS 16.9 N.a. 7.5M
WaveSplit 17.3 17.6 29M
WaveSplit + DM 17.8 18.1 29M
Sepformer 17.6 17.9 26M
Sepformer + DM 19.5 19.7 26M

Table 4.1: Best Speech Separation Performance on the WSJ0-3mix dataset, showed
in Attention Is All You Need In Speech Separation(2021)[249]

emotions extracted, contributions made toward speech emotion recognition and
limitations related to it.
Emotion recognition datasets are relatively small, making the use of the more so-
phisticated deep learning approaches challenging. In [200], the researchers proposed
a transfer learning method for speech emotion recognition where features extracted
from pre-trained wav2vec 2.0 models are modeled using simple neural networks.
They proposed to combine the output of several layers from the pre-trained model us-
ing trainable weights which are learned jointly with the downstream model. Further,
we compare performance using two different wav2vec 2.0 models, with and without
finetuning for speech recognition. The proposed approaches [200] was evaluated
on two standard emotion databases IEMOCAP and RAVDESS, showing superior
performance compared to results in the literature.

8 Voice Activity Detection
Voice activity detection (VAD), also known as speech activity detection or speech

detection, is the detection of the presence or absence of human speech, used in speech
processing. The main uses of VAD are in speech coding and speech recognition.
It can facilitate speech processing, and can also be used to deactivate some pro-
cesses during a non-speech section of an audio session: it can avoid unnecessary
coding/transmission of silence packets in Voice over Internet Protocol (VoIP) appli-
cations, saving on computation and on network bandwidth.
VAD is an important enabling technology for a variety of speech-based applications.
Therefore, various VAD algorithms have been developed that provide varying fea-
tures and compromises between latency, sensitivity, accuracy and computational cost.
Some VAD algorithms also provide further analysis, for example whether the speech
is voiced, unvoiced or sustained. Voice activity detection is usually independent of
language.

Voice Activity Detection (VAD) is an important task in speech processing, and in
recent years, deep learning techniques have been applied to improve the performance
of VAD systems. The following are some of the most commonly used deep learning
models for VAD in the last three years:

Deep Neural Networks (DNN): This is a deep neural network system for the
automatic detection of speech in audio signals, otherwise known as Voice Activity
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Detection (VAD) [168]

ECAPA-TDNN: This is a deep learning model based on Time Delay Neural
Network (TDNN) architecture that uses a Convolutional Neural Network (CNN)
with self-attention and a combination of propagation and aggregation techniques to
improve the robustness and efficiency of the model [168, 234]

CRDNN (Convolutional Recurrent Deep Neural Network): This is a deep learning
model used for Voice Activity Detection (VAD). An example of a CRDNN model for
VAD is available on Hugging Face [54, 17]. The model has been trained on Libriparty
and can process short and long audio recordings, returning the segments where vocal
activity has been detected.

CNN self-attention voice activity detector: This is a deep learning model based
on a Convolutional Neural Network (CNN) with self-attention used for Voice Activity
Detection [79].

Deep learning models for VAD mainly use recurrent neural network architectures
such as BiLSTM and CNN, often in combination with hybrid feature extraction.
However, in recent years, new models such as ECAPA-TDNN and CRDNN have been
proposed that use propagation and aggregation techniques to improve the robustness
and efficiency of the model.

9 Sound Source Localization
The problem of Sound Source (SSL) is an active research area that has gained

increasing interest in recent years. The goal of SSL is to identify and locate different
sound events including speeches in an acoustic environment using various signal
processing and machine learning techniques. SSL has the potential to enable a wide
range of applications, from improved speech recognition and speaker verification
to enhanced audio-based surveillance and security systems. 3D audio is gaining
increasing interest in the machine learning community in recent years. The goal is to
determine the coordinates of the speaker in a 3D space, based on audio signals cap-
tured by a microphone array. The range of applications is incredibly wide, extending
from virtual and real conferencing to autonomous driving, improve speech recognition
and speaker verification to enhanced audio-based surveillance and security systems.

However, SSL is a challenging task due to various sources of variability such
as the acoustic environment, the microphone array geometry, and the presence of
interfering sounds. These factors affect the audio signal in different ways and make
it difficult to extract reliable information about the speaker’s position including
time difference of arrival (TDOA) localization, beamforming localization, and deep
learning-based approaches. TDOA-based methods rely on the delays between the
arrival of the acoustic signal at different positions of a microphone to calculate the
sound source’s position. Beamforming-based methods use a microphone array to
direct a beam towards a specific position and identify the sound source’s position.
Deep learning-based methods use neural networks to learn sound representations
and identify the sound source’s position. To solve this problem, different deep
learning architectures have been proposed and they can be divided into two main
categories: end-to-end models and feature-based models. In both cases, the models
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are trained using labelled data, which consists of audio signals and the corresponding
speaker’s position.

• End-to-end models receive the raw audio signals as input and output the
speaker’s position directly. These models typically consist of a deep neural
network that learns a mapping from the audio signals to the speaker’s position.

• Feature-based models, on the other hand, extract relevant features from the
audio signals before performing the estimation. These features can be, for
example, the time difference of arrival (TDOA) between the audio signals
captured by the microphones or the beamforming vectors. These features are
then used as input to a neural network that estimates the speaker’s position.

Despite the progress made in SSL research, there are still many challenges that
need to be addressed, such as the quality and availability of labelled data, the
computational resources required for processing large amounts of audio data, and
the dependence of the models on the specific application and environment in which
they are used.

Figure 4.2 shows various methods have been proposed in the literature:

Figure 4.2: Sound Source Localization System anatomy

9.1 Acoustic Environment

This study centers on Sound Source Localization (SSL) within indoor environ-
ments. Specifically, it addresses scenarios where the microphone array and sound
source(s) are situated within enclosed spaces, typically of moderate size such as
office rooms or domestic settings. Such setups introduce reverberation, causing the
recorded sound to encompass multiple multi-path components originating from the
same source, in addition to the direct source-to-microphone propagation path. These
components collectively constitute the Room Impulse Response (RIR), which is
dependent on the source and microphone array positions (including orientation) as

66



well as the room configuration.

The presence of reverberation is commonly seen as a significant challenge, render-
ing SSL more complex compared to the simplified anechoic scenario where reverbera-
tion is absent, as seen in free-field propagation setups. Another factor to consider is
noise. Noise can arise from interfering sources in the surrounding environment, such
as television, background music, pets, and external sounds passing through open or
closed windows. Noise is often treated as diffuse, lacking a specific directional origin.
Additionally, imperfections in recording devices contribute to noise, usually in the
form of artifacts.

9.2 Source Type

Within the Sound Source Localization (SSL) literature, a significant portion of
systems focuses on localizing speech sources due to their pivotal role in associated
tasks like speech enhancement or recognition. For instance, systems dedicated to
speaker localization are discussed in works [41, 92, 98, 104]. These systems employ
neural networks trained to estimate the Direction of Arrival (DoA) for speech sources,
thereby acquiring specialization for this specific source category.

Conversely, other systems, particularly those engaged in the DCASE Challenge,
encompass a broader array of sound source types [205]. Tailored to the task and
dataset of the challenge, these methods exhibit the capability to localize diverse
sources such as alarms, crying infants, crashes, barking dogs, screams (both male
and female), speech (both male and female), footsteps, door knockings, ringing
tones, phone sounds, and piano notes. It’s noteworthy that localizing such sources,
even when they temporally overlap, might not inherently pose a greater challenge
compared to localizing overlapping speakers. This is due to the distinctive spectral
characteristics that neural models can leverage to enhance detection and localization
accuracy.

9.3 Number of sources

The count of sources (NoS) within a mixed signal is a pivotal parameter in Sound
Source Localization (SSL). In the SSL domain, the NoS might be either treated as a
known quantity (as an operational assumption) or estimated concurrently with the
source location. In the latter scenario, the SSL problem encompasses both detection
and localization. Notable examples of conventional SSL studies incorporating NoS
estimation are detailed in the works [10, 137].

Single Sound Source Localization

Within numerous Deep Neural Network DNN-based investigations, the focus is
often on localizing a solitary source. This simplified setup, termed "single-source
SSL," is selected due to its relative simplicity (e.g., Bologni et al., 2021 [28]; Liu
et al., 2021[151]; Perotin et al., 2018b[201]). In this context, networks are trained
and assessed on datasets containing, at most, one active source (active denoting
sound emission, and inactive signifying silence). In terms of NoS, the active sources
in this scenario are either 1 or 0. While it is reasonable to control source activity
artificially during training using synthetic data, this approach becomes unrealistic
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during testing with real-world data. Alternatively, source activity can be estimated,
yielding two approaches to tackle the source activity detection challenge.

One method involves employing a source detection algorithm prior to applying the
SSL technique only to segments of the signal with an active source. Examples include
voice activity detection (VAD) techniques in SSL systems by Chang et al. (2018)[43],
Kim and Hahn (2018)[121], Li et al. (2016c)[148], and Sehgal and Kehtarnavaz
(2018)[240]. The alternative approach is to simultaneously detect source activity and
localize the source. Yalta et al. (2017)[292] augmented their DNN’s output layer
with an additional neuron, yielding an output of 1 when no source was active and 0
otherwise.

Multiple Sound Sources Localization

Moving to multi-source localization, the challenge becomes notably more in-
tricate than single-source SSL. Presently, state-of-the-art DNN-based techniques
address multi-source SSL within challenging environments. In this review, we define
multi-source localization as encompassing instances where multiple sources overlap
temporally, irrespective of their category (e.g., multiple speakers or distinct sound
events). This scenario closely relates to multi-speaker conversations, sometimes
with speech overlap, strongly connected to the speaker diarization problem. The
connections between speaker localization, diarization, and source separation are
intricate and beyond the scope of this review.

In multi-source scenarios, the source detection challenge transforms into a source
counting issue, yet similar principles from the single-source scenario apply. In certain
works, the NoS is considered a working hypothesis, and sources’ Direction of Arrival
(DoA) can be directly estimated. In cases where the NoS is unknown, a source
counting system can be applied prior to SSL, such as through a dedicated DNN.
For instance, Tian (2020)[259] trained a separate neural network to estimate the
NoS in the recorded mixture signal, using this information in conjunction with the
DoA estimation neural network’s output. Alternatively, NoS estimation can proceed
alongside DoA estimation, mirroring the single-source approach, based on the SSL
network’s output. In classification paradigms, the network’s output often predicts
the presence probability of a source in each space region. Setting a threshold on this
estimated probability implies source counting. Alternatively, the ground truth or
estimated NoS is typically used to select the corresponding number of classes with
the highest probability.

Finally, certain DNN-based systems are deliberately designed to estimate NoS
alongside DoAs. For example, Nguyen et al. (2020a)[181] propose a neural archi-
tecture featuring two output branches: one estimates the NoS (up to four sources,
formulated as a classification task), while the other classifies azimuth into discrete
regions. The DCASE Challenge encompasses numerous systems, wherein the SED
task, integrated with SSL, inherently provides NoS estimates. Note that this survey
extensively reviews numerous systems presented in the DCASE Challenge.
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9.4 Moving Sources

The task of source tracking entails estimating the temporal evolution of source
position(s), particularly in scenarios involving mobile sources. It is important to
note that this survey paper does not delve into tracking as a separate pursuit; track-
ing is commonly handled by distinct algorithms that utilize sequences of Direction
of Arrival (DoA) estimates garnered through applying Sound Source Localization
(SSL) on consecutive time windows (Vo et al., 2015)[276]. Nevertheless, several
Deep Learning (DL)-based SSL systems have demonstrated enhanced accuracy in
localizing moving sources when trained on datasets encompassing this type of source
(Adavanne et al., 2019b[5]; Diaz-Guerra et al., 2021b[71]; Guirguis et al., 2020[94];
He et al., 2021b[105]).

In certain instances, due to the limited availability of real-world datasets contain-
ing moving sources and the complexities associated with simulating signals involving
mobile sources, certain systems trained on static sources have displayed commendable
to satisfactory performance in localizing moving sources [90, 186, 252].

9.5 Microphones

Different microphone types are used in Sound Event Detection and Localization.

Microphones Types

The most commonly used types are omnidirectional, directional, and array
microphones.

• Omnidirectional microphones capture sound from all directions and are
suitable for capturing ambient sound or a large group of speakers.

• Directional microphones capture sound from a specific direction and are
useful when trying to isolate a single speaker in a noisy environment.

• Microphone arrays are used to capture sound from multiple directions and
can be used to estimate the direction of arrival of sound. They are useful for
localizing sound sources in 3D space. The choice of microphone type depends
on the specific application and the environment in which it is used.

• Ambisonics microphones are a type of microphone that captures sound
from all directions in a full-sphere format, allowing for immersive and spatial
audio recording. They use multiple capsules to capture sound from different
directions, which is then combined into a single audio stream. The order of
an ambisonics microphone refers to the number of capsules used to capture
sound and the resulting number of audio channels. Higher-order ambisonics
microphones capture more spatial detail but also require more processing power
and storage space.

1. First Order: Four-channel microphone for capturing full-sphere sound

2. Second Order: Six-channel microphone for capturing full-sphere sound
with improved spatial resolution

3. Third Order: Eight-channel microphone for capturing full-sphere sound
with even higher spatial resolution
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Figure 4.3: Ambisonics Microphones rapresentation

In addition to the microphone type, other factors such as the microphone place-
ment and distance from the sound source also play a crucial role in the quality of
the captured sound. For example, placing a directional microphone too close to a
sound source can result in distortion, while placing it too far away can result in a
weak signal. Moreover, the microphone type and placement also affect the accuracy
of Sound Event Detection and Localization. In some cases, it may be necessary to
use multiple microphones to capture sound from different directions and improve the
accuracy of the estimation. Overall, choosing the appropriate microphone type and
placement is crucial for capturing high-quality sound and improving the accuracy of
SSL systems.

Microphones Configurations

SSL systems use multiple microphones arranged in different geometrical config-
urations called microphone array configurations. Researchers can choose any type
of configuration such as linear, circular, tetrahedral, etc. Figure 4.4 shows different
configurations, including binaural, tri-aural, tetra-aural, and clustered microphone
arrays.

Microphones Considerations

It is important to consider the specific application and environment in which
the system will be used to make an informed decision. To improve the accuracy of
Sound Source Localization and Localization (SSL), it is important to consider several
factors such as the environment, the acoustic characteristics of the environment, the
microphone arrangement, and the quality of the acoustic signal. Additionally, it may
be necessary to use multiple microphones to capture sound from different directions
and improve the accuracy of the estimation. While there are several models available
for SEDL, it is important to note that these models are often dependent on the
specific application and environment in which they are used, and the choice of model
should be made after careful consideration of these factors.

9.6 Sound Source Localization Design

Figure 4.5 shows a flowchart of the SSL system design, including extracting sound
signal components, recording with different microphones, and analyzing variations
in the signal components using algorithms like AML, GCC, MCCC, TDOA, or

70



Figure 4.4: Microphones Configurations

CNN. SED and source localization in 1D, 2D, or 3D planes is achieved using these
algorithms.

First, multichannel signals recorded with an array of I microphones distributed
in space contain information about the location of the source(s). Indeed, when the
microphones are close to each other compared to their distance to the source(s), the
microphone signal waveforms, although appearing similar from a distance, exhibit
more or less notable and complex differences in terms of delay and amplitude,
depending on the experimental setup. These interchannel differences are due to
distinct propagation paths from the source to the different microphones, for both
the direct path (line of sight between source and microphone) and the numerous
reflections that compose the reverberation in an indoor environment. In other words,
a source signal sj(t) is convolved with different room impulse responses (RIRs) ai,j(t),
which depend on the source position, microphone position and directivity (I denotes
the microphone index in the array), and acoustic environment configuration (e.g.,
room shape):

xi(t) = ai,j(t) ∗ sj(t) + ni(t) =
T−1∑
τ=0

ai,j(τ) ∗ sj(t− τ) + ni(t) (4.1)

where xi(t) denotes the resulting recorded signal at microphone i, ni(t) is the noise
signal at microphone i (diffuse, “background” noise and possibly some sensor noise),
and ∗ denotes the convolution (note that we work with digital signals and t and τ
are discrete-time indexes; T is the effective length of the RIR).
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Figure 4.5: Sound Source Localization System Design

Therefore, the recorded signal contains information on the relative source-to-
microphone array position. The microphone signals are often expressed in the
time-frequency (TF) domain, using the short-term Fourier transform (STFT), where
the convolution in Eq. 4.1 is assumed to transform into a product between the STFT
of the source signal Sj(f, n) and the acoustic transfer function (ATF) Ai,j(f), which
is the (discrete) Fourier transform of the corresponding RIR and is thus encoding the
source spatial information (f denotes the frequency bin, and n is the STFT frame
index)

Xi(f, n) = Ai,j(f)Sj(f, n) +Ni(f, n) (4.2)

When several, say J, sources are present, the recorded signal is the sum of their
contribution (plus the noise),

xi(t) =
J∑

j=1

ai,j(t) ∗ sj(t−) + ni(t) (4.3)

This latter equation is often reformulated in the Time-Frequency domain in
matrix form,

X(f, n) = A(f)S(f, n) +N(f, n) (4.4)

where X(f, n) = [X1(f, n), . . . ,XI(f, n)]
T is the microphone signal vector, A(f)

is the matrix gathering the ATFs, S(f, n) = [S1(f, n), . . . ,SJ(f, n)]
T is the source

signal vector, and N(f, n) = [N1(f, n), . . . ,NI(f, n)]
T is the noise vector.
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In that multi-source case, the difficulty of the SSL problem is that the contributions
of the different sources generally overlap in time. SSL then requires to proceed to
some kind of source clustering, which is generally easier to proceed in the frequency
or TF domain due to the natural sparsity of audio sources in that domain (Rickard,
2002).

Then the recorded signals from the microphone array are passed into Sound
Source Localization methods to estimate DOA.
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9.7 Sound Source Localization Methods

The SSL models are based on various technologies and methods, including tradi-
tional Mathematical methods like: Time Difference of Arrival (TDOA) localization,
Beamforming localization, and Deep Learning Methods.

Classic Methods

Before the emergence of Deep Learning (DL), a set of signal processing techniques
was developed to address Sound Source Localization (SSL). DiBiase et al. (2001) [72]
conducted an extensive review of these techniques, while Argentieri et al. (2015)[12]
explored them within the context of robotics. This section provides a concise overview
of prevalent conventional SSL methods. This presentation serves a dual purpose:
firstly, conventional SSL methods are commonly used as reference benchmarks for
DL-based approaches; secondly, numerous DL-based SSL methods employ input
features extracted using conventional methods (as detailed in Section 9.7).

The time difference of arrival (TDoA) When the microphone array’s geometry
is known, the estimation of Direction of Arrival (DoA) can be achieved by estimating
the time difference of arrival (TDoA) of sources between microphones (Xu et
al., 2013)[289].

These models use delays between the arrival of the acoustic signal at different
positions of a microphone to calculate the speaker’s position. The time for the sound
signal to reach the microphone is calculated and speed of sound signal is measured.
The difference in arrival of sound signal reaching both the microphones is used to
calculate the distance of sound source from microphones.

∆d = c ∗∆t (4.5)

where c is speed of light, δt, is difference in arrival times at microphones.

∆d =
√

(x2 − x)2 − (y2 − y)2 −
√

(x1 − x)2 − (y1 − y)2 (4.6)

where (x1, y1) and (x2, y2) are known positions of beacons. By using non-linear regres-
sion, equation is converted to form hyperbola. After calculating many hyperbolas,
SSL can be done by finding the intersection.

One of the widely used methods for 2-microphone arrays is the Generalized
Cross Correlation (CC) with Phase Transform (GCC-PHAT) method, ini-
tially introduced by Knapp and Carter (1976) [127]. This method involves calculating
the inverse Fourier transform of a weighted cross-power spectrum (CPS) between
the microphone signals of the two microphones.

r1,2(τ) =
F−1∑
f=0

X1(f)X2(f)
∗

|X1(f)X2(f)∗|
ej2π(fτ/N) (4.7)

where Xi(f) are the N − point Fourier transform of the microphone signals
xi(t), and X1(f)X2(f)

∗ is the CPS (∗ denotes the complex conjugate). The TDoA
estimate is then obtained by finding the time delay between the microphone signals
that maximizes the GCC-PHAT function,

τ̂ = argmax1,2(τ) (4.8)
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The TDoA estimate is subsequently derived by identifying the time delay between
microphone signals that maximizes the GCC-PHAT function. The GCC approach has
been extended to encompass arrays with more than two microphones, demonstrating
that localization could be improved by leveraging multiple microphone pairs (Benesty
et al., 2008; DiBiase et al., 2001)[20, 72]. Utilizing an acoustic power map of x
represents the spatial coordinates on a regular grid, offers an alternative approach to
ascertain the Direction of Arrival (DoA) for one or multiple sound sources, as peaks
in this map generally correspond to the sources’ DoA.

The Steered-Response Power (SRP) map has seen extensive use in acoustic
applications. It involves directing delay and sum beamformers towards candidate
grid positions and quantifying the energy originating from these directions. The
PHAT (Phase Transform) version of SRP called SRP-PHAT, known for its
robustness against reverberation, is notably popular. Essentially, it can be obtained
by averaging the Generalized Cross-Correlation with Phase Transform (GCC-PHAT)
computed for all pairs of microphones [72],

P(x) =
M∑

m1=1

M∑
m2=m1+1

r1,2(τm1,m2(x)) (4.9)

where τm1,m2(x) is the delay between the microphones m1 and m2 associated with
the spatial position x.

An alternative approach to constructing the SRP-based acoustic map, which is
often computationally intensive due to grid searching, is source localization through
sound intensity. The utilization of sound intensity for source localization has a
well-established history (e.g., [18, 107, 115, 179, 211, 257]). In favorable acoustic
conditions, sound intensity aligns with the direction of sound wave propagation,
enabling efficient Direction of Arrival (DoA) estimation. Regrettably, its precision
diminishes rapidly in the presence of acoustic reflections [59].

Subspace methods represent another classical category of localization algorithms.
These techniques center around computing the Cross-Power Spectral density
(CPS) matrix R(f), which is defined as follows:

R(f) =
N∑

n=1

X(f, n)X(f, n)H (4.10)

Here, X(f, n) signifies the Short-Time Fourier Transform (STFT) or, in a broader
sense, a local discrete Fourier transform of the multichannel signal vector described in
Equation (4), where H denotes the Hermitian operator. Subsequently, these methods
involve the eigenvalue decomposition (EVD) of R(f). When considering uncorrelated
target source signals and noise, the Multiple Signal Classification (MUSIC) method
(Schmidt, 1986)[235] applies EVD to estimate the subspaces for both signals and
noise.

Following Equation 4.4, the signal subspace bases are presumed to correspond to
the columns of the mixing matrix A(f), which represents the multichannel Acoustic
Transfer Functions (ATFs) of the sources, often referred to as steering vectors in this
context. These signal or noise subspace bases are then harnessed for investigating a
specific direction to detect the presence of a source, employing spatial filtering or
beamforming techniques [20, 263].

This time-intensive search process can be alleviated through the use of the
Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT)
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algorithm (Roy and Kailath, 1989)[226], which leverages the inherent structure of
the source subspace to directly infer the Direction of Arrival (DoA) of the source.
However, it’s worth noting that ESPRIT often sacrifices some predictive accuracy
compared to MUSIC (Mabande et al., 2011)[159]. It’s important to mention that
MUSIC and ESPRIT are designed for narrowband signals, although there have been
wideband extensions proposed [73, 110].

Subspace methods are known for their robustness against noise and their capa-
bility to yield highly accurate estimates, but they are susceptible to the effects of
reverberation.

Methods based on probabilistic generative mixture models have been pro-
posed by, e.g. [74, 147, 165, 166, 223, 237, 285]. Typically, the models are variants
of Gaussian mixture models (GMMs), with one Gaussian component per source
to be localized or per candidate source position. In very few papers ([166]), the
model is trained offline with a dedicated training dataset. But most often, the model
parameters are directly estimated “at test time,” that is using the multichannel
signal containing the sources to localize. This is done by maximizing the data
likelihood function with histogram-based or expectation-maximization (EM) algo-
rithms exploiting the sparsity of sound sources in the TF domain [220], which can be
computationally intensive. A GMM variant functioning directly in regression mode,
i.e., a form of Gaussian mixture regression (GMR), was proposed for single-source
localization by [61] and later extended to multi-source localization (and possibly
separation) [60, 62]. The GMR is locally linear but globally non-linear and the
estimation of the model parameters is done offline on training data. Hence the spirit
is close to DNN-based SSL. White noise signals convolved with synthetic RIRs were
used for training. The method was shown to generalize well to speech signals, which
are sparser than noise in the TF domain, thanks to the use of a latent variable
modeling the signal activity in each TF bin.

Mixture models have a strong association with Bayesian inference, a framework
that takes into account the posterior distribution of model parameters based on the
observed data, involving both the likelihood function and a prior distribution of
the model parameters. Escolano et al. (2014) explored the application of Bayesian
inference within the context of a Laplacian source mixture model, utilizing GCC-
PHAT features in a setup with a two-microphone array. Remarkably, they employed
a two-tiered Bayesian inference approach: one for estimating the Number of Sources
(NoS), employing Bayesian model selection as an integral part, and another for
estimating the model parameters, which subsequently encompass the associated
source Directions of Arrival (DoAs), using posterior distribution assessment. In this
research, the evaluation of these associated distributions was carried out through
sampling techniques, including methods such as Markov Chain Monte Carlo (MCMC).

This same methodology found further application in subsequent studies. Bush
and Xiang (2018) extended it to a coprime array configuration, which consists of
two superimposed spatially undersampled uniform linear arrays (Vaidyanathan and
Pal, 2010). Additionally, Landschoot and Xiang (2019) applied this approach in the
spherical harmonics (SH) domain, employing a spherical microphone array setup (as
detailed in Sec. V).
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Deep Learning Methods

In this section, we delve into the neural network architectures that have been
proposed within the literature to tackle the SSL problem. However, we abstain
from outlining the fundamental principles of these neural networks, as they have
been comprehensively expounded in the broader DL literature (Chollet, 2017 [46];
Goodfellow et al., 2016 [86]; LeCun et al., 2015[142]). Developing DNNs for a
specific application often necessitates exploring various architectures and potentially
amalgamating them, along with fine-tuning their hyperparameters. This has been
the trajectory of SSL over the past decade, mirroring the overarching progression of
DNNs towards more intricate architectures or innovative models adopted by both
the DL and SP communities at large. These models extend beyond the SSL problem,
encompassing realms like attention models. Put differently, the DNN architectures
employed in SSL are frequently derived from other studies spanning diverse domains,
underpinned by their proven efficacy in audio signals or other signal types. Similarly,
the amalgamation of different models is a common practice, whether in parallel or
sequentially.

Consequently, our exposition is structured according to the categories of layers
integrated into the networks, taking a gradual and comprehensive approach towards
complexity: networks within a given category can encompass layers from preceding
categories. Thus, our initial focus is on systems grounded in feedforward neural
networks (FFNNs). Subsequently, we delve into CNNs and recurrent neural networks
(RNNs), often encompassing certain feedforward layers. Following this, we survey
architectures that interweave CNNs with RNNs, denominated as convolutional
recurrent neural networks (CRNNs). Our attention then shifts to neural networks
that incorporate residual connections and those equipped with attention mechanisms.
Lastly, we present SSL systems characterized by an encoder-decoder architecture.

FFNNs: Feed Forward Neural Networks A few pioneering SSL methods
using shallow neural networks (Perceptron or 1-hidden layer MLP) and applied in
“unrealistic” setups (e.g., assuming direct-path sound propagation only). One of
the first uses of an MLP for SSL was proposed by Kim and Ling (2011) [123], who
actually considered several MLPs. One network estimates the NoS, after which a
distinct network is used for SSL for each considered NoS. The authors evaluated
their method on reverberant data even though they assumed an anechoic setting.
Tsuzuki et al. (2013) [261] proposed using a complex-valued MLP in order to process
complex two-microphone-based features, which led to better results than using a
real-valued MLP. Youssef et al. (2013) [297] also used an MLP to estimate the
azimuth of a sound source from a binaural recording made with a robot head. The
interaural time difference (ITD) and the interaural level difference (ILD) values
were separately fed into the input layer and were each processed by a specific set
of neurons. A single-hidden-layer MLP was used by Xiao et al. (2015)[288], taking
GCC-PHAT-based features as inputs and tackling SSL as a classification problem,
which showed an improvement over conventional methods on simulated and real
data. A similar approach was proposed by Vesperini et al. (2016) [274], but the
localization was done by regression in the horizontal plane.

Naturally, MLPs with deeper architecture (i.e., more hidden layers) have also
been investigated for SSL. Roden et al. (2015) [222] compared the performance of
an MLP with two hidden layers and different input types, the number of hidden
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neurons being linked to the type of input features. Yiwere and Rhee (2017) [295]
used an MLP with three hidden layers (tested with different numbers of neurons) to
output source azimuth and distance estimates. An MLP with four hidden layers was
tested by He et al. (2018a) [103] for multi-source localization and speech/non-speech
classification, showing similar results as a 4-layer CNN.

Ma et al. (2015)[156] proposed using a different MLP for different frequency
sub-bands, with each MLP having eight hidden layers. This idea is based on the
assumption that, in the presence of multiple sources, each frequency band is mostly
dominated by a single source, which enables the training to be done exclusively on
single-source data. The output of each sub-band MLP corresponds to a probability
distribution on azimuth regions, and the final azimuth estimations are obtained by
integrating the probability values over the frequency bands. Another system in the
same vein was proposed by Takeda et al. in several papers (Takeda and Komatani,
2016a,b, 2017; Takeda et al., 2018)[254, 255, 256]. In these works, the eigenvectors of
the recorded signal interchannel correlation matrix were separately fed per frequency
band into parallel branches of the network, particularly into specific fully-connected
layers. Then, several additional fully-connected layers progressively integrated the
frequency-dependent outputs. The authors showed that this specific architecture
outperforms a more conventional 7-layer MLP and the classical MUSIC algorithm
on anechoic and reverberant single- and multi-source signals. Opochinsky et al.
(2019) [187] proposed a small 3-layer MLP to estimate the azimuth of a single source
using the relative transfer function (RTF) of the signal. Their approach is weakly
supervised since one part of the loss function is computed without the ground truth
DoA labels.

The indirect use of an MLP was explored by Pak and Shin (2019)[190], who used
a 3-layer MLP to enhance the interaural phase difference (IPD) of the input signal,
which was then used for DoA estimation.

CNNs: Convolutional Neural Networks Hirvonen (2015) [109] was the first
to use a CNN for SSL. He employed this architecture to classify an audio signal
containing one speech or musical source into one of eight spatial regions (see Fig.
3). This CNN is composed of four convolutional layers to extract feature maps
from multichannel magnitude spectrograms, followed by four fully-connected layers
for classification. Classical pooling is not used because, according to the author,
it does not seem relevant for audio representations. Instead, a 4-tap stride with a
2-tap overlap is used to reduce the number of parameters. This approach shows
good performance on single-source signals and is capable of adapting to different
configurations without hand-engineering. However, two topical issues of such a
system were pointed out by the author: the robustness of the network with respect
to a shift in source location, and the difficulty of interpreting the hidden features.

Chakrabarty and Habets also designed a CNN to predict the azimuth of one
(Chakrabarty and Habets, 2017a)[39] or two (Chakrabarty and Habets, 2017b,
2019b)[40, 41] speakers in reverberant environments. The input features are the
multichannel STFT phase spectrograms. In Chakrabarty and Habets (2017a), they
proposed using three successive convolutional layers with 64 filters of size 2×2 to
consider neighboring frequency bands and microphones. In Chakrabarty and Habets
(2017b) [40], they reduced the filter size to 2×1 (1 in the frequency axis) because of
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the W-disjoint orthogonality (WDO) assumption for speech signals, which assumes
that several speakers are not simultaneously active in a same TF bin (Rickard, 2002)
[220]. In Chakrabarty and Habets (2019b) [41], they demonstrated that for an
M-microphone array, the optimal number of convolutional layers for exploiting phase
correlations between the neighboring microphones is M – 1.

He et al. (2018a) [103] compared a 4-layer MLP and a 4-layer CNN for the
multi-speaker detection and localization task. The results showed similar accuracy
for both architectures. A deeper architecture was proposed by Yalta et al. (2017)
[292], with 11 to 20 convolutional layers depending on the experiments. These deeper
CNNs showed robustness against noise compared to MUSIC, as well as smaller
training time, but this was partly due to the presence of residual blocks. A similar
architecture was presented by He et al. (2018b) [102], with many convolutional layers
and some residual blocks, although with a specific multi-task configuration. The end
of the network was split into two convolutional branches, one for azimuth estimation,
and the other for speech/non-speech signal classification.

While most localization systems aim to estimate the azimuth or both the az-
imuth and elevation, Thuillier et al. (2018) [258] investigated the estimation of only
the elevation angle using a CNN with binaural input features: the ipsilateral and
contralateral head-related transfer function (HRTF) magnitude responses. Vera-Diaz
et al. (2018) [271] chose to apply a CNN directly on raw multichannel waveforms,
assembled side by side as an image, to predict the Cartesian coordinates (x, y, z) of a
single static or moving speaker. The successive convolutional layers contain around a
hundred filters from size 7×7 for the first layers to 3×3 for the last layer. Ma and Liu
(2018) [157] also used a CNN to perform regression, but they used the CPS matrix as
an input feature. To estimate both the azimuth and elevation, Nguyen et al. (2018)
used a relatively small CNN (two convolutional layers) in regression mode, with
binaural input features. A similar approach was considered by Sivasankaran et al.
(2018) [247] for speaker localization based on a CNN. They showed that injecting a
speaker identifier, particularly a mask estimated for the speaker uttering a given key-
word, alongside the binaural features at the input layer improved the DoA estimation.

A joint VAD and DoA estimation CNN was developed by Vecchiotti et al.
(2018)[270]. They showed that both problems can be handled jointly in a multi-
room environment using the same architecture, although considering separate input
features (GCC-PHAT and log-mel-spectrograms) in two separate input branches.
These branches are then concatenated in a further layer. Vecchiotti et al. (2019b)
[269] extended this work by exploring several variant architectures and experimen-
tal configurations, and Vecchiotti et al. (2019a) [268] developed an end-to-end
auditory-inspired system based on a CNN, with Gammatone filter layers included
in the neural architecture. A method based on mask estimation was proposed by
Zhang et al. (2019b)[304], in which a TF mask was estimated and used to either
clean or be appended to the input features, facilitating the DoA estimation by a CNN.

Nguyen et al. (2020a) [181] presented a multi-task CNN containing ten convo-
lutional layers with average pooling, inferring both the NoS and the sources’ DoA.
They evaluated their network on signals with up to four sources, showing very good
performance in both simulated and real environments. A small 3-layer CNN was
employed by Varanasi et al. (2020) [264] to infer both azimuth and elevation using
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signals decomposed with third-order SH. The authors tried several combinations of
input features, including using only the magnitude and/or the phase of the spherical
harmonic decomposition.

In the context of hearing aids, a CNN was applied to both VAD and DoA esti-
mation by Varzandeh et al. (2020) [265]. This system is based on two input features,
GCC-PHAT and periodicity degree, both fed separately into two convolutional
branches. These two branches are then concatenated in a further layer, which is
followed by feedforward layers. Fahim et al. (2020) applied an 8-layer CNN to the
so-called modal coherence of first-order Ambisonics input features for the localization
of multiple sources in a reverberant environment. They proposed a new method
to train a multi-source DoA estimation network with only single-source training
data, showing an improvement over the system of Chakrabarty and Habets (2019b)
[41], especially for signals with three speakers. Hao et al. (2020) [98] investigated a
real-time implementation of SSL using a CNN with a relatively small architecture
(three convolutional layers).

Krause et al. (2020a) [133] investigated the use of several types of convolution.
They reported that networks using three-dimensional (3D) convolutions (on the
time, frequency, and channel axes) achieved better localization accuracy compared
to those based on two-dimensional (2D) convolutions, complex convolutions, and
depth-wise separable convolutions (all of them on the time and frequency axes),
but with a high computational cost. They also showed that the use of depth-
wise separable convolutions leads to a good trade-off between accuracy and model
complexity (to our knowledge, they were the first to explore this type of convolutions).

Bologni et al. (2021)[28] proposed a neural network architecture including a set
of 2D convolutional layers for frame-wise feature extraction, followed by several one-
dimensional (1D) convolutional layers in the time dimension for temporal aggregation.
Diaz-Guerra et al. (2021b)[71] applied 3D convolutional layers on SRP-PHAT power
maps computed for both azimuth and elevation estimation. They also used a couple
of 1D causal convolutional layers at the end of the network to perform single-source
tracking. Their whole architecture was designed to function in fully causal mode so
that it can be adapted for real-time applications. Wu et al. (2021a)[286] proposed
using a supervised image mapping approach inspired from computer vision works and
referred to as image translation. They used a CNN (completed with residual layers)
to map an input 2D image [DoA features extracted by conventional beamforming
and reshaped as a function of Cartesian coordinates (x, y)] into an output 2D image
of the target source position (in which the pixel intensity is decreasing rapidly with
the distance to the source), from which the source location is obtained.

As mentioned in the introduction, the DCASE Challenge includes a SELD task,
and CNNs have also been used in some of the challenge candidate systems (Politis et
al., 2020b[205]). Chytas and Potamianos (2019)[50] used convolutional layers with
hundreds of filters of size 4×10 for azimuth and elevation estimation in a regression
mode. Kong et al. (2019)[131] compared different numbers of convolutional layers
for SELD, while an 8-layer CNN was proposed by Noh et al. (2019)[185] to improve
the results over the baseline.

An indirect use of a CNN was proposed by Salvati et al. (2018)[230]. They
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trained the neural network to estimate a weight for each of the narrow-band SRP
components fed at the input layer in order to compute a weighted combination of
these components. In their experiments, they showed on a few test examples that
this allowed for a better fusion of the narrow-band components and reduced the
effects of noise and reverberation, leading to better localization accuracy.

In the DoA estimation literature, a few works have explored the use of dilated
convolutions in DNNs. Dilated convolutions, also known as atrous convolutions,
are a type of convolutional layer in which the convolution kernel is wider than the
classical one but zeros are inserted so that the number of parameters remains the
same. Formally, a 1D dilated convolution with a dilation factor l is defined by:

(x ∗ k)(n) =
∑
i

x(n− li)k(i) (4.11)

where x is the input and k the convolution kernel. The conventional linear convolution
is obtained with l=1. This definition extends to multidimensional convolution.

Chakrabarty and Habets (2019a) [91] demonstrate that incorporating dilated
convolutions with gradually increasing dilation factors reduces the optimal number
of convolutional layers of their original CNN architecture (Chakrabarty and Habets,
2019b)[41] (discussed previously in this section). This leads to an architecture with
similar SSL performance and lower computational cost.

RNNs: Recursive Neural Networks There are few published works on SSL
using only RNNs, as recurrent layers are often combined with convolutional layers.
Nguyen et al. (2021a)[184] used an RNN to align SED and DoA predictions, which
were obtained separately for each possible sound event type. The RNN was ulti-
mately used to determine which SED prediction matched which DoA estimation.
A bidirectional LSTM network was used by Wang et al. (2019)[281] to estimate a
TF mask to enhance the signal, further facilitating DoA estimation by conventional
methods such as SRP or subspace methods.

CRNNs: Convolutional Recursive Neural Networks In the series of papers
by Adavanne et al. (Adavanne et al., 2019a, 2018, 2019b) [3, 4, 5], the authors
used a CRNN for SELD, in a multi-task configuration, with first-order Ambisonics
(FOA) input features. In Adavanne et al. (2018)[3], their architecture contained
a series of successive convolutional layers, each followed by a max-pooling layer
and two bidirectional gated recurrent unit (BGRU) layers. Then, a feedforward
layer provided an estimation of the spatial pseudo-spectrum (SPS) provided by the
MUSIC algorithm (Schmidt, 1986)[235], acting as an intermediary output (see Fig.
4). This SPS was then fed into the second part of the neural network, which was
composed of two convolutional layers, a dense layer, two BGRU layers, and a final
feedforward layer for azimuth and elevation estimation by classification. The use of
an intermediary SPS output has been proposed to help the neural network learn a
representation that has proven to be useful for SSL using traditional methods.

In Adavanne et al. (2019a)[3] and Adavanne et al. (2019b)[5], this intermediary
output was no longer used. Instead, the DoA was directly estimated using a block of
convolutional layers, a block of BGRU layers, and a feedforward layer. This system is
able to localize and detect several sound events even if they overlap in time, provided
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they are of different types (e.g., speech and car). This CRNN was the baseline system
for Task 3 of the DCASE Challenge in 2019 and 2020. Therefore, it has inspired
many other works, and many DCASE Challenge candidate systems were built on the
system of Adavanne et al. (2019a)[3] with various modifications and improvements.

For example, Lin and Wang (2019)[150] added Gaussian noise to the input spec-
trograms to train the network to be more robust to noise. Lu (2019)[152] integrated
some additional convolutional layers and replaced the BGRU layers with bidirec-
tional LSTM layers. Leung and Ren (2019)[145] used the same architecture with
all combinations of cross-channel power spectra, whereas the replacement of input
features with group delays was tested by Nustede and Anemüller (2019). GCC-
PHAT features were added as input features by Maruri et al. (2019)[56]. Zhang et
al. (2019a)[303] used data augmentation during training and averaged the output
of the network for a more stable DoA estimation. Xue et al. (2019)[291] sent the
input features separately into different branches of convolutional layers, log-mel,
and constant Q-transform features on the one hand, and phase spectrograms and
CPS features on the other hand. In [37] they concatenated the log-mel spectrogram
and GCC-PHAT features and fed them into two separate CRNNs for SED and
DoA estimation. In contrast to the baseline of Adavanne et al. (2019a)[3], more
convolutional layers and one single BGRU layer were used. The convolutional part
of the DoA network was transferred from the SED CRNN, which was followed
by fine-tuning of the DoA branch, labelling this method as two-stage. This led
to a notable improvement in localization performance over the DCASE Challenge
baseline of Adavanne et al. (2019a)[3]. Small changes to this baseline were also
tested by Pratik et al. (2019)[206], such as the use of Bark-scale spectrograms as
input features, the modification of the activation function or pooling layers, and the
use of data augmentation, resulting in noticeable improvements for some experiments.

The same baseline neural architecture of Adavanne et al. (2019a)[3] was used by
Kapka and Lewandowski (2019)[119], with one separate (but identical, except for the
output layer) CRNN instance for each subtask: source counting (up to two sources),
DoA estimation of source 1 (if applicable), DoA estimation of source 2 (if applicable),
and sound type classification. The authors showed that their method was more
efficient than the baseline. Krause and Kowalczyk (2019)[132] explored different
manners of splitting the SED and DoA estimation tasks in a CRNN. While some
configurations showed an improvement in SED, the localization accuracy was below
the baseline for the reported experiments. Park et al. (2019b)[194] investigated a
combination of a gated linear unit (GLU, a convolutional block with a gated mecha-
nism) and a trellis network (containing convolutional and recurrent layers, see the
paper by Bai et al. (2019)[16] for details), yielding better results than the baseline.
The authors extended this work for the DCASE 2020 Challenge by improving the
overall architecture and investigating other loss functions (Park et al., 2020)[196]. A
non-direct DoA estimation scheme was also derived by Grondin et al. (2019)[89],
who estimated the TDoA using a CRNN, from which they inferred the DoA.

We also found propositions of CRNN-based systems in the 2020 edition of the
DCASE Challenge. Singla et al. (2020)[245] used the same CRNN as in the baseline
of Adavanne et al. (2019a)[3], except that they did not use two separated output
branches for SED and DoA estimation. Instead, they concatenated the SED output
with the output of the previous layer to estimate the DoA. Song (2020)[248] used
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separated neural networks similar to the one of Adavanne et al. (2019a)[3] to address
NoS estimation and DoA estimation in a sequential way. Multiple CRNNs were
trained by Tian (2020)[259]: one to estimate the NoS (up to two sources), another to
estimate the DoA assuming one active source, and another (same as the baseline) to
estimate the DoAs of two simultaneously active sources. Cao et al. (2020) designed
an end-to-end CRNN architecture to detect and estimate the DoA of possibly two
instances of the same sound event. The addition of 1D convolutional filters was
investigated by Ronchini et al. (2020)[224] to exploit the information along the fea-
ture axes. Sampathkumar and Kowerko (2020)[231] augmented the baseline system
of Adavanne et al. (2019a)[3] by providing the network with more input features
(log-mel spectrograms, GCC-PHAT, and intensity vector).

Independently of the DCASE Challenge, the CRNN of Adavanne et al. (2019a)
was adapted by Comminiello et al. (2019)[53] to receive quaternion FOA input
features, which slightly improved the CRNN performance. Perotin et al. proposed
using a CRNN with bidirectional LSTM layers on the FOA pseudo-intensity vector to
localize one (Perotin et al., 2018b)[201] or two (Perotin et al., 2019b)[202] speakers.
They showed that this architecture achieves very good performance in simulated and
real reverberant environments with static speakers (both types of input features are
discussed in Sec. V). This work was extended by Grumiaux et al. (2021a)[90], who
obtained a substantial improvement in performance over the CRNN of Perotin et al.
(2019b)[202] by adding more convolutional layers with less max-pooling, to localize
up to three simultaneous speakers.

Non-square convolutional filters and a unidirectional LSTM layer were used in
the CRNN architecture of Li et al. (2018)[146]. Xue et al. (2020)[290] presented a
CRNN with two types of input features: the phase of the CPS and the signal wave-
forms. The former was first processed by a series of convolutional layers before being
concatenated with the latter. Another improvement of the network of Adavanne et
al. (2019a)[4] was proposed by Komatsu et al. (2020)[130], who replaced the classical
convolutional blocks with GLUs, based on the hypothesis that GLUs are better suited
for extracting relevant features from phase spectrograms. This has led to a notable
improvement of localization performance compared to the baseline of Adavanne et
al. (2019a)[3]. Bohlender et al. (2021)[26] proposed an extension of the system of
Chakrabarty and Habets (2019b)[41], in which LSTMs and temporal convolutional
networks (TCNs) replaced the last dense layer of the former architecture. A TCN
was made of successive 1D dilated causal convolutional layers with increasing dilated
factors (Lea et al., 2017)[141]. The authors showed that taking the temporal context
into account with such temporal layers actually improves localization accuracy.

Finally, we can mention the original approach of Nguyen et al. (2020c)[183] in
which a two-step hybrid approach with two CRNNs is used: In the first step, a first
CRNN is used for SED and a single-source histogram-based (conventional) method
is used for DoA estimation. In the second step, a second CRNN-based network,
referred to as a sequence matching network (SMN), is used to match the estimated
sequences from the SED and DoA branches. This approach is motivated by the fact
that overlapping sounds often have different onsets and offsets, and by matching
the outputs of the two branches, an estimated DoA can be associated with the
corresponding sound class. This approach was extended to localize moving sources
in the framework of the DCASE 2020 Challenge, by adapting the resolution of the
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azimuth and elevation histograms and by using an ensemble of SMNs (Nguyen et al.,
2020b)[182].

Residual Neural Networks Pujol et al. (2019, 2021)[208, 209] introduced the
integration of residual connections alongside 1D dilated convolutional layers featuring
increasing dilation factors in their work. They utilized the multichannel waveform as
the network input, followed by the segmentation of the architecture into multiple
subnetworks, each containing dilated convolutional layers functioning as filter banks.

In another study, Ranjan et al. (2019)[212] combined a modified ResNet architec-
ture (He et al., 2016)[101] with recurrent layers for Single-Channel Acoustic Event
Localization and Detection (SELD). This combination exhibited a notable reduction
in Direction of Arrival (DoA) error by more than 20° in comparison to the baseline
model of Adavanne et al. (2019a)[3]. Similarly, Bai et al. (2021)[207] adopted the
ResNet model (He et al., 2016)[101], followed by two Gated Recurrent Unit (GRU)
layers and two fully-connected layers for SELD.

Kujawski et al. (2019)[136] applied the original ResNet architecture to address
the single-source localization problem.

Naranjo-Alcazar et al. (2020)[178] proposed an architecture, particularly interest-
ing for the DCASE 2020 Challenge, which featured residual connections. Before the
recurrent layers, comprising two Bidirectional Gated Recurrent Unit (BGRU) layers,
three successive residual blocks processed the input features. These residual blocks
included two residual convolutional layers, followed by a squeeze-excitation module
(Hu et al., 2020)[111], aiming to enhance the modeling of interdependencies among
input feature channels compared to conventional convolutional layers. Sundar et al.
(2020)[252] also employed similar squeeze-excitation mechanisms for multi-source
localization. Another combination of a residual network with squeeze-excitation
blocks was presented by Huang and Perez (2021)[112], who implemented it within
the framework of a sample-level Convolutional Neural Network (CNN) (Lee et al.,
2017)[143]. These blocks were subsequently followed by two Conformer blocks (de-
tails in the next subsection). The motivation behind this fusion of diverse models
stemmed from their observed effectiveness in other audio processing tasks, such as
Sound Source Localization (SED).

Shimada et al. (2020b, 2020a)[244, 243] adapted the MMDenseLSTM architec-
ture, originally proposed by Takahashi et al. (2018)[253] for sound source separation,
for the SELD problem. This architecture comprised a series of blocks featuring
convolutions and recurrent layers with residual connections. It exhibited strong
performance in the DCASE 2020 Challenge compared to other participants.

Wang et al. (2020)[279] pursued an ensemble learning approach involving various
variants of residual neural networks and recurrent layers to estimate DoA. Their
approach resulted in the highest performance achieved in the DCASE 2020 Challenge.

Guirguis et al. (2020)[94] devised a neural network that incorporated a Tem-
poral Convolutional Network (TCN) in addition to traditional 2D convolutions
and residual connections. Instead of relying on recurrent layers, the architecture
employed TCN blocks, which consisted of several residual blocks, including a 1D
dilated convolutional layer with an increasing dilation factor. This alteration not
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only improved SELD performance slightly compared to the baseline of Adavanne et
al. (2019a) but also made the hardware implementation of the network more efficient.

Yasuda et al. (2020)[294] took an indirect approach by leveraging a Convolutional
Recurrent Neural Network (CRNN) with residual connections for Direction of Arrival
(DoA) estimation using a First-Order Ambisonics (FOA) pseudo-intensity vector
input. They initially employed a CRNN to remove the reverberant component of the
FOA pseudo-intensity vector. Subsequently, another CRNN was used to estimate a
Time-Frequency (TF) mask, which was applied to attenuate TF bins with significant
noise levels. Finally, the source DoA was directly estimated from the dereverberated
and denoised pseudo-intensity vector.

Attention- based NN The application of attention models has proliferated across
a diverse array of Deep Learning (DL) applications, including Sound Source Localiza-
tion (SSL). In the context of the DCASE 2020 Challenge, Phan et al. (2020a,b)[203]
introduced an attention-based neural system. Their architecture comprised multiple
convolutional layers, followed by a Bidirectional Gated Recurrent Unit (BGRU),
succeeded by a self-attention layer that inferred the activity and Direction of Arrival
(DoA) for distinct sound events at each time step. Schymura et al. (2020)[239] intro-
duced an attention mechanism after the recurrent layers of a Convolutional Recurrent
Neural Network (CRNN) to estimate sound source activity and azimuth/elevation.

The integration of attention demonstrated enhanced utilization of temporal in-
formation for Sound Event Localization and Detection (SELD) compared to the
baseline proposed by Adavanne et al. (2019a)[3]. Mack et al. (2020)[161] extended
Chakrabarty and Habets’ (2019b)[41] system through attention mechanisms, utilizing
it to estimate binary masks that emphasize frequency bins where the target source
predominates. The initial attention stage is positioned after the input layer (akin to
Chakrabarty and Habets, 2019b)[41], employing phase spectrograms as inputs. The
second attention stage operates after new features have been extracted via convolu-
tional layers. Adavanne et al. (2021)[6] integrated a self-attention layer following
a GRU to estimate the association matrix, facilitating predictions and reference
matching. This solution effectively addressed the optimal assignment problem and
yielded substantial improvements in localization accuracy.

The concept of Multi-head self-attention (MHSA), entailing the simultaneous
application of several Transformer-like attention models (Vaswani et al., 2017)[266],
has also spurred the development of methods in Sound Source Localization (SSL).
In the DCASE 2021 Challenge, Emmanuel et al. (2021)[77] harnessed an MHSA
layer immediately after several convolution modules meticulously designed to capture
diverse spectral characteristics. Yalta et al. (2021) proposed leveraging the entire en-
coder segment of the Transformer architecture, in addition to multiple convolutional
layers, for extracting features from input data. Wang et al. (2021)[293] adapted the
Conformer architecture, initially conceived by Gulati et al. (2020)[95] for automatic
speech recognition, to cater to SSL. This architectural composition encompasses
a feature extraction module built upon ResNet and an MHSA module dedicated
to acquiring local and global context representations. The authors showcased the
advantages of a specific data augmentation technique applied to this model. Zhang
et al. (2021)[305] also embraced this architecture within the context of the DCASE
2021 Challenge.
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Conformer blocks were also woven into the framework proposed by Huang and
Perez (2021)[112]. In this arrangement, Conformer blocks succeed in a sample-level
Convolutional Neural Network (CNN) enriched with residual connections and squeeze-
excitation. Likewise, a Conformer block found its place in the architecture devised
by Rho et al. (2021)[219] for Sound Event Localization and Detection (SELD),
positioned after convolutional and fully-connected layers, and preceding Bidirectional
Gated Recurrent Unit (BGRU) layers. Cao et al. (2021)[36] introduced an 8-head
attention layer after a series of convolutional layers, enabling the tracking of source
location predictions over time for different sources (with a maximum of two sources
in their experiments).

Schymura et al. (2021)[238] employed three 4-head self-attention encoders along
the temporal axis after a sequence of convolutional layers. This configuration was
employed before estimating the activity and location of various sound events, result-
ing in performance improvements over the baseline established by Adavanne et al.
(2019a)[3] in the DCASE Challenge. Similarly, Xinghao et al. (2021)[251] substituted
the conventional convolutional layers of the baseline with a combination of adaptive
convolutional layers, leveraging dilated convolutions with distinct dilation factors,
along with attention blocks. Another exemplar of an MHSA-based Transformer
model for SSL can be found in the work of Park et al. (2021a)[195], where a pre-
trained model is fine-tuned via transfer learning. The output sequence corresponding
to each 3-second segment of input data is averaged to yield a DoA estimation. Su-
darsanam et al. (2021)[250] enhanced the CRNN baseline introduced by Adavanne
et al. (2019a)[3] with a set of several MHSA blocks followed by fully-connected
layers. Their analysis delved into the impact of the number and dimensions of MHSA
blocks (optimal at 2) and the number of heads (optimal at 8), as well as the effects
of positional embedding, normalization layers, and residual connections.

Additionally, Grumiaux et al. (2021b)[92] demonstrated the substitution of re-
current layers within a CRNN with self-attention encoders, leading to a considerable
reduction in computation time. Furthermore, the adoption of MHSA brought about a
marginal improvement in localization performance when contrasted with the baseline
CRNN architecture established by Perotin et al. (2019b)[202] for the specific task of
multiple speaker localization.

The utilization of cross-modal attention (CMA) models in the realm of Sound
Source Localization (SSL), as proposed by Lee et al. (2021b)[144]. A CMA model
represents an extension of self-attention, incorporating two data streams instead
of one, a concept originally featured in the Transformer decoder (Vaswani et al.,
2017)[266]. Lee et al. (2021b)[144] employed two distinct Convolutional Neural
Network (CNN) blocks for Sound Event Detection (SED) and Direction of Arrival
(DoA) estimation, resulting in separate SED and DoA embeddings. This diverges
from most DCASE (Detection and Classification of Acoustic Scenes and Events) can-
didate systems, where the initial blocks are shared between SED and DoA estimation.
Subsequently, these embeddings are amalgamated, initially through a weighted linear
combination, and then through a more intricate alignment process facilitated by two
mirrored CMA models. Ultimately, the SED and DoA outputs of the CMA modules
are fed into three parallel fully-connected networks to obtain the final estimations.
This partitioning is necessitated by the nature of the DCASE 2021 Challenge SELD
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Task, where up to three sources can be concurrently active.

In a broader context, it’s observable that attention modules, particularly Multi-
head Self-Attention (MHSA), exhibit a tendency to supplant recurrent units in
contemporary SSL Deep Neural Networks (DNNs). This shift aligns with the
groundbreaking notion presented in "Attention is All You Need" by Vaswani et
al. (2017)[266]. This transition is driven by the capacity of attention modules to
effectively capture long-term dependencies while maintaining a reduced computational
overhead, and their aptitude for harnessing parallel computations, particularly during
the training phase.

Encoder-Decoder Neural Networks

1. Autoencoder (AE): A notable AE-based technique was introduced by Huang
et al. (2020)[113], encompassing an ensemble of AEs trained to replicate the
multichannel input signal at the output. Each candidate source position was
assigned a dedicated AE. As common latent information across channels corre-
sponds to the dry signal, each encoder approximates the signal’s deconvolution
from a particular microphone. Localization is achieved by identifying the AE
with the most coherent latent representation, presuming the source aligns with
the assumed position. However, the model’s generalization capability to unseen
source positions and acoustic conditions remains uncertain.

Le Moing et al. (2020)[139] presented an AE with an array of convolutional
and transposed convolutional layers, estimating potential source activity for
subregions within the (x, y) plane grid, enabling the detection of multiple
sources. Different output types (binary, Gaussian-based, and binary followed
by regression refinement) were evaluated, each exhibiting promising outcomes on
both simulated and real data. This work was expanded upon in Le Moing et al.
(2021)[138], introducing adversarial training to enhance network performance
on real data and unseen microphone arrays during unsupervised training. An
explicit transformation layer was introduced to impart network invariance
to microphone array layouts. He et al. (2021b)[105] proposed an encoder-
decoder architecture involving a multichannel waveform fed into a filter bank
with learnable parameters. A 1D convolutional encoder-decoder network then
processed the filter bank output, with separate branches for Sound Event
Detection (SED) and DoA estimation.

Wu et al. (2021b)[287] introduced an encoder-decoder structure featuring
a single encoder followed by two distinct decoders. Signals from various
microphone arrays were transformed into Short-Time Fourier Transform (STFT)
domain and arranged into a 4D tensor. This tensor underwent encoding
through convolutional layers and residual blocks, followed by decoding through
two separate decoders. The first decoder produced probabilities of source
presence for each candidate (x, y) region, while the second incorporated range
compensation for increased robustness. A similar encoder-decoder approach was
employed by Wu et al. (2021a)[286] for the 2D image mapping method. This
architecture encompassed convolutional layers in the encoder and transposed
convolutional layers in the decoder, aligning with image mapping applications
in computer vision.

Vera-Diaz et al. (2020)[273] presented an indirect application of an AE, utilizing
convolutional and transposed convolutional layers to estimate Time-Difference
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of Arrival (TDoA) from Generalized Cross-Correlation (GCC)-based input
features. The concept relied on the encoder-decoder’s ability to diminish input
data dimensionality, compelling the decoder to produce a smoother TDoA
version. This technique outperformed the conventional GCC-PHAT method in
experiments. An extension was developed for dual-source scenarios (Vera-Diaz
et al., 2021)[272].

2. Variational Autoencoder (VAE): Bianco et al. (2020)[25] are credited with
the pioneering application of a VAE in the context of SSL. Their VAE, comprised
of convolutional layers, was trained to generate the phase of inter-microphone
Relative Transfer Functions (RTFs), concurrently with a classifier estimating
the speaker’s DoA based on RTF phases. The significance of using a VAE
stems from its generative model nature, originally designed for unsupervised
learning. In this instance, it operates in a semi-supervised setup by employing an
extensive dataset of unlabeled RTF data alongside a limited set of labeled data
(consisting of RTF values and corresponding DoA labels). In this constrained
labeled dataset configuration, this approach demonstrated superiority over
SRP-PHAT-based techniques and supervised CNNs in reverberant conditions.
An extension of this research has been subsequently presented in Bianco et
al. (2021)[24], introducing enhanced network architectures and more realistic
acoustic scenarios.

3. U-Net Architecture: In the realm of SSL and DoA estimation, numerous
studies have drawn inspiration from the original U-Net concept. Chazan et al.
(2019)[44] harnessed this architecture to predict individual TF masks for each
DoA consideration, associating a specific DoA with each TF bin. Ultimately,
these spectral masks were applied to source separation tasks. Hammer et al.
(2021)[96] extended this system to accommodate multiple moving speakers.
Jenrungrot et al. (2020)[116] introduced a joint localization and separation
mechanism based on a U-Net architecture. This implementation employed 1D
convolutional layers and Gated Linear Units (GLUs), utilizing the multichannel
raw waveform input along with an angular window to enhance separation in
designated zones. If the network’s output on the window is void, no source
is detected; otherwise, the process repeats with a narrower angular window
until reaching 2°. This system demonstrated favourable outcomes with both
synthetic and real-world reverberant data containing up to eight speakers.

For the DCASE 2020 Challenge, Patel et al. (2020)[198] proposed a U-Net with
several Bidirectional Gated Recurrent Units (BGRUs) within the convolutional
blocks for SELD. The ultimate transposed convolutional layer of this U-Net
generates a single-channel feature map per sound event, representing its activity
and DoA for all frames. This approach showcased enhancements over the
Adavanne et al. (2019a)[3] baseline in terms of DoA error. Comanducci et al.
(2020a)[52] integrated a U-Net architecture into the second segment of their
proposed neural network to estimate source coordinates (x, y). The initial
section, comprising convolutional layers, learns to map Generalized Cross-
Correlation with Phase Transform (GCC-PHAT) features to ray space (an
intermediate representation employing linear patterns, as defined by Bianchi et
al., 2016)[23], which serves as input for the U-Net structure.
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10 Performance Metrics
For every task described in the last section, there is one or more metrics, to

measure the quality of the algorithm used to solve the considered task.

10.1 WER: Word Error Rate

Word error rate (WER)[174] is a common metric of the performance of an
automatic speech recognition system. The general difficulty of measuring performance
lies in the fact that the recognized word sequence can have a different length from
the reference word sequence (supposedly the correct one). The WER [284, 175] is
derived from the Levenshtein distance [171], working at the word level instead of
the phoneme level. The WER is a valuable tool for comparing different systems as
well as for evaluating improvements within one system. This kind of measurement,
however, provides no details on the nature of translation errors and further work is
therefore required to identify the main source(s) of error and to focus any research
effort. This problem is solved by first aligning the recognized word sequence with
the reference (spoken) word sequence using dynamic string alignment. Examination
of this issue is seen through a theory called the power law that states the correlation
between perplexity and word error rate. Word error rate can then be computed as:

WER = (S +D + I)/N = (S +D + I)/(S +D + C) (4.12)

where S is the number of substitutions, D is the number of deletions, I is the number
of insertions, C is the number of correct words, N is the number of words in the
reference (N = S +D + C).

This value indicates the average number of errors per reference word. The lower
the value, the better the performance of the ASR system with a WER of 0 being a
perfect score.

10.2 CER: Character Error Rate

Character error rate (CER) is a common metric of the performance of an automatic
speech recognition system. CER is similar to Word Error Rate (WER), but operates
on character instead of word[55]. Please refer to docs of WER for further information.
Character error rate can be computed as:

CER = (S +D + I)/N = (S +D + I)/(S +D + C) (4.13)

where:
- S is the number of substitutions,
- D is the number of deletions,
- I is the number of insertions,
- C is the number of correct characters,
- N is the number of characters in the reference (N = S +D + C).

CER’s output is not always a number between 0 and 1, in particular when there
is a high number of insertions. This value is often associated to the percentage
of characters that were incorrectly predicted. The lower the value, the better the
performance of the ASR system with a CER of 0 being a perfect score.
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10.3 DER: Diarization Error Rate

Diarization Error Rate The main metric that is used for speaker diarization
experiments is the Diarization Error Rate (DER) as described and used by NIST
in the RT evaluations (NIST Fall Rich Transcription on meetings 2006 Evaluation
Plan, 2006). It is measured as the fraction of time that is not attributed correctly to
a speaker or to non-speech. To measure it, a script names MD-eval-v12.pl (NIST
MD-eval-v21 DER evaluation script, 2006), developed by NIST, was used.

As per the definition of the task, the system hypothesis diarization output does
not need to identify the speakers by name or definite ID, therefore the ID tags
assigned to the speakers in both the hypothesis and the reference segmentation do
not need to be the same. This is unlike the non-speech tags, which are marked as
non labelled gaps between two speaker segments, and therefore do implicitly need to
be identified.

The evaluation script first does an optimum one-to-one mapping of all speaker
label ID between hypothesis and reference files. This allows the scoring of different
ID tags between the two files. The Diarization Error Rate score is computed as

DER =

∑S
s=1 dur(s) · (max(Nref (s), Nnyp(s)), Nhyp(s))−Ncorrect(s))∑S

s=1 dur(s) ·Nref

(4.14)

where S is the total number of speaker segments where both reference and hypothesis
files contain the same speaker/s pair/s. It is obtained by collapsing together the
hypothesis and reference speaker turns. The terms Nref (s) and Nsys(s) indicate the
number of speaker speaking in segment s, and Ncorrect(s) indicates the number of
speakers that speak in segment s and have been correctly matched between reference
and hypothesis. Segments labelled as non-speech are considered to contain 0 speakers.
When all speakers/non-speech in a segment are correctly matched the error for that
segment is 0.
The DER error can be decomposed into the errors coming from the different sources,
which are:

Speaker error: percentage of scored time that a speaker ID is assigned to the
wrong speaker. This type of error does not account for speakers in overlap not
detected or any error coming from non-speech frames. It can be written as

ESpkr =

∑S
s=1 dur(s) · (min(Nref (s), Nhyp(s))−Ncorrect(s))

Tscore

(4.15)

where Tscore =
∑S

s=1 and dur(s) ·Nref is the total scoring time, in the denominator
in eq. 4.12.

False alarm speech: percentage of scored time that a hypothesized speaker is labelled
as a non-speech in the reference. It can be formulated as

EFA =

∑S
s=1 dur(s) · (Nhyp(s)−Nref (s))

Tscore

∀ (Nhyp(s)−Nref (s)) > 0 (4.16)

computed only over segments where the reference segment is labelled as non-
speech.
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Missed speech: percentage of scored time that a hypothesized non-speech segment
corresponds to a reference speaker segment. It can be expressed as

EMISS =

∑S
s=1 dur(s) · (Nref (s)−Nhyp(s))

Tscore

∀ (Nref (s)−Nhyp(s)) > 0 (4.17)

computed only over segments where the hypothesis segment is labelled as non-
speech.

Overlap speaker: percentage of scored time that some of the multiple speakers
in a segment do not get assigned to any speaker. This errors usually fuses either
into the EMISS or EFA, depending on wether it is the reference or the hypothesis
containing non assigned speakers. If multiple speakers appear in both the reference
and the hypothesis the error produced belongs to Espkr. Given all possible errors
one can rewrite equation 4.12 as

DER = Espkr + EMISS + EFA + Eovl (4.18)

When evaluating performance, a collar around every reference speaker turn can be
defined which accounts for inexactitudes in the labelling of the data. It was estimated
by NIST that a ±250ms collar could account for all these differences. When there is
people overlapping each other in the recording it is stated so in the reference file, with
as many as 5 speaker turns being assigned to the same time instant. As pointed out
in the denominator of eq. 4.18, the total evaluated time includes the overlaps. Errors
produced when the system does not detect any or some of the multiple speakers in
overlap count as missed speaker errors.

Once the performance is obtained for each individual meeting excerpt, the time
weighted average is done among all meetings in a given set to obtain an overall
average score. The scored time is the one used for such weighting, as it indicates the
total (overlapped speaker included) time that has been evaluated in each excerpt.

10.4 PESQ

Previous objective speech quality assessment models, such as bark spectral dis-
tortion (BSD), the perceptual speech quality measure (PSQM), and measuring
normalizing blocks (MNB), have been found to be suitable for assessing only a
limited range of distortions. A new model has therefore been developed for use across
a wider range of network conditions, including analogue connections, codecs, packet
loss and variable delay.

Known as perceptual evaluation of speech quality (PESQ), it is the re-
sult of integration of the perceptual analysis measurement system (PAMS) and
PSQM99, an enhanced version of PSQM. PESQ is expected to become a new ITU-T
recommendation P.862, replacing P.861 which specified PSQM and MNB.
Perceptual Evaluation of Speech Quality (PESQ) is a family of standards comprising
a test methodology for automated assessment of the speech quality as experienced
by a user of a telephony system. It was standardized as Recommendation ITU-T
P.862[221] in 2001. PESQ is used for objective voice quality testing by phone man-
ufacturers, network equipment vendors and telecom operators. Its usage requires
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a license. The first edition of PESQ’s successor POLQA (Recommendation ITU-T
P.863[2]) entered into force in 2011.

10.5 SDR: Source-to-Distortion Ratio

Source-to-Distortion Ratio (SDR), Source-to-Interference Ratio (SIR), and Source-
to-Artifact Ratio (SAR) are, to date, the most widely used methods for evaluating a
source separation or enhancement system’s output.
An estimate of a Source ŝi is assumed to actually be composed of four separate
components,

ŝi = starget + einterf + enoise + eartif , (4.19)

where starget is the true source, and einterf , enoise, and eartif are error terms for
interference, noise, and added artefacts, respectively. The actual calculations of these
terms is quite complex, so we refer the curious reader to the original paper [275] for
their exact calculation.

Using these four terms, we can define our measures. All of the measures are in terms
of decibels (dB), with higher values being better. To calculate they require access
to the ground truth isolated sources and are usually calculated on a signal that has
been divided into short windows of a few seconds long.

SDR = 10 log10

(
∥starget∥2

∥einterf + enoise + eartif∥2

)
(4.20)

10.6 SI-SDR

The Signal-to-Distortion Ratio (SI-SDR) is a metric used to quantify the quality
of a source signal compared to the distortion introduced by a separation or denoising
process. It is expressed as follows:

SI-SDR = 10 · log10

( ∑N
n=1 s

2
n∑N

n=1(sn − ŝn)2

)
(4.21)

In this formula, sn represents the original source signal, and ŝn represents the
estimated or separated signal. The summation is taken over all time or sample points.
The result is scaled by a factor of 10 to express SI-SDR in decibels (dB). SI-SDR
measures the relative strength of the source signal compared to the distortion or
interference caused by the separation or denoising process. Higher SI-SDR values
indicate better signal quality, with positive values indicating that the estimated
signal (sn) is more similar to the original source signal (sn ) than the distortion.
Conversely, negative values suggest that the distortion is stronger than the source
signal.

10.7 SI-SDRi: Scale-Invariant Source-to-Distortion Ratio

It measures the improvement in SI-SDR between the estimated and reference
signals, taking into account the amplitude scaling of the signals. SI-SDRi is a
modification of the SI-SDR metric, which is a modification of the SDR (Signal-to-
Distortion Ratio) metric and has been shown to be more robust and reliable than the
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SDR metric, especially in single-channel separation tasks. The formula for SI-SDRi
is:

SI − SDRi = 10 ∗ log10(
(SI − SDRestimated − SI − SDRreference)

2

(SI − SDRreference)2
) (4.22)

where SI − SDRestimated is the SI − SDR of the estimated signal and SI −
SDRreference is the SI−SDR of the reference signal. The SI−SDRi metric is used
to evaluate the quality improvement of the estimated signal compared to the reference
signal. A higher SI − SDRi score indicates a better quality improvement of the
estimated signal. The SI-SDRi metric is a modification of the SI-SDR metric, which
is a modification of the SDR (Signal-to-Distortion Ratio) metric, and has been shown
to be more robust and reliable than the SDR metric, especially in single-channel
separation tasks 1 2 3 4 5 . [140]

10.8 SAR: Source-to-Artifact Ratio

This is usually interpreted as the amount of unwanted artifacts a source estimate
has with relation to the true source.

SAR = 10 log10

(
∥starget + einterf + enoise∥2

∥eartif∥2

)
(4.23)

10.9 SIR: Source-to-Interference Ratio

This is usually interpreted as the amount of other sources that can be heard in a
source estimate. This is most close to the concept of “bleed”, or “leakage”.

SIR = 10 log10

(
∥starget∥2

∥einterf∥2

)
(4.24)

10.10 SNR: Signal to Noise Ratio

This is not used as widely, but does appear sometimes in source separation:

SNR = 10 log10

(
∥starget∥2

∥starget − ŝ∥2

)
(4.25)

where ŝ is the estimate of starget.

10.11 SI-SNR: Scale Invariant- Signal to Noise Ratio

The objective of training the end-to-end system is maximizing the scale-invariant
source-to-noise ratio (SI-SNR), which has commonly been used as the evaluation met-
ric for source separation replacing the standard source-to-distortion ratio (SDR)[275].
SI-SNR is defined in [154] as:

starget :=
⟨ŝ,s⟩s
∥s∥2

enoise := ŝ− starget

SI − SNR = 10 log10

(
∥starget∥2
∥enoise∥2

) (4.26)
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where ŝ ∈ R1xT and s ∈ R1xT are the estimated and original clean sources,
respectively, and s = ⟨ŝ, s⟩ denotes the signal power. Scale invariance is ensured
by normalizing ŝ and s to zero-mean prior to the calculation. Utterance-level
permutation invariant training (uPIT) is applied during training to address the
source permutation problem.

10.12 Accuracy

In the vast field of Machine Learning, the general focus is to predict an outcome
using the available data. The prediction task is also called a "classification problem"
when the outcome represents different classes, otherwise is called a "regression prob-
lem" when the outcome is a numeric measurement.
As regards classification, the most common setting involves only two classes, although
there may be more than two. In this last case, the issue changes his name and is
called "multi-class classification".
From an algorithmic standpoint, the prediction task is addressed using the state of
the art mathematical techniques. There are many different solutions, however each
one shares a common factor: they use available data (X variables) to obtain the best
prediction Ŷ of the outcome variable Y .
In Multi-class classification, we may regard the response variable Y and the predic-
tion Ŷ as two discrete random variables: they assume values in {1, ..., K} and each
number represents a different class.

The algorithm comes up with the probability that a specific unit belongs to one
possible class, then a classification rule is employed to assign a single class to each
individual. The rule is generally very simple, the most common rule assigns a unit to
the class with the highest probability. A classification model gives us the probability
of belonging to a specific class for each possible units. Starting from the probability
assigned by the model, in the two-class classification problem a threshold is usually
applied to decide which class has to be predicted for each unit.
True Positive: A true positive is an outcome where the model correctly predicts
the positive class.
True Negative: True negative is an outcome where the model correctly predicts
the negative class.
False Positive: A false positive is an outcome where the model incorrectly predicts
the positive class.
False Negative: False negative is an outcome where the model incorrectly predicts
the negative class. [170]
There are many metrics that come in handy to test the ability of any multi-class
classifier and they turn out to be useful for: i) comparing the performance of two
different models, ii) analysing the behaviour of the same model by tuning different
parameters. [87]
Accuracy is one of the most popular metrics in multi-class classification and it is
directly computed from the confusion matrix.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.27)

The formula of the Accuracy considers the sum of True Positive and True Negative
elements at the numerator and the sum of all the entries of the confusion matrix
at the denominator. True Positives and True Negatives are the elements correctly
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classified by the model and they are on the main diagonal of the confusion matrix,
while the denominator also considers all the elements out of the main diagonal that
have been incorrectly classified by the model. In simple words, consider to choose
a random unit and predict its class, Accuracy is the probability that the model
prediction is correct.

10.13 F-score

In statistical analysis of binary classification, the F-score or F-measure is a
measure of a test’s accuracy. It is calculated from the precision and recall of the test,
where the precision is the number of true positive results divided by the number
of all positive results, including those not identified correctly, and the recall is the
number of true positive results divided by the number of all samples that should
have been identified as positive. Precision is also known as positive predictive value,
and recall is also known as sensitivity in diagnostic binary classification.
The F1 score is the harmonic mean of the precision and recall. The more generic
Fβ score applies additional weights, valuing one of precision or recall more than the
other.
The highest possible value of an F-score is 1.0, indicating perfect precision and recall,
and the lowest possible value is 0, if either the precision or the recall is zero. The
F1 score is also known as the Sørensen–Dice coefficient or Dice similarity coefficient
(DSC).

Fscore = 2
precision ∗ recall
precision+ recall

(4.28)

where precision = TruePositive
TruePositive+FalsePositive

and recall = TruePositive
TruePositive+FalseNegative

10.14 Mean Absolute Error (MAE)

Mean Absolute Error (MAE) is a measure of the average size of the errors in a
collection of predictions, without taking their direction into account. It is calculated
as the mean of the absolute differences between the predicted and actual values.
MAE is a linear score, meaning all individual differences contribute equally to the
mean. It provides an estimate of the size of the inaccuracy, but not its direction
(e.g., over or under-prediction) . MAE is commonly used as a performance metric
for regression models because it is intuitive, interpretable, resistant to outliers, and
offers information about the error size . The formula for calculating MAE is:

MAE =
1

n

n∑
i=1

|yi − ŷi| (4.29)

where n is the number of predictions, yi is the actual value, and ŷi is the predicted
value 3. MAE is not identical to Root Mean Squared Error (RMSE), although some
researchers report and interpret it that way 1. The MAE is conceptually simpler and
easier to interpret than RMSE: it is simply the average absolute vertical or horizontal
distance between each point in a scatter plot and the Y = X line 1. Furthermore,
each error contributes to MAE in proportion to the absolute value of error 1.In
Python, the mean_absolute_error() method of the sklearn.metrics module can be
used to compute the MAE of a series of predictions 2.
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11 Datasets

11.1 LibriSpeech

LibriSpeech [191] is one of the most frequently used open-source speech-to-text
corpus. This dataset consists of 1000 h of audiobooks along with their transcriptions.
Because of the large magnitude of the collected data, it was divided into three sets.
The first set is comprised of 100 h of training data, the second contains 360 h of
training data, and the last set has 500 h of training data. The development set and
the testing set have 10.8 and 10.1 hours’ worth of data, respectively.

11.2 TIMIT

The TIMIT [83] corpus of read speech is designed to provide speech data for
acoustic-phonetic studies and for the development and evaluation of automatic speech
recognition systems. TIMIT contains broadband recordings of 630 speakers of eight
major dialects of American English, each reading ten phonetically rich sentences,
where 30% of them are female, and the rest are male speakers. The training set
consists of 3.14 h of recording; the rest is divided into the test and development
sets respectively. The TIMIT corpus includes time-aligned orthographic, phonetic
and word transcriptions as well as a 16-bit, 16kHz speech waveform file for each
utterance. Corpus design was a joint effort among the Massachusetts Institute
of Technology (MIT), SRI International (SRI) and Texas Instruments, Inc. (TI).
The speech was recorded at TI, transcribed at MIT and verified and prepared for
CD-ROM production by the National Institute of Standards and Technology (NIST).
The TIMIT corpus transcriptions have been hand-verified. Test and training subsets,
balanced for phonetic and dialectal coverage, are specified. Tabular computer-
searchable information is included as well as written documentation.

11.3 CommonVoice

The Common Voice corpus described in [11], is a massively multilingual collection
of transcribed speech intended for speech technology research and development.
Common Voice is designed for Automatic Speech Recognition purposes but can
be useful in other domains (e.g. language identification). To achieve scale and
sustainability, the Common Voice project employs crowdsourcing for both data
collection and data validation. The most recent release includes 29 languages, and
as of November 2019, there are a total of 38 languages collecting data. Over 50,000
individuals have participated so far, resulting in 2,500 hours of collected audio. To our
knowledge, this is the largest audio corpus in the public domain for speech recognition,
both in terms of the number of hours and the number of languages. As an example
use case for Common Voice, they presented speech recognition experiments using
Mozilla’s DeepSpeech Speech-to-Text toolkit. By applying transfer learning from
a source English model, we find an average Character Error Rate improvement of
5.99 +/- 5.48 for twelve target languages (German, French, Italian, Turkish, Catalan,
Slovenian, Welsh, Irish, Breton, Tatar, Chuvash, and Kabyle). For most of these
languages, these are the first ever published results on end-to-end Automatic Speech
Recognition.
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11.4 AISHELL

In [34] an open-source Mandarin speech corpus called AISHELL-1 is released. It
is by far the largest corpus which is suitable for conducting the speech recognition
research and building speech recognition systems for Mandarin. The recording
procedure, including audio capturing devices and environments are presented in
details. The preparation of the related resources, including transcriptions and lexicon
are described. The corpus is released with a Kaldi recipe. Experimental results
implies that the quality of audio recordings and transcriptions are promising.

11.5 VoiceBank

In [267] the University of Edinburgh has started the development of a new speech
database, the Voice Bank corpus, specifically designed for the creation of personalised
synthetic voices for individuals with speech disorders. This corpus already constitutes
the largest corpora of British English currently in existence, with more than 300 hours
of recordings from approximately 500 healthy speakers. Recordings are continuously
being made in order to get the best coverage of the different combinations of regional
accents, social classes, age and gender across Britain. This paper describes the
motivation and the processes involved in the design and recording of this corpus as
well as some analysis of its content. The paper concludes with our future plans to
further extend this corpus and to overcome its current limitations.

11.6 WSJ: Wall Street Journal

The DARPA Spoken Language System (SLS) community has long taken a
leadership position in designing, implementing, and globally distributing significant
speech corpora widely used for advancing speech recognition research. The Wall Street
Journal (WSJ) CSR Corpus described in [199]. In contrast to previous corpora, the
WSJ corpus provide DARPA its general-purpose English, large vocabulary, natural
language, high perplexity, corpus containing significant quantities of both speech
data (400 hrs.) and text data (47M words), thereby providing a means to integrate
speech recognition and natural language processing in application domains with high
potential practical value. This paper presents the motivating goals, acoustic data
design, text processing steps, lexicons, and testing paradigms incorporated into the
multi-faceted WSJ CSR Corpus.

11.7 WHAM!

Recent progress in separating the speech signals from multiple overlapping speak-
ers using a single audio channel has brought us closer to solving the cocktail party
problem. However, most studies in this area use a constrained problem setup, com-
paring performance when speakers overlap almost completely, at artificially low
sampling rates, and with no external background noise. In [283], the researchrs strive
to move the field towards more realistic and challenging scenarios. To that end,
they created the WSJ0 Hipster Ambient Mixtures (WHAM!) dataset, consisting of
two speaker mixtures from the wsj0-2mix[106] dataset combined with real ambient
noise samples. The samples were collected in coffee shops, restaurants, and bars
in the San Francisco Bay Area, and are made publicly available. In this work the
authors benchmark various speech separation architectures and objective functions
to evaluate their robustness to noise. While separation performance decreases as a
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result of noise, in the paper they still observe substantial gains relative to the noisy
signals for most approaches.

11.8 WHAMR!

While significant advances have been made with respect to the separation of
overlapping speech signals, studies have been largely constrained to mixtures of clean,
near anechoic speech, not representative of many real-world scenarios. Although
the WHAM! dataset introduced noise to the ubiquitous wsj0-2mix[106] dataset,
it did not include reverberation, which is generally present in indoor recordings
outside of recording studios. The spectral smearing caused by reverberation can
result in significant performance degradation for standard deep learning-based speech
separation systems, which rely on spectral structure and the sparsity of speech signals
to tease apart sources. To address this, in [160] it was introduced WHAMR!, an
augmented version of WHAM! with synthetic reverberated sources, and provide a
thorough baseline analysis of current techniques as well as novel cascaded architectures
on the newly introduced conditions.

11.9 LibriMix: An Open-Source Dataset for Generalizable
Speech Separation

In recent years, wsj0-2mix has become the reference dataset for single-channel
speech separation. Most deep learning-based speech separation models today are
benchmarked on it. However, recent studies have shown important performance
drops when models trained on wsj0-2mix are evaluated on other, similar datasets.
To address this generalization issue, we created LibriMix, an open-source alternative
to wsj0-2mix [106], and to its noisy extension, WHAM!. Based on LibriSpeech,
LibriMix [57] consists of two- or three-speaker mixtures combined with ambient noise
samples from WHAM!. Using Conv-TasNet, we achieve competitive performance on
all LibriMix versions. In order to fairly evaluate across datasets, we introduce a third
test set based on VCTK for speech and WHAM! for noise. Our experiments show
that the generalization error is smaller for models trained with LibriMix than with
WHAM!, in both clean and noisy conditions. Aiming towards evaluation in more
realistic, conversation-like scenarios, we also release a sparsely overlapping version of
LibriMix’s test set.

11.10 IEMOCAP

Since emotions are expressed through a combination of verbal and non-verbal
channels, a joint analysis of speech and gestures is required to understand expressive
human communication. To facilitate such investigations, the paper [35] describes
a new corpus named the “interactive emotional dyadic motion capture database”
(IEMOCAP), collected by the Speech Analysis and Interpretation Laboratory (SAIL)
at the University of Southern California (USC). This database was recorded from ten
actors in dyadic sessions with markers on the face, head, and hands, which provide
detailed information about their facial expressions and hand movements during
scripted and spontaneous spoken communication scenarios. The actors performed
selected emotional scripts and also improvised hypothetical scenarios designed to
elicit specific types of emotions (happiness, anger, sadness, frustration and neutral
state). The corpus contains approximately 12 h of data. The detailed motion
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capture information, the interactive setting to elicit authentic emotions, and the size
of the database make this corpus a valuable addition to the existing databases in
the community for the study and modeling of multimodal and expressive human
communication.
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Chapter 5

Deep Audio Analyzer

Recently, applications of novel deep learning solutions to forensics investiga-
tions have experienced unprecedented growth in interest and obtained results
[300, 19, 163, 93, 162, 85], with many researchers developing innovative algorithms
and models to solve complex problems. However, reproducing published experiments
and results remains a significant challenge due to the programming skills required.
This challenge is further compounded by the lack of (or an extremely limited) stan-
dardization in the way experiments are conducted. This issue results in a significant
amount of time being spent by researchers and practitioners to reproduce previous
works and results, which leads to a significant waste of resources. The development
of speech-processing technologies has been largely driven by open-source toolkits
[114, 114, 227, 213].

However, with the emergence of general-purpose deep learning libraries like Ten-
sorFlow [2] and PyTorch [197], more flexible speech recognition frameworks have
emerged, such as DeepSpeech [97], RETURNN [302], PyTorch-Kaldi [213], Espresso
[280], Lingvo [241], Fairseq [189], ESPnet [282], NeMo [135], Asteroid [193], Speech-
brain [217] and hub where scientists load trained models for others to download [54].
While it can be challenging for non-expert users to prototype new deep learning
methods, as it requires knowledge of coding and environmental setup.

The objective of this research is to provide a tool that covers in a single framework
the three main goals of Authenticity, Enhancement and Interpretation. Exploiting
the new technologies and enables users to visualize audio features, evaluate the
performance of pre-trained models, and create new audio analysis workflows by
combining deep neural network models.

Through the use of Deep Audio Analyzer, users can perform these features with-
out the need to develop any code.
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Figure 5.1: Angular Front End: The User Interface of Deep Audio Analyzer is
divided into pages and components in order to categorize all the functions separately.
All the modules of Deep Audio Analyzer are developed on different pages. Flask
Backend: Deep Learning Audio Analyzer employs a simple software stack (i.e.,
Python → PyTorch → SpeechBrain → HuggingFace → Flask → Angular) to avoid
dealing with too many levels of abstraction. It is developed on top of SpeechBrain
and HuggingFace directly, with external APIs that can retrieve the newest model
uploaded from the SpeechBrain community and other Companies.

The tool also provides dedicated modules to test state-of-the-art models on
customized data and also combine models to create a new deep learning audio
processing pipeline, combing for tasks such as Automatic Speech Recognition, Speech
Enhancement, Speaker Separation, Speaker Verification and Voice Activity Detection.

Open Source Code of this research project is available at:
https://github.com/valeriopuglisi/deep-audio-analyzer

The remainder of this work is organized as follows. In Section 1, we delve into the
technologies comprising the architecture of the Audio Analyzer. Section 3 reports
the proposed features and modules developed in Deep Audio Analyzer. Section 4
presents the considered experiments and discusses the obtained results. Section 5
concludes the paper and proposes future works.

1 Architecture
The overall Architecture of Deep Learning Audio Analyzer is actually composed

of a Backend service where all the artificial intelligence tasks are implemented and a
Front-End module as shown in Fig.5.1.

Angular FrontEnd framework is concerned to make easier the development and
maintenance of the platform while the Backend Flask RESTful API was chosen
because it is fast to develop and is written in Python, which comprises the Artificial
Intelligence libraries used to develop Deep Audio Analyzer platform.

2 Audio Features Visualization Module
Through the preprocessing module of Deep Audio Analyzer, it is possible to

graphically analyze all the features extracted through the application of the functions
present in the librosa library [167] whose functions have been implemented in the
Backend of the application (Fig.5.2).

Among others visualization tools include simultaneous presentation of the time
waveform, spectrogram, and audio playback, as was shown in Fig. 5.5. This allows a
very flexible system for critical listening and visual assessment of signal characteristics,
and this capability is highly recommended. [164, 162, 300]
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Figure 5.2: Architecture of Audio Feature Visualization Module.

2.1 Preprocessing Audio Features

The developed functions are shown in the fig. 5.3 and explained in the next list :

Figure 5.3: Audio Feature Visualization Module.

• Linear-frequency power spectrogram: The linear-frequency power spec-
trogram is an important tool in the field of audio forensics. It represents time
on the X-axis, frequency in Hz on a linear scale on the Y-axis, and power in
dB [188]. It is used to identify specific events in an audio recording by allowing
experts to analyze the spectral characteristics. It also enables voice analysis
by studying features such as pitch, formants, and harmonics, which can aid
in speaker identification and voice comparison. Furthermore, the spectrogram
can reveal hidden artefacts, noise, or disturbances in an audio recording, which
can then be mitigated by applying appropriate filtering techniques, thereby
enhancing the desired audio content. In audio authentication, the spectrogram
can be instrumental in detecting signs of audio tampering or manipulation.
The linear frequency power spectrogram of a signal x(t) is computed using the
following steps:

1. Divide the signal into overlapping segments of length N.

2. Compute the short-time Fourier transform (STFT) of each segment.

3. Square the magnitude of the STFT to obtain the power spectrum.

4. Average the power spectra of all segments to obtain the final spectrogram.
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The following mathematical formula describes the linear frequency power
spectrogram:

S(f, t) =
1

M

M−1∑
m=0

|X(f, t−mτ)|2 (5.1)

where S(f, t) is the linear frequency power spectrogram, f is the frequency, t is
the time, X(f, t) is the STFT of the signal, M is the number of segments and
τ is the overlap factor. The overlap factor τ controls the time resolution of the
spectrogram. A higher overlap factor results in better time resolution, but it
also reduces the frequency resolution. The linear frequency power spectrogram
is a powerful tool for visualizing the time-frequency distribution of a signal. It
can be used to identify the frequencies that are present in the signal and how
they change over time.

• Log-frequency power spectrogram: Such features can be obtained from
a spectrogram by converting the linear frequency axis (measured in Hertz)
into a logarithmic axis (measured in pitches). Its logarithmic representation
of frequency content enables experts to extract unique voice characteristics,
classify sounds, segment audio recordings, enhance transcription accuracy, and
detect potential tampering or manipulation. The resulting representation is
also called log-frequency spectrogram.

Log Frequency Power Spectrogram is a time-frequency representation of a
signal that is widely used in audio signal processing and analysis [177, 38].
It is a variation of the traditional spectrogram, where the frequency axis is
redefined to correspond to the logarithmically spaced frequency distribution of
the equal-tempered scale. The logarithmic perception of frequency motivates
the use of a time-frequency representation with a logarithmic frequency axis
labelled by the pitches of the equal-tempered scale. The formula for computing
a log-frequency spectrogram is:

YLF (p, t) =
K∑
k=1

Y (k, t) (5.2)

where Y (k, t) is the magnitude or power spectrogram of the signal at time t
and frequency bin k, K is the number of frequency bins, and YLF (p, t) is the
log-frequency spectrogram at pitch p and time t

• Chroma STFT: Chroma STFT features are useful for analyzing the harmonic
content of an audio signal and can be used in a variety of applications such as
music information retrieval, audio classification, and speech recognition. They
provide a way to represent the pitch content of an audio signal in a compact
and efficient way and can be used to compare and classify different audio signals
based on their harmonic content. Chroma STFT is a useful tool in audio signal
processing for analyzing the chromatic content of an audio signal and can be
used in a wide range of applications. This implementation is derived from
chromagram E [76].

The Chroma Short Time Fourier Transform (C-STFT) is computed using the
following steps [176]:
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1. Divide the signal into overlapping segments of length N.

2. Compute the STFT of each segment.

3. Warp the STFT to a logarithmic frequency scale.

4. Sum the STFT magnitude values for each pitch class.

5. Normalize the pitch class values.

The following mathematical formula describes the C-STFT:

C(c, t) =
1

Nc

Nf−1∑
k=0

|X(fk, t)|2, where fk = f02
kc/Nc (5.3)

where c is the pitch class, t is the time, X(f, t) is the STFT of the signal, Nc

is the number of pitch classes, Nf is the number of frequency bands and f0 is
the lowest frequency band.

• Chroma CQT : The Constant-Q chromagram is a type of chroma feature rep-
resentation commonly used in music analysis and processing. It is based on the
Constant-Q transform, which is a frequency-domain transformation that uses
a logarithmic frequency scale that approximates the way that humans perceive
sound [33]. The Constant-Q chromagram further processes the Constant-Q
transform by grouping the spectral information into bins that correspond to
specific pitches, using a mapping similar to the way that musical notes are or-
ganized in a piano keyboard. The resulting representation is a two-dimensional
matrix that shows the energy distribution of each pitch class over time, similar
to a spectrogram but with a greater emphasis on the harmonic content of the
audio signal. The Constant-Q chromagram is often used as a feature for tasks
such as music genre classification, chord recognition, and melody extraction.[33]

The Chroma CQT (Constant Q Transform) is computed using the following
steps:

1. Divide the signal into overlapping segments of length N.

2. Compute the Constant Q Transform (CQT) of each segment.

3. Sum the CQT magnitudes for each pitch class.

4. Normalize the pitch class values.

The following mathematical formula describes the Chroma CQT:

C(c, t) =
1

Nc

Nf−1∑
k=0

|XCQT (k, t)|2, where k = f02
kc/Nc (5.4)

where C(c, t) is the Chroma CQT, c is the pitch class, t is the time, XCQT (k, t)
is the CQT magnitude at frequency band k and time t, Nc is the number
of pitch classes, Nf is the number of frequency bands and f0 is the lowest
frequency band

• Chroma CENS: Computes the chroma variant “Chroma Energy Normal-
ized” (CENS)[78]. To compute CENS features, following steps are taken after
obtaining chroma vectors using chroma-cqt :
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1. L-1 normalization of each chroma vector,

2. Quantization of amplitude based on “log-like” amplitude thresholds,

3. (optional) Smoothing with sliding window.

4. Default window length = 41 frames.

CENS features are robust to dynamics, timbre and articulation, thus these are
commonly used in audio matching and retrieval applications .

• Melspectrogram: CMel Spectrograms are widely used in speech processing
and music processing applications. They have been shown to be effective
for tasks such as speech recognition, speaker recognition, and music genre
classification [167] w Mel Spectrograms are also used in other fields, such as
machine learning and data mining. For example, Mel Spectrograms have been
used to develop machine learning models for predicting human emotions from
speech data.

The Mel Spectrogram of a signal x(t) is computed using the following steps:

1. Divide the signal into overlapping segments of length N.

2. Compute the short-time Fourier transform (STFT) of each segment.

3. Map the powers of the STFT coefficients onto the mel scale using a mel
filterbank.

4. Take the logarithm of the mel filterbank outputs to obtain the mel spec-
trogram.

The following mathematical formula describes the Mel Spectrogram:

S(m, t) = log

(
K∑
k=1

Hm(k)|X(k, t)|2
)

(5.5)

where S(m, t) is the Mel Spectrogram, m is the mel frequency index, t is the
time index, X(k, t) is the STFT coefficient at frequency k and time t, Hm(k)
is the m-th mel filterbank coefficient at frequency k and K is the number of
mel filterbank coefficients.

• Mel-frequency spectrogram: Display of mel-frequency spectrogram coef-
ficients, with custom arguments for mel filterbank construction (default is
fmax = sr/2). Mel-frequency spectrograms are valuable in forensic audio
analysis for visualizing and analyzing the characteristics of an audio recording
relevant to a legal case. They help identify specific sounds, voices, recording
quality, and potential tampering. By extracting features like pitch, spectral
content, and temporal characteristics, it enables comparisons between different
recordings to determine their common source. They are useful for speaker
identification, voice matching, and background noise analysis. Mel-frequency
spectrograms provide a perceptually relevant representation of audio and al-
low forensic analysts to determine important details about the origin and
authenticity of recordings.

• Mel-frequency cepstral coefficients (MFCCs): Mel-frequency cepstral
coefficients (MFCCs) are a type of feature representation commonly used in
audio signal processing and analysis [169], particularly in speech recognition
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and forensic audio analysis. MFCCs are derived from the Mel-frequency
spectrogram, which is a spectrogram that uses a frequency scale that is more
aligned with human perception of sound. In forensic audio analysis, MFCCs
can be used as a feature representation to compare and analyze different
audio recordings. By computing the MFCCs for different segments of an
audio recording, forensic audio analysts can identify characteristic patterns and
features that may be relevant to a legal case [75]. The Mel Frequency Cepstral
Coefficients (MFCCs) are computed using the following steps:

1. Divide the signal into overlapping segments of length N.

2. Compute the short-time Fourier transform (STFT) of each segment.

3. Map the powers of the spectrum obtained above onto the mel scale,
using triangular overlapping windows or alternatively, cosine overlapping
windows.

4. Take the logs of the powers at each of the mel frequencies.

5. Take the Discrete Cosine Transform (DCT) of the log mel filterbank
energies to give 26 cepstral coefficients.

The following mathematical formula describes the MFCCs:

MFCCi =
M∑
j=1

cj cos

(
πi

M
(j − 0.5)

)
(5.6)

where MFCCi is the i-th MFCC coefficient, cj is the j-th mel filterbank energy,
M is the number of MFCC coefficients

• Compare different DCT bases: In audio signal processing, the discrete
cosine transform (DCT) is a widely used method for transforming time-domain
audio signals into a frequency-domain representation. There are different types
of DCTs that use different basis functions, or sets of orthogonal functions, to
represent the signal in the frequency domain. The choice of DCT basis functions
depends on the specific application and the trade-offs between computational
efficiency, frequency resolution, and energy compaction. In many cases, the
standard DCT-II is a good choice for audio signal processing applications,
but other DCT bases may be more appropriate for certain types of signals or
processing tasks.

• Root-Mean-Square (RMS): Compute root-mean-square (RMS) value for
each frame, either from the audio samples y or from a spectrogram S. Com-
puting the RMS value from audio samples is faster as it doesn’t require an
STFT calculation. However, using a spectrogram will give a more accurate
representation of energy over time because its frames can be windowed, thus
prefer using S if it’s already available.

• Spectral Centroid: Compute the spectral centroid.Each frame of a magnitude
spectrogram is normalized and treated as a distribution over frequency bins,
from which the mean (centroid) is extracted per frame [126]. The spectral
centroid is a measure used in audio forensics to characterize an audio signal,
often indicating the perceived "brightness" of a sound. It aids in differentiating
sounds and identifying unique voices, thus assisting in speaker identification.
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The spectral centroid can also reveal potential audio tampering, as inconsisten-
cies might suggest alterations. Additionally, it serves as a tool for audio quality
assessment, with higher values indicating clearer recordings. More precisely,
the centroid at frame t is defined as

centroid[t] =
∑

k S[k, t] · freq[k]∑
j S[j, t]

(5.7)

• Spectral Bandwidth: Compute p′th− order spectral bandwidth [126]. In
the realm of audio enhancement, knowledge of the spectral bandwidth can aid
in developing strategies to filter out unwanted components from a recording.
If noise or other undesirable signals are limited to a specific bandwidth, a
band-stop filter could be effectively employed to remove it. It also can be
used as a fingerprint, the spectral bandwidth of an individual’s voice can be
unique. This characteristic can be analyzed to potentially match a voice to
a specific person, which can prove extremely useful in forensic investigations.
The spectral bandwidth 1 at frame t is computed by:

(
∑
k

S[k, t] · (freq[k, t]− centroid[t])p)
1
p (5.8)

• Spectral Contrast: Compute spectral contrast. Each frame of a spectrogram
S is divided into sub-bands. For each sub-band, the energy contrast is estimated
by comparing the mean energy in the top quantile (peak energy) to that of the
bottom quantile (valley energy)[117]. High contrast values generally correspond
to clear, narrow-band signals, while low contrast values correspond to broad-
band noise.

3 Deep Learning Audio Inference Module
Deep Audio Analyzer implements several audio analysis tasks using deep learning

methods. The neural networks present in Deep Audio Analyzer are state of the
art for the different tasks, and their implementation of is currently supported by
the SpeechBrain [215] framework that implements interfaces through which it is
possible to download and execute neural network models through the HuggingFace
[54] aggregator. Table 5.1 summarizes the various neural network models for the
different tasks and related datasets on which they were trained and the obtained
performance.

4 Pipeline Creation and Saving
Through Deep Audio Analyzer, it is possible to perform analysis of an audio

file dynamically by creating an audio analysis pipeline. Fig 5.4 shows the flowchart
expressing the working principle of audio analysis with Deep Audio Analyzer.

The following list represents the process of analysis and pipeline creation:

1. First, the input audio file is selected (Fig 5.5).

2. Once the file is selected, the task to be performed and consequently, the neural
network model is chosen from those available for that task, as show in fig. 5.6.
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Figure 5.4: Pipeline Creation and Dynamic Audio Analysis Flowchart

Figure 5.5: Architecture of Audio Feature Visualization Module.

Figure 5.6: Select Task and Model to create a step of audio analysis pipeline.
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3. Once the step is defined, it is possible to execute it by means of a POST
request sent to the server, which will execute the neural network in inference
and return the result of the task performed to the client (fig 5.7).

Figure 5.7: Pipeline Creation and Dynamic Audio Analysis Flowchart

4. Then it is possible to add a new step to the pipeline by choosing on which file
to perform the analysis or save the pipeline from executing it later on different
files (Fig 5.8).

5 Pipeline Execution and Download Report
Audio analysis pipelines that have been previously saved by the user are available

in the ”pipelines” section. It is possible to run a previously created pipeline, on one
or more (previously recorded) audio files, or to perform a recording of an audio file
using the GUI application. Once the type of input to be analyzed has been selected,
it is possible to choose the type of pipeline and view its details. Then Deep Audio
Analyzer will display via Frontend the results of the inferences (performed on the
Backend side). After the analysis process, it is possible to download the reports
containing the pipeline executed on each file and its results for each step that is part
of it. Figure 5.9 describes the flowchart for pipeline execution and reporting.

6 Experiments and Results
In this section, some examples of generated pipelines and the related tests

performed by tests different neural networks available for the different tasks and the
obtained results using the Deep Audio Analyzer, are described.

6.1 New pipeline generation

In this section, we present two examples of pipeline creation that can be used
for investigative purposes in interception contexts. The first example concerns the
transcription of speech from multiple people speaking different languages, while the
second example concerns the transcription of speech in noisy environments using
speech enhancement models.
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Figure 5.8: Save Pipeline created during the analysis.

Figure 5.9: Pipeline Execution Audio Analysis Flowchart

Multi-speaker Multi-Language ASR : Speech Separation + Language ID
+ ASR

This pipeline dedicated to transcribing speech in different languages from a
maximum of three speakers is composed of the following steps(Fig. 5.10):

1. Addition of the file of interest, selection of the audio separation model, and
execution.

2. This step provides three output files; thus, it is necessary to create three new
voice activity detection (VAD) steps one per output file of step one.

3. The three steps will each output a file where silence has been removed. It will
then be necessary to introduce three additional steps with our implemented
language identification and automatic speech recognition module, taking as
input the audio processed with VAD in the previous steps.

Automatic Speech Recognition in noisy environment

In forensic investigations, it is often necessary to transcribe highly noisy audio.
This context is often overlooked in academic settings, as the focus is on evaluating
transcriptions in clean or low-noise/echo environments. Therefore, creating a pipeline
that involves the use of enhancement models and voice activity detection improves
the results of automatic speech recognition. The creation of this pipeline consists of
the following steps (Fig. 5.11):
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Figure 5.10: Pipeline Multi-speaker Multi-Language ASR : Speech Separation +
Language ID + ASR

1. Loading the audio file and selecting the desired model for the speech enhance-
ment task.

2. Adding a new step that takes as input the improved signal produced by step 1
and select the desired Voice Activity Detection model.

3. Adding the language identification and automatic speech recognition task,
implemented by us.

Figure 5.11: Pipeline Automatic Speech Recognition in noisy environment

6.2 Experiments

Deep Audio Analyzer is an application designed as a support tool for audio
analysis in forensic and also academic fields. For these reasons, several experiments
have been implemented including validating models related to different tasks on
different datasets through the implementation of appropriate evaluation metrics
using the library [69].

Validate performance of a pre-trained neural network on different task
The first test case consists of evaluating by means of the metrics set out in the
introduction chapter, the behaviour of the various networks with datasets that are
different from the training datasets, but which have been realised for the same task to
see how are robust the networks, varying the datasets for the same type of task. For
example, to evaluate the performance of the Automatic Speech Recognition networks
in Deep Audio Analyzer. The current Automatic Speech Recognition networks are
trained mainly on Librispeech, Voxpopuli and Common Voice and it is possible to
see the performance on different datasets in the table 5.2 by the implementation
of Character Error Rate (CER) and Word Error Rate (WER) [284, 175]. We also
implemented evaluation for speech separation models in table 5.3 by employing five
different metrics.
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User validation of the performance of the deep neural networks available
for a given task Suppose we wanted to test the quality of the neural networks
available in the automatic speech recognition application for a specific language,
using files not belonging to datasets. It is possible to do this by the pipeline creation
section. The user creates a pipeline and add as many steps as necessary to compare
the neural networks available for that language and save the pipeline. Then the users
can run the various comparison pipelines (previously created) to test the behaviour
of the various networks for tasks in examples that are not included in the training
datasets. In this use case, it is not possible to perform a validation according to the
metrics related to the task being analysed, because the relevant ground-thoughts
are missing. For this reason, it was decided to predefine a perceptual quality index
ranging from 1 to 10 for the tasks on the platform.

Subsequently, a pipeline was created for each task in order to compare all the
available networks in a single process and then manually evaluate the performance
of the individual network from 1 to 10. In this way, it is easy to sample perceptual
opinions from experts in the field in order to assess robustness not only in the various
existing datasets for the generic task but also with audio files recorded in real ’into
the wild’ situations.

Automatic Speech Recognition in noisy environment

For this experiment, we decided to test the quality of Automatic Speech Recogni-
tion (ASR) models trained on two different clean datasets, without noise. We then
compared them to the pipeline described in Figure 5.11, using the same datasets
but augmented with noise at various dB levels that simulate real-world conditions
present in Forensic cases. Therefore, the ASR models in the pipeline were the same
ones used in the noise-free conditions. Specifically, we evaluated two models for this
experiment:

1. Wav2Vec 2.0 with CTC trained on LibriSpeech[192], whose metrics are at a
Word Error Rate (WER) of 1.90%. This ASR system consists of two distinct
yet interconnected blocks: This ASR system is composed of 2 different but
linked blocks:

(a) Tokenizer (unigram) that transforms words into characters and trained
with the train transcriptions (EN).

(b) Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model
(wav2vec2-large-960h-lv60-self) is combined with two DNN layers and
finetuned on LibriSpeech. The obtained final acoustic representation is
given to the CTC.

2. Wav2Vec 2.0 with CTC trained on CommonVoice [11] English (No LM), which
achieves a Word Error Rate (WER) of 15.69% on the CommonVoice [11] Test
set without noise. This ASR system is composed of 2 different but linked
blocks:

(a) Tokenizer (unigram) that transforms words into subword units and trained
with the train transcriptions (train.tsv) of CommonVoice [11] (EN).

(b) Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model
(wav2vec2-lv60-large) is combined with two DNN layers and finetuned on
CommonVoice [11] En. The obtained final acoustic representation is given
to the CTC decoder.
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Next, we took the sample noise, which can be downloaded using the download_asset
function from the torchaudio.utils library at the path 1, and resampled the file
to a frequency of 16kHz, which is the sampling frequency used as input for the
above-mentioned ASR models. After that, we repeated the background noise using
the repeat function from torchaudio for the length of each file within the datasets
(resampling the CommonVoice English dataset files to 16kHz since they had a
higher sampling frequency). Finally, using the ’add_noise’ function from torchau-
dio.functional, we added the noise at six different signal-to-noise ratio (SNR) levels:
-6dB, -4dB, -2dB, 0dB, 2dB, 4dB and 6dB. This allowed us to observe how the models
trained on the respective clean datasets perform in the presence of noise. Once we
obtained the results of the metrics applied to these tests, we proceeded to apply the
pipeline represented in Figure 5.11 to the noise-augmented datasets. This pipeline
consists of the Enhancement model MetricGAN+ [81] and the aforementioned ASR
models, in order to compare the CER and WER [284, 175] metrics for the two
described cases.

Model Evaluation on different Datasets

Tables 5.2, 5.3 show the Evaluation module applied Automatic Speech recognition
task and Speech Separation task with pre-trained models on some datasets. However,
evaluations conducted on different datasets show that even though a network may
show good performance on the training dataset, it may not perform well on other data
from different contexts. With Deep Audio Analyzer is possible to upload customized
trained models in order to achieve better performance on private datasets.

6.3 Results

Validate performance of a pre-trained neural network on different tasks

Tables 5.2, 5.3 show the Evaluation module applied Automatic Speech recognition
task and Speech Separation task with pre-trained models on some datasets. However,
evaluations conducted on different datasets show that even though a network may
show good performance on the training dataset, it may not perform well on other data
from different contexts. With Deep Audio Analyzer is possible to upload customized
trained models in order to achieve better performance on private datasets.

Automatic Speech Recognition in noisy environment

In this section, we present the results of the experiments. The results of the
first model, Wav2Vec 2.0 + CTC, trained on Librispeech and tested on Librispeech
augmented with different signal-to-noise ratio (SNR) levels are in Fig. 5.12, along
with the metric values calculated on the tests of the pipeline that includes an upstream
enhancement model, as shown in Fig. 5.13. In Fig. 5.13, you can see the trend of the
CER and WER errors as the signal-to-noise ratio (SNR) varies in the pipeline shown
in Fig. 5.11 using the same ASR model trained on Librispeech. The results are also
presented in tabular form in the following tables: Table 5.4 and Table 5.5 in order
to be able to compare results. As can be observed from both the graphs and the
numbers reported in the tables, the application of the pipeline referenced in Fig. 5.11
results in a significant reduction in CER and WER errors. This implies that the use of
enhancement models in noisy environments eliminates the problem of unintelligibility,

1tutorial-assets/Lab41-SRI-VOiCES-rm1-babb-mc01-stu-clo-8000hz.wav
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Figure 5.12: Automatic Speech Recognition with Wav2Vec 2.0 + CTC model trained
on Librispeech and tested on Augmented Noisy Librispeech

particularly for high signal-to-noise ratios (e.g., -6dB, -4dB, -2dB), dramatically
improving transcription accuracy in real-world contexts. It is worth noting that
transcription of noise-free audio files is not a common occurrence in real life. In
particular, the application of deep learning-based enhancement methods offers highly
effective dynamic noise reduction. This provides a valuable tool for forensic analysis,
enhancing both enhancement capabilities (which in forensic literature primarily refer
to static noise reduction techniques) and interpretation. Utilizing the various models
available in different languages on DeepAudioAnalyzer, it provides a useful support
tool for examiners who do not have technical programming knowledge.
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Figure 5.13: Audio Enhancement with MetricGAN+ and Automatic Speech Recogni-
tion with Wav2Vec 2.0 + CTC model trained on Librispeech and tested on Augmented
Noisy Librispeech
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Table 5.1: Deep Learning Models: ASR: Automatic Speech Recognition, ER: Emotion
Recognition, LI: Language Identification, SE: Speech Enhancement, SS: Speech
Separation, SV: Speaker Verification, VAD: Voice Activity Detection

Task System Dataset Performance
ASR wav2vec2[14] LibriSpeech[192] WER=1.90%

ASR CNN +
Transformer LibriSpeech[192] WER=2.46%

ASR CRDNN +
distillation TIMIT [83] PER=13.1%

ASR CRDNN +
RNN+ LM Librispeech[83] WER=3.09%

(test-clean)

ASR Conformer +
Transf. LM Librispeech[192] WER=3.09%

(test-clean)

ASR CRDNN +
Transf. LM Librispeech[192] WER=8.51%

(test-clean)

ASR wav2vec2 +
CTC/Att.[14, 63] TIMIT [83] PER=8.04%

ASR wav2vec2 +
CTC CV (English)[11] WER=15.6%

ASR wav2vec2 +
CTC CV (German)[11] WER=9.54%

ASR wav2vec2 +
CTC CV (French)[11] WER=9.96%

ASR wav2vec2 +
seq2seq CV (Italian)[11] WER=9.86%

ASR wav2vec2 +
seq2seq AISHELL[34] 5.58%

ER wav2vec [236] IEMOCAP[35] Acc.=79.8%
ER wav2vec [236] CommonLang.[246] Acc.=84.9%
LI ECAPA-TDNN[68] CommonLang.[246] Acc.=84.9%
SE MetricGAN+ [81] VoiceBank PESQ=3.08 (test)

SE SepFormer [249] WHAMR! [160] SI-SNR= 10.59,
PESQ=2.84 (test)

SE SepFormer [249] WHAM! (8k) [283] SI-SNR= 14.35,
PESQ=3.07 (test)

SE SepFormer [249] WHAM! (16k) [283] SI-SNRi 13.5 dB,
SDRi= 13.0 dB

SS SepFormer[249] WSJ2MIX[106] SDRi=22.6 dB
SS SepFormer[249] WSJ3MIX[106] SDRi=20.0 dB
SS SepFormer[249] WHAM![283] SDRi= 16.4 dB
SS SepFormer[249] WHAMR![160] SDRi= 14.0 dB
SS SepFormer[249] Libri2Mix[57] SDRi= 20.6 dB
SS SepFormer[249] Libri3Mix[57] SDRi= 18.7 dB
SV ECAPA-TDNN [68] VoxCeleb2 [48] EER=0.69%
VAD CRDNN [216] LibriParty [214] F-score=0.94%
Deep Learning Audio Analysis Features. .
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Table 5.2: Evaluation of Automatic Speech Recognition Models on different Test
Datasets

System Training dataset &
Evaluation Metrics

Test dataset &
Evaluation Metrics

wa2vec2 +
CTC

Voxpopuli DE
WER=18.91%

CommonVoice [11] 10 DE
CER=20.13%
WER=53.15%

CRDNN with
Transformer LM

Librispeech EN
WER=8.51%

CommonVoice [11] 10 EN
CER=25.08%
WER=47.37%

CRDNN +
RNN+
LM

Librispeech EN
CER= –
WER= –

CommonVoice [11] 10 EN
CER=28.88%
WER=50.05%

wa2vec2 +
CTC

Librispeech EN
CER= –
WER=15.69%

CommonVoice [11] 10 EN
CER= 19.78%
WER=32.06%

wa2vec2 +
CTC

Voxpopuli EN
CER=–
WER=–

CommonVoice [11] 10 EN
CER=32.03%
WER= 64.52%

wa2vec2 +
CTC

Voxpopuli ES
CER=–
WER=15.69%

CommonVoice [11] 10 ES
CER=17.2822%
WER=46.31%

wa2vec2 +
CTC

Voxpopuli FR
Test CER=3.19
WER=9.96%

CommonVoice [11] 10 FR
CER=25.97%
WER=58.70%

CRDNN with
CTC/Attention

CommonVoice [11] 9 FR
CER=6.54%,
WER=17.70%

CommonVoice [11] 10 FR
CER= 9.55%
WER=30.82%

CRDNN with
CTC/Attention

CommonVoice [11] 9 IT
CER=5.40%
WER=16.61%

CommonVoice [11] 10 IT
CER=7.78%
WER=27.69%

wa2vec2
CommonVoice [11] 9 IT
Test CER=–
WER=9.86%

CommonVoice [11] 10 IT
CER=7.30%
WER=21.66%

wa2vec2
VoxPopuli 9 IT
Test CER=–
WER= 45.2%

CommonVoice [11] 10 IT
CER=16.00%
WER=52.57%
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Table 5.3: Evaluation of Speech Separation Models on different Test Datasets

System Training dataset &
Evaluation Metrics

Test dataset &
Evaluation Metrics

Sepformer WSJ2MIX
SDRi=22.6 dB (test)

Libri2Mix 16K Min
SNR= -9.3865,
SDR = -0.2170,
SI-SNR = -2.5669,
SI-SDR= -2.5678,
PESQ= 2.0454,
STOI= 0.5051

Sepformer WSJ2MIX
SDRi=22.6 dB (test)

Libri2Mix 16K Max
SNR = -9.1042,
SDR = -0.0988,
SI-SNR = -2.0402,
SI-SDR = -2.0445,
PESQ = 2.0879,
STOI = 0.5297

Sepformer WSJ3MIX
SDRi=20.0 dB (test)

Libri3Mix 16K Min
SNR = -8.2628
SDR = -5.3410,
SI-SNR = -4.8382,
SI-SDR= -4.8382,
PESQ = 1.5473,
STOI = 0.3136

Sepformer WSJ3MIX
SDRi=20.0 dB (test)

Libri3Mix 16K Max
SNR = -8.3537
SDR = -5.3429,
SI-SNR = -7.8382,
SI-SDR= -7.8382,
PESQ = 1.6473,
STOI = 0.3903

Table 5.4: Evaluation of Wav2Vec 2.0 + CTC Automatic Speech Recognition Model
on Noisy Librispeech

SNR (dB) CER(%) WER(%)
-6dB 55.30 90.02
-4dB 43.07 72.85
-2dB 29.21 52.06
0dB 16.56 31.26
2dB 8.24 16.83
4dB 4.14 9.22
6dB 2.21 5.53
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Table 5.5: Evaluation of Wav2Vec 2.0 + CTC Automatic Speech Recognition Model
on Noisy Librispeech

SNR (dB) CER(%) WER (%)
-6dB 23.87 39.79
-4dB 14.96 26.40
-2dB 9.15 17.24
0dB 5.61 11.35
2dB 3.58 7.81
4dB 2.21 5.70
6dB 1.72 4.39
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Chapter 6

Sound Source Localization

Sound Source Localization is a complex challenge in the field of audio signal
processing. Here are some of the issues and difficulties associated with this area:

• Complex Acoustic Environment: In complex acoustic environments, such
as rooms with strong reverberation or open spaces, accurately determining
the exact direction of the sound source can be challenging due to numerous
reflections and interferences.

• Limited Microphones: With a limited number of microphones available, es-
pecially with a single monophonic recording, obtaining accurate information
about source localization can be challenging.

• Environmental Variability: Environmental characteristics, such as furniture
arrangement or the presence of obstacles, can impact sound propagation and
make precise source localization more difficult.

• Background Noise: Background noise, such as ambient noise or equipment noise,
can mask the sound source signal and make its detection more challenging.

• Ambiguity: Sometimes, different combinations of source directions and distances
can result in similar signal patterns, leading to ambiguous localization solutions.

• Dynamic Changes: If the sound source or microphones move during recording,
the localization problem becomes more complex due to changes in the sound
captured by the microphones.

• Microphone Directional Characteristics: The directional sensitivity of micro-
phones can influence the perception of source direction. If microphones are not
omnidirectional, localization might require accurate calibration.

• Measurement Error: Even with sophisticated algorithms, there is always a
certain degree of error in localization due to signal processing imperfections
and limitations of the algorithms themselves.

Addressing these challenges requires the use of advanced signal processing algo-
rithms, high-quality microphones, analysis of the acoustic environment, and, in some
cases, the integration of multiple microphones to achieve more accurate results.

This study on Sound Source Localization aims to recognize the best way to localize
single or multiple sources inside an office room. The choice of a specific environment
will reduce the variability of this problem in order to understand what is the best
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practice in this context. Different experiments have been done by changing the
microphone configuration and the different algorithms applied in order to understand
what is the most accurate algorithm to apply in this scenario.

1 PyRoomAcoustics: Audio Virtual Environment
Configurations for Simulations

Pyroomacoustics is a software package designed to facilitate the swift development
and experimentation of audio array processing algorithms. The package can be
categorized into three key components:

1. An easy-to-use, object-oriented Python interface that allows for the rapid
creation of various simulation scenarios involving multiple sound sources and
microphones within both 2D and 3D environments.

2. A high-speed C++ implementation of the image source model and ray tracing,
tailored for general polyhedral rooms. This component efficiently generates
room impulse responses and simulates sound propagation between sources and
receivers.

3. Ready-to-use implementations of widely-used algorithms encompassing Short-
Time Fourier Transform (STFT), beamforming, direction finding, adaptive
filtering, source separation, and single channel denoising.

These components combine to form a package that has the potential to accelerate
algorithm development cycles by significantly reducing the implementation overhead
during performance evaluation. To see the various facets of this package in action,
please consult the provided notebook.

At the heart of the software package lies a generator for room impulse responses
(RIR), built upon the image source model framework, capable of accommodating a
diverse range of room configurations:

1. Convex and non-convex room shapes.

2. Both 2D and 3D room dimensions.

The core components responsible for the image source model and ray tracing func-
tionalities are implemented in C++, a choice that enhances computational efficiency.

The package’s underlying philosophy revolves around encapsulating all essential
aspects of an experiment through an object-oriented programming paradigm. Each
constituent element is represented using a distinct class, allowing for the assembly of
experiments akin to real-world scenarios.

Consider a scenario where a delay-and-sum beamformer is to be simulated using
a linear array composed of four microphones situated within a room shaped like a
shoe box, hosting a solitary sound source. Initially, a room object is instantiated,

121



to which a microphone array object and a sound source object are added. Subse-
quently, the room object boasts methods to compute the RIR connecting the source
and the receiver. The beamformer object extends the microphone array class and
encompasses diverse methods to compute parameters like delay-and-sum weights.
Refer to the provided code example to gain a clearer grasp of the implementation.

Furthermore, the Room class facilitates sound sample processing emanating from
sources, effectively emulating the propagation of sound between the sources and
microphones. As the signals reach the microphones constituting the beamformer,
a Short-Time Fourier Transform (STFT) engine becomes instrumental in swiftly
processing these signals through the beamformer and evaluating the resultant output.

The research of Sound Source Localization field starts with the exploration of
different microphone configurations. As a first approach, the problem was studied by
attempting to localize an audio source using a single microphone with a single source
at a time. This approach was adopted in order to evaluate which audio features
were the most discriminative in solving a regression or classification problem. The
ability to solve a regression/classification problem, both in Machine Learning and
Deep Learning, depends on the data distribution that will be fed into the models
under consideration.

2 Single Microphone Sound Source Localization
For the creation of the dataset, the implementation of an empty museum room

with dimensions of 30x40 meters and a height is planned. Fig. 6.1 is a representation
of the room virtualized for dataset creation. Dataset was created by taking speech
recordings from LibriSpeech and simulating audio inside the virtual room changing
the virtual location of the speaker.

(a) 2D Room Visualisation (b) 3D Room Visualisation

Figure 6.1: Empty Room Museum Size

The simulated measurements take into account 8 angles on the same plane: 0◦,
45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦.

As for the distances, a range from 1 to 10 meters is considered with a step of 1
meter. Therefore, for each audio sample of a Speaker ID, 80 measurements are taken
= 10 distances x 8 angles (Fig. 6.2).
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(a) 3D room planime-
try with microphone at
the center of room and
source at 1m and 0°

(b) 3D room planime-
try with microphone at
the center of room and
source at 1m and 45°

(c) 3D room planime-
try with microphone at
the center of room and
source at 1m and 90°

(d) 3D room planime-
try with microphone at
the center of room and
source at 1m and 135°

(e) 3D room planime-
try with microphone at
the center of room and
source at 1m and 180°

(f) 3D room planime-
try with microphone at
the center of room and
source at 1m and 225°

(g) 3D room planime-
try with microphone at
the centre of room and
source at 1m and 270°

(h) 3D room planime-
try with microphone at
the centre of room and
source at 1m and 315°

Figure 6.2: The simulated measurements take into account 8 angles on the same
plane: 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦. As for the distances, a range from 1
to 10 meters is considered with a step of 1 meter. Therefore, for each audio sample
of a Speaker ID, 80 measurements are taken = 10 distances × 8 angles.

The following example graphs show the variation of angles between the microphone
and the source at a distance of 1 meter, with a fixed height of 1.75 meters to simulate
the average human height.

The Data Visualization experiments are reported in the following list:

• T-SNE

– Single Speaker Multiple Utterance Chunks

– Multiple Speaker Single Utterance Chunk

– Multiple Speaker Multiple Utterance Chunks

• PCA

– Single Speaker Multiple Utterance Chunks

– Multiple Speaker Single Utterance Chunk

– Multiple Speaker Multiple Utterance Chunks

2.1 Data Visualization

After Dataset creation it was necessary apply algorithms like T-SNE and PCA to
the different features of these recordings like Raw Waveform, Waveform, Spectrogram,
MFCC and Wav2Vec2 Features to understand if these features are able to visualize
data into something similar of a function that can be learnt via regression problem
or clusters to resolve the problem as a classification problem.
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T-SNE: Single Speaker Multiple Chunks

The Data Visualization started with the calculation of T-SNE algorithm to dif-
ferent recordings of the same speaker on different speech chunks.

Fig. 6.5 represent the data visualization of different speech chunks of the same
speaker at different distances from the microphone (from 1 to 10 meters) with an
azimuth of 0◦.

In the next plots, the darker points stand for the minimum distance while the
yellow points stand for the maximum distance in order to represent distances in an
intuitive way.

Even if the same speaker is talking in the same room the representation of different
chunks is quite different from a function or cluster that is learnable from a Deep
Learning method. This happens because the clusters needed to learn distance from
different chunks should be separated by colours that indicate distance. In other
words, the clusters should be separated by distance and not by chunk as in this plot.

The plots

Raw Waveform Analysis First fig. 6.3 calculates T-SNE on Raw Waveform and
is not possible to distinguish chunks by distance.

Figure 6.3: Multiple Speech Chunks processed on Raw Waveform of Speaker ID 19
at different distances from microphone

Spectrogram Analysis Fig. 6.4 shows that using a Spectogram as a feature to
resolve the localization problem is not a good point.

MFCC Analysis ig. 6.5 shows a data visualization of T-SNE applied on MFCC
Features extracted from a Single Utterance Chunk of a Single Speaker.

Wav2Vec2 Features Analysis Fig. 6.6 shows a data visualization of T-SNE
applied on Wav2Vec2 Features extracted from Single Utterance Chunk of a Single
Speaker.
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Figure 6.4: Multiple Speech Chunks processed with Spectrogram of Speaker ID 19
at different distances from microphone

Figure 6.5: Multiple Speech Chunks processed with MFCC of Speaker ID 19 at
different distances from microphone

Figure 6.6: Multiple Speech Chunks processed with Wav2Vec2 of Speaker ID 19 at
different distances from microphone
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T-SNE: Multiple Speaker Single Chunk

The Data Visualization started with the calculation of the T-SNE algorithm for
different recordings of multiple speakers on different speech chunks.

Raw Waveform Analysis First fig. 6.7 calculates T-SNE on Raw Waveform and
is not possible to distinguish chunks by distance.

Figure 6.7: Multiple Speech Chunks processed of Multiple Speaker at different
distances from microphone

Spectrogram Analysis Second Fig. 6.8 shows T-SNE applied on Spectrogram of
Multiple Speaker Utterance.

Figure 6.8: Multiple Speech Chunks processed with Spectrogram of Multiple Speaker
at different distances from microphone

Mel Frequency Cepstrum Coefficents Analysis Fig.6.9 shows a data visu-
alization of T-SNE applied on MFCC extracted by Multiple Utterance Chunks of
Multiple Speakers.
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Figure 6.9: Multiple Speech Chunks processed with MFCC of Speaker ID 19 at
different distances from microphone

Wav2Vec2 Features Analysis Fig. 6.10 shows a data visualization of T-SNE
applied on Wav2Vec2 Features extracted by Single Utterance Chunk of Multiple
Speakers.

Figure 6.10: Single2 Speech Chunks processed with Wav2Vec2 of Multiple Speaker
at different distances from microphone
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T-SNE: Multiple Speaker Multiple Chunks

Raw Waveform Analysis This experiment shows Data visualized by T-SNE
applied on Raw Waveform of different utterance chunks of different speakers recorded
at different distances from the microphone in a range of 1 to 10 meters. As shown in
Fig. 6.11, the Raw Waveform does not represent a discriminative feature to represent
data in order to create a regression or classification problem.

Figure 6.11: Data Visualization with T-SNE applied on Wav2Vec features extracted
from a Single Speech Chunk of Multiple Speakers at different distances from micro-
phone

Spectrogram Analysis Fig. 6.12 shows a data visualization of T-SNE applied on
Spectrogram extracted by a Single Utterance Chunk of Multiple Speakers.

Figure 6.12: Data Visualization with T-SNE applied on Spectrograms of a Single
Speech Chunk of Multiple Speakers at different distances from microphone

Mel Frequency Cepstrum Coefficents Analysis Fig. 6.13 shows a data
visualization of T-SNE applied on MFCC extracted by a Single Utterance Chunk of
Multiple Speakers.
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Figure 6.13: Data Visualization with T-SNE applied on Wav2Vec features extracted
from a Single Speech Chunk of Multiple Speakers at different distances from micro-
phone

Wav2Vec2 Features Analysis Fig. 6.14 shows a data visualization of T-SNE
applied on Wav2Vec2 Features extracted by Single Utterance Chunk of Multiple
Speakers.

Figure 6.14: Data Visualization with T-SNE applied on Wav2Vec features extracted
from a Single Speech Chunk of Multiple Speakers at different distances from micro-
phone
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Principal Component Analysis (PCA): Single Speaker Multiple Chunk

Raw Waveform Analysis This experiment calculates the PCA of Raw Waveforms
of different utterance chunks of the same speaker recorded at different distances
from the microphone. As shown in Fig. 6.15 using just the waveform for a distance
analysis is not discriminative because the outcome is not similar to any learning
model.

Figure 6.15: Data Visualization with PCA applied on Raw Waveform of Multiple
Speech Chunks of a Single Speaker at different distances from microphone

Waveform Spectrogram Analysis This experiment calculates the PCA of Spec-
trograms calculated on different utterance chunks of the same speaker recorded at
different distances from the microphone. The PCA is calculated in 2D because it
can be visualized in a 2D axis. As shown in Fig. 6.16 using just the spectrogram for
a distance analysis is not discriminative because the outcome is not similar to any
learning model.

Figure 6.16: Data Visualization with PCA applied on Spectrogram of Multiple
Speech Chunks of a Single Speaker at different distances from microphone
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Mel Frequency Cepstrum Coefficents Analysis This experiment calculates
the PCA of MFCC calculated on different utterance chunks of the same speaker
recorded at different distances from the microphone. The PCA is calculated in 2D
because it can be visualized in a 2D axis. As shown in Fig. 6.18 using this feature for
a distance analysis produces an outcome that is similar to a cluster, but this cluster
is not well-formed so is not learnable by any learning model. The reason is the data
distribution that is not representative of creating a regression or classification model.

Figure 6.17: Data Visualization with PCA applied on MFCC of Multiple Speech
Chunks of a Single Speaker at different distances from microphone

Wav2Vec2 Features Analysis This experiment calculates the PCA of MFCC
calculated on different utterance chunks of the same speaker recorded at different
distances from the microphone. The PCA is calculated in 2D because it can be
visualized in a 2D axis. As shown in Fig. 6.18 using this feature for a distance analysis
produces an outcome that is similar to a cluster, but this cluster is not well-formed
so is not learnable by any learning model. The reason is the data distribution that is
not representative of creating a regression or classification model.
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Figure 6.18: Data Visualization with PCA applied on Wav2Vec features extracted
from Multiple Speech Chunks of a Single Speaker at different distances from micro-
phone
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Principal Component Analysis (PCA): Multiple Speaker Single Chunk

Raw Waveform Analysis This experiment shows Data visualized by PCA applied
on Raw Waveform of different utterance chunks of different speakers recorded at
different distances from the microphone in a range of 1 to 10 meters. As shown in
Fig. 6.19, the Raw Waveform does not represent a discriminative feature to represent
data in order to create a regression or classification problem.

Figure 6.19: Data Visualization with PCA applied on Wav2Vec features extracted
from a Single Speech Chunk of Multiple Speakers at different distances from micro-
phone

Spectrogram Analysis Fig. 6.20 shows a data visualization of PCA applied on
Spectrogram extracted by a Single Utterance Chunk of Multiple Speakers.

Figure 6.20: Data Visualization with PCA applied on Spectrograms of a Single
Speech Chunk of Multiple Speakers at different distances from microphone

Mel Frequency Cepstrum Coefficents Fig. 6.21 shows a data visualization of
PCA applied on MFCC extracted by a Single Utterance Chunk of Multiple Speakers.
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Figure 6.21: Data Visualization with PCA applied on Wav2Vec features extracted
from a Single Speech Chunk of Multiple Speakers at different distances from micro-
phone

Wav2Vec2 Features Analysis Fig. 6.22 shows a data visualization of PCA
applied on Wav2Vec2 Features extracted by Single Utterance Chunk of Multiple
Speakers.

Figure 6.22: Data Visualization with PCA applied on Wav2Vec features extracted
from a Single Speech Chunk of Multiple Speakers at different distances from micro-
phone
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Principal Component Analysis (PCA): Multiple Speaker Multiple Chunks

Raw Waveform Analysis This experiment shows Data visualized by PCA applied
on Raw Waveform of different utterance chunks of different speakers recorded at
different distances from the microphone in a range of 1 to 10 meters. As shown in
Fig. 6.23, the Raw Waveform does not represent a discriminative feature to represent
data in order to create a regression or classification problem.

Figure 6.23: Data Visualization with PCA applied on Wav2Vec features extracted
from a Single Speech Chunk of Multiple Speakers at different distances from micro-
phone

Spectrogram Analysis Fig. 6.24 shows a data visualization of PCA applied on
Spectrogram extracted by a Single Utterance Chunk of Multiple Speakers.

Figure 6.24: Data Visualization with PCA applied on Spectrograms of a Single
Speech Chunk of Multiple Speakers at different distances from microphone

Mel Frequency Cepstrum Coefficents Fig. 6.25 shows a data visualization of
PCA applied on MFCC extracted by a Single Utterance Chunk of Multiple Speakers.
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Figure 6.25: Data Visualization with PCA applied on Wav2Vec features extracted
from a Single Speech Chunk of Multiple Speakers at different distances from micro-
phone

Wav2Vec2 Features Analysis Fig. 6.26 shows a data visualization of PCA
applied on Wav2Vec2 Features extracted by Single Utterance Chunk of Multiple
Speakers.

Figure 6.26: Data Visualization with PCA applied on Wav2Vec features extracted
from a Single Speech Chunk of Multiple Speakers at different distances from micro-
phone
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3 Multiple Microphone Sound Source Localization

3.1 Room

As seen in the research activities chapter, particularly in the section related to
sound source localization 4.9, there are numerous factors that influence the outcomes
of the algorithms applied to the defined environment. Since recording audio datasets
in academic and urban settings can be exceedingly challenging due to potential
interferences in these locations, synthetic data is often preferred. In this study, it
was feasible to conduct the experiments that will follow through the utilization of
the aforementioned PyRoomAcoustics platform. This library enables the simulation
of all the acoustic physics present in user-defined rooms, simplifying the process of
generating data for testing the algorithms considered in this study.

An environment can be defined to create an office room as shown in the next
figure (Fig. 6.27)

Figure 6.27: An Office Room simulated with PyRoom Acoustic with 3 Stations with
chair and desk

To simplify the testing of sound source localization algorithms, the test environ-
ment has been reduced to a currently vacant room with the dimensions of an office.
This adjustment allows for an initial evaluation while considering the variability of a
limited set of parameters. The room size, expressed in three dimensions (3D), is (3.0,
2.5, 2.5) as shown in Fig.6.28. The room is reverberant with a Signal Noise Ratio
(SNR) of 5 dB.
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Figure 6.28: Empty Room simulated with PyRoom Acoustic
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3.2 Microphone Type

As seen in 2.4.3, and 4.9.5, there exist various types of microphones, which could
potentially be employed in simulations. In this study, cardioid microphones, i.e.,
directional microphones, have been considered. This choice stems from the fact
that cardioid microphones are the most commonly found in security cameras and,
generally, in everyday devices. They are preferred due to their cost-effectiveness and
ease of production (Fig.6.29).

Figure 6.29: Cardioid Microphone for simulations

Nowadays Sound Source Localization Challenges like LDAS2023 and important
conferences like ICASSP are focusing on this problem using ambisonics microphones
that capture audio from the three different axes. But in normal context, they are
not used because are really expansive and actually is really difficult to find this kind
of microphone included in electronic devices.

3.3 Type of sources

Sound Source Localization problem can be divided into Single Source Sound
Source Localization where a single source is present inside the environment and
Multiple Sound Source Localization, in particular, is done with 2 speakers.

3.4 Microphones Configurations

As evident from the research phase conducted in the initial problem investigation,
the various microphone configurations and the Signal-to-Noise Ratio (SNR) have a
significant impact on source localization. This is because each algorithm leverages
spatial properties and the resulting recordings to compute the position of one or more
sources. The configurations adopted for sound source localization in the conducted
experiments are as follows: Single microphone, Binaural, Triaural, Tetra-aural,
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Linear Microphone Array, and Circular Microphone Array. As for the Non-co-
planar 16-microphone configuration, was not considered due to its impracticality in
non-specialized environments, rendering it of limited utility in forensic contexts.

Binaural Microphones

In this configuration microphones were placed in a binaural configuration, emu-
lating Human Earing System. This experiment is done to prove the poor accuracy of
this microphone’s position. In Fig. 6.30 is possible to see the position of microphones
and their relative position of 22 cm, which simulates ears distance. In Fig. 6.31 is
possible to see area of recording of this configuration.

Figure 6.30: 2D perspective of mi-
crophones configuration

Figure 6.31: 3D perspective of microphones config-
uration with area covered by cardioid microphones

Triaural Microphones

Triaural is a configuration where three microphones stand outside the source
location. For this reason in this configuration, microphones are placed near the
corner of the room in this way the recorded area is wider with the consequence that
the source can be placed in a bigger set of positions inside the room. In the next
figure, on the left (Fig. 6.32) is shown microphones configuration in the 2D plane
that represent the room, while on the right 6.33 is shown a 3D representation of
microphones configuration inside the room and the area covered by microphones
during the simulations.

Tetra-aural Microphones

Tetra-aural is a configuration where four microphones stand in the corners of the
room. Same for the Triaural configuration, here the source location is inside the area
delimitated by microphones. Here the microphones coordinates are: [0.0, 0.0, 1.80],
[0.0, 2.5, 1.80], [3.0, 2.5, 1.80], [3.0, 0.0, 1.80]; while the microphones orientation (that
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Figure 6.32: 2D perspective of Tri-
aural microphones configuration

Figure 6.33: 3D perspective of Triaural micro-
phones configuration with area covered by cardioid
microphones

follow microphone coordinates) are [azimuth=45, colatitude=90], [azimuth=315,
colatitude=90], [azimuth=225, colatitude=90], [azimuth=135, colatitude=90]. The
configuration in 2D is shown in Fig. 6.34 and in 3D in Fig. 6.35

Figure 6.34: 2D perspective of mi-
crophones configuration

Figure 6.35: 3D perspective of microphones config-
uration with area covered by cardioid microphones
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Circular Array Microphones

The circular Array Microphones configuration is composed of eight microphones
placed in the centre of the room with a radius of 10cm. The configuration came
from [252] where they used a Deep Neural Network based on SampleCNN trained
with recordings that came from this kind of configuration to separate space in more
subspaces.

Figure 6.36: 2D perspective of mi-
crophones configuration

Figure 6.37: 3D perspective of microphones config-
uration with area covered by cardioid microphones
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3.5 Methods Applied

MUSIC

MUltiple SIgnal Classification algorithm is used for SSL. The number of sound
sources can be one or more. There are let’s say M sensors that receive time-delayed
signals from sound sources with reference to a particular sensor [235]. Matrix X is
a function of incident signal, center frequency, incident signal angle and number of
sensors M. Matrix X represents the received sound signals. The auto-correlation
matrix RXX of X finds the correlation between rows of X. Number of eigenvectors
that are associated with signal subspace is equal to the number of sources. If the
number of sensors and sound sources is known, matrix Un ∈ CM×M−D can be formed.
Un consists of a set of eigenvectors associated with noise subspace. The matrix Un

consists of eigenvectors whose eigenvalues λmin are the variance of the noise. λmin

occurs in clusters which decreases when more data is processed. Steering vectors
corresponding to Difference of Arrival (DOA) are present in the signal subspace
and are orthogonal to the noise subspace. Hence, we have aH(Θ̂)UnU

H
n aH(Θ̂) for Θ̂

corresponding to the DOA of the multi-path component. DOAs can be known by
locating peaks of MUSIC spatial spectrum:

PMUSIC(Θ̂) =
1

aH(Θ̂)UnUH
n aH(Θ̂)

(6.1)

1 Speaker Figure 6.38 displays the results of Sound Source Localization exper-
iments using the MUSIC algorithm for a scenario involving a single speaker. The
objective is to estimate the azimuth angles (horizontal direction) of the sound source,
measured in degrees. The results are presented for four different microphone configu-
rations: Binaural Configuration: In this configuration, the real azimuth angle was
321.08 degrees, while the algorithm recovered an angle of 303 degrees. This resulted
in an error of 18.07 degrees. Triaural Configuration: For the triaural configuration,
the real azimuth angle was -26.56 degrees, but the algorithm estimated an angle of
270 degrees, resulting in an error of 63.43 degrees. Tetra-Aural Configuration: In
the tetra-aural configuration, the real azimuth angle was -38.92 degrees, and the
algorithm estimated an angle of 318 degrees. The error in this case was 3.07 degrees.
Circular Array Configuration: In the circular array configuration, the real azimuth
angle was 45 degrees, and the algorithm estimated an azimuth angle of 41 degrees,
resulting in a small error of 4 degrees.

2 Speaker Figure 6.39 presents the results of Sound Source Localization exper-
iments using the MUSIC algorithm for a scenario involving two speakers. The
objective is to estimate the azimuth angles (horizontal direction) of the two sound
sources, measured in degrees. The results are presented for four different micro-
phone configurations: Binaural Configuration: In the binaural configuration, the
real azimuth angles for the two speakers were [270, 45] degrees. The algorithm
estimated angles of [30, 330] degrees, resulting in errors of [15, 60] degrees for the
respective speakers. Triaural Configuration: For the triaural configuration, the real
azimuth angles for the two speakers were [45, 270] degrees. The algorithm estimated
angles of [181, 218] degrees, leading to errors of [136, 52] degrees for the respective
speakers. Tetra-Aural Configuration: Similarly, in the tetra-aural configuration,
the real azimuth angles for both speakers were [45, 270] degrees. The algorithm
recovered angles of [90, 270] degrees, resulting in errors of [45, 0] degrees. Circular
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.38: MUSIC with 1 speaker values of azimuth for configuration experi-
ments in degrees:
a) Binaural configuration: Real: 321.08, Recovered: 303, Error: 18.07
b) Triaural configuration: Real: -26.56, Recovered: 270, Error: 63.43
c) Tetra-aural configuration: Real: -38.92, Recovered: 318, Error: 3.07
d) Circular Array configuration: Real: 45, Recovered azimuth: 41, Error: 4

Array Configuration: In the circular array configuration, the real azimuth angles for
the two speakers remained [45, 270] degrees. The algorithm estimated angles of [43,
274] degrees, resulting in small errors of [2, 4] degrees for the respective speakers.

Certainly, I can explain the notation used in the results. In the provided results,
the notation [a1, a2] represents the azimuth angles of two different speakers or sound
sources. Specifically:

"a1" refers to the azimuth angle of the first speaker or sound source. "a2" refers
to the azimuth angle of the second speaker or sound source. Azimuth angles represent
the horizontal direction or angle at which a sound source is located relative to a
reference point, usually measured in degrees. Therefore, [a1, a2] provides a pair of
azimuth angles, one for each speaker, to describe their respective locations in the
horizontal plane.

For example, in the binaural configuration, the real azimuth angles [270, 45]
indicate that the first speaker is located at an azimuth angle of 270 degrees, while the
second speaker is located at an azimuth angle of 45 degrees. The estimated angles
[30, 330] represent the algorithm’s attempt to determine the positions of these two
speakers.

This notation helps distinguish between multiple sound sources and provides a
clear representation of their azimuth angles for analysis and evaluation.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.39: MUSIC with 2 speakers: values of azimuth for configuration
experiments in degrees:
a) Binaural configuration: Real azimuth: [270, 45], Recovered: [30, 330], Error: [15,
60]
b) Triaural configuration: Real: [45, 270], Recovered: [181, 218], Error: [136, 52]
c) Tetra-aural configuration: Real: [45, 270], Recovered: [90, 270], Error: [45, 0]
d) Circular Array configuration: Real: [45, 270], Recovered: [43, 274], Error: [2, 4]
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NormMUSIC

Since NormMUSIC has a more robust performance, is recommended to use
NormMUSIC over MUSIC. When MUSIC is used as a baseline for publications, we
recommend to use both NormMUSIC and MUSIC.[229]

1 Speaker : Figure 6.40 illustrates the results of Sound Source Localization
experiments using the NormMUSIC algorithm for a single-speaker scenario. The
objective of these experiments is to accurately estimate the azimuth angle (horizontal
direction) of the sound source, measured in degrees. The results are presented for
four different microphone configurations:

1. Binaural Configuration: In the real scenario, the azimuth angle was 321.08
degrees, while the algorithm recovered an angle of 286 degrees. This resulted
in an error of 35.07 degrees.

2. Triaural Configuration: In the real scenario, the azimuth angle was -26.56
degrees, but the algorithm estimated an angle of 90 degrees. This led to an
error of 116.56 degrees.

3. Tetra-Aural Configuration: In the real scenario, the azimuth angle was -38.92
degrees, and the algorithm estimated an angle of 284 degrees. The error in this
case was 37.07 degrees.

4. Circular Array Configuration: In this configuration, the real azimuth angle was
45 degrees, while the algorithm estimated an angle of 39 degrees, resulting in a
small error of 6 degrees.

These results provide insights into the performance of the NormMUSIC algorithm
for sound source localization across different microphone setups. It is evident that
the accuracy of azimuth estimation varies based on the microphone configuration,
with some configurations exhibiting higher errors than others.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.40: NormMUSIC with 1 speaker: azimuth for experiments (in degrees):
a) Binaural configuration: Real: 321.08, Recovered: 286, Error: 35.07
b) Triaural configuration: Real: -26.56, Recovered: 90, Error: 116.56
c) Tetra-aural configuration: Real: -38.92, Recovered: 284, Error: 37.07
d) Circular Array configuration: Real: 45, Recovered: 39, Error: 6.

146



2 Speaker Figure 6.41 presents the results of Sound Source Localization experi-
ments using the NormMUSIC algorithm for a scenario involving two speakers. The
objective is to estimate the azimuth angles (horizontal direction) of both sound
sources, measured in degrees. The results are shown for four different microphone
configurations:

1. Binaural Configuration: In this configuration, the real azimuth angles for the
two speakers were [45, 270] degrees. The algorithm recovered angles of [157,
203] degrees, resulting in errors of [112, 67] degrees for the respective speakers.

2. Triaural Configuration: For the triaural configuration, the real azimuth angles
for the two speakers were also [45, 270] degrees. The algorithm estimated
angles of [90, 270] degrees, leading to errors of [45, 0] degrees for the respective
speakers.

3. Tetra-Aural Configuration: Similarly, in the tetra-aural configuration, the
real azimuth angles for both speakers were [45, 270] degrees. The algorithm
recovered angles of [90, 270] degrees, resulting in errors of [45, 0] degrees.

4. Circular Array Configuration: In the circular array configuration, the real
azimuth angles for the two speakers remained [45, 270] degrees. The algorithm
estimated angles of [42, 271] degrees, leading to small errors of [3, 1] degrees
for the respective speakers.

These results provide insights into the performance of the NormMUSIC algorithm
for sound source localization when dealing with two speakers. The accuracy of
azimuth estimation varies based on the microphone configuration, and the errors are
reported for each speaker separately. This information is valuable for optimizing
microphone placement and algorithm selection in scenarios involving multiple sound
sources.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.41: NormMUSIC with 2 speakers: azimuth for experiments (in degrees):
a) Binaural configuration: Real: [ 45, 270], Recovered: [157, 203.], Error: [112, 67]
b) Triaural configuration: Real: [45, 270], Recovered: [90, 270], Error: [45, 0]
c) Tetra-aural configuration: Real: [ 45, 270], Recovered: [90, 270], Error: [45, 0]
d) Circular Array configuration: Real: [45, 270], Recovered: [42, 271], Error:[3,1]
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TOPS: Test of Orthogonality of Projected Subspaces

This technique [296] estimates DOAs by measuring the orthogonal relation
between the signal and the noise subspaces of multiple frequency components of
the sources. TOPS can be used with arbitrary shaped one-dimensional (1-D) or
two-dimensional (2-D) arrays. Unlike other coherent wideband methods, such as
the coherent signal subspace method (CSSM) and WAVES, the new method does
not require any preprocessing for initial values. The performance of those wideband
techniques and incoherent MUSIC is compared with that of the new method through
computer simulations. The simulations show that this new technique performs better
than others in mid signal-to-noise ratio (SNR) ranges, while coherent methods work
best in low SNR and incoherent methods work best in high SNR. Thus, TOPS fills a
gap between coherent and incoherent methods.

Experiments on different microphone configurations with 1 Speaker :
Figure 6.42 displays the results of Sound Source Localization experiments using
the TOPS algorithm for a scenario involving a single speaker. The objective is to
estimate the azimuth angles (horizontal direction) of the sound source, measured
in degrees. The results are presented for four different microphone configurations:
Binaural Configuration: In the binaural configuration, the real azimuth angle was
321.08 degrees, while the algorithm estimated an angle of 241 degrees. This resulted
in an error of 80.07 degrees. Triaural Configuration: For the triaural configuration,
the real azimuth angle was -26.56 degrees, but the algorithm estimated an angle of
235 degrees, resulting in an error of 98.43 degrees. Tetra-Aural Configuration: In
the tetra-aural configuration, the real azimuth angle was -38.92 degrees, and the
algorithm estimated an angle of 84 degrees. The error in this case was 122.92 degrees.
Circular Array Configuration: In the circular array configuration, the real azimuth
angle was 45 degrees, and the algorithm estimated an azimuth angle of 38 degrees,
resulting in a small error of 7 degrees.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.42: TOPS with 1 speaker: azimuth for experiments (in degrees):
a) Binaural configuration: Real: 321.08, Recovered: 241, Error: 80.07
b) Triaural configuration: Real: -26.56, Recovered: 235, Error: 98.43
c) Tetra-aural configuration: Real: -38.92, Recovered: 84, Error: 122.92
d) Circular Array configuration: Real: 45, Recovered: 38, Error:7
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2 Speaker Figure 6.43 presents the results of Sound Source Localization experi-
ments using the TOPS algorithm for a scenario involving two speakers. The objective
is to estimate the azimuth angles (horizontal direction) of the two sound sources,
measured in degrees. The results are presented for four different microphone con-
figurations: Binaural Configuration: Unfortunately, an error occurred during the
execution of the experiment for the binaural configuration. The error message in-
dicates that an index -1 is out of bounds for axis 0 with size 0. This suggests that
the experiment could not be completed successfully for this configuration. Triaural
Configuration: In the triaural configuration, the real azimuth angles for the two
speakers were [45, 270] degrees. The algorithm estimated angles of [90, 147] degrees,
resulting in errors of [45, 123] degrees for the respective speakers. Tetra-Aural
Configuration: Similarly, in the tetra-aural configuration, the real azimuth angles for
both speakers were [45, 270] degrees. The algorithm recovered angles of [90, 270]
degrees, resulting in errors of [45, 0] degrees. Circular Array Configuration: In the
circular array configuration, the real azimuth angles for the two speakers remained
[45, 270] degrees. The algorithm estimated angles of [28, 268] degrees, resulting in
errors of [17, 2] degrees for the respective speakers.

These results provide insights into the performance of the TOPS algorithm for
sound source localization when dealing with two speakers. The accuracy of azimuth
estimation varies based on the microphone configuration, and errors are reported for
each speaker separately. Unfortunately, the experiment for the binaural configuration
encountered an error during execution and could not be completed.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.43: TOPS with 2 speakers azimuth for experiments (in degrees):
a) Binaural configuration: Error during execution -> index -1 is out of bounds for
axis 0 with size 0
b) Triaural configuration: Real: [45, 270], Recovered: [90, 147], Error:[45, 123]
c) Tetra-aural configuration: Real: [45, 270], Recovered: [ 90, 270], Error:[45. 0.]
d) Circular Array configuration: Real: [45, 270], Recovered: [28, 268], Error:[17, 2]
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WAVES: Weighted Average of Signal Subspaces

Existing algorithms for wideband direction finding are mainly based on local
approximations of the Gaussian log-likelihood around the true directions of arrival
(DOAs), assuming negligible array calibration errors. Suboptimal and costly al-
gorithms, such as classical or sequential beamforming, are required to initialize a
local search that eventually furnishes DOA estimates. This multistage process may
be nonrobust in the presence of even small errors in prior guesses about angles
and number of sources generated by inherent limitations of the preprocessing and
may lead to catastrophic errors in practical applications. This strategy combines
a robust near-optimal data-adaptive statistic, called the weighted average of signal
subspaces (WAVES) [70], with an enhanced design of focusing matrices to ensure
a statistically robust preprocessing of wideband data. The overall sensitivity of
WAVES to various error sources, such as imperfect array focusing, is also reduced
with respect to traditional CSSM algorithms, as demonstrated by extensive Monte
Carlo simulations.

1 Speaker Figure 6.44 displays the results of Sound Source Localization exper-
iments using the WAVES algorithm. The objective is to estimate the azimuth
angles (horizontal direction) of sound sources, measured in degrees. The results are
presented for four different microphone configurations: In the binaural configuration,
the real azimuth angle was 321.08 degrees, while the algorithm estimated an angle
of 281 degrees. This resulted in an error of 40.07 degrees. For the triaural configu-
ration, the real azimuth angle was -26.56 degrees, but the algorithm estimated an
angle of 339 degrees, resulting in a small error of 5.56 degrees. In the tetra-aural
configuration, the real azimuth angle was -38.92 degrees, and the algorithm esti-
mated an angle of 348 degrees. The error in this case was 26.92 degrees. In the
circular array configuration, the real azimuth angle was 45 degrees, and the algo-
rithm estimated an azimuth angle of 49 degrees, resulting in a small error of 4 degrees.

These results provide insights into the performance of the WAVES algorithm for
sound source localization in different microphone setups. The accuracy of azimuth
estimation varies based on the microphone configuration, with some configurations
exhibiting higher errors than others. These findings are valuable for optimizing mi-
crophone placement and algorithm selection in sound source localization applications.

2 Speaker Figure 6.45 presents the results of Sound Source Localization exper-
iments using the WAVES algorithm. The objective is to estimate the azimuth
angles (horizontal direction) of sound sources, measured in degrees. The results
are presented for four different microphone configurations: Unfortunately, an error
occurred during the execution of the experiment for the binaural configuration. The
experiment encountered an error, and the azimuth angles for speakers could not be
successfully estimated. In the triaural configuration, the real azimuth angles for the
two speakers were [45, 270] degrees. The WAVES algorithm estimated angles of
[196, 357] degrees, resulting in errors of [151, 87] degrees for the respective speakers.
The tetra-aural configuration, it appears that the experiment encountered an error
related to a singular matrix. Consequently, the azimuth angles for speakers could
not be estimated. In the circular array configuration, the real azimuth angles for the
two speakers were [45, 270] degrees. The WAVES algorithm estimated angles of [41,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.44: WAVES values of azimuth for configuration experiments in degrees:
a) Binaural configuration: Real: 321.08, Recovered: 281, Error: 40.07
b) Triaural configuration: Real: -26.56, Recovered: 339, Error: 5.56
c) Tetra-aural configuration: Real: -38.92, Recovered: 348, Error: 26.92
d) Circular Array configuration: Real: 45, Recovered: 49, Error:4

164] degrees, resulting in errors of [4, 106] degrees for the respective speakers.
These results highlight the performance of the WAVES algorithm for localizing

speakers in different microphone configurations. While some configurations yielded
accurate estimations, others encountered errors or exhibited higher errors. These
findings provide insights into the algorithm’s limitations and areas for potential
improvement in sound source localization tasks.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.45: WAVES speakers’ azimuth for experiments (in degrees):
a) Binaural configuration: Error
b) Triaural configuration: Real : [45, 270], Recovered: [196, 357], Error: [151, 87]
c) Tetra-aural configuration: Error -> Singular Matrix
d) Circular Array configuration: Real : [ 45, 270. ], Recovered: [41, 164], Error: [4,
106]
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SRP-PHAT: Steered-Response Power-Phase Transform

The Steered-Response Power (SRP) map has been extensively employed in this
regard. It involves applying delay-and-sum beamformers towards each potential grid
position and measuring the energy originating from these directions. The PHAT
version of SRP, known to be more resilient to reverberation, is widely adopted.
In practical terms, the PHAT-based SRP map can be computed by averaging the
GCC-PHAT values computed across all microphone pairs (DiBiase et al., 2001) [72]:

P (x) =
M∑

m1=1

M∑
m2=m1+1

r1,2(τm1,m2(x)) (6.2)

Here, τm1,m2(x) denotes the delay between microphones m1 and m2 corresponding to
spatial position x

Experiments conducted consist of applying this algorithm to 1 speaker and 2
speakers configuration.

1 Speaker Figure 6.46 presents the results of Sound Source Localization experi-
ments using the SRP-PHAT algorithm. The objective is to estimate the azimuth
angles (horizontal direction) of sound sources, measured in degrees. The results are
presented for four different microphone configurations: In the binaural configuration,
the real azimuth angle was 321.08 degrees, while the SRP-PHAT algorithm estimated
an azimuth angle of 272 degrees. This resulted in an error of 49.07 degrees. For the
triaural configuration, the real azimuth angle was -26.56 degrees, but the SRP-PHAT
algorithm estimated an azimuth angle of 90 degrees. This led to an error of 116.56
degrees. In the tetra-aural configuration, the real azimuth angle was -38.92 degrees,
and the SRP-PHAT algorithm estimated an azimuth angle of 306 degrees. The error
in this case was 15.07 degrees. In the circular array configuration, the real azimuth
angle was 45 degrees, and the SRP-PHAT algorithm estimated an azimuth angle of
39 degrees. This resulted in a relatively small error of 6 degrees.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.46: SRP-PHAT speaker azimuth for experiments (in degrees):
a) Binaural configuration: Real: 321.08, Recovered: 272, Error: 49.07
b) Triaural configuration: Real: -26.56, Recovered: 90, Error: 116.56
c) Tetra-aural configuration: Real: -38.92, Recovered: 306, Error: 15.07
d) Circular Array configuration: Real: 45, Recovered: 39, Error: 6
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2 Speaker Figure 6.47 presents the results of Sound Source Localization experi-
ments using the SRP-PHAT algorithm. The objective is to estimate the azimuth
angles (horizontal direction) of sound sources, measured in degrees. The results are
presented for four different microphone configurations: In the binaural configura-
tion, the real azimuth angles were [45, 270] degrees for two different sources. The
SRP-PHAT algorithm estimated azimuth angles of [90, 270] degrees for these sources.
The error for the first source was 45 degrees, while there was no error (0 degrees)
for the second source. For the triaural configuration, the real azimuth angles were
[45, 270] degrees for two different sources. The SRP-PHAT algorithm estimated
azimuth angles of [90, 270] degrees for these sources. The error for both sources
was 45 degrees. In the tetra-aural configuration, the real azimuth angles were [45,
270] degrees for two different sources. The SRP-PHAT algorithm estimated azimuth
angles of [90, 270] degrees for these sources. The error for both sources was 45
degrees. In the circular array configuration, the real azimuth angles were [45, 270]
degrees for two different sources. The SRP-PHAT algorithm estimated azimuth
angles of [88, 271] degrees for these sources. The error for the first source was 43
degrees, while the error for the second source was 1 degree.

These results demonstrate the performance of the SRP-PHAT algorithm in local-
izing speakers for various microphone configurations. In some cases, the algorithm
was able to accurately estimate the azimuth angles with minimal error, while in
others, there was a slight deviation from the real angles. The findings contribute to
our understanding of the algorithm’s capabilities in sound source localization tasks.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.47: SRP-PHAT speakers’ azimuth for experiments (in degrees):
a) Binaural configuration: Real: [45, 270], Recovered: [90, 270], Error: [45, 0]
b) Triaural configuration: Real: [ 45, 270], Recovered: [90, 270], Error: [45, 0 ]
c) Tetra-aural configuration: Real: [ 45, 270], Recovered: [90, 270], Error: [45, 0]
d) Circular Array configuration: Real: [ 45, 270] Recovered: [88, 271], Error: [43, 1]
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GCC-PHAT: General Cross Correlation on Phase Transform

The generalized cross-correlation (CC) with phase transform (GCC-PHAT) is one
of the most employed methods when dealing with a 2-microphone array [127]. To
estimate TDOA, the delay between the cross-correlation between two signals should
be maximum. Phase transform GCC increases its robustness. Let be xi and xj be
two signals:

ĜPHAT (f) =
Xi(f)[Xj(f)]

∗

|Xi(f)[Xj(f)]∗|
(6.3)

where Xi(f) and Xj(f) are Fourier transforms of two signals and []∗ is complex
conjugate. The TDOA for two microphones is given as

d̂PHAT (i, j) =
argmax
d (R̂PHAT (d)) (6.4)

where R̂PHAT (d) is the inverse Fourier transform.

1 Speaker This figure presents the results of experiments conducted using the GCC-
PHAT algorithm for sound source localization. The goal of these experiments was to
estimate the Cartesian coordinates (x, y) of sound sources in meters, representing
the positions of sound sources in a 2D plane. The results are provided for three
different microphone configurations: In the binaural configuration, the ground truth
coordinates of the sound source were [0.6, 1.25] meters. The GCC-PHAT algorithm
estimated the coordinates as [1.36, 0]. This estimation resulted in an error of [-0.76,
1.25] meters. For the triaural configuration, the ground truth coordinates were [2.0,
1.0] meters. The GCC-PHAT algorithm estimated the coordinates as [1.39, 1.36]
meters. The estimation error was [0.61, 0.36] meters. In the tetra-aural configuration,
the ground truth coordinates of the sound source were [0.5, 2.0] meters. The GCC-
PHAT algorithm estimated the coordinates as [1.71, 1.17] meters. This estimation
resulted in an error of [-1.21, 0.82] meters. These results provide valuable insights
into the accuracy and performance of the GCC-PHAT algorithm for sound source
localization across different microphone configurations.

(a) (b) (c)

Figure 6.48: GCC-PHAT: Values of [x,y] in cartesian axes per configuration in
meters:
a) Binaural configuration: Groundtruth: [0.6 1.25], GCC estimate: [1.36 0. ]
b) Triaural configuration: Groundtruth: [2. 1.], GCC estimate: [1.39 1.36]
c) Tetra-aural configuration: Groundtruth: [0.5 2. ], GCC estimate: [1.71 1.17],
GCC Error: [-1.21 0.82]
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Neural GCC-PHAT

The following figure 6.49 will show you experiment done on different microphone
configurations with 1 and 2 speakers at the same moment:

1 Speaker Figure 6.49 presents the results of GCC-PHAT experiments, which
involve estimating the Cartesian coordinates (x, y) of sound sources in meters. These
coordinates represent the positions of sound sources in a 2D plane. The results are
presented for three different microphone configurations: In the binaural configuration,
the ground truth coordinates of the sound source were [0.6, 1.25] meters. The GCC-
PHAT algorithm estimated the coordinates as [1.36, 0] meters. This estimation
resulted in an error of [-0.76, 1.25] meters. For the triaural configuration, the ground
truth coordinates were [2.0, 1.0] meters. The GCC-PHAT algorithm estimated the
coordinates as [1.39, 1.36] meters. The estimation error was [0.61, 0.36] meters. In
the tetra-aural configuration, the ground truth coordinates of the sound source were
[0.5, 2.0] meters. The GCC-PHAT algorithm estimated the coordinates as [1.71,
1.17] meters. This estimation resulted in an error of [-1.21, 0.82] meters. These
results provide insights into the accuracy of GCC-PHAT in estimating the spatial
positions of sound sources in different microphone configurations. In some cases, the
estimated coordinates closely matched the ground truth, while in others, there were
notable deviations.

(a) (b) (c)

Figure 6.49: NGCC-PHAT: position of [x,y] in cartesian axes and for different
configuration in meters:
a) Binaural configuration: Groundtruth: [0.6 1.25], NGCC estimate: [1.29 0]
b) Triaural configuration: Groundtruth position: [2. 1.], NGCC estimate: [1.44461964
1.43318727]
c) Tetra-aural configuration: Groundtruth: [0.5 2. ], GCC estimate: [1.31010009
1.41599011], GCC Error: [-0.81010009 0.58400989]
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3.6 Results

3.7 Single Speaker

In this section, we present the results of our experiments focused on Direction
of Arrival (DOA) estimation for a single speaker source. The table below (Table
6.2) summarizes the azimuthal errors in degrees obtained across various microphone
configurations and algorithms.

Table 6.1: Single Speaker: DOA Estimation Error Results: Speaker azimuth for
experiments in degrees

System Binaural Triaural Tetra-Aural Circular Arr Mics
TOPS 80.07 98.43 122.92 7
SRP-PHAT 49.07 116.56 15.07 6
WAVES 40.07 5.56 26.92 4
MUSIC 18.07 63.43 3.07 4
NormMUSIC 35.07 116.56 37.07 6
NGCC-PHAT [0.6 0.4] [0.6 0.3] [-0.8 0.5] -

Table 6.2: Multiple Speakers (2 Speaker): DOA Estimation Error Results:
Speaker azimuth for experiments in degrees

System Binaural Triaural Tetra-Aural Circular Arr Mics
TOPS - [45, 123] [45, 0.] [17, 2]
SRP-PHAT [45, 0] [45, 0 ] [45, 0] [43, 1]
WAVES - [196, 357] [151, 87] [4, 106]
MUSIC [15, 60] [136, 52] [45, 0] [2, 4]
NormMUSIC [112, 67] [45, 0] [45, 0] [3,1]
NGCC-PHAT - [-0.2, 0.01], [0.01, -0.01] - -
GCC-PHAT - [-0.20 0.00], [ 0.04 -0.03] - -

The results of the experiments conducted with various Sound Source Localization
algorithms have shown that the microphone configuration that consistently performed
the best across all algorithms is the one with a circular array of microphones.

In the case of the multispeaker experiment with NGCC-PHAT, promising results
have also been obtained, and further exploration is underway to better understand the
effectiveness of microphone configurations in different environments. This research
aims to improve the accuracy of speaker localization in various scenarios.

4 On going works and Future Works
Currently, there are experiments involving fine-tuning and training of the NGCC-

PHAT model using various microphone configurations considered in this study. The
ongoing experiments with the NGCC-PHAT model are based on the model available
in the author’s public repository.

If the performance improves with individual training, it may be worth considering
further investigation by adding other types of background noise that more closely
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simulate real-world contexts for simulations. However, the NGCC-PHAT model is
designed for the estimation of a single source. To use the model for multi-source esti-
mation, a ReSepFormer has been applied to separate the recorded sources, assuming
that they maintain phase properties once separated. This allows the application of
the individual NGCC-PHAT on each separate track to localize the individual source.

Currently, we are in the process of creating simulations on the LibriSpeech dataset,
using the same type of environment to test the algorithms on larger datasets that
can provide a more representative sample. The aim is to create a new Sound Source
Localization dataset based on LibriSpeech and pyroomacoustics, along with a new
separation and localization method, the performance of which can be tested.

Once we have obtained the results of the tests of various algorithms on this
dataset that is currently being created, the thesis will be updated as the completion
of the work, and there is potential for publishing a contribution based on these
findings.

Here (https://github.com/valeriopuglisi/librispeech-ssl-datasets) you
can find the repository about this work with the code optimized to create LibriSpeech
Sound Source Localization Dataset and preliminary results of DOA Algorithms Mean
Error on Created Dataset. Actually the Dataset is just for single speaker but soon it
will be extended as multispeaker Sound Source Localization Dataset with relative
tests.
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Chapter 7

Conclusions

This doctoral thesis represents an extensive exploration of deep learning-based
audio analysis, a rapidly evolving field that holds immense potential for extracting
and comprehending valuable insights from audio signals. Throughout this research,
we embarked on a comprehensive journey, investigating various techniques, method-
ologies, and approaches in pursuit of a deeper understanding of audio data and its
practical applications.

One of the fundamental lessons gleaned from this study is the paramount im-
portance of conducting an exhaustive review of the state-of-the-art literature when
tackling a new problem. Prior to diving into research, conducting an extensive litera-
ture review provides essential context, reveals existing methodologies, and highlights
potential gaps in knowledge. This initial phase not only lays the foundation for
informed research but also serves as a compass, guiding researchers toward the most
promising avenues of exploration.

Moreover, the significance of reproducibility in scientific experimentation cannot
be overstated. It is crucial that researchers rigorously document their methodologies,
share their code, and make their experiments reproducible. The research community
greatly benefits from transparent and reproducible experiments, as they serve as
benchmarks for future investigations. It is through the dissemination of code and ex-
perimental details that the collective knowledge of the scientific community expands,
enabling others to build upon existing work and contribute to the advancement of
the field.

This work serves as a foundational stepping stone for future scientific discoveries.
The "Deep Audio Analyzer" framework developed throughout this research stands as
a testament to the advancements in audio analysis. This framework seamlessly inte-
grates state-of-the-art models from Hugging Face with a simple click, democratizing
access to cutting-edge technologies. Additionally, its unique capability to combine
models for specific tasks across different datasets without the need for extensive
coding makes it a valuable tool, particularly in forensic contexts.

In conclusion, this thesis marks a significant stride forward in the realm of deep
learning-based audio analysis. It underscores the importance of beginning any re-
search endeavour with a thorough review of the state-of-the-art literature, recognizing
the invaluable insights and methodologies that have been developed by the scientific
community. Furthermore, it highlights the indispensable role of reproducibility in
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advancing scientific knowledge, emphasizing the need for open access to code and ex-
perimental details. As the journey continues, I eagerly anticipate future contributions
and discoveries that will further enrich the field of audio analysis and deep learning.
The "Deep Audio Analyzer" framework, with its ability to harness state-of-the-art
models and simplify complex tasks, is poised to play a pivotal role in shaping the
future of scientific exploration in audio analysis.
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Appendix A

Deep Learning Models used in Deep
Audio Analyzer

Deep Audio Analyzer integrates models developed through SpeechBrain and
featured in the HugginFace platform.

1 Automatic Speech Recognition

1.1 Wav2Vec & Wav2Vec2

Wav2Vec

[236]

wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Repre-
sentations

[14] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed and Michael Auli show
for the first time that learning powerful representations from speech audio alone
followed by fine-tuning on transcribed speech can outperform the best semi-supervised
methods while being conceptually simpler. wav2vec 2.0 masks the speech input in
the latent space and solves a contrastive task defined over a quantization of the
latent representations which are jointly learned. Experiments using all labeled data
of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the
amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of
the art on the 100 hour subset while using 100 times less labeled data. Using just
ten minutes of labeled data and pre-training on 53k hours of unlabeled data still
achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with
limited amounts of labeled data.

• wav2vec 2.0 with CTC/Attention trained on CommonVoice Italian
(No LM) This repository provides all the necessary tools to perform automatic
speech recognition from an end-to-end system pretrained on CommonVoice
(Italian Language) within SpeechBrain.
The performance of the model is the following:

Release Test WER GPUs

03-06-21 9.86 2xV100 32GB
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This ASR system is composed of 2 different but linked blocks:

1- Tokenizer (unigram) that transforms words into subword units and trained
with the train transcriptions (train.tsv) of CommonVoice (EN).

2- Acoustic model (wav2vec2.0 + CTC/Attention). A pretrained wav2vec
2.0 model (facebook/wav2vec2-large-it-voxpopuli) is combined with two DNN
layers and finetuned on CommonVoice En. The obtained final acoustic repre-
sentation is given to the CTC and attention decoders.

The system is trained with recordings sampled at 16kHz (single channel). The
code will automatically normalize your audio (i.e., resampling + mono channel
selection) when calling transcribe_file if needed.

• wav2vec 2.0 with CTC/Attention trained on CommonVoice Kin-
yarwanda (No LM) This repository provides all the necessary tools to
perform automatic speech recognition from an end-to-end system pretrained
on CommonVoice (Kinyarwanda Language) within SpeechBrain.
The performance of the model is the following:
Release Test WER GPUs

03-06-21 18.91 2xV100 32GB Pipeline description This ASR system is composed
of 2 different but linked blocks:

1 - Tokenizer (unigram) that transforms words into subword units and trained
with the train transcriptions (train.tsv) of CommonVoice (RW).

2 - Acoustic model (wav2vec2.0 + CTC/Attention). A pretrained wav2vec 2.0
model (wav2vec2-large-xlsr-53) is combined with two DNN layers and finetuned
on CommonVoice En. The obtained final acoustic representation is given to
the CTC and attention decoders.

• wav2vec 2.0 with CTC/Attention trained on CommonVoice French
(No LM) This repository provides all the necessary tools to perform automatic
speech recognition from an end-to-end system pretrained on CommonVoice
(French Language) within SpeechBrain.
This ASR system is composed of 2 different but linked blocks: 1- Tokenizer
(unigram) that transforms words into subword units and trained with the train
transcriptions (train.tsv) of CommonVoice (FR).
2 - Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model
(LeBenchmark/wav2vec2-FR-7K-large) is combined with two DNN layers and
finetuned on CommonVoice FR. The obtained final acoustic representation is
given to the CTC greedy decoder.
The system is trained with recordings sampled at 16kHz (single channel). The
code will automatically normalize your audio (i.e., resampling + mono channel
selection) when calling transcribe_file if needed.

• wav2vec 2.0 with CTC trained on LibriSpeech This ASR system is
composed of 2 different but linked blocks:

1 - Tokenizer (unigram) that transforms words into characters and trained with
the train transcriptions (EN).

2 - Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model
(wav2vec2-large-960h-lv60-self) is combined with two DNN layers and finetuned
on LibriSpeech. The obtained final acoustic representation is given to the CTC.
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The system is trained with recordings sampled at 16kHz (single channel). The
code will automatically normalize your audio (i.e., resampling + mono channel
selection) when calling transcribe_file if needed.

• wav2vec 2.0 with CTC trained on CommonVoice English (No LM)

This ASR system is composed of 2 different but linked blocks:

1 - Tokenizer (unigram) that transforms words into characters and trained with
the train transcriptions (EN).

2 - Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model
(wav2vec2-large-960h-lv60-self) is combined with two DNN layers and finetuned
on LibriSpeech. The obtained final acoustic representation is given to the CTC.
The system is trained with recordings sampled at 16kHz (single channel). The
code will automatically normalize your audio (i.e., resampling + mono channel
selection) when calling transcribe_file if needed.

1.2 CRDNN

• CRDNN with CTC/Attention trained on CommonVoice 7.0 German
(No LM) This repository provides all the necessary tools to perform automatic
speech recognition from an end-to-end system pretrained on CommonVoice
(German Language) within SpeechBrain.
This ASR system is composed of 2 different but linked blocks:

1 - Tokenizer (unigram) that transforms words into subword units and trained
with the train transcriptions (train.tsv) of CommonVoice (DE).
2 - Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture
is made of N blocks of convolutional neural networks with normalization and
pooling on the frequency domain. Then, a bidirectional LSTM is connected
to a final DNN to obtain the final acoustic representation that is given to the
CTC and attention decoders.

The system is trained with recordings sampled at 16kHz (single channel). The
code will automatically normalize your audio (i.e., resampling + mono channel
selection) when calling transcribe_file if needed.

• CRDNN with CTC/Attention trained on CommonVoice French (No
LM) This repository provides all the necessary tools to perform automatic
speech recognition from an end-to-end system pretrained on CommonVoice
(French Language) within SpeechBrain. This ASR system is composed of 2
different but linked blocks:

1- Tokenizer (unigram) that transforms words into subword units and trained
with the train transcriptions (train.tsv) of CommonVoice (FR).

2 - Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture
is made of N blocks of convolutional neural networks with normalization and
pooling on the frequency domain. Then, a bidirectional LSTM is connected
to a final DNN to obtain the final acoustic representation that is given to the
CTC and attention decoders.

• CRDNN with CTC/Attention trained on CommonVoice Italian (No
LM) This repository provides all the necessary tools to perform automatic
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speech recognition from an end-to-end system pretrained on CommonVoice
(IT) within SpeechBrain.
The performance of the model is the following:

Release Test CER Test WER GPUs

07-03-21 5.40 16.61 2xV100 16GB

This ASR system is composed of 2 different but linked blocks:
1 - Tokenizer (unigram) that transforms words into subword units and trained
with the train transcriptions (train.tsv) of CommonVoice (IT).
2 - Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture
is made of N blocks of convolutional neural networks with normalization and
pooling on the frequency domain. Then, a bidirectional LSTM is connected
to a final DNN to obtain the final acoustic representation that is given to the
CTC and attention decoders.

The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono
channel selection) when calling transcribe_file if needed.

• CRDNN with CTC/Attention and RNNLM trained on LibriSpeech
This repository provides all the necessary tools to perform automatic speech
recognition from an end-to-end system pretrained on LibriSpeech (EN) within
SpeechBrain. For a better experience we encourage you to learn more about
SpeechBrain. The performance of the model is the following:

Release Test WER GPUs 20-05-22 3.09 1xV100 32GB

This ASR system is composed with 3 different but linked blocks:

1 - Tokenizer (unigram) that transforms words into subword units and trained
with the train transcriptions of LibriSpeech.

2- Neural language model (RNNLM) trained on the full 10M words dataset.

3- Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture
is made of N blocks of convolutional neural networks with normalisation and
pooling on the frequency domain. Then, a bidirectional LSTM is connected
to a final DNN to obtain the final acoustic representation that is given to the
CTC and attention decoders.
The system is trained with recordings sampled at 16kHz (single channel). The
code will automatically normalize your audio (i.e., resampling + mono channel
selection) when calling transcribe_file if needed.

1.3 Conformer for KsponSpeech (with Transformer LM)

This repository provides all the necessary tools to perform automatic speech
recognition from an end-to-end system pretrained on KsponSpeech (Kr) within
SpeechBrain.
This ASR system is composed of 3 different but linked blocks:

1 - Tokenizer (unigram) that transforms words into subword units and trained
with the train transcriptions of KsponSpeech.
2 - Neural language model (Transformer LM) trained on the train transcriptions of
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KsponSpeech
3 - Acoustic model made of a conformer encoder and a joint decoder with CTC +
transformer. Hence, the decoding also incorporates the CTC probabilities.
The system is trained with recordings sampled at 16kHz (single channel). The code
will automatically normalize your audio (i.e., resampling + mono channel selection)
when calling transcribe_file if needed.

1.4 Transformer for AISHELL (Mandarin Chinese)

This repository provides all the necessary tools to perform automatic speech
recognition from an end-to-end system pretrained on AISHELL (Mandarin Chinese)
within SpeechBrain. For a better experience, we encourage you to learn more about
SpeechBrain.
The performance of the model is the following: Release Dev CER Test CER GPUs
Full Results 05-03-21 5.60 6.04 2xV100 32GB

https://drive.google.com/drive/folders/1zlTBib0XEwWeyhaXDXnkqtPsIBI18Uzs?usp=sharingGoogle
Drive

This ASR system is composed of 2 different but linked blocks: 1 - Tokenizer (unigram)
that transforms words into subword units and trained with the train transcriptions
of LibriSpeech. 2 - Acoustic model made of a transformer encoder and a joint
decoder with CTC + transformer. Hence, the decoding also incorporates the CTC
probabilities.

1.5 Transformer for AISHELL + wav2vec2 (Mandarin Chi-
nese)

This repository provides all the necessary tools to perform automatic speech recog-
nition from an end-to-end system pretrained on AISHELL +wav2vec2 (Mandarin
Chinese) within SpeechBrain. For a better experience, we encourage you to learn
more about SpeechBrain. The performance of the model is the following: Release
Dev CER Test CER GPUs Full Results 05-03-21 5.19 5.58 2xV100 32GB Google Drive

This ASR system is composed of 2 different but linked blocks: 1 - Tokenizer (unigram)
that transforms words into subword units and trained with the train transcriptions of
LibriSpeech. 2 - Acoustic model made of a wav2vec2 encoder and a joint decoder with
CTC + transformer. Hence, the decoding also incorporates the CTC probabilities.

2 Emotion Recognition

2.1 Emotion Recognition with wav2vec2 base on IEMOCAP

This repository provides all the necessary tools to perform emotion recognition
with a fine-tuned wav2vec2 (base) model using SpeechBrain. It is trained on IEMO-
CAP training data.
For a better experience, we encourage you to learn more about SpeechBrain. The
model performance on IEMOCAP test set is:

Release Accuracy(%)
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19-10-21 78.7 (Avg: 75.3)

This system is composed of an wav2vec2 model. It is a combination of convo-
lutional and residual blocks[14]. The embeddings are extracted using attentive
statistical pooling. The system is trained with Additive Margin Softmax Loss.
Speaker Verification is performed using cosine distance between speaker embeddings.
The system is trained with recordings sampled at 16kHz (single channel). The code
will automatically normalize your audio (i.e., resampling + mono channel selection)
when calling classify_file if needed.

2.2 ECAPA-TDNN

Current speaker verification techniques rely on a neural network to extract speaker
representations. The successful x-vector architecture is a Time Delay Neural Network
(TDNN) that applies statistics pooling to project variable-length utterances into fixed-
length speaker characterizing embeddings. In [68], the authors proposed multiple
enhancements to this architecture based on recent trends in the related fields of face
verification and computer vision. Firstly, the initial frame layers can be restructured
into 1-dimensional Res2Net modules with impactful skip connections. Similarly to
SE-ResNet, we introduce Squeeze-and-Excitation blocks in these modules to explicitly
model channel interdependencies. The SE block expands the temporal context of
the frame layer by rescaling the channels according to global properties of the
recording. Secondly, neural networks are known to learn hierarchical features, with
each layer operating on a different level of complexity. To leverage this complementary
information, we aggregate and propagate features of different hierarchical levels.
Finally, we improve the statistics pooling module with channel-dependent frame
attention. This enables the network to focus on different subsets of frames during
each of the channel’s statistics estimation. The proposed ECAPA-TDNN architecture
significantly outperforms state-of-the-art TDNN based systems on the VoxCeleb test
sets and the 2019 VoxCeleb Speaker Recognition Challenge.

3 Speech Enhancement

3.1 MetricGAN+: An Improved Version of MetricGAN for
Speech Enhancement

The discrepancy between the cost function used for training a speech enhancement
model and human auditory perception usually makes the quality of enhanced speech
unsatisfactory. Objective evaluation metrics which consider human perception can
hence serve as a bridge to reduce the gap. In [80] MetricGAN was previously and
designed to optimize objective metrics by connecting the metric with a discriminator.
Because only the scores of the target evaluation functions are needed during training,
the metrics can even be non-differentiable. In study [81] , researchers propose a
MetricGAN+ in which three training techniques incorporating domain-knowledge of
speech processing are proposed. With these techniques, experimental results on the
VoiceBank-DEMAND dataset show that MetricGAN+ can increase PESQ score by
0.3 compared to the previous MetricGAN and achieve state-of-the-art results (PESQ
score = 3.15).
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3.2 SepFormer: Attention is All You Need in Speech Separa-
tion

[249] Cem Subakan, Mirco Ravanelli, Samuele Cornell, Mirko Bronzi, Jianyuan
Zhong Recurrent Neural Networks (RNNs) have long been the dominant architecture
in sequence-to-sequence learning. RNNs, however, are inherently sequential models
that do not allow parallelization of their computations. Transformers are emerging
as a natural alternative to standard RNNs, replacing recurrent computations with a
multi-head attention mechanism. In this paper, we propose the SepFormer, a novel
RNN-free Transformer-based neural network for speech separation. The SepFormer
learns short and long-term dependencies with a multi-scale approach that employs
transformers. The proposed model achieves state-of-the-art (SOTA) performance
on the standard WSJ0-2/3mix [106] datasets. It reaches an SI-SNRi of 22.3 dB on
WSJ0-2mix and an SI-SNRi of 19.5 dB on WSJ0-3mix. The SepFormer inherits the
parallelization advantages of Transformers and achieves a competitive performance
even when downsampling the encoded representation by a factor of 8. It is thus
significantly faster and it is less memory-demanding than the latest speech separation
systems with comparable performance.

• SepFormer trained on WHAM! : This repository provides all the necessary
tools to perform audio source separation with a SepFormer model, implemented
with SpeechBrain, and pretrained on WHAM! dataset, which is basically a
version of WSJ0-Mix dataset with environmental noise. For a better experience
we encourage you to learn more about SpeechBrain. The model performance
is 16.3 dB SI-SNRi on the test set of WHAM! dataset.

• SepFormer trained on WHAMR! (16k sampling frequency): This
repository provides all the necessary tools to perform audio source separation
with a SepFormer model, implemented with SpeechBrain, and pretrained on
WHAMR! dataset with 16k sampling frequency, which is basically a version of
WSJ0-Mix dataset with environmental noise and reverberation in 16k. The
given model performance is 13.5 dB SI-SNRi on the test set of WHAMR!
dataset.

• SepFormer trained on WHAMR!(8k sampling frequency) : This
repository provides all the necessary tools to perform audio source separation
with a SepFormer model, implemented with SpeechBrain, and pretrained on
WHAMR! dataset, which is basically a version of WSJ0-Mix dataset with
environmental noise and reverberation. For a better experience we encourage
you to learn more about SpeechBrain. The model performance is 13.7 dB
SI-SNRi on the test set of WHAMR! dataset.

• SepFormer trained on WSJ0-2Mix : This repository provides all the
necessary tools to perform audio source separation with a SepFormer model,
implemented with SpeechBrain, and pretrained on WSJ0-2Mix dataset. For
a better experience we encourage you to learn more about SpeechBrain. The
model performance is 22.4 dB on the test set of WSJ0-2Mix dataset.

• SepFormer trained on WSJ0-3Mix : This repository provides all the
necessary tools to perform audio source separation with a SepFormer model,
implemented with SpeechBrain, and pretrained on WSJ0-3Mix dataset. For
a better experience we encourage you to learn more about SpeechBrain. The
model performance is 19.8 dB SI-SNRi on the test set of WSJ0-3Mix dataset.

166



• SepFormer trained on WHAM! for speech enhancement (8k sampling
frequency): This repository provides all the necessary tools to perform
speech enhancement (denoising) with a SepFormer model, implemented with
SpeechBrain, and pretrained on WHAM! dataset with 8k sampling frequency,
which is basically a version of WSJ0-Mix dataset with environmental noise and
reverberation in 8k. For a better experience we encourage you to learn more
about SpeechBrain. The given model performance is 14.35 dB SI-SNR on the
test set of WHAMR! dataset.

• SepFormer trained on WHAMR! for speech enhancement (8k sam-
pling frequency): This repository provides all the necessary tools to perform
speech enhancement (denoising + dereverberation) with a SepFormer model,
implemented with SpeechBrain, and pretrained on WHAMR! dataset with 8k
sampling frequency, which is basically a version of WSJ0-Mix dataset with
environmental noise and reverberation in 8k. For a better experience we en-
courage you to learn more about SpeechBrain. The given model performance
is 10.59 dB SI-SNR on the test set of WHAMR! dataset.

4 Voice Activity Detection

4.1 Voice Activity Detection with a (small) CRDNN model
trained on Libriparty

This repository provides all the necessary tools to perform voice activity detection
with SpeechBrain using a model pretrained on Libriparty. This system is composed
of a CRDNN that outputs posteriors probabilities with a value close to one for speech
frames and close to zero for non-speech segments. A threshold is applied on top of
the posteriors to detect candidate speech boundaries.

Depending on the active options, these boundaries can be post-processed (e.g,
merging close segments, removing short segments, etc) to further improve the
performance. See more details below.

5 Speaker Verification

5.1 Speaker Verification with ECAPA-TDNN embeddings on
Voxceleb

This repository provides all the necessary tools to perform speaker verification
with a pretrained ECAPA-TDNN model using SpeechBrain. The system can be
used to extract speaker embeddings as well. It is trained on Voxceleb 1+ Voxceleb2
training data.

For a better experience, we encourage you to learn more about SpeechBrain. The
model performance on Voxceleb1-test set(Cleaned) is:

Release EER(%) minDCF
05-03-21 0.69 0.08258

This system is composed of an ECAPA-TDNN model. It is a combination of
convolutional and residual blocks. The embeddings are extracted using attentive sta-
tistical pooling. The system is trained with Additive Margin Softmax Loss. Speaker
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Verification is performed using cosine distance between speaker embeddings.

5.2 Speaker Verification with xvector embeddings on Voxceleb

This repository provides all the necessary tools to extract speaker embeddings
with a pretrained TDNN model using SpeechBrain. The system is trained on Voxceleb
1+ Voxceleb2 training data.

For a better experience, we encourage you to learn more about SpeechBrain. The
given model performance on Voxceleb1-test set (Cleaned) is:
Release EER(

05-03-21 3.2

This system is composed of a TDNN model coupled with statistical pooling. The
system is trained with Categorical Cross-Entropy Loss.

6 Language Identification
• Language Identification from Speech Recordings with ECAPA em-

beddings on CommonLanguage This repository provides all the necessary
tools to perform language identification from speeech recordinfs with Speech-
Brain. The system uses a model pretrained on the CommonLanguage dataset
(45 languages). You can download the dataset here The provided system can
recognize the following 45 languages from short speech recordings:

Arabic, Basque, Breton, Catalan, Chinese_China, Chinese_Hongkong, Chi-
nese_Taiwan, Chuvash, Czech, Dhivehi, Dutch, English, Esperanto, Estonian,
French, Frisian, Georgian, German, Greek, Hakha_Chin, Indonesian, Inter-
lingua, Italian, Japanese, Kabyle, Kinyarwanda, Kyrgyz, Latvian, Maltese,
Mangolian, Persian, Polish, Portuguese, Romanian, Romansh_Sursilvan, Rus-
sian, Sakha, Slovenian, Spanish, Swedish, Tamil, Tatar, Turkish, Ukranian,
Welsh
The given model performance on the test set is:

Release Accuracy (%)

30-06-21 85.0

This system is composed of a ECAPA model coupled with statistical pooling.
A classifier, trained with Categorical Cross-Entropy Loss, is applied on top of
that.

The system is trained with recordings sampled at 16kHz (single channel). The
code will automatically normalize your audio (i.e., resampling + mono channel
selection) when calling classify_file if needed. Make sure your input tensor
is compliant with the expected sampling rate if you use encode_batch and
classify_batch.

• VoxLingua107 ECAPA-TDNN Spoken Language Identification Model
This is a spoken language recognition model trained on the VoxLingua107
dataset using SpeechBrain. The model uses the ECAPA-TDNN architecture
that has previously been used for speaker recognition. However, it uses more
fully connected hidden layers after the embedding layer, and cross-entropy loss
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was used for training. We observed that this improved the performance of
extracted utterance embeddings for downstream tasks.
The system is trained with recordings sampled at 16kHz (single channel). The
code will automatically normalize your audio (i.e., resampling + mono channel
selection) when calling classify_file if needed.
The model can classify a speech utterance according to the language spoken.
It covers 107 different languages ( Abkhazian, Afrikaans, Amharic, Arabic, As-
samese, Azerbaijani, Bashkir, Belarusian, Bulgarian, Bengali, Tibetan, Breton,
Bosnian, Catalan, Cebuano, Czech, Welsh, Danish, German, Greek, English, Es-
peranto, Spanish, Estonian, Basque, Persian, Finnish, Faroese, French, Galician,
Guarani, Gujarati, Manx, Hausa, Hawaiian, Hindi, Croatian, Haitian, Hungar-
ian, Armenian, Interlingua, Indonesian, Icelandic, Italian, Hebrew, Japanese,
Javanese, Georgian, Kazakh, Central Khmer, Kannada, Korean, Latin, Luxem-
bourgish, Lingala, Lao, Lithuanian, Latvian, Malagasy, Maori, Macedonian,
Malayalam, Mongolian, Marathi, Malay, Maltese, Burmese, Nepali, Dutch,
Norwegian Nynorsk, Norwegian, Occitan, Panjabi, Polish, Pushto, Portuguese,
Romanian, Russian, Sanskrit, Scots, Sindhi, Sinhala, Slovak, Slovenian, Shona,
Somali, Albanian, Serbian, Sundanese, Swedish, Swahili, Tamil, Telugu, Tajik,
Thai, Turkmen, Tagalog, Turkish, Tatar, Ukrainian, Urdu, Uzbek, Vietnamese,
Waray, Yiddish, Yoruba, Mandarin Chinese).
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Appendix B

Projects outside the research field

1 S.A.T.U.R.N
The Saturn project, which overall aims at improving the productivity of semi-

conductor production processes, includes three main lines of activity, articulated in
14 Realization Objectives (OR). The Department of Mathematics and Computer
Science was entrusted with the OR 13 - Technology and applications of artificial
intelligence as a support to the production system. The final goal of this OR is
the definition and validation of algorithmic solutions for scheduling optimization.
Currently the workers in the production department are divided into three shifts
(6-14; 14-22; 22-6). They stick to a dispatching document, which shows the queue of
batches to be processed on specific machines. Dispatching gets this information from
a simulator (seen as a black box), started three times a day, at the start of each shift.
In turn, the simulator receives this information from various sources.

1.1 Input

• Photography of the state of all lots in the machines;

• Static rules are inserted by industry experts, which allow to maintain the
integrity of the production flow (which batches can be processed in which
machines).

The simulator formats the data contained in various files with the “.csv” extension.
The union of these files provides the list of the various products that must be

processed, in particular, there is the list of the various operations that concern them
with the relative events to be carried out. Also, you are aware of the qualified
machines that can carry out those particular events.

1.2 Output

• Provides choices (not strictly used in all areas) on which batches must be
processed in which machine based on a maximization of the handled;

• These choices can be bypassed, using a priority field by the experts to allow
one or more batches to be processed before others, (for example to compensate
for customer changes).

Handled refers to the number of batches that have been processed during a given shift.
Currently, maximizing the amount of traffic implies first choosing fast operations
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at the expense of those that require more time. This creates "bubbles" within the
production process, that is, some areas will be blocked, with no batches to process,
while other areas will be overloaded. The department head being assessed for busy
cannot afford to remain stationary for an entire shift, so he explicitly requests lots
from other areas in order to create a busy one. All these choices cause cascading
changes in all other areas, making the whole system chaotic and unpredictable.

1.3 Activities

RI 13.1 Comparison and setup of scheduling algorithms The objective of
this activity is the study and validation of previous works regarding the simulation
of manufacturing processes of semiconductor components and in particular on the
definition of dispatching optimization algorithms, with the aim of evaluating a based
development that takes into account results and limitations of previous attempts.
The production process must take into account a large number of variables and
parameters that can change relatively quickly.

In a first phase, the study will focus on more general methods for scheduling
management, starting from operative research with CP-SAT problem model and
moving on other types of approaches like neural networks and specifically the
Reinforcement Learning (RL) paradigm. In a second phase, more specific solutions
relating to the scheduling of chip production will be investigated and changes will
be proposed to adapt to the problem faced. These include work in [Park, J. Huh,
J. Kim and J. Park, "A Reinforcement Learning Approach to Robust Scheduling
of Semiconductor Manufacturing Facilities," in IEEE Transactions on Automation
Science and Engineering. doi: 10.1109 / TASE.2019.2956762] in which a decentralized
model is used to agents learning through RL or working in [H. Kim, D. Lim and S.
Lee, "Deep Learning-Based Dynamic Scheduling for Semiconductor Manufacturing
With High Uncertainty of Automated Material Handling System Capability," in
IEEE Transactions on Semiconductor Manufacturing, vol. 33, no. 1, pp. 13-22, Feb.
2020. doi: 10.1109 / TSM.2020.2965293] in which the different production conditions
are modeled and through deep-learning the allocation of resources that maximizes
production.

RI 13.2 Profiling of the FAB Given the operating complexity of the FAB, and
its specificity, this activity has the objective of profiling the FAB present in the
STMicroelectronics headquarters in Catania, which is necessary for the development
of a scheduling and dispatching system optimized for the specific FAB. For this
purpose, the members of the research team will hold training and discussion meetings
with the specialized staff at the STM headquarters in Catania. During these meetings,
the different process phases necessary for the production of the different technologies
will be explained in detail. It will also show the WIP (Work In Progress) models
used in the FAB, the formal representation of the scheduling and processing phases,
as well as the specific terminology of the sector. In this activity, the production
targets will be presented in quantitative terms. This formalization is essential for
the mathematical definition of optimization methods of smart scheduling processes.

RI 13.3 Prototype definition Based on the results of the previous activities,
some algorithmic solutions for scheduling optimization will be defined during this
phase. Subsequently, they will proceed with the benchmarking of these solutions,
using real dispatching data provided by STM, and a software that simulates in detail
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a FAB production environment. In particular, FAB-dispatching interaction systems
will be tested (in a virtual environment) with the ability to extract timely reports
on performance according to the choices made by the scheduling algorithm.

Catania, November 30, 2023

Dott. Valerio Francesco Puglisi

Tutor: Prof. S. Battiato
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