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Nontrivial gapless electronic states at the stacking faults of weak topological insulators
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Lattice defects such as stacking faults may obscure electronic topological features of real materials. In fact,
defects are a source of disorder that can enhance the density of states and conductivity of the bulk of the
system and they break crystal symmetries that can protect the topological states. On the other hand, in recent
years, it has been shown that lattice defects can act as a source of nontrivial topology. Motivated by recent
experiments on three-dimensional (3D) topological systems such as Bi2TeI and Bi14Rh3I9, we examine the effect
of stacking faults on the electronic properties of weak topological insulators (WTIs). Working with a simple
model consisting of a 3D WTI formed by weakly-coupled two-dimensional (2D) topological layers separated
by trivial spacers, we find that 2D stacking faults can carry their own, topologically nontrivial gapless states.
Depending on the WTI properties, as well as the way in which the stacking fault is realized, the latter can
form a topologically protected 2D semimetal, but also a 2D topological insulator, which is embedded in the
higher-dimensional WTI bulk. This suggests the possibility of using stacking faults in real materials as a source
of topologically nontrivial, symmetry-protected conducting states.

DOI: 10.1103/PhysRevB.106.094105

I. INTRODUCTION

Topological phases hosting the quantum Hall effect [1,2] or
the quantum spin-Hall effect (QSHE) [3–6] are characterized
by an insulating bulk and gapless, topologically-protected
boundary states. It is possible to classify different topological
phases depending on the symmetries protecting these bound-
ary states and the topology of the bulk Hamiltonian [7,8]. In a
so-called strong topological insulator, only local symmetries
(chiral, time-reversal, or particle-hole symmetry) are required
to protect the edge states [9]. In recent years, it was found
out that some types of topological insulators, such as weak
topological insulators (WTIs) [10–12], higher-order topolog-
ical insulators [13,14], and topological crystalline insulators
[15–17] have boundary states protected by lattice symmetries
[18], in addition to the local ones.

The presence of defects in topological insulators can be
detrimental to the experimental detection of their topological
properties [19]. Point-like impurities, for instance, can in-
crease both the the density of states as well as the conductivity
of the otherwise insulating bulk of the material. This can
make it difficult to separate bulk and boundary contributions
in transport. Furthermore, defects break lattice symmetries,
which means they may be doubly detrimental for the exper-
imental detection of the topological properties of materials,
which rely on these lattice symmetries to protect the conduct-
ing states.

In spite of this, lattice defects can carry topologically non-
trivial states in and of themselves [20]. This has been shown
to occur for a variety of so-called “topological defects”, such
as full dislocations [20–24] and disclinations [25,26], which
break lattice symmetries only locally and for this reason are
locally undetectable far from their core. The resulting classi-
fication of topological defects now includes those present in
strong and weak topological insulators [27–30], as well as in
topological crystalline phases [25,26,31,32] and higher-order
topological insulators [33,34].

In contrast to topological defects, which are by now well
understood, nontopological defects, which produce large-
scale, visible distortions of the lattice, have only recently
begun drawing attention. Partial dislocations, which lead to
the formation of stacking faults, have been shown to host
topologically protected modes in higher-order topological
insulators [33,35]. Even when the bulk of the material it-
self is trivial, it has been shown that stacking faults can
form lower-dimensional topologically nontrivial subsystems.
In such cases, the stacking faults present in the otherwise
trivial bulk have been dubbed “embedded” [36,37] topological
insulators and semimetals.

In this paper, we focus instead on weak topological in-
sulators, which have recently been experimentally realized
in the Bi2TeI [38] and Bi14Rh3I9 [39] material families. In
Bi14Rh3I9, the nontrivial layer is a ([Bi4Rh]3I)2+ honeycomb

2469-9950/2022/106(9)/094105(8) 094105-1 ©2022 American Physical Society

https://orcid.org/0000-0002-7398-611X
https://orcid.org/0000-0003-2900-9212
https://orcid.org/0000-0002-0601-824X
https://orcid.org/0000-0003-2687-9503
https://orcid.org/0000-0001-6590-1393
https://orcid.org/0000-0003-2249-039X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.094105&domain=pdf&date_stamp=2022-09-22
https://doi.org/10.1103/PhysRevB.106.094105


GABRIELE NASELLI et al. PHYSICAL REVIEW B 106, 094105 (2022)

lattice, which is topologically equivalent to graphene [40], and
the spacer is formed by two coupled, one-dimensional (BiI4)−
chains. There is one spacer fragment per honeycomb QSHE
entity. In Bi2TeI, the QSHE is hosted by bismuth bilayers Bi2

[41,42]. If interlayer coupling is disregarded in this system,
the QSHE bismuth bilayers are separated by two consecutive
BiTeI spacer layers that are topologically trivial. In the real
Bi2TeI material, a topological band inversion is realized via
interlayer interaction between the Bi2 and BiTeI layers that
results in the formation of QSHE sandwiches BiTeI · Bi2 ·
BiTeI [38]. This coupling is further strengthened when the
Bi2-to-BiTeI layer ratio reaches 1:1 in Bi3TeI, which shows an
electronic spectrum of a topological metal [43]. Interestingly,
the chemical composition (bromine for iodine substitution)
and the number of spacer layers (one or two) per Bi2 QSHE
layer can be controlled by crystal growth parameters [43,44].
Here, we model these systems as weakly-coupled stackings of
QSHE layers and a varying number of trivial spacers.

Given the recent advances in the growth and control
of tailor-made topological materials, we examine the phe-
nomenology of stacking faults in WTIs from a theoretical
point of view. These defects break the lattice translation
symmetry, which is required to protect the WTI phase.
Nevertheless, we show that stacking faults can carry their
own topologically nontrivial modes, forming either two-
dimensional (2D) semimetal phases or 2D QSHE phases,
which are embedded within the 3D bulk of the WTI. Which
type of topology is realized depends on the properties of the
stacking fault itself, namely on the fractional lattice translation
used to realize it, and it also depends on the number of spacer
layers in the parent WTI.

In what follows, we start by introducing a tight-binding
model to describe the topological properties of the WTIs with-
out a stacking fault (Sec. II). We explain then how to construct
a stacking fault in our model and in which cases it is possible
to have topological states at the stacking fault plane using a
heuristic argument (Sec. III). In Sec. IV, we solve numerically
the tight-binding model in the presence of a stacking fault in
WTIs with different numbers of spacer layers, showing that
the numerical results support our initial argument and that it is
possible to obtain embedded 2D semimetals and topological
insulators at the defect. We conclude and discuss directions
for future work in Sec. V.

II. WEAK TOPOLOGICAL INSULATOR MODEL

Throughout this paper, we will work with a WTI tight-
binding system consisting of a 3D stack of weakly-coupled,
2D QSHE layers separated by trivial spacers. Each of the
2D layers is a honeycomb lattice, with sublattices labeled
A and B, and the stacking is of the A − A type. We choose
the lattice constant such as to obtain Bravais vectors ax =
(1, 0, 0), ay = (1/2,

√
3/2, 0), and az = (0, 0, 1), the latter

vector corresponding to the stacking direction. Thus, unit
cells are labeled by position vectors r = nxax + nyay + nzaz,
nx,y,z ∈ Z.

To model the 2D topological layers, we use the well-known
QSHE phase realized by the Kane-Mele model [3,4]. The
real-space Hamiltonian of each 2D layer (thus at constant nz)

reads

HKM =
∑
N.N.

t c†
r,i,αcr′, j,βs0

α,β

+
∑

N.N.N.

it2 νr,r′, jc
†
r, j,αcr′, j,βsz

α,β, (1)

where c†
r, j,α creates an electron with spin α =↑,↓ on the

j = A, B sublattice of the unit cell at position r. The Pauli
matrices s0,x,y,z encode the spin degree of freedom, whereas
N.N. and N.N.N. denote nearest- and next-nearest-neighbor
sites in the plane of the honeycomb lattice. In the Kane-Mele
model, the next-nearest-neighbor term t2 opens a gap in the
graphene-like spectrum of the model, leading to a topological
insulating phase [3,4]. The coefficient νr,r′, j is either +1 or
−1 depending on whether hoppings go in the clockwise or
counter-clockwise direction along a hexagonal plaquette of
the honeycomb lattice.

To model the trivial spacers in the WTI, we use a honey-
comb lattice with only nearest-neighbor hoppings and add an
on-site term, which has an opposite sign for sites belonging
to different sublattices. Similar to the Kane-Mele term, this
gaps out the Dirac cones at the corners of the Brillouin zone
[3,4,45], but it produces a trivial system. The 2D Hamiltonian
of each spacer, again at constant nz, is

HI =
∑
N.N.

t c†
r,i,αcr′, j,βs0

α,β +
∑
r, j,α

mλ j c
†
r, j,αcr, j,α, (2)

where m is a constant, λ j = ±1 for the A and B sublattice,
respectively, and the first sum runs, as before, over the nearest-
neighbor sites within a given layer.

Using the two ingredients above, we can now construct a
tight-binding model for a WTI whose unit cell is composed
of a single QSHE layer and a single spacer [46]. Thus, the
in-plane Hamiltonian takes the form of Eq. (1) whenever nz is
even, and the form of Eq. (2) whenever nz is odd. We add spin-
dependent hoppings in the az direction between the layers, in
such a way that the edge states moving in opposite directions
in adjacent topological layers will couple with each other. The
interlayer coupling term takes the form

Hz =
∑

r, j,α,β

itz c†
r, j,αcr+az, j,βsz

α,β

+ itz2c†
r, j,αcr+2az, j,βsy

α,β + H.c. (3)

Thus, the nearest-neighbor hoppings in the az direction couple
the QSHE layers to the neighboring spacers with a strength
tz . We choose a diagonal term in the spin degree of free-
dom sz, similar to the one in the Kane-Mele model. The
second-neighbor hopping with strength tz2 � tz , on the other
hand, couples the QSHE edge modes in adjacent unit cells,
leading to a larger dispersion of the resulting WTI surface
states. The second-neighbor hopping contains a term, which
is off-diagonal in spin space sy, since in the Kane-Mele model
counter-propagating modes have opposite spin.

We consider an infinite slab geometry, in which the WTI
is infinite along the ax and az direction, but contains a finite
number Ly of unit cells in the ay direction. We set the nearest-
neighbor hopping to t = 1 and express all other energy scales
relative to it. Labeling the dimensionless momentum parallel
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FIG. 1. Band structure of the WTI at kz = π (a) and at kx = π

(b). We use a slab geometry, infinite along ax and az, but consisting
of Ly = 30 unit cells in the ay direction. The Hamiltonian parameters
are t2 = 1, m = 2, tz = 0.5, and tz2 = 0.2 in units of t . Bulk states are
shown in black, whereas states localized at opposite surfaces of the
slab are shown in red and blue.

to the layers as kx and the one in the stacking direction as kz,
we plot the band structure of the system in Fig. 1. All of our
numerical results are obtained using the Kwant code [47], and
our code is available on Zenodo at [48].

As expected, two Dirac cones form on each of the two
surfaces of the WTI slab, at (kx, kz ) = (π, 0) and (π, π ),
respectively. They connect the valence and conduction bands,
as visible in Fig. 1(a). Notice, however, that at momenta
(π, π ) the Dirac points on opposite surfaces (shown in red
and blue) have different energies. This is a consequence of
the orientation of the WTI surface, as well as of the staggered
on-site potential used to model the spacer layers in Eq. (2).
Since the slab is chosen to be finite in the ay direction, each
of the 2D layers composing it has a zigzag termination. Thus,
on one surface the sites of the spacers belong to the A sub-
lattice and experience a positive on-site potential, whereas on
the opposite surface all sites belong to the B sublattice and
experience a negative on-site potential.

Finally, based on the same construction as above, we also
consider a WTI with a unit cell composed of one topological
layer and two spacer layers. Their Hamiltonians are, as before,
given by Eqs. (1) and (2), with the difference that we use the
Kane-Mele model whenever nz is divisible by three and use
the trivial Hamiltonian for all other values of nz. To ensure
a good coupling between the edge modes of QSHE layers in
adjacent unit cells, we modify the interlayer coupling Hamil-
tonian of Eq. (3) by adding a third-nearest-neighbor hopping.
The latter has the same spin structure sy, and a magnitude
tz3 � tz2. The resulting, interlayer coupling Hamiltonian is

H̃z =
∑

r, j,α,β

itz c†
r, j,αcr+az, j,βsz

α,β

+ itz2c†
r, j,αcr+2az, j,βsz

α,β

+ itz3c†
r, j,αcr+3az, j,βsy

α,β + H.c. (4)

For the two-spacer WTI, the band structure in a slab ge-
ometry (not shown) is qualitatively similar to that of Fig. 1.
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FIG. 2. Schematic of the stacking fault construction in the single-
spacer WTI (a) and in the double-spacer WTI (b). In both cases,
the unit cell of the slab is marked in red, topological layers are
labeled with TI, and trivial layers with I. The topological modes of
the nontrivial layers on the left (l) and right (r) side of the planar
defect are coupled to each other with a strength v within a unit cell
and w between unit cells. We predict that the stacking fault properties
will be governed by the phenomenology of the SSH model (c). Thus,
the stacking fault will be gapless when v = w, as in (a), and gapped
when v �= w, as in (b).

Two Dirac cones form on each surface, at the same points of
the surface Brillouin zone, and are displaced in energy by the
staggered on-site potentials of the spacers.

III. STACKING FAULT CONSTRUCTION AND
PHENOMENOLOGY

We create a stacking fault in the WTI by using the standard
“cut and glue” procedure [21]. First, we cut the WTI slab into
two halves along its finite direction ay. One of these halves
is then shifted along the stacking direction az by a fraction
of the unit cell. For the single-spacer WTI, we shift by one
layer, corresponding to half of the unit cell, whereas for the
double-spacer WTI the shift is by either one or two layers,
corresponding to 1

3 or 2
3 of a unit cell. Finally, the two halves

are glued back together using the nearest-neighbor hoppings t
that appear both in Eqs. (1) and (2). Notice that after the stack-
ing fault has been created, each topological layer on one side
of the resulting planar defect will have a trivial spacer layer at
the same nz coordinate on the other side. This construction is
shown schematically in Figs. 2(a) and 2(b) for the single- and
double-spacer WTI, respectively.

If the two halves of the system are disconnected from each
other (thus, before gluing), each will host two Dirac cones on
its surface. When these gapless surfaces are reconnected, the
two pairs of Dirac cones on either side will couple, producing
either a gapped system, or a gapless one. We predict which
of these scenarios will occur based on an analogy to the well-
known Su-Schrieffer-Heeger (SSH) model [49], sketched in
Fig. 2(c). To this end, we imagine the stacking fault to be
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FIG. 3. Same as Fig. 2(b), but for a slab, which is finite in the
az direction, such that it has top and bottom surfaces in addition to
the ones in the ay direction. The red ellipses show the “TI dimers”
formed by the unequal coupling strength between edge modes of
adjacent topological layers, in analogy to the SSH model. For a
stacking fault as in (a), we expect that the planar defect will be
gapped and trivial. For a termination as in (b), however, we expect to
observe gapless topological modes at the boundaries of the gapped
stacking fault (shown in blue). These are analogous to the edge states
of the nontrivial SSH model.

made up of the edge modes of the individual QSHE layers on
either side of the defect, which are coupled to each other with
varying strength depending on the distance between them. The
largest of these coupling terms, corresponding to the shortest
distances, are labeled as v and w in Fig. 2.

Since the QSHE boundary modes are characterized by a
Z2 topological classification, the states in one layer may be
gapped out when coupled to those of a nearby layer. Similar to
the sites of the SSH chain, the QSHE edge modes on nearby
layers may form dimers when the coupling between them is
staggered in the az direction, as shown in Fig. 2(b). In this
case, we expect the stacking fault to be gapped, but its bound-
aries should host topologically nontrivial states, depending on
whether it is terminated with a weak or a strong coupling term
(see Fig. 3). In contrast, when the boundary modes of adja-
cent topological layers are equally spaced [v = w, as shown
in Fig. 2(a)], then no dimers are formed, and we expect to
observe a gapless stacking fault. This behavior is again similar
to that of the SSH model, which is at a gapless topological
phase transition point in the absence of dimerization.

IV. STACKING FAULT RESULTS

A. Single spacer

We begin by considering a stacking fault in the single-
spacer WTI model, which is formed between the unit cells
at ny = 19 and ny = 20 in a slab consisting of Ly = 40 unit
cells in the ay direction (in our convention the first unit cell
is at ny = 0). Before gluing the two halves of the system
back together, the two adjacent surfaces host a total of four
Dirac cones, as discussed above. After including the nearest-
neighbor hoppings to reconnect the two halves, we find that

0 π 2π
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−2

−1

0

1

2

E −
+

+
−

(a) kz = 0

0 10 20 30 40
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P
=

| Ψ
(y

)|2

(b) (kx, kz) = (π, 0)

FIG. 4. Band structure of the single-spacer WTI with a stacking
fault (a), computed at kz = 0. Bulk states are shown in dark green,
states localized at the surfaces of the slab are shown in purple,
whereas modes at the stacking fault are shown in green. The ±
indicate the eigenvalues of the mirror symmetry operator M, ±i,
associated with the topological bands. Since the topological bands
have different mirror eigenvalue, they can not gap out unless this
symmetry is broken. In (b) we show the real space probability dis-
tribution of the in-gap modes at (kx, kz ) = (π, 0). The original WTI
surface modes are shown in red and blue, whereas the modes pinned
to the stacking fault are shown in green. We have used t2 = 1, m = 2,
tz = 0.5, tz2 = 0.2 in units of t . The WTI slab consists of Ly = 40
unit cells, and the stacking fault is created between the unit cells at
ny = 19 and ny = 20.

the two Dirac cones at (kx, kz ) = (π, 0) are still present at the
planar defect, while the other two Dirac cones at (kx, kz ) =
(π, π ) gap out.

We show in Fig. 4 the band structure of the system (a) at
kz = 0, as well as the real-space probability distribution of the
in-gap modes at the Dirac cone momenta (b). Each surface of
the WTI slab still shows gapless modes, as expected, which
are colored in red and blue, as in Fig. 1. In addition, however,
there now appear gapless states localized at the stacking fault
plane, colored green, which are 2D gapless states embedded
in the middle of the gapped, 3D WTI bulk.

The analogy to the 1D SSH model proves to be cor-
rect in predicting the gapless nature of the stacking fault
in the single-spacer WTI. This simple heuristic argument,
however, fails to accurately describe the robustness of the
stacking fault modes. In the SSH chain, while the absence
of dimerization does produce a gapless phase, the latter is
a fine-tuned point in the parameter space, one at which a
topological phase transition takes place. In contrast, as we
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show in the following, the 2D gapless phase of the planar de-
fect is robust against perturbations, being protected by mirror
symmetry.

Consider a WTI slab in the presence of a stacking fault,
infinite along ax,z but having a finite width along ay, as shown
in Fig. 2(a). The unit cell of the full system (shown in red)
is composed of four building blocks: the topological layers

on the left and right of the defect, which we label HKM,l and
HKM,r , and the trivial layers on the left and right, labeled
HI,l and HI,r . We write the full slab Hamiltonian as Hfull =
c†Hfullc, with c a column vector formed by all annihilation
operators of the system and Hfull the Hamiltonian matrix. In
the grading of the four blocks mentioned above this matrix
takes the form

Hfull =

⎛
⎜⎜⎜⎝

HKM,l + Tv2 sin(kz ) Ts Tv (1 − e−ikz ) 0
T †

s HI,r + Tv2 sin(kz ) 0 Tv (1 − e−ikz )
T †

v (1 − eikz ) 0 HI,l + Tv2 sin(kz ) Ts

0 T †
v (1 − eikz ) T †

s HKM,r + Tv2 sin(kz )

⎞
⎟⎟⎟⎠. (5)

Here we have considered that the stacking fault is posi-
tioned in the middle of the slab, such that HKM,l/r and HI,l/r are
matrices of equal size, with thicker slabs leading to larger ma-
trices. The term, Ts is a Hamiltonian block containing all of
the nearest-neighbor hopping terms across the stacking fault,
the ones, which serve to glue the two halves of the system back
together. HKM,l/r , HI,l/r , as well as Ts depend on the momen-
tum kx but are independent of kz, since they only encode the
on-site and hopping terms within the trivial and topological
layers, as well as the in-plane hoppings between them.

All of the hoppings along the stacking direction az are in-
cluded in the term Tv (1 − e−ikz ) appearing in the off-diagonal
blocks of Eq. (5) and in the diagonal term Tv2 sin(kz ). Part
of the off-diagonal term includes the vertical hoppings con-
necting the trivial and topological layers within the same
unit cell, and is thus momentum independent, whereas the
second part contains the hoppings connecting layers across
the unit-cell boundary, hence the factor e−ikz . These vertical
hoppings are given by the interlayer coupling Hamiltonian
of Eq. (3), meaning that Tv = itz sz ⊗ I, with I an iden-
tity matrix of the same size as the number of sites in
HKM,l/r and HI,l/r . It follows that Tv = −T †

v , which ex-

plains the relative minus sign. The diagonal term Tv2 =
2tz2sy ⊗ I contains the next-nearest-neighbor hoppings con-
necting the TI (and the trivial) layers to each other. This term
obeys szTv2sz = −Tv2

.
Using the form of Eq. (5) and the properties of Tv and Tv2,

it becomes apparent that the slab Hamiltonian obeys a mirror
symmetry. The mirror plane is perpendicular to the stacking
direction, thus mapping kz → −kz, such that

M†(kz )Hfull (kz )M(kz ) = Hfull (−kz ). (6)

The mirror operator, written in the grading of Eq. (5), is a
block-diagonal matrix composed of four blocks: M = isz ⊗
diag(I, I,−Ieikz ,−Ieikz ). Note that M is a spinful mirror
symmetry, which commutes with the time-reversal symmetry
operator, T = isy ⊗ IfullK, where Ifull is an identity matrix
acting on all of the sites of the slab’s unit cell and K is complex
conjugation.

The mirror symmetry protects the Dirac cones at kz = 0
but not the ones at kz = π . On the mirror-invariant plane of
the Brillouin zone, kz = 0, the trivial and topological layers
are effectively decoupled in the vertical direction. The states

of HKM,l and HI,r are associated to a mirror eigenvalue +i,
whereas those of HKM,r , HI,l are orthogonal to them, having
a mirror eigenvalue −i (as shown in Fig. 1). Mirror symme-
try thus prevents the topological modes of the QSHE layers
on either side of the stacking fault from coupling to each
other, guaranteeing the formation of gapless phase at the
planar defect. The latter forms an embedded, 2D topologi-
cal semimetal protected by mirror symmetry. In contrast, at
kz = π , the QSHE modes on the left and right of the stacking
fault have the same mirror eigenvalues, and are therefore not
protected.

B. Double spacer

We now consider a stacking fault in the two-spacer WTI.
In this case we shift half of the system in the az direction by
either 1

3 or 2
3 of the unit cell. When the system has an infinite

number of layers, these two scenarios differ only in the choice

0 π 2π

kx
−2

−1

0

1

2

E

kz = 0

FIG. 5. Band structure of the double-spacer WTI with a stacking
fault, computed at kz = 0. Bulk states are shown in dark green, states
localized at the surfaces of the slab are shown in purple, whereas
modes at the stacking fault are shown in green. In this case there is no
mirror symmetry protecting the states at the stacking fault and they
gap out. The states at the external surface are still present because
they are protected by the time-reversal and translation symmetry
along the stacking direction. We have used the interlayer coupling
Hamiltonian in Eq. (7) with t2 = 1, m = 2, tz = 0.8, tz2 = 0.2, tz3 =
0.2 in units of t . The WTI slab consists of Ly = 40 unit cells, and
the stacking fault is created between the unit cells at ny = 19 and
ny = 20.
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(a) Trivial phase v > w.
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0.5
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FIG. 6. Spectra of the WTI with two spacers per unit cell with
a finite number of layers. Both spectra are obtained adding periodic
boundary conditions in the ay direction. In (a) the defect begins and
ends with dimers of TI layers and the corresponding SSH chain
is in the trivial phase with v > w. In (b) the SSH chain is in the
topological phase v < w and the gapless states at the boundaries of
the two defects are clearly visible. The red (blue) bands are asso-
ciated with states localized at the top (bottom) side of the stacking
fault at ny = 19 and the bottom (top) side of the one at ny = 39,
see Fig. 7. Both plots are obtained for t2 = 1, m = 2, tz1 = 0.8,
tz2 = 0.2 , tz3 = 0.2 in units of t . The WTI has Ly = 40 and Lz = 30.

of the unit cell. In both cases, the corresponding infinite SSH
chain is in a insulating phase and the spectrum of the system
should be gapped.

We have created, as before, two identical copies of the
system shifted with respect to each other in the az by 1

3 of
the unit cell. In this way every TI layer on one side of the
stacking fault has a trivial layer on the opposite side. The two
sides are glued together, as before, using the nearest-neighbor
hopping t .

In this case, the helical modes at the stacking fault develop
a gap at both the Dirac points at kz = 0, π , and the system has
no mirror symmetry. We obtain an embedded SSH-like system
with v �= w at the defect, as we expected.

To distinguish between the topological and trivial phase
of the SSH model, we study a system with a finite number
of layers to detect the boundary states at the beginning and
at the end of the stacking fault. In a system with a finite
number of layers we will have more bands near the the Fermi
level E = 0. In order to distinguish the bands associated with
the topological states at the boundaries of the stacking fault,
is convenient to make the gap larger. We achieve this by
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FIG. 7. Probability distribution of the gapless states P(x, z) =
| 〈x, z|�〉 |2 as a function of the position (y, z) in the unit cell. The
system has Ly = 40 and Lz = 30, and two stacking faults are created,
one between the unit cells at ny = 19 and ny = 20 and a second one
between ny = 39 and ny = 0, adding periodic boundary conditions
in the y direction. The stacking faults are highlighted in green in
the plot. The topological states are localized at the decoupled TI
layers at the edges of the two stacking faults, as expected. The
states on different decoupled edge TIs have different energies. The
top figure corresponds to blue bands in Fig. 6 and the bottom one
corresponds to the red ones. Both plots are obtained for t2 = 1,
m = 2, tz1 = 0.8, tz2 = 0.2 , tz3 = 0.2 in units of t .

replacing the Hamiltonian in Eq. (4) with

H̃z =
∑

r, j,α,β

itz c†
r, j,αcr+az, j,βsz

α,βλ j

+ itz2c†
r, j,αcr+2az, j,βsz

α,βλ j

+ itz3c†
r, j,αcr+3az, j,β (sy

α,β + sz
α,βλ j )/

√
2 + H.c., (7)

where λ j = ±1 for sites that belong to the A or B sublattice
respectively. The new term, sz

α,βλ j , couples equal-spin compo-
nents of the surface states. Components with the same spin of
helical modes at opposite sides of the defect will have opposite
velocity, so this new term will produce a bigger gap at the
stacking fault, see Fig. 5.

C. Topological edge states at the stacking fault

In order to check the presence of topological states at the
defect in the tight-binding model, we build a system with a
finite height Lz. To better visualize the stacking fault modes,
we add periodic boundary conditions in the ay direction, such
that the system contains two stacking faults. In this way we
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eliminate the surface modes and obtain only the spectrum of
the two defects.

The SSH chain associated with the WTI with two trivial
spacers will be in the trivial (v > w) or in the topological
(v < w) phase depending on the boundary conditions at the
stacking fault. If the defect begins and ends with a couple of
dimerized TI layers, we do not find any gapless states (see
Fig. 6), similar to the infinite case.

For a system with two weakly-coupled TI layers at the
boundary of the defect, the corresponding SSH chain is in the
topological phase. In this case, we find topological gapless
bands located at the boundaries of the two stacking faults, see
Fig. 6. We confirm their location by plotting the real-space
probability distribution, P(x, z) = | 〈x, z|�〉 |2, as a function
of the position (y, z) in the unit cell in Fig. 7.

V. CONCLUSIONS

In order to explore the effect of stacking faults in weak
topological insulators like Bi2TeI and Bi14Rh3I9, we have
used a tight-binding model composed of stacked honeycomb
QSHE layers. We have then used a heuristic argument to draw
an analogy between the physics of the topological states at the
defect and an SSH chain.

The stacking fault in a WTI with one trivial spacer per unit
cell behaves like an SSH at the gap closing point. Thus, it
forms an embedded topological semimetal, which we have
shown to be protected by mirror symmetry. In contrast, a WTI
with two insulating spacers per unit cell behaves like an SSH

chain in the topological or trivial phase, depending whether or
not it has weakly-coupled TI layers at the edges of the stacking
fault. In the latter case, an embedded topological insulator
is formed: The stacking fault hosts 1D gapless modes at its
boundaries.

This means that it is in principle possible to obtain embed-
ded topological insulators or semimetals inside the bulk of a
WTI in the presence of a stacking fault. In this case the defect
is not destroying the topological properties of the system, but
is a source of new, robust states.

Our toy model is only qualitative in nature. A quanti-
tative prediction of the real properties of stacking faults in
Bi2TeI and Bi14Rh3I9 would require more accurate numerical
methods, such as density functional theory. Nevertheless, the
analogy to the SSH model may still be used to guide this
endeavor. For instance, while stacking faults obtained by a
fractional translation have not been reported to date in these
materials, it has been shown that Bi2TeI forms inverted twin
domains [43,44]. Since its unit cell is composed of one QSHE
layer and two spacers, we conjecture that these stacking faults
will host protected gapless modes at their boundaries when-
ever they are terminated by weakly-coupled TI layers.

ACKNOWLEDGMENTS

We thank U. Nitzsche for technical assistance. We ac-
knowledge financial support from the DFG through the
Würzburg-Dresden Cluster of Excellence on Complexity and
Topology in Quantum Matter–ct.qmat (EXC 2147, Project ID
390858490).

[1] K. v. Klitzing, G. Dorda, and M. Pepper, New Method for High-
Accuracy Determination of the Fine-Structure Constant Based
on Quantized Hall Resistance, Phys. Rev. Lett. 45, 494 (1980).

[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Quantized Hall Conductance in a Two-Dimensional Peri-
odic Potential, Phys. Rev. Lett. 49, 405 (1982).

[3] C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in
Graphene, Phys. Rev. Lett. 95, 226801 (2005).

[4] C. L. Kane and E. J. Mele, Z2 Topological Order and the Quan-
tum Spin Hall Effect, Phys. Rev. Lett. 95, 146802 (2005).

[5] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Quantum spin
Hall effect and topological phase transition in HgTe quantum
wells, Science 314, 1757 (2006).

[6] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann,
L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Quantum spin
Hall insulator state in HgTe quantum wells, Science 318, 766
(2007).

[7] A. Kitaev, V. Lebedev, and M. Feigel’man, Periodic table for
topological insulators and superconductors, AIP Conf. Proc.
1134, 22 (2009).

[8] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig,
Topological insulators and superconductors: Tenfold way and
dimensional hierarchy, New J. Phys. 12, 065010 (2010).

[9] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[10] L. Fu, C. L. Kane, and E. J. Mele, Topological Insulators in
Three Dimensions, Phys. Rev. Lett. 98, 106803 (2007).

[11] J. E. Moore and L. Balents, Topological invariants of time-
reversal-invariant band structures, Phys. Rev. B 75, 121306(R)
(2007).

[12] R. Roy, Topological phases and the quantum spin Hall effect in
three dimensions, Phys. Rev. B 79, 195322 (2009).

[13] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized
electric multipole insulators, Science 357, 61 (2017).

[14] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P.
Parkin, B. A. Bernevig, and T. Neupert, Higher-order topologi-
cal insulators, Sci. Adv. 4, eaat0346 (2018).

[15] L. Fu, Topological Crystalline Insulators, Phys. Rev. Lett. 106,
106802 (2011).

[16] T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu,
Topological crystalline insulators in the SnTe material class,
Nat. Commun. 3, 982 (2012).

[17] Y. Ando and L. Fu, Topological crystalline insulators and topo-
logical superconductors: From concepts to materials, Annu.
Rev. Condens. Matter Phys. 6, 361 (2015).

[18] Z. Zhang, R.-W. Zhang, X. Li, K. Koepernik, Y. Yao, and H.
Zhang, High-throughput screening and automated processing
toward novel topological insulators, J. Phys. Chem. Lett. 9,
6224 (2018).

[19] I. C. Fulga, B. van Heck, J. M. Edge, and A. R. Akhmerov, Sta-
tistical topological insulators, Phys. Rev. B 89, 155424 (2014).

[20] J. C. Y. Teo and C. L. Kane, Topological defects and gapless
modes in insulators and superconductors, Phys. Rev. B 82,
115120 (2010).

094105-7

https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1148047
https://doi.org/10.1063/1.3149495
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevB.75.121306
https://doi.org/10.1103/PhysRevB.79.195322
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1038/ncomms1969
https://doi.org/10.1146/annurev-conmatphys-031214-014501
https://doi.org/10.1021/acs.jpclett.8b02800
https://doi.org/10.1103/PhysRevB.89.155424
https://doi.org/10.1103/PhysRevB.82.115120


GABRIELE NASELLI et al. PHYSICAL REVIEW B 106, 094105 (2022)

[21] Y. Ran, Y. Zhang, and A. Vishwanath, One-dimensional topo-
logically protected modes in topological insulators with lattice
dislocations, Nat. Phys. 5, 298 (2009).

[22] J. C. Teo and T. L. Hughes, Topological defects in symmetry-
protected topological phases, Annu. Rev. Condens. Matter
Phys. 8, 211 (2017).
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