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Abstract: Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by hematopoi-
etic stem-cell-derived clonal proliferation, leading to bone marrow (BM) fibrosis. Hematopoiesis
alterations are closely associated with modifications of the BM microenvironment, characterized by
defective interactions between vascular and endosteal niches. As such, neoangiogenesis, megakary-
ocytes hyperplasia and extensive bone marrow fibrosis, followed by osteosclerosis and bone damage,
are the most relevant consequences of PMF. Moreover, bone tissue deposition, together with pro-
gressive fibrosis, represents crucial mechanisms of disabilities in patients. Although the underlying
mechanisms of bone damage observed in PMF are still unclear, the involvement of cytokines, growth
factors and bone marrow microenvironment resident cells have been linked to disease progression.
Herein, we focused on the role of megakaryocytes and their alterations, associated with cytokines
and chemokines release, in modulating functions of most of the bone marrow cell populations and
in creating a complex network where impaired signaling strongly contributes to progression and
disabilities.

Keywords: primary myelofibrosis; bone; myeloproliferative neoplasm; bone marrow; fibrosis

1. Introduction

Primary myelofibrosis (PMF), known as a clonal stem cell disorder, is a chronic myelo-
proliferative syndrome representing the rarest and most complex of all BCR-ABL-negative
myeloproliferative neoplasms (MPNs), a group of neoplastic hematological diseases com-
prising essential thrombocythemia (ET) and polycythemia vera (PV). From a genetic point
of view, the vast majority of patients show the JAK2V617F driver mutation; the remaining
population of patients usually shows either calreticulin (CALR) mutations or thrombopoi-
etin receptor mutations (i.e., myeloproliferative leukemia, MPL) [1–4]. These mutations
could also be associated with concomitant mutations to other genes such as ASXL1, IDH1/2,
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EZH2, DNMT3A and SRSF2 [4–6] and with microRNA expression level alterations [7].
The main mutations show similarity in the constitutive activation of JAK/STAT signaling.
This overactivation represents a critical feature of clonal myelopoiesis in MPNs and the
main biochemical pathway involved in the pathogenetic progression of myelofibrosis [8,9],
playing a role in malignant expansion and compromising nonclonal hematopoietic bone
marrow cell populations [10,11]. In addition to JAK/STAT, the involvement and hyperacti-
vation of PI3K/AKT and NF-kB pathways in MPN disorders have been reported [12,13].
Pathological onset is due to the neoplastic transformation of a multipotent hematopoietic
stem cell in the bone marrow niche and the subsequent proliferation of newly formed clones
with a cancer outbreak. Therefore, as a consequence of the pathological upsurge, the bone
marrow environment undergoes morphological and functional changes, inducing abnor-
malities in granulocytes, megakaryocytes and stromal cells, such as fibroblasts. Indeed,
megakaryocytes show reduced GATA-1 protein expression coupled with increased levels
of many inflammatory cytokines and growth factors (b-FGF, VEGF, PDGF) in addition to
extracellular matrix constituents including fibronectin, reticulin and collagens. Disrupted
cell interactions and functional variations of stroma, BM-MSC, megakaryocytes, osteoblasts,
endothelium and myofibroblasts culminate in the development of bone marrow damage
with an inflammatory and profibrotic environment [7].

2. Clinical Features

Overt PMF is the least common [14] of MPN disorders, associated with dismal prog-
nosis with an estimated survival of 2–5 years postdisease onset, slightly improved with
current therapeutic approaches and cured with allogeneic stem cell transplantation [15–17].
The most common clinical hallmarks of PMF range from constitutional symptoms (fatigue,
cachexia) to symptomatic anemia, thrombohemorrhagic events, hepatosplenomegaly with
extramedullary hematopoiesis and increased susceptibility to infections and secondary
cancers [18–21]. PMF is also considered a model where the neoplastic condition is present
together with an elevated inflammatory status, and new therapies seem to target both
aspects [22]. Bone marrow fibrosis is a key characteristic of the disease and is outlined
by abnormal trafficking patterns between stem cells, hematopoietic progenitors and cell
lineages in the cancer microenvironment. As a consequence, hematopoietic cells migrate
from the bone marrow and give rise to extramedullary hematopoiesis, with erythroid and
myeloid progenitors outside the primary niche. Hence, cancer cells migrate to external sites,
such as the liver or spleen, and the expansion of the malignant clones leads to progressive
hepatosplenomegaly [23]. Splenomegaly represents an unavoidable outcome and may lead
to clinical complications such as splenic infarction, hemorrhages or thrombosis [14,24–27],
with a severe impact on prognosis.

Bone Marrow Niche and Microenvironment Disruptions in PMF

Bone marrow represents a complex and heterogenous microenvironment in which
physiological homeostasis and cellular activities are based on continuous crosstalk between
hematopoietic and stromal niches, in close communication throughout environmental
signals, growth factors, adhesion molecules and the vascular network. The stem area is
composed of stem precursors and endosteal bone surface, in which resident hematopoietic
stem cells (HSCs) proliferate and differentiate [28]. Osteoblastic and vascular compart-
ments are characterized by a heterogenous group of cells such as hematopoietic cells,
fibroblasts, osteoblasts and osteoclasts, adipocytes, stromal cells (vascular endothelial-
cadherin-positive sinusoidal endothelial cells (SECs)), perivascular cells and mesenchymal
stem cells (MSCs) [29]. In such a complex microenvironment, extracellular matrix (ECM)
elements provide both mechanical and functional support [30]. The physiological mecha-
nisms of proliferation and differentiation of HSCs are strictly dependent on homeostatic
communication between bone marrow compartments. A functional imbalance of the stro-
mal niche is considered the major factor in inducing the clinical consequences in PMF.
In synthesis, it is believed that bone marrow impairment is due to multifactorial damage
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involving several cell types and the dysregulations and/or dysfunctions of biochemical
elements (Figure 1).
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Figure 1. Pathogenetic mechanisms of primary myelofibrosis and cell lines involved: summary panel. Bone marrow
dysregulations due to the neoplastic expansion of one hematopoietic stem cell produce a number of events that took place
within the pathological microenvironment. The most relevant clinical consequences are neoangiogenesis, megakaryocytes
hyperplasia and extensive bone marrow fibrosis, followed by osteosclerosis and bone damage.

3. Fibrosis as PMF Banner

PMF complexity is mainly due to the onset of bone marrow fibrosis, followed by a long
sequence of cascade events. This results in hematopoiesis impairment and organ failure,
culminating in osteosclerotic deposition during the late stage of the disease, which seriously
impairs the health of affected patients [31]. Thus, fibrosis represents one of the cardinal
hallmarks of pathological progression in PMF [32]. It seems to be mainly promoted by trans-
forming growth factor β (TGF-β), matrix metalloproteinase-9 (MMP-9) and tissue inhibitor
of metalloproteinases (TIMPs) [33,34], but increased expression of growth factors such
as osteocalcin, b-fibroblast growth factor (b-FGF), platelet-derived growth factor (PDGF)
and vascular endothelial growth factor (VEGF) has been reported [35]. This heterogenous
group of biomarkers has detrimental impacts on vascularization, the MSC niche and ECM
components’ stability [36]. Bone marrow fibrosis occurs as a cytokine-mediated secondary
reaction toward the starting clonal malignant expansion [37,38] and is characterized by
disproportionate deposits of ECM proteins [39]. In vivo and in vitro studies have clarified
the role of several cytokines in the aberrant stromal reaction, with a strong emphasis on
the pleiotropic cytokine TGF-β [40–42]. Analysis of biochemical markers in PMF patients
showed that procollagen type 1 N-terminal propeptide (P1NP) was significantly increased,
most likely reflecting the relevant collagen deposition in bone marrow due to disease
progression [43]. Fibroblast stimulation, as well as megakaryocytes activation, elicits TGF-
β release, which induces large amounts of ECM proteins and cell adhesion molecules
while enhancing the expression of inhibitory proteases involved in the degradation of the
ECM [44]. At this point, it is easy to hypothesize a backdrop in which the microenviron-
ment itself induces severe inflammation with consequent acidification of the medullary
site [45]. This pathological picture influences HSCs and MSCs, which are subjected to clonal
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neoplastic expansion and subsequent differentiation into monocytes and megakaryocytes.
The latter population releases a large number of inflammatory cytokines giving rise to a
robust inflammatory cascade, responsible for the permanent alteration of the hematopoietic
niche, altered crosstalk between cells and severe hematopoietic deficit [46].

4. Megakaryocytes Role in Bone Marrow Imbalance

Altered megakaryocytes produce a plethora of growth factors, interleukins and cy-
tokines involved in the onset of a dysfunctional microenvironment, contributing to the
neoangiogenesis and hyperactivation of both fibroblasts and osteoblasts [47]. The func-
tional role of abnormal megakaryocytes in PMF has been investigated through different
approaches, using both in vitro and in vivo models coupled with evidence from patho-
logical assessments of clinical samples [33,34,48,49]. Histological analysis of bone mar-
row biopsies from PMF patients revealed megakaryocytic clusters and hyperplasia [50].
In particular, evidence from knockout mice models showed that GATA1 or the thrombopoi-
etin (TPO) receptor, which are physiologically involved in megakaryocyte maturation, are
involved in altered megakaryocytes development as well as reduced platelet counts [34,48].
In addition, TPO receptor overexpression gives rise to megakaryocytic and granulocytic
hyperplasia with erythroblasts hypoplasia resulting in a fatal myeloproliferative condi-
tion [33,49]. In this regard, megakaryocyte hyperplasia has been investigated in in vitro
models of CD34-positive cells isolated from PMF patients cocultured with TPO and stem-
cell-derived factors. This evidence shows that CD34-positive progenitor cells give rise
to megakaryocytes with impaired apoptosis due to the overexpression of the antiapop-
totic protein Bcl-xL, which promotes cellular hyperplasia [7]. Accumulating evidence
particularly supports a potential role of IL-8 and its CXCR1 and CXCR2 receptors, both
belonging to the G protein-coupled receptor superfamily, on the dysfunctional phenotype
of megakaryocytes. IL-8 acts as a chemoattractive and proinflammatory agent as well as a
neutrophil activator, interacting with the abovementioned receptors [51]. Many different
cell types are involved in IL-8 secretion, such as macrophages, fibroblasts, monocytes and
megakaryocytes, at least in in vitro settings [52–54]. Hence, this cytokine and CXCRs in
megakaryocytes dysfunction play a key role in this setting. In particular, IL-8 levels have
been found to be significantly increased in PMF patient serum and, in addition, CXCR1 and
CXCR2 participate in megakaryocyte proliferation and megakaryocyte ploidy [51]. In this
regard, it is known that PMF patients exhibit aberrant immature megakaryocyte clusters, re-
leasing a plethora of proinflammatory cytokines, a key mechanism that induces secondary
fibrosis [33]. Much evidence suggests that the enhancement of the role of the FL/Flt3
axis in PMF could be associated with dysmegakaryopoiesis, as shown by an increased
percentage of circulating CD34+Flt3+ cells expressing the CD41 megakaryocyte antigen [55].
Among the most important chemokines, CXCL4, also known as platelet factor-4 (PF4), was
proposed to play a crucial role in PMF pathogenesis in 1984 [56]. However, the underly-
ing mechanism of action of CXCL4, produced by the clonal pathological hematopoietic
stem cell, has been recently elucidated [57]. In fact, CXCL4 is able to reprogram GLI1,
upregulating matrisome genes, a prelude to fibrosis development. Furthermore, in MPN
mouse models, CXCL4 knockdown prevents the upregulation of inflammatory pathways
and TGF-beta, improving most of the main clinical signs observed in such a preclinical
model such as anemia, thrombocytosis, splenomegaly and aberrant megakaryocytes in
bone marrow. Finally, the upregulation of the JAK/STAT pathway induced by CXCL4 has
been also reported, even though it seems this is not sufficient to develop fibrosis, whereas
other mechanisms might coexist and cooperate.

5. The Biochemical Network of Osteosclerosis in PMF

Bone modifications are a pathognomonic hallmark of PMF since they represent one of
the direct results of bone marrow disruption. Osteosclerosis remains the most common
bone change, which represents a pathological event characterized by increased bone
density and abnormal hardening [58–60], and its pathogenesis is still largely unknown.



Biomolecules 2021, 11, 122 5 of 13

Osteosclerotic regions are produced by the irregular thickening of bone trabeculae, new
bone shaping and consequent bone volume growth. In particular, increased bone marrow
activity in some regions, such as the vertebral column, pelvis or proximal segments of
long bones, remain the most affected by such alterations [58,60]. The physiological bone
morphology and functionality are strictly dependent on the accurate setting of the marrow
osteoblastic niche as well as the balance between mature bone tissue, endosteum and
central bone marrow [61,62].

5.1. Bone Marrow as Bone Remodeling “Workshop”

Bone tissue homeostasis is controlled by the cooperation of both HSCs and MSCs,
involved in the differentiation in osteoclasts (OCs) and osteoblasts (OBs), respectively.
OBs share their mesenchymal biogenesis with chondrocytes, adipocytes and stromal
cells [63–66]. As such, bone marrow hematopoiesis and bone turnover have a mor-
phological and functional interconnection, and both these processes affect each other.
The osteoblastic niche holds different cell lineages that support HSC multipotency and
self-renewal through reciprocal interactions, including bone-matrix-forming OBs and
bone-resorbing OCs [67]. The development of OCs from HSCs provides a first step of
monocytes/macrophage differentiation as progenitor cells, followed by the subsequent
formation of mononuclear OCs. Although these cells already show bone-resorbing ac-
tivity, they subsequently fuse to produce multinuclear osteoclasts in order to perform
their specific functions toward bone remodeling [68]. Conversely, OBs originate from
mesenchymal-lineage MSCs and undergo two different processes: they become quiescent
cells on the bone surface, known as the bone lining cell, or they differentiate into mature
osteocytes [69,70]. Spindle-shaped N-cadherin-expressing osteoblasts (SNOs), a subset of
osteoblastic lining cells in the trabecular bone area, prevent the differentiation process of
HSCs, keeping them long-term quiescent. These resting cells coexist with the activated
HSCs, which are recruited to differentiate from the vascular niche in response to microenvi-
ronmental changes [62]. In this regard, activated OBs regulate HSC quiescence through the
secretion of angiopoietin-1 (Ang 1) and osteopontin (OPN) [71]; at the same time, OCs re-
lease calcium during bone resorption in order to contribute to enhancing HSC localization
into bone marrow [72]. Similarly, CD146-positive OB progenitor subendothelial stromal
cells are regarded as a critical component of the endosteal HSC niche and contribute to the
organization and structure of sinusoidal walls, expressing HSC regulators such as Ang-1
or CXCL12 [73]. In fact, while staying over sinusoids, they contribute to hematopoietic
regulation, acting either directly as adventitial reticular cells or indirectly through their
OB progeny at the endosteal surface [74]. Notably, CD146 or melanoma cell adhesion
molecule (MCAM) has been associated with the late stage of the disease. In particular,
a remarkable increase in CD146 expression in patients during the advanced phase of
PMF has been reported [75]. A recent study confirmed the importance of the endosteal
niche in HSC maintenance, assuming an interesting model of mutual interaction between
aberrant myeloid cells caused by myeloproliferative expansion, MSC stimulation and OB
overproduction [76].

5.2. The OB/OC Ratio

It is well established that osteosclerotic evolution in PMF is mainly due to the failure
of the bone formation and bone resorption balance, and OBs and OCs represent the main
characters of osteosclerosis pathogenesis. On the one hand, OBs are strongly induced to
proliferate and differentiate [77]; on the other hand, osteoclastogenesis seems to be deeply
impaired as a result of microenvironmental alterations involving osteoprotegerin (OPG),
RANKL and macrophage colony-stimulating factor (M-CSF) expressions. In particular,
recent evidence suggests that in PMF patients, OCs are generated by neoplastic monocytes
after a low number of fusion events, providing an abnormal morphology and impaired
resorption capacity [78]. In this context, bone regeneration overcomes the bone resorption
process, resulting in osteosclerotic deposition. OB enhancement certainly represents a
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distinctive feature of osteosclerotic development in PMF [76,79], and this evidence is
followed by concurrent OC impairment, which further exacerbates the severe imbalance
toward bone remodeling [78]. However, while several data support the idea of maintained
OB–OC coupling, decreased bone resorption suggests that the individual activity of OCs,
similar to that of OBs, could also be decreased. The decline in OC activity is recognized as
a positive balance by remodeling bone units, which could possibly lead to the growth of
bone mass in patients [80]. OBs, in turn, are stimulated by excessive bone morphogenetic
proteins BMP-2, -4 and -6, mainly released by abnormal megakaryocytes [81] and also
by growth factors able to induce their proliferation and differentiation, such as insulin-
like growth factor I (IGF-I) and fibroblast growth factor (FGF) [77]. BMPs belong to the
TGF-β superfamily, and their release is associated with increased gene expression of
type I collagen, osterix (Osx), osteocalcin, osteopontin (OPN), VEGF and PDGFα during
osteoblastic differentiation [82]. Their involvement in neoangiogenesis and osteosclerosis,
upregulating OB proliferation and differentiation, has been hypothesized on the basis
of experimental evidence showing that megakaryocytes of GATA-1-low mice contribute
to osteosclerosis by stimulating bone formation via the increased release of BMPs [83].
Moreover, their pathogenetic function in PMF seems to be correlated with alterations in
the NOG gene encoding for the antagonist protein to BMP2 and BMP4 (NOGGIN) [82,84].

5.3. The Monocytic Line: Role of Osteal Macrophages (OsteoMacs)

Osteosclerosis associated with MPNs is a pathological evolution, typical of the advanced
stage of myelofibrosis, which is due to the gradual replacement of marrow by collagen
and bone trabeculae accomplished by activated myofibroblasts (αSMA1-positive stromal
cells) [85]. These types of cells differentiate by particular progenitors such as GLI1-positive
and Lepr-positive stromal cells under the driving activity of megakaryocytes [86–88]. Many
studies have revealed the importance of the monocyte line [89–91], highlighting the role
of IL-1 release as well as TGFβ overproduction. In particular, bone-resident macrophages
(OsteoMacs) have recently gained relevance in PMF clinical contexts because of their
involvement in the differentiation of mesenchymal lineages [92–94], especially in OB
functionality, through TNFα or oncostatin M [95,96]. It is well known that OsteoMacs
contribute to bone repair mechanisms; after a proinflammatory stimulus, they release IL1
and TNFα [97] and also secrete proanabolic factors to support osteogenic differentiation
and OB maturation in vitro [95,98–100], closely cooperating with MSCs and stromal cells
to form a deep partnership with the neighboring populations. Starting with this evidence,
some studies confirmed the implication of the bone-associated macrophage lineage in the
myelofibrotic and osteosclerotic course through a complex release of growth factors such
as TGFβ, CXCL4 and PDGF, in collaboration with megakaryocytes, as mentioned above.
In this backdrop, the mutual regulation between megakaryocytes and macrophages in
MPN progression has been hypothesized, and vitamin D seems to play a pivotal role in
their crosstalk [101].

5.4. RANKL/OPG Axis and the Wnt/b-Catenin Pathway

Much evidence has been reported to support the role of osteoprotegerin (OPG) as
a substantial marker involved in PMF pathogenesis [102,103]. Plasma OPG levels have
been found significantly increased in PMF patients compared to healthy controls. OPG,
a member of the TNFr superfamily [104], constitutes a key biomolecule in the bone remod-
eling process, regulating the inhibition of OC differentiation. Its up- or downregulation
is involved in different pathological conditions associated with osteosclerosis [105] or
osteoporosis [106,107], respectively. OPG hyperexpression particularly seems to support
a double function. On the one hand, it impairs OC production and its differentiation
process [108]; on the other hand, it sustains endothelial proliferation as well as neoangio-
genesis [109,110]. OPG expression in OBs is regulated by many different cytokines, as well
as by the Wnt/βcatenin pathway [111] and Jagged1/Notch1 signaling, which directly
inhibits osteoclastogenesis and indirectly affects the OPG-receptor activator of the NF-kB
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ligand (RANKL) expression ratio in stromal cells [112]. The main signaling pathway in
bone resorption is indeed RANKL mediated. It is mainly expressed by osteoblastic stromal
cells that bind to its receptor RANK on monocytes, OCPs and mature OCs, producing osteo-
clastogenesis [113,114]. RANKL is a homotrimeric protein existing like membrane-bound
OBs in a T cell form or secretory protein form [115,116]. Increased RANKL expression in
stromal cells is usually associated with the stimulation of osteoclastogenesis and OC pro-
genitor (OCP) release [117–119]. Furthermore, RANKL represents a functional link between
bone remodeling and hematopoiesis since RANKL-induced osteoclastogenesis affects HSC
mobilization as well as hematopoietic activity [117]. Experimental evidence highlights a
role of TGFβ on osteosclerotic progression together with OPG upregulation [105], while the
stimulatory effect of TGFβ on OPG secretion in primary OBs and stromal cell lines has
been confirmed by many other studies [120,121]. The RANKL/OPG ratio is an essential
factor of bone mass regulation and integrity. In particular, OPG represents an inhibitor of
bone resorption and protects bone binding to RANKL, impeding interaction to its receptor
RANK (Figure 2). The canonical WNT/β-catenin signaling pathway plays an important
role during skeleton development, besides being important for bone mass. WNT signaling
also regulates MSC differentiation into OBs, controlling bone formation, increasing OB
proliferation and inhibiting OB apoptosis. It is also able to negatively regulate adipocyte,
chondrocyte and OC differentiation. The canonical WNT/β-catenin signaling is a key medi-
ator of the stem cell signaling network, in which different cytokine-induced cascades act in
a context-dependent manner [122]. A major protagonist of this network is Wnt, a factor of
fibroblast growth (FGF), Notch, transforming growth factor b/bone morphogenetic protein
(TGF-b/BMP) and sonic hedgehog signaling (SHH) cascades [123,124]. All these path-
ways promote bone remodeling, inducing MSC differentiation into mature OBs. Several
works have demonstrated that WNT/β-catenin signaling is involved in microenviron-
mental transformation in PMF [125]. Moreover, the SHH pathway has been found to be
upregulated in PMF, suggesting a potential interplay with WNT/β-catenin in mediating
osteosclerotic mechanisms [126]. Recently, Yachoui and collaborators highlighted the role
of endothelin-1 (ET1), a potent vasoconstrictor, as a key mediator of osteoblastic bone
metastases by stimulating OB proliferation and new bone formation. The anabolic action of
ET1 occurs through the activation of the WNT signaling pathway, reducing the expression
of both DKK1 and SOST (inhibitors of canonical WNT signaling) and inducing the forma-
tion of new bone. These authors also demonstrated that PMF patients showed increased
ET1 signaling, suggesting that it could be responsible for the osteosclerosis that developed
with advanced myelofibrosis [127].
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affecting bone formation and bone resorption homeostasis. 
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6. Conclusions

PMF is a myeloproliferative syndrome with a very complex clinical background,
characterized by general bone marrow failure with impaired hematopoiesis followed by
extramedullary hematopoiesis, splenomegaly and progressive bone deposition replacing
the fibrotic areas. Bone tissue deposition remains one of the mechanisms, together with
fibrosis, associated with unavoidable progression. Although several mechanisms of PMF
bone damage remain unknown, the involvement of many biomarkers and cell lineages
constitutively present in the bone marrow microenvironment has been confirmed. As-
suming that the physiological state of bone marrow is based on the continuous balance
between the hematopoietic niche and bone remodeling, it is necessary to evaluate the
most important factors involved in bone impairment and osteosclerosis. In particular,
we summarized the central role of megakaryocytes and their alterations associated with
the release of a plethora of cytokines and chemokines. Each of them represents a relevant
factor, the activity of which seems to be absolutely interconnected with each bone marrow
cell population, creating a network of impaired signaling that contributes to the overall
imbalance of the bone marrow system. In this complex system, each cell line, associated
with a specific panel of cytokines and signals, contributes to bone alterations and modifies
the physiological functions, affecting the fine balance between OBs and OCs and, in turn,
affecting bone formation and bone resorption homeostasis.
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