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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Soil water redistribution was deter-
mined under field conditions by multi-
ple methods. 

• Time-lapse ERT surveys were performed 
at two transects during an irrigation 
event. 

• Integrating proximal sensing data 
enhanced crop water status 
identification. 

• Hydrus 2D and ERT both showed 
simultaneous wetting and root water 
uptake processes.  
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A B S T R A C T   

In this study, multiple soil-plant-atmosphere continuum (SPAC) monitoring methodologies, including electrical 
resistivity tomography (ERT), proximal thermal sensing techniques, and micrometeorological data, were com-
bined with two-dimensional (2-D) soil hydrological modelling using HYDRUS 2-D to explore the soil water 
redistribution, and infer the relative crop water status in a subsurface drip irrigated (SDI) processing tomato field 
located in California (Yolo County, USA). Specifically, time-lapse ERT surveys were performed at two transects 
distributed parallel and perpendicular, respectively, to the SDI line, during an irrigation event. The ERT results 
were compared to HYDRUS 2-D outputs and the relative differences were explained in the form of local het-
erogeneities in electrical resistivity (ER) changes, as a proxy for soil water content (SWC) variations. Concurrent 
simultaneous soil wetting and root water uptake during the last irrigation event of the season caused negligible 
changes in ER in the active root zone. Slight differences in ER were observed in the top 20 cm along the dripline, 
confirming that the emitter spacing is small enough to create a wetted strip along the processing tomato bed. 
These changes were also compared to SWC values measured with time domain reflectometry soil moisture 
sensors. A comparison between HYDRUS 2-D and ERT confirmed negligible changes in ER during irrigation due 
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to simultaneous wetting and root water uptake processes. In addition, a good correlation was observed between 
the proximal sensed and the ERT results. Finally, the findings of this study underscore the necessity of using 
multiple methods for improving our knowledge of the SPAC system under real field conditions.   

1. Introduction 

There is an increasing need to improve the irrigation and nutrient use 
efficiency of major crops e.g., processing tomato in California’s Central 
Valley (CDFA, 2021). Both for practical and research purposes, agri-
cultural soils are generally monitored and sampled before, during, and 
after the growing season to establish water and nutrient balance (Laz-
cano et al., 2015). However, subsurface drip irrigation (SDI) and ferti-
gation techniques increase the already heterogeneous water and 
nutrient distribution in the soil (Raij-Hoffman et al., 2022), making 
representative measurements a challenge under these complex cropping 
systems. In addition, the monitoring of the crop and soil water status as a 
proxy needs to be done for evaluating the correct application of water 
and nutrient and quantifying their effects on physiological processes. 
Thus, the need for implementing integrated monitoring approaches for 
monitoring the soil-plant-atmosphere continuum (SPAC) is pivotal. 

A number of ground-based measurements are used for sensing both 
the soil and plant water status at point/local scale, including the use of 
portable sensors for detecting the crop water status parameters (e.g. 
stomatal conductance, photosynthesis, stem water potential, etc.) or 
measuring the soil water content (SWC, e.g., using probes based on time 
domain reflectometry, TDR, or frequency domain reflectometry 
method). Other methodologies are used for determining the energy and 
mass flux exchanges that act within the SPAC system at the field level (e. 
g., eddy covariance, or scintillometry techniques). In addition, the 
recent development in remote and proximal sensing technologies has 
provided useful data and tools for deriving spatially distributed infor-
mation about the soil and plant system by combining the information 
captured by thermal, visible and near-infrared sensors at different 
temporal and spatial scales (including the use of water-related indexes, 
such as the normalized difference vegetation index, NDVI, Rouse et al., 
1974; or the crop water stress index, CWSI, Idso, 1982; Jackson, 1982). 
Moreover, huge advances have been achieved in the quantification of 
the SWC in the root-zone. 

In the last decades, hydrogeophysics (e.g., Binley et al., 2015), which 
involves the combination of geophysics and hydrological modelling, has 
provided promising approaches especially regarding the use of time- 
lapse applications for determining the spatial and temporal evolution 
of the SWC under herbaceous and woody crops (e.g., Cassiani et al., 
2015; Garré et al., 2011; Michot et al., 2003; Moreno et al., 2015; 
Srayeddin and Doussan, 2009). In addition, the study of Vanella et al. 
(2019) opened an exciting research line on the integration of multiscale 
methodologies (i.e., by combining the use of remote sensing, modelling 
and geophysical methods) for supporting the irrigation management at 
the farm scale under drip irrigation conditions. The most advanced 
trends on precision agriculture coincide on the idea that applying inte-
grated approaches, based on multiple monitoring/modelling tech-
niques, can improve our knowledge of soil water redistribution under 
real field conditions (e.g., Heydari et al., 2023; Tsoulias et al., 2020). 

At the light of the above-mentioned state-of-the-art, the specific 
objectives of this study were two-fold: (i) to infer the SWC redistribution 
and root water uptake processes during an irrigation event under sub-
surface drip irrigation in a processing tomato field using point-based 
sensors, hydrologic modelling and geophysical techniques; and (ii) to 
explore the potentialities of applying minimally invasive (i.e., ERT in 
time-lapse mode) and proximal sensing techniques (i.e., thermal and 
visible-near infrared information) for detecting the CWSI and SWC re-
lationships under the experimental conditions. 

2. Materials and methods 

2.1. Field site description 

The trial was conducted in a 34-ha commercial processing tomato 
field located in Yolo County, California (USA). The soil at the field site is 
defined as a Capay silty clay (https://casoilresource.lawr.ucdavis. 
edu/gmap/). Processing tomatoes were planted on April 6th 2021, 
and supplied by SDI with fertigation according to best management 
practices at the growers’ discretion. The SDI dripline was buried in the 
middle of the growing bed at 20 cm depth, with a dripper spacing of 30 
cm and a dripper discharge rate of 0.6 l h− 1 (Fig. 1-A). 

Irrigation was monitored using pressure transducers installed at the 
head of each irrigation line. The trial was performed on August 4th 
2021, 20 days before harvest, during the last irrigation event for the 
growing season. At this phenological stage, the plants were mature, with 
fully developed canopies and root systems. 

The SWC was monitored using 6 TDR sensors (TDR-3010H, Acclima, 
Inc., Meridian, USA) installed at the locations relative to the subsurface 
drip line, as described in Fig. 1-A at a distance of 35 m East of the ERT 
transects. Volumetric water content (VWC), soil temperature, and soil 
bulk electrical conductivity (EC) were recorded every 15 min during the 
ERT campaign (Table 1). Soil pore water EC in the root zone was 
calculated using TDR data according to the methodology presented by 
Hilhorst, 2000 Additionally, soil pore water EC was measured below the 
root zone, at 160 and 262 cm depth from the soil surface, using a deep 
vadose zone monitoring system as described in Rimon et al. (2007). 

2.2. ERT setup and data processing 

Electrical resistivity tomography (ERT) measurements were per-
formed using a 10-channel Syscal Pro georesistivimeter (IRIS Instru-
ment, Orleans, France) in a time-lapse mode. Specifically, one ERT 
dataset was acquired early in the morning, before the irrigation event 
(T0), and then, after the beginning of the irrigation phase (irrigation 
phase started at 10:23 AM PST), 7 subsequent ERT datasets were ac-
quired at a nearly hourly rate until 5:00 PM during the irrigation event 
(T1–T7, Table 1). 

Two ERT transects were arranged with a bi-dimensional (2-D) 
scheme, one perpendicular and one parallel to the growing beds (Fig. 1- 
B). The perpendicular ERT transect had 48 electrodes (stainless steel 
rods of about 0.30m, with a diameter of 0.01m, buried for about 1/3 of 
their length into the soil surface) spaced 15 cm, covering 4 beds or 7.1 m 
(ERT-1 (a-a′) in Fig. 1-B). The parallel ERT transect had 32 electrodes 
spaced 10 cm, covering 3.1 m (ERT-2 (b-b′) in Fig. 1-B). 

For both ERT transects, direct and reciprocal measurements were 
acquired using a dipole-dipole configuration by automatically switching 
the current electrodes with the potential electrodes. The measurement 
error of the ERT data was assessed by calculating the reciprocal error 
above 10 % (Slater et al., 2000). In this sense, we can exclude abrupt ER 
changes occurred within the acquisition process. 

The forward and inverse solutions were obtained from the ERT data 
using the R2 code (v4.02, July 2020). The ERT-1 and ERT-2 soil domains 
were discretized by generating two triangular meshes, made of 4672 and 
4756 cells, and 9040 and 9280 elements, for ERT-1 and ERT-2, respec-
tively, using the Gmsh software (Geuzaine and Remacle, 2009). Several 
forward models were created for determining the model error. Both 
measurement and model errors were used into the inversion model that 
was performed in absolute and in time-lapse mode. In particular, the 
absolute inversion model was applied as defined in Binley and Kemna 
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(2005) and Binley et al. (2015) for determining the initial electrical 
resistivity (ER) distribution at T0 (Table 1) at each transect. The tem-
poral ER changes (in percentage, %) were calculated using the ratio 
time-lapse inversion approach described in Vanella et al. (2021, 2022). 
This ratio time-lapse inversion approach permits to identify the 
increasing or decreasing patterns referring to the ER changes in com-
parison to the initial condition (T0, Table 1). 

Due to the uncertainty of the actual subsurface dripper location, an 
optimization approach based on ERT data was developed to infer the 
dripper location at each soil bed monitored with ERT-1. It was hy-
pothesized that the actual dripper location is within the soil wettest 
location (inferred by ERT) in each beds’ profile following a significant 
time period after the beginning of the irrigation event. Specifically, an 
area of 40 cm by 20 cm was defined around the theoretical dripper 
location as described by the grower, with ±20 cm in the x axis and ± 10 
cm in the y axis (Fig. A.3-A). Then, the locations characterized by the 
more accentuated ERT decreasing changes at T2, were selected as the 
potential subsurface dripper location. In particular, T2 was chosen, that 
corresponded to 49 min after the beginning of the irrigation event 
(Table 1), since T1 was initialized only 15 min after the irrigation began 
and the SWC changes at that time were still too low to find an optimum 
location. 

2.3. Ancillary monitoring data 

2.3.1. Micrometeorological data 
Surface energy balance components, such as net radiation (Rn), soil 

heat flux (G), sensible heat flux (H), and latent heat flux (LE) (Fig. 2) (all 
measured in W m− 2), along with other agrometeorological parameters, 
such as air temperature (◦C), relative humidity (%), and solar radiation 
(W m− 2), were continuously monitored using an eddy covariance (EC) 
station that was positioned close to the ERT transects. 

The EC system included a three-dimensional (3-D) sonic anemometer 
(Gill R3-50, Li-Cor Inc., NE, USA) to measure the orthogonal wind ve-
locities, and an open path gas analyzer (LI-7500, Li-Cor Inc., NE, USA), 
that was installed 2.5 m above the ground in order to measure both 
carbon dioxide and water vapor fluxes at a frequency of 10 Hz. Also, 
three soil heat flux plates (HFT-3, REBS Inc., WA, USA) were buried at 8 
cm depth and coupled with soil moisture probes (GS-1, METER Group 
Inc., USA), and soil thermocouples (TCAV-L, Campbell Scientific Inc., 
UT, USA), placed at 2.5 cm depth to correct the heat storage above the 
plates. The flux data were then post-processed by applying several 
standard corrections and adjustments using the Eddy Pro software (Li- 

Cor Inc., NE, USA). For further information on the flux tower and data 
processing refer to Peddinti and Kisekka (2022). 

2.3.2. Thermal-based plant water status monitoring 
Canopy temperature was monitored at different time steps, at the 

end of each ERT acquisition (Table 1) using a portable infrared radi-
ometer (MI-220 model SI-121, Apogee Instruments, Inc., Logan, USA). 
The instrument was mounted on a pole and a fixed angle of 90◦ from the 
vertical and a 30 cm distance from the canopy was maintained during 
the measurements. At the ERT-1 transect, two measurements per 
growing bed were performed, one above each plant (Fig. 1). At the ERT- 
2 transect, it was not possible to identify individual plants, so canopy 
temperature measurements were performed every 30 cm or every 3 
electrodes. At each measurement time step, the sky temperature data 
was also acquired and used to obtain the corrected canopy temperature 
values using the following Stefan-Boltzmann-based formula: 

TTarget =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

TSensor
4 − (1 − ε) • TBackground

4

ε
4

√

(1)  

where Ttarget, Tsensor and Tbackground refer to the corrected, measured, and 
sky temperature (i.e., brightness temperature of the background), 
respectively; ε is the emissivity of the target surface, i.e., 0.98 for 
vegetation (Campbell and Diak, 2005). 

The correct canopy temperature and air temperature (from the in- 
situ agrometeorological station) measurements were used to compute 
the CWSI during the ERT measurements, using the Idso (1982), Jackson 
(1982) equation as follows: 

Fig. 1. (A) Layout of the tomato growing bed, subsurface drip irrigation line, and time domain reflectometry (TDR) sensor locations. The blue dot represents the 
location of the actual subsurface drip irrigation line. Circled numbers represent TDR sensors installed horizontally in the area near the electrical resistivity to-
mography (ERT) transects; (B) Overview of ERT transects, perpendicular and parallel to the growing beds (ERT-1 and ERT-2), respectively, at a processing tomato 
field in Yolo County California during the 2021 growing season. 

Table 1 
Time-lapse electrical resistivity tomography (ERT) measurements carried-out in 
a processing tomato field in Yolo County California during the 2021 growing 
season.  

ERT time 
step 

Irrigation 
conditions 

Starting time (hh: 
mm) 

Ending time (hh: 
mm) 

T0 Without irrigation 8:33 AM 9:04 AM 
T1 During irrigation 10:38 AM 11:07 AM 
T2 11:12 AM 11:53 AM 
T3 12:27 PM 12:56 PM 
T4 1:21 PM 1:51 PM 
T5 2:26 PM 3:06 PM 
T6 3:58 PM 4:28 PM 
T7 4:55 PM 5:25 PM  
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CWSI =
(Tc − Ta) − (Tc − Ta)LL

(Tc − Ta)UL − (Tc − Ta)LL
(2)  

where Tc and Ta refer to the canopy and air temperature (◦C), respec-
tively; LL and UL are the lower and upper limits, respectively. 

The term (Tc − Ta)LL was determined on experimental basis by fitting 
the theoretical (Tc − Ta) with the vapor pressure deficit (VPD) values 
measured in situ (kPa). This relationship resulted in the following 
equation: 

(Tc − Ta)LL = ( − 1.3133*VPD)+ 1.213 (3) 

The (Tc − Ta)UL was calculated using three different temperature 
values provided at the site-specific condition (i.e., 8 ◦C), and reported by 
Irmak et al. (2000) (i.e., 4.6 ◦C) and López-López et al. (2009, 2011) (i. 
e., 2.8 ◦C) for herbaceous crops. 

2.3.3. Aerial imagery data 
A day before the ERT campaign, very high-resolution aerial imagery 

was taken using an airplane by CERES (Ceres Imaging, Inc., CA, USA). 
This imagery included multispectral images with a pixel resolution of 
0.3 m and thermal images with a resolution of 0.2 m. The images were 
captured at 12:55 p.m. (PST) using the thermal sensor FLIR A65 (FLIR 
Systems, Wilsonville, Oregon, United States) in conjunction with a 
bespoke arrangement of a constellation of VNIR IDS camera systems. 
Readers can refer to Peddinti and Kisekka (2022) for additional infor-
mation on image processing and acquisition processes. These images 
were utilized in the calculation of the NDVI as a proxy for the vigor of the 
vegetation (Rouse et al., 1974), and the NDVI values were extracted for 
each of the electrode locations of both ERT-1 and ERT-2. After that, 
these NDVI values were compared with the relative ER changes that 
occurred during the course of a day. The ER values between two 
neighboring electrodes in the ERT sections were averaged for each of the 
depths. To prevent the boundary effects from occurring, the first and last 
six data points were ignored as well as the points inside the furrow in 
ERT-1. 

2.4. Hydrological simulations 

Unsaturated soil water flow was simulated using HYDRUS (2-D/3-D) 
software, version 2.05.0270, following a modified Richards equation 
and using van Genuchten (1980) – Mualem (1976) hydraulic functions 
(Šimůnek et al., 2011). For additional details on SDI modelling using 
HYDRUS (2-D/3-D), the reader is referred to Raij-Hoffman et al. (2022). 

2.4.1. Domain and hydraulic properties 
A 2-D domain was defined following the simulations in Raij-Hoffman 

et al. (2022) and the growing bed geometry defined in Fig. 3 with a 
profile depth of 150 cm. Assuming geometrical bed symmetry, the 
simulation included half of the growing bed for computational effi-
ciency. The water flow domain was defined with a subsurface dripper 
and a finer discretization around the dripper and at the top boundary 

Fig. 2. Hourly surface energy balance fluxes measured in a processing tomato field in Yolo County California during the 2021 growing season. Timings of electrical 
resistivity tomography (ERT) acquisitions are reported as light vertical grey lines (T0–T7, Table 1). 

Fig. 3. HYDRUS 2-D/3-D modelling domain for subsurface drip irrigation, root 
density distribution and boundary conditions. Observation points represented 
as black dots at the locations where the time domain reflectometry (TDR) 
sensors were installed. 
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resulting in 3951 nodes and 3667 elements. 
Hydraulic properties were estimated using the Rosetta3 pedotransfer 

model with measured inputs of sand, silt, and clay percentages as well as 
bulk density measured in the top 30 cm of soil (Table 2). In particular, 
soil texture and bulk density were measured at 4 different locations in 
this field at depths of 0–15 cm, 15–30 and 30–60 cm using a modified 
pipette method (Waterhouse et al., 2021) and the gravimetric method, 
respectively. The results of the soil analyses showed low spatial het-
erogeneity and no clear difference between the cultivated layer and the 
deeper soil. Due to the low vertical heterogeneity also inferred by ERT at 
the beginning of the field campaign (T0, Table 1, refer to Fig. 4), it was 
decided to assume vertical homogeneity and use the top 30 cm prop-
erties for the entire soil profile. 

In order to account for the natural spatial heterogeneity, fifty sim-
ulations were generated with stochastic distributions of the hydraulic 
conductivity (αK) and pressure head (αh) scaling factors using the 
Miller-Miller similitude approximation (Miller and Miller, 1956), where 
these two scaling factors are correlated. The mean Ks for the stochastic 
distribution is presented in Table 2, the standard deviation of log10 
value of αK was defined as 0.25 cm, and zero as horizontal (X) and 
vertical (Z) correlation lengths (uncorrelated in any direction). 

Root density was defined using the Vrugt model (Vrugt et al., 2001) 
with a maximum rooting depth of 90 cm, depth of maximum intensity of 
40 cm, a shape empirical parameter Pz[− ] of 2, maximum rooting radius 
of 75 cm, radius of maximum intensity of 30 cm and a shape empirical 
parameter Px[− ] of 5, indicating that the plant is not on top of the 
dripper at x = 0 cm, but at the side of the drip line (Fig. 3) following the 
agricultural practice in the field and experimental measurements con-
ducted in similar but not identical cases (Hanson and May, 2007). 

The Feddes water uptake reduction model (Feddes et al., 1978) was 
considered with h1, h2, h3max, h3min, h4 values of − 1, − 2, − 800, − 1500, 
and − 8000 cm, respectively, as described in Hanson et al. (2006) and a 
critical stress index of 0.8 assumed to allow for compensated root water 
uptake. No solute stress model was included in the simulation, and 
overall, no water uptake reduction due to low water content or salinity 
was expected, since irrigation was scheduled to be sufficient in volume 
and performed with low-salinity water. 

Four observation points were defined at the 4 relative locations of the 
TDR sensors (Figs. 1-A and 3), assuming total symmetry, and therefore 
sensor pairs located at the same depth and distance from the dripper are 
represented as one observation point. These are sensors 1–6 and 4–5 in 
Fig. 1-A. 

2.4.2. Initial and boundary conditions 
Following Raij-Hoffman et al. (2022), the boundary condition at the 

dripper was defined as a variable flux, allowing for intermittent irriga-
tion, and the bottom boundary was defined as free drainage (Fig. 3). The 
rest of the domain was defined as no flow assuming symmetry on both 
sides of the profile and all ET to be transpiration due to the high plant 
cover during the field campaign and the extremely dry bare soil areas 
due to the subsurface drip irrigation system. 

The irrigation rates applied in the field and the actual hourly ET 
measured with the EC method were defined as time variable boundary 
conditions (as in Groenveld et al., 2021). The typical irrigation strategy 
followed by the farmer (i.e. long duration events) lead to assume that 
actual ET provided by the EC is quite close to potential crop ET (i.e. no 
stress conditions). The initial conditions were defined as a uniform VWC 

of 0.36 cm3 cm− 3 as estimated from the initial ERT dataset (T0, Ap-
pendix B, Figs. B.1.-B and B.2.-B). 

3. Results 

3.1. Time-lapse electrical resistivity images 

The ER pattern at T0, before the irrigation event begun, in Fig. 4. 
suggests lower SWC and in the shallow profile as a result of evaporation 
and root water uptake, as well as some water storage in the deeper parts 
of the profile (70 cm). 

The perpendicular profile (ERT-1, Fig. 4a) shows higher ER values in 
the furrow area than in the plant area, suggesting that the furrow acts 
like a hydraulic barrier without water flow or root water uptake for 
subsurface drip irrigation. Furthermore, most of the patterns described 
in Fig. 4 are due to small differences in ER and only discernible when 
looking at the data log-transformed, therefore supporting the assump-
tion that the soil profile is relatively uniform in absolute terms (24 h 
after the last irrigation event ended, Table 1). The ER patterns that are 
visible with the untransformed data are: (i) the higher ER values in the 
edges of the growing beds may be due to soil surface exposures of the 
edges, i.e., no crops covered the edges resulting in soil drier conditions 
due to the higher soil evaporation, and/or to geometry differences from 
the theoretical profile used to create the mesh for the ERT analysis; and 
(ii) the higher ER values in the top 20 cm on the right side of the ERT-2 
profile, probably due to the higher roots density. 

Referring to the time-lapse results at ERT-1, during the irrigation 
event, the ER increased between the growing beds and decreased around 
the subsurface dripper line (between the two crops, where a lower root 
density is expected), suggesting the homogenous distribution of the 
irrigation water around the drippers and the simultaneous root water 
uptake patterns occurred on both sides of the bed, where the two tomato 
plants were located (Fig. 5). Note that the theoretical and the recognized 
optimized subsurface dripper locations at ERT-1 (Fig. A.1.-A) are shown 
also in Fig. 5 referring to the different monitored time-steps. 

In the parallel direction to the drip line (ERT-2), lower ER changes 
were observed during the irrigation event, suggesting simultaneous 
wetting and root water uptake processes in the root zone (Fig. 6). Areas 
with no change in ER during the ERT campaign, represented in white in 
Figs. 5 and 6, suggest areas where root water uptake was equal to the 
water addition from the irrigation and, therefore, no changes can be 
seen during the monitoring time period. These areas are identified on 
the sides of the drippers on the perpendicular transect (ERT-1) and at 
around 20 cm depth in the parallel transect (ERT-2). In addition, there 
are areas below the furrow with no changes, suggesting negligible root 
water uptake or water distribution processes. 

The distribution of the overall ER changes (%) during the monitored 
time steps (T1–T7, Table 1) of the irrigation phase in reference to the 
initial condition (T0, no irrigation) for ERT-1 and ERT-2 transect, 
respectively, is given in Fig. A.2.-A. 

3.2. Soil-plant atmosphere continuum monitoring 

During the experiment, the irrigation began at 10:30 in the morning, 
which was approximately 210 min after the first data set (T0) was 
collected (Fig. 7). 

The ET values began to increase around 7:30 AM prior to irrigation, 

Table 2 
Soil texture, bulk density and soil hydraulic parameters estimated using Rosetta3 pedotransfer function and used in the HYDRUS (2-D/3-D) simulations. θr is the 
residual VWC, θs is the saturated VWC, α and n are empirical parameters related to the inverse of the air entry pressure and the pore-size distribution, respectively and 
Ks is the saturated hydraulic conductivity.  

Sand (%) Silt (%) Clay (%) Bulk density 
(g cm− 3) 

θr 
(cm cm− 3) 

θs 
(cm3 cm− 3) 

α 
(1 cm− 1) 

n 
(− ) 

Ks 
(cm h− 1) 

24.03 37.25 38.72 1.41 0.115 0.44 0.007 1.33 0.397  
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and they reached their highest point at 14.00 PM, which is when the T4 
ERT data set was recorded (Fig. 2). Later on, the ET values continued to 
go down, and by the time the last data set was collected (T7), the ET 
values had hit 0.3 mm/h. After that, they went down until they reached 
zero by the end of the day (which was at 18:00 PM). Over the entirety of 
the time period, the rates of irrigation were greater than the rates of tree 
transpiration. 

SWC measured by the TDRs installed in the middle of the row 
showed a gradual decrease in VWC during the first part of the day 
(Fig. 7). At 46 cm depth, the SWC began to increase when the inputs 
(irrigation amount) became larger than the output (ET fluxes), showing 
evidence of simultaneous wetting and drying processes until then, 
reducing any observable changes in either SWC or ER in the soil. At 61 
cm depth, the SWC increased sharply at 9:30 PM (Fig. 7). 

Soil temperature fluctuations during the ERT campaign were 
observed only at 30 cm, while deeper sensors showed no change. 
Relative soil temperature changes (RelT, Fig. A.3.-A) were calculated 
with Eq. (4), where Ti is the temperature at T0 and T is the temperature 
at each time step: 

RelT =

(
T
Ti
− 1

)

*100 (4) 

These fluctuations were less than 1 ◦C and a total of up to 2 % of the 
soil temperature at the beginning of the ERT campaign. Relative soil 
pore water EC changes, estimated using TDR data, were also up to 2 % 
from the soil pore water EC at T0 (Fig. A.3.-A). Deeper soil solution 
measurements at 1.60 and 2.62 m showed stable soil pore water EC of 
about 1 dS/m before, during and after the ERT campaign, 

3.2.1. Crop water status determinations 
The CWSI resulted in similar average values ranging from 0.31 to 

0.47 and from 0.27 to 0.41 at ERT-1 and ERT-2, respectively, using 
different (Tc − Ta)UL baselines (i.e. 8 ◦C, 4.6 ◦C and 2.8 ◦C for the site- 
specific conditions), and as reported by Irmak et al. (2000) and López- 
López et al. (2009, 2011). The temporal evolution of the CWSI, using 

these upper baselines, during the time-lapse ERT surveys (ERT-1 and 
ERT-2) is given in Fig. A.4-A. 

Fig. A.4-A. shows similar CWSI increasing trend in accordance with 
the atmospheric water demand and irrigation application. In particular, 
lower CSWI values were obtained early in the morning and after 7 h 
since the beginning of the irrigation phase; whereas, higher values were 
observed in the hottest hours of the day (Fig. 3). In absolute terms, 
similar values were obtained for the CWSI formulations obtained with 
the local upper baseline and the value provided by López-López et al. 
(2009, 2011). A strong relationship was observed between the average 
ER changes (%) and CWSI obtained in time under the site-specific con-
dition at ERT-1 (R2 = 0.83); whereas a weak relationship was achieved 
for ERT-2 (Fig. A.5.-A). 

3.2.2. Relationships between soil and plant interactions 
At T0, before the irrigation started, there was a negative correlation 

between longitudinal ER in ERT-2 and NDVI (Fig. A.6.-A). This could 
evidence that even though higher biomass will result in higher tran-
spiration, it will also result in higher soil water depletion and lower 
evaporation, therefore causing higher VWC (and therefore lower ER) 
two days after the last irrigation in areas with healthier vegetation. 

At the end of the ERT campaign at T7, i.e., 7 h after the irrigation 
started and almost at the maximum cumulative daily ET (Fig. 7), there is 
a positive correlation between ERT-2 change and NDVI, suggesting a 
lower SWC for higher NDVI locations and an evidence of higher biomass 
transpiring more water during a combined irrigation and ET event 
(Fig. A.6.-A). Even though the correlations between ER and NDVI in 
ERT-1 are weaker than for ERT-2, they still show the same trend. This 
weaker relationship in ERT-1 could be explained by the less crop 
vigorousness (and even the presence of bare soil) in this transect, which 
results in a higher NDVI range (0.30–0.70 versus 0.62–0.74 for ERT-2 
and ERT-1, respectively), hindering the possible relationship between 
crop NDVI and the correspondent ER (and ER change) (Fig. A.6.-A). 

Fig. 4. Absolute resistivity values for (a) ERT-1 and (b) ERT-2 transects before the irrigation event in a processing tomato field in Yolo County California during the 
2021 growing season. Values are expressed in log10 of the electrical resistivity (ER) in Ω m. 

I. Raij-Hoffman et al.                                                                                                                                                                                                                          



Science of the Total Environment 912 (2024) 169620

7

3.3. Hydrological simulations 

Simulated and measured VWC decreased during the beginning of the 
irrigation event, following the measured trends in the soil water balance, 
with the cumulative ET becoming higher than the cumulative irrigation 
at 2:30 PM (T5, Table 1, Figs. 7, 8). About an hour after T5, there was an 
increase in measured and modeled VWC at 26 cm below the drip line 
(Fig. 8-B – 46 cm mid), followed by a slight increase in the VWC at 30 cm 
below ground level and at a lateral distance of 30 cm from the middle of 
the growing bed and drip line around 5:00 PM (Fig. 8-A). 

The TDR sensors and observation points at 46 cm below the soil 
surface level and a lateral distance of 30 cm from the middle of the 
growing bed showed a slight increase of VWC after 8:00 PM (Fig. 8-B). 

At the same time, a sharper VWC increase was observed by the TDR at 
40 cm below the drip line, while the model showed a more moderate 
increase in VWC (Fig. 8-C). The model and measured were not calibrated 
to match one-to-one, but homogeneous soil properties were used to 
simulate the general trends. The profile is assumed to be symmetrical by 
design, however, two TDRs located in the same relative position showed 
the same relative SWC changes with a consistent lag of 0.02 cm3cm− 3 

and a model that will be calibrated to one of the TDRs will not agree with 
the other side of the measurements. An example of the effect of this 
assumption can be observed in the evolution of TDR 30–46 series (each 
series corresponds to a different side of the bed) (Fig. 8). In general, both 
series followed the same pattern, with few points not falling in the 
general trend. These discrepancies represent a limitation of the model, 

Fig. 5. Electrical resistivity changes (ER, ratio %) during different time steps (T1–T7, Table 1) of the irrigation phase in reference to the initial condition (T0, no 
irrigation) for ERT-1 transect. Theoretical dripper location marked with circles and optimized dripper location marked with “x”. 

I. Raij-Hoffman et al.                                                                                                                                                                                                                          



Science of the Total Environment 912 (2024) 169620

8

and evidence some uncertainties of the model (e.g., irrigation line 
misalignment, heterogeneity of root distribution among different crops). 

Both ERT and model capture the general shape and trends (Fig. 9). 
While the simulations assume symmetry of the soil profile, the changes 
in ER during the irrigation event provided with an opportunity to 
observe the relative changes at replications of the simulated half profile. 
The two central beds from the monitored area during the ERT campaign 
(Fig. 1-B) were segmented into 4-half growing beds representing the 
simulated profile (Fig. 9). The profiles were segmented vertically at the 
optimized dripper location (x in Fig. 9) and TDR locations relative to the 
optimized dripper. The relative changes in ER can be visually compared 
to relative SWC changes in the HYDRUS (2-D/3-D) simulations. In both 
the model and ERT measurements it can be observed that there are 

negligible changes in either SWC or ER in the observation nodes located 
to the side of the dripper until T4. These modeled and measured results 
are in agreement with the observed higher ET than irrigation until 2:30 
PM (T5). Areas of decrease in SWC and increase in ER are observed as 
expected in the middle of the profile, where plants are located. Even 
though a clear wetting front profile is observed in the simulations, with a 
symmetrical circle around the dripper as expected in a clay loam soil, 
this theoretical pattern is not observed in the ERT change data (Fig. 9). 

4. Discussion 

In this study, a combination among multi-dimensional minimally 
invasive techniques (i.e., geophysical and proximal sensing-based 

Fig. 6. Electrical resistivity changes (ER, ratio %) during different time steps (T1–T7, Table 1) of the irrigation phase in reference to the initial condition (T0, no 
irrigation) for ERT-2 transect. Theoretical dripper location marked with circles and optimized dripper location marked with “x”. 
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Fig. 7. Volumetric water contents (VWC) at 46 and 61 cm depth (circles and triangles, respectively) and timing of each ERT acquisition in grey lines (T0–T7, Table 1) 
and cumulative measured evapotranspiration (ET) and irrigation during the electrical resistivity tomography (ERT) campaign (green and blue line, respectively). 

Fig. 8. Volumetric water content (VWC) simulated with HYDRUS 2-D/3-D and measured with time domain reflectometry (TDR) sensors during the electrical re-
sistivity tomography (ERT) campaign, for four locations relative to the subsurface dripper in a processing tomato field in Yolo County California during the 2021 
growing season. Shaded areas represent the 95 % confidence interval for the 50 simulations with stochastic distributions of the hydraulic conductivity and pres-
sure heads. 
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measurements) and hydrological modelling has provided site-specific 
information on soil water distribution and its interactions with crop 
features in a subsurface drip irrigated processing tomato field. Specif-
ically, the results of this study highlight the practical role of the time- 
lapse geo-electrical approach for supporting the precision irrigation 
management (Vanella et al., 2021, 2022, 2023), and providing new 
insights to identify the subsurface dripper location. Specifically, this 
study promotes the use of relative ER changes as a proxy of SWC 
changes, being known that the absolute translation of ER into SWC is 
prone to additional uncertainty (does not deepen in this study; refer to 
Chen and Niu, 2022; Tso et al., 2019). Moreover, the potential of our 
findings is enhanced when the ERT surveys are applied in combination 
with other SPAC measurements (i.e., micrometeorological, multispec-
tral and thermal information, and TDR sensors). Note that each available 
SPAC monitoring/modelling method may suffer from specific limita-
tions, e.g., the scale of applications or the resolutions, that in some cases 
may be overcome with the advantages associated with the adoption of 
multiple methods (e.g., point-based measurements versus spatially 
distributed information). As a practical recommendation, the selection 
of the optimal approach depends on the desired target, the available 
costs (such as for the instrumentation and labor) and the response time 
in terms of data processing duration. 

Herein, the inferred SWC changes by ERT were highly linked with 
the root water uptake as evidenced by the multispectral and thermal 
sensed crop monitoring responses. As example, a direct relationship was 
obtained between the CWSI and changes in ER (Fig. A.6.-A); showing 
higher ER changes (suggesting lower SWC), when CWSI increases as 
well. These results show the potential of time-lapse ERT in describing 
the CWSI within an irrigation event (Garré et al., 2011). Moreover, in 
our research conditions, the aerial-based NDVI patterns resulted 

inversely correlated with the absolute ER values acquired before the 
irrigation event (T0), suggesting higher soil water depletion in areas 
with higher plant biomass (Fig. A.8). Similarly, the NDVI was directly 
correlated to the ER changes at the end of the ERT survey, proposing that 
areas with higher plant biomass had more water removed from the soil 
during the day, than areas with lower NDVI. These findings are sup-
ported by visual-based observations conducted in the field. This is also in 
agreement with other studies that linked the crop features (e.g., detected 
by multispectral or other plant-based methods) with the ER-inferred 
SWC information (e.g., Brillante et al., 2015; Cassiani et al., 2015; 
Rossi et al., 2018; Vanella et al., 2018). No clear root water uptake 
patters were depicted in ERT-2, where some areas with an increase in 
ER, with time were identified as zones with lower NDVI, suggesting 
lower canopy density and, therefore, higher soil evaporation, probably 
related to plant establishment after transplanting (Vanella et al., 2023). 

Interesting insights have been provided when ERT, hydrological 
modelling and ground-based soil moisture measurements using TDR 
were compared. Specifically, the comparison of TDR and HYDRUS- 
derived SWC values showed high accuracies at 30 cm and 60 cm, 
whereas higher discrepancies occurred at 46 cm positions (Fig. 8). These 
higher discrepancies are probably due to the fact that, when setting the 
initial modelling conditions, i.e., the root density, it was considered only 
one half of the bed (i.e. one plant). However, it is expected that at the 
center of the bed, an overlapping between the root system of the two 
crops occur, resulting in a hypothetically higher root density. This 
higher root density would result in a lower modeled SWC, being this 
decrement more evident at “46 cm Side” position. Thus, if this over-
lapping would have been considered, it is expected that the values 
modeled by HYDRUS and the ones provided by TDR had been more 
similar to each other. In general, faster soil water infiltration was 

Fig. 9. Side by side comparison of relative water content changes during the electrical resistivity tomography (ERT) acquisition events as simulated by HYDRUS 2-D 
(bottom panel) and relative ERT changes (%) in the 4 upper profiles, each one half a bed as simulated in HYDRUS, assuming symmetry at the drip line location and in 
the middle of the furrow. Black dots represent time domain reflectometry (TDR) sensors locations relative to the dripper (x in the ERT graphs). 
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observed at ERT-,1 than modeled or measured with TDR sensors (Fig. 8). 
Also, ERT-2 showed greater vertical water redistribution after the 
beginning of the irrigation event. While clear wetting bulbs were visu-
ally identified in ERT-1, the results obtained at ERT-2 confirms the 
assumption that the soil water distribution along the subsurface drip 
irrigation line is close enough to create a linear wetting pattern in the 
direction along the line instead of radial water distribution (Figs. 5 and 
6). Vanella et al. (2021) have already highlighted the potential of time- 
lapse ERT monitoring in depicting the shapes of the wetting bulbs. In 
addition, in relative terms the variability between the relative TDR lo-
cations in the ERT repetitions along the ERT-1 transect was lower and 
averaged ~2 % (Appendix B). 

In general, the variability in the ER profiles decreased with depth in 
both transects (Figs. 5, 6, A.2.-A, C.1.-C and C.3.-C). This behavior is in 
agreement with the hydrological modeled results (Figs. 9, C.2.-C) and 
with previous ERT-based studies that found that the maximum root mass 
distribution is mainly located in the shallow subsoil for herbaceous crops 
(e.g., Amato et al., 2008). Moreover, even if the ER variability decreased 
with time, the SWC values increased. The assumption is that the ER 
values at the beginning of the simulation, when the soil is expected to be 
drier, may be influenced by other factors, such as soil texture, salinity, 
even soil temperature. Then, when the irrigation begins and water re-
distributes, the SWC becomes the factor of highest influence on ER 
changes, and, therefore, acts as a homogenizing factor for ER. As well- 
known, the soil ER is dependent on several parameters referring both 
to the static and state proprieties of the soil (Samouëlian et al., 2005). In 
this study, we applied the ratio inversion ER time-lapse approach in 
order to minimize the contributions of these multiple variables on soil 
ER and addressing the ER change for the most to the SWC changes. In 
particular, note also that, the time-lapse ERT surveys were carried out at 
the same locations (ERT-1 and ERT-2) and during the ERT acquisitions 
the soil temperature and EC of the soil pore solution changes were lower 
than 2 %, thus, the soil temperature and salinity effect on ER was 
ignored. On the other hand, the HYDRUS 2-D/3-D domain is either (i) 
completely ideally homogeneous with the only factor influencing the 
variability being the SWC redistribution, as a consequence of irrigation- 
water and root uptake-water flow or (ii) characterized by a theoretical 
heterogeneity as presented in this work. As example, the comparison 
between ERT and HYDRUS evidenced that water is moving down faster 
than how is modeled by HYDRUS, suggesting a limitation of the use of 
models for this kind of analysis, especially the critical role that the 
setting of the initial conditions has on the final obtained results. Thus, 
the initial variability observed in terms of ER, together with the related 
inversion uncertainty, can be used to set-up site-specific hydrological 
domains using integrated approaches (Rao et al., 2020, Tso et al., 2020) 
also based on coupled numerical models and/or data assimilation 
methods (Mary et al., 2021). 

5. Conclusions 

This study represents an attempt to approach the soil water dynamics 
monitoring from a multi-perspective point-of-view. Of course, this is a 
complex challenge and herein we do not have the claim to propose an 
integrated SPAC monitoring approach, but at least to present the po-
tential of using several stand-alone monitoring methods to describe the 
main soil-plant interactions under subsurface irrigation context. In this 
sense, multiple 2-D time-lapse ERT measurements, carried out in tran-
sects in perpendicular (ERT-1) and parallel (ERT-2) to the subsurface 
drip irrigation line, provided in-situ insights of water redistribution, 
resulting in concurrent soil wetting and drying patterns, because of 
simultaneous irrigation and root water uptake processes in a tomato 
field. Moreover, the ERT design applied in the present study allowed us 
to evaluate the ER distribution in the third dimension not considered in 
each single transect in a pseudo 3D manner. In particular, slight ER 
increases were observed in in the active root zone on the sides of the 
dripper in ERT-1 and in the top 20 cm in ERT-2, whereas close to the 

drippers, an ER decrease occurred both in ERT-1 and ERT-2. Thus, the 
two ERT transects showed different potentialities, being ERT-1 more 
useful for defining the lateral expansion of the wet bulbs, whereas ERT-2 
allowed evaluating the performance of the irrigation system (e.g. 
dripper clogging would result in an increase of ER). 

Moreover, the use of ancillary data acquired by proximal sensing 
techniques, such as CWSI and NDVI, has evidenced of how the crop 
water status processes affected the soil dynamics inferred by ERT and 
vice versa. 

The ERT measurements permitted to depict the high spatial vari-
ability of the SWC distribution as derived from the different TDR-based 
observation points located in symmetrical locations from the drip line. 
Therefore, it was not realistic or possible to directly compare ERT 
changes and VWC measurements at specific locations. Finally, a 1-to-1 
comparison of a 2-D HYDRUS hydrological model and changes in ERT 
during the irrigation event further confirmed the slight changes in ER at 
the TDR locations due to simultaneous wetting and root water uptake 
processes. However, the study highlights the critical role of the setting of 
the initial modelling conditions has on the final obtained results. 
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