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Simple Summary: Lung cancer (LC) is the tumor with the highest global mortality rate. Novel
personalized therapies are currently being tested (e.g., targeted inhibitors, the immune-checkpoint
inhibitors), but they cannot yet prevent the very frequent relapse and generalized metastases observed
in a large population of LC patients. Currently, there is an urgent need for novel reliable biomarkers for
the prognosis and diagnosis of LC. Through the systematic analysis of multiple deposited expression
datasets, this report aims to explore the role of the Yin-Yang 1 (YY1) transcription factor and its target
the Raf Kinase Inhibitory Protein (RKIP) in LC. The computational analysis suggested the predictive
diagnostic and prognostic roles for both YY1 and RKIP stimulating further studies for proving their
implication as novel biomarkers, as well as therapeutically druggable targets in LC.

Abstract: Lung cancer (LC) represents a global threat, being the tumor with the highest mortality rate.
Despite the introduction of novel therapies (e.g., targeted inhibitors, immune-checkpoint inhibitors),
relapses are still very frequent. Accordingly, there is an urgent need for reliable predictive biomarkers
and therapeutically druggable targets. Yin-Yang 1 (YY1) is a transcription factor that may work
either as an oncogene or a tumor suppressor, depending on the genotype and the phenotype of the
tumor. The Raf Kinase Inhibitory Protein (RKIP), is a tumor suppressor and immune enhancer often
found downregulated in the majority of the examined cancers. In the present report, the role of both
YY1 and RKIP in LC is thoroughly explored through the analysis of several deposited RNA and
protein expression datasets. The computational analyses revealed that YY1 negatively regulates RKIP
expression in LC, as corroborated by the deposited YY1-ChIP-Seq experiments and validated by
their robust negative correlation. Additionally, YY1 expression is significantly higher in LC samples
compared to normal matching ones, whereas RKIP expression is lower in LC and high in normal
matching tissues. These observed differences, unlike many current biomarkers, bear a diagnostic
significance, as proven by the ROC analyses. Finally, the survival data support the notion that both
YY1 and RKIP might represent strong prognostic biomarkers. Overall, the reported findings indicate
that YY1 and RKIP expression levels may play a role in LC as potential biomarkers and therapeutic
targets. However, further studies will be necessary to validate the in silico results.

Keywords: lung cancer; Yin-Yang 1 (YY1); raf kinase inhibitor protein (RKIP); biomarkers;
personalized anti-cancer therapy
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1. Introduction

Lung cancer (LC) represents the second most widely diagnosed cancer, as well as the
first cause of death due to a malignancy. An estimate of 2.2 million new LC diagnoses
and about 1.8 million deaths for LC were reported during the year 2020 [1]. The most
diffused form of LC is non-small cell lung cancer (NSCLC), with a prevalence of about
90%. The remaining 10% of LC cases are represented by small cell lung cancer (SCLC) [2].
NSCLC can be further classified into different subcategories, depending on the histological
and molecular features, and including: adenocarcinoma (A), squamous cell carcinoma (S),
adeno-squamous carcinoma (AS) and large cell carcinoma (L) [3].

The main risk factor for LC is tobacco consumption, although additional exposures
might have a profound effect by triggering LC and other respiratory tumors [4,5]. Currently,
the 5-year survival rate for individuals diagnosed with LC varies between 5% and 20%,
depending on the tumor stage, as well as the geographical area, underlining the major
role played by the individual genetic background [1]. The diagnosis of LC is often made
when the disease has already progressed. Recently, novel diagnostic approaches, including
low-dose computed tomography (LDCT) for high-risk subjects, are forestalling the time of
diagnosis [6–8].

Regarding the available treatment options, early-stage NSCLC is preferentially treated
with surgery, although such procedure might be followed by a high rate of relapses accom-
panied by metastasis formation, thus lowering the overall survival probability [9,10]. For
advanced LC, different therapies are used, such as platinum-based chemotherapy and/or
radiation therapy [11]. Additionally, during the last decade, novel therapeutic approaches
have been developed, including the use of targeted therapies against specific kinases or
receptors found mutated or overexpressed in specific LC cases. Another novel approach
is based on targeting the LC patient’s immune system towards the administration of the
immune-checkpoint inhibitors (ICIs) [12–16].

The current use of targeted therapies, as well as ICIs, has generally improved the
outcome in NSCLC patients. In fact, for these patients the 2-year survival rate increased
from 34% to 42% [2]. However, an extended proportion of LC patients does not harbor
the standard driver mutations and cannot be treated with available targeted therapies [17].
Furthermore, ICI-treated patients often develop resistance and relapse, as well as life-
threatening immune adverse-related events [18].

Although several biomarkers have been suggested for the diagnosis and prognosis of
LC, in the era of precision medicine, there is still a need to identify “tailored markers” that
can be proposed in clinical setting for early diagnosis, prognosis and targeted therapy [19].
Additionally, it would be beneficial to identify diagnostic biomarkers able to optimize the
current LDCT protocols, allowing, for example, the identification of the false positives, as
well as the stratification of CT-positive subjects [20,21]. Among the challenges currently
faced by research on LC biomarker development, there is the need for a deeper knowledge
of lung carcinogenesis at both molecular and cellular levels. Moreover, although several
novel biomarkers of prognosis have been discovered, there is no robust consensus yet
regarding their selection or integrated combination. Finally, the clinical validation of such
biomarkers is currently demanding, given its intrinsic resource and time needs [22].

Yin Yang 1 (YY1), a C2H2-type Zinc finger transcription factor, is very conserved among
species. YY1 modulates the expression of about 7% of the human genes, hence affecting
many different cellular functions, such as cellular proliferation and survival [23,24]. YY1 can
modulate the transcription of target genes directly by binding their regulatory regions [24].
Alternatively, YY1 might interact either with transcriptional co-activators/co-repressors or
with chromatin modulating enzymes, thus indirectly regulating the transcription of their
targets [25].

In cancer, YY1 plays a controversial role [25–27]. Regarding LC, YY1 has been seen
to work as an oncogene, although the mechanism is still not well defined [24]. It was
observed that LC patients with higher levels of YY1 expression develop larger and poorly
differentiated tumors with lymph node metastases [28]. Moreover, YY1 overexpression



Cancers 2022, 14, 922 3 of 19

in LC has been reported to promote epithelial-to-mesenchymal transition (EMT) [29,30]. In
LC cells and animal models, YY1 was shown to bind various promoters and to induce
the expression of several oncogenes, such as the long noncoding RNA-plasmacytoma
variant translocation 1, Small Nucleolar RNA Host Gene 16, mitochondrial ribosomal
protein L42, Zinc Finger Protein 322 [28,31–33]. YY1 also interacts with other co-factors to
modulate several targets, such in the case of the HIF-1α, whose interaction promotes the
hypoxia-induced stemness of LC [34].

Raf kinase inhibitor protein (RKIP), whose gene is also known as PEBP1, is involved in
the pathogenesis of many cancers, where it has been shown to have pleiotropic functional
activities, including the control of cellular proliferation, cell survival, EMT and chemo-
radio-immuno-resistance [35]. In the vast majority of cancers, RKIP expression has been
found to be downregulated or even absent, when compared to its abundance in the adjacent
normal tissues [36]. In LC, RKIP has been found to be downregulated at both the transcript
and protein levels. Additionally, its lower expression has been associated with higher
tumor stage accompanied by lymph nodes metastasis formation [37–42]. Yet the pathways
behind the regulation of RKIP in LC remain to be fully elucidated [43].

In cancer, YY1 and RKIP are interconnected and able to modulate each other’s ex-
pression in an inverse relationship, through several regulatory loops [44]. However, the
specific molecular mechanisms involved in LC have not yet been clarified. The present
computational investigation aims to better characterize the role of YY1 and RKIP in LC
and, more specifically, in NSCLC. The analysis of chromatin binding suggested a direct
and negative regulation of YY1 on the RKIP gene expression. From the computational
assessment of a large collection of LC RNA expression datasets and one protein dataset, it
was deduced that YY1 and RKIP were inversely correlated. Together, the two factors might
represent a robust two-gene signature with predictive diagnostic, as well as prognostic
value in LC, although future validation in LC patients will be needed to corroborate this
computational analysis.

2. Materials and Methods
2.1. Chromatin Binding Prediction and Chromatin-Immunoprecipitation Sequencing (ChIP-Seq)
Data Analysis

YY1 DNA-binding prediction towards the RKIP regulatory region was examined by
using the JASPAR-2020 online matrix tool [45]. The YY1 TF ChIP-Seq experiments on the
RKIP gene regulatory regions deposited in ENCODE 3 were analyzed using the University
of California Santa Cruz (UCSC) Genome Browser. In particular, the integrated regulation
from ENCODE tracks was used [46].

2.2. Dataset Repositories

The Cancer Genome Atlas (TCGA) lung squamous cell carcinoma (LUSC) and lung
adenocarcinoma (LUAD) normalized expression data for YY1 and RKIP transcripts were
obtained by using the UCSC Xena online exploration tool [47]. The Gene Expression
Omnibus (GEO) database deposited LC microarray datasets (Table 1) and in particular the
derived normalized expression data for YY1 and RKIP transcripts were obtained by using
the R2 Genomics Analysis and Visualization Platform [48].
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Table 1. Gene Expression Omnibus (GEO) database-deposited LC microarray datasets.

GEO ID Contributors Platform Tumor
Samples

Matching
Non-Tumor Samples

Pearson
Correlation p-Value Reference

GSE3141 Bild AH et al. Affymetrix
HG-U133 2.0 114 0 −0.2054 0.0283 [49]

GSE2109 n.a. Affymetrix
HG-U133 2.0 121 0 −0.2657 0.0032 n.a.

GSE43580 Peitsch MC et al. Affymetrix
HG-U133 2.0 150 0 −0.2916 0.0003 [50]

GSE10072 Jen J et al. Affymetrix
HG-U133A 58 49 −0.3174 0.0009 [51]

GSE33532 Muley T et al. Affymetrix
HG-U133 2.0 80 20 −0.5154 <0.0001 n.a.

GSE19188 Hou J et al. Affymetrix
HG-U133 2.0 91 65 −0.1840 0.0215 [52]

GSE18842 Farez-Vidal ME et al. Affymetrix
HG-U133 2.0 46 45 −0.4268 <0.0001 [53]

n.a., not associated.

YY1 and RKIP protein expression data from Clinical Proteomic Tumor Analysis Con-
sortium (CPTAC) LC dataset data were obtained from the online tool UALCAN analy-
sis [54,55].

YY1 and RKIP gene expressions and cluster distributions within the single LC cell
RNA-Seq datasets (Table 2) were analyzed by using the following three interface plat-
forms: the Broad Institute Single Cell Portal, the Cambridge Portal of the Human Cell Atlas
(EMBL-EBI) and the user-friendly InteRface tool to Explore Cell Atlas (URECA, Korean
Bioinformation Centre KOBIC) [56–58]. The cell clustering and t-Distributed Stochastic
Neighbor Embedding (t-SNE) methods used for GSE131907 dataset were previously pub-
lished in detail in [59], and the correlated t-SNE plots were obtained through the use of
the URECA visualization interface. Meanwhile, the cell clustering and t-SNE methods for
E-MTAB-6653 and E-MTAB-6308 datasets were previously published in [60,61] respectively,
and the associated t-SNE plots were obtained by using the EMBL-EBI single-cell portal
visualization interface.

Table 2. Single RNA-Seq datasets of LC cells.

Study ID Technology Number of Cells Analysis Portal Reference

SCP542 Droplet-based scRNA-seq (H sapiens) 53,513 Single cell Portal (Broad Institute) [62]
GSE152607 Illumina NextSeq 500 (M musculus) 3891 Single cell Portal (Broad Institute) [63]
GSE103354 Illumina NextSeq 500 (M musculus) 7193 Single cell Portal (Broad Institute) [64]
GSE131907 Illumina HiSeq 2500 (H sapiens) 45,149; 42,995 URECA (Kobic Center) [59]

E-MTAB-6653 Droplet-based scRNA-seq (H sapiens) 33,208 Single cell expression atlas
(EMBL-EBI) [60]

E-MTAB-6308 Droplet-based scRNA-seq (H sapiens) 56,771 Single cell expression atlas
(EMBL-EBI) [61]

2.3. Statistical Analyses

Statistical analyses were performed using GraphPad Prism version 9.0 for Windows
(GraphPad Software, La Jolla, CA, USA). The results were presented as average ± standard
deviation (SD) or as median. Single parameter comparisons between two groups were
conducted using two-tailed unpaired Student’s t-test. Single parameter comparisons be-
tween three or more groups were performed using one-way analysis of variance (ANOVA)
with Tukey’s or Dunnett’s multiple comparison test. The YY1 and RKIP correlations in all
datasets were evaluated by calculating the Pearson’s correlation coefficient.

The receiver operating characteristic curve (ROC) analyses and subsequent areas
under the curve (AUC) calculations were used to predict both YY1 and RKIP diagnostic
relevance. In particular, for each specific gene analyzed, normalized expression levels were
divided into two classes (i.e., normal vs. tumor, low vs. high expression or low vs. high
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stage/grade). Subsequently the two groups were analyzed through the ROC function
analysis (GraphPad Prism version 9.0). The time-dependent ROC analyses were used to
predict both YY1 and RKIP prognostic relevance. For this purpose, a multiple logistic
regression analysis was performed to analyze the survival data. The three/four variables
considered in each analysis were respectively: the survival outcome, the survival time,
YY1 or/and RKIP normalized gene expressions. Through the multiple logistic regression
analysis (GraphPad Prism version 9.0), the AUC relative to each ROC curve (hence the
gene prognostic relevance) was calculated for each gene, either alone or in combination.

The survival analyses were conducted by using the Kaplan–Meier method. Survival
curves were compared through the Log-rank (Mantel-Cox) test for trend. For all statistical
analyses, differences were considered significant with p-values < 0.05; with * p < 0.05;
** p < 0.01; *** p < 0.001; **** p < 0.0001.

3. Results
3.1. The RKIP Gene Expression Is Directly Repressed by the YY1 Transcription Factor

To explore the possibility that the RKIP gene could be directly regulated by the YY1
TF, an in silico prediction analysis was performed. The JASPAR prediction matrix tool
was used to analyze the transcription regulatory region (TRR), ranging from −2000 bp to
+1000 bp around the transcription starting site (TSS) of the RKIP gene (Figure 1A,B). The
analysis showed that YY1 may bind the promoter of RKIP at the level of seven different
binding sequences, with a relative score included between 80.4% and 87.5% (Figure 1C).
To further corroborate the in silico results, deposited YY1-ChIP-Seq data from several
experiments performed in cellular specimens were analyzed. As reported in Figure 1D
and Supplementary Table S1, the experiments demonstrated the existence of nine different
binding clusters located between −15,000 bp and +5000 bp around the RKIP TSS, for a
total of 23 binding peaks, each one corresponding to the binding of YY1 TF to the DNA of
the RKIP gene regulatory region. Overall, the results showed in Figure 1 suggested that
YY1 TF may directly bind and regulate RKIP expression in both normal and transformed
human cells.

Figure 1. The YY1 TF binds the RKIP gene regulatory regions. (A) JASPAR prediction matrix of YY1
TF DNA binding sequence. (B) Schematic of RKIP transcription regulatory region (TRR) and the gene.
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JASPAR analysis was performed between −2000 bp and +1000 bp around the Transcription Starting
Site (TSS) of the RKIP gene. (C) JASPAR-predicted binding sites of YY1 within the RKIP gene
regulatory region with location, strand and relative binding score (with 80% cutoff). (D) ENCODE
3 YY1-ChIP-Seq-deposited experiments revealed nine YY1-binding clusters, for a total of 23 YY1-
binding peaks within eight different experiments (normal and tumor human cells). The genomic
region analyzed ranges from 15,000 bp upwards to 5000 bp downwards the TSS of the RKIP gene.

3.2. TCGA Lung Cancer Datasets Analyses Disclose Diagnostic and Prognostic Roles for Both
YY1 and RKIP

To study the predictive significance of both YY1 and RKIP in LC, two LC TCGA
datasets were analyzed: LUSC and LUAD, both including tumor samples and matching
normal lung samples. The Pearson’s correlation analysis demonstrated that YY1 and RKIP
gene expressions showed a very significant and negative correlation in both LUSC and
LUAD samples (−0.2865 and −0.2093, respectively, both with p < 0.0001; Figure 2A,D).

To assess the diagnostic potential of both YY1 and RKIP, the expression levels of both
genes were compared between tumor (T) and normal (N) matching samples. Interestingly,
in both the LUSC and LUAD datasets, YY1 was significantly upregulated in T compared
to N, whereas RKIP was significantly downregulated in T compared to N (Figure 2B,E,
all four with p < 0.0001). Consistently, the ROC curves in Figure 2C,F showed an AUC
of 0.9535 and 0.8505 for YY1 (both p < 0.0001) and of 0.8438 and 0.8274 for RKIP (both
p < 0.0001), in LUSC and LUAD datasets respectively. These high and significant AUC
performances suggested that both YY1 and RKIP expression levels can be considered as
diagnostic discriminators between the non-transformed and the transformed lung samples.

Interestingly, for the LUAD samples, the subsequent survival analyses and log-rank
tests showed that both YY1 and RKIP had a significant prognostic role. In fact, considering
the median expression as cutoff value, the Overall Survival (OS), the Disease-Specific Sur-
vival (DSS) and the Progression-Free Interval (PFI) were significantly worse in patients with
higher YY1 expression and with lower RKIP expression (Figure 2G,H). Correspondingly, the
time-dependent ROC curves reported in Figure 2I showed significant AUC performances,
for YY1 and RKIP considered either separately or in combination.

Overall, the results reported in Figure 2 demonstrated that YY1 and RKIP gene expres-
sion levels might be robust predictors of diagnosis in LUSC and LUAD patients. Moreover,
YY1 and RKIP gene expression levels might be used as strong prognostic predictors in
LUAD cases, alone and in combination, as a two-gene prognostic signature.

3.3. Lung Cancer GEO Dataset Analyses Confirm Both the Diagnostic and Prognostic Functions of
YY1 and RKIP

To further corroborate the diagnostic and prognostic functions of YY1 and RKIP gene
expression levels in LC, seven distinct LC Gene Expression Omnibus (GEO) datasets were
analyzed (Table 2). Firstly, the Pearson’s correlation analysis demonstrated that YY1 and
RKIP gene expression levels are negatively correlated significantly within all the datasets
analyzed (Table 2).

In particular, the GSE3141 dataset composed of 114 NSCLC samples showed a Pear-
son’s correlation value of −0.2054 (p = 0.0283; Figure 3A). When the samples were stratified
based on their staging, while YY1 showed no significant difference, RKIP was lower in
higher stage samples (Stages III and IV) compared to lower ones (Stages I and II; Figure 3B).
Correspondingly, the ROC analysis showed a significant AUC performance for RKIP
expression in function of the tumor stage (0.6699, with p = 0.0153; Figure 3C).
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relative expression of YY1 (left) and RKIP (right) in N versus T samples. (C) LUSC, receiver operat-
ing characteristics (ROC) curves and relative areas under the curve (A) for YY1 (green) and RKIP 
(purple) in LUSC samples. (D) Lung adenocarcinoma (LUAD), Pearson’s correlation between YY1 
and RKIP gene expressions in T and N matching tissues. (E) LUAD, relative expression of YY1 (left) 
and RKIP (right) in N versus T samples. (F) LUAD, ROC curves and relative A for YY1 (green) and 
RKIP (purple) in LUAD samples. (G) LUAD, Overall Survival (OS), Disease-Specific Survival (DSS), 
Progression-Free Interval (PFI) when patients are stratified in function of YY1 expression (median 
expression value is considered to be cutoff). (H) LUAD, OS, DSS, PFI when patients are stratified in 
function of RKIP expression (median expression value is considered to be cutoff). (I) LUAD, time-
dependent ROC analysis and relative A for YY1 (green), RKIP (purple) and YY1 plus RKIP (orange), 
in correlation with OS (left), DSS (middle) and PFI (right). * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 
0.0001. 

Figure 2. TCGA lung cancer datasets analyses reveal the diagnostic and prognostic values of YY1 and
RKIP gene expressions. (A) Lung squamous cell carcinoma (LUSC), Pearson’s correlation between
YY1 and RKIP gene expression in Tumor (T) and Normal (N) matching tissues. (B) LUSC, relative
expression of YY1 (left) and RKIP (right) in N versus T samples. (C) LUSC, receiver operating
characteristics (ROC) curves and relative areas under the curve (A) for YY1 (green) and RKIP (purple)
in LUSC samples. (D) Lung adenocarcinoma (LUAD), Pearson’s correlation between YY1 and RKIP
gene expressions in T and N matching tissues. (E) LUAD, relative expression of YY1 (left) and
RKIP (right) in N versus T samples. (F) LUAD, ROC curves and relative A for YY1 (green) and
RKIP (purple) in LUAD samples. (G) LUAD, Overall Survival (OS), Disease-Specific Survival (DSS),
Progression-Free Interval (PFI) when patients are stratified in function of YY1 expression (median
expression value is considered to be cutoff). (H) LUAD, OS, DSS, PFI when patients are stratified
in function of RKIP expression (median expression value is considered to be cutoff). (I) LUAD,
time-dependent ROC analysis and relative A for YY1 (green), RKIP (purple) and YY1 plus RKIP
(orange), in correlation with OS (left), DSS (middle) and PFI (right). * p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001.
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Figure 3. YY1 and RKIP are negatively correlated and show a diagnostic and prognostic value
in NSCLC GSE3141 Dataset. (A) Pearson’s correlation analysis of YY1 and RKIP gene expression
(n = 114). (B) YY1 and RKIP expression in low stage (Stage I, SI and Stage II, SII) versus high stage
(Stage III, SIII and Stage IV, SIV) specimens. (C) ROC analysis of YY1 (green) and RKIP (purple) in
NSCLC samples stratified based on cancer stage. (D) YY1 gene expression in patients stratified based
on signature oncogenes expression levels (MYCN (left), PI3K (middle), HRAS (right)). (E) RKIP
expression in patients stratified based on signature genes expression levels (MYCN (left), PI3K
(middle), HRAS (right)). (F) ROC analysis of YY1 (green) and RKIP (purple) in NSCLC samples
stratified based on MYCN (left), PI3K (middle), HRAS (right) gene expression level. (G) Survival
analysis when patients are stratified in function of their OS in relation to YY1 (left) and RKIP (right)
expression (90 percentile value is considered the cutoff). (H) Time-dependent ROC analysis and
relative A for YY1 (green), RKIP (purple) and YY1 plus RKIP (orange), in correlation with OS.
* p < 0.05; ** p < 0.01; **** p < 0.0001.

The GSE3141 NSCLC samples were further stratified based on their molecular sig-
nature, corresponding to the expression levels of three of the main driver oncogenes in
LC: MYCN, PI3K and HRAS (each divided in low and high expression sample groups).
Pivotally, in correlation to the high expression level of each oncogene, YY1 was found sig-
nificantly upregulated, whereas RKIP was found significantly downregulated (Figure 3D,E
respectively). Accordingly, the ROC analyses for MYCN, PI3K and HRAS showed high and
significant AUC performances for YY1, whereas the AUC performance was significant for
RKIP gene only in correlation to PI3K expression levels (Figure 3F).

Additionally, for GSE3141 it was possible to analyze both YY1 and RKIP gene ex-
pression levels in correlation with the OS of the NSCLC patients (with 90% percentile
considered as cutoff value). Interestingly, the log-rank test results demonstrated that both
YY1 and RKIP had a significant prognostic role. Noteworthy, the OS was significantly worse
in patients with higher YY1 expression and lower RKIP expression (Figure 3G). Coherently,
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the time-dependent ROC curves reported in Figure 3G showed high and significant AUC
performances, for both YY1 and RKIP considered separately, as well as in combination, as a
two-gene signature.

The GSE2109 dataset, consisting of 121 NSCLC patients was also analyzed. Coher-
ently with the previous datasets, YY1 and RKIP were found significantly and negatively
correlated (Pearson’s correlation −0.2657, p = 0.0032; Figure 4A). Upon stratification of the
samples based on tumor grade, YY1 was found significantly upregulated in higher grade
samples (Grades 3 and 4, G3–4) compared to lower grade ones (Grades 1 and 2, G1–2),
whereas RKIP was significantly downregulated (p = 0.0013 and p = 0.0207, respectively;
Figure 4B). Consistently, the ROC analysis showed a significant AUC for both YY1 and RKIP
(0.6822 and 0.6348, respectively; Figure 4C). Contrarywise, both YY1 and RKIP expression
levels were not significantly different when the samples were stratified based on their stage
(Supplementary Figure S1).

The GSE2019 NSCLC samples were further stratified based on their molecular signa-
tures for the expression of two driver oncogenes: MYCN and PI3K (each divided into low
and high expression sample groups). Interestingly, YY1 was significantly upregulated in
samples expressing high levels of MYCN, as well as PI3K, whereas RKIP was downregu-
lated with the higher expression of PI3K, and not MYCN (Figure 4D,F). The ROC curve
analyses reported in Figure 4E,G further demonstrated that the AUC performance was high
and significant for YY1, with values of 0.7319 and 0.6802 for MYCN and PI3K, respectively.
Meanwhile, for RKIP the AUC was significant only in correlation with PI3K expression
levels (with a value of 0.6285).

Finally, a third dataset, GSE43580, composed of 150 NSCLC patients, was analyzed. In
this dataset YY1 and RKIP were negatively correlated in a significant fashion (Pearson’s
correlation value of −0.2916, with p = 0.0003, Figure 4H). When the samples were stratified
based on their stage, neither YY1 nor RKIP were significantly affected (Figure 4I).

Overall, the results shown in Figures 3 and 4 demonstrated that in all three NSCLC
datasets analyzed, both YY1 and RKIP gene expression levels were negatively correlated.
Moreover, YY1 was significantly overexpressed in NSCLC in association with the high
expression levels of the driver oncogenes MYCN, PI3K and HRAS, whereas RKIP was
downregulated. Furthermore, the ROC analyses revealed that the assessment of YY1 levels
might be predictive for a certain NSCLC molecular subtype, as high YY1 expression was
correlated with a more aggressive phenotype characterized by the higher expressions of
MYCN, PI3K and HRAS signature oncogenes. Interestingly, low RKIP expression was corre-
lated with a more aggressive phenotype characterized selectively by the higher expression
of PI3K gene alone. Finally, the OS analysis performed for the GSE3141 dataset, showed
that both YY1 and RKIP might have a significant prognostic role in NSCLC patients. This
was further corroborated by the time-dependent ROC analysis which evidenced a high and
significant AUC performance for both YY1 and RKIP, either alone or in combination as a
two-gene signature. Hence, in agreement with the TCGA LUAD dataset (Figure 2), also in
GSE3141 the prognosis was significantly worse in patients with higher YY1 expression and
lower RKIP expression.
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(n = 121). (B) GSE2109, YY1 and RKIP expression in low grade (Grade 1, G1 and Grade 2, G2)
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MYCN expression. (F) GSE2109, YY1 (left) and RKIP (right) expression in patients stratified based
on signature oncogene PI3K expression levels. (G) GSE2109, ROC analysis of YY1 (green) and RKIP
(purple) in NSCLC samples stratified based on PI3K expression. (H) GSE43580, Pearson’s correlation
analysis of YY1 and RKIP gene expression (n = 150). (I) YY1 and RKIP expression in low stage (SI and
SII) versus high stage (SIII and SIV) specimens. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

3.4. NSCLC Mixed Dataset Analyses Suggest That YY1 and RKIP Expression Assessments Have a
Robust PreDIctive Power

Four NSCLC GEO datasets with mixed samples, T and lung matching N, were further
analyzed. All four datasets showed a significantly negative correlation between YY1 and
RKIP expressions (Figure 5A,D,G,J). In particular, in GSE10072, composed of 58 T and 49 N
matching samples, YY1 was significantly upregulated in T versus N samples, whereas
RKIP was significantly downregulated (Figure 5B). To assess the diagnostic significance,
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a ROC analysis was performed, and, as shown in Figure 5C, both YY1 and RKIP relative
AUC were high and significant (respectively 0.8318 and 0.8237, both with p < 0.0001).
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diagnostic value for YY1 and RKIP. (A) GSE10072 Pearson correlation analysis of YY1 and RKIP
expression in lung Tumor (T) and Normal (N) matching samples. (B) GSE10072, relative expression
of YY1 (left) and RKIP (right) in N versus T samples. (C) ROC analysis of YY1 (green) and RKIP
(purple) in GSE10072. (D) GSE33532 Pearson’s correlation analysis of YY1 and RKIP expression in
lung T and N matching samples. (E) GSE33532, relative expression of YY1 (left) and RKIP (right)
in N versus T samples; T samples are divided in groups depending on the histological type: A,
Adenous, AS, Adenous-squamous, S, Squamous. (F) ROC analysis of YY1 (green) and RKIP (purple)
in GSE33532. (G) GSE19188 Pearson correlation analysis of YY1 and RKIP expression in lung T and
N matching samples. (H) GSE19188, relative expression of YY1 (left) and RKIP (right) in N versus T
samples; T samples are divided in groups depending on the histological type: A, S, LC, Large Cell.
(I) ROC analysis of YY1 (green) and RKIP (purple) in GSE19188. (J) GSE18842 Pearson correlation
analysis of YY1 and RKIP expression in lung T and N matching samples. (K) GSE18842, relative
expression of YY1 (left) and RKIP (right) in N versus T samples; T samples are divided in groups
depending on the histological type: A, S. (L) ROC analysis of YY1 (green) and RKIP (purple) in
GSE18842. **** p < 0.0001.

Furthermore, in GSE33532 composed of 80 T samples and 20 matching N samples,
the correlation observed between YY1 and RKIP gene expressions was significantly neg-
ative (Pearson’s correlation −0.5154 with p < 0.0001; Figure 5D). The 80 T samples were
subsequently subdivided based on the LC type in adenocarcinomas (A), squamous cell
carcinomas (S) and adeno-squamous carcinomas (AS). Interestingly, all T types were signifi-
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cantly different from N matching samples, in terms of both YY1 and RKIP gene expressions.
In particular, YY1 was significantly highly expressed in A, AS and S samples compared
to N, while RKIP was significantly lowly expressed (Figure 5E). The ROC curve analysis
demonstrated that both YY1 and RKIP relative AUC were high and significant (respectively
0.9969 and 0.8694, both with p < 0.0001; Figure 5F).

Additionally, GSE19188, composed of 91 T samples and 65 matching N samples
showed a significantly negative Pearson’s correlation between YY1 and RKIP gene expres-
sions (correlation value of −0.1840 with p = 0.0215; Figure 5G). In this dataset, NSCLC
samples could be subdivided based on their specific subtypes in A, S and large cell car-
cinoma (LC). Importantly, all T samples showed a significant upregulation of YY1 gene
expression in comparison with N matching samples, whereas RKIP was significantly
downregulated (Figure 5H). Consistently, the ROC analysis demonstrated a diagnostic
significance for both YY1 and RKIP genes, with high significant AUC (respectively 0.8663
and 0.7235, both with p < 0.0001; Figure 5I).

Finally, for the GSE18842 dataset, made of 46 T samples and 45 N matching samples
showed a negative Pearson’s correlation between YY1 and RKIP gene expressions (−0.4268
with p < 0.0001; Figure 5J). In agreement with the above-described datasets, when T
samples were stratified based on their type in A and S, both T subtypes showed a higher
and significant expression of YY1 compared to matching N whereas RKIP expression was
significantly lower. Consistently, the ROC curve analysis demonstrated the diagnostic
significance of YY1 and RKIP gene expression levels in this dataset as well, with AUC of
0.9285 and 0.8437, respectively (both with p < 0.0001; Figure 5L).

Taken together, the results shown in Figure 5 demonstrated that within all four datasets
composed of NSCLC samples and normal matching lung N samples, both YY1 and RKIP
can be suggested as robust diagnostic discriminators.

To further corroborate the gene expression results, a protein database was analyzed.
Specifically, an NSCLC database of 111 T samples and 111 matching N samples (108 for the
phosphorylation analysis). Intriguingly, YY1 total protein, as well as phospho-YY1 forms,
p-Serine118 (pS118) and p-Serine247 (pS247), showed a significantly higher expression
in T samples compare to N ones (Figure 6A). In contrast, both total RKIP and p-serine54
(pS54) were significantly lower in T samples compared to N ones (Figure 6B). In particular,
when T samples were grouped based on their grade (G), only RKIP and pS54-RKIP levels
were significantly reduced in higher grade samples (G2 and G3) compared to G1, while
the results for YY1 were found not significant (Figure 6C,D). Although this result might
be proven in additional larger cohorts, it confirmed that the higher levels of YY1 and the
lower levels RKIP protein in T samples compared to matching N samples reflected what it
was observed at the gene levels. Consequently, YY1 and RKIP protein detection, total and
phosphorylated, might also possess diagnostic value.

3.5. Single-Cell RNA-Seq Lung Cancer Dataset Analyses Reveal That Both YY1 and RKIP Gene
Expressions Are Cell Type-Dependent

To further explore the expression of YY1 and RKIP genes in LC, novel deposited single-
cell RNA-Seq datasets were analyzed. In particular, the Broad Institute’s single cell portal
SCP542 study (53,513 cells) was analyzed with respect to 40 different and widely used
LC cell lines. Although showing different expression levels depending on the considered
cell line, YY1 and RKIP levels were inversely correlated in almost all the cell lines studied
(Figure 7A).
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Moreover, a mouse dataset of single LC cells, GSE152607 (3891 cells) was examined.
The genetic mouse LC model used showed the evolution of the lung from normal non-
transformed (NT), to hyperplastic, to finally adenomatous tissue. The transformation
timeline is 30 weeks, and it is driven by the mutation of both KRAS and TP53 oncogenes,
either alone or combined. When the single cells were analyzed and pooled based on their
adenocarcinoma stage, interestingly both Yy1 and Rkip genes increased in their expression,
and Rkip was expressed in a higher percentage of cells compared to Yy1 (Figure 7B,C). While
Yy1 reflects what reported above in human LC datasets, the differences concerning Rkip
expression compared to what found in human be due to interspecies diversity. In addition,
a normal lung mouse tissue single-cell dataset, GSE103354 (7193 cells) was analyzed. There,
the expression of Yy1 was always reduced and present in a reduced percentage of the
overall cells, compared to Rkip, which is what expected for normal non-transformed lung
tissues (Figure 7D). Overall, the results reported in Figure 7 suggest that both YY1 and
RKIP expression, although inversely correlated, depends on the specific tumor features.

4. Discussion

LC remains the most incurable tumor. Given its heterogeneous mutational landscape,
the latter available therapies are biomarker driven [20]. The targeted therapies are tailored
to the patient based on the specific genetic background of the tumor (e.g., mutation or
altered expression of EGFR, KRAS, BRAF, PIK3CA, PTEN, HER2, or gene fusion of ALK,
ROS1, RET) [65]. Additionally, both the levels of PD-L1 tumor expression and the tumor
mutational burden might be indicators of a favorable response to the ICIs. Regarding the di-
agnosis, the currently used serum biomarkers are few (e.g., prolactin, CEA, CYFR21) [66,67].
Overall, only the 30% of LC are diagnosed early, whereas in the remaining 70% of cases the
diagnosis is made when the tumor is already at an advanced stage. Moreover, upon therapy,
often patients develop resistance to the treatment and relapse of the disease. Therefore,
second- and third-line treatments are necessary. For such reasons, the overall prognosis
remains poor and the mortality rate very high.

In this context, it is important to seek novel robust biomarkers of diagnosis and
prognosis of LC, to help to stratify the patients and to guide therapy choices. The aim of
this computational study is to assess the role of two important cancer factors, YY1 and
RKIP as novel predictive biomarkers in LC. YY1 has been known to work as an oncogene in
cancer and one of its main the transcriptional targets in LC may be the immune-enhancer
and tumor-suppressor RKIP. In several cancers, an inverse correlation between the pro-
tumorigenic YY1 and the anti-tumorigenic RKIP has been observed [68].

YY1 gene expression is positively regulated by NF-κB transcription factor [69]. In turn,
NF-κB is inhibited by RKIP in association with NIK and TAK1 [70]. Both NF-κB and YY1
may directly induce the expression of the oncogenic transcription factor Snail [71,72]. Snail
is a known direct inhibitor of RKIP gene expression [73]. In cancer cells, YY1 might inhibit
RKIP gene expression indirectly, through Snail positive regulation. In turn, Snail might
inhibit YY1 gene expression [74].

In addition to this indirect regulatory loop, it has also been observed that YY1 might
directly inhibit the expression of RKIP in several cellular cancer models, as also supported
by some unpublished observations [44,68,75]. In this study, we explored the direct interac-
tion between YY1 and RKIP, herein supported by several results. First of all, it was shown
that YY1 may bind RKIP promoter, as evidenced from the JASPAR predictive analysis and
consequently confirmed by YY1-ChIP-Seq results. The latter demonstrated that YY1 is
able to bind RKIP promoter and enhancer in several different cellular models, both normal
and cancerous.

Importantly, two TCGA LC RNA expression datasets (LUSC and LUAD) and seven
GEO-deposited LC RNA-array datasets were systematically analyzed. These analyses
consistently demonstrated the existence of a significant negative correlation occurring
between YY1 and RKIP gene expressions within all the considered datasets (Table 1).
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Among these datasets, the ones bearing mixed samples (both TCGA and GEO-
deposited), T and N matching, demonstrated that YY1 was highly expressed in T compared
to N, whereas RKIP was lowly expressed in T samples. For all the mixed datasets, the ROC
analysis showed a high and significant AUC, meaning that the assessment of both YY1
and RKIP levels of expression might be used as novel predictive diagnostic biomarkers in
NSCLC (Figures 3 and 5). Additionally, all the mixed datasets containing samples obtained
from different NSCLC subtypes, showed to have a significantly high YY1 and significantly
low RKIP expressions compared to N, but without any difference in the expression within
the various tumor subtypes. This suggests that the diagnostic value is independent from
the specific subtype of NSCLC (Figure 5).

The protein dataset analysis further demonstrated that not only YY1 and RKIP genes,
but also YY1 and RKIP proteins (both total and phosphorylated forms) are differentially
expressed in N versus T samples, confirming the trend observed in the gene expression
datasets. In particular, YY1 and p-YY1 were highly expressed whereas RKIP and p-RKIP
were lowly expressed in NSCLC samples compared to the N counterparts. This result
indicates that not only the transcript levels but also the protein abundance of both YY1 and
RKIP might be used as diagnostic indicator of the occurring LC transformation (Figure 6). In
addition, it was performed a search for the immunohistochemistry (IHC) NSCLC samples
deposited in the Human Protein Atlas (HPA) databank. Although the reduced number of
HPA-deposited samples (12 Tumor and 3 Normal) does not allow to draw any statistically
relevant conclusion, the images show a similar trend for both YY1 and RKIP protein levels
(Supplementary Figure S2) [76,77]. Larger LC cohort IHC studies are needed in the future.

In contrast, YY1 and RKIP expression levels did not demonstrate to be univocally
predictive of a specific stage or grade of NSCLC within all the datasets analyzed. Only for
one dataset was a positive correlation with LC grade for YY1 and a negative correlation
for RKIP observed (Figure 4B,C). Meanwhile, in the other two datasets, only RKIP was
revealed to be negatively correlated with LC stage (Figure 3B) or grade (Figure 6D). These
results might support a functional role played by both YY1 and RKIP at the earlier stages
of lung cellular transformation, from normal to malignant (Figures 2 and 5).

By looking at specific stages of lung adenocarcinoma evolution in a genetic mouse
model, single-RNA seq data showed that Yy1 had an increased expression from NT to late
adenoma stages. This might support the role of YY1 as main oncogene in both human
and mouse. In contrast with human data, in mouse, Rkip expression was found increased
during the lung cancer evolution. This latter observation might be linked to interspecies
diversity in terms of regulatory networks occurring between Yy1 and Rkip, and in particular
with respect to the specific function of Rkip as tumor suppressor gene in mouse (Figure 7).

Two datasets, GSE3141 and GSE2109, contained samples that could be stratified based
on the levels of expression of different driver genes: MYCN, KRAS and PI3K. Interestingly,
YY1 was upregulated concomitantly with the higher expression of all the three considered
oncogenes, whereas RKIP was down-expressed. Furthermore, the ROC curve analysis
showed a diagnostic significance for YY1 for all the three oncogenes taken into analysis,
whereas RKIP diagnostic significance was limited only to PI3K. Hence, in LC, YY1 might be
considered a driver oncogene involved in the cellular transformation process, while RKIP
might be considered a tumor-suppressor (Figures 3 and 4).

For the TCGA LUAD dataset, as well as for the GSE3141, YY1 high expression and
RKIP low expression were both correlated with a worse survival outcome. These re-
sults, further supported by the significant AUC performances of the time-dependent ROC
curves (Figures 2I and 3H), strongly indicate a prognostic role for both YY1 and RKIP
in NSCLC and, more specifically, in the lung adenocarcinoma subtype. This means that
monitoring YY1 and RKIP gene expressions—both alone and in combination as a two-gene
signature—might really help to tackle the prognostic window, as well as to match the
specific genetic features of each single lung adenocarcinoma patient, with the final goal of
suggesting a personalized therapeutic protocol.
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Additionally, the expressions of YY1 and RKIP were analyzed at a single cell level
(Supplementary Figures S3 and S4). The t-SNE plots showed the tumor-derived cells di-
vided in clusters depending on their cellular nature. While YY1 was highly expressed
specifically in epithelial LC cells, RKIP was highly expressed only within a smaller subclus-
ter of epithelial LC cells and also in myeloid cells, mast cells and fibroblasts (Supplementary
Figure S3A). Within the clusters of cells from non-transformed matching tissues, YY1 ex-
pression was almost non-detectable in all the clusters, whereas RKIP was highly expressed,
in particular in the epithelial cells, mast cells, B cells and in a subgroup of myeloid cells
(Supplementary Figure S3B). Overall, the single cell RNA-seq data demonstrated that both
YY1 and RKIP are heterogeneously expressed within separate subclusters of LC cells and
non-transformed matching cells. This further supports the idea that YY1 oncoprotein might
directly inhibit RKIP gene expression selectively within the lung tumor cells of epithelial
origin. In the future, both YY1 and RKIP molecular function must be further studied at the
cellular resolution in larger cohorts of LC patients.

5. Conclusions

Overall, in light of personalized therapy, this large-scale dataset analysis suggests
a potential role of both YY1 and RKIP as novel two-signature biomarkers for LC, with a
diagnostic as well as a prognostic significance. This computational analysis further indicates
that YY1 plays as oncogene in LC, whereas RKIP as tumor suppressor. The identification
of selective YY1 inhibitors and potent RKIP inducers is currently a goal to be pursued in
precision oncology [78]. In the future, it will be important to characterize the mechanisms
underneath the selective modulation of both YY1 and RKIP expression in NSCLC. In
particular, the inhibition of YY1 in transformed cells might have the effect of contrasting
the cellular transformation through the modulation of its several targets, including RKIP,
which is an inhibitor of the cellular proliferation, the EMT and the metastasis formation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers14040922/s1, Table S1: YY1-ChIP sequencing results (from 15,000 bp upwards to
5000 bp downwards the TSS of RKIP gene); Figure S1: GSE2109, YY1 (left) and RKIP (right) expression
in low stage (SI and SII) versus high stage (SIII and SIV) specimens; Figure S2. Immunohistochemistry
(IHC) analysis of YY1 and RKIP protein expression in Lung Cancer and Normal tissue from the
Human Protein Atlas (HPA). Figure S3: Single cell sequencing analyses of GSE131907 single cell
human LC dataset reveal an heterogenous and cell-specific expression of YY1 and RKIP in both
transformed and non-transformed tissues; Figure S4: Single cell sequencing analyses of deposited LC
datasets reveal an heterogenous and cell-specific expression of YY1 and RKIP in both lung normal
and lung cancer tissues, with an enrichment of PEBP1 in normal tissues compared to tumor ones.
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