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1. Introduction 

 

In this thesis, concepts of hypersystems and 

hyperneuron and the particular properties related to this 

class of systems are introduced. In particular focusing 

on the dynamics of hyper Chua’s circuit, showing that 

higher-dimensional nonlinear systems can be generated 

starting from the classic Chua’s circuit as a gene, whose 

peculiarities being inherited, including complex 

dynamics and synchronization properties. An hardware 

implementation, based on high-performance low-cost 

microcontrollers, is also outlined showing that the 

hyper Chua circuit, and in general, hypersystems, are 

appropriate for practical applications. 

Also, the concept of hyperneuron is introduced. 

The main properties and dynamical characteristics of 

this class of hypersystems will be discussed by means 

of several numerical results. The intrinsic robustness of 

the proposed model is further investigated by proposing 
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a silicon implementation of the hyperneuron and 

reporting the corresponding experimental results.  

The study is aimed at presenting a novel 

approach to in silico implementations of large-scale 

networks of neurons with increased robustness and 

fault tolerance. 

The concept of multidimensional discrete-time 

maps is emerging in recent literature [Navickas et al., 

2011, 2012; Bucolo et al., 2022]. This class of systems 

is defined starting from a scalar discrete time map by 

substituting the scalar variable with a square matrix of 

order n. This leads to higher dimensional maps, whose 

complex behavior hides intrinsic regularities, linked to 

the properties of the original scalar map. An important 

issue related to this class of system is assessing the 

conditions on initial states for the convergence of the 

multidimensional map to the behavior displayed by the 

corresponding scalar map. The case of the 

multidimensional logistic map with n = 2 has been 

studied in [Navickas et al., 2012], while in [Bucolo et 

al., 2022] the general behavior of multidimensional 

discrete maps with n ≥ 2 has been introduced, unveiling 
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the mechanisms leading to the invariance of the 

bifurcation route to chaos with respect to the respective 

scalar cases. 

The study is centered to the case of the 

multidimensional Chua’s circuit, where we will refer to 

the term hyper Chua circuit. It should be clearly 

highlighted that the aim is not to search for 

hyperchaotic counterparts of the classic Chua’s circuit, 

but rather to introduce the concept of multidimensional 

systems in the continuous-time case. Therefore, instead 

of dealing with nonlinear maps, the nonlinear 

continuous-time dynamics of Chua’s circuit is used to 

generate multidimensional systems. This practically 

means to have a considerably high number of chaotic 

signals which are contemporaneously generated by a 

dynamical system. 

The study presented here is referred to as 

Chua’s circuit dynamics [Chua et al., 1986] in which 

the characteristic of Chua’s diode is a cubic polynomial 

nonlinearity. This choice is due to the fact that, despite 

its formal simplicity, the rich dynamical behavior 

generated by this system outlines a complete paradigm 
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of complexity. Moreover, the global differentiability of 

the cubic nonlinearity allows to adopt appropriate 

mathematical tools, such as series expansion, to easily 

derive fundamental properties of the multidimensional 

dynamics. The main result that will be emphasized is 

the so-called invariance of the bifurcation maps, i.e. the 

property for which the dynamics of the classic Chua’s 

circuit and that of the hyper Chua circuit bifurcate at the 

same values of the bifurcation parameter enroute to the 

onset of chaos, yet the hyper Chua circuit is 

characterized by 3×n2 state variables. 

Some recent studies introduced the concept of 

hypersystems. The idea roots on the concept of 

frequency transformation [Mitra & Kuo, 2006], an 

effective approach to design high order selective filters 

starting from low-pass reference filters. While a 

frequency transformation is suited for linear systems, 

for the nonlinear case transformations in the time 

domain lead to the definition of hypersystems. 

This class of systems is defined generalizing the 

variables of a scalar discrete-time maps by substituting 

them with square matrices of order N. This generates 
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higher-order maps, whose complex behavior can be 

described by referring to the properties of the 

generating scalar map. 

Due to the great interest today in the area of 

computational neuroscience, the hypersystems theory 

referred to neuron models is the subject of this study. 

The main features of a new class of neuron models, the 

so-called hyperneurons, will be therefore discussed. 

The concept of hyperneurons, in fact, is defined by 

starting from a generating neuron mathematical model. 

The study is motivated by the emerging robust structure 

and fault tolerance of hyperneurons. A further 

important motivation is the straightforward possibility 

of realizing this class of systems by using low-cost 

silicon devices based on advanced microcontrollers. 

This aspect makes the topic of particular 

relevance, since the use of current high performance 

microprocessor technology allows for the realization of 

clusters of boards, thus implementing physically 

neurodynamics emulators based on hypersystems. 

The thesis is organized as follows. In Sect. 2 the 

concept of hypersystems and the fundamental 
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theoretical results are summarized, in Sect. 3 the case 

of continuous-time of the hyper Chua’s circuit is 

discussed, in Sect. 4 the hyperneurons will be 

approached by reporting the mathematical modes 

adopted, numerical simulations aimed at showing the 

peculiar properties also in terms of robustness are 

discussed. The hardware implementation and the 

experimental results are reported in Sect. 5. The main 

features of the proposed hyperneurons are focused in 

the Conclusions drawn in Sect. 6. 
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2. The concepts of Hypersystems 
 

Let us consider the dynamics of a generic 

nonlinear system: 

 

�̇� = 𝑓(𝑥, 𝑡)  (1) 

 

where x ∈Rn×1, f : Rn×1 → Rn×1 and t ∈ R+. 

Let us now consider the dynamics of an 

hypersystem defined as: 

 

�̇� = 𝐹(𝑋, 𝑡)  (2) 

 

where X ∈Rn×N×N, F: Rn× N×N → Rn×1 N×N and t ∈ R+. 

Therefore, an hypersystem is generated starting 

from a gene dynamics (1) by considering that the state 

vector in (1) is replaced by a vector of n square matrices 

each of dimension N and the vector field f is replaced 

by the matrix field F. This means that instead of n scalar 

state variables xi ∈ R, the hypersystems dynamics (2) is 

described by n square matrices Xi ∈ RN×N. 
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In order to clarify the genesis of hypersystems, 

let us consider the Lorenz system that is a paradigmatic 

example of nonlinear dynamics, described by the 

following differential equations: 

 

�̇� = 𝜎(𝑦 − 𝑥) = 𝑓1(𝑥, 𝑦, 𝑧) 

�̇� = 𝜌𝑥 − 𝑥𝑧 − 𝑦 = 𝑓2(𝑥, 𝑦, 𝑧) (3) 

�̇� = 𝑥𝑦 − 𝛽𝑧 = 𝑓3(𝑥, 𝑦, 𝑧) 

 

Fixing opportunely the parameters, 𝛽, 𝜌 and 𝜎, the 

behavior of (3) depends on the initial conditions x(0), 

y(0), and z(0). 

Let us consider now the Lorenz hypersystem 

with N = 2. It is described by: 

 

�̇� = 𝜎(𝑌 − 𝑋) = 𝐹1(𝑋, 𝑌, 𝑍) 

�̇� = 𝜌𝑋 − 𝑋𝑍 − 𝑌 = 𝐹2(𝑋, 𝑌, 𝑍) (4) 

�̇� = 𝑋𝑌 − 𝛽𝑍 = 𝐹3(𝑋, 𝑌, 𝑍) 

 

where 
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𝑋 = [
𝑥11 𝑥12

𝑥21 𝑥22
]   𝑌 = [

𝑦11 𝑦12

𝑦21 𝑦22
]  𝑍 = [

𝑧11 𝑧12

𝑧21 𝑧22
] 

(5) 

 

Therefore, the dynamics of the Lorenz 

hypersystem with N=2, fixing opportunely the 

parameters, 𝛽, 𝜌 and 𝜎, is governed by 3×N2=12 initial 

conditions. 

Now considering xi(t) for i=1,…,n be the 

trajectories corresponding to the set of initial conditions 

xi(0), chosen inside the basin of attraction of the gene 

system (1). The trajectories can be expressed by Taylor 

expansion as: 

 

𝑥𝑖(𝑡) = 𝑥𝑖(0) + �̇�𝑖(𝑡)|𝑡=0𝑡 + �̈�𝑖(𝑡)|𝑡=0
𝑡2

2!
+

+𝑥𝑖(𝑡)|𝑡=0
𝑡3

3!
+ ⋯           (6) 

 

By successive differentiation of Eqs. (1), it does result: 

 

𝑥𝑖(𝑡) = 𝑥𝑖(0) + ∑ 𝑃𝑥𝑖

(𝑘)
(𝑥1, … , 𝑥𝑛)|

(𝑥1(0),…,𝑥𝑛(0))

𝑡𝑘

𝑘!

∞
𝑘=1

     (7) 
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where 𝑃𝑥𝑖

(𝑘)
(𝑥1, … , 𝑥𝑛), are n-variate polynomials. 

The dynamical properties of hypersystems have 

been shown to be highly correlated to the dynamical 

properties of the corresponding gene system [Bucolo et 

al., 2022b]. We recall here and generalize the 

fundamental theorem of hypersystems. 

Theorem 1. Let us consider the dynamics of an 

hypersystem. The route to chaos with respect to its 

parameters displays the same bifurcation points of the 

scalar gene system. 

Proof. Let us assume Xi(0) = TλXiT
−1, for 

i=1,..,n the initial condition of the matrix differential 

equations (2) where 

 

λ𝑋𝑖
= [

λ𝑥𝑖

(1)
⋯ 0

⋮ ⋱ ⋮

0 ⋯ λ𝑥𝑖

(𝑁)
]  (8) 
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being λ
𝑥𝑖

(𝑘)  with k = 1,…,N real quantities belonging to 

the basin of attraction S of the dynamics of the scalar 

gene system and T ∈ RN×N. 

The Taylor expansions of Eqs. (2) leads to: 

 

𝑋𝑖(𝑡) = 𝑇λ𝑋𝑖
𝑇−1 + + ∑ 𝑇П𝑋𝑖

(𝑘)
(λ𝑋1

, … , λ𝑋𝑛
)𝑇−1 𝑡𝑖

𝑖!

∞
𝑖=1  

   (9) 

 

being П𝑋𝑖

(𝑘)
 diagonal matrices as 

 

П𝑋𝑖

(𝑘)
 = [

𝜋𝑋𝑖1,1

(𝑘)
 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ 𝜋𝑋𝑖𝑁,𝑁

(𝑘)
]  (10) 

 

where the n−tuple (𝜋𝑋1𝑗,𝑗

(𝑘)
, 𝜋𝑋2𝑗,𝑗

(𝑘)
, … , 𝜋𝑋𝑛𝑗,𝑗

(𝑘)
) is defined 

according to the polynomials 𝑃𝑥𝑖

(𝑘)
 in Eqs. (7) calculated 

in (λ𝑥1

(𝑘)
, … , λ𝑥𝑛

(𝑘)
). Therefore, the N2 trajectories of the 

hypersystem are the linear combinations dictated by the 

matrix T of n trajectories obtained from the scalar gene 

system.  
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Remark 2.1. The fact that the dynamics of the 

hypersystems is a linear combination of the dynamics 

of n scalar gene system, ensures that when the scalar 

system is in periodic conditions, a limit cycle with the 

same periodicity is obtained for the hypersystem. 

Similarly, when the scalar gene system shows a chaotic 

behavior, the dynamics of the hypersystem is chaotic 

[Baptista, 2021]. 

Remark 2.2. The hypothesis of starting from 

initial conditions described by matrices with the same 

set of eigenvectors is fundamental to ensure the fact that 

the trajectories of the hypersystems do not diverge. 
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3. The Hypersystem of Chua circuit 

 
Let us consider the dynamics of the Chua 

circuit: 

 

�̇� = 𝛼(𝑦 − 𝑐0𝑥3 − 𝑐1𝑥) 

�̇� = 𝑥 − 𝑦 + 𝑧   (11) 

�̇� = −𝛽𝑦 

 

with x, y, z ∈ R, and α, β, c0, c1 ∈ R being its parameters 

[Buscarino et al., 2014]. 

Let x(t), y(t), and z(t) be the trajectories 

corresponding to the set of initial conditions x(0), y(0), 

and z(0), chosen inside the basin of attraction of the 

Chua circuit. The trajectories can be expressed by 

Taylor expansion as: 

 

𝑥(𝑡) = 𝑥(0) + �̇�(𝑡)|𝑡=0𝑡 + �̈�(𝑡)|𝑡=0

𝑡2

2!
+ 𝑥(𝑡)|𝑡=0

𝑡3

3!

+ ⋯   
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𝑦(𝑡) = 𝑦(0) + �̇�(𝑡)|𝑡=0𝑡 + �̈�(𝑡)|𝑡=0

𝑡2

2!
+ 𝑦(𝑡)|𝑡=0

𝑡3

3!

+ ⋯   

 

𝑧(𝑡) = 𝑧(0) + �̇�(𝑡)|𝑡=0𝑡 + �̈�(𝑡)|𝑡=0

𝑡2

2!
+ 𝑧(𝑡)|𝑡=0

𝑡3

3!

+ ⋯   

(12) 

 

By successive differentiation of Eqs. (1), we get 

 

𝑥(𝑡) = 𝑥(0) + ∑𝑃𝑥
(𝑖)

(𝑥, 𝑦, 𝑧)|
(𝑥(0),𝑦(0),𝑧(0))

𝑡𝑖

𝑖!

∞

𝑖=1

 

 

𝑦(𝑡) = 𝑦(0) + ∑𝑃𝑦
(𝑖)(𝑥, 𝑦, 𝑧)|

(𝑥(0),𝑦(0),𝑧(0))

𝑡𝑖

𝑖!

∞

𝑖=1

 

 

𝑧(𝑡) = 𝑧(0) + ∑𝑃𝑧
(𝑖)

(𝑥, 𝑦, 𝑧)|
(𝑥(0),𝑦(0),𝑧(0))

𝑡𝑖

𝑖!

∞

𝑖=1

 

    (13) 
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where 𝑃𝑥
(𝑖)(𝑥, 𝑦, 𝑧), 𝑃𝑦

(𝑖)(𝑥, 𝑦, 𝑧), 𝑃𝑧
(𝑖)(𝑥, 𝑦, 𝑧)  are 

trivariate polynomials. The set of polynomials up to i=3 

is explicitly reported. 

 

𝑃𝑥
(1)(𝑥, 𝑦, 𝑧) =  𝛼(𝑦 − 𝑐0𝑥3 − 𝑐1𝑥) 

𝑃𝑦
(1)(𝑥, 𝑦, 𝑧) = 𝑥 − 𝑦 + 𝑧 

𝑃𝑧
(1)(𝑥, 𝑦, 𝑧) =  −𝛽𝑦 

(14) 

 

𝑃𝑥
(2)(𝑥, 𝑦, 𝑧) =  3𝛼2𝑐0

2𝑥5 +  4𝛼2𝑐0𝑐1𝑥3

+  (−3𝛼2𝑐0𝑦)𝑥2  +  𝛼(𝛼𝑐1
2 +  1)𝑥

−  𝛼(𝑦 −  𝑧 +  𝛼𝑐1𝑦) 

𝑃𝑦
(2)(𝑥, 𝑦, 𝑧) = −𝛼𝑐0𝑥3  +  (−𝛼𝑐1  −  1)𝑥 −  𝑧

+  𝑦(𝛼 −  𝛽 +  1) 

𝑃𝑧
(2)(𝑥, 𝑦, 𝑧) =  −𝛽(𝑥 −  𝑦 +  𝑧) 

(15) 
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𝑃𝑥
(3)(𝑥, 𝑦, 𝑧) =  (−15𝛼3𝑐0

3)𝑥7 −  27𝛼3𝑐0
2𝑐1𝑥5

+  21𝛼3𝑐0
2𝑦𝑥4 −  𝛼2𝑐0(1 +  3(𝛼𝑐1

2

+  1)  +  10𝛼𝑐1
2)𝑥3 + 𝛼2𝑐0(3(𝑦 −  𝑧 

+  𝛼𝑐1𝑦)  +  15𝛼𝑐1𝑦)𝑥2 +  (−𝛼(𝛼𝑐1  

+  𝛼𝑐1(𝛼𝑐1
2 +  1)  + 6𝛼2𝑐0𝑦2  +  1))𝑥

+  𝛼(𝑦(𝛼 −  𝛽 +  1)  −  𝑧 +  𝛼𝑐1(𝑦 

−  𝑧 +  𝛼𝑐1𝑦)) 

 

𝑃𝑦
(3)(𝑥, 𝑦, 𝑧) = 3𝛼2𝑐0

2𝑥5  + (4𝑐0𝑐1𝛼2  + 𝑐0𝛼)𝑥3  

+ (−3𝛼2𝑐0𝑦)𝑥2 +  (𝛼𝑐1  −  𝛽 

+  𝛼(𝛼𝑐1
2 +  1)  +  1)𝑥 +  𝑧 −  𝛼(𝑦 

−  𝑧 +  𝛼𝑐1𝑦)  +  𝛽𝑦 −  𝛽𝑧 −  𝑦(𝛼 

−  𝛽 + 1) 

 

𝑃𝑧
(3)(𝑥, 𝑦, 𝑧) =  𝛼𝛽𝑐0𝑥3  +  𝛽(𝛼𝑐1  +  1)𝑥 +  𝛽(𝑧 

−  𝑦(𝛼 −  𝛽 +  1)) 

(16) 

 

Let us consider the dynamics of the Chua circuit in 

Eqs. (11). The hyper Chua circuit of order n is given by 

the following matrix differential equations: 



17 
 

�̇� = 𝛼(𝑌 − 𝑐0𝑋3 − 𝑐1𝑋) 

�̇� = 𝑋 − 𝑌 + 𝑍   (17) 

�̇� = −𝛽𝑌 

 

with X ∈ Rn×n, Y ∈ Rn×n, and Z ∈ Rn×n. 

Remark 3.1. Even if the number of parameters is the 

same as the scalar Chua’s circuit, the dynamics of the 

hyper Chua circuit is defined by 3×n2 variables. 

Therefore, the dynamical behavior of the hyper Chua 

circuit is strongly dependent on the 3×n2 initial 

conditions. 

Let us consider the dynamics of the hyper Chua 

circuit. The bifurcation route to chaos with respect to 

its parameters has the same bifurcation points of the 

scalar Chua circuit (Theorem 1). 

The fact that the dynamics of the hyper Chua circuit is 

a linear combination of the dynamics of n scalar Chua’s 

circuit, ensures that when the scalar circuits are in 

periodic conditions, a suitable limit cycle with the same 

periodicity is obtained for the hyper Chua circuit 

(Remark 2.1). Similarly, when the n scalar Chua circuit 
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shows chaotic behavior, the dynamics of the hyper 

Chua circuit is chaotic [Baptista, 2021]. 

The dynamics of the hyper Chua circuit is now 

investigated by bifurcation diagrams obtained with 

respect to parameter α. The bifurcation diagrams 

reported in the following are realized by plotting the 

local extremes of the state variables x11 and x12, 

similar results can be obtained considering different 

variables. The bifurcation diagrams for the hyper Chua 

circuits with n = 2, n = 3, and n = 5, fixing β = 14.286, 

c0 = 1/16 and c1 = −1/6 , are reported in Figs. 1–3. 

It appears evident that the bifurcation route is 

the same of the scalar Chua circuit, including a series 

of period-doubling bifurcations leading to a single-

scroll and, finally, to the classic double-scroll chaotic 

attractor.  
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          (a)         (b) 

Fig. 1. Bifurcation diagram with respect to parameter 

α for the hyper Chua circuit with n = 2: local maxima 

and minima of state variable (a) x11 and (b) x12. 

 

 

          (a)         (b) 

Fig. 2. Bifurcation diagram with respect to parameter 

α for the hyper Chua circuit with n = 3: local maxima 

and minima of state variable (a) x11 and (b) x12. 
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          (a)         (b) 

Fig. 3. Bifurcation diagram with respect to parameter 

α for the hyper Chua circuit with n = 5: local maxima 

and minima of state variable (a) x11 and (b) x12. 

 

The shape of the attractors are, however, 

strongly dictated by the chosen initial conditions and 

this effect is more evident for lower values of n. In 

order to show this effect, in Fig. 4 the bifurcation 

diagrams obtained for two different initial conditions 

when n = 2 [Fig. 4(a)] and n = 5 [Fig. 4(b)] are reported. 
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          (a)         (b) 

Fig. 4. Bifurcation diagram with respect to parameter 

α for the hyper Chua circuit starting from two different 

sets of initial conditions: (a) n = 2 and (b) n = 5. Local 

maxima and minima of state variable x11 are reported. 

 

We focus now on the case n = 2 to show the 

different attractors which can be obtained for different 

initial conditions along the whole bifurcation route to 

chaos. Let us fix α = 8.4, thus obtaining in the scalar 

Chua’s circuit a period-2 limit cycle. In Fig. 5, four 

different period-2 limit cycles are retrieved in the hyper 

Chua circuit with the same value of the parameter for 

four different initial conditions. 

It can be noticed that the period-2 behavior is 

present either in diagonal or off-diagonal elements of 

the hyper Chua circuit. When the scalar gene Chua’s 
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circuit is set for period-4 conditions, i.e. with α = 8.5, a 

similar behavior can be retrieved in the dynamics of the 

hyper Chua circuit, as shown in Fig. 6.  

The bifurcation route to chaos leads to a first 

chaotic window in which the so-called single-scroll 

attractor appears. In this case, in the scalar Chua circuit 

for α = 8.6, the shape of the single-scroll is strongly 

affected by the initial conditions, but it tends to 

maintain its geometric properties, as shown in Fig. 7. 

Finally, selecting α = 9, the double-scroll 

attractor appears in the scalar gene Chua’s circuit and 

the hyper Chua circuit produces a doublescroll-like 

attractor in all the elements of the matrix state variables, 

as reported in Fig. 8. Also in this case, the complexity 

of the attractor is dictated by the initial conditions. 
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          (a)         (b) 

Fig. 5. Period-2 limit cycles obtained for different 

initial conditions with α = 8.4: (a) x11–y11 and (b) x12–

y12. 

 

 

          (a)         (b) 

Fig. 6. Period-4 limit cycles obtained for different 

initial conditions with α = 8.5: (a) x11–y11 and (b) x12–

y12. 
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          (a)         (b) 

Fig. 7. Single-scroll attractors obtained for different 

initial conditions with α = 8.6: (a) x11–y11 and (b) x12–

y12. 

 

 

          (a)         (b) 

Fig. 8. Double-scroll attractors obtained for different 

initial conditions with α = 9: (a) x11–y11 and (b) x12–y12. 

 

The effect of initial matrices is further 

confirmed by the largest Lyapunov exponent Λmax, 
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reported in Fig. 9 as a function of the parameter α. 

Interestingly, the value of Λmax ≈ 0.3 for α = 9 is 

consistent with the largest Lyapunov exponent 

calculated for the scalar Chua’s circuit for the same set 

of parameters [Buscarino et al., 2017]. 

 

 

Fig. 9. Largest Lyapunov exponent Λmax evaluated for 

different values of α for the hyper Chua circuit with 

n=2. Other parameters as reported in the main text. 
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Despite the strong effect of different initial conditions, 

the synchronization of a pair of hyper Chua circuits 

follows the same path of the scalar Chua’s circuit. Let 

us consider two hyper Chua circuits coupled through a 

diffusive coupling acting on the first matrix differential 

equation as: 

 

𝑋1̇ = 𝛼(𝑌1 − 𝑐0𝑋1
3 − 𝑐1𝑋1) + 𝐾(𝑋2 − 𝑋1) 

𝑌1̇ = 𝑋1 − 𝑌1 + 𝑍1   

𝑍1̇ = −𝛽𝑌1 

 

𝑋2̇ = 𝛼(𝑌2 − 𝑐0𝑋2
3 − 𝑐1𝑋2) + 𝐾(𝑋1 − 𝑋2) 

𝑌2̇ = 𝑋2 − 𝑌2 + 𝑍2   

𝑍2̇ = −𝛽𝑌2 

(18) 

 

with X1 ∈ Rn×n, Y1 ∈ Rn×n, and Z1 ∈ Rn×n accounting for 

the first hyper Chua circuit and X2 ∈ Rn×n, Y2 ∈ Rn×n, 

and Z2 ∈ Rn×n accounting for the second hyper Chua 

circuit. The scalar coefficient K modulates the coupling 

strength. Let us set α = 9, β = 14.286, c0 = 1/16 and c1 
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= −1/6 , so that a chaotic double-scroll attractor can be 

observed over each element of the two hyper Chua 

circuits. In Fig. 10, the synchronization errors 

𝐸𝑥11 = |𝑥11
(1)

− 𝑥11
(2)

| 

𝐸𝑥12 = |𝑥12
(1)

− 𝑥12
(2)

| 

𝐸𝑥22 = |𝑥22
(1)

− 𝑥2
(2)

| 

 

are reported as a function of the coupling strength K. It 

can be observed that complete synchronization occurs 

for K >3.5, as for the scalar Chua’s circuit [Buscarino 

et al., 2009]. 

It is interesting to observe, however, that the 

offdiagonal elements are synchronized even below this 

threshold. 

 

Fig. 10. Synchronization errors  
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4. The Hypersystem of the H-R 

Neuron 

 
The task of computational neuroscience is to get 

focus on biologically plausible models of neurons. 

Computational neuroscience starts from mathematical 

models of neurons to understand, by simulations or 

experiments, the capabilities of nervous systems. 

Neuron models in theoretical neuroscience are finalized 

at deriving the essential items of the biological neurons, 

especially as regards their spiking behavior. Even if 

there is a plenty of software packages devoted to neuron 

simulations, in silico modeling of realistic neurons is a 

less explored approached. The Blue Brain project 

[Makram, 2006] is a fundamental example as it aims at 

constructing a biophysically detailed simulation of the 

neocortical column using a Blue Gene supercomputer. 

In silico neuron implementations can be used 

for educational purposes [Baden et al., 2018], or as 

modelling tools [Litt, 2015], since they can run real-

time simulation of large networks of interconnected 
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cells, easily interfaced with external stimuli and even 

with biological tissues [Bozhko et al., 2021]. Moreover, 

in silico neurons allow to implement neuron-based 

systems capable to control complex systems, such as 

robots. 

Even if silicon neurons are intended in the sense 

of a very-large-scale-integration circuit emulating the 

electrophysiological behavior of real neurons, in this 

work, exploiting the concept of hypersystems, we 

propose an high order neuron model which can be 

implemented in new generation low-cost, fast 

microcontrollers. 

This approach, in fact, implementing the neuron 

dynamics as electrical low voltage signals, guarantees 

the possibility of using it to control engineering 

systems, including automation devices and robots. 

The signal of a single neuron has a pulse like 

structure. It consists of a sequence of action potentials, 

short spikes of membrane voltage. Neuronal spiking 

behavior assumes a key-role in control and in 

information encoding [Arena et al., 2009]. It is 

intrinsically clear that the exact spikes time and the 
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precise length of interspike intervals can be modulated 

in order to drive information more efficiently than 

using time averaged firing rates. In particular, in all the 

situations when the fast reaction of the system is 

required there is no time for temporal averaging and the 

single spike can be exploited. For this reason, the 

neuron models dynamics is often characterized in terms 

of the interspike interval, i.e. the time interleaving 

between two successive spikes [Hindmarsh & Rose, 

1984]. 

Let us now consider the dynamics of the 

Hindmarsh-Rose model: 

 

�̇� = 𝑦 − 𝑎𝑥3 + 𝑏𝑥2 − 𝑧 + 𝐼 

�̇� = 𝑐 − 𝑑𝑥2 − 𝑦 

�̇� = 𝑟[𝑠(𝑥 − 𝑥𝑅) − 𝑧] 

(19) 

 

where a, b, c, d, r, s, xR, and I are system parameters. 

The Hindmarsh-Rose model behavior displays several 

peculiar neuronal activities, empirically observed in 

real neurons, ranging from periodic to chaotic spiking, 
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on the basis of the parameter values. The bifurcation 

diagrams reported in Fig. 11 is realized by plotting the 

interspike intervals (ISI) calculated from the state 

variables x (similar results can be obtained considering 

different variables). 

 

 

Fig. 11. Bifurcation diagram with respect to parameter 

I for the scalar Hindmarsh-Rose neuron: interspike 

interval (ISI) calculated in ms for x. 

 

Let us now introduce the Hindmarsh-Rose hyperneuron 

model, proceeding as in the general definition (2): 
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�̇� = 𝑌 − 𝑎𝑋3 + 𝑏𝑋2 − 𝑍 + 𝐼ϒ𝑁 

�̇� = 𝑐ϒ𝑁 − 𝑑𝑋2 − 𝑌 

�̇� = 𝑟[𝑠(𝑋 − 𝑥𝑅ϒ𝑁) − 𝑍] 

(20)  

where X ∈ Rn×n, Y ∈ Rn×n, Z ∈ Rn×n, and ϒ𝑁 represents 

the identity matrix of dimension N. 

Remark 4.1. Even if the number of parameters is the 

same of the scalar Hindmarsh-Rose model, the 

dynamics of the hyperneuron is defined by 3 × N2 

variables. Therefore, the dynamical behavior of the 

hyperneuron strongly depends on the 3 × N2 initial 

conditions. 

The intrinsic nature of the hyperneuron defined 

starting from the Hindmarsh-Rose model shows the 

high number (i.e. N2) of interacting neural units, thus 

representing a compact way to model large-scale 

neuron networks. Moreover, the result of Theorem 1 

guarantees that the bifurcation routes with respect to 

each hyperneuron parameter can be inferred from the 

corresponding route in the scalar Hindmarsh-Rose 

mode. Moreover, its robustness to noise and faults will 
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be investigated in the following to reveal non trivial 

properties, thus making hyperneurons ready for in 

silico implementations. 

The dynamics of the hyperneuron generated by 

the Hindmarsh-Rose model is now investigated by 

means of the bifurcation diagrams obtained with 

respect to parameter I, that represents the external 

stimulus and drives the spiking behavior in the scalar 

Hindmarsh-Rose model. It is important to stress here 

that the dynamics of the Hindmarsh-Rose model is 

dimensionless, either in amplitudes or in time 

[Hindmarsh & Rose, 1984]. Therefore, the proper 

choice of the integration time step allows to fix the 

proper time-scales of the spiking behavior. ISIs are here 

reported in ms in order to be comparable to 

observations on biological neurons [Hindmarsh & 

Rose, 1984]. The bifurcation diagrams for the 

hyperneurons with N=2, and N=3, fixing a=1, b=3, c=1, 

d=5, r=0.003 s=4 and xR=−8/5 , are reported in Figs. 

12, 13. It appears evident that the bifurcation route is 

the same of the scalar Hindmarsh-rose neuron model, 
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reported in Fig. 11, including the cascade to the chaotic 

attractor. 

 

Fig. 12. Bifurcation diagram with respect to parameter 

I for the Hindmarsh-Rose hyperneuron with N = 2: 

interspike interval (ISI) calculated in ms for x11 (top) 

and x12 (bottom). Other parameters: a = 1, b = 3, c = 

1, d = 5, r = 0.003 s = 4 and xR = −8/5. 
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Fig. 13. Bifurcation diagram with respect to parameter 

I for the Hindmarsh-Rose hyperneuron with N = 3: 

interspike interval (ISI) calculated in ms for x11 (top), 

x12 (middle), and x13 (bottom). Other parameters: a = 

1, b = 3, c = 1, d = 5, r = 0.003 s = 4 and xR = −8/5. 

 

The shape of the chaotic attractor, moreover, is 

dictated by the chosen initial conditions. We focus now 

on the case N=2 to show the different chaotic attractors 

obtained for three sets of initial conditions when I=3.2, 

as reported in Fig. 14. It is evident that, while the global 
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structure of the Hindmarsh-Rose attractor is preserved 

for all initial conditions in the x11−y11−z11 space, the 

chaotic attractors in the space x12−y12−z12 shows 

significantly different shapes, yet maintaining the 

spiking behavior.  

 

 

Fig. 14. Chaotic attractors obtained in the hyperneuron 

with N = 2 for three different initial conditions and for 

I = 3.2: (a) x11 − y11 − z11 and (b) x12 − y12 − z12. Other 

parameters: a = 1, b = 3, c = 1, d = 5, r = 0.003 s = 4 

and xR = −8/5. 

 

Since the implementation of in silico neurons 

requires the capability to include in a silicon support 

more and more neurons and to guarantee a suitable 

robustness. Even if some fault does occur, thus, the 

neuron spiking behavior is preserved. Faults, 
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uncertainty and noise, in fact, are likely occurring in the 

fabrication process of in silico devices. The features of 

the hyperneuron generated by the Hindmarsh-Rose 

model appears interesting also in term of its robustness 

to noise and faults. We now focus on this peculiar 

aspect of hyperneurons.  

In order to explore the robustness of the 

hyperneurons, we introduce numerical faults by 

following two approaches. The first approach is based 

on including at each step a random perturbation taken 

from a uniform distribution between −1 and 1 in the 

numerical integration of the variable yij for a given (i, 

j). The second approach is to include the random 

perturbation with a probability p, thus ideally 

mimicking the occurrence of a not persistent fault.  

Let us focus on the chaotic attractor obtained for 

I = 3.2. Applying a persistent random perturbation to 

the integration, as outlined above, the scalar gene 

Hindmarsh-Rose model is driven to a not-spiking, 

underthreshold, behavior. On the contrary, the 

hyperneuron is able to adapt its behavior to the 

perturbation, maintaining the chaotic spiking trend. The 
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two cases N = 1 and N = 2 are shown in Figs. 15 and 

16. The effect of a not persistent perturbation is 

explored in Fig. 17, where the interspike interval for 

I=3.2 is reported when varying the fault probability p. 

The interspike interval in the case N = 1 vanishes for 

p>0.1, since the spiking behavior disappears, while for 

N = 2 the spiking behavior is preserved also for higher 

values of p, thus confirming the resilience of the 

hyperneuron model. 
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Fig. 15. Temporal behavior of state variable x of the 

scalar Hindmarsh-Rose model for I = 3.2 in presence 

of a persistent fault. Fault occurs on the variable y. 
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Fig. 16. Temporal behavior of state variables (a) x11 

and (b) x12 of the hyperneuron based on the 

Hindmarsh-Rose model for N = 2 and I = 3.2 in 

presence of a persistent fault. Fault occurs on the 

variable y11. Other parameters: a = 1, b = 3, c = 1, d 

= 5, r = 0.003 s = 4 and xR = −8/5. 
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Fig. 17. Interspike interval for the scalar Hindmarsh-

Rose model and for the hyperneuron with N = 2 and I 

= 3.2 with respect to the probability of a fault to occur. 

The ISI vanishes for p > 0.1 in the scalar model, thus 

indicating that the spiking behavior is lost. 
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5. The relevant role of the 

innovative STM32 family in the 

hypersystem generation 

 
The analog implementation of a nth order hyper 

Chua’s circuit and hyperneuron based on the 

Hindmarsh-Rose model would involve the use of many 

multipliers and operational amplifiers, since the 

explicit dynamical equations include several variable 

products. Therefore a digital, low-cost implementation 

has been preferred. 

The hardware implementation of the hyper 

Chua’s circuit for N=2 is based on a 

STMicroelectronics Nucleo developing board, reported 

in Fig. 18, equipped with an STM32L476 

microcontroller characterized by an 80MHz main 

clock. Regarding the realization of hyperneurons based 

on the Hindmarsh-Rose model for N=2 we adopted the 

same microcontroller (STM32L476), to generalize the 

implementation to nth order a more powerful 

microcontroller was utilized, the STM32H723 and his 

corresponding Nucleo developing board. 
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Fig. 18. STMicroelectronics Nucleo board used to 

implement the hyper Chua circuit. 

 

Let us introduce some information on the 

microcontrollers used. 



44 
 

The STM32L476 device is an ultra-low-power 

microcontrollers based on the high-performance Arm® 

Cortex®-M4 32-bit RISC core operating at a frequency 

of up to 80 MHz. The Cortex-M4 core features a 

Floating point unit (FPU) single precision which 

supports all Arm® single-precision data-processing 

instructions and data types. It also implements a full set 

of DSP instructions. The STM32L476xx devices 

embed high-speed memories (Flash memory up to 1 

Mbyte, up to 128 Kbyte of SRAM). 

The devices offer up to two DAC channels and 

many general-purpose 32-bit timer and 16-bit PWM 

timers.  

The STM32H723 device is based on the high-

performance Arm® Cortex®-M7 32-bit RISC core 

operating at up to 550 MHz. The Cortex® -M7 core 

features a floating point unit (FPU) which supports 

Arm® double-precision (IEEE 754 compliant) and 

single-precision data-processing instructions and data 

types. The Cortex -M7 core includes 32 Kbytes of 

instruction cache and 32 Kbytes of data cache. 

STM32H723xE/G devices support a full set of DSP 
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instructions and a memory protection unit (MPU) to 

enhance application security. STM32H723xE/G 

devices incorporate high-speed embedded memories 

with up to 1 Mbyte of Flash memory, up to 564 Kbytes 

of RAM  

The devices embed peripherals allowing 

mathematical/arithmetic function acceleration 

(CORDIC coprocessor for trigonometric functions and 

FMAC unit for filter functions). The devices offer two 

DACs, 4 general-purpose 32-bit timers, 12 general-

purpose 16-bit timers including two PWM timers for 

motor control, five low-power timers, a true random 

number generator (RNG).  

Many other features are implemented in these 

microcontrollers, we reported only the specs useful for 

our implementation. 

Two peripherals of the microcontrollers have 

been used: a timer, which ensures a constant sampling 

time, and a Digital to Analog Converter, in order to 

produce an output voltage signal, allowing to visualize 

the state variables, with a 12-bit resolution. 
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The algorithm to implement the hyper Chua 

circuit is essentially based on the discretization and 

vectorization of Eqs. (17), thus obtaining a discrete 

map. It is adopted therefore an Euler integration 

method, included in the loop interrupts the routine of 

the timer. Using a double precision, the obtained 

sampling time is τ = 100 μs. The use of optimized 

matrix manipulation routine can be adopted in order to 

maintain the matrix form of the hyper Chua circuit also 

in the algorithm, but this often leads to higher sampling 

times, thus reducing the frequency of the obtained 

circuit.  

The experimental attractors produced by the 

digital implementation for α = 8.6 and α = 9 are 

reported in Figs. 19 and 20, thus showing the numerical 

stability of the dynamics of the hyper Chua circuits and 

the possibility to adopt a simple but effective 

implementation for the use of the hyper Chua circuit in 

engineering applications. 
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Fig. 19. Experimental results: (a) Numerical and (b) 

experimental attractors for α = 8.6; (c) oscilloscope 

trace (x-axis: 200mV/div; y-axis: 100mV/div). 
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Fig. 20. Experimental results: (a) Numerical and (b) 

experimental attractors for α = 9; (c) oscilloscope 

trace (x-axis:200mV/div; y-axis: 100mV/div). 

 

An extract of the implemented FW code is 

reported (variables definition and equations 

implementation): 
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The in silico implementation of the 

hyperneuron is based on STM32H723 microcontroller 

characterized by a 550 MHz main clock. 

Also in this case the use of a timer ensures a 

constant sampling time, and the Digital to Analog 

Converter allows to produce an output voltage with a 

12-bit resolution. 

The algorithm to implement the hyperneuron is 

essentially based on the Euler discretization of Eqs. 

(20), thus obtaining a discrete map. It is adopted 

therefore an Euler integration method, included in the 
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loop interrupt routine of the timer. The use of optimized 

matrix manipulation routine is adopted in order to 

maintain the matrix form of the hyperneuron also in the 

algorithm. The clock has been adapted so that the 

output presents a spiking interval in the order of 10 ms, 

consistent with the biological observations. 

The capability of the proposed approach to 

effectively implement high order hyperneurons 

essentially depends of the execution time τex needed to 

complete an integration step. In Fig. 21, we report the 

value of τex measured as a function of N. Therefore, on 

the basis of the execution time, the integration step size 

within the integration routine can be opportunely scaled 

so that the interspike interval observed in the output 

variables is in the desired range. The experimental 

bifurcation diagram with respect to I for N=2 is 

reported in Fig. 22 and it has been obtained calculating 

the interspike intervals from the output of the 

microcontroller. The diagram shows the same structure 

and bifurcation route of those obtained from numerical 

integration of the hyperneurons (Figs. 12 and 13). 
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As concerns the fault tolerance, the in silico 

hyperneuron confirms the capability of maintaining the 

spiking behavior in presence of a persistent noise, as 

shown by Fig. 23. 

 

 

Fig. 21. Execution time τex of a single integration step 

as a function of N. 
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Fig. 22. Experimental bifurcation diagram with respect 

to parameter I for the Hindmarsh-Rose hyperneuron 

with N=2: interspike interval (ISI) calculated in ms for 

x11 (top) and x12 (bottom). Other parameters: a = 1, b 

= 3, c = 1, d = 5, r = 0.003 s = 4 and xR = −8/5. 

 



54 
 

 

Fig. 23. Experimental robustness of the hyperneuron 

with respect to a persistent noise: (a) N = 1, (b)-(c) 

N=2. Other parameters: a=1, b=3, c=1, d=5, r = 0.003 

s=4 and xR = −8/5. 

 

To implement the hyperneuron equations on the 

FW we used a matrix approach making use of the 

CMSIS DSP Software Library as shown in the 

following code: 

 



55 
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6. Conclusion 

 
Even if in silico neurons have been a wide 

subject of research since 1991 [Mahowald & Douglas, 

1991] and more contributions have been presented in 

order to realize circuit emulating the electrical behavior 

of a single neuron, the topic is of wide interest today. 

The in silico technologies are continuously evolving as 

well as the microprocessor technology is proceeding 

towards lower costs and lower power consumption. 

Therefore it is appropriate to conceive networks of 

neurons realized on microcontroller in order to 

implement a high degree of parallelization.  

In this contribution, the concepts of 

Hypersystems has been introduced focusing on the 

implementation of the hyper Chua circuit and 

hyperneurons from the Hindmarsh-Rose model, 

describing theoretically its main features and analyzing 

numerically and experimentally the emerging 

dynamical behavior. 

Moreover, an experiment based on a new 

generation low cost microcontroller showing the 
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effectiveness of this approach in order to implement a 

large number of hyperneurons have been discussed. 

It should be emphasized that the approach 

leading to the definition of the hyper Chua circuit 

allows the generation of 3×n2 chaotic carriers. This 

allows to consider the hyper Chua circuit as a resilient 

Chua circuit. The increased number of state variables 

with chaotic behavior leads to more complex and 

nested basins of attraction within that of the original 

Chua’s circuit. It is for this reason that the initial 

conditions can lead to a wide set of attractors, including 

that of the original Chua circuit. Notwithstanding the 

stronger dependence on initial conditions, 

synchronization strategies for two or more hyper Chua 

circuits can be outlined, following classical 

synchronization approaches. As concerns the 

Lyapunov spectrum, more than one positive Lyapunov 

exponents are retrieved for α in the chaotic region, with 

the largest being consistent with the positive Lyapunov 

exponent of the scalar Chua circuit. The proposed 

physical implementation has been based on low-cost 

microcontrollers, moreover its performance is 
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outstanding and allow to obtain at the same time more 

and more chaotic signals. Moreover, the possibility of 

using such device as a pseudo-random signal generator 

for secure communication apparatii, both in digital and 

analog applications, is here remarked. The hyper Chua 

circuit, in fact, represents a source of more chaotic 

encryption keys which can be generated through a 

single device. The set of initial conditions, in fact, 

representing the encryption key, leads to different 

chaotic behavior, even if all related to the original 

chaotic Chua’s circuit. 

The hyper Chua circuit can be investigated also 

to verify the occurrence of the same outstanding 

properties of the Chua circuit, like intermittency, 

stochastic resonance and so on, but generating a very 

high number of chaotic signals.  

Finally, it is remarked that the approach to 

generate the hyper Chua circuit from a gene scalar 

Chua’s circuit is general and can be applied on different 

continuous-time nonlinear dynamics thus representing 

a paradigm to generate higher-dimensional chaotic 

systems. 
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The fact that the hyperneurons defined from the 

Hindmarsh-Rose model allow the generation of 3 × N2 

chaotic spiking carriers makes them highly robust with 

respect to noise. The number of state variables within 

the hyper neuron leads to complex and nested basins of 

attraction, and, thus, to the generation of more 

coexisting chaotic attractors for the same set of system 

parameters. 

In this study, we focused on the Hindmarsh-

Rose model since it is considered a model conjugating 

the simplicity of the mathematical structure with the 

deep capability of mimicking observed neuronal 

behavior. Moreover, the Hindmarsh-Rose model 

assumed a fundamental relevance also in nonlinear 

dynamics as it is able to show a chaotic behavior. 

However, the definition of hyperneurons is 

independent from the specific choice of the neuron 

model and other, even more biologically plausible, 

models can be used to generate high order 

hyperneurons. It is important to stress that the 

hyperneurons guarantee also a spiking behavior in 
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presence of faults ore noise, differently to the more 

fragile dynamics of the scalar Hindmarsh-Rose model. 

The trade-off between the size of the hyperneuron and 

the computational performance is an open research 

problem. The proposed physical implementation based 

on low-cost microcontrollers allows for oustanding 

performance to get at the same time more and more 

spiking signals. This can be further improved by 

considering hardware devices with a higher degree of 

parallelization, such as networks of interconnected 

STM32 boards, thus proceeding forward to the 

realization of a dense environment of spiking neurons. 
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