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and regeneration
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Accumulating evidence sustains glial cells as critical players during central nervous

system (CNS) development, homeostasis and disease. Olfactory ensheathing cells

(OECs), a type of specialized glia cells sharing properties with both Schwann cells

and astrocytes, are of critical importance in physiological condition during

olfactory system development, supporting its regenerative potential throughout

the adult life. These characteristics prompted research in the field of cell-based

therapy to test OEC grafts in damaged CNS. Neuroprotective mechanisms

exerted by OEC grafts are not limited to axonal regeneration and cell

differentiation. Indeed, OEC immunomodulatory properties and their

phagocytic potential encourage OEC-based approaches for tissue regeneration

in case of CNS injury. Herein we reviewed recent advances on the immune role of

OECs, their ability to modulate CNS microenvironment via bystander effects and

the potential of OECs as a cell-based strategy for tissue regeneration.

KEYWORDS

OECs, immunomodulation, neurotrophic factors, intercellular communication,
neuroregeneration
1 Introduction

During the last decades, increasing evidence support the hypothesis that glial cells are

important players in crucial aspects of neurogenesis, neuronal functions and diseases (1,

2). Indeed, glial cells guide neuronal migration during development, participate in

synaptic formation and plasticity, regulate vasculature and blood–brain barrier (BBB),
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modulate neuroimmunity, and support neural regeneration (1–

3). The term glia, from the Greek “glıá”, meaning “glue”, was

originally assigned assuming that these cells were responsible to

keep neural cells together. In the adult central nervous system

(CNS) three main types of glial cells can be distinguished:

astrocytes and oligodendrocytes, deriving from neural crest,

and microglia, which originate from the myeloid lineage. In

the peripheral nervous system (PNS), Schwann cells represent

the main class of glia. Olfactory ensheathing cells (OECs) are a

type of specialized glia cells, restricted to the olfactory system,

which play a crucial role in olfactory development and

regeneration (4–6). Indeed, the olfactory system has a unique

neurogenic niche where unlike most regions of the nervous

system, olfactory sensory neurons retain a lifetime regeneration

potential (4, 5). Since the olfactory neuroepithelium is in direct

contact with the external environment, it has evolved a

remarkable ability to recruit sensory neurons during normal

cell turnover or after traumatic olfactory nerve injury (7, 8). This

unique feature is now widely attributed to the presence of OECs,

able to wrap olfactory axons and support olfactory receptor

neurons turnover and axonal regeneration (9–11). OECs

perform their axon growth-promoting properties and provide

structural support by extending thin processes that envelop

group of axons as an insulator (Figure 1) (12, 13). Moreover,

when new olfactory sensory neurons are generated from stem

cells in the olfactory epithelium, OECs establish functional

connections along the olfactory neuroaxis (8, 14).

In contrast to neural crest-derived PNS glia and neural tube-

derived CNS glia, OECs have generally been thought to originate

from the olfactory placode (15). However, several studies show
Frontiers in Immunology 02
that the olfactory placode arises from ontogenetically

heterogeneous sources of cells and OECs derive from neural

crest, like Schwann cells (16–18). These cells are located in the

lamina propria of the olfactory mucosa, as well as the outer

layers of the olfactory bulbs, the inner and outer nerve fiber

layers (Figure 1) (19).

OECs share many properties with Schwann cells and

astrocytes. They express some typical markers such as the p75

neurotrophic receptor (p75NTR), the polysialylated form of

neural cell adhesion molecule (PSA-NCAM), and, like

astrocytes, they express the glial fibrillary acid protein (GFAP),

and the S100 proteins (20, 21). Furthermore, OECs are able to

secret high level of growth factors, such as nerve growth factor

(NGF), basic fibroblast growth factors (bFBF), brain derived

neurotrophic factor (BDNF), glial derived neurotrophic factor

(GDNF), ciliary neurotrophic factor (CNTF), neurotrophins

NT4, NT5 and neuregulins, which exhibit important functions

as neuronal supporting elements (13, 22–24).

In recent years, significant advances have been made in

cellular-based therapies, which focus on the restoration,

regrowth or replacement of damaged or dysfunctional cells,

tissues and organs, in order to treat neurodegenerative diseases

(25) and CNS injuries (26–28). Moreover, cell-based approaches,

including OEC grafts, have been reported to induce beneficial

effects in spinal cord injury (SCI) models. In addition to

neuroprotective mechanisms, axon regeneration and

remyelination were observed, leading to significant sensory

and locomotor functions amelioration (29–31). Thus, OEC

transplantation is proposed as a potential therapeutic strategy

for SCI, due to their unique characteristics, such as anti-
FIGURE 1

Schematic representation of OEC localization within the olfactory system. OECs ensheath bundles of olfactory receptor axons along their
course through the lamina propria in the PNS. Olfactory nerves and their associated OECs cross through the cribform plate into the CNS,
making connections with the olfactory bulb. OEC, olfactory ensheathing cells; CNS, central nervous system; PNS, peripheral nervous system.
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neuroinflammation, growth-promoting factor secretion, and

debris clearance activity. However, there is a lack of in-depth

studies focusing on the phagocytic function of these cells,

particularly the molecular and cellular mechanisms involved in

this intricate process and on the synergistic effects with neural

and mesenchymal stem cells (MSCs) in improving cell

differentiation. Exploring these unique features will lead to a

better understanding of the role of OECs in development and

regeneration and will identify how the use of OECs can be

optimized for neural regeneration therapies. These approaches

may benefit from accumulating evidence pointing out a

significant role of checkpoint therapy in inducing regeneration

upon CNS injury (32). Herein we reviewed the current

knowledge about the immunomodulatory and anti-

inflammatory properties of OECs in neuroinflammation,

neurodegeneration and during stem cell differentiation. Owing

to the strong pro-regenerative properties of OECs, and their

unique ability to promote stem cell differentiation, we explored

the potential of OEC transplantation for tissue regeneration.
2 Immune role of OECs

The olfactory system is continuously exposed to various

pathogens since the primary olfactory neurons are in direct

contact with the external environment (7, 8). However, most

cases of CNS infections do not occur through the olfactory

system. In this scenario OECs play a crucial role in protecting

CNS structures. Specifically, they participate in innate immune

responses, secrete immunoregulatory molecules and exert their

phagocytic activity thus maintaining microenvironmental

homeostasis, supporting neuron survival and axonal growth

(33–35).
2.1 Phagocytic activity of OECs

CNS lesions are characterized by neuronal degeneration and

death, and by the persistence of cellular and myelinated debris

that create an adverse environment for neural survival,

germination of neurites and renewal of neurons (36, 37). Since

olfactory receptor neurons renew themselves throughout

lifetime, a large amount of apoptotic debris is generated

continuously (35). Several studies support phagocytic

functions of OECs throughout life (35, 38) especially following

injury (38, 39). In fact, by switching from a resting state to a

phagocytic phenotype to remove axonal debris and bacteria, they

protect the olfactory nerve frommicrobial infections (35, 40, 41).

A combination of morphological and phenotypic changes

distinguishes reactive OECs from their resting state, including

cytoskeletal hypertrophy and rearrangement (34, 42). However,

the identification of specific molecular markers capable of

discriminating between quiescent and reactive OECs could
Frontiers in Immunology 03
better elucidate the molecular mechanisms underlying

their activation.

While Schwann cells participate in debris removal mainly by

increasing the secretion of several pro-inflammatory molecules,

thus recruiting professional phagocytes, including macrophages

and neutrophils (43), OECs operate differently (38, 44). Wright

et al. showed that OECs repel macrophages in co-culture, by

expressing the macrophage migration inhibitory factor (MIF),

which would explain the absence of macrophages in the

olfactory nerve bundles (45).

In vitro studies reported that OECs possess several

phagocytic-related receptors, including toll-like receptor 4

(TLR4), phosphatidylserine and mannose receptors (34, 46,

47). Particularly, during apoptosis, olfactory neurons display

the “eat me” signal phosphatidylserine, recognized by OEC

phosphatidylserine receptor, leading to the engulfment of

apoptotic and necrotic cell debris (33, 44). Milk fat globule-

EGF factor 8 (MFGE-8), which interacts with integrin receptors

(48), is a bridging molecule that participates in several cell

surface-mediated regulatory events. Li et al. demonstrated in

vitro that OECs express MFGE-8 when apoptotic debris is added

to the culture (49). Moreover, OECs have been reported to adopt

a “microglia-like” phenotype showing high levels of CD11

expression after their transplantation into the X-irradiated

spinal cord of female Sprague Dawley rats (50). However, in

vitro immunolabelling of OECs has revealed that they do not

express this microglial marker in physiological conditions (34).

Interestingly, Nazareth et al. reported that OECs produce less

pro-inflammatory cytokines, compared to Schwann cells and

macrophages when exposed to necrotic bodies (37). Conversely,

some anti-inflammatory cytokines, such as interleukin-10 (IL-

10) and transforming growth factor beta (TGF-b) promote OEC

phagocytic activity (49).

In summary, the phagocytic activity of OECs plays a crucial

role in creating a favorable environment to promote neuronal

turnover, aiding the overall process of neuronal regeneration.

Hence, this peculiar feature of OECs may be particularly useful

for neural repair therapies including their transplantation

after SCI.
2.2 OEC-mediated effects during
neuroinflammation

As abovementioned, OECs show several unique properties

of inflammatory cells, allowing them to modulate immune

responses and neuronal pro-regenerative processes. Overall,

inflammation is thought to hinder cell differentiation and

regeneration but, although OECs are able to secrete a range of

pro-inflammatory cytokines and chemokines after injury or

infections, they simultaneously promote nervous regeneration.

Following SCI, resident immune cells, including microglia

and astrocytes, are activated by injured-released inflammatory
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stimuli (51). Indeed, the microenvironment of lesioned CNS

switch towards pro-apoptotic and anti-regenerative milieu.

Particularly, inflammatory responses in SCI are mainly

mediated by pro-inflammatory cytokines and chemokines

secreted by reactive astrocytes and microglia. In this scenario,

M1-polarized microglia induces astrocyte activation, resulting in

chondroitin sulfate proteoglycan (CSPG) deposits and astrocytic

scar formation, which limits the spread of inflammation but at

the same time hampers axon regeneration (52). Concomitantly,

glial cell activation causes the release of specific chemokines and

pro-inflammatory cytokines, including IL-1, IL-6, and TNF.

These cytokines, by activating their respective cascades,

amplify inflammatory responses, alter the microenvironment

and promote cell death, therefore blocking axonal regeneration

(Figure 2) (53, 54). As a result, inflammatory response induces

secondary tissue damage with detrimental consequences to

neural tissue and its functions (55). In general terms,

inflammatory response maintains a dynamic balance of pro-

inflammatory and anti-inflammatory cytokine release; therefore,

understanding the modulation of the inflammatory response

mediated by OECs, could be a successful strategy to improve

neuronal functional outcome after CNS injury.

OECs are reported to express chemokines/cytokines and their

cognate receptors, such as chemokine (CXC motif) ligand 1

(CXCL1), a neurotrophic chemoattractant, which may have a

role during embryogenesis or after OECs transplantation in the

injured site, CXCL12, CXCL4, chemokine (CX3C motif) ligand 1

(CX3CL1) (56) that have been proven to play pivotal roles in

neuroinflammation, acting as a signaling factor for the

recruitment of neutrophilis and various leucocytes (57). The

inflammatory monocyte chemotactic protein 1 (MCP-1), and its

receptor CCR2 specifically mediates monocytes chemotaxis,
Frontiers in Immunology 04
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injury. Moreover, nuclear factor kappa B (NF-kB)-mediated

signaling pathway, responsible for microglia and astrocytes

activation after SCI, is activated by TROY, a member of the

tumor necrosis factor (TNF) receptor superfamily, which has been

detected via in situ hybridization and immunohistochemistry

investigations in the olfactory system (58). OECs or OEC-

released molecules are able to inhibit NF-kB activation, so

exerting a neuroprotective role after CNS injury. OECs also

release several signaling molecules, such as TNF and IL-1b, to
recruit macrophages, thus modulating inflammation and

neurodegeneration (14, 44, 59). In this context, OECs could

modulate microglia-astrocyte responses by secreting anti-

inflammatory cytokines such as IL-4, IL-10, IL-13 and TGF-b,
capable to downregulate the pro-inflammatory factors IL-1b, TNF
and IL-6 (Figure 2) (60–62). A recent study showed that IL-1a
and IL-1b, which are significantly involved in inflammatory

responses, were down-regulated after OEC transplantation at

the injury site. This response is probably related to IL-1 receptor

antagonist (IL-1Ra) mechanism, which is a competitive inhibitor

of IL-1 by binding to its receptor (Figure 2). Therefore, OECs,

reaching the site of the lesion, are subjected to pro-inflammatory

factors released by the activated microglia, and secrete IL-1Ra in

response, thus reducing microglial activation and pro-

inflammatory factor production and limiting microglia-

mediated pro-inflammatory cytokine release (63).

It is worth noticing that the abovementioned OEC-derived

anti-inflammatory factors participate in modulating cell

survival, proliferation and migration, thus reducing glial scar

and promoting regeneration after SCI (64). IL-4 and TGF-b have
a direct impact on neural survival given their modulatory effects

on acute and chronic immune cell responses and on their
FIGURE 2

Schematic overview of the involvement of OECs in inflammation modulation after SCI. Neuronal damage induces pathological increasing of
inflammatory responses, which promotes microglia polarization from a resting state to a M1-phenotype and astrocyte activation. OECs are able
to modulate these inflammatory events by interacting directly or indirectly with microglia and astrocytes, thus ameliorating the detrimental
condition of the altered microenvironment. OEC, olfactory ensheathing cell; SCI, spinal cord injury; TNF, tumor necrosis factor; IL, interleukin;
TGF-b, transforming growth factor b, IL-1Ra: interleukin-1 receptor antagonist.
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expression of detrimental molecules including nitric oxide (NO),

reactive oxygen species (ROS), caspase and their secretion of

neurotrophins (65).

Taken together these findings suggest that OECs delay the

activation of microglia or macrophages and reduce the peak of

the immune response, leading to neuroprotection against

inflammatory damage.
3 OEC bystander effects on cell fate
and differentiation

The ability of OECs in regulating neuroprotection is enhanced

by the release of several protective factors in the microenvironment

as OEC-conditioned medium (OEC-CM) promotes the

differentiation of neural stem cells (NSCs) (66). Specifically, using

OEC-CM, it has been shown that soluble factors larger than 30

kDa, which are secreted by OECs, promote migration,

differentiation and maturation of NSCs within 7 days. By

immunocytochemical analysis, it has been shown that NSCs in

contact with OEC-CM, exhibited an up-regulation of

neurofilament (NF), beta-III-tubulin (TUJ1), GFAP and a down-

regulation of nestin, suggesting a differentiation of NSCs toward

neuronal and astrocytic lineages. In addition, the presence in NSCs

of synapsin-1, which is involved in the neurotransmitter release

mechanism, has also been demonstrated, supporting the effect of

OEC-CM in driving and/or stimulating neuronal differentiation.

This study also claims that differentiation of NSCs, promoted by

OECs, also occurs through indirect contact (67). OECs also exert

their trophic effects directly through the secretion of factors

involved in neurogenesis, neural differentiation and response,

including both NGF and BDNF, small proteins including

neurturin (NTN), CNTF, GDNF (68, 69), and heavier soluble

factors including secreted protein acidic and cysteine rich (SPARC),

sonic hedgehog protein (SHH), matrix metalloproteinase 2 (MMP

2), fibronectin, and laminin (70–72) (Table 1). Moreover, TGF-b3
secreted by OECs is involved in the regulation of neuronal
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(76). The potential of OECs to induce differentiation of NSCs

into neurons has also been demonstrated by functional

electrophysiological studies that showed that NSC-derived

neurons exposed to OEC-CM acquire active electrophysiological

properties, expressing sodium and potassium channels suitable for

onset of action potentials similar to primary neuronal cells (66). In

vivo studies demonstrated that OECs are able to promote NSC

differentiation into dopaminergic neurons or cholinergic neurons,

pointing out that OECs can induce NSC differentiation toward a

specific neuron subtype (77, 78). OEC-induced effects would be

exerted by influencing Wnt/beta-catenin signaling pathway, which

is important in the proliferation and self-renewal of adult NSCs (79,

80). Indeed, it was shown that CM from Wnt-activated OECs

(wOEC-CM) stimulates the proliferation and differentiation of

NSCs, by increasing the percentage of Ki67/Sox2 double positive

cells, maintaining Nestin expression under differentiation

condition, but also stimulating NSC differentiation into Tuj1-

positive neurons (81).

Many reports have shown that hypoxic preconditioned stem

cells survive longer, exhibiting an efficient neuronal

differentiation and showing enhanced paracrine effects (82,

83). Wang et al. demonstrated that CM from hyperthermia-

conditioned OECs induces NSC neural differentiation more

efficiently, thanks to the upregulation of HIF-1a, leading to

synergistic effects that improve differentiation (84). By using

OEC-CM under hypoxic condition, olfactory mucosa MSCs

(OM-MSCs) are stimulated to differentiate into dopaminergic

neurons. Specifically, OEC-CM under hypoxia upregulates

transcriptional factors mediated by HIF-1a and it is involved

in the development of dopaminergic neurons from OM-

MSCs (85).

MSCs, including adipose tissue-derived MSCs (ASCs), are a

type of non-hematopoietic stem cells which under appropriate

conditions can give rise to several precursors (86–90). OEC-CM

is also implicated in the differentiation ASCs toward a neuronal

phenotype (91). ASCs treated with OEC-CM expressed markers
TABLE 1 OEC released factors involved in neural differentiation and neurogenesis.

Factors Molecular weight Functions References

Brain Derived Neurotrophic Factor (BDNF) 26.7 kDa Involved in the promotion of Schwann cell migration (69)

Ciliary Neurotrophic Factor (CNTF) 22.9 kDa Support neurogenesis (67)

Fibronectin 440 kDa Promote neural progenitor cell migration (73)

Laminin 400 kDa Involved in neural progenitor cell differentiation (74)

Matrix Metalloproteinase 2 (MMP2) 67 kDa Important for neural cell migration (75)

Nerve Growth Factor (NGF) 26.7 kDa Involved in the promotion of Schwann cell migration (69)

Neurturin (NTN) 23.6 kDa Support neurogenesis (67)

Sonic Hedgehog protein (Shh) 67 kDa Induce NSC differentiation into neurons (72)

Secreted Protein Acidic and Cysteine Rich (SPARC) 43 kDa Implicated in neural differentiation and in neurite extension (70)
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of progenitor and mature neurons, including Nestin, protein

gene product 9.5 (PGP 9.5), and microtubule-associated protein

2 (MAP2) in a time-dependent manner and exhibited neuron

like morphology, while they were negative for GFAP and A2B5,

markers of astrocytes and oligodendrocytes, respectively (92). In

addition, although a significant increase of Nestin, PGP 9.5,

Synapsin I, and GFAP was reported, MAP2 was identified as the

most representative, thus suggesting a greater tendency toward

the neuronal phenotype (93). This result is confirmed by another

study where a neural-like connexin expression was induced in

ASCs after OEC-CM treatment (94–98). On the other hand,

when ASCs were co-cultured with OECs using 3D collagen

scaffolds, they differentiated into cells with OEC-like

morphology and were reported to be p75NTR and Nestin

positive and GFAP negative. These co-cultured ASCs also

expressed various functional markers of mature OECs: BDNF,

GDNF and the myelin proteolipid protein (PLP). Thus, these

results demonstrate that using specific scaffolds, ASCs might

differentiate into OEC-like cells in vitro (99). Altogether, it can

be inferred that OECs play a key role in cell differentiation

toward a neural type and are able to prompt MSC differentiation

towards neural phenotype and even to mature OECs. As such,

these intrinsic properties of OECs may be relevant for

therapeutic approaches aiming at CNS tissue regeneration.
4 OECs for tissue regeneration
and transplantation

In recent years, OECs have been investigated for their

reparative ability following acute or chronic lesions that

involve CNS. As already mentioned, it appears that OECs may

play a crucial role in the treatment of SCI (100–103). Usually,

SCI severely affects CNS microenvironment, leading to a series

of deleterious processes such as inflammation and hypoxia, and

progressive cell death (104). OECs exhibit several characteristics

that enable them to have beneficial effects in neuro-repairing

potential. They are able to reduce the inflammatory response

following injury, thereby decreasing the size of the glial scar and

promoting angiogenesis. In addition, they promote regrowth,

plasticity and remyelination of axons (105–107). OECs can also

interact with resident cell populations, particularly astrocytes

and meningeal cells, either within the window of the glial scar

formation or once the scar has already established (108, 109).

Thus, in addition to penetrate glial tissue, OECs also produce

extracellular matrix proteases and can reduce astrocytic

reactivity. Overall, these properties may reduce glial scar

formation and all consequential limitations, which strongly

limit axonal regrowth and injury bridging (110). In SCI animal

models, grafted OECs exhibit the ability to promote axon
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transplantation improves sensorimotor and autonomic nerve

recovery, also reducing neuropathic pain due to SCI. OECs

secrete a number of neurotrophic factors, which allow the

establishment of a favorable microenvironment for the

regrowth of damaged axons. Undoubtedly, it is crucial to have

functional recovery in transplanted animals in order to consider

OEC transplants a successful therapy for the treatment of SCI

(107). A study of Ramon-Cueto et al., revealed that adult rats

undergoing spinal cord resection and subsequent OEC

transplantation, showed both functional and structural

recovery. In particular, from 3 to 7 months after surgery, all

transplanted animals improved locomotor functions and

sensorimotor reflexes (103). To show actual recoveries in

transplanted animals, electrophysiological studies were also

carried out, demonstrating that animals with transplanted

OECs not only exhibited functional recovery, but also showed

recovery of action or evoked potentials (112, 113). Studies on

OEC transplantation have also been carried out in human

clinical in many countries around the world. Completed

clinical trials have demonstrated the safety and efficacy of

OEC transplantation, but recovery in patients is often highly

variable. This variability may be related to a number of factors,

such as difficulties in establishing master cell banks and working

cell banks, cell purity, and transplantation techniques. Forty-

four eligible trials, involving 1,266 SCI patients, investigated

several cell-based treatments to improve functional independent

misure (FIM) score. Among them, OEC transplantation proved

to ameliorate the FIM score at 6 months, thus improving disease

prognosis (114). However, a common consequence in these

studies is the poor survival of transplanted cells, with survival

rates ranging from 0.3 percent to 3 percent. This issue is

probably related to the fact that when OECs are isolated,

expanded in vitro, and then transplanted into the injury site,

their therapeutic potential is reduced, probably due to bleeding,

damaged tissue and anatomical structures and hostile

microenvironment present in the lesioned area (115–117).

Therefore, in vitro models challenging OECs, by mimicking

the injured tissue microenvironment, are needed. For example, it

has been found that preconditioned OECs showed increased

migratory, phagocytic and immunomodulatory capacities. To

improve their efficacy and yield upon graft, cells could be then

exposed to a low oxygen level, or they could grow into three-

dimensional scaffolds before being transplanted into the

lesion (116).

Another effective strategy for SCI treatment is the co-

transplantation of NSCs and OECs. Indeed, co-grafting of NSCs

and OECs ameliorate SCI by inhibiting receptor-interacting protein

kinase 3 (RIP3)/mixed lineage kinase domain-like protein (MLKL)-

mediated necroptosis and stimulating NSC proliferation in the

medulla. Evidence reports that OECs are able to increase NSCs
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proliferation and differentiation and, importantly, co-grafts

significantly support NSCs survival, opening the way for a

potential stem cells-based regenerative approach. In this way,

neural regeneration could be improved exploiting the synergistic

effect of NSCs and OECs (118). In addition, a study by He Y. t al.,

showed that curcumin-activated OECs (aOECs) effectively improve

neuronal differentiation of NSCs even under conditions of

inflammation, and co-transplantation of aOECs and NSCs

enhaces the neurological recovery of rats after SCI, providing a

hopeful strategy for SCI repair by co-transplantation of aOECs and

NSCs (119). Besides OEC transplantation, OECs-CM has also been

shown to have therapeutic effects for SCI, enhancing functional

recovery and axonal regeneration probably because of various factors

previously secreted by OECs in their culture medium (120). In this

context, exosomes derived from OECs (OEC-Exo) also promote

neuronal survival and improve axon condition, facilitating functional

recovery following SCI. OEC-Exo can be internalized by microglia/

macrophages and are able to modulate their polarization. The main

ability of OEC-Exo consists in an immunomodulatory function that

shape immune microenvironment towards a pro-regenerative

phenotype, supporting OEC-Exo as neuroprotective and

regenerative strategy for CNS diseases (121). Furthermore, OECs

secrete, via exosomes, alpha B-crystallin (CryAB), an anti-

inflammatory protein, leading to an intercellular immune

response. Thus, CryAB, together with other OEC-secreted factors,

may ameliorate the hostile growth environment created by

neurotoxic reactive astrocytes following CNS injury (122).

SCI microenvironment is characterized by a prevalence of

M1-like pro-inflammatory macrophages over M2-like. This

phenomenon results in a microenvironment that is unfavorable

for cell differentiation and regeneration. Therefore, for a better

potential regenerative strategy, a fundamental role is played by

immune cell modulation (123, 124). Macrophages are a

prominent population in SCI microenvironment, also able to

alter the activity of transplanted OECs. However, the interaction

appears to be reciprocal, as OECs express MIFs and can also lead

to reduced macrophage recruitment in vitro (45). To enhance this

interaction in favor of OECs by improving the cellular

microenvironment at the injury level, a study of vascular

endothelial growth factor (VEGF) and platelet-derived growth

factor (PDGF) modulation in the SCI microenvironment was

carried out. It was shown that CM from macrophages exposed to

PDGF or combined VEGF and PDGF, under inflammatory

conditions, increased OEC phagocytosis, also modulating the

expression of genes related to nerve repair. Specifically, both

PDGF and VEGF/PDGF reduced pro-inflammatory cytokines

(i.e., TNF) by decreasing NF-kB translocation, promoting

phagocytosis of myelin debris. For this reason, administering

growth factors before OEC transplantation could improve

transplant success and neural recovery (125).
Frontiers in Immunology 07
5 Conclusions

Our knowledge of the properties, functions, and therapeutic

potential of OECs is markedly increasing. OECs can be

considered as a good candidate for cell-replacement and have

shown remarkable capabilities to exert neuroprotective

mechanisms. The uniqueness of OECs appears to collaborate

with other recruited cell types to orchestrate the molecular

signaling responsible for resolving the inflammatory state and

creating a favorable environment for neural regeneration.

However, the development of human OEC transplants for

clinical application in SCI still requires an in-depth understanding

of the cellular and molecular biological characteristics of OECs. It

seems now clear that OECs expanded in vitro and grafted back in

vivo show limited therapeutic potential, probably due to the

hostile microenvironment at the damaged tissue. In fact, a

major issue limiting spinal cord regeneration is also the poor

survival of transplanted cells (126). In order to describe the

therapeutic potential of OECs it appears critical to characterize

OEC gene expression aiming at identifying OEC-specific markers.

Indeed, the most used marker to identify OECs, p75NTR, is also

expressed in vitro by Schwann cells (10), astrocytes and lamina

propria MSCs (127). The lack of a solid method for OECs

identification, isolation and purification is among the main

factors limiting reproducibility and reliability of transplantation

studies. Furthermore, without a unique method for OEC

identification, it is possible that their repair capacity is

influenced by the presence of the various cells types co-existing

alongside OECs.

One of the most effective approaches in transplantation of

OECs is co-grafting with NSCs, achieving better therapeutic

effects. Indeed OECs, by releasing trophic factors into the

microenvironment, also play an important role in promoting

the differentiation of NSCs, able to change their morphology,

stimulating their differentiation towards mature neurons.

Despite the variability of results reported and limiting

factors, OECs should be considered as valuable cell-based

approach for SCI and a potential candidate to promote cell

differentiation and regeneration. Finally, a deeper understanding

of OEC anti-inflammatory properties and their interplay with

other cells involved in neuro-repairing is crucial for the

development of future therapies, using transplantation of

OECs to treat neural injuries.
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