
Sociality in Complex Networks
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Abstract

The study of network theory is nothing new, as we may find the first example of a proof

of network theory back in the 18th century. However, in recent times, many researchers

are using their time to investigate networks, giving new life to an old topic. As we

are living in the era of information, networks are everywhere, and their complexity is

constantly rising. The field of complex networks attempts to address this complexity

with innovative solutions. Complex networks all share a series of common topological

features, which revolve around the relationship between nodes, where relationship is

intended in the most abstract possible way. Nonetheless, it is important to study these

relationships because they can be exploited in several scenarios, like web page searching,

recommender systems, e-commerce and so on. This thesis presents studies of sociality in

complex networks, ranging from the microscale, which focuses the attention on the point

of view of single nodes, to the mesoscale, instead shifts the interest in node groups.
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Chapter 1

Introduction

In network theory, a network (or graph) is a model that aims at abstracting the symmetric

or asymmetric connections among entities. The concept of a network is definitely not

new in the field of mathematics, dating back to 1735, when Euler provided what it has

been called the first proof of network theory: the solution to the Königsberg bridges

problem. Since then a lot has changed, the real world has become increasingly more

complex, and in the age of computer science, networks are everywhere. Networks have

increased in complexity too: things like web-based social networks or the world wide web

are monstrous entities that are made of billions of nodes. But it’s not just the amount

of nodes that makes the study of these networks more difficult, as the most interesting

aspect of these networks are the way the links are distributed. At a first glance, no clear

pattern appears, and nodes seem to be randomly interconnected, while in reality their

connections are neither regular not random, but somewhere in-between. Basically, there is

a sort of regularity in the randomness, as these networks share the same interconnection

patterns. A lot of effort has been put into the research of these patterns, which over

time has created a specific research field, which is the field of complex networks. To
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summarize, a network is complex when it displays non-trivial topological features. Some

of the features that are shared among complex networks are:

• heavy tail in the degree distribution;

• high clustering coefficient;

• assortativity or disassortativity among vertices;

• hierarchical structure;

• community structure.

Firstly, the degree distribution of complex networks can be heavy-tailed: which means

there are many nodes that have a low degree, and few nodes that have an high degree.

Nodes also tend to cluster themselves together, resulting in an unusually high clustering

coefficient. The way nodes are clustered together depend on the type of network: in social

networks nodes tend to form links with nodes that are similar, showing assortativity,

while in biological networks entities seek diversity in their connections, showing a certain

degree of disassortativity. Moreover, in networks with a significant amount of clusters,

cluster themselves may sometimes be grouped in ”clusters of clusters”, effectively forming

a hierarchical structure. But the last feature in particular has attracted the interest of

many researchers, which is a property of the node clusters themselves, the community

structure. The definition of community is controversial, but the general consensus is

that a set of nodes may be grouped in a community if they are densely interconnected

among each other. Community structure inside complex networks suggests that there is a

somewhat natural division among the network nodes that emerges from the network itself.

Finding these communties has become an hot topic in the field of complex networks, as
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the increased complexity presents new challenges and obstacles that need to be addressed

(literature review on the matter in Chapter 2).

Note that the list provided is not complete nor mandatory, there are indeed complex

networks that, for example, are not heavy-tailed in the degree distribution. Hoewver,

most complex networks share at least some of those properties compared to random

networks, and they represent a hint that the network under exam is indeed complex. Of all

the properties mentioned above, my work has mostly focused on assortativity, community

structure and clustering. I found myself studying how nodes arrange themselves in groups,

and asking myself why. In a certain sense, my approach was analogous to a sociologist’s.

After all, some complex networks are indeed models of social networks, but the social

behavior also extends to other types of networks as well. If we take the concept of

homophily, for example, and extend it to other types of entities in complex networks, we

find that it maps quite gracefully to the idea of assortativeness.

There are plenty of other social features and properties in the realm of complex networks:

as already mentioned nodes tend to arrange themselves in groups. These groups are

hardly static in nature, and they change over time. The dymamics that rule these changes

are, again, social-based. My work in the past three years was focused on different things,

but the common theme is that I tried to investigate social behaviour in complex networks.

There are many real world applications of these studies. In web page ranking, for example,

it is important to anaylize how web pages are linked to each other to assess the relevance

of a certain web page. Information such as the number of outlinks, the number of inlinks,

which pages are pointed and which pages point to our page, is very useful to determine

its importance. In the e-commerce scenario, we want to have a successful transaction,

so we are looking for trustworthy nodes to interact with. Trustworthiness is assessed by
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evaluating what other nodes ”think” of the node we wish to contact. It is then essential

to abstract the level of trustworthiness that a node places on his neighbours by giving

them a score, or trust value. This score is an extremely condensed and simplified measure

of how we trust that neighbour, and usually depends on the past history between the two

nodes. If we had a history of successful interactions, the resulting score will be higher,

and vice-versa. Recommender systems also make use of social interactions to predict

which product to suggest. They see which products are commonly bought by similar

users and suggest them to the same class of users. This of course requires clustering users

that share the same interests in the same group.

My work during the past three years consisted in studying sociality in complex network.

The focus was mainly on three facets of sociality: trust, communities, and popularity,

intended as the importance of the node in the network. I have studied how to model

trust out of metadata information [1, 2], how to raise the importance of a node in the

network [3], how to assess the importance of a node [4], and how to evaluate the quality

of a specific partition in communities [5, 6].

This thesis is structured as follows. Chapter 2 provide a succint review of the literature

about topic inherent to this thesis. Chapter 3 describes research done in the microscale,

where the emphasis is on nodes. On the contrary, Chapter 4 gives a broader point of view,

focusing on the research done for groups and communities. At last, Chapter 5 reviews

the content of this thesis.
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Chapter 2

Related Works

This section will provide a succint summary about the state of the art of the three

most important topics discussed in this thesis: trust networks, ranking algorithms and

community detection.

2.1 Trust networks

Over the last decades, he term trust has been characterized with different meanings [7,

8, 9, 10, 11], depending on which context is considered (e.g. sociology, psychology and

so on). Although there is no definitive agreement on these various definitions of trust,

most researchers agree from the early beginning [12] that it is fundamental whenever an

individual takes a risk and there is uncertainty about the outcome [13].

Given that the definition of trust itself is not universal, establishing whenever a certain

node trusts another is not an easy task, and requires data aggregation strategies. In [14],

the authors provide an overview of the most recent achievements and open challenges

about Big Data mining. It is also important to take into account the trustworthiness of

the collected data to obtain trust information about the users [15, 16].
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Trust modeling goes according to the context: links model trust in trust networks, hy-

perlinks in website ranking, or buyer-seller relationships in the e-commerce context. In

ICT context [17] trust is a leading tool for computers and software agents to discriminate

themselves among good and bad ones, its role in broader scenarios is steadily increasing,

in particular when humans communicate with others in virtual environments [18], with

on-line services [19, 20], with intelligent pervasive environments [21] and so on [22, 23,

24, 25, 26, 27]. In all these situations indeed people generally have to provide some of

their personal information in order to positively fulfill the interaction, and they rely on

trust as a key factor to establish whether the counterpart is worth to connect to.

Trust network frameworks [28, 10, 29, 30] model the trust network as a graph where

nodes are agents (persons) and trusting relationships are directed arcs weighted using a

measure of the direct trust value according to a given metric. As pointed out by Artz and

Gil [31] trust can be intended as a measure of how good the future behavior of a given

agent will be based on his past actions, in other words the reputation can be considered

as an effective approach for trust assessment. Many trust assessment algorithms, such

as EigenTrust [32], Powertrust [33] and GossipTrust [34], use the feedback mechanism to

evaluate the trustworthiness of an agent.

Despite the importance of neighbours in the definition of trust, existing literature mainly

focuses on the assessment of global trust, i.e. the unique value for a node that aims

at mediating all direct values that express different judgements the node received from

others. A work that strengthened the role of local trust is TrustWebRank [35], where

different trust values can be assigned by distinct nodes to the same one. The need for

local trust is supported also by other researchers, e.g. [36] claims that local values are

needed when a shared opinion cannot be achieved (controversial nodes). Finally, the local

10



approach is more precise and tailored to the point of view of each user and also more

attack-resistant to malicious peers [37].

2.2 Ranking algorithms

Ranking algorithms are algorithms that process node metadata and topology information,

and produce an ordered list of nodes. The order of the nodes has different meanings

according to the ranking algorithm employed but, in general, higher positions are assigned

to nodes which are more relevant to the specific algorithm. Relevance depends on the

scenario being considered: in web searching relevance is measured against a given search

query [38, 39, 40], in E-learning resources must be relevant to a given topic [41, 42, 43],

in a recommendation network the most reliable nodes are the most relevant [44, 45, 46,

47, 48, 49], which is also true for e-commerce scenarios [50, 51].

One of the most important ranking algorithms is PageRank[52, 53]. PageRank is es-

sentially an application of the random walker model on a Markov chain: the nodes of

the Markov chain are the web pages, and the arcs are the links that connect one page

to another. The walker represents a generic web surfer which moves from page to page

with a certain probability, according to the network structure, and occasionally ”gets

bored” and jumps to a random node in the network. The steady-state probability vector

of the random walker process holds the PageRank values for each node, which can be

used to determine the global ranking. Although Pagerank was proposed a long time ago,

it still lives as the backbone of many technologies, not limited to the web domain. For

example, in [54], personalized PageRank is cited as a possible algorithm to be used in

Twitter’s ”Who To Follow” architecture. In [55], the author shows how the mathematics

behind PageRank have been used in a plethora of applications which are not limited to
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ranking pages on the web. In [56], another PageRank extension appears as a tentative

replacement of the h-index for publications.

PageRank has to face a plethora of competitors in several application domains. In the web

domain we have HITS [57], which is not based on the random walker model and is able

to provide both an ”authority” ranking, which rewards nodes that have many backlinks,

and a ”hub” ranking, which rewards nodes that have many forward links. SALSA [58]

computes a random walk on the network graph, but integrates the search query into the

algorithm, which is something PageRank does not do. In the trust networks domain

we have PeerTrust [33], which computes the global trust by aggregating several factors,

and PowerTrust [59] which uses the concept of ”power nodes”, which are dynamically

selected, high reliability nodes, that serve as moderators for the global reputation update

process. The PowerTrust article also describes how the algorithm compares to EigenTrust

with a set of simulations that analyse its performance. Several articles feature side-by-

side comparisons among PageRank (and its extensions) and other metrics [60, 61, 62].

In particular, [63] focuses on comparing HITS, PageRank and SALSA, and its authors

prove that PageRank is the only metric that guarantees algorithmic stability with every

graph topology.

2.3 Community detection

Even the community detection problem is not new in the domain of graph theory. The

analysis of communities provides a deeper knowledge of the network’s structure and the

correlation between nodes, which allows the study of the information embedded into net-

works. Networks concerning healthcare, infection spread, human interactions, economics,

transportation, trust and reputation are perfect examples where detecting communities
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can help to understand the network’s structure.

The definition of a community itself is, again, controversial. Intuitively, it can be defined

as a set of entities that are close to others. This notion is quite similar to the concept

of closeness, which is based on a similarity measure and is usually defined over a set of

entities. One of the most acknowledged definitions of community appears in [64]. This

definition has given birth to several algorithms for community detection [65] [66] which,

for the most part, rely on the optimization of a validation function measuring the quality

of the community structure. One of the most commonly used functions is the modularity

function provided by Newman [64, 67]. Despite some limitations [68, 69], the modularity

function has been successfully used as a quality measure to evaluate a given network

partition and as a cost function to be optimized to uncover communities [70, 71, 65].

Other than modularity based methods, in literature there exists a lot of alternative ap-

proaches to solve the problem of community discovering [72, 73]. For example, in Ref. [74]

an information-theoretic based method is presented. This method is based on the formu-

lation of a new quality function called map equation[75], which allows to find the optimal

description of the network by compressing its information flow. The algorithm is the core

of Infomap (http://www.mapequation.org/), the search method for minimizing the map

equation over possible network partitions.

Community detection has been successfully used to analyze the structure of single-layer

networks and for modeling several kinds of interactions, such as social relationships,

genetic interactions among biological molecules or trade among countries [76, 77, 78, 79,

80, 81, 82], just to mention a few (a detailed introduction to communities in networks

can be found in [72, 73]).
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Chapter 3

Microscale

There are two basic units that form a network graph, nodes and edges (or arcs, if the

graph is directed). However, edges are merely used to model connections between nodes

and, to a certain extent, they can be seen as node metadata. Given this thesis’ focus on

sociality, it is only natural to start the discussion from the point of view of nodes, the

microscale: which neighbours should a node have? how does a node model its relationship

with them? how do its neighbours impact its popularity in the network? This section will

present the answer to these questions through theory, methodologies and simulations.

3.1 Local Weight Assignment

In a social network, the problem of assigning local weights consists in finding what weights

should be given to a node’s neighbours based on a certain set of metadata. The arc

weights are an abstraction of the relationship between the two nodes, and should be

based on social metadata in order to accurately model the quality of such relationship.

As mentioned, it’s difficult to talk about relationships without mentioning trust, and

indeed many social networks are grounded on trust relationships. In a certain way, we
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could say that social networks are a general case of trust networks.

A trust network is a network where the edges specifically model the level of trust that the

two connected nodes share. In the past years, trust networks have grown in popularity as

a fundamental precautionary component that helps users in managing virtual interactions

with (possibly total) strangers, either real people or virtual entities, in several contexts

such as e-commerce, social networks, distributed on-line services and many others [83,

84, 19].

Generally, in trust models and frameworks developed in the past years [28, 10, 29, 30], the

trust network is represented as a graph where nodes are agents and trusting relationships

(arcs) are weighted against a measure of the direct trust value according to a given

metric. Sometimes trust networks may even be signed, because a negative weight may be

associated to the lack of trust, or distrust, even though it’s much harder to handle signed

graphs due to algorithmic issues.

While most of the existing literature focuses on the assessment of global trust, i.e. the

unique value for a node that aims at mediating all local (direct) values that express

different judgements the node received from others, there is less emphasis on how direct

trust should be evaluated for each node i.

In many scenarios, the successful, positive interactions between two nodes are taken into

account in order to produce a trust value, which will be modeled by the arc weight con-

necting the two nodes. The well known proposals EigentTrust [32] and GossipTrust [34]

compute direct trust following this principle. However, in order to provide a weight as-

signment model based on real world social criteria, there are two additional factors that

need to be taken into account, the mistrust as a measure of a lack of trust, and the pop-

ularity of the node as the total number of received feedbacks. Mistrust may be used to
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Symbol Description
N Number of neighbors
R Total number of interactions among all neighbors
ri Interactions with neighbor i
r+

i Positive interactions experienced with neighbor i
r−

i Negative interactions experienced with neighbor i

Table 3.1: Notation in use

balance positive and negative feedbacks when selecting a node, and popularity measures

to what extent a certain trust or mistrust rating is relevant. This way, a node which has

more positive feedbacks than negative feedbacks it is considered overall trustworthy, and

a node with more feedback scores is considered more trustworthy than a node with less

feedback scores, if the overall trust rating is the same.

In the paper[2], the authors propose a direct trust assessment model, and prove, through

a series of simulations, that it exhibits greater stability compared to EigentTrust and

GossipTrust, i.e. if a node changes its behavior, trust and mistrust ratings are not signif-

icantly affected, unless this behavior repeatedly occurs, as the proposed model also takes

into account the node’s history (if a node has received hundreds of positive feedbacks, it

takes more than a few incoming negative feedbacks for it to be considered untrustworthy).

3.1.1 Local Trust assessment

Notation and existing approaches

There are several possible intuitive approaches to assign weights to the arcs of a trust

network. In this work, some of them will be analyzed for possible shortcomings. Before

this, let’s introduce a few definitions of the quantities involved for ease of notation, which

are reported in Table 3.1. Alongside these definitions, let’s introduce three new quantities:
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pi = ri

R
, ti = r+

i

ri

, mi = r−
i

ri

= 1− ti (3.1)

pi is the popularity of neighbor i seen from the perspective of a certain node n, ti the trust

that node n places in neighbor i and mi the distrust that node n places in neighbor i.

There are several works about the coexistence of trust and distrust in literature: in [85]

propagation of trust and distrust is analyzed, whereas in [86] the authors manage to

predict with acceptable accuracy whether a node is going to trust or distrust another

node which is not connected to; finally, in [87], an extension of PageRank which works

on signed graphs named PageTrust is introduced.

The approach described in [2] attempts to take into account both trust and distrust,

incorporating them in a single weight assignment criterion. One of the most intuitive

ways to model the node’s attitude in a trust network is to give a Positive Feedback. It

can be obtained by normalizing the positive interactions:

w+
i = r+

i∑N
k=1 r+

k

(3.2)

However, this solution does not make use of negative interactions. A node which ex-

periences a negative interaction with a neighbor, should alter its attitude towards that

neighbor accordingly. Intuitively, an agent wants to avoid more those nodes it had nega-

tive interactions with, and equation (3.2) does not take this aspect into account.

Another intuitive way to model the node attitude is to give Net Feedback, that tries

to incorporate negative interactions into the weight equation, as done by EigenTrust.

Naming f+
i = max(0, r+

i − r−
i ), we have:

w+
i = f+

i∑N
k=1 f+

k

(3.3)
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While this approach does include negative interactions in the arc weight, it has one

important shortcoming: it reacts very poorly to feedback changes. Let us suppose we

have a neighbour with 100 positive feedback ratings and 99 negative feedback ratings.

With this equation, its f+
i would be 1. If our node completes another interaction with

this neighbour positively, its f+
i will change to 2. This feedback gain essentially doubles

the previous value, and this doesn’t model well the mixed behavior of the node.

Social-based weight assignment

Taking note of issues described so far, the idea is to provide a weight equation that models

the attitude according to these features:

• Neighbors with more interactions should be preferred. If two neighbors have the

same ratio r+
i

ri
, the one with the largest ri should be more likely to be contacted.

• The higher negative/total interactions ratio a neighbor has, the more it should be

avoided.

• The higher positive/total interactions ratio a neighbor has, the more it should be

contacted.

• It should take into account previous interactions.

A node should weight both popularity and trust when making a decision about the

trustworthiness of a certain node. A popular, trustworthy node is more likely to yield

a successful interaction than a less popular node with the same level of trustworthiness.

At the same time, we want to take into account the distrust of other nodes. This is

because the more untrustworthy a node is, the more we want to avoid having interactions

with it. This criterion to assign weights in a trust-based network, named social weight
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assignment, sports two different components: the trust towards node i and the average

distrust of all neighbors except i; both components are linear dependent on the neighbor

popularity.

Definition and meanings

The social weight assignment criteria assigns the following weight to node neighbors:

w+
i = tipi +

N∑
k=1,k ̸=i

mkpk

N − 1 (3.4)

where N is the number of neighbour nodes of node n. It is easy to prove that∑N
i=1 w+

i = 1:

N∑
i=1

w+
i = w+

1 + w+
2 + . . . + w+

N = t1p1 +
N∑

i=1,i ̸=1

mipi

N − 1 + t2p2 +
N∑

i=1,i ̸=2

mipi

N − 1 + . . . +

+ tNpN +
N∑

i=1,i ̸=N

mipi

N − 1 =
N∑

i=1
tipi +

N∑
j=1

N∑
i=1,i ̸=j

mipi

N − 1 (3.5)

Note that in the double sum each mipi is repeated N − 1 times so we may reduce the

notation as:

N∑
i=1

tipi +
N∑

i=1
mipi =

N∑
i=1

(ti + mi)pi =
N∑

i=1

(
r+

i

ri

+ r−
i

ri

)
ri

R
=

N∑
i=1

ri

R
= 1 (3.6)

This result allows to apply the social weight assignment in conjunction with metrics that

require that the sum of the node outlink weights is 1, as all EigenTrust-based proposals.

It is also possible to define a dual criterion with the same entities defined in (3.1), where

ti and mi are swapped:

w−
i = mipi +

N∑
k=1,k ̸=i

tkpk

N − 1 (3.7)
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These two criteria generate two different networks, a trust network for the social weight

assignment, and a distrust network for its dual. These two networks are not complemen-

tary, in-fact, while they share the same topology, the arc weights are different: weights

of the trust network cannot be derived directly from the weights of the distrust network,

and vice-versa.

This implies that the node with highest weight in the trust network (the ”best node”) is

not necessarily the node with the least weight in the distrust network. Another conse-

quence of the way the weights are assigned is the fact that the most reliable node isn’t

necessarily the best node, as its trust weight is multiplied by pi: the popularity of the

node (which essentially means the portion of the node interactions shared with neighbour

i) impacts greatly the final weight. This is by design, as the more interactions the node

has with a neighbour, the more reliable the trust (or distrust) weight is: a node with 0.9

trust and 0.1 popularity has a lower weight than a node with 0.8 trust and 0.6 popularity

in the trust network. This is in line with the behavior of human beings in a social context.

An aspect that is interesting to expand upon a bit is how a neighbor is judged in trust

and distrust networks. There are three possible situations:

• Trustworthy node: node has higher trust weight than distrust weight. These nodes

are obviously the most reliable, especially if they have high popularity.

• Mixed node: node has similar trust and distrust weight. This can happen when the

trust weight is near to the distrust weight.

• Non-trustworthy node: node has higher distrust

weight than trust weight. These nodes should be avoided, regardless of popularity.

It is clear that a node should not react in a symmetric fashion to trust and distrust:
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trust is easily shaken, but hard to build up. Future work may define a behavioral pattern

for nodes using this weight assignment criteria. In conclusion, the two criteria provide

the end-user with different information, which can be used together to make informed

decisions about which nodes to trust, and which nodes to avoid.

3.1.2 Modelling the aging of interactions

While the social weight assignment equation (3.4) attempts to model social behavior, it is

purely atemporal in meaning, as it doesn’t keep track of the age of the interactions. In the

realm of social interactions, older experiences and memories tend to have a reduced degree

of impact on our behavior towards a certain person. Indeed, older memories get weaker

over time, and their decline in strength has been the object of research for mathematical

psychologists up to this day [88]. In particular, they strive to bind the memory detention

decline to a mathematical function usually called forgetting curve.

The aging function proposed in this paper loosely takes inspiration after the forgetting

curve modeling effort that has been pursued by researchers. This aging function aims at

evaluating the contribution of experiences that have a certain age to the arc weight.

The aging function candidates a(T ) should manifest three properties:

• a : R≥0 → (0, 1]

• a(0) = 1

• monotonically decreasing

Given that the aging function is time-continuous, the age of a certain interaction that

occurred at time t0 can be written as T = t− t0. Finally, if we wanted to know the weight

contribution of a specific age T , we would have to calculate the value of a(T ). If we name
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T +
ij (T −

ij ) the age of the j-th positive (negative) interaction that occurred with neighbor

i we may define the following aging parameters:

A+
i =

r+
i∑

j=1
a(T +

ij ) A−
i =

r−
i∑

j=1
a(T −

ij ) Ai = A+
i + A−

i

that can be used to modify (3.1):

p′
i = Ai∑N

i=1 Ai

, t′
i = A+

i

Ai

, m′
i = A−

i

Ai

, (3.8)

The values in (3.8) can then be used in (3.4) to compute the weight of the arc towards

neighbor i.

Candidates

We propose two candidate families of functions that manifest the aforementioned prop-

erties and could model the aging functions: exponential functions e(t) = e−βt and power

functions p(t) = (1 + αt)−β, with α, β ∈ R>0. They both behave similarilly, except that

the exponential functions decrease much more quickly after a certain t̄, which depends on

the choice of parameters. The candidate aging functions as they are have an infimum of

0, as their limit for t→ +∞ is 0. This means that the strength of each interaction fades

until it stops to be a significant contribute to the arc weight. This might not be desired

in all application scenarios, as older interactions essentially get ignored after a certain

amount of time. To prevent this behavior, we changed the candidates in the following

way:

e(t) = e−β·min(t,γ) p(t) = [1 + α ·min(t, γ)]−β (3.9)
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Where γ ∈ R>0. This way we have that both candidates have an infimum greater than

zero, meaning that after a certain amount of time γ the interactions ”stop aging” and

keep contributing to the arc weight with a constant value.

Implementation

Regrettably, the implementation of the aging functions is not a trivial task. The main

issue comes from the difficulty in finding an appropriate time representation. As said

before, the aging functions candidates are time-continuous. This makes them unfeasible

candidates as they are, since all software or hardware clocks are time-discrete. The first

challenge is then finding a correct quantization step. Intuitively, it should be small enough

so that each interaction would lie in a separate time slot. Unfortunately, there’s no easy

way to predict the expected time of arrival of each interaction in real-world scenarios.

In order to solve the issue it’s better to discard the idea of a timestamp: each node

would now evaluate the passage of the time based on the number of interactions. This

virtualization of the notion of time based on the number of past interactions means that

having an age T would imply being ”T interactions old”. This approach also avoids the

issue of time synchronization among nodes, which would require a significant effort.

Of course this makes the time completely virtual, so it is not possible to assess the times-

tamp of a specific interaction among two peers at network level. This can be troublesome

e.g. if we want to analyze the network behaviour at a certain time by reading which

interactions happened at that time. Due to the virutalization, it’s only possible ensure

that interactions are accounted for in the proper order, there’s no possibility of using

a reference time, a sort of wallclock. This is acceptable, however, since social weight

assignment criterion operates locally, and is unaware of everything that happens beyond
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the line of sight of each node.

In order to correctly implement aging two challenges need to be overcome, updating

the age of all interactions whenever a new interaction occurs, and computing the age

parameters Ai, A+
i and A−

i to be used in (3.8). With some bit-level manipulation is fairly

easy to design a storage-efficient solution to both problems. For each neighbor i, we need

to allocate four entities:

• A γ-bit binary register b+
i for positive interactions

• A γ-bit binary register b−
i for negative interactions

• A counter c+
i for positive interactions having an age greater than γ

• A counter c−
i for negative interactions having an age greater than γ

A set bit in position k in registers b+
i and b−

i means that there is an interaction with

neighbor i of age k. This way the age increses along with the bit position, so that the

MSB is the oldest interaction that can be stored in the register, which always has age

γ − 1. The counters c+
i and c−

i are used to keep count of the interactions which age is

equal or greater to γ. Updating the interaction age is then a matter of using appropriate

bit-manipulation operators as described in Algorithm 1. We can see that increasing the

age of all interactions is done by applying a bit-shift operator on the whole register (lines

5 and 9). However, this destroys the content of the MSB, so we need to transfer its

content to the appropriate counter prior to the operation. This is done in lines 2-3 and

6-8. Note that this needs to be done for each neighbor (line 1), even those who don’t take

part in the current interaction, as age is based on the number of interactions that occur

among all neighbors. After the age is updated, we simply check whenever the current

interaction is successful, and set the LSB, which has an age of 0, of the counter tied to
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the neighbor i (lines 11-15). Algorithm 1 is used to keep track of the virtual time, but it

Algorithm 1 Age update after interaction with neighbor i

1: for j ← 1 . . . N do
2: if b+

j & (1≪ γ − 1) then
3: c+

j ← c+
j + 1

4: end if
5: b+

j ← b+
j ≪ 1

6: if b−
j & (1≪ γ − 1) then

7: c−
j ← c−

j + 1
8: end if
9: b−

j ← b−
j ≪ 1

10: end for
11: if interaction is successful then
12: b+

i ← b+
i | 1

13: else
14: b−

i ← b−
i | 1

15: end if

is also necessary to calculate the three age parameters Ai, A+
i and A−

i . This is described

in Algorithm 2. The value in counters c+
i and c−

i stands for the number of interactions

that have an age greater than or equal to γ, so it’s possible to initialize A+
i and A−

i

employing the appropriate counter, like in lines 1-2. Estimating the contribute of fresher

interactions require checking each bit of registers b+
i and b−

i : if a bit in position k is set,

its contribute to the corresponding register is equal to a(k) (lines 3-10).

Algorithm 2 Computation of Ai, A+
i and A−

i

1: A+
i ← c+

i · a(γ)
2: A−

i ← c−
i · a(γ)

3: for T ← 0 . . . γ − 1 do
4: if b+

i & (1≪ T ) then
5: A+

i ← A+
i + a(T )

6: end if
7: if b−

i & (1≪ T ) then
8: A−

i ← A−
i + a(T )

9: end if
10: end for
11: Ai ← A+

i + A−
i
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3.1.3 Simulation

In this subsection, we present a set of simulations that compare the behavior of several

weight assignment criteria. The results show that the social weight assignment is resilient

to changes, and that it is sensitive to nodes which behave in a different way from the

others. We also experimented with the two aging function candidates (3.9) to see which

function affects more arc weights evaluation.

The devised simulation scenarios share a common set of rules, related to the weight as-

signment strategy described by equation (3.4). The networks in which weight assignment

techniques are tested are either scale-free or modeled after Erdős-Rényi graphs. They are

generated using the software Pajek [89] using the parameters in Table 3.2.

Erdős-Rényi network parameters
Number of vertices 2000
Min number of arcs for vertex 5
Max number of arcs for vertex 15

Scale-free network parameters
Number of vertices 2000
Number of line No constraint
Average degree of vertices 10
Number of vertices in initial ER network 10
Initial probability of lines 0.2
α 0.25
β 0

Table 3.2: Network parameters

After the networks are generated, their evolution is simulated. We divided the simu-

lations in several cycles. For each cycle, each node simulates an interaction with each

of its neighbors. This interaction can have a positive, or negative outcome, which is

permanently recorded by the node as a positive or negative experience.

The outcome of a transfer is determined at random according to an uniform distribution.

The distribution itself depends on the node receiving the interaction, which can be a
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”good” or a ”bad” node. Whether a node is ”good” or ”bad” is determined at the

beginning of the simulation, according to these simple rules:

• 95% of the nodes have at most a 20% chance of unsuccessfully replying to a transfer

request (”good” nodes).

• 5% of the nodes have at least 80% chance of unsuccessfully replying to a transfer

request (”bad” nodes).

• The bad nodes are picked at random following a uniform distribution.

In each simulation, PageRank for a specific node, the ”monitored node” is computed,

and changes in its PageRank value cycle after cycle are monitored. Once a node is

assigned a certain behavior, it does not change it during the course of the simulation.

An exception to this is the monitored node described below. Also, nodes do not have

”favourite” neighbors: each neighbor asking for an interaction is treated equally by the

receiving node.

Computing PageRank on the network where the social weight assignment was applied is

always possible since the equations guarantee that the outstrength of each node is exactly

1, making the adjacency matrix row-stochastic. The monitored node is always the node

which has the highest ”topological PageRank”, that is, the PageRank calculated when

all arcs in the network have unitary weight. The simulation graphs always show this

PageRank for each cycle. As already mentioned, the monitored node does not follow the

behavioral rules described above.

Finally, the aging functions employed in the simulation are the two candidates defined in

(3.9). The parameters used in the simulation for the candidates are shown in in Table

3.3.
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α β γ
Exponential N/A 0.065 64

Power 1 1 64

Table 3.3: Aging functions candidates parameters

(a) Good to bad (b) Bad to good

Figure 3.1: Comparison among different weight assignment techniques in a network where
some nodes behave poorly.

The goal of the simulations is to compare the behavior of the Social Weight Assignment

against the other techniques described in subsection 3.1.1, i.e. the Positive Feedback

approach, and the Net Feedback approach, and to establish the effect of aging applied to

our Social Weight Assignment. In these simulations, the behavior of the different weight

assignment techniques for a 2000 nodes scale-free network is displayed. The normalized

PageRank value of the monitored node is plotted against the simulation steps, and the

results for all weight assignment criteria are shown in Figure 3.1. The normalized value

is used to show the relative difference among the techniques, as the absolute PageRank

value by itself is meaningless.

The net feedback approach (blue line) drops much faster in simulation 1a compared to the

other weight assignment criteria, and behaves quite poorly in simulation 1b. The behavior

of Social (red line) and Natural (green line) Feedback approaches is quite similar, but the
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(a) Good to bad (b) Bad to good

Figure 3.2: Comparison among different weight assignment techniques in a network where
all nodes behave properly.

Social approach reacts more slowly to changes. Due to this difference of slope, the two

curves cross at a certain simulation step.

It is interesting to highlight the trend of the two aging functions (exponential, in teal,

and power, in magenta). They highlight the presence of a shock when the node changes

behavior, as its PageRank value drops (1a) or raises (1b) immediately. This is due to how

the aging model works, as newer experiences can weight several orders of magnitude more

than older experiences: this ensures that the model reacts very fast to sudden behavior

shifts. While being a consequence of the mathematical model employed, this effect is

coherent with the social aspect of the proposed criterion, as it reflects the surprise factor

of a person which faces unexpected behavior from a peer they had a certain idea of.

After the shock, the two curves’ slopes are comparable to the slope of the non-aging

social weight assignment curve. The exponential aging function has a greater effect on

the shock phenomenon compared to the power-based aging function.

Simulation 2 has same setup of simulation 1 but the error rate has been set to 0 (that

means that all nodes always behave properly). The overall trend of the data analyzed
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in Simulation 2 is similar to the trend of data in simulation 1a and 1b, but the slope

of the social approach is steeper. This is because the Social weight assignment tends to

highlight neighbors which behavior differs from the average. The two curves about the

aging effect show no different behavior compared to simulation 1, so the same things can

be said concerning their trend.

In conclusion, the simulations show that the social weight assignment criteria is more

stable compared to the presented techniques. Moreover, it successfully reacts to sudden

behavior changes (shocks) if we add the aging paramenter to the weight assignment. No

other difference in terms of behavior are present between the two curves employing the

aging function candidates, besides the already mentioned slope steepness.

3.2 Best Attachment

Ordering nodes by rank is a benchmark used in several contexts, from recommendation-

based trust networks to e-commerce, search engines and websites ranking. During the past

years it emerged in several scenarios, from trust-based recommendation networks [48, 49]

to website relevance score in search engines [39, 40], e-commerce B2C and C2C trans-

actions [50, 51]. Within each specific framework, different proposals exist about the

meaning of nodes (agents, peer, users) and about the rank assessment algorithm; in all

of them, the higher is the rank of a node, the higher is its legitimacy. The rank depends

on the set of out-links each node establishes with others [90], and on the set of in-links it

receives.

In the mentioned scenarios, the node rank depends on the set of links the node estab-

lishes, hence it becomes important to choose appropriately the nodes to connect to. The

problem of finding which nodes to connect to in order to achieve the best possible rank
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is known as the best attachment problem. Given that the network is usually modeled as

a directed graph G(V, E), finding the k best attachments for a given node i ∈ V con-

sists in finding a set S ⊆ Si,k that maximizes the rank Pi by changing its ini to ini ∪ S,

where ini = {v ∈ V : ∃e(v, i) ∈ E} and Si,k = {S ∈ V : |S| = k, S ∩ ini = ∅}. Essentially,

we need to establish k links from the k nodes that will improve i’s rank value up to the

highest [91]. Intuitively, we may think that if we select the first k nodes in the ordered

PageRank vector we would reach the optimal solution to the problem, but this is not

usually the case. The PageRank algorithm is driven by the node backlinks, not forward

links. This means that even if i connects to an highly ranked node, unless that node points

towards i as well, it is not guaranteed that its Pagerank is positively affected: depending

on the network topology, it may even be possible that its Pagerank can decrease. In the

general case, the best attachment problem is NP-hard, because the only possible way to

predict the new ranking after the node attachment is to calculate
(

k
n

)
PageRanks. More

accurately, the problem is actually W [1]-hard, as analytically demostrated in [92], which

makes it unfeasible to compute the optimal solution in real-life scenarios, as even with

small networks we would need to compute the Pagerank millions of times. Because of

these computational issues, it is necessary to find an approximation algorithm to choose

a solution acceptably close to the optimum in a polynomial time. In [92] however authors

also show that there exist both upper and lower bounds for certain classes of heuristics.

It is not always possible to calculate these bounds as sometimes the computational com-

plexity of these calculations is NP-hard as well, nevertheless finding bounds of heuristics

lets us rank their theoretical accuracy.

In [3], the authors propose several heuristics that aim at providing a near-optimal so-

lution in reasonable time, preserving effectiveness while achieving practical feasibility.
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They applied the proposed heuristics to different syntetic networks by simulation, and

compared the results. In previous studies [27, 93, 25], the authors attempted a brute-force

solution to the best attachment problem, and analyzed the cost of link building and its

dynamic. There are however more works in literature concerning the best attachment

problem. In [94], the authors use asymptotic analysis to see how a page can control

its pagerank by creating new links. A generalization of this strategy to websites with

multiple pages is described in [95]. In [96] the authors model the link building problem

by using constrained Markov decision processes. In [97] the author demonstrates that

by appropriately changing node outlinks the resulting PageRank can be dramatically

changed.

3.2.1 Heuristics

As discussed, the problem to find the best set of nodes allowing us to gain the best

reputation is not feasible due to computability complexity, therefore a more empirical

approach through several heuristics is attempted to approximate the solution. These

heuristics have both pros and cons, which will be discussed in this section.

The main goal of the heuristics is to allow a new node (called me), to find a trade-off

between the minimization of steps, the cost of new links creration, and the rank position.

Note that the cost of creating a link is both the computational effort needed to evaluate

the increasing of rank (if any) and the cost needed to prevail on a node (x ∈ V ) to create

a link with me.

The computational complexity of all stategies depends on the computational complexity

of pagerank evaluation, in the following called O(PR). Using the Gauss method it would

requireO(|V |3), however using iterative approximation it would requireO(PR) = m∗|E|,
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where m is the number of iterations needed to get a good approximation [98].

In the following subsections some heuristiscs based both on naive approach are and on

PageRank evaluation are presented, aiming at reducing the complexity in solving the best

attachment problem.

Naive Algorithms

The simplest approach to get best attachment problem consists in selecting the nodes

k to populate S randomly until we reach the target . This strategy is naive but it

is simple to implement, and the cost to create link is proportianal to number of links

only. It also serves as a benchmark for computational complexity comparisons, since

its complexity only depends on the number of steps me needs to get the best position,

i.e. O(random) = O(m) where m is the number of steps to converge. The algorithm is

detailed in Algorithm 3.

Algorithm 3 Random Choice Algorithm
1: procedure Random(V, me) ▷ V is the set of vertices, me is the target node

2: T = V
3: S = ∅
4: while rankme > 1 do ▷ Iterate until rank is the best

5: random select x ∈ T
6: T = T − {x}
7: S = S ∪ {x}
8: end while
9: return S

10: end procedure

Of course Random strategy is trivial and does not rely on any of the network properties.

However when the topology is almost regular and the distribution of both in- and out-

degree- is also regular, this algorithm performs as well as others more complex.

Another simple approach to find a node to be pointed by comes from the degree of target

node me, so we can use in-, out- or full-degree of the target node as a selection criteria.
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The algorithm is reported in Algorithm 4.

Algorithm 4 Degree Algorithm
1: procedure Degree(V, me) ▷ V is the set of vertices, me is the target node

2: T = V
3: S = ∅
4: while rankme > 1 do ▷ Iterate until rank is the best

5: select x ∈ T , where degree(x) is max ▷ x node with highest degree in T

6: T = T − {x}
7: S = S ∪ {x}
8: end while
9: return S

10: end procedure

Note that the complexity of algorithm is O(Degree) = O(m) ∗O(select), where m is the

number of steps and O(select) is the complexity to find the node having maximum in-,

out- or full-degree. This last term depends on the type of data structure used to store T .

Pagerank Based Algorithms

While Random approach - being a trivial one - uses no information about network topol-

ogy and nodes characteristics, the next strategies aim at overcoming this limit using

information about the ranking of nodes increasing as little as possible the computational

complexity. Since higher rank nodes are the most popular inside the networks we select

the in-link node according to its reputation. However, a change of topology due to the

new connection could affect the ranking of the nodes, therefore different strategies can

be outlined, depending on the how frequently ranking is evaluated, as reported below.

1. Anticipated Rank strategy: the rank is calculated just before starting the search and

used throughout the whole algorithm to select the (not used) in-link node. Based

on the way the ranking is computed we can distinguish two algorithms:

• Anticipated value (Algorithm 5): the ranking is calculated by ordering nodes
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according to the node’s pagerank value; the idea here is to select first nodes

with higher pagerank value.

• Anticipated outdeg (Algorithm 6): the ranking is computed by ordering nodes

according the ratio between node’s pagerank value and node’s out degree; in

this approach, we first select the node that ”transfers” the highest pagerank

value to its out-neighbourhood.

2. Current Rank strategy (Algorithm 7): the rank is recalculated each iteration and

the best not used node is selected. We always use current rank.

3. Future Rank strategy (Algorithm 8): algorithm evaluates all possible connection -

one step behind - and select the connection giving me the best rank. This strategy

should be the more effective but it is the more expensive.

Algorithm 5 Anticipated value Algorithm
1: procedure Anticipated value(V, me) ▷ V is the set of vertices, me is the target node

2: S = ∅
3: R = pagerank ▷ R is the set of n|n ∈ V ordered according to their pagerank value

4: repeat
5: x = first(R)|x /∈ S
6: R = R− {x}
7: S = S ∪ {x}
8: until (rankme = 1) ▷ Node will always get best position before R became empty

9: return S
10: end procedure

The complexity of the strategy Anticipated value and Anticipated outdeg is almost the

same of Degree strategy, in fact PageRank is evaluated only once before starting the

iteration. However the more nodes are selected, the more often network topology changes

therefore the results of initial PageRank evaluation become less accurate.

Current is the second strategy based on pagerank proposed in [3]; it selects the node

according to its rank, but re-evalute pagerank at each iteration.
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Algorithm 6 Anticipated outdeg Algorithm
1: procedure Anticipated outdeg(V, me) ▷ V is the set of vertices, me is the target node

2: S = ∅
3: R = pagerank/out degree ▷ R is the set of n|n ∈ V ordered according to the ratio pagerank / degree

4: repeat
5: x = first(R)|x /∈ S
6: R = R− {x}
7: S = S ∪ {x}
8: until (rankme = 1) ▷ Node will always get best position before R became empty

9: return S
10: end procedure

Algorithm 7 Current Algorithm
1: procedure Current(V, me) ▷ V is the set of vertices, me is the target node

2: S = ∅
3: repeat
4: compute pagerank
5: select x ∈ V |x /∈ S where pagerank is max
6: S = S ∪ {x}
7: E = E ∪ (x, me) ▷ Connect x to me

8: until (rankme = 1)
9: return S

10: end procedure

The complexity of this algorithm isO(current) = O(m)∗max[O(select),O(PR)] and it is

quite higher than all previous algorithms, since generally O(PR) is higher than O(select).

However, this algorithm seems to capture the network dynamics due to creation of new

links better than previous ones.

Future is the last algorithm proposed in [3]; it tries to evaluate the best node to be pointed

by via evaluating the PageRank that will be obtained by me after the arc creation. This

algorithm needs a continue re-evaluation of pagerank and its complexity is O(future) =

O(m) ∗max[O(select),O(PR) ∗O(|V |)], that can be rewritten as: O(future) = O(m) ∗

O(PR) ∗ O(|V |)

At first glance, this algorithm seems to be optimal since it selects the node which gives

the best rank, but its complexity is higher than all previous algorithms. To partially

overcome this problem, a simpler heuristic that does not iterate over all nodes but selects
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Algorithm 8 Future Algorithm
1: procedure Future(V, me) ▷ V is the set of vertices, me is the target node

2: S = ∅
3: repeat
4: R = ∅
5: repeat
6: connect node x ∈ V |(x /∈ R) and (x /∈ S) to node me
7: calculate pagerank
8: R = R ∪ {(x, rankx

me)}
9: disconnect x from me

10: until |R| = |V | ▷ Iterate over all nodes belonging to V

11: select (x, rankx
me) ∈ R where rankx

me is max
12: S = S ∪ {x}
13: E = E ∪ (x, me) ▷ Connect x to me

14: until (rankme = 1)
15: return S
16: end procedure

randomly N nodes to which apply the Future Algorithm approach can be employed.

3.2.2 Results

To study the performance of the heuristics proposed in the previous subsection, a set

of experiments on two well-known family of networks were conducted: the Erdos–Renyi

random networks (ER) and scale–free (SF) networks.

A random ER network is generated by connecting nodes with a given probability p.

The obtained network exhibit a normal degree distribution [99]. A scale–free network

(SF) [100] is a network whose degree distribution follows a power law, i.e. the fraction

P (k) of nodes having degree k goes as P (k) ∼ k−γ, where γ is typically in the range

2 < γ < 3. A scale–free network is characterized by the presence of hub nodes, i.e.

with a degree that is much higher than the average. The scale-free network employed in

this work is generated by using the algorithm proposed in [101] as implemented in the

Pajek[89] tool.

Simulations have been performed by using 100k nodes networks of both topologies. Ta-
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Figure 3.3: Degree distribution for ER and SF networks

ble 3.4 reports the main topological properties of such networks.

Table 3.4: Networks topological parameters

name #nodes #links average degree
ER 100000 1401447 28.028
SF 100000 1394248 27.884

In figure 3.3 the degree distributions of 100K nodes networks is shown. As expected,

the ER network (figure 3.3a) exhibits a normal degree distribution, while the SF degree

distribution (figure 3.3b) follows a power—law.

Figure 3.4 reports the rank of me with respect to the number of in-links and steps for all

the algorithms presented in the previous subsection. The best rank is represented by the

position 1, so at the beginning me has the worst rank, i.e. 100001. The figure shows that

Degree out and Degree full are the worst algorithms in terms of performance. Random,

Degree in, Anticipated value and Current exhibits comparable performance. Despite the

fact Random has the lower computational complexity among the proposed algorithms,

it performs as well as more complex algorithms. Future and Anticipated outdeg are the

best algorithms when applied to ER networks. Surprisingly Anticipated outdeg performs

even better than Future, mainly during the initial part of the attachment process. In

fact, as detailed in the figure inset, Anticipated outdeg permits me to rapidly achieve a

good rank, even if Future outperforms it after the step number 10. Let’s note, however,
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that the computational complexity of Anticipated outdeg is far less than Future, making

the application to very large networks feasible.

In the figure 3.5 the simulation results for SF network is shown. It’s clear that Random,

Anticipated outdeg and Future outperform the other algorithms proposed in the previous

subsection. As in the case of ER networks, the performance of the Anticipated outdeg

algorithm is surprising since its trend is comparable to the more complex algorithm

Future. In addition, Anticipated outdeg allows the node me to reach the best rank in only

18 steps against the 36 required by Future. On the other hand, Random algorithm gets

the best rank in 69 steps, that is a very good figure considering the size of the network

(100K nodes) and the random selection strategy. This behaviour is probably due to the

presence in SF networks of hubs and authority, that play a central role on the dynamic

underlying the PageRank evaluation.
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Figure 3.5: Heuristics performance on SF network with 100K nodes

3.3 Black Hole Metric

In 3.2’s preamble, some notions concerning node ranking were given in order to describe

the problem of best attachment. Particular emphasis was given to the PageRank[52, 53]

algorithm, which was used as a basis to devise the various heuristics. In this section,

an extension of PageRank named Black Hole Metric [4] will be presented, which aims at

solving some outstanding issues of the 18-years old metric.

In the vast amount of digital data, humans have the need to discriminate those relevant

for their purposes to effectively transform them into useful information, which usefulness

depends on the scenario being considered. For instance, in web searching we aim at

finding significant pages with respect to an issued query [38], in an E-learning context we

look for useful resources within a given topic [41, 42, 43], or in a recommendation network

we search for most reliable entities to interact with [44, 45, 46, 47]. All these situations

fall under the umbrella of ranking, a challenge addressed in these years through different

solutions. The most well-known technique is probably the PageRank algorithm [52, 53],

originally designed to be the core of the Google (www.google.com) web search engine.

Since it was published it has been analyzed [102, 98, 103], modified or extended for use in
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other contexts [104, 54], to overcome some of its limitations, and to address computational

issues [105, 106].

PageRank has been widely adopted in several different application scenarios. In many

of them though, modificiations to the algorithm are applied in order to adapt PageRank

to the specific scenario. The Black Hole Metric is a generalization of PageRank whose

motivation stems from the concept of trust in virtual social networks. In this context

trust is generally intended as a measure of the assured reliance on a specific feature of

someone [28, 7, 31], and it is exploited to rank participants in order to discover the best

entities that is ”safe” to interact with. This trust-based ranking approach allows to cope

with uncertainty and risks [13], a feature especially relevant in the case of lack of bodily

presence of counterparts.

A notable limitation of PageRank when it’s used to model social behaviour, is its inability

to preserve the absolute arc weights due to the normalization introduced by the applica-

tion of the random walker. In order to illustrate the problem, we introduce a weighted

network where arcs model relationships among entities. Entities may be persons, online

shops, computers that in general need to establish relationships with other entities of

the same type. Let’s suppose to have the network shown in Figure 3.6a, where each arc

weight ranges over [0, 10].

Given the network topology, intuition suggests that node 1 would be regarded more

poorly compared to node 6 since it receives lower trust values from his neighbors, but,

as detailed later, normalizing the weights alters the network topology so much that both

nodes are placed in the same position in the ranking. The normalization of the outlink

weights indeed hides the weight distribution asymmetry, as depicted in Figure 3.6b.

Moreover, PageRank shadows the social implications of assigning low weights to all of
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(a) Before the normalization (b) After the normalization

Figure 3.6: Network with asymmetric trust distribution

a node’s neighbours. If we consider the arcs as if they were social links, common sense

would tell us to avoid links with low weight, as they usually model worse relationships. If

we look at the normalized weights in Figure 3.6b though, we can see that in many cases,

the normalized weight changes the relationship in a counter-intuitive way. Consider the

arcs going from node 2 or 4 to their neighbours: we can see that their normalized weights

are set to 0.5, which, in the range [0, 1] is an average score. However, the original weight

of those links was 1, a comparatively lower score considering that the original range was

[0, 10].

The Black Hole Metric copes with the normalization effect and deals with the issue of the

skewed arc weights, detalied in subsection 3.3.2. Note that the metric seamlessly adapts

to any situation where PageRank can be used, as it’s not limited to trust networks; in

the following, they are considered as a simple case study.
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3.3.1 PageRank

Definitions and Notation

In order to better understand the mathematics of the Black Hole Metric, let’s to clarify

the notation and provide a few definitions, which are similar to the notations used in the

article of PageRank. Let us suppose that N is the number of nodes in the network. We

will call A the N × N network adjacency matrix or link matrix, where each aij is the

weight of the arc going from node i to node j. S is the N × 1 sink vector, defined as:

si =
⎧⎨⎩1 if outi = 0

0 otherwise
∀i ≤ N

where outi is the number of outlinks of node i. V is the personalization vector of size

1×N , equal to the transposed initial distribution probability vector in the Markov chain

model P T
0 . While this vector can be arbitrarily chosen as long as it’s stochastic, a common

choice is to make each term equal to 1/N. T = 1N×1 is the teleportation vector, where the

notation 1N×M stands for a N ×M matrix where each element is 1.

In the general case the Markov chain built upon the network graph is not always ergodic,

so it is not used directly for the calculation of the steady state random walker probabilities.

As described in [53], the transition matrix M , used in the associated random walker

problem, is derived from the link matrix, the sinks vector, the teleportation vector and

the personalization vector defined above:

M = d(A + SV ) + (1− d) TV (3.10)

where d ∈ [0, 1] is called damping factor and it is commonly set to 0.85. As we know from
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the Markov chain theory, the random walk probability vector at step n can be calculated

as:

Pn = MTPn−1 (3.11)

the related random walker problem can be calculated as:

P =
(

lim
n→∞

Mn
)T

P0 = lim
n→∞

(MT)nP0 = MT
∞P0 (3.12)

The normalization problem

Let’s calculate the PageRank values of the sample network in Figure 3.6a to highlight

the flattening effect of the normalization. By applying the definitions in subsection 3.3.1

the network in Figure 3.6b can be described by the following matrices and vectors:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0.5 0 0.5 0 0 0
0 0.5 0 0 0 0.5

0.5 0 0 0 0.5 0
0 0 0 0.5 0 0.5
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
V = P T

0 = 1
6 · 11×6 T = 16×1

If we calculate the PageRank values for the nodes of the sample network assuming d =

0.85 we obtain:

p1 = p6 = 0.208 p2 = p3 = p4 = p5 = 0.146

Note that the nodes 1 and 6 are both first in global ranking, despite the fact that their

in-strength was so different before the normalization.
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3.3.2 Black Hole Metric

As mentioned before, the Black Hole Metric avoids the flattening effect of the PageR-

ank normalization. Black Hole Metric globally preserves the proportions among the arc

weights, and ensures at the same time that the outstrength is equal to 1 for each node.

This allows compatibility with the random walker model, and it is done by applying a

transformation to the original network. The transformation only requires the knowledge

of the maximum and the minimum value each weight can assume. This range bounds

may be global (each node has the same scale) or local (each node has its own weight

scale); in practice, global scale is preferred.

An example of the transformation steps as illustrated in Figure 3.7. In order to obtain the

depicted values, formulas (3.13) and (3.16) were used, which will be explained in detail

in paragraph 3.3.2, but for now, the transformation will be explained qualitatively. First,

Black Hole Metric changes the original weights so that they lie in the range [0, 1]. The

resulting outstrength si of each node i is not preserved, but it is guaranteed to be less or

equal than 1. Then, it introduces a new node, the black hole, and a new arc connecting

node i to the black hole. The strength of this connection is set to 1 − si, as if the black

hole ”absorbed” the missing weight amount to reach 1 as the total i’s outstrenght. This

transformation is applied to all nodes in the network.

Figure 3.7: Transformation steps
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Since the black hole does not have outlinks, it is a sink by construction, and the random

walker can only move away because of the teleportation effect. In a network without the

black hole, each node would normally have a 1− d chance to teleport to a random node

instead of going towards one of its neighbours. We know that moving to the black hole

from node i occurs with a 1 − si chance, and that once in the black hole, the random

walker inevitably teleports to a random node. In conclusion, taking both effects into

account, each node has a (1− d)(1− si) chance to teleport to a random node, where d is

the damping factor as in (3.10).

It is important to note that not every network has a defined scale for its arc weights.

There are networks in which the weights are unbounded: an example would be an airline

transportation network in which each arc weight is the number of flights connecting two

cities. As there is no real ”maximum”, there is no trivial weight scale that can be used

for the transformation. In order to apply such transformation in an unbounded network,

we need to somehow infer meaningful scale boundaries exploiting the knowledge of the

domain, and the topology of the network. This is usually non-trivial, and for the rest of

this section, only bounded networks will be taken into account.

Weight assignment

This subsection will detail how the new weights are calculated. Let i be a generic node in

the network. Let the interval [li, hi] be the local scale of node i. Let rij be the weight that

node i assigns to the arc pointing towards node j. Let outi be the number of neighbours

of node i. Given that li ≤ rij ≤ hi, We define the modified weight āij of the arc that goes

from i to j as:

āij = rij − li
outi(hi − li)

(3.13)
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which is significantly different from the normalized arc weight required by PageRank:

aij = rij∑outi
k=1 rik

(3.14)

As mentioned before, the resulting node outstrength is only guaranteed to be less or equal

to 1:
outi∑
j=1

āij =
outi∑
j=1

rij − li
outi(hi − li)

≤
outi∑
j=1

1
outi

= 1 (3.15)

We purposely excluded the contribute of the arc from node i to the black hole in (3.15),

which is:

bi =
outi∑
j=1

hi − rij

outi(hi − li)
(3.16)

If we include this contribute as well, the weight sum becomes 1 as desired:

outi∑
j=1

āij + bi =
outi∑
j=1

rij − li
outi(hi − li)

+
outi∑
j=1

hi − rij

outi(hi − li)
=

outi∑
j=1

hi − li
outi(hi − li)

= 1 (3.17)

The weight bi is ultimately the probability that the node would rather visit a random

node rather than one of its neighbours, which is the amplification of the teleportation

effect operated by the network transformation described before.

Proposal

With the previously mentioned weight assignment, it is now possible to define Black Hole

Metric as a generalization of PageRank. Let’s start by defining the new link matrix

A′, the new sink vector S ′, the new teleportation vector T ′ and the new personalization

vector V ′.

For the sake of convenience, let’s name B the black hole vector, which is the N × 1 vector
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that holds the weights of the arcs going from each node to the black hole. The updated

link matrix A′ is obtained by combining the B vector with Ā = {āij} where āij is defined

in (3.13):

A′ =
(

Ā B

01×N 0

)
(3.18)

In general, A ̸= Ā. There are other three entities involved in the computation of the

transition matrix used by the random walker model: the teleportation vector T ′, the

personalization vector V ′, and the sink vector S ′. We may define T ′ and V ′ as follows:

V ′ = P ′
0

T =
(
V 0

)
=
(

1
N
· 11×N 0

)
T ′ =

(
T

0

)
=
(

1N×1

0

)
(3.19)

Note that we deliberately excluded the black hole from the teleportation effect by putting

a value of 0 in the corresponding entries of T ′ and V ′. Since the black hole is a sink by

construction, going back there as the consequence of a teleportation effect would only

trigger another teleportation effect, which is unnecessary.

Regarding the sink vector, we intuitively want to set to 1 the corresponding index in

the vector, as the black hole is a sink, but this actually makes the black hole row in the

link matrix not stochastic. Let’s consider the matrix A′ defined above, and let’s use the

following sink vector to compute the transition matrix:

S∗ =
(

S

1

)
(3.20)
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We can calculate M ′ using (3.10):

M ′ = d(A′ + S∗) + (1− d)T ′V ′ = d

[(
Ā B

01×N 0

)
+
(

SV 0N×1

V 0

)]
+

+(1− d)
(

TV 0N×1

01×N 0

)
=
(

d(Ā + SV ) + (1− d)TV dB

dV 0

)

The black hole row in the link matrix is dV , which is not stochastic: the vector V is, but

since d ̸= 1 the product is not. This happened because we excluded the black hole from

the teleportation effect by setting its entry to 0 in T ′, which interferes with the damping

factor correction. In order to compensate for this effect, it is sufficient to multiply the

black hole entry in the sink vector by a 1
d

term:

S ′ =
(

S
1
d

)
(3.21)

this makes the black hole row in the link matrix V , which is stochastic. Equations (3.18),

(3.19) and (3.21) allows us to define the random walker model according to the definition

of M in (3.10):

M ′ = d(A′ + S ′V ′) + (1− d) T ′V ′

We can now partition M ′:
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M ′ = d

(
Ā B

01×N 0

)
+ d

(
S
1
d

)(
V 0

)
+ (1− d)

(
T

0

)(
V 0

)
=
(

dĀ dB

01×N 0

)
+

+
(

dSV 0N×1

V 0

)
+
(

(1− d)TV 0N×1

01×N 0

)
=
⎛⎝d

(
Ā + SV

)
+ (1− d)TV dB

V 0

⎞⎠

If we name M̄ = d
(
Ā + SV

)
+ (1− d)TV we have:

M ′ =
(

M̄ dB

V 0

)
(3.22)

Consider now the following partition of the rank vector P ′:

P ′ =
(

P̄

pb

)
(3.23)

where pb is the steady-state probability of the black hole. Note that usually P̄ ̸= P .
The rank vector at step n, which we named P ′

n, can be obtained using (3.11), (3.22) and
(3.23):

P ′
n = M ′TP ′

n−1 ⇔
(

P̄n

pbn

)
=
(

M̄T V T

dBT 0

)(
P̄n−1

pbn−1

)
⇔
(

P̄n

pbn

)
=
⎛⎝M̄TP̄n−1 + pbn−1V T

dBTP̄n−1

⎞⎠

We split the calculation in two parts:

⎧⎨⎩P̄n = M̄TP̄n−1 + pbn−1V T

pbn = dBTP̄n−1
(3.24)

The related random walker process (3.12), given the definition of matrix M ′ (3.22), the
definition of the personalization vector P ′

0 = V ′T, and the definition of the rank vector of
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the Black Hole Metric P ′ (3.23), can be written as:

P ′ = M ′
∞

TP ′
0 ⇔

(
P̄

pb

)
=
(

M̄T V T

dBT 0

)
∞

(
P0

0

)
(3.25)

An important property of the transition matrix M ′ is that it leads to a converging random

walker process no matter the network topology, as it will be clarified in subsection 3.3.2.

As a final note, even though in general A ̸= Ā and P ̸= P̄ , in subsection 3.3.2 we will

introduce a sufficient condition that allows the identity.

Application to example toy network

After defining the necessary entities and describing how to assign weights in the modified

network, it is now possible to show how Black Hole Metric behaves in the sample trust

network in Figure 3.6a. For this particular network we set that li = l = 0, hi = h =

10 ∀i ∈ [1, N ]. It is easy to note that we have only three types of nodes in the network:

1. Nodes which have two links with weight 1 out of 10 (nodes 2 and 4).

2. Nodes which have two links with weight 9 out of 10 (nodes 3 and 5).

3. Sinks (nodes 1 and 6).

We only show the arc weights of node 2, as the same formulas can be used to calculate

the outlink weights of the other nodes. Given that out2 = 2 we have:

ā21 = ā23 = r21 − l

out2 · (h− l) = 1− 0
2 · (10− 0) = 1

20
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The black hole arc weight is going to be:

b2 = h− r21 + h− r23

out2(h− l) = 20− 2
2 · (10− 0) = 9

10

as expected, ā21 + ā22 +b2 = 1. By applying the formulas to all arcs we create the network

in Figure 3.8. The link matrix A′ as in (3.18) is:

Figure 3.8: The Network in Figure 3.6 with the black hole.

A′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0.05 0 0.05 0 0 0 0.9

0 0.45 0 0 0 0.45 0.1
0.05 0 0 0 0.05 0 0.9

0 0 0 0.45 0 0.45 0.1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

while B is:
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B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0.9
0.1
0.9
0.1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Vectors S ′, V ′ and T ′ are obvious from (3.19) and (3.21):

S ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
1
1
d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
V ′ = P ′

0
T =

(
1
6 · 11×6 0

)
T ′ =

(
16×1

0

)

If we compute the steady-state probabilities for the random walker process in (3.25)

assuming d = 0.85, the values calculated for each node (including the black hole) of the

network in Figure 3.8 are:

p1 = 0.110 p2 = p4 = 0.138 p3 = p5 = 0.104 p6 = 0.178 pb = 0.228

which better models the trust relationships among the nodes, as p1 < p6. There is also

a value pb for the black hole, which is a consequence of the transformation we operated.

Since the black hole is not a real node, this probability does not bear any particular

meaning, and it can be discarded.
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Complexity assessment

Using (3.24) for direct computation, no matter the method in use, is inefficient in both

time and space complexity, therefore we will now introduce a more efficient way to solve

the problem. First, let us rewrite P̄n appropriately:

P̄n = M̄TP̄n−1 + pbn−1V T = dĀTP̄n−1 + dV TSTP̄n−1 + (1− d) V TT TP̄n−1 + pbn−1V T

The quantities T TP̄n−1 = t̄pn−1 and STP̄n−1 = s̄pn−1 are both scalars. In particular, we

have:

T TP̄n−1 =
N∑

k=0
p̄kn−1 = 1− pbn−1 (3.26)

which allows us to write:

P̄n = dĀTP̄n−1 + ds̄pn−1V T + (1− d) t̄pn−1V T + pbn−1V T =

= dĀTP̄n−1 + [ds̄pn−1 + (1− d) t̄pn−1 + pbn−1 ]V T

The quantity under square brackets can be further simplified using (3.26):

ds̄pn−1 + (1− d) t̄pn−1 + pbn−1 = ds̄pn−1 + (1− d)(1− pbn−1) + pbn−1 =

= ds̄pn−1 + 1− d−���pbn−1 + dpbn−1 +���pbn−1 = 1− d(1− s̄pn−1 − pbn−1)

which allows us to write (3.24) as:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P̄n = dĀTP̄n−1 + [1− d(1− s̄pn−1 − pbn−1)]V T

pbn = db̄pn−1

(3.27)
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b̄pn−1 = BTP̄n−1 is also a scalar. The index form of (3.27) is:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p̄in = d

N∑
h=0

āhip̄hn−1 + [1− d(1− s̄pn−1 − pbn−1)]vi

pbn = db̄pn−1

There are three expensive computations in (3.27), which complexity is easily inferrable:

• ĀTP̄n−1. Matrix by vector products usually have a computational complexity of

O(N2). However, in our case, we know that matrix Ā has very few non-zero entries.

This number is equal to |E|, the total number of arcs in the network, so we can

conclude that the average computational complexity is O(|E|) which is less than

O(N2) in the general case.

• s̄pn−1 = STP̄n−1 and b̄pn−1 = BTP̄n−1. Inner products among vectors always have

complexity O(N). N is less than |E|, unless the overall number of arcs in the

network is less than the number of nodes itself, which seldom happens.

Then, the overall complexity is O(|E|) in the average case, which is the same as PageRank.

Note that T TP̄n−1 does not add to the complexity, as it can be written as the scalar

1− pbn−1 and computed offline.

Furthermore, we analyse the memory usage of the entities involved outside the computa-

tion:

• Memory usage for adjacency sparse matrix Ā depends on how it is stored. Assuming

the storage format is Compressed Column Storage, it is proportional to 2|E|+N +1.

• Memory usage for personalization vector V , sink vector S and black hole vector B

is proportional to N .
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• No memory usage for teleportation vector T , as it does not appear in (3.27).

Memory usage of PageRank is proportional to 2|E|+ 3N + 1, since the black hole vector

B is not present, whilst the memory usage of Black Hole Metric is proportional to 2|E|+

4N + 1: they only differ by a factor of N .

Proof of convergence

In this subsection, the convergence of the underlying random walker process of the Black

Hole metric will be proven. First, let’s consider the modified adjacency matrix A′. We

know that it is obtained from A by adding a new node (the Black Hole) and by modi-

fying the arcs. It is a well-formed network nonetheless, and it is possible to evaluate its

PageRank. We can define the PageRank transition matrix M∗ for this network as:

M∗ = d(A′ + S∗V ∗) + (1− d)T ∗V ∗

where S∗ is the same as (3.20) and it is the sink vector S with the addition of an extra

sink, the entry of the Black Hole. The teleportation vector T ∗ is easilly constructed:

T ∗ =
(

T

1

)
(3.28)

V ∗ must be a non-negative 1 × N + 1 vector. The personalization vector controls the

per-node teleportation probability, but as long as ∑N+1
i=0 v∗

i = 1, PageRank is guaranteed

to converge no matter which nodes get teleported to, so we can arbitrarilly choose V ∗ as

long as such condition is met:
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V ∗ =
(
V 0

)
(3.29)

Given that the sum of the elements of V is 1, the sum of the elements of V ∗ is also 1.

Because of (3.20) (3.28) (3.29), we rewrite M∗ as:

M∗ = d

[
A′ +

(
S

1

)(
V 0

)]
+ (1− d)

(
T

1

)(
V 0

)
=

= d

[(
Ā B

01×N 0

)
+
(

SV 0N×1

V 0

)]
+ (1− d)

(
TV 0N×1

V 0

)
=

=
(

d(Ā + SV ) dB

dV 0

)
+
(

(1− d)TV 0N×1

(1− d)V 0

)
=
(

d(Ā + SV ) + (1− d)TV dB

V 0

)
=

=
(

M̄ dB

V 0

)
= M ′

The last matrix is the definition of the transition matrix M ′ for the underlying random

walker process of the Black Hole Metric of the network with adjacency matrix A and sink

vector S.

In conclusion, if we choose T ∗ and V ∗ appropriately, the underlying random walker process

for the Black Hole Metric and PageRank is the same. The set conditions do not affect

the generality of this statement, and since PageRank is guaranteed to converge for every

network, it is possible to safely assume that the Black Hole Metric converges as well

regardless of the network structure.
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Rank equality theorem

In this subsection, the theorem proving that Black Hole Metric is a generalization of

PageRank is presented. Before discussing the theorem, however, it is necessary to intro-

duce the lemma(1).

Lemma 1. If B = 0N×1 then M = M̄ .

Proof. If every entry in the B vector is 0 it follows that, ∀i ∈ [1, N ], we have from (3.16):

outi∑
k=1

hi − rik

outi(hi − li)
= bi = 0

Given that hi ≥ rij and hi > li, since the denominator is always greater than 0, the only

way the summation can be 0 is if hi = rij ∀k ∈ [1, outi]. Let’s substitute rij with hi in

(3.13):

āij = rij − li
outi(hi − li)

= ����hi − li
outi(����hi − li)

= 1
outi

and since rij = hi ∀j ∈ [1, outi] we have that aij = 1
outi

= āij, so A = Ā. According

to the definitions of the two matrices M and M̄ we have that M̄ −M = Ā − A = 0 so

M̄ = M .

It is interesting to note that if B is all zeros, the arc weights are all the same, which

is obvious since we are assigning maximum score to each neighbour. Knowing that the

two matrices M and M̄ are the same when the black hole effect is absent, we can easily

prove that the values produced by applying both PageRank and Black Hole Metric are

the same.

Theorem 1 (of rank equality). If every entry in the B vector is 0 then pb = 0, and

P = P̄ :

58



B = 0N×1 ⇒

⎧⎨⎩P = P̄

pb = 0

Proof. Given that B = 0N×1 then, for the lemma 1, the random walker (3.25) becomes:

(
P̄

pb

)
=
(

MT V T

01×N 0

)
∞

(
P0

0

)

Let’s name V1 = 1R×1 · V ∈ RR×N and calculate the n-th power of matrix M ′T :

(
MT V T

1

01×N 0

)2

=
(

MT V T
1

01×N 0

)
·
(

MT V T
1

01×N 0

)
=
(

(MT)2 MTV T
1

01×N 0

)

(
MT V T

1

01×N 0

)3

=
(

(MT)2 MTV T
1

01×N 0

)
·
(

MT V T
1

01×N 0

)
=
(

(MT)3 (MT)2V T
1

01×N 0

)

. . .

(
MT V T

1

01×N 0

)n

=
(

(MT)n (MT)n−1V T
1

01×N 0

)

the limit for n→∞ is:

lim
n→∞

[
(MT)n (MT)n−1V T

1

01×N 0

]
=
(

MT
∞ MT

∞V T
1

01×N 0

)

so we may write the random walker as:

(
P̄

pb

)
=
(

MT
∞ MT

∞V T
1

01×N 0

)(
P0

0

)
=
(

MT
∞P0

0

)
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hence:

⎧⎨⎩P̄ = MT
∞P0 = P

pb = 0

because of (3.12).

3.3.3 Experiments

The Black Hole metric was tested against synthetic networks and a real world network.

The objective was to study the behaviour of the Black Hole metric using different networks

having different size and different topology. The expected result is that the Black Hole

Metric should produce a different ranking, but this does not mean that the produced

ranking is an improvement over the ranking produced by PageRank, as it is hard to

generate or find a network that allows us to clearly highlight the effect mentioned in the

toy example. Nonetheless, the possibility exists, and black hole metric still stands as the

only solution to this hard to detect issue.

In particular, the results for six different synthetic networks are shown, three weighted

directed Erdős-–Rényi random graph networks [107] of size 1000, 10000 and 100000, and

three weighted directed scale-free random networks, of size 1000, 10000 and 100000. The

chosen networks all differ either in size or in topology, and form a usable set of networks

of different characteristics. All Erdős-–Rényi networks were created so that the average

outdegree is 10 and in addition all generated the directed scale-free networks following the

algorithm described by Bollobás in [108]. Using the same notation of [108], the parameters

for the generated networks were chosen as follows: The idea behind the experiments
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Parameter Value Description
α 0.41 Prob. of adding an edge from a new node to an existing one.
β 0.54 Prob. of adding an edge between two existing nodes.
γ 0.05 Prob. of adding an edge from an existing node to a new one.

δin 0.20 Bias for choosing nodes from in-degree distribution.
δout 0 Bias for choosing nodes from out-degree distribution.

we performed is to test the Black Hole metric in a ”wary” environment to show that

PageRank does not make difference if the weights are all multiplied by a constant factor.

Therefore, assuming that the weight range for each arc is [0, 99], the generated weights in

each network were set to be in range [0, 49], the lower half of the full range. Then, both

PageRank and the Black Hole Metric were applied, and we derived the rank position

of each node in the network. This is the first step of the simulation. For the sake of

convenience, two result sets are named respectively PR1 and BH1. After the first step,

the weights were multiplied by a factor of 99/49, effectively scaling the weights range from

[0, 49] to [0, 99]. Both metrics were applied again and the result sets were named PR2

and BH2. This was the second step of the simulation. As expected, PR1 = PR2, so, for

ease of notation, the PageRank result set for both steps will be simply referred to as PR.

The curves describe the cumulative distribution function of the absolute rank position

difference. The result sets were compared and the results condensed as shown by Figures

3.9, 3.10 and 3.11. In all the figures, the x-axis stands for the absolute rank position

differences between two results sets, while the y-axis stands for the cumulative frequency

of appearance. In order to better explain what the axes mean, let’s take as an example

the solid line in Figure 3.9a, which depicts the frequency of position difference between

the result sets PR and BH1. We can see that for a position difference of 50 there is a

frequency of about 0.4. This means that about 40% of the nodes ranked in the result set

PR differ by at most 50 from the position they received in the result set BH1. Since the

result sets are always compared pairwise, we will use the notation R−Q to illustrate thex
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absolute rank position difference among the result sets of R and Q. To trim the outliers

from the result sets, we have restricted the x-axis to 20% of the maximum possible rank

position difference (which is equal to the size of the network).

(a) Network of size 1000 (b) Network of size 10000 (c) Network of size 100000

Figure 3.9: Comparison of the empirical CDF of the absolute rank position difference
(Erdős-–Rényi networks)

In Figure 3.9 the results of both steps of the simulation of the three Erdős-–Rényi networks

are shown. Note that the network size does not affect the shape of the curves; they are

very similar for all three network instances. Moreover, the PR − BH2 curve is always

above the PR−BH1 curve, which means that the BH2 result set nearer to the PR result

set than BH1 is. This can be explained if we look at the arc weights: BH1 comes from a

network where the overall weights are lower than BH2. In a network with lower weights,

the black hole steady-state probability is higher, which means that it is more likely that

a random walker, from any node, moves to the black hole. But the black hole is a sink

so the random walker will teleport after reaching it. This means that the black hole has

an higher steady-state probability, and the teleportation effect is amplified.

As specified above, the PageRank result sets are identical in both simulation steps mean-

ing that the PageRank metric fails to capture the effect induced by the different weight

distribution. The dotted curve BH1 − BH2 highlights that the two result sets BH1 and

BH2 are always different. Note that this curve is steeper than same curve related to the

62



other two sets, because the difference among the two result sets BH1 and BH2 is overall

less than the difference between either BH1 or BH2 and PR.

(a) Network of size 1000 (b) Network of size 10000 (c) Network of size 100000

Figure 3.10: Comparison of the empirical CDF of the absolute rank position difference
(scale-free networks)

Figure 3.10 compares the result sets related to the three scale-free network. The network

size of scale-free networks does not influence much the shape of the curves, however both

PR−BH1 and PR−BH2 get smoother when the network increases in size. Despite this

difference, the curve PR−BH2 keeps staying above the curve PR−BH1, meaning that

the Black Hole metric assesses the difference in wariness of the nodes even in scale-free

networks. Finally, the two result sets BH1 and BH2 exhibit different behaviour when the

network size grows: the curve BH1 − BH2 is between the other two curves when size is

1000, it almost coincides with PR − BH1 when size is 10000, it is above the other two

curves when size is 100000.

At last, in Figure 3.11 we compare Erdős-–Rényi and scale-free networks of size 100000

by grouping together the curves of the same pair of result sets. Note that the scale-free

curves are different than the Erdős-–Rényi curves. This effect may depend on the different

topology of the two networks. In scale-free networks, nodes with high indegree, which

are few in number, are less affected by the weight fluctuations we introduced with our

experiments. Nodes with low indegree, which are more, are instead strongly affected by

63



(a) PR−BH1 (b) PR−BH2 (c) BH1 −BH2

Figure 3.11: Comparison of the empirical CDF of the absolute rank position difference,
same size (100k nodes)

the weight doubling, and their positions change a lot. This causes the scale-free curves

to appear steeper compared to the Erdős-–Rényi curves, although the behaviour of the

Black Hole metric remains the same.

The second set of experiments we apply the Black Hole Metric to a real world network,

Advogato, retrieved from [109].

Advogato (www.advogato.org) is an online community platform for free software devel-

opers. As reported in the website of Advogato ”Since 1999, our goal has been to be a

resource for free software developers around the world, and a research testbed for group

trust metrics and other social networking technologies”. Here the Advogato [110, 111]

trust network is considered, where nodes are Advogato users and the direct arcs repre-

sent trust relationships. Advogato names ”certification” a trust link. There are three

different levels of certifications, corresponding to three weights for arcs: apprentice (0.6),

journeyer (0.8) and master (1.0). A user with no trust certificate is called an observer.

The network consists of 6541 nodes and 51127 arcs and it exhibits an indegree and out-

degree power law distribution. As in the previously discussed experiments, we compute

on this network the PageRank and the Black Hole Metric and compare them using a

cumulative distribution graph, where the x-axis represents the possible absolute rank
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position difference between the PageRank and the Black Hole Metric of the nodes, while

the y-axis represents the cumulative frequency of appearance. To compute Black Hole

Metric we set li = 0.6 and hi = 1.0 for all nodes in the network.

Figure 3.12 shows the results. It is clear that the Black Hole Metric produces different

values (and ranks) compared to those computed by using PageRank. In practice, it

means that Black Hole Metric produces a different ranking compared to PageRank. For

example, in Table 3.5, we report the rank of the first 10 users of Advogato, computed

using the PageRank and Black Hole Metric.

(a) The network. (b) PR−BH CDF.

Figure 3.12: The Advogato trust network

As reported in the website of Advogato, in order to assess the certification level of each

user they use a basic trust metric computed relatively to a ”seed” of trusted accounts.

The original four trust metric seeds, set in 1999 when Advogato went online, were: raph

(Raph Levien), miguel (Miguel Icaza), federico (Federico Mena-Quntero) and alan (Alan

Cox). In 2007 mako (Benjamin Mako Hill) replaced federico. As we can infer from

Table 3.5 both metrics are somewhat able to capture the important role covered by the

Advogato trust metric seeds, by putting them in the top positions. However, Black Hole

Metric, in our opinion, produces a more appropriate ranking, according to the following
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Rank PageRank BlackHole metric
NodeName PageRank Value NodeName BlackHole Value

1 federico 0.02093458 alan 0.00594131
2 alan 0.00978148 miguel 0.00387012
3 miguel 0.00658376 rms 0.00290212
4 raph 0.00405245 raph 0.00230948
5 rms 0.00381952 federico 0.00176002
6 jwz 0.00274046 jwz 0.00172800
7 davem 0.00262117 rasmus 0.00158964
8 rth 0.00258019 rth 0.00158964
9 rasmus 0.00250191 gstein 0.00138078
10 gstein 0.00230680 davem 0.00135993

Table 3.5: Rank of the first 10 users of Advogato trust network computed by using
PageRank and Black Hole Metric.

observations:

• federico is first according to PageRank, while is 5th according to Black Hole Metric.

Moreover the PageRank federico’s value is also significantly higher compared to

alan (the second in the chart), which means that federico is steadly in the first

position with a wide margin, despite the fact that he has not been a seed since 2007.

We believe that lower position that the Black Hole Metric assigns to federico better

captures the fact that he was swapped out of the seed set.

• Another interesting difference is about the different position of the node mako. It

is ranked 257th by the PageRank and 142th by Black Hole Metric. This ranking

difference suggests that the Black Hole Metric better captures the relevance that

mako has been assuming inside the Advogato community.
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Chapter 4

Mesoscale

One of the most attractive problems in network science deals with the identification of

the so-called mesoscale structure of a complex network, a topic of intensive research

activity across multiple disciplines [112]. Its importance relies in the ability to unveiling

communities of units that, in turn, can be used to explain some hidden behaviours of

networks emerging as the result of the complex interaction patterns among nodes (or

entities).

Community detection has been successfully used to analyze the structure of single-layer

networks and for modeling several kinds of interactions, such as social relationships,

genetic interactions among biological molecules or trade among countries [76, 77, 78, 79,

80, 81, 82], just to mention a few (a detailed introduction to communities in networks

can be found in [72, 73]).

Despite this intuitive concept, a precise definition of a community is still a topic of

debate among network scientists. In this section, two completely different approaches to

the detection of communities will be presented, one uses a genetic programming approach

to produce a partition quality assessment function, and the other studies the parameter
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selection for an information-theoretic algorithm for community detection.

4.1 Genetic Programming

The idea of having machines automatically solve problems has always been central in the

domain of artificial intelligence [113, 114], but only recently the technological advance-

ments in the field of computing speed allows to exploit these techniques to solve more

complex cases. A relevant problem since the early days of artificial intelligence is however

a machine would solve a problem which solution is a computer algorithm itself.

Genetic Programming (GP) attempts to take on such challenge by making use of the

concepts of evolutionary computation, which borrows from nature the idea of the survival

of the fittest. It aims at generating a feasible algorithm that can solve the specified

problem without requiring the user to specify the shape of the solution in advance.

The gist of GP consists in evolving a population of computer programs. Computer

programs which participate in the process are named individuals. At each iteration of

the process, the population is evaluated, and each individual is given a numerical score

named fitness. The better the fitness, the more likely an individual is a solution to the

GP problem. The fitter individuals are then manipulated by the use of genetic operations

in order to generate a better population for the next iteration. The process continues

until an exit condition is satisfied: the fittest individual that was ever bred among all the

iterations will be designated as the solution to the problem. This whole process is shown

in Figure 4.1.

The GP process is inherently random, and sometimes it produces no meaningful solutions.

However, this randomness allows GP to avoid the traditional pitfalls of deterministic

search algorithms.
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Figure 4.1: Overview of the Genetic Programming process

Setting up a GP problem means specifying how an individual is constructed in terms of

terminals and functions, defining a proper fitness function and providing parameters that

control the run, including the exit conditions, as summarized in Figure 4.2.

Figure 4.2: Preparatory steps for the Genetic Programming process

Terminal and function sets

The terminal set is the set of values that are used as arguments of the functions in the

function set. It may consist of:

• External inputs of the program, typically represented by named variables like x.

• 0-ary functions, like time(), that may return a different value each time they are

run.

• Constants, either determined before the run or created by mutation.
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The function set is very dependent on the application domain. In simple numerical

problems, it may consist of the four basic arithmetic functions (+, -, *, /), but they could

be higher level functions: for example, if we are looking for an auto-pilot system for a

car, functions could include steer(), accelerate(), decelerate() in a simplest case.

Fitness function

Defining a good fitness function is perhaps the most crucial step when setting up a GP

problem. A good fitness function should always return large (small) values for individu-

als that fit, and small (large) values for individuals less fit, so that the individual which

has the highest (lowest) score is the fittest. It is often the sole mechanism to provide

a high-level statement of the problem’s requirements. For example, if the GP prob-

lem consits in finding the closest rational number for any real number n, the program

floor(n*100)/100, is more fit than the program floor(n*10)/10, as it gives a more

accurate result for all values of n, so it should receive a better score.

Control parameters

At last, there are several parameters that need to be configured in order to start the GP

search: the termination criterion, the population size, how the initial population is cre-

ated, the probability of applying a genetic operators and so on. Of all these parameters,

the most important two are the population size and the termination criterion. Regret-

tably, it is not possible to make general recommendations regarding an optimal set of

GP parameters, as it strictly depends on the specific application. However, GP is often

robust, and many different parameter values may work.
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4.1.1 Community structure validation problem

In this section, a technique to solve the problem of community structure validation with

a GP approach will be presented, as described in [5]. The solution takes the form of a

validation function, which is a function that assigns a certain score to a partition of a

network in clusters: the closer to the optimal that partition, the better the score. For

simplicity’s sake, let’s say that a partition is better (worse) than another when it’s closer

(farther) from the optimal partition.

Note that in the general case it’s not possible to assume that a better partition always

gets an higher score compared to a worse partition. The validation function might assign

a higher score to worse partitions, depending on its shape. This is the reason why the

terms ”lower” or ”higher” will not be used when considering the validation function score,

but the more generic ”better” and ”worse” will be employed.

Such a function could be used in conjunction with global optimization methods to find

communities: in this case, the goal is to find the partition that yields the best score, or

get reasonably close to that. However, let’s first describe in more formally what to look

for, so that it’s possible to determine if a solution to the problem exists.

Let’s assume we have an undirected, unweighted network G = (V, E), where V is the

set of nodes and E ⊆ V × V is the set of edges. If we name P the space of all the

possible partitions of G, we are looking for a validation function β : TP → R that has a

reasonable computational complexity. TP is the space of terminal sets obtained from all

the partitions in P : its generic element is simply the terminal set of a specific partition

P ∈ P . However, the β function is very difficult to handle as an individual of the GP

problem due to the high dimensionality of TP , as it would require many terminals to

provide enough information to describe the whole partition of the network.

71



Instead of looking for a validation function as a whole, to reduce the dimensionality of

the selection function, the function β was fragmented so that it operates on the terminal

sets Te ∈ TE, ∀e ∈ E, which have less dimensions:

β(Te) =
rk∑

i=1

∑
e∈Ei

f(Te) (4.1)

f : TE → R is an individual of the population in the GP problem, and TE is the space of

terminal sets obtained from all the edges in E, hence a generic Te ∈ TE is the terminal set

of an edge e = (v, w). This terminal set should contain numeric information about the

nodes that connects. This includes microscopic parameters like the degree of v and w or

their structural difference. However, there are also mesoscopic (related to the communities

e belongs to) and macroscopic parameters (related to the whole network) that are worth

considering even when evaluating the score of a single edge. For example, it may be

worth comparing the degree of v or w to the average degree of the nodes within the

same community, or to the average degree of the nodes within the network. Of course it’s

impossible to know exactly how the terminals will be compared within the function f due

to the nature of GP, but the terminal set must offer the opportunity for such comparisons

to happen.

Finally, note that all (v, w) ∈ E : v ∈ Ci, w ∈ Cj, Ci ̸= Cj were excluded on purpose.

This simplification is necessary to further reduce the dimensionality of the terminal sets

and the overall complexity of the GP problem, because including these arcs would imply

two problems to be addressed:

• It would be necessary for the f to behave differently for inter-community and intra-

community links. This makes the search much harder, so, as far as complexity is
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concerned, it is better that all the arcs are of the same type.

• Inter-community links require more terminals than intra-community links, because

they bear mesoscopic information about two communities instead of one.

In conclusion, the GP problem consists in finding an individual f : TE → R that, applied

to all intra-community edges, will provide a score to a certain partition P ∈ P . The

terminal set will provide access to microscopic, mesoscopic and macroscopic properties

that can be used by the GP algorithm to create a suitable f . In the following subsection

the parameters of the GP process will be described in detail.

4.1.2 Methodology

As already mentioned, the parameters that characterize the proposed GP run are illus-

trated, which are the terminal set, the function set, the fitness function, and all the

control parameters such as the population size and the termination criterion.

Terminal set

The terminal set was one of the most challenging parameters to define. On one hand,

we want to include several different properties from the network at different levels (mi-

croscopic, mesoscopic, macroscopic), on the other hand too many properties would raise

the complexity of the GP problem, making the solution harder to search for. As already

mentioned in subsection 4.1.1, the original problem in order to make use of a reduced

terminal set. If we name the generic edge ei = (vi, wi) ∈ Ei belonging to the community

Ci, the terminal set we decided to make use of is the following:

• Microscopic Parameters
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– degree of node vi;

– degree of node wi;

– structural equivalence between vi and wi;

– number of arcs of vi that point to other nodes in Ci;

– number of arcs of wi that point to other nodes in Ci.

• Mesoscopic Parameters

– average degree of nodes in Ci;

– total number of edges in Ci;

– total number of nodes in Ci.

• Macroscopic Parameters

– average degree of nodes;

– total number of edges;

– total number of nodes.

The information concerning each level is very abstract and simple by design: the GP run

should not be biased with excessively refined mathematical models. The only exception

to this could be the structural equivalence, which is computed via the cosine similarity.

If the results suggest that the quality of the solution would benefit from a larger terminal

set, it is of course always possible to add other parameters in subsequent runs. Likewise,

it is also reasonable to remove some of the parameters if it appears that they are unused

in the fitter individuals.
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Function set

Contrary to the terminal set, the function set is small, and consists of only five functions:

{+,−,×,÷,
√
}, which are the binary addition, subtraction, multiplication and protected

division and the unary square root operator. The protected division operator ÷ is defined

as:

a÷ b =
⎧⎨⎩1, for b = 0

a
b
, otherwise

The function set is small for two reasons: having a smaller function set decreases the

complexity of the algorithm, and since most of the used functions are simple, they have

less impact on the overall computation time. Note that there are important terminals and

functions that can be derived from a combination of elements from the defined terminal

and function sets:

• 0 can be written as n− n, ∀n ∈ R;

• 1 can be written as n÷ n, ∀n ∈ R;

• n2 can be written as n× n, ∀n ∈ R;

• |n| can be written as
√

n× n, ∀n ∈ R.

Fitness

Determining a proper fitness function is also a major challenge, and often the success of a

GP search depends on how accurately the fitness functions validates the correct solution.

In the case described in this section, the fitness function needs to evaluate how well our

validation function β (4.1) behaves. In practice, its behavior is tested by applying it to
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the ground-truth partition P ∗ and d randomly generated partitions. The scores of these

randomly generated partitions are then compared against the score of the ground-truth

partition. Intuitively, the more a partition Pk is similar to the ground-truth partition,

the better score β should yield.

Unfortunately, comparing the scores as they are gives little or no information about how

accurate is the validation function in scoring a specific partition. Assuming P ∗ is the

ground-truth partition, how can we say that β(TP ∗) yields the best score if we don’t

know the maximum value that β can assume? Assuming P is a generic partition, how

can we say that β(TPk
) is better or worse than β(TP ∗) when we don’t know the shape of β?

This is why the correlation between the difference of the two β scores and the normalized

mutual information (NMI) a measure of how different two partitions are, was measured.

If the difference is correlated to the NMI, it means that the β function behaves as desired,

and it is a good candidate for our solution. Note that it would be equally possible to use

any kind of difference measurement: NMI was chosen because it is well-studied and has

convenient properties [115].

The aforementioned intuitions were used in order to measure this correlation and obtain

the fitness function φ. First, let’s define the basic building block for our fitness function,

which is the function γ : P → R, defined as following:

γ(P ) = |β(TP ∗)− β(TP )|
NMI(P ∗, P ) (4.2)

This function alone does not measure correlation of course. To do that, we need to
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consider its standard deviation σγ:

µγ =
d∑

i=1

γ(Pi)
d

φ(f) = σγ =

√ d∑
i=1

[γ(Pi)− µγ]2 (4.3)

Given the definition of our fitness function, we may conclude that the best individual f

is the one that minimizes φ.

Control parameters

Compared to the other settings, determining the optimal control parameters beforehand

is usually not possible. Things like population size, crossover ratio, number of genera-

tions, are best determined via experimentation. As far as the complexity parameters are

concerned, in principle, it is common to start with a small population (about 50 individ-

uals) and an average number of generations (about 30). These numbers may be refined

according to the performance of the GP framework in terms of the quality of the results

and computing time.

The crossover ratio, which is the chance that crossover occurs between two genes, is also

an important factor. Normally, each generation is subject to different genetic operators

randomly. Certain individuals will undergo crossovers, other mutation. The crossover

ratio indicates what is the chance of two individuals to crossover. A traditional approach

[116] is to have a crossover ratio of 0.9, while the mutation ratio is set to the remaining

0.1, and this is what has been used in the experiment.

There is also a variety of different genetic operators and strategies that have to be chosen.

For example, it makes sense for certain GP problems to adopt automatically defined

functions (ADF), a way to evolve reusable components, but they are most effective in

problems which present some degree of regularity. Also, there are many different kinds
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of crossover and mutation operators [113], and the problem of determining which kind of

operator to use is complex [117].

4.1.3 Experiments

Although it is currently a work in progress, the methodology explained above was applied

to a real-world network to see if it would be possible to produce a validation function

out of a GP run. The experiments were performed using the DEAP framework [118],

a distributed evolutionary algorithm framework written in Python. The GP strategy

was tested on the well-studied karate club network [119], as the ground-truth partition

in communities is known. As reported in formula (4.3) we also need to choose how

many random partitions we need to generate. Using more random partitions makes

the validation function more resilient to overfitting, but it makes computing the fitness

function more costly.

Moreover, when setting up the framework, special focus was given on how to minimize

the running time of the algorithm. This was accomplished by doing precalculations:

• In formula (4.2) the normalized mutual information between the reference partition

P ∗ and the partition P is indipendent of the specific β, so it can be precalculated.

• The structural equivalence, together with most other parameters, can be calculated

offline, and stored as node/community/network metadata.

At last, a problem which affects genetic programming is the phenomenon of bloat[120].

In a nutshell, bloated individuals are individuals which contain redundant terminals and

functions, the GP equivalent of reducible polynoms. The redundant entities do not

contribute to the quality of the individual, and they slow down the computation of the

fitness function, and use more space in memory. In order to fight bloat, a penalty function
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on tree depth was introduced into the computation of the fitness function: this way,

smaller individuals are prefered over large, bloated ones.

With the mentioned setup, initial tests were done with 100 different partitions, crossover

rate 0.85, mutation rate 0.15, 40 generations and a population of 10000 individuals,

but the results were rather poor. In general, the quality of the validation function was

found to increase when either the population is larger, or if the number of generations

rises. However, with more generations, the validation function tends to overfit the sample

partitions: if it is used with a different set of randomly generated partitions, it yields poor

results. In the future, strategies to avoid overfitting will be investigated, so that they can

eventually be implemented into the framework, which will be made able to yield better

results.

4.2 Information Theory

As already mentioned, a community is a group of nodes more densely connected each other

inside the group and sparsely connected to nodes outside the group. In literature, there

are several attempts at giving meaning to the intuitive concept of a community. Some of

them exploit concepts and ideas taken from information theory, for example [74]. This

method is based on the formulation of a new quality function called map equation[75],

which allows to find the optimal description of the network by compressing its information

flow. The algorithm is the core of Infomap (http://www.mapequation.org/), the search

method for minimizing the map equation over possible network partitions. This section

provides an information-theoretic based method that uses an extension of Infomap to

detect communities in multi-layer networks.

Multi-layer networks, in a nutshell, are formally equivalent to edge-labeled multigraphs.
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They consist in several single-layer networks, which are regular graphs, which are con-

nected by inter-layer edges. Multi-layer complex network are a very useful tool to model

the empirical systems which complexity is not captured by single-layer networks, as the

ones where units exhibit multiple types of relationships simultaneously. This is the case

of social systems, where an individual can have family, business or trust interactions

with other individuals, or of transportation systems, where geographical areas might be

connected by different transporation means such as bus, tube, rail, so forth and so on.

The suitability of multilayer networks for capturing this higher amount of complexity led

to a growing interest in their study [121, 122, 123] and to a more general mathematical

framework, which can be used when nodes are connected to each other via multiple types

of edges or a network changes in time [124]. In fact, multilayer networks are more adequate

to model real world interactions that cannot be aggregated into a single network without

a loss, in general, of some important structural or dynamical properties [125, 126].

Many methods and measures developed for single layer networks have been extended to

be applicable to multilayer networks [124, 127, 128, 129, 130]. In this context new commu-

nity detection methods have been devised, mainly by reusing concepts already developed

for single layer networks. In Ref. [131], the authors proposed a method based on a gener-

alization of the modularity to multilayer networks. This extended modularity is mainly

based on generalized null models obtained by considering a Laplacian dynamics [132, 133]

on the multilayer network. To compute communities by using such a generalization of the

modularity function, an extension of the Louvain algorithm [134] has been also proposed

in Ref. [135].

In Ref. [125] an extension of the map equation to multilayer networks is introduced. It

is based on the generalization of random walks to multilayer systems [136], which in
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turn are used to generate the corresponding network flow to be compressed in order to

identify community flows in multilayer networks. The resulting algorithm – i.e. Multiplex

Infomap [125] – is the extension of Infomap to the case of multilayer networks.

A drawback of community detection algorithms for non-interconnected/edge-colored net-

works is their dependence on at least one parameter which regulates the structural or

dynamical coupling between layers. In the case of Multiplex Infomap, this parameter

is known as the relax rate r. The relax rate is the parameter responsible of modeling

movement among layers. At each random walker step, there is a 1 − r probability that

the random walker simply moves to a neighbour in the same layer, and an r probability

that it changes layer, and then moves to a neighbour on that layer.

The choice of r is crucial and, in general, it depends on the network under analysis. While

empirical results suggest that values smaller than 0.5 are generally appropriate for most

networks [125], finding the actual optimal value is still an unsolved problem. Moreover,

in community detection the concept of an absolute optimal simply does not exist, as it is

difficult to ascertain whether the chosen algorithm is able to detect the absolute optimal

partition. In fact, a safer approach is to assess that a certain partition can be optimal

with respect to a specific algorithm. In this section, the content of [6] is presented, where

the goal is to find the value of r which provides the best possible partition with respect

to Multiplex InfoMap in the case of multilayer systems where the strength of coupling

among layers is unknown.

4.2.1 Information-theoretic approaches to parameter selection

Multiplex InfoMap is an algorithm which optimizes the map equation [74], a measure of

the information-theoretic duality between data compression and the problem of extracting
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significant information from compressed data. Given that its roots lie firmly in the

realm of information theory, it is natural to develop an information-theoretic algorithm

to determine the relax rate producing an optimal partition, with respect to some criteria.

In the domain of information theory, this partition would be the one which retains the

most information about the network inside the communities. In literature, there are

several attempts at exploiting the concepts of information theory to evaluate the quality

of a partition [137, 138, 74, 139], in this section, the suitability of two measures will be

investigated: information loss [138] and average inter-community entropy [140].

Information loss

Information loss occurs when a certain source of information is compressed in a way that

some of the information is discarded as a result of the compression. Since any source

of information can be fed to compression algorithms, let’s describe how to compress a

network, and the information loss that derives from this operation.

Compressing a network X involves finding some representation Y that only keeps part of

the available information on connectivity. In [138], the authors compress the network into

a representation that preserves the information contained inside the communities in order

to evaluate how much information is required to rebuild X given the representation Y . If

we name this quantity H(X|Y ), given that H(X) is the average amount of information

required to describe X, we can compute it from mutual information I(X; Y ) between X

and Y by

H(X|Y ) = H(X)− I(X; Y ). (4.4)

The compressed representation Y is still a graph where each node is a community and
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links between nodes are inter-community connections. Hence, we may completely describe

Y with the tuple (N, L), with N = {ni}, where ni is the number of nodes of the i-th

community, and L = {lij}, where lij is the number of links that go from community i to

community j. Note that the definition provided is exactly equivalent to the cross-entropy

(or negative log-likelyhood) of the stochastic block model (SBM) [141], a generative model

for random graphs. If we assume that there are m communities, in the simplest case of

undirected and unweighted networks, Eq. (4.4) reduces to

H(X|Y ) = log2

⎡⎣ m∏
i=1

(
ni(ni − 1)/2

lii

)∏
j<i

(
ninj

lij

)⎤⎦ . (4.5)

This formula accounts for all the possible ways to arrange the links that go from nodes

of community i to nodes of community j, hence representing all the possible configu-

rations of networks that can be reconstructed knowing Y . The higher the value, the

more information is contained in the inter-community links. Extending this formula for

directed networks is straightforward, since one should evaluate the possibility that a link

can connect two nodes in two different ways (from i to j and vice-versa):

H(X|Y ) = log2

⎡⎣ m∏
i=1

(
ni(ni − 1)

lii

)∏
j ̸=i

(
ninj

lij

)⎤⎦ . (4.6)

Weights can be included as well, to account for more complex structures. For each link

lij of Y , which represents the total number of links from community i to community j, we

have a quantity wij encoding the sum of the weights of links that go from i to j. Ideally,

each configuration reconstructed from Y using (4.6) generates further configurations if

we consider all the possible ways to distribute wij among lij links. The number of con-

figurations is infinite if the weights are real numbers: given a weight wij, the problem
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is analogous to splitting the interval [0, wij] in lij parts, and since any real interval is

uncountable, there are infinite ways to make the partition. However, if we impose the re-

striction that the weights are natural numbers, the number of partitions can be calculated

as follows. First, we assign the weight 1 to each one of the lij links, thus imposing the

restriction wij ≥ lij. Since we already distributed lij out of the total wij, calculating all

possible distributions of the remaining wik − lij among lij links depends on combinations

with replacement:

CR(lij, wij − lij) = (lij + wij − lij − 1)!
(wij − lij)!(lij − 1)! = (wij − 1)!

(wij − lij)!(lij − 1)! =
(

wij − 1
lij − 1

)
. (4.7)

Thus, we can update equation (4.6) to include all the possible ways to distribute wij

among lij links:

H(X|Y ) = log2

⎡⎣ m∏
i=1

(
ni(ni − 1)

lii

)(
wii − 1
lii − 1

)∏
i ̸=j

(
ninj

lij

)(
wij − 1
lij − 1

)⎤⎦ . (4.8)

A more general formula, accounting for the possibility of self-links (e.g., useful for mod-

eling citation networks) is given by

H(H|Y ) = log2

⎡⎣ m∏
i=1

m∏
j=1

(
ninj

lij

)(
wij − 1
lij − 1

)⎤⎦ . (4.9)

Since H(X|Y ) represents the information that is lost when compressing the network,

a good compression requires H(X|Y ) to be as small as possible: hence, our goal is to

minimize this quantity.
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Average inter-community entropy

In information theory, entropy is a key measures of information content. In fact, entropy

can be used to assess the information retained inside and between communities, which

together compose the total information contained within the network. In [140], a link-

centric definition of entropy is proposed, to tie information content with arc weights.

This approach is supported by the fact that most networks can be represented solely

by providing their adjacency matrix. We can measure the inter-community entropy of a

community Ci as the entropy of all the links that go from nodes in Ci (i = 1, 2, ..., K) to

nodes belonging to other communities:

H(Ci) =
K∑

j=1
pij log2(pij), pij = wij

K∑
j=1

wij

, (4.10)

where K is the total number of communities and wij is the total weight of the arcs

linking community Ci to community Cj. Inter-community entropy H(C) is calculated by

summing up the contribution of each community:

H(C) =
K∑

i=1
H(Ci) (4.11)

However, despite its simplicity, this measure is biased towards the number of communities.

If the network is partitioned in more communities, the value of H(C) tends to be higher,

making difficult to compare values obtained from different partitions, if their number

varies. To mitigate this effect, let’s compute a weighted average defined by

H̄(C) =

K∑
i=1

H(Ci)× ni

K
, (4.12)
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where ni is the number of nodes contained within community Ci. The rationale behind

this weighted average is that large communities with small inter-community entropy are

more desirable than smaller communities with the same entropy, because it means that

there are more links pointing towards nodes that belong to the same community. There-

fore, it is natural to look for the partition which minimizes the average inter-community

entropy while varying the relax rate r.

4.2.2 Analysis of synthetic network models

To better understand the suitability and the limitations of the two measures previously

described, they were applied to a set of synthetic benchmark networks. The multiplex

toy models consist of 256 nodes which are connected in different ways on two layers. The

networks are edge-colored because inter-layer connectivity is not given explicitly. We

consider three kinds of benchmarks:

• ER/ER. This system is generated by combining two Erdos-Renyi (ER) networks

with no community structure in either layer. This networks serves the purpose of

benchmarking the measures against pure noise.

• LFR/ER. This system is generated by combining an Erdos-Renyi layer with one

generated by the Lanchichinetti-Fortunato-Radicchi (LFR) benchmark [142]. A

community structure is only present in the LFR layer, hence this multiplex network

is used to test the impact of coupling noise to a structured population.

• LFR/LFR. This system consists of two Lanchichinetti-Fortunato-Radicchi net-

works, with tunable cross-layer community overlap, generated in the following way.

First, a single-layered LFR network is created. Then, the network is duplicated,
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and a multiplex network with two layers, where each layer is the generated LFR

network, is created. After that, the neighbours of two nodes (eg: the neighbours

of node 1 become the neighbours of node 5 and vice versa) are swapped. This

effectively changes the community structure of the altered layer by a certain de-

gree. If we divide the count of the nodes which neighbours were swapped by the

total number of nodes, we can calculate the ratio of community overlapping across

layers, that is, the percentage of nodes that belong in two different communities

in different layers. When the desired overlapping ratio is reached, the neighbour

swapping is swapped. In this way, three classes of networks are generated, each one

corresponding to a different amount of overlapping across layers (100%, 50% and

10%, respectively).

The generated networks all have 256 nodes per layer, an average indegree of 8, and a

maximum indegree of 16. LFR networks also require the input of two other parameters:

the mixing parameter for the weights µw and topology µt. Both parameters were set to

0.1. Such toy network models were used to test the ability of our algorithms to detect

the most relevant community structure among the ones identified by Multiplex Infomap

for varying relax rates.

The LFR/LFR system with 100% overlap and the ER/ER network produce the same

result, regardless of the relax rate. This is obvious if we look at the meaning of the relax

rate: as mentioned before, it is the probability to change layer at each random walker

step. In the LFR/LFR multiplex network with 100% overlap, both layers are identical, so

whether the random walker changes layer or not it does not have an impact on the final

result. In the case of ER/ER network instead, since both layers are completely random,

it does not matter if we change layer, InfoMap still fails to find a meaningful community
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structure, and lumps all nodes into a single community. Results for these benchmarks

are not shown.

Results from the other synthetic network models – shown in Figure 4.3 – are more inter-

esting, because of the increased modeling complexity with respect to the previous cases.

For the LFR/LFR networks with 50% and 10% overlapping, the best value of r for both

information loss and average community entropy is close to 0. Here, the Multiplex In-

fomap algorithm prefers to keep the two layers separated since their community structure

is different enough that an evident cross-layer pattern is not detected, as expected.

The mixed LFR/ER scenario shows a very prominent change around r = 0.25 for both

measures, suggesting that the presence of noise introduced by the ER layer forces the

random walkers to switch layer more frequently to gain more information. Note that in

Figure 4.3 the information loss was normalized for visualization purposes. If we name

the information loss for a certain relax rate r H(X|Y )r , we may define its normalized

version as:

H∗(X|Y )r =
H(X|Y )r − min

0<r≤1
H(X|Y )r

max
0<r≤1

H(X|Y )r − min
0<r≤1

H(X|Y )r

(4.13)

(a) (b) (c)

Figure 4.3: (a) Number of communities, (b) normalized information loss and (c) average
weighted inter-community entropy, for different values of the relax rate.

88



To better understand these results, alluvial diagrams were built (Figure 4.4), showing

how communities change when the relax rate increases.

For LFR/LFR benchmarks (Figure 4.4a and Figure 4.4b), the results are similar, with

communities reconfiguring themselves more quickly in the scenario with 10% overlap.

This is a consequence of the more diverse community structure in the two layers compared

to the LFR/LFR network with 50% overlap.

It is of particular interest the scenario LFR/ER. When the switching dynamics is very

low, the community structure of the LFR layer dominates. For r = 0.25 the algorithm

recognizes the whole ER layer as a stand-alone community, complementing the ones

detected in the LFR layer. However, when random walker’s switching dynamics is too

high, corresponding to the case of higher relax rates, the multiplex structure is diluted

and inevitably lost, with partitions dominated by noise.

(a) (b) (c)

Figure 4.4: (a) Alluvial plots of the networks LFR/LFR with 50% overlap, (b) 10%
overlap and (c) mixed LFR/ER. In each plot, each rectangle represents a community, and
its thickness encodes the importance of the community within the network, evaluated by
its aggregated PageRank. Flows between communities, from left to right, encode how
many nodes are re-assigned from one community to another for increasing relax rate. We
highlighted the flows related to the most central community for each value of r.
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4.2.3 Analysis of empirical networks

We apply the algorithms to a multilayer network built from real data. In this study we

consider sciMAG [143], a data set built by linking the Microsoft Academic Graph (MAG)

and the SciMago classification of academic journals. sciMAG is a rather large data set:

it contains more than 35 million papers and more than 320 million citations in various

knowledge areas. As many other databases used for bibliometrics studies, sciMAG is

affected by ambiguities among authors and institutions. The problem of disambiguation

is complex and challenging. Despite it has been well-studied in the literature [144, 145,

146, 147] there is no golden standard, and many approaches are tailored around the data

sets themselves. Since disambiguation is out of the scope of this paper, we decided to

use the data set as it is, with the ambiguous data. We also decided to use a subset of

the original data set, because in this study we are interested to show the applicability

of our algorithm for identification of an optimal relax rate, rather than to perform a

bibliometrics analysis that is out of the scope of the paper.

In order to make the data set usable for our purposes, besides reducing it to a subset of

the original data, preprocessing steps were done to build a multiplex network with two

layers, encoding citation and collaboration patterns among scholars, respectively. The

preprocessing part consists of three different steps:

• Filtering. In order to reduce the size of the data to preprocess, all papers from

the data set that do not pertain complex networks were removed. This was done

by disregarding all papers that do not contain the keyword “complex networks”

in their title. In this case, the crudeness of this method does not matter, as any

kind of slicing of the data set would have been equally arbitrary. Nevertheless, this

choice preserves any community structure that would be inherent the specific field,
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as collaboration and citation ties tend to aggregate nodes in clusters.

• Building. The author data with the paper citation network were joined first, in

order to build the author citation network, then the paper metadata were exploited

to reconstruct the author collaboration network.

• Pruning. The resulting network was not yet ideal for analysis, because of many

“dangling” nodes – i.e., authors with no citations or collaboration links – and be-

cause the two layers do not consist of strongly connected networks. Hence, the

largest strongly connected component for both layers was extracted, and all the

other nodes removed. Then, nodes from one layer to another were duplicated in or-

der to make sure that each author was present in both layers, ensuring the multiplex

structure.

The preprocessed multiplex network consists of about 2500 authors present in both the

citation and co-authorship layer. The two measures described in the previous subsections

were applied, detecting minima close to 0.2 for both the information loss and the average

inter-community entropy. In particular, the information loss has a minimum around 0.15

and the inter-community entropy around 0.3 (Fig. 4.5 and Fig. 4.6a).

The analysis of the corresponding alluvial plot (Fig. 4.6b) suggests the existence of two

very central communities (three for relax rate 0.0, i.e., when the two layers are not

coupled at all) which remain very stable for increasing r, surrounded by several smaller

communities which are less stable. This result suggests that those two communities might

play an important role in the research field of complex networks.
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(a) (b)

Figure 4.5: (a) Information loss and (b) average weighted inter-community entropy for
increasing relax rate.

(a) (b)

Figure 4.6: (a) Number of communities and (b) alluvial plot for the analysis of the
sciMAG data set, as a function of the relax rate. Flows related to the most central
community are highlighted for each value of r.
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Chapter 5

Conclusions

The focus of this thesis has been to explore different aspects of sociality in complex

networks. In the microscale, it tackled two issues, the best attachment problem, the

weight assignment problem and proposed a new centrality metric, the Black Hole Metric.

The best attachment problem, due to algorithmic difficulties, was approached with several

heuristics. Of all the heuristics, the most successful ones were the Anticipated outdeg,

and the Future algorithms, but the Anticipated outdeg is preferrable due to its reduced

complexity. The weight assignment problem was approached with a social-based criteria:

the neighbours’ trust level should be assessed based on the node’s personal experience

with the neighbours. An aging mechanism was also implemented in order to give more

weight to newer experiences. Different weight assignment mechanisms were compared,

and the results showed that an aging mechanism makes the trust level more stable.

The Black Hole Metric aims to address the normalization issue of PageRank, which

flattens the arc weights, disrupting part of the information stored in the network. It has

been proved that it is a generalization of PageRank that mantains the same properties,

including the guarantee that it always converges. In the mesoscale, two different partition
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quality assessment criteria were described: a genetic programming approach, and an

information-theoretic approach. The genetic programming approach attempts to discover

a validation function out of the network features, without imposing a model. While the

results show that the methodology works, it still suffers from the overfitting problem, and

it is effectively a work in progress. The information-theoretic approach uses two different

information-centric measures, the information loss and the inter-community entropy, to

determine which value of relax rate r to choose when employing the multiplex variant of

the InfoMap algorithm. The two measures were tested with different networks, and were

compared: in the case of the real-world network, the sciMAG database, the two measures

almost agree in indicating an optimal value of r close to 0.25.
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