
UNIVERSITY OF CATANIA

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND
COMPUTER ENGINEERING

PhD IN SYSTEM, ENERGY, COMPUTER AND
TELECOMMUNICATIONS ENGINEERING

XXXVI CYCLE

Road Safety: Abnormal Driver
Behavior Detection through Deep

Learning

SHUMAYLA YAQOOB

Coordinator: Prof. Paolo Pietro Arena
Tutor: Prof. Salvatore Damiano Cafiso

Prof. Giacomo Morabito
Company Tutor: Xenia Network Solutions





Contents

List of Terms and Abbreviations v

List of Figures v

List of Tables vii

Abstract 1

1 Introduction 2

2 Major contributions of the thesis in detail 6

3 Motivation and State Of The Art 10
3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Driver behaviors ontology . . . . . . . . . . . . . . . . . . 13
3.2.2 How abnormal driving behavior causes accidents? . . . . . 14
3.2.3 Abnormal Driving Behavior Detection . . . . . . . . . . . 15

3.3 Taxonomy of Driver Behavior Detection . . . . . . . . . . . . . . 16
3.3.1 Driver’s Health Monitoring . . . . . . . . . . . . . . . . . 17
3.3.2 Biotic Feature-based Schemes . . . . . . . . . . . . . . . . 18

3.3.2.1 Mathematical models-based schemes . . . . . . . 18
3.3.2.2 ML and DL based schemes . . . . . . . . . . . . 19

3.3.3 Physical feature-based Schemes . . . . . . . . . . . . . . . 19
3.3.3.1 Mathematical models-based schemes . . . . . . . 19
3.3.3.2 ML and DL based schemes . . . . . . . . . . . . 20

3.3.4 Vehicle Monitoring based Schemes . . . . . . . . . . . . . . 22
3.3.4.1 Mathematical models-based schemes . . . . . . . 23
3.3.4.2 ML and DL-based schemes based on Signals data 24

3.3.5 Hybrid Schemes . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Analytical Discussion and Open Research Issues . . . . . . . . . . 28

i



CONTENTS
3.4.1 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Use Case 1: Bicycle 41
4.1 Bicyclist behavior-based Anomaly Detection through Deep Learning 41

4.1.1 Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.2.1 A. Observational Studies . . . . . . . . . . . . . . 43
4.1.2.2 Deep learning in road safety and bicyclist mobility 45

4.1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.3.1 Dataset preparation . . . . . . . . . . . . . . . . 47

4.1.4 Neural Network Model Synthesis . . . . . . . . . . . . . . 51
4.1.4.1 Preliminaries: Convolutional Neural Network (CNN) 51
4.1.4.2 BeST-DAD Model: The Proposed CNN applica-

tion for Anomaly Detection . . . . . . . . . . . . 52
4.1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.5.1 Performance metrics . . . . . . . . . . . . . . . . 54
4.1.5.2 Criteria for classification of CNN-Positive . . . . 54

4.1.6 Model Testing . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.7 Validation through Case Study and Risk Assessment . . . 58
4.1.8 Summary of 4.1 . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.9 Lessons learned and future needs . . . . . . . . . . . . . . 61

4.2 Deep Transfer learning exploitation for anomaly detection . . . . 62
4.2.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.3 DTL_AD Methodology . . . . . . . . . . . . . . . . . . . 66

4.2.3.1 Data Collection . . . . . . . . . . . . . . . . . . . 66
4.2.3.2 Data Preparation . . . . . . . . . . . . . . . . . . 67

4.2.4 Deep-Transfer learning . . . . . . . . . . . . . . . . . . . . 68
4.2.4.1 Convolutional Neural Network . . . . . . . . . . . 69
4.2.4.2 Autoencoder . . . . . . . . . . . . . . . . . . . . 69
4.2.4.3 Learning and anomaly detection . . . . . . . . . 70

4.2.5 Experimental results . . . . . . . . . . . . . . . . . . . . . 71
4.2.5.1 Experimental Setup . . . . . . . . . . . . . . . . 72
4.2.5.2 Model Optimization . . . . . . . . . . . . . . . . 73
4.2.5.3 Validation . . . . . . . . . . . . . . . . . . . . . . 75
4.2.5.4 Dataset from various users . . . . . . . . . . . . . 76

4.2.6 Application of the proposed methodology . . . . . . . . . . 76
4.2.7 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

ii



CONTENTS
4.3 Spatial Analysis: Role of convolutional layers with respect to road

environment and user . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.3 Convolutional Neural Network . . . . . . . . . . . . . . . . 80
4.3.4 Convolutional Autoencoder . . . . . . . . . . . . . . . . . 82
4.3.5 Problem formulation and methodology . . . . . . . . . . . 83
4.3.6 Use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.7 Scenario and dataset . . . . . . . . . . . . . . . . . . . . . 88
4.3.8 Overview of the experiments . . . . . . . . . . . . . . . . . 88
4.3.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.10 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Use Case 2: Car 94
5.1 Abnormal driver behavior detection through deep learning . . . . 94

5.1.1 Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.1.2 Machine Learning for Detecting Vehicle Anomalies . . . . 94
5.1.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1.3.1 Dataset Aquisition . . . . . . . . . . . . . . . . . 96
5.1.3.2 Data-Preprocessing . . . . . . . . . . . . . . . . . 99

5.1.3.2.1
Data interpolation99

5.1.3.3 Feature Derivation . . . . . . . . . . . . . . . . . 100
5.1.3.4 Data Labelling . . . . . . . . . . . . . . . . . . . 100
5.1.3.5 Data Filtering . . . . . . . . . . . . . . . . . . . 101

5.1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.1.4.1 Principal component analysis (PCA) . . . . . . . 103
5.1.4.2 One-Class Support Vector Machines (OSVM) . . 103
5.1.4.3 Convolutional Neural Network (CNN) . . . . . . 104
5.1.4.4 Proposed Scheme . . . . . . . . . . . . . . . . . . 104

5.1.5 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.1.5.1 Model testing and validation . . . . . . . . . . . 106
5.1.5.2 Real-time anomaly detection by exploiting Long-

short Term Memory Autoencoder . . . . . . . . . 109
5.1.5.3 Remarks and Future Directions . . . . . . . . . . 111

5.2 Multi-sensor-based analysis for anomaly detection . . . . . . . . . 113
5.2.1 Initial Information . . . . . . . . . . . . . . . . . . . . . . 113
5.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 114

iii



CONTENTS
5.2.2.1 Anomaly Detection: . . . . . . . . . . . . . . . . 114
5.2.2.2 Classification: . . . . . . . . . . . . . . . . . . . . 115
5.2.2.3 Anomaly Detection Methods: . . . . . . . . . . . 115

5.2.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . 115
5.2.4 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . 116
5.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.5.1 Anomaly detection by exploiting "ROAD-DAD"
against various sensor combinations . . . . . . . . 116

5.2.5.2 Classification by exploiting "SVM" against vari-
ous sensor combinations . . . . . . . . . . . . . . 118

5.2.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Conclusion and Future Directions 120

List of publications 123

References 125

iv



List of Terms and Abbreviations

AI Artificial Intelligence

NMEA National Marine Electronics Association

GNSS Global Navigation Satellite System

CAE Convolutional Autoencoder

CNN Convolutional Neural Network

TCs Traffic Conflicts

VVL Video Vbox Lit

SGF Svitzky Golay Filter

GPS Global Positioning System

ANN Artificial Neural Network

AE Autoencoder

CM Confusion Matrix

ML Machine Learning

PCA Principal Component Analysis

GIS Geographic Information System

CSE Critical Safety Event

RNN Recurrent Neural Network

v



List of Figures

1.1 Thesis flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Cause and Effect of abnormal driving behaviors . . . . . . . . . . 11
3.2 Driver behavior’s ontology . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Abnormal driving effects on the road: Various scenarios where ab-

normal driving can increase the rate of accidents. . . . . . . . . . 15
3.4 Driver Anomaly identification architecture: The major Idea of is

to use vehicle/driver data to classify driver behavior. . . . . . . . 16
3.5 Taxonomy for driver’s behavior detection-based schemes . . . . . 16
3.6 Driver’s Health monitoring architecture . . . . . . . . . . . . . . . 17
3.7 Safe-Demon Architecture . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Trends 2010-2018 of fatalities in crashes involving cyclists and
other transport modes. Source: (EU Commission Road Safety –
Key figures, 2020) . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Flow diagram of method . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Map location along dependent and independent parameters . . . . 48
4.4 Video screenshot at the time (A) and (B) of the CSE . . . . . . . 48
4.5 Speed, Heading with derivate LA, HR before and after SGF (101-4) 50
4.6 Basic CNN Architecture . . . . . . . . . . . . . . . . . . . . . . . 51
4.7 BeST-DAD scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.8 Anomaly identification example. Orange bar: Real positive; red

bar: CNN positive . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.9 Table 3. F-Score based performance evaluation for proposed sce-

narios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.10 Map of BeST-DAD anomaly detections . . . . . . . . . . . . . . 59
4.11 Travel Time and Risk Rate in various Road Typologies . . . . . . 59
4.12 Annual number of cyclist fatalities, and their share in the total

number of fatalities in the EU27 (2010-2019). Source: European
Road Safety Observatory, 2021 . . . . . . . . . . . . . . . . . . . . 62

vi



LIST OF FIGURES
4.13 various data collection components . . . . . . . . . . . . . . . . . 67
4.14 Architecture of Convolutional Autoencoder . . . . . . . . . . . . . 70
4.15 confusion matrix for the computation of recall and precision . . . 73
4.16 Training loss with respect to the number of epochs . . . . . . . . 74
4.17 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.18 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.19 Recall and Precision for various users . . . . . . . . . . . . . . . . 76
4.20 map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.21 Flow diagram of proposed approach . . . . . . . . . . . . . . . . . 87
4.22 Four different road environments . . . . . . . . . . . . . . . . . . 89
4.23 Behavior of convolutional layers with respect to user . . . . . . . . 90
4.24 Behavior of convolutional layers with respect to Environment . . . 90
4.25 Training loss in Cases 1 and 2 with a refinement of the inner layers

only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Instrumented Car with sensors . . . . . . . . . . . . . . . . . . . . 97
5.2 Exploratory data analysis on the basis of anomaly . . . . . . . . . 102
5.3 Table 3. F-Score based performance evaluation for proposed sce-

narios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.4 True positive and False positive by exploiting PCA . . . . . . . . 107
5.5 True positive and False positive by exploiting OSVM . . . . . . . 107
5.6 True positive and False positive by exploiting standard CAe . . . 107
5.7 True positive and False positive by using filters and customized CAe108
5.8 True positive and False positive of proposed model . . . . . . . . 109
5.9 Recall and Precision for all cases . . . . . . . . . . . . . . . . . . 109
5.10 Rate of true positive and false positive . . . . . . . . . . . . . . . 111
5.11 Rate of true positive and false positive . . . . . . . . . . . . . . . 111
5.12 Anomaly detection using same road section and different sensors . 117
5.13 Anomaly detection using different road sections and different sen-

sors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.14 Anomaly detection using different road section and different sensors118
5.15 Classification of normal, abnormal and other road maneuvers . . . 119

vii



List of Tables

3.1 Driving Behavior and Health Parameters . . . . . . . . . . . . . . 23
3.2 Vehicle Parameters and Quality Estimation for Driving Behavior . 25
3.3 Algorithm Analysis and Comparison for Driver Behavior Detection 32
3.4 SURVEY CRITERIA . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Accuracy and resolution of data . . . . . . . . . . . . . . . . . . . 47
4.2 Confusion Matrix (CM) . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Comparison results for different model settings and existing ap-

proach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Summary of the learning approaches considered in our study. . . . 71
4.5 Training Model Parameters . . . . . . . . . . . . . . . . . . . . . 74
4.6 Important notations and their definition . . . . . . . . . . . . . . 83
4.7 Learning strategies considered in our analysis . . . . . . . . . . . 86
4.8 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Original collected data parameters from various sensors . . . . . 97
5.1 Original collected data parameters from various sensors . . . . . 98
5.1 Original collected data parameters from various sensors . . . . . 99
5.2 Feature Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 101

viii





ABSTRACT

Road safety is a pressing concern, with the number of road accidents and bicycle-
related fatalities on the rise. Both driver and cycling behavior play crucial roles in road
safety. Therefore, understanding and detecting abnormal behaviors in these contexts
are of paramount importance to reduce accidents and enhance road safety. Detecting
abnormal driving behavior has become a significant issue. The first part of this research
focuses on safe driving. Driver behaviors such as drowsy, aggressive, and distracted
driving, significantly contribute to road crashes. To address this, extensive research has
been conducted to monitor and model driver behavior. Initially we critically review
the existing literature, categorizing approaches into traditional mathematical, machine
learning, and deep learning-based schemes. It provides a comparison table and taxonomy
based on various metrics and highlights open research questions for future exploration.

Turning to cycling, an increasingly popular and sustainable mode of transportation,
safety remains a challenge. With the growing number of cyclists, the availability of
suitable crash data becomes more complex. Smart cities and new technologies offer
opportunities for data collection and analysis. This research introduces the "BeST-
DAD" model, utilizing deep learning techniques like Convolutional Neural Networks
and Autoencoders for anomaly detection in cycling behavior. Results show the model
outperforms traditional statistical approaches, achieving a 77% F-score and 100% recall.
The next activity of this research for cycling safety is to employ deep transfer learning
to proactively detect anomalies in cycling behavior, which could lead to traffic conflicts
or near-miss accidents. The study introduces a customized model, "DTLAD," tailored
to individual riders. Data collected using Global Navigation Satellite System (GNSS)
instruments on bicycles is used to identify riding anomalies. This innovative approach
holds promise for enhancing cycling safety in urban environments. Furthermore, It helps
to reduce the extensive requirements for data labeling and model training.

In addition, the study explores the role of convolutional layers in deep neural networks
for scenarios involving user-environment interactions. It investigates whether these lay-
ers are more specific to the user or the environment, aiming to streamline data collection
and model training efforts in such contexts.

To address abnormal behavior in vehicular contexts, a deep learning model centered
on convolutional autoencoders is presented. It utilizes vehicle data, including speed,
acceleration, and heading, to identify irregular behavior. The model’s performance is
compared to established machine learning methods for anomaly detection. Further-
more, the research delves into multi-sensor fusion, combining data from GPS, OBD,
and Mobileye sensors sourced from vehicles. The objective is to identify the most effec-
tive sensor combinations for detecting abnormal driver behavior, benchmarking against
other anomaly detection algorithms.

To validate the proposed methodology’s real-world effectiveness, a case study visu-
ally depicts anomalies in cycling behavior using Geographic Information Systems (GIS)
maps. The clustering of data in high-risk areas is emphasized, showcasing practical ap-
plications in enhancing road safety within cities, as demonstrated in Catania, Italy. This
comprehensive research contributes to improving road and cycling safety.

Keywords: Abnormal Driving, Anomaly, Convolutional Autoencoder, Deep Learning,

Transfer Learning.

1



Chapter 1

Introduction

With the high numbers of injured people and fatalities in road crashes, safe driv-
ing is a serious and challenging concern and a prolific research area, and this
contact driver behavior has a great influence on road safety [1]. In fact, driver
behaviors such as drowsy driving, aggressive driving, distracted driving, and safe
driving flairs, may lead to road crashes which are the cause of massive human
and material losses annually both in developed and mainly in developing coun-
tries [2]. Therefore, in the new smart society, in-vehicle monitoring of drivers and
detecting abnormal driving behavior as anomalies can reduce the rate of road
crashes. A huge amount of research has been done to detect on–road driver be-
havior by monitoring driver health or vehicle operating conditions such as speed,
acceleration, etc.

Driver behavior encompasses more than just those operating cars or buses;
it also applies to cyclists, as they are also considered drivers on the road. This
emphasis highlights the significance of comprehending and examining the conduct
of every individual using the road, contributing to a holistic approach to safety
and traffic control.

Cycling is recognized as an eco-friendly and healthy means of transportation,
especially pertinent in light of escalating concerns about greenhouse gas emissions
and pollution [3]. Policymakers are increasingly inclined to promote cycling as a
sustainable commuting option. The COVID-19 pandemic further underscored cy-
cling’s value as a personal mobility choice. However, the safety of bicyclists has
become a significant challenge, particularly with the rising number of cyclists in
the 21st century. In contrast to traditional road safety data collection methods,
gathering appropriate data related to bicycle-related accidents is notably more
complex. As a result, the emergence of smart city technologies offers new av-
enues for data collection and analysis, potentially addressing these challenges in
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CHAPTER 1. INTRODUCTION
innovative ways.

Despite the general improvements in road safety, with the growing number of
bicycle users, cycling safety is still a challenge as demonstrated by the fact that
it is the only road transport mode with an increase in the number of fatalities in
EU cities. Traditional approaches relying on crash statistics for network screening
are reactive and less effective, largely due to the inadequacy of available bicycle-
related data.

Therefore Abnormal driver behavior on the road poses significant risks to safety,
leading to accidents and road-related incidents. Identifying and mitigating these
behaviors is crucial for enhancing road safety [4][5]. This problem formulation
aims to address the detection of abnormal driver behavior using advanced tech-
nologies and data-driven approaches. The challenge at hand is to develop an effi-
cient and accurate system for the real-time detection of abnormal driver behavior,
encompassing actions like aggressive driving, distracted behavior, and reckless
maneuvers. This necessitates the integration of diverse data sources, including
in-vehicle sensors, telematics devices, cameras, and external data, to create algo-
rithms and machine learning models capable of distinguishing abnormal behavior
from regular driving patterns.

This thesis work aims to analyze aspects related to road safety in the context
of abnormal driver behavior. In particular, the main objectives of this thesis are:

• critically reviews the existing literature on driver behavior modeling and ab-
normal behavior detection-based approaches for safe driving. More specifi-
cally, existing approaches are classified in a coherent taxonomy by reviewing
traditional mathematical, machine, and deep learning-based schemes.

• a deep learning-based approach “BeST-DAD” to detect anomalies and spot
dangerous points on the map for bicyclists to avoid a critical safety event
(CSE). BeST-DAD follows a Convolutional Neural Network and Autoen-
coder (AE) for anomaly detection. BeST-DAD performs better than tradi-
tional PCA statistical approaches for anomaly detection by achieving 77%
of the F-score.

• a deep transfer learning model to detect anomalies in cycling behavior that
can be associated with traffic conflicts or near-miss crashes. The paper
presents how to build a users’ tailored riding model named DTL_AD to
detect and localize riding anomalies by using a set of data in the National
Marine Electronics Association (NMEA) string of Global Navigation Satel-

3



CHAPTER 1. INTRODUCTION
lite System (GNSS) recorded with instrumented bicycles by different cy-
clists.

• A case study demonstrates the identification of anomalies in cycling behav-
ior visually represented on Geographic Information Systems (GIS) maps,
showing how data clustering is well located in high-risk areas.

• investigate the role of convolutional layers in deep neural networks for appli-
cation scenarios involving interactions between users and the environment.

• Exploit Deep Transfer Learning for Anomaly Detection.

• Reduce the need for data labeling and model training.

• ROAD-DAD, a deep learning model. It integrates convolutional autoen-
coder and a self-directed algorithm for anomaly detection, using car data
like speed, acceleration, and heading. The model’s performance is validated
by comparing it with established machine learning methods for anomaly
detection to ensure its effectiveness.

• integrate data from multiple vehicle sensors, including GPS, OBD, and Mo-
bileye. Our goal is to utilize the ROAD-DAD model for anomaly detection,
experimenting with different sensor combinations to identify the most effec-
tive configuration for detecting abnormal driver behavior. After identifying
the best sensor combination, we assess the results by comparing them with
those generated by alternative anomaly detection and classification algo-
rithms.

• Use-case based on real data collected with high-frequency GNSS.

• Application of the scheme is presented by plotting detected anomalies on a
map in order to identify dangerous locations in the city of Catania Italy.

The rest of the thesis is organized as follows: Chapter II outlines the major
contributions of the thesis in detail. Chapter III provides an in-depth discus-
sion of safe driving components, the underlying motivation for this research, and
an examination of the existing landscape in terms of abnormal driving behavior
schemes, including their taxonomy. Chapter IV delves deeply into the first use
case, which centers on bicycles, exploring the unique challenges associated with bi-
cycle transportation and presenting proposed solutions. Additionally, it addresses
three distinct tasks connected to anomaly detection, leveraging transfer learning,

4



CHAPTER 1. INTRODUCTION
and the role of convolutional layers concerning user and environment interaction.
Chapter V offers a comprehensive examination of the second use case, focusing on
cars, where abnormal driving behavior detection and multi-sensor fusion analysis
are thoroughly explored. Lastly, Chapter VI serves as the conclusion of the thesis,
summarizing key findings and suggesting potential avenues for future research.

Every chapter has its own specific objective, background, methodology, results,
and remarks.

The thesis structure is visually depicted in Figure 1.1 to facilitate comprehen-
sion. This visual aid is included to help readers better understand the flow and
sequence of topics, chapters, or sections within the thesis. It serves as a road map
to navigate through the content effectively.

Sensor-fusion analysis for abnormal 
driver behavior detection

Abnormal driver behavior detection 
through deep learning

Spatial Analysis: Role of 
convolutional layers

Deep Transfer learning exploitation 
for anomaly detection

Introduction
Chap:1 

Motivation and
state of the art

Chap:2 

Major contributions of 
thesis in detail

Chap:3 

Use Case 1: Bicycle
Chap:4 

Use Case 2: Car
Chap:5 

Conclusion
Chap:6 

Bicyclist behavior-based Anomaly 
Detection through Deep Learning

4.1 
4.1

4.2

4.3

5.1

5.2

Figure 1.1: Thesis flow diagram

5



Chapter 2

Major contributions of the thesis in
detail

The proposed methodology in this thesis work focuses on enhancing road safety by
addressing abnormal driver behavior. Road safety typically involves minimizing
accidents, injuries, and fatalities associated with various modes of transportation,
such as driving, cycling, or walking. To improve or make safer the conditions on
roads, abnormal driver behavior needs to be addressed in time. The methodol-
ogy’s specific focus is on understanding and dealing with abnormal driver behav-
ior. Abnormal driver behavior refers to actions or patterns of behavior exhibited
by drivers that deviate from what is considered normal or safe. Examples might
include aggressive driving, impaired driving, drowsy driving, and distracted driv-
ing.

This chapter indicates that the thesis work has several key goals or objectives,
and these objectives are the central components of the research. The objectives
serve as a roadmap for what the research aims to achieve. In summary, these lines
introduce the reader to the overarching purpose of the thesis work, which is to
improve road safety by addressing abnormal driver behavior.

The overview of the proposed methodology includes:

1. Comprehensive Survey: A comprehensive review of existing literature is
conducted to categorize and evaluate various driver behavior models and
abnormal behavior detection approaches including mathematical, machine
learning, and deep learning-based methods. Next, the survey is structured
and organized into a hierarchical classification system, commonly referred
to as taxonomy. In Chapter 2, a thorough examination of the motivation
and the current state of the field is presented in detail. Additionally, visual
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CHAPTER 2. MAJOR CONTRIBUTIONS OF THE THESIS IN DETAIL
representations in the form of graphics or images are included to enhance
understanding.

2. BeST-DAD Model: The thesis introduces a sophisticated deep learning
model known as "BeST-DAD." This model employs advanced techniques,
including Convolutional Neural Networks (CNN) and Autoencoder (AE), to
identify abnormal patterns and pinpoint high-risk locations on maps, with
a specific focus on enhancing safety for cyclists.

Convolutional Neural Networks (CNNs) are a class of deep learning algo-
rithms designed for processing grid-like data, such as images or spatial data.
CNNs are known for their ability to automatically learn and extract relevant
features from data through a series of convolutional layers. In the context of
BeST-DAD, CNNs are instrumental in recognizing intricate spatial patterns
and relationships within the geographic data, aiding in the identification of
potential safety risks for cyclists.

Additionally, BeST-DAD utilizes Convolutional Autoencoders (CAEs). Au-
toencoders are neural network architectures employed for unsupervised fea-
ture learning and data compression. CAEs are a variant of autoencoders
that incorporate convolutional layers, making them especially well-suited
for image and spatial data. CAEs excel at dimensionality reduction and
feature extraction, which are crucial for identifying anomalies in complex
geographical data.

It’s noteworthy that BeST-DAD’s utilization of CNN and CAE technolo-
gies enables it to outperform traditional statistical approaches like Principal
Component Analysis (PCA). Specifically, it achieves an impressive F-score
of 77%, demonstrating its efficacy in enhancing safety for bicyclists by iden-
tifying and mitigating potential risks on the road.

You can find a more comprehensive explanation of this aspect of the pro-
posed methodology in Chapter 4.1, complete with an accompanying model
diagram.

3. DTL-AD Model:

Another aspect of the proposed methodology involves the incorporation of
a novel deep transfer learning model known as "DTL-AD." The methodol-
ogy leverages the capabilities of deep transfer learning to detect anomalies,
aiming to reduce the extensive requirements for data labeling and model
training. This objective is realized through the implementation of the spe-
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cialized DTL-AD model, which is meticulously designed to identify devi-
ations in cycling behavior that could potentially result in traffic conflicts
or near-miss incidents. DTL-AD relies on data derived from the National
Marine Electronics Association (NMEA) strings of the Global Navigation
Satellite System (GNSS), which have been collected from bicycles equipped
with specialized instrumentation and utilized by a diverse group of cyclists.

For a more detailed insight into this component of the proposed methodol-
ogy, please refer to Chapter 4.2, which includes accompanying illustrations
and charts for enhanced clarity.

4. Convolutional Layers Investigation: The research explores the role of
convolutional layers in deep neural networks, particularly in scenarios in-
volving user-environment interactions, where user-environment interactions
play a crucial role in road safety.

If you seek a more comprehensive understanding of this aspect within the
proposed methodology, I encourage you to consult Chapter 4.3. This section
is enriched with accompanying visuals and graphs to improve clarity and
facilitate a deeper grasp of the topic.

5. ROAD-DAD: This phase of the proposed methodology represents a deep
learning model that centers on the principles of convolutional autoencoders,
coupled with a self-directed algorithm designed for the detection of anoma-
lies. This model harnesses data derived from vehicles (cars), including infor-
mation such as speed, acceleration, and heading, among others, to identify
irregular behavior or anomalies. To ensure the effectiveness of this approach,
the model’s performance is validated by benchmarking it against established
machine learning methods commonly used for anomaly detection.

If you are looking to gain a more thorough comprehension of this particular
facet within the proposed methodology, I strongly recommend referring to
Chapter 5.1. This section has been enhanced with the inclusion of visual
aids and graphs to enhance clarity and facilitate a deeper understanding of
the subject matter.

6. Multi-sensor Fusion:In this aspect of the proposed methodology, we en-
gage in the fusion of data from multiple sensors, all sourced from the vehicle
itself. These sensors include GPS, OBD, and Mobileye. The objective here
is to employ the ROAD-DAD model for the purpose of anomaly detection,
making use of various combinations of sensor data. Our aim is to determine
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which combination of sensors yields the most effective results for detecting
abnormal driver behavior. Once we identify the optimal sensor combination,
we proceed to evaluate the outcomes by comparing them with the results
generated by other anomaly detection and classification algorithms.

It’s important to note that there are instances when abnormal behavior,
as identified by anomaly detection algorithms, may not truly constitute an
anomaly. Instead, these behaviors could be attributed to other common
road maneuvers such as overtaking, responses to traffic lights, or reactions
to road construction. Consequently, we group these behaviors into a dis-
tinct category and have achieved favorable outcomes through classification
algorithms.

For a more comprehensive understanding of this particular aspect within
the proposed methodology, I encourage you to consult Chapter 5.2.

7. Practical Application: The proposed methodology is put to practical use
through a case study that involves visually depicting anomalies in cycling
behavior using Geographic Information Systems (GIS) maps. This visu-
alization effectively emphasizes the clustering of data in high-risk areas.
Additionally, the research demonstrates the practicality of the approach
by applying it to the city of Catania, Italy, where detected anomalies are
mapped to pinpoint hazardous locations. This showcases the methodology’s
real-world effectiveness in enhancing road safety within the city.
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Chapter 3

Motivation and State Of The Art

3.1 Objective

The worldwide rate of accidents is high due to careless driving behaviors [6][7][8].
Real-time driver behavior identification and warning are very important to re-
duce the rate of road accidents. This is an essential issue as around 1.25 million
people lose their lives every year as a result of road accidents [9]. Many more are
injured and the cost to society is huge. Indeed, road safety is still an extreme
challenge for societies [10][11][1]. Even in the last 20 years, novel technologies
have been developed in a progressive effort to manufacture automated vehicles,
driver behavior is still a key factor for road safety [11][1][12]. Although road ac-
cidents are not the result of a unique factor, including driver, road, and vehicle,
generally driver’s health or behavior plays a relevant role. Driver’s behavior can
be affected in several and extremely different cases. For example, bad physical
and mental health conditions of the driver may lead to distraction that results
in accidents [1][13][14]. Also, some secondary tasks may distract the driver’s at-
tention and affect driving performance directly [15]. As a result, nowadays, the
analysis of driver behavior is a prolific research area [16][17] and many researchers
have been working to detect dangerous driver behaviors and develop techniques.
Recently numerous machine learning and deep learning-based approaches have
been proposed for the detection of anomalies in driver behavior, aimed at im-
proving road safety [17][18]. Indeed, for a decade research has been in progress
which focuses on driver behavior monitoring schemes [19][20]. Health monitoring
includes psychological, physiological, and neurological measures that may lead
to assessing various abnormal driver behaviors [20]. Abnormal driver behaviors
include drowsy, distracted, fatigued, and aggressive behaviors [21]. All of them
may lead to road accidents [22][23][24] as shown in Figure 3.1.
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Figure 3.1: Cause and Effect of abnormal driving behaviors

Drowsy, fatigue, and aggressive driving depend on the driver’s physical or mental
health conditions [25][26]. Drowsy driving can be the side effect of drugs and psy-
choactive substances (alcohol, narcotic materials) or a sleepy state. Sudden lane
change or unintended over-cross leads to aggressive driving that can be the result
of tension or in-hurry conditions [27][28]. Distracted driving may be the result of
diverted attention by reading any roadside advertisement or using a smartphone
[29]. Fatigue driving is possibly the result of high workload or personal tension.
Mostly driver drowsiness can be inferred from the driver’s facial expressions [30].
Initially, researchers proposed the use of sensors available in smartphones, espe-
cially cameras to collect images used to infer the current health and operation
conditions of the driver [31]. Later, in-vehicle sensors have been used to collect
data in the form of time series. In fact, according to previous studies such time se-
ries can be effectively used to predict future vehicle position and driver behavior.
In-vehicle sensors are often coupled with the Global Navigation Satellite System
(GNSS) to measure driving practices [20]. Given the relevance of the topic, several
survey papers have been published on the analysis of driving behaviors. Existing
survey papers consider any one of the driver behavior conditions and explore it
either concerning the driver’s health or vehicle monitoring. Some of these simply
analyze driver behaviors to highlight which one is most dangerous [32]. In [14],
authors explain various driver fatigue detection schemes. In [8], authors discussed
distraction detection methods to avoid road fatalities. In [33], authors reviewed
literature stated possible driving styles, and proposed artificial intelligence (AI)
based algorithms. In [34], authors discussed various driver behavior detection-
based schemes and classified them into real and not-real-time schemes. In [35],
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the authors highlight driver monitoring styles and their related states at different
levels of driving automation. This paper presents a comprehensive review of the
techniques proposed so far for driver behavior detection including health mon-
itoring. The search criteria of this review follow databases in Scopus, Web of
Science, and IEEE Explore. The period of selected articles was between 8 and 10
last year (2013 – present). The keywords are used to search related work as shown
in Table 3.4. By using keywords, we identified 100 papers while we opted for 67
articles after reading abstracts. After the literature and analysis, several issues
are identified from the schemes that can be the focus area for researchers in the
future. A few directions are proposed to disseminate driver’s behavior warnings
through the Internet of Vehicles (IoVs). The main contributions of this work are
the following.

• We explore the existing work on driver’s behavior modeling by presenting
an ontology then we explore the effect of abnormal driving behavior on road
safety.

• Furthermore, we dig into the literature for abnormal driver behavior detec-
tion where the focus is on analyzing the driver’s health and vehicle parame-
ters along with the driving behavior. We also consider AI-based solutions to
deduce the linkage of driving disorders with the driver’s health and vehicle’s
conditions.

• We survey the main contributions of the existing surveys regarding this field
and identify the main research gaps.

• We present the taxonomy of the schemes for driver’s behavior detection by
considering driver’s health and driving patterns through vehicle monitoring
with AI-based algorithms.

• We analytically discuss the performance of existing schemes and then iden-
tify the open research issues for future work.

3.2 Preliminaries

In this section, we overview the preliminaries such as various driver behaviors
and possible parameters to identify each of them with the help of an ontology
diagram (Figure. 3.2). Then, how abnormal driver behavior causes accidents in
real life. Finally, abnormal driver behavior identification architecture is discussed
to understand the meaning and path of abnormal driver behavior identification.

12



CHAPTER 3. MOTIVATION AND STATE OF THE ART

3.2.1 Driver behaviors ontology

Driver behavior plays a vital role in the field of road safety [1][12]. Mainly driver
behavior is categorized as normal and abnormal. Normal driving behavior refers
to safe driving while abnormal driving behaviors are (i) drowsy, (ii) aggressive,
(iii) fatigue, and (iv) distracted driving that causes physical and financial loss
[36][37]. Physical losses may include minor to severe injuries or even death. Fi-
nancial losses may include materialistic items, loss of passengers, and damaged
vehicles. From the literature, we have identified that the driving behaviors can be
classified as shown in the ontology shown in Figure. 3.2. Existing abnormal driver
behavior detection systems are either based on driver’s health or vehicle moni-
toring. Each driver behavior monitoring is either done based on biotic or physical
features [38]. Biotic features-based schemes are categorized as driver physiological
examinations. Biotic features use non-graphic topographies to detect driving be-
havior through sensors on the driver’s body monitoring biomedical parameters of
the driver. Physical features use graphic topographies to detect driving behavior
by using driver facial expressions recorded through a camera. Physical features-
based systems exploit computer vision techniques to detect drowsy expressions.
Computer vision techniques use visual features like eye-state, eye-blinking, and
mouth yawning examination [39][40][41]. These physical features-based schemes
are not applicable when the driver is wearing black sunglasses or laughing during
a talk with someone. Vehicle monitoring is based on signals such as changes in
steering direction, speed, sudden break, etc. Driver’s health monitoring uses sen-
sors to collect the signals including the electrocardiogram (ECG) for monitoring
the heartbeat, electroencephalogram (EEG) to keep a record of brain activity,
and continuous glucose monitoring (CGM) checks glucose every minute. Aggres-
sive driving behavior is also detected through both driver and vehicle monitoring.
Distracted driving follows fast turn, sudden break, and weaving [42]. In Section
3 various biotic and physical-based schemes are discussed for driver behavior
analysis.
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Figure 3.2: Driver behavior’s ontology

3.2.2 How abnormal driving behavior causes accidents?

In the literature many studies have analyzed the relationships between abnormal
driver behavior and roadway accidents [11][16]. Abnormal driver behavior affects
the severity level of roadway crashes [16]. Abnormal driving such as drowsy, fa-
tigue, aggressive or distraction due to sickness, mental distraction, or tiredness
can lead to road accidents [6][8][14][26][36]. Abnormal driving behavior effects on
the road in various daily driving scenarios as shown in Figure 3.3. It illustrates
various abnormal driving effects on the road that can increase the rate of acci-
dents such as (A) less vehicle distance (B) vehicle collision due to fast speed and
sudden turn (C) sudden break (D) Distracted vehicle from central road line (E)
blind crossing (F) no yield at highway intersections (G) ignore traffic signals.
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Figure 3.3: Abnormal driving effects on the road: Various scenarios where abnor-
mal driving can increase the rate of accidents.

3.2.3 Abnormal Driving Behavior Detection

Abnormal driver behavior detection can be addressed as an anomaly detection
problem. Anomaly detection in driver behavior requires various steps as shown
in Figure 3.4. In the first step, the driver and vehicle are two separate entities
monitored by specific sensors. In the subsequent phase, the appropriate datasets
are gathered, these may consist of signals and/or images. More specifically, signals
represent how certain relevant parameters (such as speed, acceleration, heading
angle for what concerns the vehicle operating conditions, and EEG ECG and
CGM for the driver’s health conditions) change over time. In the third step,
collected data is used for driver behavior characterization and modeling. This
section gives an overview of driving behavior modeling and detection solutions
according to the taxonomy. In the fourth step, various possible anomaly detection
methods are done that cause accidents.
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3.3 Taxonomy of Driver Behavior Detection

In this section, a detailed description of driver behavior detection schemes is
described and mapped into a taxonomy as shown in Figure 3.5.
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Figure 3.5: Taxonomy for driver’s behavior detection-based schemes

Abnormal driver behavior detection is based on two major categories for driver’s
behavior detection based on (1) driver’s health monitoring and (2) vehicle mon-
itoring. Furthermore, each major category is divided into two further categories
named mathematical model-based schemes and artificial intelligence-based schemes.
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Artificial intelligence-based schemes are stated as machine learning and deep
learning schemes.

3.3.1 Driver’s Health Monitoring

Health monitoring is based on wireless sensors and smart devices that monitor
various health conditions such as heart rate using ECG, brain activity using EEG,
body glucose level using skin signals, etc. [43]. The above measurements take place
via mobile devices or on-board computers which treat data as arrays shown in
Figure 3.6. It consists of 3 levels, tier-1 The driver is equipped with sensors to
collect health signals like ECG, EEG CGM, etc. The data accuracy depends on
the quality of sensors that have good sensing and processing skills. At tier 2,
collected data is temporarily stored for basic operations. Once preprocessing is
done on collected data then information passes to the internet and server for
Health services at tier 3. At tier-3 servers may include cloud or fog servers as
central repositories for data analysis, decision-making, and generating alerts in
time. Health monitoring is highly appreciable for the physiologic system, drug
overdose, possibility of heart attack, or major trauma [13].
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Figure 3.6: Driver’s Health monitoring architecture

Driver’s E-health monitoring is further categorized into two following categories;
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3.3.2 Biotic Feature-based Schemes

This section describes solutions proposed in the literature that analyze driver
behavior by exploiting biotic features. Biotic features refer to biological condi-
tions of the driver such as brain activity, heart rate, and glucose level. When the
biological condition of the driver is not good the driving performance decreases
which may lead to abnormal driving behavior. In the past, biotic features based
on mathematical, machine learning (ML), and deep learning (DL) schemes have
been proposed to identify driver behavior. In the following we will overview the
major contributions that exploit mathematical models then we will overview the
solutions based on AI.

3.3.2.1 Mathematical models-based schemes

In [24], authors propose a driver drowsiness detection index named Thoracic Ef-
fort Derived Drowsiness index (TEDD), based on respiratory rate variability
(RRV) to detect driver drowsiness. It uses capnography or bioimpedance-based
sensors to record driver RRV values. Experimental results followed by recorded
RRV values in the driving cabin simulator environment. By comparing existing
work TEDD reduced false alarms but must be assessed in real environments. In
[44], authors propose a driver behavior detection scheme (referred to as DBDet in
Figure 3.5) to identify various abnormal driver behaviors. This scheme exploits
the data produced by body sensors connected by various specific body sensor net-
works (BSNs) integrated with vehicular ad hoc networks. The purpose of DB_Det
is to monitor the driver’s health to identify critical conditions such as drowsiness,
aggressiveness, or distraction. The scheme utilizes several Roadside Units (RSUs)
to build the communication infrastructure. However, the requirement for numer-
ous health monitoring sensors and central RSUs presents drawbacks for DB_Det.
In the future, integration with the Internet of Vehicles (IoVs) can be explored as
an alternative to Vehicular Ad-Hoc Networks (VANETs).

In [45], a driver drowsiness detection scheme (referred to as HR_D3 in Fig-
ure 3.5) based on heart rate variability (HRV) is proposed. It employs recorded
driver health parameters as input data. HRV utilizes a multivariate statistical
distribution for anomaly detection. A notable strength of this scheme is the val-
idation of driver drowsiness identification through EEG data during sleep. The
proposed scheme has undergone validation using a driving simulator. Further val-
idation in real driving scenarios and expansion to detect other driving states can
be considered in future research.
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In [46], the authors identify driver fatigue (referred to as DFI in Figure 3.5)

using a fixed threshold-based mathematical model. It relies on health signals
collected from the driver using sensors. However, a limitation of DFI is its limited
accuracy in detecting other driver behaviors when using a fixed threshold.

3.3.2.2 ML and DL based schemes

In [47], the authors propose a driver fatigue detection (referred to as DFD in
Figure 3.5) scheme by using a Gaussian Model (GM) with Support Vector Ma-
chine (SVM) that takes input health signals collected in real-time from the driver.
GM with Support Vector Machine improved accuracy with the limitation of high
calculation cost. In [48], authors propose deep convolutional neural networks (re-
ferred to as DCNN in Figure 3.5) to detect aggressive driver behavior by using
bio-signals of the driver such as heart rate, blood pressure level brain activity,
etc. These are collected by using body sensors and camera sensors. In the future,
other deep learning models can be explored to detect various driving behaviors
using bio-signals. In [49], the authors propose driver stress identification (referred
to as DSI in Figure 3.5) scheme. The purpose of this scheme is to detect abnor-
mal driving behavior by observing driver stress levels. DSI uses EEG signals with
SVM and random forest models to classify driver behavior. Limited accuracy with
the threat of false alarms is a drawback. Furthermore, in this case, other driver
behaviors can be considered as future extensions.

3.3.3 Physical feature-based Schemes

This section describes driver behavior identification schemes that are physical
features of the driver, i.e., features that are visible or tangible such as body move-
ment and facial expression. In the past, several driver’s physical features-based
schemes have been proposed. In this section, we will discuss the distinguishing
two subcategories mathematical and AI-based schemes.

3.3.3.1 Mathematical models-based schemes

In [37], the authors propose a driver drowsiness detection scheme (referred to as
D2_Det in Figure 3.5) that also assists drivers in preventing lane departure ac-
cidents. Experimental results are obtained through simulation, and the proposed
solution has not been validated in real-world environments.

In [50], authors introduce a driving safety features scheme (referred to as DSF
in Figure 3.5) designed to identify abnormal driving features for safe driving. DSF
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utilizes image datasets captured by a camera mounted in front of the driver. It
employs the histogram algorithm in combination with an SVM classifier. However,
DSF may encounter misclassification due to misleading facial expressions, such
as laughing or talking, which could be improved in future research.

In [51], an Individual Behavioral Pattern-based scheme (referred to as IBP in
Figure 3.5) is proposed for identifying individual driver behavior patterns. This
scheme employs multilinear regression analysis to specify patterns for individual
driver behavior identification. While IBP has been validated through simulation,
assessment in real-world environments is yet to be conducted.

In [52], the authors introduce an Unsafe Driving Behavior Identification scheme
(referred to as UDBI ) aimed at identifying drowsy driving behaviors using a
fixed threshold-based mathematical model. UDBI utilizes driver and vehicle-
based datasets collected through smartphones and sensors. Future research could
explore the implementation of mobile applications for recognizing other abnormal
driving behaviors.

3.3.3.2 ML and DL based schemes

ML and DL-based schemes use artificial intelligence to detect driving behavior.
Driver behavior detection for road and vehicle safety can be improved by using
machine and deep learning significantly, also because of the high volume and
variability of the data that can be collected [10] [17][18][30]. In [42], The authors
introduce a Driving Detection and Identification scheme (referred to as DDD or
D3 in Figure 3.5) to detect abnormal driving behaviors such as fast U-turns,
speedy turning, and sudden braking. DDD utilizes smartphones for data collec-
tion,

Sensors are used to collect real-time data, and machine learning (ML) techniques
are employed to detect abnormal driving behavior. The D3 scheme leverages a
Support Vector Machine (SVM) to train a Neural Network (NN) for real-time
classification of driving behaviors. However, D3 has limitations, including the
identification of only individual driver behavior and high time consumption.

In [39], the authors introduce a lightweight drowsiness detection scheme (re-
ferred to as LWD2 ) that utilizes images captured by a camera mounted in front
of the driver. LWD2 employs the Viola-Jones algorithm for detection. A limita-
tion of this approach is that recorded facial expressions may lead to confusion
during behavior classification.

In [38] and [39], a scheme named Driver Care (referred to as DriCare) is
proposed for real-time driver drowsiness detection using computer vision tech-

20



CHAPTER 3. MOTIVATION AND STATE OF THE ART
niques. Real-time data is collected via a vehicle-mounted camera, and a Multi-
convolutional Neural Network (CNN) is used to detect driver drowsiness from
video images. Major limitations of DriCare include potential confusion of drowsy
facial expressions with other expressions, such as talking, laughing, or surprise.

In [53] and [54], authors propose data collection and analysis schemes for de-
tecting distracted driver behavior, named DarNet and D_Det, respectively. Both
schemes leverage deep learning models like CNN and RNN, using images for
image processing and time series analysis.

In [55], authors propose a distracted driving identification scheme (referred to
as D2I ) using real-time data collected by a front-mounted camera. D2I identifies
distracted driving behavior using CNN, with a focus on reducing computation
costs and false alarms.

In [56], authors introduce a deep sparse autoencoder (DSAE) to identify driver
behavior by extracting hidden features from recorded vehicle parameters such as
acceleration and speed. DSAE is an unsupervised approach, and a limitation is
that the degree of freedom in the feature space varies with time.

In [57], authors propose an aggressive driver behavior detection scheme (referred
to as ADB_Det in Figure 3.5) that employs a CNN taking the driver’s facial
images as input. Limitations of both schemes include potential confusion caused
by facial expressions during talking and laughing, and a focus solely on aggressive
driving behavior, leaving room for exploration of other behaviors in the future.

From the physical feature-based schemes mentioned above, it can be concluded
that facial expressions are commonly used inputs for detecting anomalies. In
Equation 3.1, M represents the difference between input and reconstructed out-
put, where recorded facial expressions (fE1) and reconstructed facial expressions
(dfE1) are compared. The input is represented as a matrix MT1[a1, b1] containing
a1 and b1 columns, which represents the image. Detected anomalies (DAs) and
undetected anomalies (nDa) are compared, and if the difference between detected
and original anomalies is greater than zero, it indicates successful anomaly detec-
tion, as shown in Equation 3.1, otherwise, it is not detected, as shown in Equation
3.2.

Furthermore, it can be observed that driver health parameters such as heart
rate, brain activity, and glucose level are collected using body sensors in the form
of signals. In [57], the authors propose an aggressive driver behavior detection
scheme (referred to as ADB_Det in Figure 3.5) that utilizes a Convolutional
Neural Network (CNN) taking the driver’s facial images as input. However, the
major limitations of these schemes are related to facial expressions during talking
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and laughing, which can lead to confusion in behavior detection. Additionally, this
work focuses solely on aggressive driving behavior, leaving room for exploration
of other driving behaviors in future research.

From the above physical feature-based schemes, we can conclude that facial
expression is a usual input to models for detecting anomalies. In Equation 3.1
M refers to the difference between input and reconstructed output. Recorded fa-
cial expression and reconstructed facial expressions are represented by fE1 and
dfE1 respectively. Input is a matrix MT1[a1, b1] which represents the image and
contains a1 and b1 columns. Detected anomalies and not-detected anomalies are
represented by by DAs and nDa respectively. If the detected and original anoma-
lies difference is greater than zero it means the anomaly is detected successfully
as shown in Equation 3.1 otherwise not detected as shown in Equation 3.2. Fur-
thermore, we can also conclude that the driver’s health parameters such as heart
rate, brain activity, and glucose level are collected using body sensors in the form
of signals. We show the driver behaviors, attention to the driver’s health parame-
ters considered for detection, and the resulting quality of the estimation variations
concerning the driver’s health parameters as shown in Table 3.1. We report for
each type of anomalous driver behavior the level of attention (i.e., “H”: high; “M”:
medium, and “L”: low) received by the major health parameters that can be col-
lected by body sensors (i.e., “Heart rate, brain activity, and glucose level) in the
scientific literature, and the achieved level of quality of the estimation in terms
of Recall and Precision. We observed how the driver’s health-based signals are
affecting driver behavior detection.

M = ∥fE1 − dfE1∥ > 0 → DAs (3.1)

M = ∥fE1 − dfE1∥ ≈ 0 → nDa (2) (3.2)

Where fE1 = MT1[a1, b1] and dfE1 = MT1[∆a1,∆b1]

Note: L, M, H for Low Medium, and High respectively

3.3.4 Vehicle Monitoring based Schemes

In Vehicle monitoring-based schemes the vehicle is equipped with some sensors
to measure and record parameters such as speed, position, acceleration, steering
angle, etc. These parameters help in detecting driving behavior. The resulting
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Table 3.1: Driving Behavior and Health Parameters

Driving Behavior Heart
rate

Brain
activity

Glucose
level

Recall Precision

Drowsy H M M H M
Aggressive L M H M M

Normal H M H H H
Distracted L H M M L
Fatigue L M M M M

schemes can be classified into two categories.

3.3.4.1 Mathematical models-based schemes

These schemes are based on statistical or mathematical analysis.
In [58], the authors propose a Non-linear Driver Steering Estimation (N_L

DSE) approach to detect driver behavior by observing the angle of the steering
wheel. It uses sensors to acquire steering wheel torque data in real time. N_L
DSE follows a two-point visual driver model along with filters such as Extended
Kalman Filter (EKF) and Unscented Kalman Filter (UKF) for identifying ab-
normal driver behavior. However, the N_L DSE approach considers only expert
driver scenarios, which is a limitation.

In [59], authors introduce a scheme called Risky Driver Detection (RD2) to de-
tect risky driver behavior by monitoring real-time speed time series. It employs a
mathematical method that measures speed parameter variation concerning vari-
ous driving patterns. RD2 is easy to implement because almost all vehicles have
a speed measurement system. However, its limitation is that testing is done on a
specific area (the ring road of Beijing).

In [60], the authors present a Driver Behavior Analysis (referred to as DBA)
technique that exploits a Gaussian Mixture Model (GMM) to identify patterns
through statistical analysis. The dataset for DBA is collected from in-vehicle
sensors using the Control Area Network (CAN) bus, Inertial Measurement Unit
(IMU), and the Global Positioning System (GPS). The strength of this work is
in classifying driver behavior and identifying aggressive driver behavior, with the
detection of other behaviors considered for future work.

In [61], the authors propose a personal steering-based driver behavior detection
scheme (referred to as PSD). It uses recorded steering wheel values to predict
driver behavior and employs a compensatory feedforward transfer function. How-
ever, results are obtained only through simulation.

In [62], the authors introduce an aggressive and normal driving classification
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scheme (referred to as ANDC) that is data fusion-based and classifies normal and
aggressive behaviors of drivers. The scheme uses data collected by in-vehicle sen-
sors such as GPS, mounted cameras, etc. A limitation of ANDC is the involvement
of expensive in-vehicle sensors.

In [63], the authors present a lane deviation-based driving behavior identifica-
tion scheme (referred to as LDB2I). It uses image data and applies mathematical
models based on thresholds to analyze and classify driver behavior. The computa-
tion cost is high due to manual mathematical calculations, which can be improved
in the future with the use of AI.

3.3.4.2 ML and DL-based schemes based on Signals data

ML-and DL-based schemes use artificial intelligence to detect driving behavior.
Machine and Deep learning-based schemes results are significantly better than
those from mathematical schemes in driver behavior recognition [18]. In [64], the
authors propose an approach named Semi-Supervised Support Vector Machine
(S3VM) to classify abnormal driver behavior. This approach is validated by us-
ing offline vehicle dataset parameters (i.e. velocity, acceleration) and simulation
as a test environment. It uses the k-means clustering method to label training
data. SEVM reduces labeling effort in classifying driver behavior and increases
accuracy by 10% compared to simple SVM. In the future S3VM can be explored
for other driver behaviors specifically. In [2], the authors propose an abnormal
driving behavior detection scheme (referred to as Ab_Det) using a methodology
named soft thresholding and temporal convolutional neural network (STCNN).
This approach leverages real-time data collected with sensors (i.e., GPS, inertial,
cameras) to significantly improve accuracy compared to existing schemes.

In [22], authors introduce a scheme called Real-time Distracted Driving Detec-
tion (referred to as R_t D3), which aims to detect driver distraction behavior
using the Data Mining (DM) method. DM utilizes vehicle dynamic data (speed,
acceleration, etc.) as input to a recurrent neural network-based classifier. R_t
D3 collects data from in-vehicle sensors to address visual distraction detection
but has limitations in considering real scenarios and dynamically exploring other
driver behaviors.

In [65], the authors present the Distracted Driving Behavior Detection scheme
(referred to as DDb_Det), which identifies distracted driver behavior by tracking
lane-changing records on a one-way road. DDb_Det consists of three stages and
employs the K-nearest neighbor (KNN) method to detect distracted driving. It
collects real-time speed and steering angle data from the CAN bus, preprocess
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it, applies spectral time-frequency-based segmentation, and uses the KNN and
Hidden Markov Model for behavior classification. Accuracy may be lower during
road curves and roundabouts but can potentially be improved in the future.
In [21], the authors propose the Driver Behavior Detection scheme (referred to
as DBD) to identify various driver behaviors, including drowsy, distracted, and
aggressive driving. DBD uses real-time signals such as revolutions per minute
(RPM), speed, acceleration, throttle, etc. These signals are converted into 2D
images, and image processing techniques are applied to classify driving styles.
Future work may involve calculating accident probabilities and improving signal
processing without the need for image conversion.

In [66], the authors propose the Dangerous Driving Behavior Detection scheme
(referred to as DDB_DET ). The primary purpose of DDB_DET is to identify
abnormal driving behaviors using recorded video as a dataset. Specifically, it em-
ploys particle swarm optimization neural networks with support vector machines.
However, a major limitation of this work is the high false alarm rate obtained
during DDB_DET validation.

From the above schemes, it is evident that vehicle parameters such as speed,
acceleration, headway distance, and steering are collected from in-vehicle sensors
in the form of signals and are instrumental in detecting abnormal driving be-
havior. These schemes use signal transformations into time series (TS), as shown
in Equation 3.6. They employ a threshold based on various algorithm parame-
ters. An anomaly is considered detected if changes in the time series (∆TS) are
equal to or greater than the threshold; otherwise, it is not detected. Table 3.2
explores driver behaviors, attention to vehicle parameters used for detection, and
the resulting quality of the estimation variations with respect to extracted vehicle
parameters.

Table 3.2: Vehicle Parameters and Quality Estimation for Driving Behavior

Driving
Behav-
ior

Velocity Headway
Dis-
tance

Acc
elera-
tion

Steering Recall Precision

Drowsy M L H M M L
Aggressive M L H H M M
Normal H M H H H H
Distracted L M M M M M
Fatigue M M M L H M

Note: L, M, H for Low Medium, and High respectively
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We report for each type of anomalous driver behavior the level of attention (i.e.,

“H”: high; “M”: medium, and “L”: low) received by the major vehicle parameters
that can be collected by in-vehicle sensors (i.e., “velocity, headway distance, ac-
celeration, and steering angle) in the scientific literature, and the achieved level
of quality of the estimation in terms of Recall and Precision.

TS1 = {x1y1, x2y2, xnyn}, TS2 = {x1y1, x2y2, xnyn} (3) (3.3)

∆TS(TS1 − TS2) ≥ Threshold → DAS (3.4)

∆TS(TS1 − TS2) < Threshold → NDA (3.5)

Where Threshold = AVGn (3.6)

3.3.5 Hybrid Schemes

Hybrid schemes include schemes that monitor both driver and vehicle parameters
to identify abnormal driver behavior.

In [67], the authors propose an Unsafe Driving Behavior Identification (referred
to as UDBI ) to identify drowsy driving behaviors using a fixed threshold-based
mathematical model. UDBI utilizes driver and vehicle-based datasets collected
by smartphones and sensors. Future work may involve implementing mobile ap-
plications to recognize other abnormal driving behaviors.

In [68], the authors propose a Driver Drowsiness Detection and Prediction (re-
ferred to as D3P in Figure 3.5) scheme that utilizes an Artificial Neural Network
(ANN). The D3P scheme uses real-time signals such as the driver’s heart and res-
piration rate variabilities, as well as vehicle parameters like speed, steering angle,
and lane position. This scheme’s strengths include drowsy behavior prediction
in addition to detection. However, the scheme has been validated only through
simulation, and assessment in a real environment is still pending. Future work
may involve extending the scheme to detect other critical driver behaviors besides
drowsiness.

In the project detailed at https://safedemon.it/en/home-page-english, the
authors propose an innovative solution that considers both driver, vehicle, traffic,
and road factors within a single platform to detect driver behavior, as shown in
Figure 3.7. Once driver behavior is detected, the proposed architecture is respon-
sible for informing upcoming traffic and Intelligent Transportation Systems (ITS)
to avoid potential dangers. This architecture consists of three modules.

In the first module, drivers and vehicles are equipped with sensors to record
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the dataset. The vehicle is equipped with Advanced Driver Assistance Systems
(ADAS), GPS, Inertial Measurement Unit (IMU), On-Board Unit (OBU), and
Maps to collect parameters such as position, speed, heading, front vehicle head-
way, and road alignment. Drivers wear Electroencephalography (EEG) and Con-
tinuous Glucose Monitoring (CGM) sensors to capture data in signal waves.

In the second module, a convolutional auto-encoder processes the recorded sig-
nals as time series and converts them into sequences. Once a dataset is treated as
a sequence, it is passed to the model as a string. The convolutional auto-encoder
comprises various layers where the original input is encoded into a latent vector
and then decoded. Finally, the decoded string is compared with the original in-
put to detect anomalies. Anomaly detection in this context is equivalent to driver
behavior detection.

Once driver behavior is detected, the third module is responsible for commu-
nicating with oncoming traffic and ITS to take precautionary steps and prevent
major losses. This project explores data collection methods to identify accidents
resulting from alcohol or drug use. Additionally, it compares accidents caused by
driver illness with those due to drowsy conditions. The project concludes that ac-
cidents due to illness are more prevalent in the age group over 60, while accidents
due to drowsy conditions are most common in the age group below 45.

OBU

Camera RTK-GNSS

IMUVallen 
Cell

Recorded Signals

Sequences

Anomaly Detection = Driver Behavior Detection
Model

Message 

Convolutional Autoencoder based smart system

ITS

Hybrid

V2V

V2I

Map

Figure 3.7: Safe-Demon Architecture
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3.4 Analytical Discussion and Open Research Is-

sues

In this section, a detailed comparison of driver behavior detection schemes is
carried out on the basis of a few metrics including data collection tool, test
environment, method, strength, limitation, and remarks of each scheme. After
comprehensive comparison, some open research issues are identified that need to
be explored in the future. A comparative summary of driver’s behavior detection-
based schemes is presented in Table 3.3. We identified that driver behavior de-
tection techniques are based mainly on two factors i.e. driver’s health monitoring
and vehicle monitoring. The 1st column of the table reflects the scheme name with
its reference while the 2nd column highlights the monitoring model which means
whether the driver’s behavior detection is based on driver health monitoring (D),
vehicle monitoring (V), or hybrid (H). The 3rd column illustrates the test data en-
vironment which means whether the results are carried out by using a real-world
(RW) dataset or mapped on a simulator (SM). In the 4th column, the data collec-
tion method is mentioned whether the dataset is collected by using smartphone
(SP), sensors (S), or mounted cameras (MC) in the form of images or signals. The
5th column explores the methodology of each scheme which is the most impor-
tant element of any scheme. Another two columns compare the algorithms using
the strength and limitation of each scheme respectively. Finally, the last column
highlights some valuable remarks of each scheme that can help to improve driver
behavior detection in the future. From Table 3.3, we conclude that driver be-
havior detection mainly depends upon driver and vehicle parameters as shown
in the 2nd column. Driver behavior identification schemes used either real-world
datasets or simulation tools to validate results. Furthermore, real-world datasets
are categorized into offline or real-time datasets. In [21][22][38][42][46][58], authors
identified driver behaviors in real-time by using in-vehicle sensors and cameras. In
[59][53][56][57][60][54][47] [67], authors detected driver behavior by using off-line
real-world data parameters of vehicle or driver. From Table 3.3, we concluded that
abnormal driving behavior identification is mostly done by using smartphones,
cameras, and sensors-based dataset [38][42][46]. For the real-world dataset, we
observed that sensor-based data gives more false alarms and takes high execution
time due to noisy signals collected at high frequency (i.e. f>10 Hz) [44][47][62].
Smartphone and mounted camera-based driving behavior detection approaches
also raise false alarms [38][53][57] due to misleading facial expressions. For the
simulation test environment (3rd column), we observed that mostly static simu-
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lators are considered to lead to a high rate of false alarms and limited accuracy
when implemented in real scenarios [22][37][45][61][64]. For the real world test en-
vironment, it is also observed that some existing schemes considered small sample
size or hotspot area for result validation that can be a challenge for real-world
applications [21][59][67]. For sensors as a data collection tool, the observed limita-
tion is the high cost of involved hardware and devices [44][45][62]. From Table 3.3,
mainly observed that most of the schemes addressed any one driver behavior at a
time [39][66][47][53][57]. It also has been observed that ML and DL based schemes
improved accuracy and labeling effort significantly [66][57][42] [64] [2]. After the
literature review and analytical discussion, we identified the following open re-
search issues that need to be addressed in the future. Addressing such issues will
require a large research effort and we believe that interested researchers might
benefit from the overview of Table 3.4 where the relevant publication venues are
explored.
A. Reduce false alarms generated from noisy signals and confusing

facial expressions
From [38] [42] [53][57] [58], we concluded that driver behavior detection based

on the sensors or mounted cameras causes more false alarms. Noisy signals and
images of facial expressions collected from various sensors and cameras lead to
false alarms. Basically, false alarms are misleading detections that occur due to
unexpected peaks of noisy signals or confusing facial expressions such as laughing
or talking, etc. Therefore, dynamic and efficient systems are required to reduce
false alarms in the future.
B. Reduce delay as time is one of the parameters to measure the

efficiency of any system
From [21][49][55], we concluded that combinations of multi-models are used for

driver behavior detection that takes more model parameters and results in high
time consumption. Moreover, time series models, denoising, and data smoothing
need to operate in a time window that can be more than one second depending
also on the data acquisition frequency. High time consumption during abnormal
driver behavior detection causes accidents and loss of precious lives. Time is a
well-renowned parameter to verify the model’s efficiency. Therefore, it is required
to build models with less time cost and real-time response to identify abnormal
driver behavior and take precautionary actions in time.
C. Need to follow real-world datasets and test environment instead

of virtual simulation with static network
From [22][37][45][61][64], we concluded that driver behavior identification based
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on simulations does not work well when implemented in real scenarios. In real
scenarios, simulation-based systems create more false alarms and give a limited
rate of abnormal driver behavior identification. Therefore, it is required to con-
sider real-world scenarios and dynamic environments for abnormal driver behav-
ior identification to prevent accidents in real scenarios. D. For a real-world
test environment, hot spot areas and small sample sizes for testing are
considered as a limitation, therefore consider real scenarios with large
datasets

From [21][59][52], we concluded that some of the existing work considered small
sample size and hotspot area or selected road environment to validate the results
of abnormal driver behavior identification. Basically, the test carried out by using
a small sample size and hot-spot area is not sufficient and suitable to implement
in a dense real environment. The system trained with a limited dataset of specific
users and simple road scenarios cannot work well for other users and various
real road conditions. Nevertheless, it is obvious that developing a specific model
for each user in each environment is not practical, and appropriate solutions are
needed to overcome such limitations.
E. Reduce the cost of the hardware devices involved
From [44][45][62], we concluded that sensors based on abnormal driver behavior

identifications are highly costly. Although the installation costs will be reduced
if data can be collected by the sensors already embedded in automated vehicles
of level 1+, in low-medium developing countries it is difficult to afford expensive
sensors and vehicles. Therefore, it is important to explore cheap hardware devices
and sensors to collect data to identify abnormal driver behavior.
F. Mainly observed that most existing research articles address any

one driver behavior, need to address various abnormal driver behaviors
at a time

From Table 3.3, we concluded that several schemes identify only abnormal driver
behavior at a time while a driver can suffer from various abnormal driver behaviors
at one time. If a system can identify various abnormal behaviors, it would be
more dynamic and effective in the application. For example, if a system could
not identify abnormal driver behavior from one aspect, maybe it could do so
for another one. Therefore, it is required to explore a dynamic scheme that can
identify various abnormal driver behaviors.
G. Need ML and DL-based smart schemes to improve accuracy, re-

duce labeling effort and false alarms for abnormal driver behavior iden-
tification
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From [42][57][57][64][2], we observed that ML and DL-based smart schemes re-

duce data labeling effort and improve accuracy significantly. Moreover, ML and
DL are more suitable to handle big and heterogeneous data. Therefore, it would
be great in the future to continue to explore ML and DL for abnormal driver
behavior identification.
H. Require hybrid schemes based on driver’s health and vehicle mon-

itoring
From Table 3.3, we can identify that most of the schemes are either based on the

driver’s health or vehicle parameters to identify abnormal driver behavior. This
is a unidirectional way to identify driver behavior. There are very few hybrid
schemes that are based on both driver’s health and vehicle monitoring. Hybrid
schemes are a bidirectional approach to identifying abnormal driver behavior in
an effective way to reduce false alarms by comparing detections from different
simultaneous models. Therefore, we need to explore more hybrid schemes in the
future.

3.4.1 Remarks

In this part of the thesis, we have reviewed the principal solutions proposed
for driver behavior detection. These solutions are categorized into three main
categories: those that exploit driver’s health parameters only, those that use pa-
rameters coming from the vehicles, and those that consider both. Each solution
is described in terms of the data that it exploits, the tools that it exploits, and
its strengths and weaknesses. Based on the analysis of such solutions we have
identified the data collection for these schemes follows two ways i.e. by using
cameras and sensors. It might be a smartphone camera or a mounted camera in
a vehicle that collects data in the form of images. Sensors are devices to collect
data from vehicles and drivers in the form of signals. Test environment scenario
based on real-time/real world and non-real-time/no real world categories such
as simulation-based driver behavior detection. Real-time techniques where result
evaluation is processed on real-time collected data. Non-real techniques include
simulation-based results. After the literature review, a taxonomy is included for
a clear understanding of driver behavior detection schemes. After a detailed lit-
erature review and taxonomy construction, an analysis section is included to
highlight the literature gaps and how it can be possibly improved in the future.
Future directions of this study include: 1. Explore various driving behaviors. 2.
Detect maximum driving behaviors by using a single AI-based method. Explore
dynamic algorithms to identify driver behaviors. Reduce the cost of expensive
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sensors. For graphic topography-based schemes recognition of facial expressions
and tracking remains a challenge.

Table 3.3: Algorithm Analysis and Comparison for Driver Behavior Detection

Technique ModelTest
Env.

Tool Method Strength Limitation

DDD3

[42]
V RW SP Support

Vector Ma-
chine Neuron
Network

High accuracy. Only abnormal driv-
ing style is addressed.
Time-consuming due
to a lot of parameters
of SVM and NN. Need
a smart algorithm to
train and classify real-
time datasets for bet-
ter results.

N_L
DSE
[58]

V RW S Two-Point
Visual Driver
Model Es-
timated
Kalman
Filter (EKF)

Steering wheel
based abnor-
mal driving
detection.

Only experienced
driver is considered.
High time. Need to
classify abnormal
driving behaviors.

IBP [51] D SM S Multiple lin-
ear regression
analysis

A base to estab-
lish a solid logic
for the integra-
tion of driver.

Explore other driver
behaviors such as
aggressive behavior.
Need other driving
behaviors and im-
plement using real
data instead of virtual
simulation.

S3VM
[64]

V SM S K-means
Clustering

Reduce labeling
effort. Improve
accuracy.

Real dataset is consid-
ered as a limitation.
Needs to explore deep
learning methods us-
ing real scenarios.

Continued on next page
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Table 3.3 – continued from previous page
Technique ModelTest

Env.
Tool Method Strength Limitation

RD2
[59]

V RW S Speed change
based mathe-
matical calcu-
lation

Identify risky
driver behavior
using speed.

Easy to implement.
Hotspot area is
considered. Static
approach. Need a
dynamic approach
to monitor driver
behaviors online.

R_t D3

[22]
V SM S Data Mining

(DM) method
Driver distrac-
tion detection.

Static network. A
deeper investigation
of the LRNN classifier
is required for other
driving behaviors.

TEDD
[24]

D SM S Respiratory
Rate Vari-
ability (RRV)

Reduce false
alarms.

Results are not com-
pared with counter-
parts. Need to work
with real datasets for
real driving drowsi-
ness detection.

DriCare
[38]

D RW MC Multi CNN Handle the
challenge like
driver’s height.
Improved accu-
racy.

During talking, laugh-
ing facial expression
can be similar to a
drowsy state. Need
dynamic technique for
driver drowsiness de-
tection.

DarNet
[53]

D RW MC CNN for
video analysis
+ RNN for
IMU time
series analysis

Align data
across various
IoT modali-
ties. Improve
accuracy.

Laughing facial ex-
pressions can be
similar to distracted
expressions. Need to
consider other driv-
ing behaviors under
privacy concerns.

Continued on next page
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Table 3.3 – continued from previous page
Technique ModelTest

Env.
Tool Method Strength Limitation

DBD
[21]

V RW S 2D CNN
+ Recur-
rence plot
technique

Multiple driving
behavior detec-
tion.

Probability of acci-
dent is not calculated.
Hotspot area is con-
sidered. Recorded sig-
nals for anomaly de-
tection instead of im-
ages, which is time
and cost-consuming.

PSD
[61]

V SM S Steering an-
gle variation

Less time con-
sumption.

Limited accuracy in
real-world scenarios.
Need to consider real
dataset parameters.

D2 Det
[37]

D SM C+MCDriver As-
sistance
system with
dual control
scheme

Prevent lane
departure acci-
dents.

Eyelid movement can
confuse. A real sce-
nario is required to be
considered.

DSAE
[56]

V RW S Deep Sparse
Autoencoder
(DSAE)
scheme

Dynamic visual-
ization identify
driver behavior.

A Practical support
system is required for
this method. Need
possible application of
DSAE for vehicles.

ADB_Det
[57]

D RW S+MCCNN High accuracy. Single-driver behavior
and facial expression
can lead to confusion.
Need to consider other
driving behaviors.

DB_Det
[50]

D RW S Integration of
BSNs

Identify multiple
driver behaviors
in a real sce-
nario.

More central devices
for communication.
High time. Need
to implement this
approach for IoVs.

Continued on next page

34



CHAPTER 3. MOTIVATION AND STATE OF THE ART

Table 3.3 – continued from previous page
Technique ModelTest

Env.
Tool Method Strength Limitation

DBA
[60]

V RW S Gaussian
Mixture
Model
(GMM)

Driver behav-
ior analysis
and aggres-
sive behavior
identification.

Only one behavior
identification. Need to
identify other driver
behaviors.

ANDC
[62]

V RW S Data Fusion Aggressive and
normal driver
behavior classifi-
cation.

Hardware is involved.
High time. Need to
identify various driver
behaviors.

LWD2_det
[39]

D RW MC Viola-Jones
algorithm

Driver drowsi-
ness detection in
a real scenario.

Facial expressions can
mislead the algorithm.
Need to explore other
driving behaviors.

HR_D3
[45]

D SM S HRV analysis
by comparing
with EEG

Driver drowsi-
ness detection
and its valida-
tion.

Driver equipped with
many wires and sen-
sors. High cost. Need
to explore other driv-
ing states.

DDb_Det
[65]

V RW S K-nearest
neighbor

Distracted driv-
ing behavior de-
tection.

Poor accuracy on cor-
ners or curve roads.
Need to consider more
realistic scenarios.

D_Det
[54]

D RW MC CNN Distracted driv-
ing detection us-
ing images.

Limited resolution of
images. Computer vi-
sion for other abnor-
mal driver behaviors.

Ab_Det
[2]

D RW SP Soft Thresh-
old and Tem-
poral CNN

Improve ac-
curacy and
robustness.

Individual driver be-
havior is not classified.
Need to explore ac-
curacy for individual
driver behavior detec-
tion.

Continued on next page
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Table 3.3 – continued from previous page
Technique ModelTest

Env.
Tool Method Strength Limitation

DFD
[47]

D RW S Gaussian +
SVM

Significantly de-
tect driver fa-
tigue.

High calculation load.
Need to explore effi-
cient methods for var-
ious driver behaviors.

DFI [46] D RW S Threshold Detect driver fa-
tigue automati-
cally.

Static threshold. Need
to explore dynamic so-
lutions.

D2I [55] D RW MC CNN +
Weight prun-
ing

Less false alarms
and high accu-
racy achieved.

Limited to one driver
behavior. Can im-
prove accuracy.

D3P [68] H SM C+MCANN (Arti-
ficial Neural
Network)

Predict driver
drowsiness along
with drowsy be-
havior detection.

Real dataset for ex-
periments is required.
Consider a real sce-
nario for driver behav-
ior detection.

DSF
[50]

D RW C HOG + SVM Abnormal driv-
ing behavior de-
tection.

Limited accuracy due
to distracted facial ex-
pressions. Improve ac-
curacy in the future.

UDBI
[52]

H RW S+SP Threshold-
based

Predict drowsy
driving behavior
using pulse rate
and vehicle posi-
tion.

Small sample dataset.
Implement for other
dangerous driving be-
haviors.

DCNN
[48]

D RW S CNN Real-time ag-
gressive behav-
ior detection.

Limited to one
driver’s behavior de-
tection and accuracy.
Need to explore other
deep models for driver
behavior detection.

Continued on next page
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Table 3.3 – continued from previous page
Technique ModelTest

Env.
Tool Method Strength Limitation

DSI [49] D RW S SVM + Ran-
dom forest

Driver stress
identification.

Limited accuracy.
Need to explore other
driving behaviors
using deep learning.

Table 3.4: SURVEY CRITERIA

No. Publication
Venue

Publication-
Year (Count)

Type No.
of
ar-
ti-
cles

Keyword criteria Impact
Factor
2021

1. IEEE Trans-
actions on
Intelligent
Transporta-
tion Systems

2013, 2015,
2017, 2019,
2020

Journal 5 Safe driving, Driver
Behavior detection,
AI

6.492

2. IEEE Trans-
actions on
Human-
Machine
Systems

2016, 2017
(3), 2018

Journal 5 Driver behavior, Acci-
dents

2.968

3. MDPI Sen-
sors

2015, 2016,
2018, 2019

Journal 5 Driving monitoring,
Driver behavior,
Traffic safety

3.576

4. Transportation
Research Part
F: Traffic
Psychology &
Behavior

2019 (3) Journal 3 Health, driving pat-
terns

3.261

5. IEEE Access 2019 (2) Journal 2 Health based driver
behavior identification

3.367
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6. IEEE Intelli-
gent Vehicles
Symposium

2013, 2016 Conference2 Driver behavior recog-
nition and classifica-
tion

-

7. IEEE Com-
munications
Surveys &
Tutorials

2018 Journal 1 Road Safety 23.7

8. ACM Com-
puting Sur-
veys

2018 Journal 1 Driver behavior, stress 10.28

9. IEEE Net-
work

2018 Journal 1 Vehicle Safety Im-
provement

10.693

10. International
Journal of
Vehicular
Technology

2016 Journal 1 Driver Behavior -

11. Accident
Analysis &
Prevention

2020 Journal 1 Road Safety 3.655

12. Safety Sci-
ence

2018 Journal 1 Driver behavior 4.877

13. Engineering
Applications
of Artificial
Intelligence

2020 Journal 1 Driving behavior, AI 6.212

14. IEEE In-
ternational
Conference
(FSKD-12th)

2016 Conference1 Driver behavior, Deep
learning

-

15. Journal of
Safety Re-
search

2018 Journal 1 Driving Behavior,
road safety

3.487
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16. IEEE In-
telligent
Transporta-
tion Systems
Magazine

2015 Journal 1 Driver Behavior 3.419

17. Expert Sys-
tems with
Applications

2020 Journal 1 Driver behavior detec-
tion, AI

6.954

18. International
Journal of
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Chapter 4

Use Case 1: Bicycle

4.1 Bicyclist behavior-based Anomaly Detection

through Deep Learning

4.1.1 Orientation

Cycling is a key component of any sustainable urban mobility in terms of en-
vironment and public health and as an alternative to driving a car [69]. The
Netherlands is leading the ranking in Europe with 27% of trips done by bicycle
with other countries (e.g. Denmark, Belgium, and Germany) already beyond the
10% threshold. Below 5% we find countries like Norway (4,3%), Italy (3,3%),
France (2,7%), and Luxembourg (2%). Anyway, all of them report considerable
increases in bicycle usage further pushed due to the Corona crisis in 2020 [70].
Unfortunately, as bicycle use increases, at the same time, the rate of bicycles in-
volved in road crashes has increased, as well. Due to the vulnerability of bicyclists
to serious injuries, it has been estimated that riding a bike is seven times more
unsafe than traveling by car [71]. Data coming from European statistics shows
that the rate of fatal accidents for cyclists on urban roads has increased from 2010
to 2018 by +6% in contrast to the decrease of all the other modes of transport
(Figure.4.1) (EU Commission Road Safety – Key figures, 2020).
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Figure 4.1: Trends 2010-2018 of fatalities in crashes involving cyclists and other
transport modes. Source: (EU Commission Road Safety – Key figures, 2020)

Moreover, the high risk of crashes when perceived by the users acts as a strong
barrier, dissuading people from using bicycles as a form of transport [72]. A criti-
cal area for cycling safety research is the under reporting of cyclist crashes [73][74]
and the lack of reliable data about cycling traveled distance. Even in highly cy-
cling countries, 50% of bicycle-involved traffic accidents are not reported in police
statistics [75][76]. Consequently, the crash statistics are biased in the magnitude
and exposure, and less feasible than for motorized vehicles [77]. Accordingly,
Traffic Conflicts, near misses, or Critical Safety Events (CSEs) are spreading as
crash surrogates in safety studies [78]. CSE is defined as “A traffic event that
requires a rapid evasive maneuver by the subject vehicle, or any other vehicle,
pedestrian, cyclist, or animal to avoid a crash. A rapid, evasive maneuver can
be steering, braking, accelerating, or a combination of control inputs”. Bivariate
extreme value models showed that pairs of temporal and speed-related indica-
tors should be combined in order to properly predict the severity of surrogate
measures of safety [79].

Loss of control, turning, braking, and overtaking are recurrent maneuvers in
CSE involving bicyclists [80][3]. These “evasive maneuvers” are “anomalies” in the
normal ride behavior whose identification is a complex task due to high dimen-
sionality and heterogeneity trajectory data (e.g. speed, acceleration, direction)
for which deep learning models for anomaly detection [81] may be more efficient
than traditional statistical methods [82].

In this framework, the main contribution of this study is the development of an
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experimental framework where convolutional neural network (CNN) deep learning
is originally applied to integrate multiple GPS data streams of bicycle kinemat-
ics to detect anomalies in the cycling behavior that are associated with evasive
maneuvers in the occurrence of CSEs. Validation of the results with real data
and higher performance than traditional threshold-based, and statistical tech-
niques makes the proposed approach promising in order to identify locations
with potential hazards for cyclists by using mobility data that can be easily col-
lected in smart cities and communities. A case study in the city of Catania is
presented as well. The paper is organized in the following sections: (Section 2)
Related background: This section includes an overview of observational studies
about bicyclist safety and the application of CNN to road mobility and safety.
(Section 3) Method: the overall method is presented in its different conceptual
and operative modules which include Dataset preparation (GPS data collection
(typology and frequency), signal smoothing and cycling parameters calculation,
data labeling into normal and abnormal) and Neural Network Model Synthesis
(training of the convolutional autoencoder by defining architecture and setting
the model parameters to perform anomaly detection). (Section 4) Results: The
detection performance methodology is validated with real SCEs; different model
settings are compared, and superior performance is observed over traditional de-
tection techniques. Validation through Case study is also carried out in Section
4 to demonstrate how results can be used in practical application. (Section 5)
Conclusions about the proposed method, results, and future recommendations
are reported at the end of the paper.

4.1.2 Background

Section 4.1.2.1.a we will provide an overview of observational studies in cyclist
safety, while in Section 4.1.2.1.b we will focus on the research activities related
to the use of deep learning and CNNs for road safety and bicyclist mobility.

4.1.2.1 A. Observational Studies

Literature is extensive about safety assessment using observational studies, but
in comparison, a limited number of studies are applied to bicyclists [78]. In the
InDeV project, the Safe VRU app was developed for self-reporting of accidents and
near-accidents and has been used by more than 400 participants (Lund University,
2015). The target of the UDRIVE project was to identify factors in CSEs involving
a bicyclist; CSEs were identified manually and correlated to the features of the
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infrastructure [83]. In the project BIKEALYZE, data was collected by mobile eye
tracking, a GPS-based motion data acquisition complemented with acceleration
and steering direction data; CSEs (e.g. collision avoidance, way-giving violations,
abrupt braking, abrupt turnout) have been identified by video-based analysis and
elicitation interviews [84]. In several studies, participants had an active role in
indicating any Critical Safety Events (CSEs) they experienced through various
means. For example, in some studies, participants used a push-button installed
in the vehicle [85], a smartphone app developed by Lund University, or online
questionnaires [86] to report CSEs.

A study conducted in Sweden by Dozza et al. [87] collected movement data from
20 bicyclists using an Inertial Measurement Unit (IMU) and GPS installed on in-
strumented bicycles, and it analyzed cycling kinematics. Notably, longitudinal
and lateral accelerations were considered relevant for analyzing cycling behavior.
Another study highlighted the importance of collecting GPS data with a fre-
quency of at least 1 Hz to provide suitable speed profiles and detect hard braking
by cyclists [88]. Additionally, vertical accelerations, acquired at a minimum of 50
Hz using accelerometer sensors, were found necessary to analyze cyclist comfort
and safety in response to pavement unevenness [89].

Research by Mehta et al. [90] focused on motorized vehicles’ overtaking behavior
concerning cyclists. They measured the lateral distance between the bike and
the passing vehicle and developed a statistical model to predict the probability
of an unsafe critical maneuver. Additionally, they investigated cyclists’ safety
perception.

In a study by Candefjord et al. [91], an algorithm was developed to detect
a cyclist’s fall by combining acceleration and rotation thresholds. Strauss and
Miranda-Moreno (2017) proposed a procedure that used cyclist GPS data cap-
tured by a smartphone to calculate decelerations and correlate thresholds with the
number of injuries. Despite promising results, they concluded that further work,
including more granular data and validation, is needed to enhance the reliability
of the correlation.

Perceived risk in bicycle paths was consistently associated with the frequency
of CSEs in a study where experts analyzed video recordings alongside speed and
heading GPS data [92]. These research efforts primarily rely on the identification
of safety-critical events through self-reporting, manual video review with prede-
fined thresholds, and statistical methods for data analysis.

An extensive review [93] reported that the existing solutions for trajectory out-
lier detection were “algorithm-based” (e.g. distance-based; density-based; pattern
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mining–based) with emerging machine learning–based schemes that learn the
outlier detection from the training trajectories to identify anomalies in the newly
inserted trajectories. Moreover, the research focused more on vehicle mobility
[94][95] and not on micro-mobility, such as bicycles, which also suffer from a
“digital divide” when compared to the increasing opportunities for data collec-
tion through connected and automated vehicles. More specifically, no studies are
reported for cycling trajectories [93].

4.1.2.2 Deep learning in road safety and bicyclist mobility

Recently, deep learning and Convolutional Neural Networks (CNN) have been ap-
plied in road safety studies [96] [97][98][99] and driving style analysis [100][101].
The convolutional autoencoders (CAE) allowed the extraction of valuable infor-
mation from large quantities of complex and heterogeneous data, showed fast
convergence due to the convolutional layers, and provided better performance
with multi-dimensional data compression and feature learning making the proce-
dure well suitable for managing the mobility data characterized by high volume,
variability and velocity (i.e. big Data) [102]. Dong et al. (2016) made the first
attempt of adopting a deep neural architecture, based on Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN), to extract features on
the driving style directly from GPS data. More recently, Bichicchi et al. (2020)
applied an unsupervised Denoising Stacked Autoencoder (SDAE) to provide out-
put layers from kinematic measures tracked with an in-vehicle 10 Hz GPS device.
The RGB colors of the outcomes were associated with different path geometries
encountered during the driving. When applied to cyclist mobility, deep learn-
ing, and CNN have been used in the bike-sharing prediction modeling, because
the use of shared bicycles is susceptible to time dependence and external factors
[103], such as weather [104][105], bike rebalancing and land use characteristics.
In [106], authors applied the Self Organizing Map artificial neural network to
identify atypical trajectories from video sequences at fixed locations. More re-
cently in [107], authors used video records from fixed cameras and trajectory
data extracted by means of computer vision algorithms and Advanced Artificial-
Intelligent (AI) techniques to model cyclists’ behavior and their interactions with
pedestrians in a shared space. The limitations of the existing works for the clas-
sification of abnormal cycling behavior are summarized as follows: observational
studies applied to bicyclist safety mainly rely on traffic conflict techniques applied
to video tracking from fixed positions. Few studies used trajectory data to iden-
tify SCE but by self-reporting or handled classifications. In [108], authors use text
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mining analytics and an Artificial Neural Network (ANN) to extract information
from near-miss and collision event descriptions, acquired from BikeMaps.org, a
global tool for mapping collision and near-miss events. Deep learning is becoming
widely applied to transport and road safety studies, but applications to cycling
are mainly focused on mobility choices. Results from previous studies about CNN
for anomaly detections or modeling of motorized driver behavior, cannot directly
be transferred to cycling because of its specific kinematic features and limited
availability of advanced equipment for data collection as in standard naturalistic
studies. To the best of our knowledge, this is the first work extending the use of
deep learning CNN to extract features of the riding style of bicyclists from GPS
data and to detect anomaly events in cycling behavior.

4.1.3 Methodology

The overall methodology consists of different tools that comprise data preparation
and convolutional Neural Network training and testing as illustrated in Figure
4.2.
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4.1.3.1 Dataset preparation

Dataset preparation includes both the collection and treatment of GPS data to
extract features optimized to train the CNN model.
a. Data Acquisition
The data source is an instrumented bicycle with GPS (Global Positioning Sys-

tem) and HD video system (Video Vbox Lite). The Video Vbox Lite (VVL)
records an extended GPS NMEA dataset not limited only to latitude, and longi-
tude, but including also speed and heading at 10 HZ frequency synchronized with
a video recording of 2 HD cameras. Data accuracy and resolution are reported
in Table 4.1. Worthily to mention that GPS in the standard acquisition without
augmentation has limited position accuracy, but good data quality in speed and
heading derived from the Doppler method and Carrier Phase observations [109].

Table 4.1: Accuracy and resolution of data

Data Accuracy Resolution
GPS Speed 0.1 km/h 0.01 km/h

GPS Heading 0.1° 0.01°
GPS 2D Position +3m 95%CEP∗ (*) 95% CEP means 95% of the time

the position readings will fall within
a circle of the stated radius

GPS Time 50 nanoseconds 1 millisecond
Camera 25 frames per second 720x576 pixels

Data was collected from 10 cyclists, named from ID-1 to ID-10, who participated
in controlled test rides. The ten cyclists included eight males and two females.
Participants were between 27-65 years of age, whereas 40 % were over 40 years
old. On average, the cycling experience of users was uniform with weekly cycling
use. Only ID-4 was a highly experienced commuter cyclist with daily use of a
bicycle. Participants were instructed to ride the instrumented bicycle following
their normal behavior. The test was carried out in normal weather, daylight, and
traffic hours. The ride path was long around 4 km, traveling different road in-
frastructures, to provide different traffic and road environment conditions that
include cycle track, bicycle/bus shared line, cycle track termini, and one round-
about [88]. The dataset collected for each rider contains around 9000 samples at
a 10 Hz acquisition frequency. Regardless of the limited number of participants
such a dataset is appropriate for training purposes as we will discuss in the con-
clusions. CSEs that occurred during the test were identified by the research team
reviewing the videos together with the test rider who explained the occurrence of
an actual CSE. A total of 41 CSEs have been detected and classified over about
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2.5 hours of tests. As an example, Figure. 4.3 shows a test path section with
bicyclist GPS positions and time of NMEA data. The two blue dots mark the
position of one CSE, while the blue boxes show the time interval of the CSE in
the speed and heading profiles. Figure. 4.4 includes a screenshot of the recorded
video at different times.

Figure 4.3: Map location along dependent and independent parameters

(a) (b)

Figure 4.4: Video screenshot at the time (A) and (B) of the CSE

b. Data Preprocessing and feature derivation
Once data was recorded, different Python routines were applied to 1) improve

the data quality, 2) interpolate for smoothing, 3) calculate derived parameters and
4) create the data set for training and testing the CNN. In the present application,
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speed (S) and heading (H) define the recorded time data in the NMEA string,
while longitudinal acceleration (LA), traveled Distance (D), heading rate (HR),
transversal acceleration (TA), and combined acceleration (CA) are derived by as
shown in Equations (4.1-4.5).

LA =
Si+1 − Si

∆T
(4.1)

HR =
Hi+1 −Hi

∆T
(4.2)

D =
Si + Si+1

2∆T
(4.3)

TA =

(
Si + Si+1

2

)2

· HR

D
=

(Si + Si+1) · (Hi+1 −Hi)

2 ·∆T
(4.4)

CA =
√
LA2 + TA2 (4.5)

where ∆T = 0.1 sec, S is speed in m/s, H is heading in radians, HR is in rad/s,
and LA, LT , and CA are in m/s².

Speed and heading data from GPS have a good standard accuracy as reported in
Table 4.1. Anyway, environmental factors such as satellite view, signal blockage,
and atmospheric conditions can affect precision. Moreover, pedaling produces
riding oscillation with frequencies around 2.5 Hz in the longitudinal speed and
1.2 Hz in the lateral direction [87] which can be considered as noise in the S
and H signals, emphasized by the high-frequency rate. Therefore, we applied a
Savitzky-Golay smoothing filter (SGF) to the speed and heading profiles, before
calculating their derivatives (i.e., LA, HR, TA, CA). SGF is a digital filter [110]
[111], well applied in GPS trajectory data of urban buses [112], that we adapted
to our time series dataset of speed and heading to increase the data precision
without deforming the actual signal frequencies and shape, reducing noise and
determining a smoothed trend line for deriving the other parameters. Figure. 4.5
illustrates the original data parameters speed and direction (heading) and their
derivate LA and HR before (black line) and after (red line) applying SGF. It is
evident the improvement in the signal smoothness, especially for the derivate of
LA and HR.
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Figure 4.5: Speed, Heading with derivate LA, HR before and after SGF (101-4)
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4.1.4 Neural Network Model Synthesis

In this section, we propose a methodology that exploits a convolutional autoen-
coder for anomaly cycling detection in time series. Therefore, we will first provide
CNN background and then, a discussion on convolutional autoencoders (Section
3.2.1). Then, we will present the proposed methodology for anomaly detection in
the application scenario (Section 3.2.2).

4.1.4.1 Preliminaries: Convolutional Neural Network (CNN)

Deep learning is a recent technology used in several scenarios including the iden-
tification of anomalous points [113][114]. Convolutional Neural Networks (CNNs)
are types of deep learning algorithms, introduced to process images efficiently
and are quite popular for anomaly detection as well [28][81].

CNNs automatically extract features from the data that are used for classi-
fication purposes [115]. The architecture of a CNN includes several layers that
are classified into convolutional layers, pooling layers, and fully connected layers
(Figure.4.6). The convolutional layers are the first layers of a CNN, which contain
filters in the form of a weighted matrix (C1) and recognize patterns efficiently by
reducing the variable’s dimension. Convolutional layers are followed by pooling
layers (S) which can be repeated several times to summarize features. The last
layer is the fully connected layer whose neurons (NN) take the extracted features
as their input as shown in Figure 4.6.
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Figure 4.6: Basic CNN Architecture

In our work, we use Convolutional Autoencoders and thus, we will provide
initial information on Autoencoder (AE). An AE is a type of artificial neural
network and popular for anomaly detection, AE consists of two main modules:
the encoder and the decoder (Figure. 4.7). The encoder maps the input data into
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a latent vector while the decoder tries to reconstruct the input from the latent
vector. The encoder is a neural network that is specified by a set of parameters
which we call wE. As we already said, the encoder takes as input an n-tuple X

and gives as output an m-tuple Z, which we call the latent vector, with m ≪ n.
Obviously, the latent vector Z is a function of the parameters wE and the input
X as shown in Equation 4.6.

Z = fE(wE, X) (4.6)

The decoder is a neural network, specified by the parameters wD, which takes
as input the latent vector Z and gives as output an n-tuple X̂, i.e., Equation 4.7.
The AE training minimizes the difference between the input X and the model X̂
as shown in Equation 4.8:

X̂ = fD(wD, Z) = fD(wD, fE(wE, X)) (4.7)

X̂ ≈ X =⇒ fD(wD, fE(wE, X)) ≈ X (4.8)

Where ∥X̂,X∥ represents a measure of the difference between X̂ and X as
shown in Equation 4.9. Several ways of measuring such differences can be applied.
Notable examples include the Mean Absolute Error (MAE), the Mean Squared
Error (MSE), and the Root Mean Squared Error (RMSE). In our work, we applied
the MAE because it gave the best performance. This was expected; in fact, MSE
and RMSE square errors before averaging, and therefore, they give higher weight
to large errors. We opt for MAE over Mean Square Error and Root Mean Square
Error (RMSE) due to data distribution and error size suitability. Therefore,

MAE = ∥X̂,X∥ =
1

n

n∑
i=1

|X̂i −Xi| (4.9)

Note that convolutional autoencoders (CAE)s are capable of learning the most
useful feature patterns in the input data [116] and anomaly detection [81].

4.1.4.2 BeST-DAD Model: The Proposed CNN application for Anomaly
Detection

We call the complete scheme proposed for anomaly detection in the scenario of
interest: ‘Bicycle Safety through Deep learning-based Anomaly Detection’ (BeSt-
DAD). Best-DAD employs a 1-D CAE as depicted in (Figure. 4.7). The input con-
sists of a sequence of time-data samples X1, X2, . . . , X6 generated at a frequency
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of 10 Hz. The generic Xi is a 6-tuple of values, i.e., Xi = [xi1, xi2, xi3, xi4, xi5, xi6]

which represent the speed, heading, heading-rate, longitudinal acceleration, transver-
sal acceleration, combined acceleration, calculated as discussed in the previous
Section 3.1. Thus, the input data is a 2-dimensional matrix in nature, as shown
in Fig. 6, that we flatten as a 1-dimensional input sequence of type as follows:
x11, x12, x13, x14, x15, x16, x21, x22, x23, x24, x25, x26, . . .

The number of samples j composing the input sequence as window size. Exper-
iments show that a good value for j is j = 40. Therefore, the input size of the
encoder is n = 40× 6 = 240.

Figure 4.7, shows the overall architecture of BeSt-DAD where the encoder con-
sists of 2 convolutional layers. We applied Stride as an advanced convolutional pa-
rameter which is capable of replacing max pooling with less computation. Padding
is used to maintain the output dimension as input while the activation function
is responsible for neuron activation. In our case, each convolutional layer reduces
the input dimension of a factor equal to the stride, i.e., four. As a result, the
output of the first convolutional layer has a dimension equal to 60, whereas the
output of the second layer, that is, the latent vector Z, has a dimension equal to
m=15. The decoder consists of two de-convolutional layers and a dropout layer
which avoids model overfitting. The output of the decoder will have a dimension
again equal to 240 and compared to the input by calculating the mean absolute
error (MAE). If this MAE is higher than a given threshold an anomaly warning
is issued. Observe that the value of such a threshold is a critical parameter. We
will discuss how to select it in the next section.

!

"

#

…

" # $ % &!$ "$ #$ $$ %$ &$

'"
!% "% #% $% %% &%

'#

!& "& #& $& %& &&

''

⋮

Conv-1

$ % &

Conv-2

$ % &

DeConv-1
$ % &

DeConv-2

Encoder Decoder

Flatten 
Normal 
Dataset

240/4 = 60
60/4 = 15

15

15 * 4 = 60
60 * 4 = 240

!′$ "′$ #′$ $′$ %′$ &′$

'′"
!′% "′% #′% $′% %′% &′%

'′#

!′& "′& #′& $′& %′& &′&

'′'

⋮

Input
40*6=240

Output

' $ % &

Stride = 4
Padding =  

Same

Stride = 4
Padding =  

Same

Stride = 4
Padding =  

Same

Stride = 4
Padding =  

Same

Time Stamp = 40

Latent 
Vector

Timeseries 
Signal

Anomaly Score
MAE Loss  > Threshold

Anomaly
Detection

*+,- *+,-

2-D Dataset Threshold=0.18

Figure 4.7: BeST-DAD scheme

4.1.5 Results

In the following section, the proposed scheme will be validated by comparing the
actual CSE detected as discussed in Section 3.1.1, which we call “real positives”,
to the anomalies in cycling behavior detected by BeST-DAD, which we call “CNN
positives” (section 4.2). For comparison analogous validations have been carried
out by using Principal Component Analysis as a robust standard statistical ap-

53



CHAPTER 4. USE CASE 1: BICYCLE
proach for feature reduction and anomaly detection, and the more widespread
method based on setting a threshold in the longitudinal acceleration to identify
hard breaking. Results are presented and analysis is done in Section 4.3 and 4.4,
based on quantitative performance metrics presented in Section 4.1.

4.1.5.1 Performance metrics

In a binary classification, ‘’Positive” and ‘’Negative” assignments refer to the
classifier’s prediction, and the terms ‘’True” and ‘’False” refer to whether that
prediction corresponds to the real observation. Given these definitions, the confu-
sion matrix (CM) describes the performance of the classification model as shown
in table 4.2

Table 4.2: Confusion Matrix (CM)

Real Positive Real Negative
CNN Positive TP FP
CNN Negative FN TN

CM is useful for calculating two metrics of classification performance called
Recall and Precision. Precision (P ) measures the rate of true positive (TP) over
the total predicted positive (TP + FP ). The Recall (R) computes the model’s
ability to detect TP over the total number of real positives (TP +FN) as shown
in Table 4.3. For our classification with unbalanced data due to the small number
of real positives, the F-measure (Fβ) is an effective quantitative metric to select
the model setting that minimizes the errors [117]. The Fβ score, in Equation 4.10,
is the weighted harmonic mean of precision and recall, ranging between 0 and 1.

Fβ =
(1 + β2) · P ·R
β2 · P +R

(4.10)

As commonly used to emphasize Precision against Recall, we applied a weight
β = 2, because we are more interested in limiting FN (i.e., missing detection of
CSEs) rather than FP.

4.1.5.2 Criteria for classification of CNN-Positive

Our event detection criteria are illustrated in (Figure.4.8) and defined as follows.
Considering the observed time extension of a real CSE in the range of 0.8-3.1
secs with an average of 1.4 secs and the high time variability of the kinematic
parameters in the cyclist riding, events with MAE>threshold of less than one
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second were not classified as “CNN positive” and detection sequences within 5
seconds have been classified as one CNN positives.

Figure 4.8: Anomaly identification example. Orange bar: Real positive; red bar:
CNN positive

4.1.6 Model Testing

The model performance measured by R, P, and F2 is affected by several factors
related to the data and CNN setting and varies by changing the classification
threshold. Therefore, to evaluate the results, two major comparisons are carried
out: the first comparison case is carried out by using various model settings and
features, while another comparison case is done between BeST-DAD and alterna-
tive detection approaches like Principal Component Analysis (PCA) and breaking
acceleration threshold. To maximize the performance of the model and to learn
new insights about cycling behavior modeling, model setting and features relate
to the following comparisons: CNN setting by changing (A) Training and testing,
(B) Thresholds, and (C) Size of the time windows; input dataset by varying (D)
Use of SGF filter and (E) Use of only speed-related variables: speed and longitudi-
nal acceleration or (F) Use of only heading related variables: heading and Heading
rate Furthermore, two scenarios have been selected for training and testing of the
model: A1) Training and Testing CNN for each user, by using 80% of data for
training and 20% of data for testing. The average training time in scenario A1
is 30.142 seconds for each user. A2) Training with the data collected by consid-
ering the entire dataset related to only one user and testing with 100% of the
data from all the other users. The average training time in scenario A2 is 26.642
seconds. Results and values of Recall, Precision, and F2 are reported in Table 3.
For the first scenario (A1), where each user adopts its own model, we reached
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the absolute best performance with an average F2=0.77. In the second scenario
(A2), the model is trained with the full dataset data of one-by-one users and
tested with 100% of data from the other users with an average F2=0.72. Anyway,
training with ID-4 as a reference user and testing with all other users gave the
best F2 score of 0.77. While comparing the two different training approaches, we
applied the best CNN settings in Table 3, with SGF, 40 TS-window, and all input
parameters. Results in Table 3 for scenario A1 show that training tailored CNN
models for each user returned the best results. Anyway, in practical application,
scenario A1 means the need to train the BeST-DAD model for each user sharing
his/her cycling data. In scenario A2, transferring the model trained on one user
returned slightly worse performances, but an overall average F2 comparable with
the previous scenario, as well.

Figure 4.9: Table 3. F-Score based performance evaluation for proposed scenarios.

The previous result illustrates the reason of “ID-4” selection as 100% training
dataset for the further comparisons, given the good performance and availability
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of a larger dataset for testing purposes (i.e., 100% of data for user ID-1, . . . ,
ID-9) by using the full set of 41 real-positives for testing. Results for the other
validation scenarios (B, C, D, E, F) are presented in Table 4. First, we tested
CNN settings for different thresholds (T) and time window sizes (TW) (scenarios
B, and C). Results in Table 4 confirm the best performance when T=0.18 and
TW=40. The best values of TW and T also have meaning in explaining the cycling
behavior. MAE=0.18 is equal to the 88th percentile of the overall Loss values,
while MAE=0.21 is the 93rd percentile, showing that anomaly cycling behaviors
for evasive maneuvers are quite rare (12% of the cycling time), but not exceptional
events in the riding path especially in shared lanes as will be highlighted in section
5. Without the application of the SGF filter the high-frequency time-variability
of the cycling data returned many CNN-positive with high Recall, but also many
FPs returning a very low Precision (P=0.36). It is worth noting that merging
speed and heading parameters had the most important impact on improving
the model performance. Results showed that without including heading-derived
parameters (i.e., HR, TA, CA), the model performance decreases significantly by
missing several detections with more FNs and FPs (low R and P in Table 4). That
is expected for cyclists, rather than other road users, because they apply both
braking and swerving as evasive maneuvers. Analyzing results, when Precision and
Recall are compared it is noteworthy that Recall is always higher than Precision.
This is significant because, in our application scenario missing CSE (FN) is of
higher concern than False Positive. Moreover, FP may not be the wrong detection
of cycling anomalies but often have been identified as changes in cycling behavior
related to other events not classified as CSE (e.g., hard braking at traffic lights,
avoiding pavement bumps, potholes, etc).

Table 4.3: Comparison results for different model settings and existing approach.

Validation Threshold Recall Precision F2

B1) Threshold = 0.15 0.15 0.80 0.54 0.73
B2) Threshold = 0.21 0.21 0.46 0.68 0.49
C1) TS_window_size =
64

0.18 0.68 0.59 0.66

C2) TS_window_size =
80

0.18 0.56 0.59 0.57

Continued on next page
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Table 4.3 – Continued from previous page

Validation Threshold Recall Precision F2

D) No SGF Filter+
speed and Heading
parameters

0.18 0.95 0.36 0.72

E) SGF+Only Speed pa-
rameters

0.18 0.61 0.57 0.60

F) SGF+Only Heading
parameters

0.18 0.54 0.67 0.56

A1) Training
each user (80/20)
TS_window_size=40,
SGH+ Speed parameters
+ Heading parameters

0.21 0.83 0.60 0.77

A2) Weighted Average of
A2

0.75 0.62 0.72

PCA – training
each user (80/20),
TS_window_size=40

0.17 0.66 0.34 0.45

PCA – ID-4
training (100%),
TS_window_size=40,
SGH+ Speed parameters
+ Heading parameters

0.17 0.49 0.44 0.47

Breaking Threshold - ID-
4 training (100%), only
Speed parameters

variable < 0.30 < 0.30 < 0.30

Finally, to further evaluate the effectiveness of deep learning in detecting CSEs,
the performance metrics have been calculated also by applying a robust PCA
statistic and the traditional empirical approach based on breaking acceleration
threshold [118]. Results in Table 4 confirm the higher performance of deep learning
for event classification.

4.1.7 Validation through Case Study and Risk Assessment

In order to show the practical results of BeST-DAD for risk assessment and
ranking, the procedure was applied to the trajectory data and anomaly detections
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located with the GPS coordinates in the different roadway sections composing
a mixed cycling path (i.e. cycle tracks, roundabouts, cycle track termini, and
bicycle/bus shared lane) (Fig. 4.10).

Figure 4.10: Map of BeST-DAD anomaly detections

The exposure to the occurrence of a conflict rises with the time the bicyclist
spends in the road section and therefore cycling time was considered as an expo-
sure metric to rate the number of anomalies among different roadway components
to make the results comparable. Risk Rate = N. of anomalies/cycling time. The
mean cycling time is reported in Figure 4.11 which also shows the total number of
BeST-DAD anomaly detections in the different road sections traveled during the
test and the comparison between observed and CNN risk rates in a normalized
scale (0-1).

Figure 4.11: Travel Time and Risk Rate in various Road Typologies

Figure 4.11 shows cycle track termini at the highest risk rank followed by the
roundabout. The normalized Risk Rate is also calculated to allow for comparisons
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with the observed risk rate reported in the previous study [92]. It should be noted
that in Figure 4.11, the very good consistency between the two risk ratings for
cycling track and shared lane. Also consistent are the higher ratings for lane
termini and roundabout, even if BeST-DAD has classified a higher risk at the
Cycle track termini than the one observed by actual CSE. The cycle termini
end with a sharp curve before the lane crossing (Fig. 4.11) where cyclists were
required to steer and often stop showing as anomalies in riding behavior (e.g hard
braking and steering) that have been correctly detected by BeST-DAD although
not specifically related to traffic conflicts and therefore classified as FPs.

4.1.8 Summary of 4.1

Cyclists are vulnerable road users, and their safety is a serious issue to be ad-
dressed with an increasing number of fatalities among cyclists. Due to the lack
of reliable data for crash analysis and the opportunities to collect new data in
smart cities and bicyclist communities, innovative observational studies can offer
new approaches for a network-wide safety assessment of VRUs consistent with
the EU directive. Auto-encoders are mainly utilized for dimensionality reduction,
feature extraction, image denoising, anomaly detection, and image compression
[101]. The authors- knowledge that is the first attempt to use both speed and di-
rection GPS data with customized Convolutional Autoencoder to automatically
detect anomalies in cycling behavior that can be associated with critical safety
events (CSE) and plotted on a map as risky points. Performance of the classifi-
cation was very good considering the low rate of FN with a Recall of 100% in 6
out of 9 tests after individual training of the model (Table 3). Furthermore, in
scenario A2 (Section 5), we have seen that a model trained using the dataset for
one selected rider can be effectively transferred to the other riders with R=0.78
and F2=0.77. This result is interesting because, in large-scale applications, the
use of a pre-trained model results in the reduction of communication and energy
resources and is more suitable for protecting user privacy. Performance evalu-
ation of BeST-DAD for different model settings (Table 4.3) demonstrates that
adding direction information (heading, heading rate, transversal acceleration) to
the more traditional only speed parameters (speed and longitudinal acceleration),
improved the capability of the model to detect anomalies in cycling. Data filter-
ing by using SGF played a positive role in reducing the FPs, although CNN
showed good capability to handle noise and extract features from raw input data
as we observed the weighted average of scenario A2 of Table 3. The advantageous
application of CNN was also proven by the best performance of the proposed
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BeST-DAD over other traditional statistical techniques like PCA or the heuristic
threshold-based method applied to the cyclist braking rate. A case study showed
the practical application and consistency of risk assessment and ranking.

4.1.9 Lessons learned and future needs

Despite the good performance of the CNN trained on the reference cyclist, we can
expect larger deviance increasing the number of users. Because the CNN model
depends on both the user and the specific road environment, transfer learning, and
cooperative learning can be applied in real-time to the model trained and transfer
its knowledge to the specific user and road environment. To model the cycling
behavior, our study used extended GPS NMEA contents (i.e. Speed, Heading) at
a high 10 Hz acquisition frequency which is not common in present smartphone
and data mobility-data providers (e.g. Strava) following mainly the targets of
profiling users’ destinations and flows (e.g. positions at 0.2 Hz) or fitting activity
(e.g. distance, elevation). Frequencies up to 1 Hz are not yet available in smart-
phones, moving mainly in the direction of improving the localization accuracy
while already appropriate are speed and heading. To achieve a suitable higher
frequency, an alternative to be evaluated is the capability of using SGF also for
sub-sampling the GNSS signals at higher frequencies than the actual sampling
rate [88].
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4.2 Deep Transfer learning exploitation for anomaly

detection

4.2.1 Objective

Cycling is one of the most sustainable and green transportation modes. These
advantages include the relief of congestion, the reduction in emissions, and im-
provements in the well-being of cyclists [119]. Many people worldwide have been
switching to bicycles, especially to e-bikes, and cycling has increased even more
due to the COVID-19 pandemic [120]. Unfortunately, with the growing rate of
bicycle usage, bicycle-based road crashes also increased. Bicyclists face a high
risk of serious injuries, and, taking into account unreported bike incidents, it is
estimated that the collision rate for bikers is nearly 20 times that of car users
[121]. Among all categories of road users, cyclists stand out as the only group that
has not experienced a decrease in fatalities since 2010, with the proportion of cy-
clists within the total number of road fatalities growing from 7% in 2010 to 9%
in 2019 [122] as shown in Figure 4.12. The fatalities in crashes involving cyclists
are virtually always the cyclists themselves (98%). Also in crashes involving other
vulnerable road users than cyclists, 9 out of 10 fatalities are the vulnerable road
users themselves [122]. Therefore, cyclists as vulnerable road users need special
attention and protection as a priority.

Figure 4.12: Annual number of cyclist fatalities, and their share in the total
number of fatalities in the EU27 (2010-2019). Source: European Road Safety
Observatory, 2021

Given that actual bicycle, crashes remain a rare event, widely scattered in the
road network and often not fully reported [74], Traffic Conflicts (TCs) are most
commonly used as a surrogate measure for safety analyses [123] [124][125]. In the
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state of the art, near miss or traffic conflict is defined as a situation in which a
cyclist is required to act to avoid a crash, such as braking, speeding, swerving,
or stopping [Ibrahim, 2021]. In such a framework, unusual changes in speed and
directions can be assumed as "anomalies" in the normal cycling behavior [101].

Then the main issue is how can we detect such anomalous riding events? The
most diffused applications make use of video recording and tracking from fixed
cameras or, more recently, drones which are able to cover a limited area (e.g. an
intersection) [79]. Despite being effective, this approach cannot be used to inves-
tigate the overall extension of the road network. While technology offers wide
opportunities to increase the level of bicycle smartness to monitor the cycling be-
havior and surrounding road environment (using networking technologies, GNSS,
accelerometers/gyroscopes, Light Detection and Ranging (LIDAR), speed and
pedal sensors, radar, and ultrasonic sensors, cameras) [120][86] the identification
of these anomalies remains a difficult task due to the high dimension and hetero-
geneous nature of the collected data making traditional statistical methods not
adequate [82]. In this area, machine and deep learning-based models are more
versatile and effective for anomaly detection [81], [126].

In this context, the main contributions of this work are:

• Identifying the most appropriate data in the NMEA string and treatment
by using GNSS as a source is quite easy and highly suitable in smart com-
munities of bicyclists or bike-sharing systems.

• Developing an experimental framework that exploits "unsupervised deep
transfer learning" to detect anomalies in the cycling behavior, showing that
anomaly detection using transfer learning solves the issues of data prepara-
tion and labeling and reduces training complexity to adjust the model for
different users.

• Quantitatively demonstrate the opportunities of using transfer learning for
anomaly detection by showing its practical application in a selected scenario
in the city of Catania (Italy).

Let us stress that the major contribution of this paper when compared to the
previous literature is that the focus is on the analysis of the effectiveness and
the resulting benefits of transfer learning to obtain accurate models tailored to
each user, increasing the performance of the models and reducing dramatically
the need for data.

The paper is organized as follows. Section 4.2.2 provides an overview of the
state of the art in bicycle safety studies by using traffic conflict and artificial
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intelligence. In Section 4.2.3 we describe the proposed methodology which we
assess in Section 4.2.5 where the findings from the experiments are explained.
Lastly, in Section 4.2.7 we draw our conclusions.

4.2.2 Background

Machine learning is emerging as a powerful tool also in the field of road safety and
it has become crucial to analyze the complex and heterogeneous data that are
today available from new technologies. Anyway, its application to bicycle safety
is still limited in the wider field of road safety.

In our previous work [126] we have presented a convolutional neural network
(CNN) to identify abnormal patterns in cycling behavior that showed promising
performances. The present paper represents an advancement in the modeling
which applies a transfer learning technique to adapt the general model to the
specific users’ cycling style. This new publication gives also the opportunity to
update the state of the art in this field.

A recent review paper [123] confirmed surrogate measures of safety as a comple-
mentary approach to traditional crash studies and an emerging theme in bicycle
safety research, but mainly based on video analysis. Analogously, another exten-
sive literature review [127] identified several papers that used instrumented bikes
for studies on traffic conflicts and their causes, but they were mainly based on
observational and traditional statistical methods and not all specifically related to
road safety. Ibrahim M.R. et al. (2021) reviewed the current methods, challenges,
and potential of AI-embedded systems in analyzing cycling near misses [128].
The study selected 19 studies (in Web of Science, Google Scholar, and Scopus
(2010-2019) emphasizing the significance of accurately detecting near-miss events
to enhance risk assessment and improve cyclist safety. The authors identified in
manual labeling of data, the limited scope of studies to specific types of near
misses, and the functionality of sensors as the main gaps in the literature for near
miss identification. It is worth mentioning that the present paper addresses all
these issues by using an unsupervised deep learning approach for anomaly detec-
tion which does not need labeling and definition of near miss typology. Moreover,
the method is based on standard NMEA GNSS data.

Our search in Scopus, on June 8th, 2023, revealed, in the last 15 years (2009-
2023), 4,383 articles focusing on bicycle safety, of which 127 were by using traffic
conflict techniques, but only 15 with the application of AI modeling and mainly
in the most recent years (8 of 15 from 2020). Moreover, after review, six of them
were further excluded because not specifically pertinent to the topic.
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Although not exhaustive, these quantitative results highlight the increasing in-

terest in this field, also the usefulness of exploring applications of deep learning
techniques to identify critical safety events based on data collected with instru-
mented bicycles, because of the specific mobility patterns and limitations in the
availability of sensors when compared to cars and other motor vehicles.

The state-of-the-art based on the selected 9 publications explores the signifi-
cance of machine learning in domains of cycling safety including rider behavior
analysis, road-user interaction, and personal mobility driving.

Kwayu K.M. et al. (2022) presented a methodology for automatically extracting
topics from crowdsourced cyclists’ near-miss and collision reports using text min-
ing and artificial neural networks [108]. The approach enables efficient analysis of
cyclist experiences and contributes to identifying common risk factors. Kozu R.
et al. (2017) proposed a user-participatory approach for constructing open hazard
data to prevent bicycle accidents. The study integrates participatory sensing and
machine learning techniques to collect and analyze user-generated data, high-
lighting the importance of user involvement in identifying and mitigating risks
for bicycle safety. Both the previous studies are based on user-subjective risk
assessment and self-reporting of traffic conflicts.

Rostami A.D. et al. (2020) focused on predicting critical bicycle-vehicle conflicts
at signalized intersections [129]. The study aimed to develop models that can an-
ticipate potential conflicts that have been labeled using the Post Encroachment
Time (PET) by utilizing video frames and machine learning techniques. Alsaleh
R. and Sayed T. (2021, 2022) proposed a multi-agent adversarial inverse reinforce-
ment learning approach to model cyclist-pedestrian interactions in shared spaces
[107] [130]. The studies demonstrate the application of video analysis to track
users’ paths and machine learning techniques in modeling complex interactions
and optimizing safety measures in mixed-use environments. Gu Y. et al. (2019)
developed a deep learning framework for classifying cycling maneuvers [131]. By
utilizing a video survey, different models were compared (i.e., multi-Logit, artifi-
cial neural network, support vector machine, random forest, and gradient boost-
ing decision tree), and CNN exhibited superior performance in the classification
of 5 pre-defined cycling maneuvers (i.e., passing, avoiding, carriageway-occupied,
sidewalk-occupied, and regular riding). Karakaya A.-S. et al. (2023) proposed Cy-
cle Sense, a system for detecting near-miss incidents in bicycle traffic using mobile
motion sensors (i.e. GPS coordinates, accelerometer, and gyroscope) [132]. The
pre-processing of data needs a manual label-cleaning procedure. Therefore, the
machine learning classification techniques partially automated the detection of
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near-miss incidents. All these papers applied classification.

All these studies show that deep learning and computer vision algorithms can
be integrated to identify near-miss scenes and types of near misses. The only
limitations are the need for installation and maintenance of camera systems, the
lighting conditions, and the limited area covered by the cameras.

From a more general point of view, these studies demonstrate the state-of-the-
art advancements in applying machine learning techniques to detect near misses
crash by using different sensors (e.g. fixed cameras and instrumented bicycles) and
different type of information based on physical features (e.g. speed, trajectory) or
user risk perception and reporting. Naturalistic studies with instrumented bicycles
have the potential to cover an extensive part of the road network, while site video
analysis is severely limited in its ability to capture only local factors. Even though
the instrumented bicycle approach makes it possible to collect rich data related to
near misses, the most applied classification approach needs to label the data that
is time-consuming and focus only on certain types of near misses. A combination
of naturalistic studies with self-reporting has the potential to capture the broadest
range of information.

4.2.3 DTL_AD Methodology

This research work consists of various steps such as data collection, data prepara-
tion, model optimization, testing, and result validation. Mainly this section con-
sists of two phases. The first phase illustrates the procedure of data collection,
and data pre-processing steps, which are applied to the collected GNSS data to
extract suitable features while the second phase explains specifically CNN model
training.

4.2.3.1 Data Collection

The source object of data collection is an equipped bicycle with an HD video
system (Video Vbox Lite VVL) as shown in Fig. 4.13. The Video VBOX Lite
(VVL) is a standard GPS single frequency with an accuracy of 3m in the position
and 0.1km/h in the speed. The VVL provided a time series signal including
GPS data, speed, and acceleration, synchronized with a video recording, with a
sampling frequency of 10Hz. One camera recorded the front view of the cyclist
while the other one was forward facing. The videos were recorded with a resolution
of 720 x 576 pixels at 25 frames per second [88]. The experimental dataset is
gathered from 10 bicycle users with uniform cycling experience. Furthermore, the
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participants were instructed to ride in a normal way. The ride duration for each
test was about 15 minutes. During the ride, the conflicts between the test rider
and another road user have been identified by reviewing the video records. The
research team, along with the test rider, reviewed the videos together to identify
the TCs or real anomalies that occurred during the test. A total number of 41
TCs have been identified over 2.5 hours of ride test.

Figure 4.13: various data collection components

4.2.3.2 Data Preparation

In general, Various Python techniques were employed after data collection to
process and analyze the collected data. Some of these techniques include data
filtering, smoothing, feature extraction, data visualization, dataset splitting, and
machine learning algorithms by exploiting built-in Python functions and libraries.

In our case, after data collection, various Python techniques were utilized such
as:

1. Svitzky Golay Filter (SGF) to enhance the quality of the recorded data by
employing smoothing methods.

2. feature extraction to Compute other parameters based on the collected data
parameters.

3. train/test split method to Create a dataset that could be utilized for training
and testing a Convolutional Neural Network (CNN) model.

67



CHAPTER 4. USE CASE 1: BICYCLE
In detail, this research work includes speed SP and heading HD as the basic

recorded time series data in the NMEA string. Before the feature extraction
process, it was observed that SP and HD have noise. Therefore, we planned to
remove noise at first from basic recorded signals i.e. SP and HD. After exploring
various filters for time series data, we opt for Savitzky-Golay-Filter (SGF) to
apply basic and achieve smooth time series data. SGF is a kind of digital filter
used to apply on GPS trajectory data [133][134].SGF gives smooth spline by
fitting data points into polynomial function [134]. Here, the polynomial function
is a filter kernel of SGF as stated in the Equation (4.11).

P (ϑ) = σj=n
j=0ωjϑ

j = ω0 + ω1ϑ
1 + ω2ϑ

2 + ω3ϑ
3 + ...+ ωnϑ

n (4.11)

By utilizing the fundamental filtered data parameters SP and HD, additional
data parameters are computed for the CNN model and more promising results.
For example, the heading rate HDR is derived from the HD parameter, while
the longitudinal acceleration LA is derived from the speed parameter SP as
shown in Equations (4.12 and 4.13). Moreover, the transversal acceleration TA

and combined acceleration CA are obtained by considering both the speed and
heading parameters, as depicted in the Equations (4.14 and 4.15).

HDR =
(HD(i+1) −HDi)

△T
(4.12)

LA =
(SP(i+1) − SPi)

△T
(4.13)

TA =
[ (SPi + SPi+1)/2]

2.HDR

D
=

(SPi + SPi+1).(HDi+1 −HDi)/2.HDR

2.△T
(4.14)

CA = (LA2 + TA2)0.5 (4.15)

where △T = 0.1 sec, SP in m/s, HD in radiant and CAin m/s2.

4.2.4 Deep-Transfer learning

The proposed methodology exploits the transfer learning concept applied to the
model of a convolutional autoencoder. As shown in Figure 4.14, Convolutional
autoencoders (CAE)s combine the convolutional layers of CNN and autoencoder
concepts which we explain in the following Sections 4.2.4.1 and 4.2.4.2.
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4.2.4.1 Convolutional Neural Network

A Convolutional Neural Network (CNN) is an artificial neural network used to
identify patterns in datasets by exploiting the property of the convolution oper-
ation.

Its applications range from image processing and automatic feature extraction to
anomaly detection. The architecture of a CNN includes three main groups of lay-
ers: the input layers, the hidden layers, and the output layers. The hidden layers,
which are typically the largest layers, consist of convolutional layers, connected
layers, and pooling layers. Convolutional layers are responsible for transforming
the input data stream into feature maps and passing them to the next level layer.
While the pooling layers reduce the dimensionality of the data. The fully con-
nected layer at the end is responsible for connecting the neurons of one layer to
another and classifying the data.

CNN is composed of multiple layers of neurons. Each neuron operates using a
mathematical function, f(·), with input M and output P as shown in eq. (4.16).

P (k) = f(M (n−1) ∗ w(n−1) + c(n−1)) (4.16)

In the eq. (4.16), w represents the weight vector, a set of nonzero weights, which
determine the strengths of connections between neurons in the network. Each in-
put in a neural network has a corresponding weight, which influences the sharp-
ness of the activation function. The bias, c, is a constant added to the function to
control the triggering of the activation function. There are several activation func-
tions to choose from, including Rectified Linear Unit (ReLU), sigmoid function,
and hyperbolic tangent function. The activation function is a crucial component
in the neural network, as it is responsible for transforming inputs into outputs.

4.2.4.2 Autoencoder

An Autoencoder (AE) is a type of Artificial Neural Network (ANN) that has
two main components: the encoder and the decoder. The encoder part of the
AE compresses the input data into a compact form known as the latent vector
or bottleneck. The decoder’s task is to reconstruct the output from the latent
vector and compare it to the original input. To evaluate the performance of the
decoder, the reconstruction error (Loss), which measures the difference between
the reconstructed output and the original input, is calculated. Just like other
feed-forward neural networks, the AE uses backpropagation during training to
minimize the reconstruction error.
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Figure 4.14: Architecture of Convolutional Autoencoder

4.2.4.3 Learning and anomaly detection

For what concerns learning, we consider the 4 cases described below and summa-
rized in Table 4.4:

1. Baseline case: In this case, no transfer learning is applied. It will be used
as the term of comparison of the approaches exploiting transfer learning;

2. Transfer learning without model refinement: In this case, we train the
CAE model by using the data of a given bicyclist and we use the resulting
model, as it is, i.e., without any further training, for other bicyclists. Note
that according to such an approach it is unnecessary to collect the data for
all users, which is extremely efficient;

3. Transfer learning with model refinement: In this case, we train the
CAE model by using the data of a given bicyclist and we use the result-
ing model as the starting point for the training of new models for other
bicyclists. Using such an approach, the amount of data needed regarding
the new bicyclists should be lower and convergence should be faster when
compared to the baseline case;

4. Transfer learning with partial model refinement: In this case, we
train the CAE model by using the data of a given bicyclist and we use
the resulting model as the starting point for the training of new models for
other bicyclists. The difference when compared to the previous case is that
only a subset of the model parameters will be retrained, i.e., for some of

70



CHAPTER 4. USE CASE 1: BICYCLE
Table 4.4: Summary of the learning approaches considered in our study.

Identifier Name Synthetic explanation
Case-1 Baseline Transfer learning is not utilized

Case-2
Transfer learning
without refine-
ment

The model identified for a bicy-
clist is used as it is for other bicy-
clists

Case-3 Transfer learning
with refinement

The model identified for a bicy-
clist is used as the starting point
of the training of the models of
the other bicyclists

Case-4
Transfer learning
with partial re-
finement

The model identified for a bicy-
clist is used as the starting point
of the training of a subset of the
parameters of the models of the
other bicyclists

the layers the parameter trainable will be set equal to false. In this way,
the execution of the training on the new bicyclist is expected to be faster
as the optimization will be executed on a subset of the model parameters
only. The cost of such increased velocity is expected to be paid in terms
of performance because at best the optimization algorithm can identify a
sub-optimum.

Once the model has been trained it is used for anomaly detection at run-time.
More specifically, the collected data is provided as input to the model and the
reconstruction error, i.e., the difference between the output of the model, which
should be a reconstruction of the input data, and the actual input is evaluated.
An error higher than a given threshold is evidence that the current input is
significantly different from the data that was used for training the model and
therefore, there is an anomaly going on.

4.2.5 Experimental results

In this section, we show the experimental results obtained by applying the pro-
posed approach with real data collected in the city of Catania in Italy. More
specifically, in Section 4.2.5.1 we will present the experimental setup. Then, in
Section 4.2.5.2, we will show results demonstrating the advantages of transfer
learning in the model optimization process. Finally, in Section 4.2.5.3 we will
validate the proposed anomaly detection approach as a whole.
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4.2.5.1 Experimental Setup

Our experimental campaign exploits the GPS data collected by a bicycle equipped
with a Video VBOX Lite (VVL) and ridden by 10 bicyclists. Each riding test
was run on the same path of about 4 km length, composed of different types of
road infrastructures: cycle track, bicycle/bus shared lane, roundabout, signalized
intersections Finally, the dataset is a time series signal where each user includes
about 9000 samples regarding location (longitude, latitude) speed, and heading
of the bicycle path collected at a sampling rate of 10 Hz.

For each ride, we log the real positives and CNN positives as actual and de-
tected anomalies respectively. Real positives are the occurrences of Traffic Con-
flicts (TC), identified during the in-field experiment while CNN positives are the
anomalies detected by the model.

Results are evaluated for the different learning approaches described in Section
4.2.4 and summarized in Table 4.4. More specifically, in Section 4.2.5.2 we first
compare the performance in terms of the reconstruction error. Then, the ability
to detect anomalies in the resulting model is evaluated.

To this purpose, note that our problem is a typical binary classification problem.
In fact, data is fed to our model that must give as output “Positive” if it detects an
anomaly, and “negative” in the opposite case. Indeed binary classification, "Posi-
tive" and "Negative" refer to the predictions made by the classifier, while "True"
and "False" indicate whether the prediction matches the actual observation or
not.

The confusion matrix (CM) is a tool used to evaluate the performance of the
classification model, and it helps to calculate the key performance indicators
Recall and Precision as shown in Fig. 4.15. True Positive (TP) represents cases
where the model correctly identified a real positive. On the other hand, False
Positive (FP) indicates cases, where the model detected an anomaly that did not
actually exist as a Real Positive, and False Negative (FN), means there was an
actual "True" that the model failed to detect as an anomaly. Recall evaluates
the ability of the model and checks True Positives (TP) over the total number
of actual Positives (TP + FN). A higher Recall score indicates that the model
is better at detecting real positives. Precision calculates the proportion of True
Positives (TP) over the total predicted Positives (TP + FP). A high TP rate and
a low FP rate lead to high Precision.
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Figure 4.15: confusion matrix for the computation of recall and precision

4.2.5.2 Model Optimization

Model optimization is executed to minimize a training loss, which measures the
difference between the reconstructed output and the original input. When training
loss nearly approaches zero, it means the model is well trained. Therefore, plots
representing the training loss are a way commonly used to assess the performance
of model learning,

In this section, we compare the model optimization performance of the four
learning approaches described in the previous Section 4.2.4. More specifically, in
Figure 4.16, we report the training loss in the 4 different cases vs the percentage of
the original dataset utilized to train the model in Case 1 and to refine the model
after transfer learning in all other cases. Figure 4.16 contains 4 plots obtained
using the settings summarized in Table 4.5.

Furthermore, note that plots 4.16(a), (b), and (c) have been obtained by setting
the upper bound for the number of training epochs to 5, 10, and 15, respectively.
Plot 4.16(d) has been obtained without setting the above upper bound. As obvious
the loss decreases as the above upper bound increases and is minimal when it is
not set at all. In each figure of the plots, we observe that the performance obtained
in Cases 2-4 is similar, while performance is much worse in Case 1. Therefore,
transfer learning is beneficial in the scenario of our interest.
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Table 4.5: Training Model Parameters

S.No. Parameter Value
1 No. of Layers 3
2 Stride 4
3 Random Seed 120
4 Batch Size 128

5 No. of Epochs 5, 10, 15, 200 (maxi-
mum)

6 Learning
Rate 0.001

7 Activation
Function Relu

8 Data size in
percentage 1, 2.5, 5, 7.5, ...20

(a) (b)

(c) (d)

Figure 4.16: Training loss with respect to the number of epochs
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In Figures 4.17 and 4.18, instead, we report the performance of the proposed

anomaly detection schemes in terms of Recall and Precision, respectively.

Figure 4.17: Recall

Figure 4.18: Precision

4.2.5.3 Validation

In this subsection, we are validating the results by implementing optimized models
with the data set from various users. Moreover, the application of the proposed
methodology is presented where we identified the dangerous point of the hotspot
area of the city of Catania (Italy).
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Figure 4.19: Recall and Precision for various users

4.2.5.4 Dataset from various users

Validation of the optimized model is performed by considering data from various
bicycle users. The optimized model follows 15% of data and case 4. Recall and
precision are calculated for various users as shown in Fig.4.19.

Upon examination of Figure 4.19, it is observed that Recall is consistently higher
than Precision when the two are compared for the 10 users. It is worth mentioning
that the lower classification performances are reported for users who experienced
a very limited number of TCs (e.g. ID-3, ID-5) and ID-4 is not reported because
for that user the number of TCs was equal to 0. In our application, it is important
because False negatives have greater concern than False Positives. False Negative
refers to missed TCs while False Positives are expected as anomalies in normal
riding when braking at intersections or swerving to avoid pavement defects or
fixed obstacles (e.g. illegal parking) and other issues not classified as TCs in our
experiment. On average the total Recall was equal to 77% which can be considered
an overall good performance for the proposed classifier.

4.2.6 Application of the proposed methodology

The procedure was applied to the trajectory data and anomaly detections located
with the GPS coordinates in the different roadway sections composing a mixed
cycling path selected for the experiment (i.e. cycle track, roundabout, cycle track
termini, and bicycle/bus shared lane). The anomalies in cycling behavior detected
by transfer learning methodology were compared with the TCs noticed by analyz-
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ing with the users the video recording during the experiment and further checked
by road safety experts [92].

Figure 4.20: map

Where the TL anomalies overlapped with the Real Positives, a True Positive
was identified (red dot in the map), while if the procedure did not identify the
Real Positives, we had a False Negative (black dot in the map). False Positives
are plotted as yellow dots. As an example, screenshots of the videos recorded
with the speed profile in correspondence with three TP are shown. GIS mapping
is useful to analyze the spatial distribution of TP (red dots) and FP (yellow
dots). It is worth noting that there is clustering at the roundabout, along the
bicycle/bus shared lane, particularly at the signalized intersections. As expected
few anomalies are classified along the cycle track but in the correspondence two
breaks in the lane separation and at the track termini where the path needs to
cross the normal traffic lane.

4.2.7 Remarks

As the urban population grows and traffic becomes more congested, it is crucial
for sustainable cities and healthy people to make cycling a desirable mode of
transport. However, the perception of poor safety is one of the main hurdles to
cycling and is still an open issue. Enhancing the safety of cycling by identifying
high-risk locations and routes in the wide and complex urban road network is a
major challenge for city managers in implementing safety measures. Crash data
analysis can be used to assess risk, but the lack of data and its under-reporting
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make this normal approach less effective and also only reactive rather than proac-
tive.

In this paper, we have presented an approach that exploits unsupervised ma-
chine learning for anomaly detection and transfer learning to reduce the amount
of data needed to synthesize a fitting artificial neural network dramatically.

Results of our experimental campaign obtained in a specific case study demon-
strate that the proposed approach has promising performance as it has 77 % of
Recall on average while 100% for some individual users. Performance in terms of
Precision is 46% which looks significantly lower than in more traditional classifi-
cation models. However, it is northerly to mention that our False Positives (i.e.
anomaly detection not correspondent to a pre-classified traffic conflict) are indi-
cators of anomaly maneuvers along the user path even if not classified as traffic
conflict because of the lack of an opponent road user. Such anomalies can be re-
lated to traffic regulations (e.g. sudden stopping at the red light) or other critical
conditions (e.g. avoiding potholes or other pavement anomalies, maneuvers due
to discontinuities in the cycling path) whose identification can be equally useful
to analyze the cycling safety conditions in the road network [89]. Localization and
spatial clustering of anomaly events can be used for network screening to select
sites for more in-depth safety inspections and countermeasure selection[135]. Al-
though our experiment was limited to only 10 users, plotting the CNN positives
in GIS shows some clustering that is located where expected in the road network
and already classified as high-risk locations in a previous study [92].

The study also gave the opportunity to identify some novel open issues for
practical application. Given that evasive maneuvers can be a mix of speed and
direction changes that take less than 2 seconds (0.8 - 1.5 sec. in our test), in
our study we have collected data using extended GNSS NMEA contents (i.e.,
Location, Speed, Heading) acquired at 10 Hz frequency which are not commonly
provided by standard smartphones and applications. Therefore, for practical ap-
plications, there is a need for more suitable data recording or for dedicated devices
installed for example in the bike sharing fleets.

When the cyclist rides in different road infrastructures and traffic conditions
she/he can adapt the cycling style to the actual and perceived risk conditions. In
our study, in order to achieve a general cycling model of the user, the model was
built by shuffling the training dataset collected along the different typologies of
the test road path. Then some layers have been further customized to each user.
Therefore, a future improvement can be a model that specializes in some of the
layers of the user, whereas the others to the current road environment.
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4.3 Spatial Analysis: Role of convolutional layers

with respect to road environment and user

4.3.1 Objective

Machine Learning (ML) can be applied in many scenarios where one user interacts
with the surrounding environment. In such cases, the environment will provide
stimuli to the user that will react consequently with certain actions. The way in
which the user will execute the above actions depends on the specific user and
her current status.

In this paper, we focus on Convolutional neural networks (CNN)s and Con-
volutional autoencoders (CAE)s that are deep neural networks that have been
successfully utilized in several application scenarios ranging from image recog-
nition to anomaly detection and useful feature extraction [115] [136]. In both
CNNs and CAEs, one or several convolutional layers are at the input of the neu-
ral network. Such convolutional layers exploit the properties of the convolution
operation to detect patterns in the input data.

In such a context, the first major objective of this paper is to answer the fol-
lowing question:

Are the patterns recognizable by the convolutional layers more specific to the
user or of the environment?

To understand the importance of the above question, observe that for a given
scenario, defined here as the combination of a specific user and her current envi-
ronment, a fitting model will be dependent on both the user and the environment.

For example, consider a smart road scenario. A traffic light along a given road
implies that a driver, that is the user that can be identified in such a scenario,
might need to stop the car in a certain area. Therefore, the traffic light will provide
the stimulus. However, the way in which the driver will stop the car depends on
the driver and her current (mental and health) conditions.

As a consequence, in principle, a different model must be trained for all possible
pairs of user-environment composing the scenario.

This implies a way too large processing for the training of the neural network
models when the number of users and environments increases1

1Consider that the conditions of the same environment might change over time. Therefore,
a specific model might be needed for each user in each environment in each possible condition,
which is even more impractical.
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However, if an answer to the above fundamental question is given the processing

can be significantly reduced. In fact,

• If the patterns in the input data are mostly user-dependent, then each user
can have its convolutional layers which will be concatenated to other layers.
Only the new layers of the resulting neural network will be trained, instead
of the entire neural network (see Figure 4.23).

• If the patterns in the input data are mostly environment-dependent, then
each scenario will have its own convolutional layers. When a new user en-
ters the environment the environment-dependent convolutional layers are
concatenated to other layers. Only such new layers of the resulting neural
network will be trained (see Figure 4.24).

In both cases, the number of model parameters to be trained can be reduced
dramatically.

In this paper, we have demonstrated that in a specific case considering bicyclists
(the users) riding a few road segments (the environments), the input patterns are
specific to the user rather than to the environment.

Starting from such a result we define a few techniques that help increase the
efficiency in the use of network resources and the level of privacy in a smart road
scenario.

Accordingly, the following of this paper is organized as follows. In Section 4.3.2
we provide some background regarding deep neural networks with a specific fo-
cus on Convolutional Neural Networks (CNN)s and Convolutional Autoencoders
(CAe)s. In Section 4.3.5 we formulate the problem we want to tackle and sketch
our methodology. In Section 4.3.6 we apply the above methodology to a specific
use case. Finally, in Section 4.3.10 we draw our conclusions.

4.3.2 Background

In this section, we provide some background regarding convolutional neural net-
works and convolutional autoencoders respectively. More specifically, in Section
4.3.3 we will provide the basic concepts regarding convolutional neural networks,
then, in Section 4.3.4 we will review the convolutional autoencoder basics.

4.3.3 Convolutional Neural Network

Convolutional Neural Networks (CNN) are a well renowned deep learning artificial
neural networks used to process data patterns [115][137][138]. Applications of
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CNN are image processing, anomaly detection, and feature extraction [137] [136].

CNNs’ architecture consists of three basic layers named input, hidden, and
output layers [115], [136], [139]. Typically, hidden layers include convolutional,
pooling, and connected layers. Convolutional layers are responsible to extract
features and recognize patterns efficiently. Pooling layers are used to minimize
data dimensions by integrating the output of the previous layer into a single
neuron of the next layer. Finally, the job of a connected layer is to connect each
neuron of one layer to another. Hence, CNN is a layered network made of neurons
[137], [139], [140].

In CNN, each neuron is responsible for a task t with input X and output Y .
The task t is expressed as given in eq. (4.17):

Y (k) = t(X(k−1) ∗ V (k−1) + c(k−1)) (4.17)

where V and c are the weight vector and bias of the neuron, respectively. Weights
V represent the connection strength of neurons and improve the effectiveness of
the activation function. Basically, weight parameters decide how activation will
be triggered. The bias c of the neuron is a constant used to introduce the delay
in the activation function. In eq. (4.17) function t(·) is considered an activation
function, which is responsible for transforming weighted input into an output.
Several activation functions have been considered in the literature; examples in-
clude Rectified Linear Unit (ReLU), sigmoid, and hyperbolic tangent functions.

Neural network training sets the parameters (i.e weights, biases) to build rela-
tionships between inputs and outputs. The training of neural networks is based on
the backpropagation algorithm and exploits an appropriate loss function. Mostly,
the loss function on the data item (Xk, P k) in which Xk represents a specific
input and P k the corresponding expected output can be evaluated as shown in
eq. (4.18).

L(V, c,Xk, P k) =
1

2
∥ lv,cX

k − P k ∥2 (4.18)

where lv,cX
k is the result given by the neural network when the input is Xk,

while P k is the expected outcome. Let T represent the number of data packets,
the overall loss function can be calculated as in eq. (4.19):

L(V, c) =
1

k

T∑
k=1

L(V, c,Xk, P k) (4.19)
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4.3.4 Convolutional Autoencoder

Convolutional autoencoders (CAE) represent variants of Autoencoder (AE)s [141],
[142]. CAEs are capable of learning the most useful feature patterns in the input
data [143]. Applications of CAEs as well as AEs include dimension reduction,
information retrieval, and anomaly detection [81]. A CAE consists of two com-
ponents: Encoder and the Decoder.

The Encoder, specified by a set of parameters, UE, is responsible for feature
extraction by mapping the input X into latent vector T as shown in eq. (4.20).

T = fen(UE, X) (4.20)

The Decoder is specified by the parameters UD which takes the latent vector T
as input and gives output Y as shown in eq. (4.21). The AE training minimizes
the difference between the input X and the output Y as shown in eq. (4.22).

Y = fDc(UD, T ) = fDc(UD, fen(UE, X)) (4.21)

∼= X =⇒ fDc(UD, fEn(UE, X)) ∼= X (4.22)

Therefore, given a dataset Ω, the training phase consists of outcomes that are
extracted from encoder and decoder parameters i-e UE and UD that minimize the
loss function as defined in eq. (4.23)

LΩ(UE, UD) = ΣX∈Ω ∥ fDc(UD, fEn(UE, X)), X ∥ (4.23)

There are several ways to measure the loss such as the Mean Absolute Error
(MAE), the Mean Squared Error (MSE), and the Root Mean Squared Error
(RMSE). We opt MAE over Mean Square Error and Root Mean Square Error
(RMSE) due to data distribution and error size suitability. Therefore MAE is
expressed as shown in eq. (4.24).

MAE =∥ Y,X ∥= 1

k

k∑
k=1

|P k −Xk| (4.24)

On the basis of encoder and decoder parameters (ŨE, ŨD), the autoencoder is
evaluated as shown in eq. (4.25).

(ŨE, ŨD) = ArgMin
(UE ,UD)

∑
X∈Ω

∥fDc(UD, fEn(UE, X), X)∥ (4.25)
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Generally, the significant symbols and their definitions in this section are sum-

marized in Table 4.6.

Table 4.6: Important notations and their definition

S.No. Symbol Definition
1 t(X(n−1)) task of neurons with input X
1 V (n−1)andc(n−1) vector of weights and bias values

2 L(V, c,Xk, P k)
loss function for unique training
data packet

3 Ψ learning rate
4 UE and UD encoder and decoder
5 T latent vector

6
1
n

∑n
i=1 |X ′

i −
Xi|

mean absolute error

7
Mi,j =

[Oi,j, Ii,j]

model with input and output lay-
ers

8 Si,j scenario

9 Di,j Dataset
10 Ui user with specific layers

11 Ej environment with specific layers

4.3.5 Problem formulation and methodology

Let us consider a scenario in which users interact with the environment. More
specifically, we focus on the i-th user interacting with the j-th environment and we
refer to the resulting scenario and the dataset collected in that specific scenario as
Si,j and Di,j, respectively. Let us call Mi,j the Convolutional Autoencoder (CAE)
utilized for such a scenario. The structure of such a CAE is depicted in Figure
4.21. In the above Figure 4.21, we distinguish outer and inner layers. Therefore,
the model Mi,j will be the concatenation of outer and inner layers which we denote
as

Mi,j = [Oi,j, Ii,j] (4.26)

where Oi,j and Ii,j represent the outer and inner layers respectively for the scenario
Si,j.

In CAEs, the outer layers are utilized to recognize and then reconstruct the
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patterns in data, whereas the inner layers are utilized to interpret such patterns
into a bigger application-dependent picture.

As we already stated, the objective of our study is to analyze whether the
patterns recognized by the outer layers are more specific to the user or to the
environment. Responding to such a question is extremely important. In fact,
We examine two scenarios in the following manner, and the information is also
summarized in Table 4.7.

• Case 1) If the patterns are more specific of the user, we can assume that
user i has its own outer layers, Ui, which are not trained further when the
user visits a new environment, say the j-th, and the model Mi,j must be
synthesized. Such user-specific layers, Ui can be carried by the user in her
smartphone or stored in some reserved area in the cloud. In this case the
layer parameters, Ui, will be transferred to the model, i.e.,

Mi,j = [Ui, Ii,j] (4.27)

• Case 2) If the patterns are, instead, more specific of the environment, we
can assume that such environment, say the j-th, has its own outer layers
Ej which are not trained further when a new user, say the i-th visits it and
thus, a new scenario must be considered. In this case, the outer layers Ej

will be stored in some server and will be transferred to the scenario model,
Mi,j, that is,

Mi,j = [Ej, Ii,j] (4.28)

Note that in both cases, the outer layers will not be further trained, i.e., the
trainable parameter is set to false, and thus the number of parameters to
be evaluated and the amount of data needed for the training, are significantly
reduced.

In order to determine which of the two cases applies, we will compare the fitting
loss obtained by synthesizing the scenario model as given in eqs. (4.27) and (4.28).

To this purpose we select a target scenario Si∗,j∗ in which user i∗ interacts with
environment j∗ and data Di∗,j∗ is collected. Then we consider another user i ̸= i∗

and another scenario j ̸= j∗ and we train models Mi∗,j and Mi,j∗ using data Di∗,j

and Di,j∗ , respectively. According to the notation given in eq. (4.26), we can write

Mi∗,j = [Oi∗,j, Ii∗,j] and Mi,j∗ = [Oi,j∗ , Ii,j∗ ] (4.29)

Then we train the inner layers, I(1)i∗,j∗ and I
(2)
i∗,j∗ , of the models [Oi∗,j, I

(1)
i∗,j∗ ] and
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[Oi,j∗ , I
(2)
i∗,j∗ ], respectively exploiting part of the dataset Di∗,j∗ and we calculate

the corresponding fitting loss values using the rest of the dataset Di∗,j∗ .
Let L(O, I,D) represent the fitting loss of the CAE when the model is con-

structed as the concatenation of the outer layers O and the inner layers I and the
dataset utilized is D. Observe that if the fitting loss L(Oi∗,j, I

(1)
i∗,j∗ , D

i∗,j∗) achieves
lower values more quickly than the fitting loss L(Oi,j∗ , I

(1)
i∗,j∗ , D

i∗,j∗) we are in Case
1. In fact, low loss values and thus good fitting can be achieved by exploiting the
outer layers, Oi∗,j obtained for the same user, i∗, in another environment, j.

Analogously, we are in Case 2 if the fitting loss L(Oi,j∗ , I
(1)
i∗,j∗ , D

i∗,j∗) achieves
lower values more quickly than the fitting loss L(Oi∗,j, I

(1)
i∗,j∗ , D

i∗,j∗).
It follows that in order to determine which between Case 1 and Case 2 apply,

we will compare the fitting losses L(Oi∗,j, I
(1)
i∗,j∗ , Di∗,j∗) and L(Oi,j∗ , I

(1)
i∗,j∗ , Di∗,j∗).

Observe that by identifying whether we are in Case 1 or Case 2, it is possible to
significantly reduce the amount of data exchanged in the communication network
for training purposes. In particular, the parameters of our model are represented
in Table 4.8.

For example, later in this paper, we will show that in a specific setting, i.e.,
bicyclists riding through a few streets of Catania in Italy, we are in the first case,
that is, the outer layers are specific to the user, and thus Mi∗,j∗ = [Ui∗ , I

(1)
i∗,j∗ ]

as given in eq. (4.27). In this case, during the inference phase the data which is
generated locally, let us call it Xi∗,j∗ , can be given as input to the outer encoder
layers U

(E)
i∗ which can be executed on some user devices. Let us call Zi∗,j∗ the

resulting output. This is given as input to the inner layers running in some remote
server. Let Z ′

i∗,j∗ represent the output of the inner layers. This is sent back to
the user where it is given as input to the outer decoder layers U (D)

i∗ to obtain the
reconstruction X ′

i∗,j∗ of the initial data, Xi∗,j∗ .
Observe that in this case we obtain the following advantages:

• The data collected regarding the user i∗ is kept local, which improves pri-
vacy.

• Since the dimensions of the data samples Zi∗,j∗ and Z ′
i∗,j∗ are significantly

smaller than those of the input data Xi∗,j∗ the amount of transmitted data
is reduced and thus the need for communications resources is reduced as
well.
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Table 4.7: Learning strategies considered in our analysis

Use case Learning strategy More details

Case 1: Data pat-
terns assumed to
be dependent on
user

Transfer learning with
the refinement of all
layers

Each user has her own user-dependent
outer layers. When she visits a new en-
vironment the entire neural network will
be retrained, using the user-specific outer
layers as the starting point

Transfer learning with
a refinement of the in-
ner layers only

Each user has her own user-dependent
outer layers that will not be trained fur-
ther. When she visits a new environment
the inner layers will be retrained only.

Case 2: Data pat-
terns assumed to
be dependent on
environment

Transfer learning with
the refinement of all
layers

Each environment has its own
environment-dependent outer layers.
When a new user visits the environment
the entire neural network will be re-
trained, using the environment-specific
outer layers as the starting point

Transfer learning with
refinement of inner
layers only

Each environment has its own
environment-dependent outer layers
that will not be trained further. When a
new user visits the environment the inner
layers will be retrained only.
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Table 4.8: Model parameters

S.No. Parameter Value

1 Model Input
User (Bicyclist), Road-
Environment (Bike-lane, Normal-
lane, RoundAbout, Shared-lane)

1 No. of Layers 4
2 Stride 4
3 Random Seed 120
4 Batch Size 128
5 No. of Epochs 200 (maximum)
6 Filters 16
7 Kernel size 8

8
Learning
Rate

0.001

9
Activation
Function

Relu

Environments

E-1

E-3

E-2

E-4

Users

U1 U2 U3 U4 U5 U6

Dataset
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Latent 
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Figure 4.21: Flow diagram of proposed approach

4.3.6 Use case

In this section, we focus on a specific use case. More specifically, in Section 4.3.7
we present the scenario and the dataset. In Section 4.3.8 we give an overview of
the experiments carried out and explain their objectives. Finally, in Section 4.3.9
we present the numerical results.
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4.3.7 Scenario and dataset

In this study, we focus on collecting data in an actual, real-world setting. Specif-
ically, we gather data from specific roads located in Catania, Italy.

The data is obtained from a specialized bicycle equipped with a GPS (Global
Positioning System) and an HD video system called Video Vbox Lite (VVL).
The VVL captures a comprehensive GPS NMEA dataset, which goes beyond
just latitude and longitude by including speed and heading information at a fre-
quency of 10 HZ. This dataset is synchronized with a video recording from two
HD cameras. The data collected demonstrated excellent accuracy and resolution.
It is important to highlight that although GPS alone may have limitations in
accurately determining positions, the speed and heading data derived from the
Doppler method and Carrier Phase observations exhibited high-quality informa-
tion [109][144].

Data was obtained from a group of six cyclists, identified as ID-1 to ID-6, who
took part in controlled test rides. Among the participants, there were five males
and one female. Their ages ranged from 27 to 65, with 40 percent of them being
over 40 years old. The participants were instructed to ride the instrumented bicy-
cle according to their normal behavior. The tests took place under typical weather
conditions, during daylight hours, and regular traffic flow. The route covered less
than 4 km, encompassing various road infrastructures to represent different traf-
fic and road environments, including bike lane, normal lane, roundabout, and
shared lane. By traversing diverse road infrastructures, the travel experience be-
comes more dynamic as it allows for the assessment of different road sections
and traffic conditions [88] [145]. For each rider, the collected dataset consisted
of around 9,000 samples recorded at a frequency of 10 Hz. Despite the relatively
small number of participants, this dataset is deemed suitable for training pur-
poses.

4.3.8 Overview of the experiments

We consider 4 different road environments E1, E2, E3, and E4 and six users, U1,
U2, U3, U4, U5 and U6. For what concerns the environments, as shown in Figure
4.22,

• E1: It is a lane reserved for bicycles, its length is approximately 2300 m;

• E2: It is a normal lane, and its length is approximately 130 m;

• E3: It is a roundabout, its length is approximately 180 m;
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• E4: It is a shared lane, and its length is approximately 1000 m.

Bike Lane

Normal Lane

Roundabout

Shared Lane

Figure 4.22: Four different road environments

It is obvious that the four environments have characteristics and lengths totally
different from each other and the riding style will change accordingly.

Since we can distinguish 6 users and 4 environments, 24 scenarios can be defined,
i.e., S1,1, S1,2, ..., S1,4, S2,1, ..., S6,4.

We will compare the loss functions as explained in Section 4.3.5 to identify
whether the conditions of Case 1 or Case 2 hold. Observe, however, that such
a comparison might be influenced by the impact of the specificity of the user
or of the environment. Accordingly, we will also consider the cases in which we
start from the wrong user and/or environment. For example, we will evaluate
the losses of the type L(Oi,j, Ii∗,j∗ , Di∗,j∗) which implies that the outer layers are
created on user i and environment j and left unchanged, whereas the inner layers
are retrained in a different scenario, Si∗,j∗ , and tested with the corresponding
dataset Di∗,j∗ .
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Figure 4.23: Behavior of convolutional layers with respect to user
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Figure 4.24: Behavior of convolutional layers with respect to Environment

4.3.9 Results

In this section, we present the experimental results obtained as explained in the
previous section.
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We start by observing that, as discussed in the previous Section 4.3.8, the

amount of data available for environments E1 and E4 is much larger than for
environments E2 and E3. Accordingly, the results corresponding to E2 and E3,
which we report for the sake of completeness, cannot be considered reliable enough
to draw any type of consideration. Therefore, in the following, we will focus on
the results regarding the environments E1 and E4.

(a) Case 1 (b) Case 2

Figure 4.25: Training loss in Cases 1 and 2 with a refinement of the inner layers
only.

In Figures 4.25 we show the validation loss obtained in Cases 1 and 2 in case
only the inner layers are retrained. More specifically, in Figure 4.25(a) we show
the validation loss obtained in Case 1. Results show what happens when a model
for user U1 is trained using the dataset collected in a specific environment, say
the j-th, and its inner layers are retained using the data collected in a different
environment, say the k-th.

Therefore, there are four different initial models M11, M12, M13, and M14.
The inner layers of such models will be re-trained in a different environment using
the corresponding collected data, i.e., D11, D12, D13, and D14. In Figure 4.25(a),
we show four sets of bars, each for a different dataset utilized for the retraining
of the inner layers. In each set there are four colored bars, each bar corresponds
to a specific model which was used as the starting point to train the inner layers.

By comparing the blue and red bars, i.e., the first and the fourth corresponding
to environments E1 and E4, for the dataset D11, we observe that the average
loss obtained by using M14 as the starting point (red bar) is slightly higher, the
difference is less than 12%, than the average loss obtained when M11 is used as
the starting point (blue bar). This means that blocking the outer layers does not
have a significant negative impact on the performance of the model as long as the
user considered when training the starting model (in our case, user U1) does not
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change.

By comparing the blue and red bars for the dataset D14, we observe that the
average loss obtained by using M11 as the starting point (red bar) is even lower
than the average loss obtained when M14 is used as the starting point (blue
bar), the difference is 5% approximately. This means that blocking the outer
layers does not have a negative impact on the performance of the model as long
as the user considered when training the starting model (in our case, user U1)
does not change. Actually, in this case, we have an improvement in performance
when using M11 as the starting point. This improvement is due to the fact that
by training the neural network model with D11 first and D14 later, the total
dataset utilized is larger and therefore, more fitting.

In Figure 4.25(b) we show the validation loss obtained in Case 2. More specif-
ically, results show what happens when a model for any user, say Ui, is initially
trained using the dataset collected in a specific environment, say the j-th, and
its inner layers are retrained using the data collected for the 1-st user, U1, in the
same environment. Therefore, inner layers will be retrained using the datasets
D11, D12, D13, and D14.

More specifically, in the plot we show several values of the average validation
losses represented as colored bars. Such bars are grouped in 4 sets (one for each
dataset utilized for retraining), consisting of six elements, one for each user con-
sidered when training the outer layers. For example, the green bar in the first
group represents the average validation loss obtained in the case in which the
initial model is trained considering the data collected for user U3 in environment
E1, and the inner layers are then retrained using the dataset D11. Analogously,
the orange bar in the fourth group represents the average validation loss obtained
in the case in which the initial model is trained considering the data collected for
user U2 in environment E4, and the inner layers are retrained using the dataset
D14.

By comparing the bars in the first group, we observe that the average loss
obtained exploiting the outer layers trained considering a user different from user
U1, i.e., all bars with the exclusion of the blue one, are slightly higher than the
average loss obtained applying the outer layers trained considering user U1, on
the average the difference is around 10%.

This means that blocking the outer layers does not have a significant negative
impact on the performance of the model as long as the environment considered
when training the starting model (in our case, user E1) does not change.

By comparing the bars in the fourth group, we observe that the average loss
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obtained applying the outer layers trained considering a user different from user
U1, i.e., all bars with the exclusion of the blue one, are significantly higher than
the average loss obtained applying the outer layers trained considering user U1,
on the average the difference is higher than 45%.

This means that, in this case, blocking the outer layers has a significant negative
impact on the performance of the model even if the environment considered when
training the starting model (in our case, user E4) does not change. Conversely,
recall that in Case 1 there was even an improvement in performance in the same
environment.

In summary, while in Case 1 we obtain an increase in the reconstruction loss
of 3.5% on average, in Case 2 we obtain an increase in the reconstruction error
which is approximately 28% on average.

Therefore, from the analysis of the results we can conclude that the data pat-
terns recognized by the outer convolutional layers are more specific to the user
rather than of the environment, that is the considered scenario falls mostly in
Case 1.

4.3.10 Remarks

In this paper, we have defined a methodology to answer the question of whether
the patterns recognizable by the convolutional layers of CNNs and CAEs are more
specific to the user or to the environment.

The importance of resolving the above issues has been discussed.
We have applied the approach in a specific case involving several bicyclists

running the streets in the city of Catania in Italy. The results have been discussed
and techniques have been proposed to exploit the results of our investigation from
a practical point of view.
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Use Case 2: Car

5.1 Abnormal driver behavior detection through

deep learning

5.1.1 Orientation

Driver behavior is a major concern for societies and safe driving plays a crucial
role in ensuring road safety [21][146]. Road accidents cause significant human and
material losses every year, affecting both developed and developing countries.
Therefore, it is crucial to monitor abnormal driver behavior to prevent poten-
tial accidents and minimize losses. The aim of this research is to use machine
learning techniques to monitor and detect abnormal driving behaviors, such as
drowsy, aggressive, and distracted driving, which are the leading causes of traffic
accidents and deaths [2]. In our case, the abnormal driving behavior is referred
to as an "anomaly" and several machine learning techniques have been studied
and explored to identify these anomalies both considering vehicular and medical
parameters.

5.1.2 Machine Learning for Detecting Vehicle Anomalies

Anomaly detection is the process of identifying rare events or patterns that devi-
ate significantly from expected or normal behavior. Machine learning techniques
have proven very effective in detecting anomalies in various industries such as
finance, transportation, healthcare, and cybersecurity [140]. Machine learning al-
gorithms can analyze large volumes of data and identify complex patterns that
would be difficult or impossible for humans to detect[66]. Machine learning for
anomaly detection has become increasingly important in today’s data-driven
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world, as it enables organizations to proactively identify and address potential
problems before they become serious problems. Machine learning offers a range
of powerful methods for anomaly detection across domains [81]. Some of the most
widely used machine learning methods for anomaly detection include:

1. Unsupervised learning methods: These methods do not require labeled
data and are used to identify anomalies based on deviations from expected
patterns. Clustering methods, such as k-means, are unsupervised learning
methods commonly used for anomaly detection.

2. Supervised learning methods: These methods use labeled data to train
a model to classify data as normal or abnormal. Some common supervised
learning methods for anomaly detection include decision trees, supporting
vector machines, and neural networks.

3. Semi-supervised learning methods: These methods use a combination
of labeled and unlabeled data to train a model. Semi-supervised learning
methods are useful when labeled data is scarce and the focus is on detecting
anomalies in a specific subset of the data.

4. Deep learning methods: Deep learning methods, such as autoencoders
and neural networks, are powerful techniques for anomaly detection. These
methods can learn complex patterns and identify anomalies in large datasets.

In summary, machine learning offers a range of methods for anomaly detection.
In our project, we used several machine learning techniques for anomaly detec-
tion, including Principal Component Analysis (PCA), One-Class Support Vector
Machine (OSVM), and Convolutional Neural Networks (CNN). After evaluating
the performance of each method, we determined that our most effective approach
was the use of a convolutional autoencoder. This method uses neural networks
to encode and decode input data, allowing anomalies to be identified based on
deviations from expected patterns. By training the autoencoder to minimize the
reconstruction error between input and output data, we can mark anomalies that
result in a higher-than-expected reconstruction error. Overall, the convolutional
autoencoder is a powerful technique for detecting anomalies in large datasets that
can learn complex patterns and identify deviations from the norm. ML or DL-
based models can be applied to the collected dataset which can be in the form of
images or signals.
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5.1.3 Dataset

5.1.3.1 Dataset Aquisition

The data source is a car instrumented with various types of sensors such as GPS
(Global Positioning System), IMU, OBD, and ADAS as shown in Figure. 5.1 and
Table. 5.1. Data is collected at 20Hz. More specifically, the dataset consists of the
following specifications.

Dataset specifications:

• Type: Real-world (time series signals)

• Sensors: IMU, Mobileye, RTK-GNSS, OBD

• Location: Catania-Ispica, Ispica - Catania

• Duration: 5 hours

• Driver: Various

• Standard features: speed, direction

• Derived Parameters: acceleration, Heading rate

• Anomaly labeling: abnormal driving behavior

96



CHAPTER 5. USE CASE 2: CAR

v
IMU

GPS

OBU

ADAS

Figure 5.1: Instrumented Car with sensors

Table 5.1: Original collected data parameters from various sensors

hline
No.

OBD (GPS) map Mobile eye

1 Timestamp GPS_Week() GPS_Week() timestamp
2 rpm GPS_TimeWeek

(s)
GPS_TimeOfWeek
(s)

SoundType

3 speed ins_status() Timestamp timeIndicator
4 coolant ins posi-

tion_type()
latitude(deg) zeroSpeed

5 load latitude(deg) longitude(deg) Headway Mea-
surement

6 intake longitude(deg) north_velocity(m/s)failSafe
7 maf height(m) east_velocity(m/s) Maintenance
8 dtc north_velocity

(m/s)
up_velocity (m/s) FCWon

9 throttle east_velocity
(m/s)

shape_distance RightLDWON
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Table 5.1: Original collected data parameters from various sensors

hline
No.

OBD (GPS) map Mobile eye

10 connected up_velocity(m/s) shape_radius LeftLDWON
11 roll(deg) shape_id LDWOFF wipersAvailable
12 pitch(deg) shape_length TSRenabled speed
13 heading(deg) osm_id TamperAlert left signal
14 latitude_std(m) osm_highway PedsinDZ right signal
15 longitude

std(m)
osm_int_ref PedsFCW brakes

16 height_std(m) osm_ref TSRWarning
Level

17 north_velocity
std (m/s)

osm_name HeadwayWarning
Level

18 east_velocity
std (m/s)

osm_lanes

19 up_velocity
std (m/s)

osm_lit

20 roll_std(deg) osm_maxspeed
21 pitch_std(deg) osm_maxheight
22 heading_std

(deg)
osm_overtaking

23 Timestamp osm_incline
24 osm_oneway
25 osm_surface
26 osm_tunnel
27 osm_tunnel

name
28 osm_bridge
29 osm_bridge

name
30 next_shape ra-

dius
31 next_shape dis-

tance
32 next_shape_id
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Table 5.1: Original collected data parameters from various sensors

hline
No.

OBD (GPS) map Mobile eye

33 next_shape
length

34 next_osm
bridge distance

35 next_osm tun-
nel distance

36 next_osm inter-
section type

37 next_osm inter-
section distance

38 next_osm inter-
section id

5.1.3.2 Data-Preprocessing

Once the data was recorded, several Python routines were applied for:

• Interpolation to improve data.

• Feature extraction.

5.1.3.2.1 Data interpolation Time series data interpolation refers to the
process of estimating missing or incomplete data point values in a time series
based on existing data point values [6]. This is often necessary in situations where
some of the data points are missing due to various reasons, e.g. measurement
errors, data loss during transmission, or incomplete data storage or acquisition
[147][148]. Time series data interpolation is a common pre-processing step in many
applications such as finance, weather forecasting, and signal processing, where
comprehensive time series data is needed for accurate analysis and forecasting. We
use this for time series signal data. We used the following interpolation techniques
for our data:

a. Linear interpolation
A common technique for interpolating time series data is linear interpolation. In

linear interpolation, missing data points are estimated based on the straight line
connecting the two closest data points on either side of the missing data point
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[148]. This method assumes that the data points between two known points follow
a linear trend.
b. Nearest-Neighbour interpolation
"Nearest-neighbour interpolation" is a method of interpolating missing data

points in a time series by replacing them with the nearest available data point
value [149]. This method is also known as the nearest neighbor interpolation. In
this method, the missing data point is replaced with the value of the available data
point closest in time. This method assumes that the time series has a constant
value between two consecutive data points and is useful when the time series has
a relatively low level of variability. It is also computationally efficient and easy to
implement. It can be used in signal processing and other applications where data
is sampled at discrete time intervals.

5.1.3.3 Feature Derivation

Feature Derivation refers to the process of extracting new features from existing
data by performing mathematical operations or transformations on raw data. In
other words, deriving features involves creating new variables or features that
capture important features or patterns in the data [150].

Feature derivation is a crucial step in data preprocessing and is widely used in
various machine learning and statistical modeling applications. Derived features
are often more informative and relevant to the problem at hand than the original
raw data. Common methods used for deriving features include mathematical op-
erations such as addition, subtraction, multiplication, division, and exponential.

In the present application, we opt for more related characteristics such as north
velocity (NV), east velocity (EV), direction (H), direction measurement, shape
distance, and shape radius. Then, we derived velocity (S) from NV and EV,
direction velocity (HR) from direction (H), and transverse acceleration (TA) using
velocity (S) and direction velocity (HR) as shown in Table 5.2.

5.1.3.4 Data Labelling

Data labeling is the process of assigning predefined tags or labels to data points
or instances for classification and analysis. It is an essential step in supervised
learning, where algorithms learn from labeled data to make predictions about new
invisible data [151]. Data labeling can be done manually by human annotators
or automatically using algorithms. Data labeling can be a time-consuming and
costly process, especially when large amounts of data need to be labeled [152].
There are several challenges associated with data labeling, such as label noise,
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Table 5.2: Feature Derivation

No. Original parameters Derived pa-
rameters

Formula

1. north_velocity (m/s) speed
√

northVelocity2 + eastVelocity2

east_velocity (m/s)
2. speed longitudinal

acceleration
(L-Acc)

speedi+1−speedi

timestampi+1−timestampi
× 1000

Timestamp
3. heading (deg) HeadingRate headingi+1−headingi

timestampi+1−timestampi
×

(
1000×3.14

180

)
Timestamp

4. HeadingRate, Speed Transversal
acceleration
(T-Acc)

speedi+speedi+1

2
× headingRatei+1

where incorrect labels are assigned to data points, and label bias, where assigned
labels are not representative of data distribution. To mitigate these issues, it is
essential to carefully design the labeling process and have quality control measures
in place to ensure the accuracy and consistency of the labels assigned. In our case,
we label the data manually under the supervision of drivers and experts. We label
normal data as ’0’ and anomalous data as ’1’.

5.1.3.5 Data Filtering

Environmental factors such as satellite view, signal blocking, and weather condi-
tions can affect accuracy [153]. To remove signal noise, we apply two data filtering
techniques:
a. Svitzky-Golay filter (SGF):
We applied a Savitzky-Golay (SGF) leveling filter to selected characteristics, ap-

plied specifically to velocity and direction profiles, before calculating their deriva-
tives (e.g., HR, TA). SGF is a digital filter [133], well applied in GPS trajectory
data, which we have adapted to our speed and direction time series dataset to
increase data accuracy without distorting the frequencies and shape of the ac-
tual signal, reducing noise and determining a blunt trend line to derive the other
parameters. It is a type of linear filter that uses a sliding window to perform lo-
cal regression on data points within the window [154]. The Savitzky-Golay filter
works by adapting a polynomial function to the data points within the sliding
window and then using polynomial coefficients to estimate rounded or differenti-
ated values. The degree of the polynomial and the size of the sliding window can
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be adjusted to control the leveling or differentiation effect. In our case, we opt for
the window size of 160 and the polynomial order of 2 for the sake of the uniform
spline.
b. Denoising autoencoder
Denoising autoencoders are a type of neural network architecture that can be

used for noise reduction in time series data [155]. They consist of a network of
encoders that maps the input data to a smaller size representation and a network
of decoders that maps the smaller dimensional representation to the original input
data. The denoising autoencoder is trained to reconstruct the original data from
the smaller dimensional representation, while being noise-resistant in the input
data [156]. We applied the denoising autoencoder to selected features by including
3 convolutional levels in the encoder and 3 deconvolutional levels in the decoder
to reconstruct the latent vector in the original input.

After initial data preprocessing, we perform exploratory data analysis as shown
in Figure 5.2 , to observe the role of each parameter with respect to the anomaly.
Exploratory data analysis helps to improve the performance of the model by
eliminating the useless parameters.

 

 
 

Figure 5.2: Exploratory data analysis on the basis of anomaly

5.1.4 Methodology

This section will detail the different machine-learning techniques used for anomaly
detection. We will start by providing an explanation of each method, outlin-
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ing how they work. Next, we will discuss the results obtained from our experi-
ments and a comparison is carried out between these standard anomaly detection
schemes and the proposed method in the following sections.

5.1.4.1 Principal component analysis (PCA)

Major component analysis (PCA) is a useful machine-learning technique for
anomaly detection [157]. PCA works by transforming high-dimensional data into
a smaller dimensional space defined by major components [157]. These key com-
ponents capture the most significant variation in the data and can help simplify
and identify patterns in the dataset. In anomaly detection, PCA can be used to
identify outliers and deviations from predicted patterns in the dataset [158]. By
identifying data points that fall outside the normal range defined by the major
components, anomalies can be reported and analyzed further. In detail, PCA
components are to identify anomalous elements in a data set by analyzing the
reconstruction error. Essentially, this involves decomposing the matrix of source
data into its main components and then reconstructing the original data using
only some of the most significant major components. By comparing the recon-
structed data with the original data, any anomalies can be identified as leading
to a higher reconstruction error. However, it is important to note that PCA is an
unsupervised technique and may not be able to capture all kinds of abnormalities.
In cases where abnormalities are more complex or subtle, other machine learning
techniques such as neural networks may be more effective. However, PCA can
still be a useful tool in a broader suite of anomaly detection methods

5.1.4.2 One-Class Support Vector Machines (OSVM)

OSVM (One-Class Support Vector Machines) is a machine learning method often
used for anomaly detection. Unlike other SVMs that are trained on data labeled
for classification, OSVMs are designed to work on unlabeled data and identify
normal patterns in the data [159]. The purpose of OSVM is to find a decision
boundary that separates the normal given points from the anomalous points.
This limit is represented by a hyperplane that maximizes the margin between the
normal data points and the hyperplane. The hyperplane is found by solving a
constrained optimization problem, where constraints ensure that all normal data
points are on one side of the hyperplane while anomalous points are on the other
side. Once the hyperplane is determined, new data points can be classified as
normal or abnormal based on the side of the hyperplane on which they fall. If a
data point falls on the same side as normal data points, it is considered normal.
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If it falls on the other side, it is considered abnormal.

However, OSVM can have difficulty identifying anomalies in datasets with high
noise levels or complex patterns. Therefore, it may be useful to integrate OSVM
with other machine learning methods for greater accuracy in anomaly detection.

5.1.4.3 Convolutional Neural Network (CNN)

A convolutional neural network (CNN) is a type of artificial neural network
(ANN) designed to process data with a grid-like topology, such as images or
time series. CNNs were originally developed for computer vision tasks, such as
image classification, object detection, and segmentation. CNNs are a type of deep
learning algorithm originally designed to process images efficiently, but have also
been used for anomaly detection [115]. The architecture of a CNN includes con-
volutional layers, pooling layers, and fully connected layers. Convolutional layers
contain filters in the form of a weighted matrix (C1) that efficiently recognize
patterns by reducing the dimensionality of variables. Pooling levels (S) summa-
rize features and can be repeated multiple times [160]. The final layer is the
fully connected layer, in which neurons (NN) take the extracted features as in-
put. Fully connected layers use the extracted features to make an estimate. They
automatically extract features from data, which can be used for classification.

Additional information regarding CNN is explored in the preceding chapters
from a technical perspective.

5.1.4.4 Proposed Scheme

In the proposed methodology, we use a convolutional autoencoder to detect
anomalies in time series data. In our work we use Convolutional Autoencoders
and, therefore, we will provide the initial information of Autoencoder (AE). An
AE is a type of artificial neural network popular for anomaly detection, AE con-
sists of two main modules: the encoder and the decoder (Figure. 4.7). The encoder
maps the input data into a latent vector while the decoder attempts to reconstruct
the input from the latent vector [161][81].

Note that convolutional autoencoders (CAEs) can learn the most useful fea-
ture patterns in input data. To detect anomalies in the time series data, the
auto-encoder is first trained on a normal time series dataset. During the test
phase, the input data is passed through the trained autoencoder, and the recon-
struction error is calculated. Data anomalies can be detected by comparing the
reconstruction error with a threshold value. The use of convolutional layers in the
autoencoder architecture enables efficient feature extraction and reconstruction
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of time series data, making it a popular choice for anomaly detection in time
series data.

We call the proposed comprehensive scheme for anomaly detection in the sce-
nario of interest: "Road safety through deep learning-based detection of abnormal
driver behavior" (ROAD-DAD). Road-DAD uses a 1D CAE where the input con-
sists of a sequence of time data samples X 1, X 2, . . . , X7 generated at a frequency
of 20 Hz. The generic Xi is a 7-tuple of values, i.e. representing speed, direction,
direction velocity, forward measurement, transverse acceleration, distance, and
radius, calculated as discussed in section 5.1.3.3 above. Therefore, the input data
is of a 2-dimensional matrix nature that we flatten as a sequence of 1-dimensional
input. The number of j-samples that make up the input sequence as the window
size. Experiments show that a good value for j is j = 64. Therefore, the input
size of the encoder is n = 64×7 = 448. The overall architecture of Road-DAD
in which the encoder consists of 4 convolutional levels. We applied Stride as an
advanced convolutional parameter that is able to replace the maximum pool with
less computing. Padding is used to maintain the output size as input while the
activation function is responsible for activating neurons. In our case, each convo-
lutional layer reduces the input size by a factor equal to the step, that is, two.
Consequently, the output of the first convolutional layer has a dimension equal
to 224, while the output of the 4th layer, i.e. the latent vector Z, has a dimension
equal to m=56. The decoder consists of two levels of deconvolution and a dropout
layer that prevents the model from being overfitted. The output of the decoder
will again have a size equal to 448 and compared with the input by calculating
the mean absolute error (MAE). If this error is above a certain level of threshold,
an anomaly warning is issued such as ’1’ otherwise ’0’. So, we give high weights to
"1" and low weights to "0". After setting weights against anomalous and normal
data points, we set the 2nd level threshold to identify and count anomalies for
evaluating results as illustrated in Figure 5.3.
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Figure 5.3: Table 3. F-Score based performance evaluation for proposed scenarios.

5.1.5 Result

The proposed scheme will be validated by comparing the actual CSE detected,
which we call "real positives", with the anomalies, which we call "CNN posi-
tives". For comparison, similar validations were performed using principal com-
ponent analysis as a robust standard statistical approach for feature reduction
and anomaly detection, and the most widely used method compared to One-Class
Support Vector Machines (OSVM) which is well known for anomaly classification
and detection. In addition, we also compared the results of ROAD-DAD with the
standard convolutional autoencoder.

We utilize recall and precision as performance metrics. The preceding chapters
have already elaborated on how these metrics function, how they calculate results,
and how performance is assessed.

5.1.5.1 Model testing and validation

We perform different experiments using various ML and statistical methods for
anomaly detection such as PCA, OSVM, CAe, etc. Initially, we use the standard
convolutional autoencoder and obtain the following recall and precision for the
two scenarios "test" and "validation" as shown in Figure 5.4, 5.5 and 5.6 for PCA,
OSVM and CAe respectively.

Testing means that we use the dataset collected from a road section for training
and testing, while in validation we test the model with the dataset of different
road sections.
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Figure 5.4: True positive and False positive by exploiting PCA
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Figure 5.5: True positive and False positive by exploiting OSVM

Tes$ng 
Recall - 55% 
Precision – 25% 

 

Valida$on 
Recall – 45% 
Precision – 25% 

 

57%

43%

ON-AVERAGE
True Positive False Posi tive

Figure 5.6: True positive and False positive by exploiting standard CAe

Observation and next idea:
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After taking advantage of the standard convolutional autoencoder, we observe

that the accuracy of anomaly detection is limited as we have reached 57% of the
real detection while the false alarm rate is very high at 43%. Therefore, we plan
to integrate another algorithm to create data groups and shuffle for different road
sections. We also optimize model parameters such as trigger function, and latent
vector size, and add some dropout levels to avoid model overfitting issues. In
addition, we plan to filter the dataset as noise causes a high rate of false alarms.
After implementing these ideas, we achieved results as shown in Figure 5.7.

Svitzky Golay Filter 
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Precision – 25% 
 
Valida2on 
Recall – 65% 
Precision – 30% 
 

 
De-noising 
Autoencoder  
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Recall - 77% 
Precision – 54% 
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Recall – 66% 
Precision – 45% 

 
 

62%

38%

ON-AVERAGE
True Positive False Posi tive

75%

25%

ON-AVERAGE
True Positive False Posi tive

Figure 5.7: True positive and False positive by using filters and customized CAe

Observation and next idea:
Although the Denoising-autoencoder significantly improves false positives, but

for more promising results we deepen the exploratory analysis of the data as
shown in Fig. 3. We have observed that anomalies are always surrounded by
normal points, so we plan to weigh the anomalies at the top. Then we reach the
results as indicated in the Figure 5.8.
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Figure 5.8: True positive and False positive of proposed model

In the end, we concluded our results based on several scenarios, as shown in
Figure 5.9.

Figure 5.9: Recall and Precision for all cases

5.1.5.2 Real-time anomaly detection by exploiting Long-short Term
Memory Autoencoder

Using Long Short-Term Memory (LSTM) neural networks for real-time anomaly
detection is a powerful and effective approach, particularly in time-series data
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analysis. LSTMs are a type of recurrent neural network (RNN) that is well-
suited for sequential data, making them a valuable tool for detecting anomalies
in streaming or time-series data.

LSTM autoencoder for real-time anomaly detection is a powerful technique for
identifying abnormal patterns or outliers in sequential data. LSTM autoencoders
leverage the ability of Long Short-Term Memory (LSTM) networks to model se-
quential dependencies and learn compact representations of input data. To Build
an LSTM autoencoder, it consists of two parts: an encoder and a decoder.The
encoder LSTM layer compresses the input data into a lower-dimensional repre-
sentation, which is known as the bottleneck or latent space. The decoder LSTM
layer attempts to reconstruct the original input data from the compressed repre-
sentation. The model aims to minimize the reconstruction error during training.

For real-time anomaly detection, we continuously feed new data into the trained
LSTM autoencoder model in real-time. For each new input sequence, encode it us-
ing the trained encoder and then attempt to reconstruct it with the decoder. Cal-
culate the reconstruction error between the original input and the reconstructed
output and then find anomaly by fixing threshold.

We achieved the following outcomes by leveraging an LSTM autoencoder and
utilizing data from numerous users, similar to the approach outlined previously
but on a larger scale compartively. In Figure 5.10, the results show that suc-
cessfully detected anomalies are categorized as true positives, while those that
are erroneously flagged are considered false alarms or false positives. Figure 5.11
illustrates the rate of successful anomaly detection as true positives, contrasting
with cases where the model fails to detect anomalies, which are labeled as false
negatives.
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Figure 5.10: Rate of true positive and false positive

77%

23%

ON-AVERAGE
True Positive False Negative

Figure 5.11: Rate of true positive and false positive

5.1.5.3 Remarks and Future Directions

In this chapter, we employ a vehicle as a data source, equipped with a range of
sensors including GPS, OBD, Mobileye, etc. Data is collected from these sensor-
equipped vehicles in the form of time series signals. The collected time series data
undergoes several processing techniques such as interpolation, feature extraction,
and data filtering to obtain a clean and meaningful dataset. Following data prepa-
ration, we feed the dataset into our proposed system named "ROAD-DAD" for
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the purpose of identifying abnormal or anomalous driver behavior. ROAD-DAD
leverages a Convolutional Autoencoder, complemented by our own algorithms for
efficient anomaly detection.

We conduct a comparative analysis of our proposed scheme with well-established
machine learning-based anomaly detection algorithms, including a standard Con-
volutional Autoencoder. The evaluation of results is based on the recall and preci-
sion evaluation metrics. We have achieved an 85% recall rate with a 15% precision
rate, which is considered a favorable outcome. In the future, we are intended to
explore more the same dataset parameters on larger scale using Long Short-Term
Memory (LSTM) autoencoder and deep transfer learning for various users.
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5.2 Multi-sensor-based analysis for anomaly de-

tection

5.2.1 Initial Information

Abnormal driver behavior detection refers to identifying and analyzing actions,
movements, or patterns exhibited by drivers that deviate from standard or safe
driving practices [146]. This concept is commonly applied in the context of ad-
vanced driver assistance systems (ADAS), vehicle safety, and driver monitoring
technologies[124].

Various sensors and data sources can be used to detect abnormal driver behavior,
including:

• In-vehicle Cameras: Cameras installed inside the vehicle can monitor the
driver’s face, eyes, and body movements to detect signs of fatigue, distrac-
tion, or other abnormal behaviors.

• Steering Wheel and Pedal Sensors: These sensors can capture the
driver’s input, allowing the system to detect aggressive or erratic driving
behavior, such as sudden braking or sharp turns.

• GPS and Location Data: Analyzing the vehicle’s location and trajectory
can help to identify abnormal driving patterns, like excessive speeding or
sudden lane changes.

• Accelerometers and Gyroscopes: These sensors can detect sudden changes
in vehicle acceleration or orientation, which may indicate reckless driving
or potential collisions.

• OBD-II: Data from the vehicle’s onboard diagnostic (OBD-II) system can
be analyzed to assess driving behaviors like speeding, hard braking, and
rapid acceleration.

Machine learning algorithms are often used to process the collected data and
detect abnormal behaviors. These algorithms are trained on labeled datasets that
contain examples of both normal and abnormal driving behaviors. The model then
learns to recognize patterns and anomalies in real-time data to make accurate
predictions.
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Some examples of abnormal driver behaviors that can be detected include:

Drowsy or fatigued driving, Distraction (e.g., using a mobile phone while driv-
ing), Aggressive driving (e.g., tailgating, sudden lane changes), Drunk or impaired
driving, Failure to obey traffic rules (e.g., running red lights). By detecting abnor-
mal driver behavior, ADAS and other safety systems can intervene and provide
warnings to the driver or take control of the vehicle if necessary to prevent ac-
cidents and enhance road safety [2]. Additionally, this data can be valuable for
fleet management and driver training purposes.

In this chapter, we present deep learning-based anomaly detection scheme for
various sensor-based data. Considered sensors are GNSS, Map, OBD and mobil-
eye.

5.2.2 Related Work

Anomaly detection and classification are two related concepts used in various
fields to identify unusual patterns, behaviors, or events in data . Both are tech-
niques used to spot deviations from the norm, but they serve different purposes
and are applied in distinct scenarios. Let’s explore each of these concepts:

5.2.2.1 Anomaly Detection:

Anomaly detection, also known as outlier detection, is the process of identifying
data points or instances that deviate significantly from the expected or normal
behavior of the dataset [81]. These anomalies can represent errors, fraud, unusual
events, or any other observations that are rare and distinct from the majority of
the data. Anomaly detection techniques can be applied in various domains, in-
cluding cybersecurity, finance, healthcare, industrial monitoring, and more. Some
popular anomaly detection methods include:
a. Statistical methods: These techniques use statistical distributions and

models to identify outliers based on the assumption that anomalies are infrequent
and far from the mean.
b. Machine learning approaches: Machine learning algorithms, such as clus-

tering, one-class SVM (Support Vector Machines), or isolation forests, can be used
to learn the normal behavior of the data and then identify instances that do not
fit the learned patterns as anomalies.
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5.2.2.2 Classification:

Classification, on the other hand, is a supervised learning technique where the
objective is to assign data points to predefined classes or categories based on their
features. In this task, the algorithm is trained on a labeled dataset, where each
instance has a known class label. The primary goal of classification is to learn a
model that can accurately predict the class of unseen data points based on their
features. Common classification algorithms include decision trees, random forests,
logistic regression, support vector machines (SVM), and neural networks.

The main difference between anomaly detection and classification lies in their
objectives and the nature of the datasets they work with. In summary, anomaly
detection aims to identify rare and abnormal instances without using labeled
data, while classification focuses on assigning data points to predefined classes
using labeled data. Both concepts play crucial roles in data analysis and machine
learning applications, and their effective use depends on the specific problem and
data available.

5.2.2.3 Anomaly Detection Methods:

Anomalies in sensor data can indicate critical events or errors. Well-renowned
anomaly detection methods include:

• Statistical approaches (e.g., z-score, box plot, Grubbs’ test)

• Machine learning-based methods (e.g., Isolation Forest, One-Class SVM)

• Deep learning techniques (e.g., autoencoders, LSTM networks)

Emphasis is placed on adapting these methods to suit the characteristics of
different sensors and application domains.

5.2.3 Problem Statement

With the increasing proliferation of sensors in various fields, there arises a need
for comprehensive sensor-fusion analysis and efficient anomaly detection methods.
This research aims to address this need by investigating the utilization of different
types of sensors in developing robust algorithms for anomaly or abnormal driver
behavior detection. The study seeks to contribute to the enhancement of data-
driven decision-making processes and the reliability of sensor-based systems.

Modern industries and systems heavily rely on sensor data for monitoring, con-
trol, and optimization. From environmental monitoring to industrial automation
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and healthcare, sensors provide valuable insights into various processes [17]. How-
ever, anomalies, unexpected events, or sensor malfunctions can compromise sys-
tem performance and data quality[19]. This research focuses on exploring sensor-
based analysis techniques and developing anomaly detection methods to ensure
the accuracy and dependability of sensor-generated data.

5.2.4 Proposed Method

There are Different approaches for Sensor-Based Analysis such as :

• Signal processing and feature extraction methods

• Time-series analysis and trend identification

• Data fusion and sensor integration

• Pattern recognition and machine learning techniques

• Visualization and interpretation of sensor data

"We employ a deep learning-based pattern recognition approach for detecting
anomalies, utilizing data from different sensors individually. We apply the method
we propose, referred to as ROAD-DAD, which is extensively described in Chapter
5 (I)."

5.2.5 Results

We assess performance through two types of comparisons. The initial comparison
involves employing the "ROAD-DAD" method with various sensor combinations
for anomaly detection. The second comparison entails the use of the classification
technique SVM.

5.2.5.1 Anomaly detection by exploiting "ROAD-DAD" against var-
ious sensor combinations

In this part, we exploit "ROAD-DAD" for anomaly detection using various com-
binations of sensors and observe which work well. In Figure 5.12, model testing
is carried out by using the dataset of the same user and road section for training
and testing.
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Figure 5.12: Anomaly detection using same road section and different sensors

In Figure 5.13, model validation is carried out by using the dataset of different
user and road sections for the training and testing phase.

Figure 5.13: Anomaly detection using different road sections and different sensors
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From Figure 5.12 and 5.13, we observe that data collected from GPS, map and

mobileye work well while data from OBD causes less true positive and high false
positive.

5.2.5.2 Classification by exploiting "SVM" against various sensor com-
binations

In Figure 5.14, the orange lines represent true positives, while the blue lines
represent positives detected by CNN. Notably, we observe an increase in false
positives between 20,000 and 40,000 sample points. Consequently, we decided
to employ a classification algorithm to perform multi-class classification, distin-
guishing between normal, abnormal, and other maneuver points, as depicted in
Figure 5.15. These ’other maneuvers’ could encompass actions such as overtak-
ing vehicles, traffic lights, or roadside work. We found that the points between
20,000 and 40,000 were not actually anomalous but rather fell into the category
of other road maneuvers, a classification achieved successfully using the SVM
classification algorithm

Figure 5.14: Anomaly detection using different road section and different sensors
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Figure 5.15: Classification of normal, abnormal and other road maneuvers

5.2.6 Limitations

The research contributes to the advancement of sensor-based analysis for anomaly
detection methods, fostering reliable and efficient data-driven decision-making in
diverse applications. By understanding the unique characteristics of different sen-
sors and addressing the challenges of anomaly detection, this study aims to pave
the way for more resilient and accurate sensor-based systems in the future. Fur-
thermore, it explores the use of edge computing for real-time anomaly detection,
enhancing the interpretability of deep learning models, and addressing security
concerns related to sensor data.
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Chapter 6

Conclusion and Future Directions

The thesis concludes by summarizing its significant contributions and findings.
Initially, it categorizes driver behavior detection solutions into three primary
types: those dependent on driver health parameters, those utilizing vehicle param-
eters, and those considering both. It explores various methods for data collection,
including cameras and sensors, and examines their applications in real-time and
simulation-based scenarios. A comprehensive taxonomy is introduced to enhance
comprehension of driver behavior detection schemes, followed by an analysis sec-
tion pinpointing research gaps and future directions.

During this investigation, it was observed that data collection for driver be-
havior detection primarily revolves around two key methods: the utilization of
cameras and sensors. These data sources encompass smartphone cameras, capa-
ble of capturing valuable image-based information, and vehicle-mounted cameras,
which provide visual data. Sensors play a critical role by gathering diverse data
from vehicles and drivers in signal form. The research also distinguishes between
test environments, differentiating between real-time situations grounded in the
actual world and non-real-time scenarios involving simulation-based driver be-
havior detection. Real-time techniques involve the assessment of results using
real-time data, whereas non-real techniques rely on simulated data for analysis.

A fundamental contribution of this study is the creation of a comprehensive tax-
onomy, designed to provide a clear understanding of the diverse array of driver
behavior detection schemes found in the literature. This taxonomy serves as a
valuable reference for researchers and practitioners interested in this field. Subse-
quently, the analysis, stemming from this extensive literature review and taxon-
omy construction, identified significant gaps in the current body of knowledge.

The thesis then shifts its focus to cyclist safety and the need for innovative
observational studies in smart cities. It introduces the use of CNN and autoen-
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coders for anomaly detection in cycling behavior, specifically the combination of
speed and direction GPS data. The performance of the model is assessed, show-
ing promising results in terms of recall and precision. The study suggests the
potential for using such models to improve cycling safety in urban areas.

Then, the thesis incorporates transfer learning to significantly reduce the amount
of data required to build an effective artificial neural network. The experimental
results, conducted within a specific case study, demonstrate the promising perfor-
mance of the proposed approach. It achieves an average recall of 77%, with some
individual users achieving a perfect 100% recall rate. Moreover, the potential for
transferring a pre-trained model to different cyclists with satisfactory results sug-
gests scalability and efficiency in large-scale applications. Incorporating direction
information, such as heading and transversal acceleration, significantly enhances
the model’s ability to detect anomalies in cycling. The use of data filtering and
Convolutional Neural Networks (CNN) further reinforces the model’s robustness,
outperforming traditional statistical techniques like PCA and heuristic threshold-
based methods. A case study illustrates the practical applicability and consistency
of risk assessment and ranking.

The next activity of the thesis is to introduce a methodology aimed at addressing
the fundamental question of whether patterns identified by convolutional layers in
CNNs and CAEs are more user-specific or environment-specific. The significance
of resolving these questions has been emphasized.

Furthermore, within the proposed methodology, the ROAD-DAD phase emerged
as a significant component. This phase introduced a deep learning model grounded
in the principles of convolutional autoencoders, accompanied by a self-directed al-
gorithm tailored for anomaly detection. Leveraging data from vehicles, including
speed, acceleration, heading, and more, this model was devised to identify irregu-
lar behaviors or anomalies. The model’s efficacy was confirmed through rigorous
benchmarking against established machine learning methods widely employed in
anomaly detection.

In summary, this aspect of our proposed methodology delved into the fusion of
data derived from diverse sensors, all originating from the vehicle itself. These
sensors encompassed GPS, OBD, and Mobileye, collectively contributing to a
comprehensive data pool. Our overarching goal was to harness this amalgamated
sensor data in conjunction with the ROAD-DAD model for the explicit purpose
of detecting anomalies in driver behavior.

Finally, the thesis concludes by discussing the practical application of the pro-
posed methodology in the city of Catania, Italy, and suggests techniques for
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leveraging the research findings for practical purposes. It underscores the sig-
nificance of addressing issues related to user-specific and environment-specific
patterns within deep learning models.

While this study provides valuable insights and promising results, several av-
enues for future research and practical application emerge. One crucial considera-
tion is the potential for larger deviations in model performance with an increased
number of users. Recognizing that the CNN model depends on both the user
and specific road environments, applying transfer learning and cooperative learn-
ing in real time to adapt the model to individual users and road conditions is a
promising area of exploration.

To improve the practical application of the model, there is a need for more
suitable data recording methods or dedicated devices installed in bike-sharing
fleets. Standard smartphones and applications currently do not offer the high-
frequency data acquisition required for capturing evasive maneuvers, which can
involve rapid speed and direction changes within seconds.

Furthermore, considering that cyclists adapt their behavior to various road in-
frastructures and traffic conditions, enhancing the model’s adaptability remains
a priority. Future research may focus on tailoring specific model layers to indi-
vidual users while maintaining flexibility in adapting other layers to the current
road environment.

Lastly, the study introduces an intriguing question about whether the patterns
recognizable by convolutional layers in neural networks are more specific to the
user or the environment. Resolving this question could provide valuable insights
into refining anomaly detection models.

In summary, this research represents a significant step forward in enhancing road
safety through advanced anomaly detection techniques. The promising results and
identified areas for future research underscore the importance of continued efforts
to protect vulnerable road users and promote safer urban environments.
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