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Preface 

 

 

 

The process of automatic extraction, recognition, description and 

classification of patterns from huge amount of data plays an important 

role in modern volcano monitoring techniques. In particular, the ability of 

certain systems to recognize different volcano status can help the 

researchers to better understand the complex dynamics underlying the 

geophysical system. The geophysical data are automatically measured and 

recorded by geophysical instruments. Their interpretation is very 

important for the investigation of earth’s behavior.  

The fundamental task of volcano monitoring is to follow volcanic activity 

and promptly recognize any changes. To achieve such goals, different 

geophysical techniques (i.e. seismology, ground deformation, remote 

sensing, magnetic and electromagnetic studies, gravimetric) are used to 

obtain precise measurements of the variations induced by an evolving 

magmatic system. To proper exploit the wealth of such heterogeneous 

data, algorithms and techniques of data mining are fundamental tools. 

This thesis can be considered a detailed report about the application of the 

data mining discipline in the geophysical area. After introducing the basic 

concepts and the most important techniques constituting the state-of-art in 

the data mining field, we will apply several methods able to reach 

important results about the extraction of unknown recurrent patterns in 

seismic and infrasonic signals, and we will show the implementation of 

systems representing efficient tools for the monitoring purpose. 

The thesis is organized as follows. Chapter 1 briefly introduces to the data 

mining discipline; Chapter 2 discusses the similarity matching problem, 

explaining the importance of using efficient data structures to perform 

search, and the choice of adequate distance measures. It also lists the most 

common similarity/distance measures used for data mining, devoting a 

deepening part for time series similarity. Chapter 3 reviews the state-of-art 

dimensionality reduction techniques for the summarization of time series 

in data mining. Chapter 4 provides some basic principles on supervised 

classification, while Chapter 5 analyzes main clustering methods, for the 

unsupervised classification task, together with some recent developments. 
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A broad range of data mining applications will be devoted in Chapter 6, 

where the classification and prediction tasks are applied on geophysical 

data. 
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Chapter 1 

 

Introduction 
 

 

 

Data mining has a very recent origin and has no single definition. Various 

definitions have been proposed:  

 

"Data mining is the search for relationships and global patterns that exist in large 

databases, but are ‘hidden’ among the vast amounts of data, such as a relationship 

between patient data and their medical diagnosis. These relationships represent 

valuable knowledge about the database and objects in the database and, if the 

database is a faithful mirror, of the real world registered by the database" 

(Holsheimer and Siebes, 1994). 

 

“Data mining is the exploration and analysis, by means of automatic and semi-

automatic methods, of large amounts of data in order to discover meaningful 

patterns and rules” (Berry et al., 1997). 

 

Data mining can be considered as the ‘art’ of knowledge extraction from 

huge amount of data. The term is often used as a synonym for Knowledge 

Discovery in Databases (KDD): 

 

"Knowledge discovery is the nontrivial extraction of implicit, previously 

unknown, and potentially useful information from data" (Frawley et al., 1992). 

 

It would be more accurate to speak of knowledge discovery when 

referring to the process of knowledge extraction, and data mining as a 

particular phase of this process, consisting in the application of specific 

algorithms for the identification of "patterns" (Fayyad et al., 1996).  

For example, in an industrial or operative domain, useful knowledge is 

hidden but relevant information. Today the main problem of analysts is to 

be capable to properly extract the wealth of information which is 

intrinsically present in the data. Starting from the Fayyad et al. (1996) 
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considerations, the extraction process consists of several phases, each of 

which brings its rate of information (Figure 1.1): selection from raw data; 

pre-processing; transformation; application of algorithms for patterns 

search (in this context a "pattern" means a structure, a model, or, in 

general, a synthetic representation of the data), followed by their 

interpretation and evaluation. The identified patterns can be considered, 

in turn, the starting point to speculate and to verify new relationships 

among phenomena. They also can be useful to make predictions on new 

data sets. 

 

 
 

Fig. 1.1. General schema of Knowledge Discovery in Database (KDD) process (redrawn 

from Fayyad et al., 1996). 

 

Data mining is a multidisciplinary field which borrows algorithms and 

techniques from many research areas such as: machine learning, statistics, 

neural networks, artificial intelligence, high performance computing 

technology, database technology, data visualization techniques. The main 

factors contributing to data mining progress are: the increasing of 

electronic data, the cheap data storage, and new techniques for analysis 

(machine learning, pattern recognition). 

Algorithms are pillars of data mining techniques, and have to guarantee 

the effectiveness and efficiency of analysis. Scalability is a fundamental 

property, because data mining deals with huge amounts of data, and 
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algorithms’ implementation must provide high speed computation, faster 

than manual data analysis. The execution time of a data mining algorithm 

must be at least predictable and acceptable according to the size of the 

analyzed database. Data mining algorithms have to adapt to the hardware 

advances, trying to properly exploit its potential, such as the computing 

on multiple processors (parallel or distributed computing), and then 

afford the problems inherent to the database size. 

Data mining is an interdisciplinary branch of the science which takes its 

origins in statistics. The reason behind the wide usage of data mining 

techniques relies on its simplicity (w.r.t. classical statistical methods), its 

scalability and its wide range application domains. In principle any kind 

of data can be analyzed with proper mining technique. However, data 

mining has similar limits to all statistical approaches, such as the GIGO 

(Garbage In, Garbage Out): if the input is “garbage”, then the output will be 

“garbage”. Thus, the optimal strategy is to use statistics and data mining 

as two complementary approaches. 

The data mining techniques can be divided into two broad categories: 

supervised and unsupervised learning techniques. 

The supervised learning aims to realize a computer system able to 

automatically solving a specific trained problem. In order to produce a 

generalized model for the problem, a supervised learning algorithm 

makes use of some examples, in particular: (i) it defines a set of input data 

I; (ii) it defines a range of output values O; (iii) and defines a function h 

that maps each input data to correct output value. Providing a large 

number of examples, the algorithm of supervised learning will be able to 

identify a new function h1 that will approximate the function h. Of course, 

the goodness of the algorithm depends on the dataset used in the training 

phase. In fact, it has to avoid the "overtraining" on input: a model is 

considered to be good if it is able to predict the output of never learned 

data, only with the knowledge provided by the input. It may happen in 

fact that the model specializes only on the recognition of the sample of the 

input data, producing the “overfitting” problem. Through the supervised 

learning, data mining is able to face problems concerning: (i) classification 

operations, where observations are "labeled" (or associated to a class) on 

the basis of well-known characteristics of the class; (ii) model estimation, 

such as to see whether the distribution of an observation follows a 
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statistical known model, such as the Gaussian distribution; (iii) attempt to 

identify future trends (prediction) of an observed variable or 

characteristic. 

The unsupervised learning builds models without apriori knowledge. 

Different from supervised learning, in the learning phase, the labels or the 

model of the examples are not provided. The algorithms are based on 

comparisons between data and the search for similarities and differences. 

In this contest can be realized: (i) operations of grouping (or clustering), by 

finding homogeneous groups that present characteristical regularities 

within them and differences among groups (clusters); (ii) association rules, 

which identify any associations between data. These last are widely 

applied in the transactional database to find relationships between 

products purchased together, as in the case of the market basket analysis, 

to implement marketing strategies, such as promotional offers, or the 

positioning of the products on the shelves. 

 

1.1 Typical data mining tasks 

 

Given a collection of objects, a database D, most of data mining research is 

related to the similarity matching problem, including the following tasks:  

 

 Indexing: given a query object Q, and a similarity/dissimilarity 

measure dist(o,p) defined for Dpo  , , it consists on building a data 

structure, allowing speed-up search of the nearest neighbor of Q in D. 

There are two ways to post a similarity query [3]: 

 k-nearest neighbors: dealing with the search of the set of first k 

objects D more similar to Q. 

 range query: finds the set DR  of objects that are within 

distance r from Q. 

 

 Clustering: consists of division of data into groups (clusters) of similar 

objects under some similarity/dissimilarity measure. The search for 

clusters is unsupervised. It is often complementary to the 

anomaly/outlier detection problem, which seeks for objects showing 

different attributes respect to the whole dataset.  
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 Classification: assigns unlabeled objects to predefined classes after a 

supervised learning process, based on classes properties. 

 

1.2 Time series data mining 

 

In the last years, there has been an increasing interest in methods dealing 

with time series data. It depended on the rapid growth of generated daily 

information from several areas, e.g., finance, computational biology, 

sensor networks, location-based services, etc. A time series is “a sequence X 

= (x1, x2, …, xm) of observed data over time”, where m is the number of 

observations. Tracking the behavior of a specific phenomenon/data in time 

can produce important information (Fig. 1.2). A large variety of real world 

applications, such as meteorology, geophysics and astrophysics, collect 

observations that can be represented as time series.  

 

 
 

Fig. 1.2. Examples of time series data relative to a) monsoon, b) sunspots, c) ECG 

(ElectroCardioGram), d) seismic signal. 
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Often in time series data mining these other two following tasks are 

relevant: 

 

 Summarization: given a raw time series Q of length m, makes a new 

time series representation Q’ lighter than Q (with length m’ < m) in 

term of space, that approximate Q fitness. This task is very important 

to achieve the best performances on previous tasks. 

 Prediction: finds a model for the sequence of observations, to check 

dependencies among them, and then predict a future value. While in 

the classification task an observation is assigned to a specific class, 

providing an output of categorical, the prediction task provides a 

specific observation value. It can be also used to replace missing values 

on data. 

 

1.3 Data mining on geophysics 

 

The geophysical data are automatically measured and recorded by 

geophysical instruments. Their interpretation is very important for the 

investigation of earth’s behavior. Generally, the amount of data is very 

large and relatively standard. It is suitable to be processed and be 

analyzed by data mining techniques. The analysis can be conducted on 

real time data, or on historical data.  

The former task is the most interesting type of analysis, because permits to 

monitor alert situations and to prevent most of human risks: this thesis 

focuses on volcano monitoring. The latter task often consists of extracting 

previously unknown recurrent patterns from available data, and 

constitutes a crucial step in geophysical time series analysis, because allow 

to increment the suitable amount of information for the monitoring task.  
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Chapter 2 
 

Fundamentals on similarity matching 
 

 

 

In data mining, several terms are used to refer to a single data into 

database: object, point, record, observation, item or tuple. In this chapter, we 

will use the term object to denote a single element of a dataset. In multi-

dimensional spaces, an object is described by a number of components or 

features, which we will refer as attributes. 

More formally, a dataset with N objects, each of which is described by m 

attributes, is denoted by D = {x1, x2, . . . , xN}, where xi = (xi(1), xi(2), . . . , xi(m)) is 

a vector denoting the ith object and xi(j) is a value denoting the jth attribute 

of xi. The number of attributes m indicates the dimensionality of the data 

set. The general representation of such data is a matrix N × m used by most 

of the algorithms described below.  
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2.1 Types of data 

 

Data mining algorithms strongly depend on attributes of managed data 

types. A basic classification distinguishes two main categories of 

attributes: quantitative and qualitative. Quantitative attributes come from 

numeric measurements, and can represent continuous values (e.g. height), 

and discrete values (e.g. number of children). For quantitative attribute, 

there is another distinction between interval attributes, where 

measurements are disposed on a linear scale, and ratio attributes, which 

are disposed on a nonlinear scale. 
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Qualitative attributes come from previously established categories, and 

can be categorical (or nominal; e.g. eye’s color), binary (e.g. sex), and ordinal 

(e.g. military rank). Binary attribute is a special case of categorical attribute 

taking exactly two categories: it is possible to give same weight for both 

categories (symmetric) or not (asymmetric). It is possible to realize a map 

from interval to ordinal and nominal attributes, or from ordinal to 

nominal, and vice-versa (Gan et al., 2007).  

In the real world, however, there exist various other data types, such as 

image data, graph, or time series containing, in turn, quantitative and/or 

qualitative data.  

 

2.2 Indexing 

 

In many cases, datasets are supported by special data structures, 

especially when dataset get larger, that are referred as indexing structures. 

Indexing consists of building a data structure I that enables efficient 

searching within database (Ng and Cai, 2004). Usually, it is designed to 

face two principal similarity queries: the (i) k-nearest neighbors (knn), and 

the (ii) range query problem. Given a query object Q in D, and a 

similarity/dissimilarity measure d(x,y) defined for each pair x, y in D, the 

former query deals with the search of the set of first k objects in D more 

similar to Q. The latter query finds the set R of objects that are within 

distance r from Q. When dealing with a collection of time series, a TSDB 

(Time Series DataBase), given an indexing structure I, there are two ways to 

post a similarity query (Ng and Cai, 2004): 

 

 whole matching: given a TSDB of time series, each of length m, whole 

matching relates to computation of similarity matching among time 

series along their whole length.  

 

 subsequence matching: given a TSDB of N time series S1, S2, …, SN, each of 

length mi, and a short query time series Q of length mq < mi, with 0 < i < 

N, subsequence matching relates to finding matches of Q into 

subsequences of every Si, starting at every position. 
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Indexing is crucial for reaching efficiency on data mining tasks, such as 

clustering or classification, especially for huge database such as TSDBs. 

Clustering is related to the unsupervised division of data into groups 

(clusters) of similar objects under some similarity or dissimilarity 

(distances) measures. Sometimes, on time series domain, a similar problem 

to clustering is the motif discovery problem (Mueen et al., 2009), consisting 

of searching main cluster (or motif) into a TSDB. The search for clusters is 

unsupervised. Classification assigns unlabeled objects to predefined 

classes after a supervised learning process. Both tasks make massive use of 

distance computations.  

Distance measures play an important role in similarity matching problem. 

Concerning a distance measure, it is important to understand if it can be 

considered metric function. A metric function on a set D is a function 

f : D × D → R (where R is the set of real numbers). For all x, y, z in D, this 

function obeys to four fundamental properties: 

 

1. f(x, y) ≥ 0     (non-negativity)      (2.2) 

2. f(x, y) = 0   if and only if   x = y     (identity)    (2.3) 

3. f(x, y) = f(y, x)     (symmetry)      (2.4) 

4. f(x, z) ≤ f(x, y) + f(y, z)     (triangle inequality)    (2.5) 

 

If any of these is not obeyed, the distance is considered non-metric. Using 

a metric function is desired, because the triangle inequality property (Eq. 

2.5) can be used to perform the indexing of the space for speed-up search 

in large datasets. By means of adequate indexing data structures (general 

tree structures) such as  kd-tree (Bentley, 1975), R* tree (Beckmann et al., 

1990), or Antipole tree (Cantone et al., 2005), it is possible to perform 

pruning during search on the space. Best efforts have been devoted to 

similarity searching, with emphasis on metric space searching. In this 

sense SISAP, a conference devoted to similarity searching 

(http://sisap.org/Home.html) provides the Metric Space Library 

(http://sisap.org/Metric_Space_Library.html) allowing to use a wide range 

of indexing techniques for general spaces (metric and non-metric). 

Another well known framework for indexing, overall for multimedia and 

time series data, is GEMINI (GEneric Multimedia INdexIng; Faloutsos et al., 
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1994), that designs fast search algorithms for locating objects series that 

match, in an exact or approximate way, a query time series Q.  

Algorithms dealing with relative small datasets mostly use a simple data 

structure, an  N × N matrix, called also distance matrix, proximity matrix, or 

affinity matrix, storing distances between each pair of dataset objects: 
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where d(i,j) indicates distance between ith and jth object (for 0 < i, j < N). 

For metric distance functions, the matrix is symmetric, because of the 

metric symmetric property (Eq. 2.4), and all diagonal elements have zero 

values, since d(i,i) = 0 for the identity property (Eq. 2.3). If we store 

similarity measures instead of distances the resulting matrix will be called 

similarity matrix. 

 

2.3 Similarity and Distance Measures 

 

A common data mining task is the estimation of similarity among objects. 

A similarity measure is a relation between a pair of objects and a scalar 

number. In this subsection some of the common distance measures, used 

for numerical data and not, are formally described. Let be two objects X 

and Y of m attributes, and xi and yi the ith attributes of X and Y, 

respectively. Let us list the following measures. 

 

2.3.1 Numerical Similarity Measures 

 

Common intervals used to mapping the similarity are [-1, 1] or [0, 1], 

where 1 indicates the maximum of similarity.  

Considering the similarity between two attributes xi and yi as : 
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Mean Similarity 
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Root Mean Square Similarity: 
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Peak similarity (Fink and Pratt, 2004): 
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Cosine similarity. In some applications, such as information retrieval, text 

document clustering, and biological taxonomy, it is possible that the 

measures mentioned above are not used. Often, when dealing with vector 

objects, the most used distance function is the cosine similarity. 

The cosine similarity computes the cosine of the angle θ between two 

objects X and Y, and is defines as: 
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This measure provides values in range [-1, 1]. The lower boundary 

indicates that the X and Y vectors are exactly opposite; the upper 

boundary indicates that the vectors are exactly the same; finally the 0 

value indicates the independence.  

 

Cross-correlation. Another common similarity function used to perform 

complete or partial matching between time series is the cross-correlation 

function (or Pearson’s correlation function) (Von Storch and Zwiers, 2001). 
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The cross correlation between two time series X and Y of length m, 

allowing a shifted comparison of l positions, is defined as: 
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where X  and Y are the means of X and Y. The correlation rXY  provides 

the degree of linear dependence between the two vectors X and Y from 

perfect linear relationship (rXY = 1), to perfect negative linear relation (rXY  = 

-1).   

 

2.3.2 Numerical Distance Measures 

 

Euclidean Distance. The most used distance function in many 

applications. It is defined as: 
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Manhattan Distance. Also called “city block distance”. It is defined as: 
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Maximum Distance. It is defined to be the maximum value of the 

distances of the attributes: 
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Minkowski Distance. The Euclidean distance (Eq. 2.13), Manhattan distance 

(Eq. 2.14), and Maximum distance (Eq. 2.15), are particular instances of the 

Minkowski distance, called also Lp-norm. It is defined as: 
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where p is called the order of Minkowski distance. In fact, for Manhattan 

distance p = 1, for the Euclidean distance p = 2, while for the Maximum 

distance p = ∞.  

 

Mahalanobis Distance. The Mahalanobis distance is defined as: 

 

   TyxyxYXd  1),(       (2.17)  

 

where Σ is the covariance matrix (see Appendix A, Eq. A.3; Duda et al., 

2001).  

 

2.3.3 Binary and Categorical Data Measures 

 

Binary data can have only two values: 0 and 1 (or true and false, positive 

and negative). To compute distance between two data objects X, Y, 

containing m binary attributes, it is usual to fill a 2 × 2  matrix T, called 

contingence table, which contains all possible test results:  
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where q is the number of attributes that equal 1 for both objects X and Y, r 

is the number of attributes that equal 1 for object X but that are 0 for object 

Y, s is the number of attributes that equal 0 for object X but equal 1 for 

object Y, and t is the number of attributes that equal 0 for both objects X 

and Y. 

For symmetric binary data, where both values have the same weight, it is 

used a very common distance function, defined as: 
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For asymmetric binary data, by convention, 1 is associated to the weight 

having more importance. This criterion has most application in medical 

tests for diseases: positive test, the rarest, have greater significance than 

negative test. So, it is usual to assign 1 to positive test and 0 to negative 

test. t, in this case, is considered unimportant, and thus is ignored in the 

computation of the following distance function: 

 

 
srq

sr
YXd




),(         (2.20) 

 

This distance function is often known as Jaccard distance (Han and 

Kamber, 2000).  

Categorical data are a generalization of binary data. Let r and s be two 

categories of categorical data. A matching between these two categories 

can be defined in this simple way: 
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The Simple Matching distance for two categorical data X and Y, described 

by m attributes, can be defined as: 
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where xi and yi corresponding to the ith attributes of X and Y, respectively. 

 

2.3.4 Measures for Time Series Data 

 

A time series is a sequence of real numbers representing measurements 

over time. When treating time series, the similarity between two 

sequences of the same length can be calculated by summing the ordered 

point-to-point distance between them (Fig. 2.1), where “point” stays for a 

single measurement into time series.  
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Fig. 2.1. x and y are two time series of a particular variable v, along the time axis t. The 

Euclidean distance results the sum of the point-to-point distances (gray lines), along 

all the time series. 

 

In this sense, the most used distance function is the Euclidean distance 

(Faloutsos et al., 1994), corresponding to the second degree of general Lp-

norm. This distance measure is cataloged as a metric distance function, 

since it obeys to the metric properties: non-negativity, identity, symmetry 

and triangle inequality (Eq. 2.3~2.5). Euclidean distance is surprisingly 

competitive with other more complex approaches, especially when dataset 

size gets larger (Shieh and Keogh, 2008). In every way, Euclidean distance 

and its variants present several drawbacks, which make inappropriate 

their use in certain applications: 

 

 It compares only time series of the same length. 

 It cannot handle outliers or noise. 

 It is very sensitive respect to six signal transformations: shifting, 

uniform amplitude scaling, uniform time scaling, uniform bi-scaling, 

time warping and non-uniform amplitude scaling (Perng et al., 2000). 

 

For these reasons, other distance measure techniques were proposed to 

give more robustness to the similarity computation. In this sense it is 

required to cite also the well known Dynamic Time Warping (DTW; Keogh 

and Ratanamahatana, 2002) taking advantage of dynamic programming to 

allow comparison of one-to-many points; and the Longest Common 

SubSequence (LCSS) similarity measure (Vlachos et al., 2002), a similar 
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dynamic programming solution as DTW, but more resilient to noise. In the 

literature there exist other distance measures that overcome signal 

transformation problems, such as the Landmarks similarity, which does not 

follow traditional similarity models that rely on point-wise Euclidean 

distance (Perng et al., 2000) but, in correspondence of human intuition and 

episodic memory, relies on similarity of those points (times, events) of 

“greatest importance” (for example local maxima, local minima, inflection 

points). Unfortunately, none of them is metric, so they cannot take 

advantage of any indexing structure. 

 

Dynamic Time Warping. Dynamic Time Warping (Berndt and Clifford, 

1994) gives more robustness to the similarity computation. By this 

method, also time series of different length can be compared, because it 

replaces the one-to-one point comparison, used in Euclidean distance, 

with a many-to-one (and viceversa) comparison. The main feature of this 

distance measure is that it allows recognizing similar shapes, even if they 

present signal transformations, such as shifting and/or scaling (Fig. 2.2).  

Given two time series T = {t1, t2, . . . , tn} and S = {s1, s2, . . . , sm} of length n 

and m, respectively, an alignment by DTW method exploits information 

contained in an n × m distance matrix: 
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where distMatrix(i, j) corresponds to the distance of ith point of T and jth 

point of S d(Ti, Sj), with 1 ≤ i ≤ n and 1 ≤ j ≤ m. 

The DTW objective is to find the warping path W = {w1, w2, . . . ,wk, . . ., wK} of 

contiguous elements on distMatrix (with max(n, m) < K < m + n -1, and wk = 

distMatrix(i, j)), such that it minimizes the following function: 
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Fig. 2.2. Difference between DTW distance and Euclidean distance (green lines 

represent mapping between points of time series T and S). The former allows many-to-

one point comparisons, while Euclidean point-to-point distance (or one-to-one). 

 

The warping path is subject to several constraints (Keogh and 

Ratanamahatana, 2002). Given wk = (i, j) and wk-1 = (i’, j’) with i, i’ ≤ n and j, 

j’ ≤ m : 

 

1. Boundary conditions. w1 = (1,1) and wK = (n, m). 

2. Continuity. i – i’ ≤ 1 and j – j’ ≤ 1. 

3. Monotonicity. i – i’ ≥ 0 and j – j’ ≥ 0. 

 

The warping path can be efficiently computed using dynamic 

programming (Cormen et al. 1990). By this method, a cumulative distance 

matrix γ of the same dimension as the distMatrix, is created to store in the 

cell (i, j) the following value (Fig. 2.3): 
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Fig. 2.3. Warping path computation using dynamic programming. The lavender cells 

correspond to the warping path. The red arrow indicates its direction. The warping 

distance at the (i, j) cell will consider, besides the distance between Ti and Sj, the 

minimum value among adjacent cells at positions: (i-1, j-1), (i-1, j) and (i, j-1). The 

Euclidean distance between two time series can be seen as a special case of DTW, 

where path’s elements belong to the γ matrix diagonal. 

 

The overall complexity of the method is relative to the computation of all 

distances in distMatrix that is O (nm). The last element of the warping 

path, wK corresponds to the distance calculated with the DTW method. 

In many cases, this method can bring to undesired effects. An example is 

when a large number of points of a time series T are mapped to a single 

point of another time series S (Fig. 2.4a, 2.5a). A common way to overcome 

this problem is to restrict the warping path in such a way it has to follow a 

direction along the diagonal (Fig. 2.4b, 2.5b). To do this, we can restrict the 

path enforcing the recursion to stop at a certain depth, represented by a 

threshold δ. Then, the cumulative distance matrix γ will be calculated as 

follows: 
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Figure 2.5a shows the computation of a restricted warping path, using a 

threshold δ = 10. This constraint, besides limiting extreme or degenerate 

mappings, allows to speed-up DTW distance calculation, because we need 

to store only distances which are at most δ positions away (in horizontal 
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and vertical direction) from the distMatrix diagonal. This reduces the 

computational complexity to O((n + m)δ). The above proposed constraint 

is known also as Sakoe-Chiba band (Fig. 2.6a; Sakoe and Chiba, 1978) , and it 

is classified as global constraint. Another most common global constraint 

is the Itakura parallelogram (Fig. 2.6b; Itakura, 1975). 

 

 
 

Fig. 2.4. Different mappings obtained with the classic implementation of DTW (a), and 

with the restricted path version using a threshold δ = 10 (b). Green lines represent 

mapping between points of time series T and S. 

 

Local constraints are subject of research and are different from global 

constraints (Keogh and Ratanamahatana, 2002), because they provide local 

restrictions on the set of the alternative depth steps of the recurrence 

function (Eq. 2.25). For example we can replace Eq. 2.25 with: 
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to define a new local constraint. 
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Fig. 2.5. (a) Classic implementation of DTW. (b) Restricted path, using a threshold δ = 

10. For each plot (a) and (b): on the center, the warping path calculated on matrix γ. On 

the top, the alignment of time series T and S, represented by the green lines. On the 

left, the time series T. On the bottom, the time series S. On the right, the color bar 

relative to the distance values into matrix γ. 
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Fig. 2.6. Examples of global constraints: (a) Sakoe-Chiba band; (b) Itakura 

parallelogram. 

 

Longest Common SubSequence. Another well known method that takes 

advantage of dynamic programming to allow comparison of one-to-many 

points is the Longest Common SubSequence (LCSS) similarity measure 

(Vlachos et al., 2002). An interesting feature of this method is that it is 

more resilient to noise than DTW, because allows some elements of time 

series to be unmatched (Fig. 2.7). This solution builds a matrix LCSS 

similar to γ, but considering similarity instead of distances.  

Given the time series T and S of length n and m, respectively, the 

recurrence function is expressed as follows: 
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with 1 ≤ i ≤ n and 1 ≤ j ≤ m. Since exact matching between Ti and Sj can be 

strict for numerical values (Eq. 3.22 is best indicated for string distance 

computation, such as the edit distance), a common way to relax this 

definition is to apply the following recurrence function: 
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The cell LCSS(n, m) contains the similarity between T and S, because it 

corresponds to length l of the longest common subsequence of elements 
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between time series T and S. To define a distance measure, we can 

compute (Ratanamahatana et al., 2010): 
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Also for LCSS the time complexity is O(nm), but it can be improved to 

O((n + m)δ) if a restriction is used (i.e. when |i - j| < δ). 

 

 
Fig. 2.7. Alignment using LCSS. Time series T (red line) is obtained from S (blue line), 

by adding a fixed value = 5, and further “noise” at positions starting from 20 to 30. In 

these positions there is no mapping (green lines). 
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Chapter 3 
 

Dimensionality reduction techniques 
 

 

 

Time series are often high dimensional data objects, thus dealing directly 

with the raw representation can be expensive in terms of space and time. 

In this sense, an important aspect to achieve efficiency, by means of space 

compression, is the use of dimensionality reduction techniques; while 

effective querying on time series data can be reached by using adequate 

similarity measures and space indexing. The goal of this chapter is to 

provide an overview of main dimensionality reduction algorithms (Cassisi 

et al., 2012c). Mining high-dimensional involves addressing a range of 

challenges, among them: i) the curse of dimensionality (Agrawal et al., 

1993), and ii) the meaningfulness of the similarity measure in the high-

dimensional space. A key aspect to achieve efficiency, when mining time 

series data, is to work with a data representation that is lighter than the 

raw data. This can be done by reducing the dimensionality of data, still 

maintaining its main properties. An important feature to be considered, 

when choosing a representation, is the lower bounding property.  

Given two raw representations of the time series T and S, by this property, 

after establishing a true distance measure dtrue for the raw data (such as the 

Euclidean distance), the distance dfeature between two time series, in the 

reduced space, R(T) and R(S), have to be always less or equal than dtrue: 

 

),())(),(( STdSRTRd truefeature         (3.1) 

 

If dimensionality reduction techniques ensure that the reduced 

representation of a time series satisfies such a property, we can assume 

that the similarity matching in the reduced space maintains its meaning. 

Moreover, we can take advantage of indexing structure such as GEMINI 

(Section 2.2) to perform speed-up search even avoiding false negative 

results. GEMINI was introduced to accommodate any dimensionality 

reduction method for time series, and then allows indexing on new 
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representation (Ng and Cai, 2004). GEMINI guarantees no false negatives 

on index search if two conditions are satisfied: (i) for the raw time series, a 

metric distance measure must be established; (ii) to work with the reduced 

representation, a specific requirement is that it guarantees the lower 

bounding property. In the following subsections, we will review the main 

dimensionality reduction techniques that preserve the lower bounding 

property. By this property, after establishing a true distance measure for 

the raw data (in this case the Euclidean distance), the distance between 

two time series, in the reduced space, results always less or equal than the 

true distance. Such a property ensures exact indexing of data (i.e. with no 

false negatives). The following representations describe the state-of-art in 

this field: spectral decomposition through Discrete Fourier Transform (DFT) 

(Agrawal et al., 1993); Singular Value Decomposition (SVD) (Korn et al., 

1997); Discrete Wavelet Transform (DWT) (Chan and Fu, 1999); Piecewise 

Aggregate Approximation (PAA) (Keogh et al., 2000); Piecewise Linear 

Approximation (PLA) (Keogh et al., 2001); Adaptive Piecewise Constant 

Approximation (APCA) (Chakrabarti et al., 2002); and Chebyshev Polynomials 

(CHEB) (Ng and Cai, 2004). Many researchers have also included symbolic 

representations of time series, that transform time series measurements 

into a collection of discretized symbols; among them we cite the Symbolic 

Aggregate approXimation (SAX) (Lin et al., 2007), based on PAA, and the 

evolved multi-resolution representation iSAX 2.0 (Shieh and Keogh, 2008). 

Symbolic representation can take advantage of efforts conducted by the 

text-processing and bioinformatics communities, who made available 

several data structures and algorithms for efficient pattern discovery on 

symbolic encodings (Lawrence et al., 1993; Bailey and Elkan, 1995; Tompa 

and Buhler, 2001). 

 

3.1 DFT 

 

The dimensionality reduction, based on the Discrete Fourier Transform 

(DFT) (Agrawal et al., 1993), was the first to be proposed for time series. 

The DFT decomposes a signal into a sum of sine and cosine waves, called 

Fourier Series. Each wave is represented by a complex number known as 

Fourier coefficient (Fig. 3.1) (Ng and Cai, 2004; Ratanamahatana et al., 2010). 

The most important feature of this method is the data compression, 
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because the original signal can be reconstructed by means of information 

carried by the waves with higher Fourier coefficient. The rest can be 

discarded with no significant loss. 

 

 
 

Fig. 3.1. The raw data is in the top-left plot. In the first row, the central plot (“Fourier 

coefficients” plot) shows the magnitude for each wave (Fourier coefficient). Yellow 

points are drawn for the top ten highest values. The remaining plots (in order from 

first row to last, and from left to right) represent the waves corresponding to the top 

ten highest coefficients in decreasing order, respectively of index {2, 100, 3, 99, 98, 4, 93, 

9, 1, 97}, in the “Fourier coefficients” plot. 

 

More formally, given a signal x = {x1, x2, . . . , xn}, the n-point Discrete 

Fourier Transform of x is a sequence X = {X1, X2, . . . , Xn} of complex 

numbers. X is the representation of x in the frequency domain. Each 

wave/frequency XF is calculated as: 
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The original representation of x, in the time domain, can be recovered by 

the inverse function: 
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The energy E(x) of a signal x is given by:  
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A fundamental property of DFT is guaranteed by the Parseval’s Theorem, 

which asserts that the energy calculated on time series domain for signal x 

is preserved on frequency domain, and then: 
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If we use the Euclidean distance (Eq. 2.13), by this property, the distance 

d(x,y) between two signals x and y on time domain is the same as 

calculated in the frequency domain d(X,Y), where X and Y are the 

respective transforms of x and y. The reduced representation X’ = {X1, X2, . 

. . , Xk} is built by only keeping first k coefficients of X to reconstruct the 

signal x (Fig. 3.2).  

For the Parseval’s Theorem we can be sure that the distance calculated on 

the reduced space is always less than the distance calculated on the 

original space, because k ≤ n and then the distance measured using Eq. 

2.13 will produce: 
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that satisfies the lower bounding property defined in Eq. 3.1. 

The computational complexity of DFT is O(n2), but it can be reduced by 

means of the FFT algorithm (Cooley and Tukey, 1965), which computes 

the DFT in O(n log n) time. The main drawback of DFT reduction 
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technique is the choice of the best number of coefficients to keep for a 

faithfully reconstruction of the original signal. 

 

 
 

Fig. 3.2. The raw data is in the top-left plot. In the first row, the central plot (“Fourier 

coefficients” plot) shows the magnitude (Fourier coefficient) for each wave. Yellow 

points are drawn for the top ten highest values. The remaining plots (in order from 

first row to last, and from left to right) represent the reconstruction of the raw data 

using the wave with highest values (of index 2) firstly, then by adding the wave 

relative to second highest coefficient (of index 100), and so on. 

 

3.2 DWT 

 

Another technique for decomposing signals is the Wavelet Transform (WT). 

The basic idea of WT is data representation in terms of sum and difference 

of prototype functions, called wavelets. The discrete version of WT is the 

Discrete Wavelet Transform (DWT). Similarly to DFT, wavelet coefficients 

give local contributions to the reconstruction of the signal, while Fourier 
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coefficients always represent global contributions to the signal over all the 

time (Ratanamahatana et al., 2010).  

The Haar wavelet is the simplest possible wavelet. Its formal definition is 

given by Chan and Fu (1999). An example of DWT based on Haar wavelet 

is shown in Table 3.1. The general Haar transform HL(T) of a time series T 

of length n can be formalized as follows: 
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where 0 < L’ ≤ L, and 1 ≤ i ≤ n.  

 

Level (L) Averages coefficients (A) Wavelet coefficients (D) 

1 10, 4, 6, 6  

2 8, 6 3, 0 

3 7 1 

 

Table 3.1. The Haar transform of T = {10, 4, 8, 6} depends on the chosen level, 

and corresponds to merging Averages coefficients (column 2) at the chosen 

level and all Wavelet coefficients (column 3) in decreasing order from the 

chosen level. At level 1 the representation is the same of time series: H1(T) = 

{10, 4, 6, 6} + {} = {10, 4, 6, 6} = T.  At level 2 is H2(T) = {8, 6} + {3, 0} + {} = {8, 6, 3, 0}. 

At level 3 is H3(T) = {7} + {1} + {3, 0} = {7, 1, 3 0}. 

 

The main drawback of this method is that it is well defined for time series 

which length n is a power of 2 (n = 2m). The computational complexity of 

DWT using Haar Wavelet is O(n). 

Chan and Fu (1999) demonstrated that the Euclidean distance between 

two time series T and S, d(T,S), can be calculated in terms of their Haar 

transform d(H(T), H(S)), by preserving the lower bounding property in Eq. 

3.1, because: 

 

),(),(2))(),(( STdSTdSHTHd       (3.10) 
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Fig. 3.3. DWT using Haar Wavelet with MATLAB Wavelet Toolbox™ GUI tools. T is a 

time series of length n = 256 and it is shown on the top-left plot (Original Signal). On 

the bottom-left plot (Original Coefficients) there are the entire AL, represented by blue 

stems, and DL’ coefficients (L’ < L = 7), represented by green stems (stems’ length is 

proportional to coefficients value). On the top-right plot, the Synthesized Signal by 

selecting only the 64 biggest coefficients, as reported on the bottom-right plot (Selected 

Coefficients): black points represent unselected coefficients. 

 

3.3 SVD 

 

As we have just seen in Chapter 2, a dataset with m time series (TSDB), 

each of length n, can be represented by an m × n matrix D (Eq. 2.1). An 

important result from linear algebra is that D can always be written in the 

form (Golub and Van Loan, 1996):  

 
TUWVD           (3.11) 

 

where U is an m × n matrix, W and V are n × n matrices. This is called the 

Singular Value Decomposition (SVD) of the matrix D, and the elements of the 

n × n diagonal matrix W are the singular values wi: 
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V is orthonormal, because VVT = VTV = In, where In is the identity matrix of 

size n. So, we can multiply both sides of Eq. 3.11 by V to get: 

 

UWAVVUWVAV T        (3.13) 

 

UW represents a set of n-dimensional vectors AV ={X1, X2, . . . , Xm} which 

are rotated from the original vectors A={x1, x2, . . . , xm} (Ng and Cai, 2004): 
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Similarly to sine/cosine waves for DFT (Section 3.1) and to wavelet for 

DWT (Section 3.2), U vectors represent basis for AV, and their linear 

combination with W (that represents their coefficients) can reconstruct AV. 

We can perform dimensionality reduction by selecting the first ordered k 

biggest singular values and their relative entries in A, V and U, to obtain a 

new k-dimensional dataset that best fits original data (Fig. 3.4).  

SVD is an optimal transform if we aim to reconstruct data, because it 

minimizes the reconstruction error, but have two important drawbacks: (i) 

it needs a collection of time series to perform dimensionality reduction (it 

cannot operate on singular time series), because examines the whole 

dataset prior to transform. Moreover, the computational complexity is 

O(min(m2n, mn2)). (ii) This transformation is not incremental, because a 

new data insertion requires a new global computation. 
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Fig. 3.4. SVD for a TSDB of m=7 time series of length n=50. It is possible to note in the 

transformed data plot how only first k < 10 singular values are significant. In this 

example we heuristically choose to store only first k=5 diagonal elements of V, and 

their relative entries in A, U and W, because they represent about 95% of total variance. 

This allows reducing space complexity from n to k, still maintaining almost unchanged 

the information (see the reconstruction on the bottom-left plot). 

 

3.4 Dimensionality reduction via PAA 

 

Given a time series T of length n, PAA divides it into w equal sized 

segments  ti (1 < i ≤ w) and records values corresponding to the mean of 

each segment mean(ti) (Fig. 3.5) into a vector PAA(T) = {mean(t1), mean(t2), 

…, mean(tw)}, using the following formula: 
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When n is a power of 2, each mean(ti) essentially represents an Averages 

coefficient AL(i), defined in Section 3.2, and w corresponds in this case to: 
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Fig. 3.5. An approximation via PAA technique of a time series T of length n = 256, with 

w = 8 segments. 

 

The complexity time to calculate the mean values of Eq. 3.15 is O(n). The 

PAA method is very simple and intuitive, moreover it is strongly 

competitive with other more sophisticated transforms such as DFT and 

DWT (Keogh and Kasetty, 2002; Yi and Faloutsos, 2000). Most of data 

mining researches make use of PAA reduction for its simplicity. It is 

simple to demonstrate how the distance on raw representation is bounded 

below by the distances calculated on PAA representation (even using 

Euclidean distance as reference point), satisfying Eq. 3.1. A limitation of 

such a reduction, in some contexts, can be the fixed size of the obtained 

segments. 

 

3.5 APCA 

 

In Section 3.2 we noticed that not all Haar coefficients in DWT are 

important for the time series reconstruction. Same thing for PAA in 

Section 3.4, where not all segment means are equally important for the 

reconstruction, or better, we sometimes need an approximation with no-

fixed size segments. APCA is an adaptive model that, differently from 

PAA, allows defining segments of variable size. This can be useful when 

we find in time series areas of low variance and areas of high variance, for 
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which we want to have, respectively, few segments for the former, and 

many segments for the latter. 

Given a time series T = {t1, t2, . . . , tn} of length n, the APCA representation 

of T is defined as (Chakrabarti et al., 2002):  

 

  0,,,,, 011  crcrcvcrcvC MM      (3.17) 

 

where cri is the last index of the ith segment, and 
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To find an optimal representation through the APCA technique, dynamic 

programming can be used (Pavlidis, 1976; Faloutsos et al., 1997). This 

solution requires O(Mn2) time. A better solution was proposed by 

Chakrabarti et al. (2002), which finds the APCA representation in O(n log 

n) time, and defines a distance measure for this representation satisfying 

the lower bounding property defined in Eq. 3.1. The proposed method 

bases on Haar wavelet transformation. As we have just seen in Section 3.2, 

the original signal can be reconstructed by only selecting bigger 

coefficients, and truncating the rest. The segments in the reconstructed 

signal may have approximate mean values (due to truncation) 

(Chakrabarti et al., 2002), so these values are replaced by the exact mean 

values of the original signal. Two aspects to consider before performing 

APCA: 

 

1. Since Haar transformation deals only with time series length n = 2p, we 

need to add zeros to the end of the time series, until it reaches the 

desired length. 

2. If we held the biggest M Haar coefficients, we are not sure if the 

reconstruction will return an APCA representation of length M. We 

can know only that the number of segments will vary between M and 

3M (Chakrabarti et al., 2002). If the number of segments is more than 

M, we will iteratively merge more similar adjacent pairs of segments, 

until we reach M segments. 
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Algorithm Compute_APCA(T,M) 

begin 

Padded = false; 

if length(T) mod 2 <> 0 then 

Padding of T with zeros until length(T) mod 2 == 

0; 

Padded = true; 

Perform the Haar DWT on T; 

Sort coefficients in order of decreasing normalized 

magnitude, truncate after M; 

C = Reconstruct approximation of T from retained 

coeffs; 

if Padded then 

   Truncate C to the original length; 

Replace approximate segment mean values with exact mean 

values; 

while the number of segments of C is greater than M do 

   Merge the pair of segments with least rise in error; 

end while; 

end. 

 

Table 3.2. An algorithm for the APCA, from Chakrabarti et al. (2002). 

 

3.6 Time series segmentation using PLA 

 

As with most computer science problems, representation of data is the key 

to efficient and effective solutions. A suitable representation of a time 

series may be Piecewise Linear Approximation (PLA), where the original 

points are reduced to a set of segments. 

PLA refers to the approximation of a time series T, of length N, using K 

consecutive segments with K much smaller than n (Fig. 3.6). This 

representation makes the storage, transmission and computation of the 

data more efficient (Keogh et al., 2004). In the light of it, PLA may be used 

to support clustering, classification, indexing and association rule mining 

of time series data (e.g. Di Salvo et al., 2012).  

The process of time series approximation using PLA is known as 

segmentation and is related to clustering process where each segment can 

be considered as a cluster (Salvador and Chan, 2004). 
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Fig. 3.6: The trend approximation (red line) of the original time series (black line) 

obtained by PLA. 

 

There are several techniques to segment a time series and they can be 

distinguished into off-line and on-line approaches. In the former approach 

an error threshold is fixed by the user, while the latter uses a dynamic 

error threshold that changes, according to specific criteria, during the 

execution of the algorithm. Although off-line algorithms are simple to 

realize, they are less effective than the online ones. The classic approaches 

to time series segmentation are the sliding window (Table 3.3), bottom-up 

(Table 3.4) and top-down (Table 3.5) algorithms.  

 

Sliding window is an on-line algorithm and works growing a segment 

until the error for the potential segment is greater than the user-specified 

threshold, then the subsequence is transformed into a segment; the 

process repeats until the entire time series has been approximated by its 

PLA (Keogh et al., 2004). A way to estimate error is by taking the mean of 

the sum of the square of vertical differences between the best-fit line and 

the actual data points. Another commonly used measure of goodness of fit 

is the distance between the best fit line and the data point furthest away in 

the vertical direction (Keogh et al., 2004).  
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Algorithm Seg_TS = Sliding_Window(T,max_error) 

begin 

anchor = 1; 

while not finished segmenting time series 

i = 2; 

while (calculate_error(T[anchor:(anchor + i)]) < 

max_error) 

i = i + 1; 

end while; 

Seg_TS = concat(Seg_TS, create_segment(T[anchor: 

anchor + (i-1)]); 

anchor = anchor + i; 

end while; 

end. 

 

Table 3.3. An algorithm for sliding window approach, from (Keogh et al., 

2001). 

 

Algorithm Seg_TS = Top_Down(T,max_error) 

begin 

best_so_far = inf; 

for i = 2 to length(T) - 2  

// Find best place to split the time series. 

improvement_in_approximation = 

improvement_splitting_here(T,i); 

if improvement_in_approximation < best_so_far 

breakpoint = i; 

best_so_far = improvement_in_approximation; 

end if; 

end for; 

// Recursively split the left segment if necessary. 

if calculate_error(T[1:breakpoint]) > max_error 

Seg_TS = Top_Down(T[1: breakpoint]); 

end if; 

// Recursively split the right segment if necessary. 

if (calculate_error(T[(breakpoint+1):length(T)]) > 

max_error) 

Seg_TS = Top_Down(T[breakpoint + 1: length(T)]); 

end if. 

end. 

 

Table 3.4. An algorithm for top-down approach, from (Keogh et al., 2001).  
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Algorithm Seg_TS = Bottom_Up(T,max_error) 

begin 

for i = 1:2:length(T)  

// Create initial fine approximation. 

Seg_TS = concat(Seg_TS,create_segment(T[i:i+1])); 

end for; 

 

for i = 1:length(Seg_TS)–1  

// Find cost of merging each pair of segments. 

merge_cost(i) =  

calculate_error([merge(Seg_TS(i), Seg_TS(i+1))]); 

end for; 

 

while min(merge_cost) < max_error  

// Find “cheapest” pair to merge. 

index = min(merge_cost); 

  

// Merge them. 

Seg_TS(index) = 

merge(Seg_TS(index),Seg_TS(index+1))); 

  

// Update records. 

delete(Seg_TS(index+1));  

 

merge_cost(index) = 

calculate_error(merge(Seg_TS(index),Seg_TS(index+1

))); 

 

merge_cost(index-1) = 

calculate_error(merge(Seg_TS(index-

1),Seg_TS(index))); 

end while; 

end. 

 

Table 3.5. An algorithm for bottom-up approach, from (Keogh et al., 2001).  

 

In the top-down approach a segment, that represents the entire time-

series, is recursively split until the desired number of segment or an error 

threshold is reached. Dually, the bottom-up algorithm starts from the 

finest approximation of the time series using n/2 segments and merging 
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the two most similar adjacent segments until the desired number of 

segment or an error threshold is reached.  

However, an open question is the choice of best k number of segments. 

This problem involves a trade-off between compression and accuracy of 

time series representation. As suggested by Salvador and Chan (2004), the 

appropriate number of segments may be estimated using evaluation 

graph. It is defined as a two dimensional plot where x-axis is the number 

of segments, while y-axis is a measure of the segmentation error. The best 

number of segments is provided by the point of maximum curvature, also 

called “knee”, of the evaluation graph (Fig. 3.7).  

 

 
 

Fig. 3.7: Evaluation graph. The best number of segments is provided by the knee of the 

curvature. 

 

3.7 Chebyshev Polynomials approximation 

 

By this technique, the reduction problem is resolved by considering the 

values of the time series T as values of a function f, and approximating it 

with a polynomial function of degree n which well fits f: 
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where each ai corresponds to coefficients and xi to the variables of degree i. 
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There are many possible ways to choose the polynomial: Fourier 

transforms (Section 3.1), splines, non-linear regressions, etc. Ng and Cai 

(2004) hypothesized that one of the best approaches is the polynomial that 

minimizes the maximum deviation from the true value, which is called the 

minimax polynomial. It has been shown that the Chebyshev approximation 

is almost identical to the optimal minimax polynomial, and is easy to 

compute (Mason and Handscomb, 2003). Thus, Ng and Cai (2004) 

explored how to use the Chebyshev polynomials (of the first kind) as a basis 

for approximating and indexing n-dimensional (n ≥ 1) time series. The 

Chebyshev polynomial CPm(x) of the first kind is a polynomial of degree m 

(m = 0, 1, …), defined as: 

 

]1,1[))arccos(cos()(  xxmxCPm      (3.20) 

 

It is possible to compute every CPm(x) using the following recurrence 

function (Ng and Cai, 2004): 

 

)()(2)( 21 xCPxxCPxCP mmm         (3.21) 

 

for all m ≥ 2 with CP0(x) = 1 and CP1(x) = x. Since Chebyshev polynomials 

form a family of orthogonal functions, a function f(x) can be approximated 

by the following Chebyshev series expansion: 
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where ci refer to the Chebyshev coefficients. We refer the reader to the paper 

(Ng and Cai, 2004) for the conversion of a time series, which represents a 

discrete function, to an interval function required for the computation of 

Chebyshev coefficients. Given two time series T and S, and their 

corresponding vectors of Chebyshev coefficients, C1 and C2, the key 

feature of their work is the definition of a distance function dCheb between 

the two vectors that guarantees the lower bounding property defined in 

Eq. 3.1. Since it results: 

 

),(),( 2121 TTdCCd truecheb         (3.23) 
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the indexing with Chebyshev coefficients admits no false negatives. The 

computational complexity of Chebishev approximation is O(n), where n is 

the length of the approximated time series. 

 

 
 

Fig. 3.8: An example of approximation of a time series T of length n = 10000 with a 

Chebyshev series expansion (Eq. 3.22) where i is from 0 to k = 100, using the chebfun 

toolbox for MATLAB (http://www2.maths.ox.ac.uk/chebfun/). 

 

3.8 SAX 

 

Many symbolic representations of time series have been introduced over 

the past decades. The challenge in this field is to create a real correlation 

between the distance measure defined on the symbolic representation, and 

that defined on original time series. SAX is the most known symbolic 

representation technique on time series data mining that ensures both a 

considerable dimensionality reduction, and the lower bounding property, 

allowing enhancing of time performances on most of data mining 

algorithm. 

Given a time series T of length n, and an alphabet of arbitrary size a, SAX 

returns a string of arbitrary length w (typically w << n). The alphabet size a 

is an integer, where a > 2. SAX method is PAA-based (see Section 3.4), 

since it transforms PAA means into symbols, according to a defined 

transformation function. 

To give a significance to the symbolic transformation, it is necessary to 

deal with a system producing symbols with equal probability, or with a 

Gaussian distribution. This can be achieved by normalizing time series, 

since normalized time series have generally a Gaussian distribution (Lin et 

al., 2007). This is the first assumption to consider about this technique. 
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However, for data not obeying to this property, the efficiency of the 

reduction is slightly deteriorated. Given the Gaussian distribution, it is 

simple to determine the “breakpoints” that will produce a equal-sized 

areas of probability under the Gaussian curve. What follows gives the 

principal definitions to understand SAX representation. 

 

Definition 3.8.1. Breakpoints: A sorted list of numbers B = β1, . . . , βa−1 such 

that the area under a N(0, 1) Gaussian curve from βi to βi+1 = 1/a (β0 and βa 

are defined as −∞ and ∞, respectively) (Table 3.6). For example, if we want 

to obtain breakpoints for an alphabet of size a = 4, we have to compute the 

first (q1), the second (q2), and the third (q3) quartiles of the inverse 

cumulative Gaussian distribution, corresponding to the 25%, 50% and 75% 

of the cumulative frequency: β1 = q1, β2 = q2, β3 = q3. 

 

i\a   3 4 5 6 7 8 

1   -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 

2   0.43 0 -0.25 -0.43 -0.57 -0.67 

3   
 

0.67 0.25 0 -0.18 -0.32 

4   
  

0.84 0.43 0.18 0 

5   
   

0.97 0.57 0.32 

6   
    

1.07 0.67 

7   
     

1.15 

 

Table 3.6. A look-up table for breakpoints used for alphabet of size 2 < a < 9. 

 

Definition 3.8.2. Alphabet: A collection of symbols alpha = α1, α2,…, αa of 

size a used to transform mean frames into symbols. 

 

Definition 3.8.3. Word: A PAA approximation PAA(T) = {mean(t1), 

mean(t2), …, mean(tw)} of length w can be represented as a word SAX(T) = 

{sax(t1), sax(t2), …, sax(tw)}, with respect to the following mapping function: 

 

    )1,0(, 1 ajwitmeanifftsax jijji      (3.24) 

 

Lin et al. (2007) defined a distance measure for this representation, such 

that the real distance calculated on original representation is bounded 
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below from it. An extension of SAX technique, iSAX, was proposed by 

Shieh and Keogh (2008) which allows to get different resolutions for the 

same word, by using several combination of parameters a and w. 

 

 
Fig. 3.9: An example of conversion of a time series T (blue line) of length n = 128, into a 

word of length w = 8, using an alphabet alpha = {a,b,c,d,e,f,g,h} of size a = 8. The left 

plot refers to the Gaussian distribution divided into equal areas of size 1/a. PAA mean 

frames falling into two consecutive cutlines (gray lines) will be mapped into the 

corresponding plotted symbol (colored segments). The PAA plot shows the PAA 

representation (red line), while SAX plot shows the conversion of PAA(T) into the 

word SAX(T) = {c,g,e,g,f,g,a,a}. Images generated by MATLAB and code provided by 

SAX authors (Lin et al., 2007). 
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Chapter 4 
 

Classification and prediction 
 

 

 

Classification process can be defined as the task in which objects are 

classified on the basis of a priori knowledge patterns. The main difference 

between clustering and classification process is the unsupervised nature of 

the clustering. While the clustering process attempts to derive meaningful 

classes directly from the data, the traditional classification methods 

involve a special input training set of classes in which known objects are 

placed. The choice of classification algorithm is strictly related to the data 

structure and is guided by the prediction performance obtained by the 

chosen model.  In time series analysis, also the prediction of symbolic time 

series or sequences is sometimes called classification. Han and Kamber 

(2000) view that predicting class labels is classification, and predicting 

values (e.g. using regression techniques) is prediction.  

In this section we will briefly introduce, in the first part, some basic 

methods for the discriminant analysis, the most known classification 

technique. The second part focuses on a prediction task, spending 

attention on Hidden Markov Models. 

 

4.1 Classification 

 

The discriminant analysis, known as supervised classification, is a 

classification technique proposed by Fisher (1936). It bases on 

identification of the attributes able to discriminate the observations of a 

sample and to classify them in different groups with respect to their 

attributes.  

 

4.1.1 Fisher’s discriminant analysis 

 

Fisher's linear discriminant, used for Linear Discriminant Analysis (LDA) is 

a classification method that projects high-dimensional data onto a line and 
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performs classification in this one-dimensional space. The projection w is 

chosen to maximize the distance between the means of the two classes 

while minimizing the variance within each class. To that purpose Fisher-

LDA considers maximizing the following objective: 

 

wSw

wSw
wJ

W
T

B
T

)(         (4.1) 

 

where SB is the between classes scatter matrix and SW is the within classes 

scatter matrix. The definitions of the scatter matrices are: 
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where x  is the overall mean of the dataset.  

 

 
 

Fig. 4.1. Let be μ1 e μ2 the mean values of class 1 (represented by red objects) and 2 

(represented by green objects), respectively. In this simple example, the couple of 

values ( 1
~ , 2

~ ) and ( 1


, 2


) are the projected class means respectively on the first 

attribute (the horizontal axis) and on the second attribute (the vertical axis). The 

projection on second attribute returns a best separation among them 

because 2121
~~ 


 . 
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Assume we have a set of samples partitioned into two classes (Fig. 4.1). 

Oftentimes you will see that for two classes SB is defined as  

 

  TBS 2121'          (4.4) 

 

This is the scatter of class 1 with respect to the scatter of class 2 and hence 

corresponds to computing the scatter relative to a different vector. 

 

4.1.2 The perceptron criterion function 

 

Another well known method for linear discriminant analysis is the 

perceptron criterion function. It is the first method using the neural 

network engineering (other best solutions are SOM, described in Section 

5.3.6). Suppose to deal with a two dimensional dataset D with n objects, 

where each object is represented by a point with two attributes x and y, 

and we know the label l for each object: -1 or 1 (in Fig. 4.2 they are 

represented respectively by red and blue points).  

 

 
 

Fig 4.2. An example of 2D dataset with two classes represented by red and blue points. 

The perceptron function aim to discover the values of parameters w1 and w2 which best 

separates the two classes. 
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Perceptron learning phase(D,η) 

begin 

t = 0; 

Randomly initialize w1,t and w2,t; 

while convergence is reached do 

Pick (xt, yt, lt) from the training set D; 

if sign(w1,txt + w2,t – yt)∙sign(lt) < 0 then 

δ-rule(w1,t,w2,t,xt,yt,lt,η) 

end if 

t = t + 1; 

end while 

end 

 

Table 4.1 Learning phase of the perceptron. It calls the δ-rule to calibrate w 

values. 

 

δ-rule(w1,t,w2,t,xt,yt,lt,η) 

begin 

if lt < 0 and (w1,txt + w2,t – yt) ≥ 0 then 

w1,t+1 = w1,t - ηxt; 

w2,t+1 = w1,t - η; 

end if 

if lt ≥ 0 and (w1,txt + w2,t – yt) < 0 then 

w1,t+1 = w1,t + ηxt; 

w2,t+1 = w1,t + η; 

end if 

end 

 

Table 4.2 With the δ-rule if the line which linearly separates the two classes 

exists, then it will be discovered; else the perceptron learning phase (Table 6.1 

will continue indefinitely. 

 

A discriminant function wants to find the values of vector w (in this case 

containing w1 and w2) such that: 

 

0)()( 21  iii lsignywxwsign       (4.5) 

 

for each object i of attribute (xi, yi), with 0 < i < n. To do this a learning 

phase is needed. The procedure to calculate w is shown on Tables 4.1-2: it 
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needs a parameter η relative to the learning rate. At time t=0 the values of 

w are randomly initialized. 

The perceptron method, like the Fisher’s method, has several limits, 

among them the application on linearly separable cases (obviously), a high 

generalization error, and a high sensitivity to class boundary objects. 

 

4.1.3 k-Nearest Neighbour (kNN) 

 

The k-Nearest Neighbour algorithm is widely used for the classification of  

objects belonging to Euclidean spaces. It consists on to choice a class label 

for a new observation, basing on the known class of the k nearest neighbor 

samples (Fig. 4.3). 

 

 
 

Fig. 4.3. A dataset with two classes (distinct with red and blue points). The new 

observation class (the white point) is chosen with respect to the majority class of its k 

(in this case k = 7) nearest neighbors. 

 

4.1.4 Decision trees 

 

Decision trees are predictive models and belong to the decisional theory 

field. In data mining, decision trees were introduced to solve problems 

connected to data classification.  

Looking at the structure (Fig. 4.4), the tree nodes correspond to logical 

statements about the value of one or more attributes of the observation. 
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The first node is the root and contains the first (possibly more important) 

test for classification, while the leaf nodes contain the class labels. 

 

 
 

Fig. 4.4. Internal nodes represent tests on attributes. Leaf nodes represent classes 

(redrawn from Han and Kamber, 2000). 

 

The construction of a decision tree consists of several stages: 

 

1. Selection of the splitting attribute, or that most characterizing the 

observations. The algorithm identifies the most important attribute 

and splits the database into two partitions with respect to this. At each 

level the algorithm identifies the attribute that best performs the 

partition on the available observation. For this scope methods for 

feature selection are used, such as the information gain, described in 

Appendix C. 

2. Determination of the branch factor: each parent node can generate one 

or more child nodes. 

3. Evaluation of the best split: after the choice of the attribute, the 

algorithm identifies the split value which realizes the best division 

between observations.  

4. Choice of the type of partition to realize: algorithms usually perform a 

recursive partition. 

5. Choice of the tree dimensions, by establishing the minimum number 

of leaves or the tree depth, to avoid making estimation errors. 

6. A pruning step, which try to optimize the decision process basing on 

certain criteria. 



61 

 

7. In a final step, the algorithms try to solve problems about missing 

values by ignoring them or, for example, creating a special class for 

them. 

 

Among the most important classification algorithms implementing 

decision trees we mention: 

 

 Automatic Interaction Detection (AID; Kass, 1980); 

 Chi-Square Automatic Interaction Detection (CHAID; Hawkins and Kass, 

1982); 

 Classification And Regression Trees (CART; Breiman et al., 1984); 

 ID3 (Quinlan, 1986); 

 C4.5 (Quinlan, 1993). 

 

This model achieves widespread success because has very small 

processing time, but presents some negative aspects, including the 

inability to examine continue attributes. Moreover, even if data can be  

perfectly divided into classes and uses only simple threshold tests, there is 

no foolproof way to predict the number of branches or spears that emit 

from decisions or sub-decisions. 

 

4.1.5 Support Vector Machines (SVMs) 

 

SVMs are a popular machine learning method for solving problems in 

classification and regression, able to guarantee high classification quality 

(Burges 1998). In recent years, novel applications of SVM have been 

performed in several research areas such as biology (e.g. Noble 2004; 

Cheng et al. 2006) and volcano seismology (e.g. Masotti et al. 2008; Langer 

et al. 2009). The SVM algorithm can be summarized as follows. It first uses 

a non-linear mapping to transform the original data set into a higher 

dimension space. Next, it identifies a hyperplane able to maximize the 

margin of separation among the classes of the training set. Such a 

hyperplane is called maximum marginal hyperplane (MMH). The margin in 

SVMs denotes the distance from the boundary to the closest data in the 

feature space (Fig. 4.5).  
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Fig. 4.5. Two-feature planes each of which with two classes of data (black squares and 

grey circles) and a separating line (dashed lines): the left one shows a small margin 

between clusters, the right one a larger margin (redrawn from Kecman 2001). 

 

With appropriate mapping, data from two classes can always be separated 

by a hyperplane. The problem of computing the MMH can be formulated 

in terms of quadratic programming in the following way (Hwanjo et al. 

2003): 
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The number of training data is denoted by l, α is a vector of l variables, 

where each component αi corresponds to a training data (xi, yi). C is the 

soft margin parameter controlling the influence of the outliers (or noise) in 

training data. The kernel for linear boundary function is xiyi, a scalar 

product of two data points. The non-linear transformation of the feature 

space is performed by replacing k(xi, yi) with an advanced kernel ϕ, such 

as polynomial kernel: 
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or a radial basis function kernel: 
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The use of an advanced kernel is an attractive computational shortcut, 

which avoids the expensive creation of a complicated feature space. An 

advanced kernel is a function that operates on the input data but has the 

effect of computing the scalar product of their images in a usually much 

higher-dimensional feature space (or even an infinite-dimensional space), 

which allows one to work implicitly with hyperplanes in such highly 

complex spaces (Fig. 4.6).  

 

 
 

Fig. 4.6. Two classes of data in the original 2-D space (left) and in a higher-dimensional 

feature space (right) (from Cannata et al., 2011a). 

 

The extension of SVM to multiclass problems can be performed using two 

different methods called one-against-one and one-against-all. The former 

constructs k(k−1)/2 classifier where each one is trained on data from two 

classes. The latter constructs k SVM classifier. In this last case, the ith SVM 

is trained using all training patterns belonging to ith class with positive 

labels and the other with negative labels. A point is assigned to the class 

for which the distance from margin is maximal. Finally, the output of one-
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against-all method is the class that corresponds to SVM with highest 

output value (Weston and Watkins 1999; Hsu and Lin 2002). 

 

4.2 Prediction 

 

Prediction is usually understood as forecasting the next few values of a 

numeric or symbolic series. For the prediction of numeric time series there 

is a huge amount of literature especially in the field of statistics. Common 

methods for time series modeling and prediction are ARIMA (Auto 

Regressive Integrated Moving Average) (Box et al., 1994) models for 

stationary processes. More simple techniques like regression (Appendix 

D) or more complicated techniques like supervised neural nets (Tang and 

Fishwick, 1991; see also Section 5.3.6), or Support Vector Machines (Section 

4.1.5; Burges, 1998) can also be used. In the following subsection we will 

describe Markov Chains and Hidden Markov Models (Rabiner, 1989) because 

they are commonly used. 

 

4.2.1 Hidden Markov Models 

 

A stochastic process is formally defined by a set of random variables {s(t)}, 

where parameter t corresponds to time. In general, the future behaviour of 

a system depends on its past, i.e. the states s(t) and s(t’), corresponding to 

different times t and t’, are dependent random variables. Markov process 

is an interesting class of stochastic processes, where a future state depends 

only on its most recent states (Bharucha-Reid, 1960). The first-order 

Markov Models are the most used for its simplicity, because a future state 

s(t), is a function of only its nearest past state s(t-1): 

 

))1(()(  tsfts         (4.10) 

 

If f is a deterministic function, then the Markov model is deterministic. In 

pattern recognition f is a probabilistic function, for which s(t) is reached 

with a certain probability from the state s(t-1). A typical diagram of a 

probabilistic first-order Markov model is in Fig. 4.7. 
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Fig 4.7. In this model there are three states (S1, S2, S3). aij (0 < i,j < 3) indicates the 

probability, at a certain time t, of transition from the state Si to a state Sj. 

 

Assuming the system varies into a finite set of states, whose identity is not 

visible to the reader, the Hidden Markov Model (HMM; Rabiner, 1989) is a 

statistical model whose purpose is to recover the sequence of hidden 

states, by reading several observations (or tokens), which are the only 

outputs provided by the system (Fig 4.8). 

For each state is associated a probability distribution over all possible 

output tokens. Transitions among the states are governed by a set of 

probabilities. Given a sequence of tokens, we learn an HMM and derive a 

sequence of hidden states that correspond to the sequence of tokens. 

Formally, an HMM, denoted by  EOAS ,,,  is described with the 

following parameters: 

 

1. A set of m states  mSSSS ,,, 21  . 

2. A m × m state transition matrix  
ijaA   whose (i, j) entry is the 

probability of a transition from state Si to state Sj.  

3. A set of possible observations, or tokens,  nOOOO ,,, 21  .  

4. An m × n emission matrix  ijeE   whose (i,j) entry gives the 

probability of emitting symbol Oj given that the model is in state Si. 

5. Start probabilities πi, where 121  m  , which denote the 

probability of starting at a given state in the first time point. 
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Fig. 4.8. Hidden Markov Models analysis seeks to recover the sequence of hidden 

states from the observed emissions. 

 

Three main problems are associated to HMMs:  

 

1) Evaluation: Given a model λ, and a sequence of observations o, find 

P(o | λ). 

2) Decoding: Given a model λ, and a sequence of observations o, find the 

sequence s of states that maximize P(s | o, λ). 

3) Learning: Given a model λ, with unspecified transition/emission 

probabilities, find parameters  EOAS ,,,  that maximize P(o | λ). 

 

Evaluation 

 

There are two ways to compute the probability P(o | λ) of an observed 

sequence o, given a model λ: forward or backward algorithm. 

 

Forward algorithm. Let the forward variable αt(i) be: 

 

)|)(),()2()1(()(  iT STsToooPi        (4.11) 

 

the probability to observe a sequence o = o(1),o(2),...,o(T) and state in Si at 

time T, given a model λ. This probability can be calculated recurrently: 

 

1. Inizialization:  

 

miei oiIi  1,)( ))1((1        (4.12) 
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where I(o(1)) is the index of the token in O equal to o(1). 

 

2. Induction (Fig. 4.9): 
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3. Termination: 
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Backward algorithm. Let the backward variable βt(i) be: 
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the probability to observe a sequence o = o(t+1),o(t+2),...,o(T) and state in Si 

at time t, given a model λ. This probability can be calculated recurrently: 

 

1. Inizialization:  

 

miiT  1,1)(        (4.16) 

 

where I(o1) is the index of the token in O equal to o1. 

 

2. Induction (Fig. 4.10): 
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3. Termination: 
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Computational complexity of forward-backward algorithm is O(Tm2). 

 

 
 

Fig. 4.9. The “trellis” for the forward algorithm. The forward variable αt+1(j) is 

calculated as a function of the same variable at time t, according to Eq. 6.9. 

 

 
 

Fig. 4.10. The “trellis” for the backward algorithm. The backward variable βt(i) is 

calculated as a function of the same variable at time t+1, according to Eq. 6.13. 

 

Decoding 

 

Given an observed sequence o = o(1),o(2),...,o(T) and a model λ, to find the 

most probable hidden state sequence s = s(1), s(2), ..., s(T), the Viterbi 

algorithm (Viterbi, 1967; Forney, 1973) is applied. It is a dynamic 
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programming solution adapted to Markov model. Let us define the 

following variables: 
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that is the highest probability which accounts for the first t observations 

ending at time t in state Si. By induction we have (Rabiner, 1989): 
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To retrieve the state sequence, we need to keep track of the arguments 

maximizing Eq. 4.20 in the variable ψt(j), for each t and j. Viterbi procedure 

for finding the best state sequence reads as follows: 

 

1. Inizialization:  
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2. Recursion: 
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3. Termination: 
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4. Path (state sequence) backtracking: 
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Learning 

 

Adjust parameters of the model λ to maximize P(o | λ) for a given 

observed sequence o = o(1),o(2),...,o(T). There is no optimal way to estimate 

the model parameters (Rabiner, 1989), but it is possible to choose them 

such that P(o | λ) is locally maximized by means of a optimization 

algorithm, such as the Baum-Welch procedure (Baum et al., 1970), that is a 

particular case of a generalized Expectation–Maximization (EM) algorithm 

(Dempster et al., 1977). Let us define the variable: 
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that represents the joint probability of state Si at time t and state Sj at time 

t+1. From the definition of backward and forward variable we can write it 

as: 
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The posterior probability of state Si at time t is: 
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This equation has the following properties: (i) the expected number of 

transitions from state Si is equal to 

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t i , while (ii) the expected number 

of transitions from state Si to Sj is equal to 
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),(
T

t
t ji . Using above 

expressions one can re-estimate the parameters of HMM, closing the loop 

of the EM-type algorithm: 
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Chapter 5 
 

Clustering 
 

 

 

The main data mining target is to explore huge amount of data to retrieve 

patterns information. Clustering is an important task in data mining, 

dealing with division of data, in order to create groups of similar objects 

that are dissimilar to the objects belonging to the other groups. It makes 

use of tools and methodologies from statistics to numerical analysis, to 

model data or, informally, to summarize data information. Clustering 

plays an important role in a wide range of application areas, from biology, 

geophysics, information technology to marketing. Such applications 

usually deal with large datasets and many attributes that need to be 

explored with automatic or semi-automatic methods. The goal of this 

chapter is to provide a comprehensive description of the main clustering 

algorithms used in data mining. A final section will be devoted to the 

description of a development of a new clustering technique. 

 

5.1 Introduction 

 

Clustering can be considered the most important unsupervised learning 

process for the hidden patterns problem; it relates to the division of 

unlabeled data into groups (clusters) of similar objects. Clustering differs 

from classification because the latter assigns objects to predefined classes 

after a supervised learning process: clustering is an unsupervised form of 

learning by observation, while classification is learning by example (Han and 

Kamber, 2000). For real time classification, clustering spends a lot of time 

to explore the entire dataset and recognize classes, because learns on 

running; while a classifier makes use of acquired knowledge to perform 

fast classification. However, during classifier training, classes labeling can 

be expensive, in terms of human resources, and very difficult: in most 

cases, it is desirable to perform clustering on initial data to obtain groups 
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of similar objects for assigning labels, and then train a classifier by means 

of these labels.  

Cluster analysis is an important activity in humans learning processes. As 

example, children learn, continuously and unconsciously, to distinguish 

between dogs and cats, or between animals and plants,  

applying clustering patterns, which for psychologists are known as laws 

of Gestalt (Hothersall, 2004). Humans perform competitively with 

automatic clustering procedures in two dimensions, but most real 

problems involve clustering in higher dimensions. It is difficult for 

humans to obtain an intuitive interpretation of data embedded in a high-

dimensional space (Jain et al., 1999). For this reason, clustering algorithms 

play an important role in a broad range of applications in many fields. In 

marketing they can be used to find groups of customers with similar 

behavior; in biology for classification of plants and animals given their 

features; in seismology for earthquake studies: by clustering observed 

earthquake epicenters, to identify dangerous zones; on social networks to 

discover social circles based on links between users; on world wide web 

for document classification; in image processing for image segmentation. 

Each application uses a particular representation for data (images, graphs, 

time series, documents, etc.): in many cases, in fact, clustering term is 

associated with “segmentation” (for images) or “partitioning” (for graphs) 

or to “pattern (or motif) discovery” when dealing with time series.  

Algorithms are applied in different manner, in relation to the managed 

data type, and to the purpose of results. A very important feature in this 

sense is the choice of  a distance or similarity measure (see Chapter 2) for 

objects comparisons; if it does not exist, algorithms have to define some, 

which is not always easy, especially for data with high number of 

attributes or containing different types of attributes.  

Managing different types of attributes is not the only requirement. 

Clustering algorithms need to overcome several issues: scalability; easy 

parameters setting; presence of noise data or outliers; dynamic systems; 

high-dimensional data. Unfortunately, it is very difficult to satisfy all these 

requirements. Indeed, current clustering techniques do not address all the 

requirements adequately, because there is no one universally applicable. 
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5.2 Definitions 

 

The main goal of clustering is to return a partition P = {C1, C2, . . . , Ck} of 

dataset D,  of cardinality k such that: 

 

jiCCCCCD jik  ,21       (5.1) 

 

The above definition (Berkhin, 2002) gives a strict sense to clustering, 

because one object can belong only to one cluster. There are other 

approaches, such as the fuzzy clustering (Yang, 1993), that relaxes this 

definition allowing an object to belong to more clusters, each with a 

corresponding probability. Generally, the definition of cluster combines 

several reasonable criteria (Gan et al., 2007): cluster objects share the same 

or closely related properties (attributes); show small mutual distance (or 

high similarity); and are clearly distinguishable from the complement (the 

rest of the objects in the dataset). For example, some researchers (Ester et 

al., 1996) suggested, for spatial databases, that datasets contain clusters if 

there are continuous and relative densely populated regions of the space, 

and these are surrounded by continuous and relatively empty regions of 

the space. 

Distance measures play an important role in data clustering, since it is 

fundamental to the definition of a cluster. To compare a pair of objects, a 

definition of relationship is needed. On literature this relation is referred 

to similarity or distance measure. When grouping similar objects, using 

similarity, the goal is to maximize the measure value; on the contrary, 

using distance, the goal is to minimize the measure value. 

 

5.3 Clustering methods 

 

In literature a wide range of clustering techniques was proposed. In this 

section we want to provide a categorization of principal types of 

clustering, and focus on description of the main techniques. The first thing 

to consider, when classifying methods, is the type of  clustering result. In 

this sense, can be distinguished hierarchical from partitioning methods, 

exclusive from overlapping and fuzzy methods, and complete versus partial 

methods (Tan et al., 2005). 
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Clustering returns a partition P = {C1, C2, . . . , Ck} of dataset D. Partitioning 

methods return a simple division of non-overlapping subsets, each of 

which is a cluster, according to (Eq. 5.1). Hierarchical methods divide the 

dataset in several levels of partitioning P1, P2, …, Pl, and establish a 

hierarchy between clusters, in the form of a tree, also called dendrogram 

(Fig. 5.1): a cluster can be a subset of a greater cluster, or contains other 

subsets corresponding to minor clusters. 

Exclusive clustering is different from overlapping clustering, because the 

former does not allow any intersection of objects between clusters (see Eq. 

5.1) while, for the latter, objects can belong to different clusters. Similar 

concept to overlapping we found for fuzzy clustering, but in this case 

clusters are considered fuzzy sets. In mathematics, an object x belongs to a 

fuzzy set Ci with a certain probability p (Zadeh, 1965):  1,0)(  iCxp , and 

the sum of all probabilities of x, calculated with respect to each cluster, 

must sum to 1: 
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Last distinction can be found between complete clustering and partial 

clustering. In the first case, every object in D is assigned to a particular 

cluster Ci in P. In the second case, there are unclassifiable objects that are 

assigned to any cluster: these objects are considered outlier or noise data. 

However, since many concepts may overlap among clustering methods, it 

is useful to present an organized classification of different clustering 

methods, based on their definition of cluster: 

 

1. Partitioning methods; 

2. Hierarchical methods; 

3. Density-based methods; 

4. Graph-based methods; 

5. Grid-based methods; 

6. Model-based methods; 

7. Subspace-clustering methods; 

8. Neural-network clustering methods. 
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Fig. 5.1. Divisive versus agglomerative hierarchical clustering (see Section 3.2). An 

example of iterations for a dataset D = {x1, x2, . . . , x8}. The constructed hierarchy tree is 

often called dendrogram. 

 

Partitioning, hierarchical, density-based, graph-based and grid-based 

methods will be explained respectively from Section 5.3.1 to Section 5.3.5. 

In Section 5.3.6 we will introduce the remaining approaches: model-based, 

subspace clustering, and neural network clustering. In Section 5.3.7 we 

will give a brief introduction to the techniques and measures used for 

validation of clustering results. 

 

5.3.1. Partitional Clustering 

 

Partitioning methods have long been the most popular algorithms before 

the advent of data mining. The most well-known and commonly used 
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partitioning methods are k-Means, k-Medoids, and their variations (Han 

and Kamber, 2000). These algorithms follow the same steps when perform 

clustering: 

 

1. Choose arbitrarily k random objects from dataset of N objects, each 

representing a cluster center, as initial solution; 

2. Assign an object to a cluster, according to the nearest center; 

3. Compute the new cluster centers after each assignment; 

4. Iterate the (2) and (3) steps, until the cluster centers do not change 

(convergence criterion). 

 

This kind of algorithm has high computational complexity, and results are 

inadequate for clustering of large dataset. In literature, other partitioning 

algorithms try to address the scalability problem, typically using 

techniques of data sampling, among them: CLARA (Clustering LARge 

Applications; Rousseeuw and Kaufman, 1990), and CLARANS (Clustering 

Large Applications based on RANdomized Search; Ng and Han, 1994) which 

obtains good clustering results with a computational complexity of O(N2) 

in the worst case. 

 

 K-Means. For k-Means algorithm (MacQueen, 1967) the centers, treated at 

the above step (2), correspond to the calculated means of each cluster. So, 

the convergence is reached when the following value, called square error 

function, does not change during iterations: 
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where mi denotes the mean of cluster Ci. The main drawback of this 

approach is the high sensitivity to outliers, because they can distort the 

distribution of calculated centers. The achievement of the convergence 

criterion is a NP-complete problem (Garey et al., 1982), so the real 

implementation of these algorithms needs to stop after a certain number of 

steps t. The total complexity of this algorithm is O(Nkt). 
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K-Medoids. k-Means performances are much altered in presence of 

outliers. To diminish such sensitivity, instead of consider a cluster means 

as centers, is useful to pick a representative object (often the median) from 

cluster and elect it as center. In this case, the center is a real data object, not 

imaginary. Differently from k-Means, at each iteration, the centers are not 

calculated. Every time, a new representative object orandom is selected from 

data and replaced with another existent representative object oj, only if 

orandom error  results less than oj error. The error function will be calculated 

as: 
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where oi denotes the representative object of cluster Ci. PAM is the first 

algorithm to implement k-Medoids method. The complexity of each 

iteration is O(k(N-k)2) (Han and Kamber, 2000). For large values of N and k, 

such computation becomes very costly. To deal with larger data sets, it is 

necessary to sample data. CLARA is a more efficient implementation of k-

Medoids method working only with a small portion, chosen from the data 

(a sample). If the selected sample is a good representative, the clustering 

result will be similar to PAM, but with a computational time complexity 

O(ks2+k(N-k)), where s is the sample size (Han and Kamber, 2000). 

However, it is not always easy to make a good choice for the 

representative sample (Gonzalez, 1985). 

Another improvement of k-Medoids algorithm is CLARANS. Respect to 

CLARA, where the selected sample is fixed for all iterations, CLARANS 

performs a selection of a random sample in each iteration. 

One of the limits of partitioning methods is the a-priori establishing of the 

number k of clusters. It is not a simple choice to understand the optimal 

number of clusters into a dataset, and the literature offers a wide range of 

techniques to perform a comparison between different clustering results 

(an exhaustive review can be found in Halkidi et al., 2001). An interesting 

feature of this method is the determination of the “natural” number knat of 

clusters in a database. They propose to run CLARANS once for each k from 

2 to N. For each clustering result, a clustering validity measure, called 

silhouette coefficient (Rousseeuw and Kaufman, 1990), is calculated. The 
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clustering with maximum score is chosen as the “natural” clustering. 

Unfortunately, this enhancement adds computational complexity, and the 

running time of this approach is also prohibitive for large N, because it is 

has O(n2) complexity.  

Both k-Means and k-Medoids methods are centroid based, and their 

application is useful when clustering dataset contain spherical shape 

clusters. They obtain low quality of clustering when deal with clusters of 

arbitrary shape. 

 

5.3.2. Hierarchical Clustering 

 

Hierarchical clustering algorithms can be classified into two main types: 

agglomerative and divisive (Fig. 5.1). In agglomerative (or bottom-up) 

hierarchical clustering, the two most similar clusters are merged to form a 

large cluster at each step, and this processing is continued until the 

desired number of clusters is obtained. In a divisive (or top-down) 

hierarchical algorithm, the process is reversed by starting with all data 

points into one cluster, and subdividing it into smaller clusters by several 

criteria (Gan et al., 2007).  

In both cases, it is necessary to establish a way to measure distance 

between an object and a cluster or between two clusters. Let us start by 

taking reference on agglomerative technique (for divisive technique will 

be the exact opposite). Let be D a dataset of size N, P0 = {C1, C2, . . . , Cn0} the 

first partitioning of D, where each object corresponds to a cluster (n0 = N), 

and Pl = {C1, C2, . . . , Cnl}, the partitioning of D at level l (nl < nl+1 ≤ n0). The 

iterative criterion is to find, at each level l, the most similar pair of cluster 

Cr and Cs (0 < r, s < nl) such that the distance between them is minimized. 

The following subsections describe the most popular ways to form 

hierarchies between clusters. 

 

Mean Distance (Fig. 5.2a). By this method, distance between clusters is 

calculated by calculating distance between cluster centers. It is used for the 

average-linkage hierarchical clustering. Let be μ the cluster center of C, 

calculated as: 
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Then, the distance between Cr and Cs is defined as: 
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Minimum Distance (Fig. 5.2b). Used for single-linkage hierarchical 

clustering. In this case, distance between clusters Cr and Cs is calculated 

taking into account the pair of object xi and xj, belonging respectively to Cr 

and Cs, which are closer: 
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Maximum Distance (Fig. 5.2c). Opposite to the minimum distance 

criterion, it is used for complete-linkage hierarchical clustering. In such a 

way, the distance between clusters Cr and Cs is calculated taking account 

of the pair of object xi and xj, belonging respectively to Cr and Cs, that are 

farthest: 
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Average Distance (Fig. 5.2d). In this case, the distance between clusters Cr 

and Cs corresponds to the average distance of all pair distances between xi 

and xj, belonging to Cr and Cs, respectively: 
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Two algorithms which specify agglomerative and divisive methodologies 

are AGNES (AGglomerative NESting) and DIANA (DIvisive ANAlysis; 

Rousseeuw and Kaufman, 1990), among the first to implement the 

hierarchical clustering. AGNES and DIANA today are exceeded, because 

do not address to several issues, such as the recognition of clusters of 

arbitrary shape (natural clusters), and are very sensitive to the presence of 
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noise or outliers. Therefore, other sophisticated techniques were proposed. 

In particular, for hierarchical clustering, we want to mention BIRCH 

(Balanced Iterative Reducing and Clustering using Hierarchies; Zhang et al., 

1997), CURE (Clustering Using REpresentatives; Guha et al., 1998), ROCK 

(RObust Clustering using linKs; Guha et al., 1999) and CHAMELEON 

(Karypis et al., 1999). 

 

 
 

Fig. 5.2. Distance measure between clusters. (a) Mean distance. (b) Minimum distance. 

(c) Maximum distance. (d) Average distance. 

 

BIRCH. BIRCH is a hierarchical clustering algorithm, whose best 

peculiarity is the high data compression level. It is best indicated when 

data objects are vectors of numbers. 

The basic concept about this method is to group data in several sub-

clusters, whose number is much less than dataset cardinality, into a 

balanced tree data structure, called CFTree. Each node of the tree, called 

Cluster Feature (CF), is a light data structure, saved on the host device 

central memory, containing statistics about sub-tree starting from it. These 

two structures allow speed-up operations of inserting, deleting and 

searching, especially for large dataset, since operations in balanced tree 

have O (log N) computational complexity. CF is a record <n, LS, SS> 

summarizing as follow: number n of points of the sub-cluster, a vector LS 

representing the linear sum of sub-cluster’s objects, and a vector SS 
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representing the square sum of sub-cluster’s objects. These clustering 

features are sufficient to calculate all of the measurements needed for 

making clustering decisions in BIRCH (Han and Kamber, 2000). 

The CFTree management requires the setting of two parameters: B 

(branching factor), and T (threshold), indicating respectively the maximum 

number of children for internal tree nodes, and the maximum diameter of 

sub-clusters contained in the leaf nodes. There are two main phases in the 

CFTree: (i) the initialization phase, where data are disposed into a 

hierarchy of clusters, corresponding to the tree structure; and (ii) the 

updating phase, where all operations of insertion are performed. If a leaf 

node have a diameter greater than T, it is necessary to perform a split of 

the sub-cluster. 

The overall complexity of BIRCH algorithm is O(N). The main drawbacks 

of this method are: (i) it has limited effectiveness when dealing with 

clusters of arbitrary shape, because of using notion of diameter for clusters 

boundary; (ii) outliers or noise data can bring to several undesirable 

splitting operations. It is more robust when managing spherical clusters. 

 

CURE. Algorithms often make use of a central cluster object to represent 

the entire cluster (i.e. the mean object). CURE algorithm makes use of a set 

of well distributed points to represent a cluster, instead of a single object. 

This feature produces two immediate positive results: (i) it is possible to 

discover also clusters of ellipsoidal shape (but not of arbitrary shape yet); 

(ii) the clustering is less sensible to noise, even if it is not specific for 

outlier discovery.  

It is an agglomerative method, so initially each input object is a cluster. In 

order to compute the distance between a pair of clusters, for each cluster, c 

representative points are stored. These are determined by first choosing c 

well scattered points within the cluster, and then shrinking them toward 

the mean of the cluster by a fraction α (Han and Kamber, 2000). The 

distance between two clusters is then the distance between the closest pair 

of representative points (Eq. 5.7; Guha et al., 1998). Its computational 

complexity is O(N2 log N) in the worst case. The parameter α is used to 

control the shapes of clusters. 
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ROCK. ROCK is born to deal with categorical data. ROCK performs 

distance comparisons for clustering, by considering the neighborhoods of 

each data object. The ROCK idea is that, if two objects x, y, have similar 

neighbors, then they are very similar and can be merged. The used 

similarity measure, called Jaccard’s coefficient, is the exact opposite of the 

distance introduced in (Eq. 2.20). In this case we consider the number of 

same neighbors as the number of same attributes: 
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If the Jaccard’s coefficient between x and y exceeds a specified threshold ϴ 

(i.e. sim(x,y) ≥ ϴ), then x and y are merged in the same cluster. Based on 

this definition, after calculating the similarity matrix for each pair of 

objects, ROCK first builds links between objects having similarity greater 

than ϴ, to obtain a sparse graph of similarity. Then, it performs 

agglomerative hierarchical clustering on this graph. Guha et al. (1999) 

demonstrated that the worst-case time complexity of ROCK is 

O(N2+Nmmma+N2logN), where mm and ma are the maximum and average 

number of neighbors, respectively, and N is the number of objects. 

 

CHAMELEON. CHAMELEON guarantees better performances than 

previous agglomerative hierarchical clustering algorithms, since it 

overcomes the principal limitations of ROCK and CURE algorithms.  

CURE is able to find clusters of different shape and size, because it uses 

the closeness relation  (Eq. 5.7),  which emphasizes clusters proximity, to 

perform hierarchical agglomeration. However, it ignores information 

about the interconnectivity of items in two clusters. Contrariwise, ROCK 

ignores information about the closeness of two clusters, because it uses 

links (or similar neighbors) to define similarity: even if a pair of objects x 

and y in different clusters are neighbors, it is very unlikely that the pairs 

have a large number of common neighbors. For the definition of links, the 

interconnectivity between clusters is emphasized, but proximity between 

clusters is ignored. Chameleon tries to overcome weakness of both 

algorithms, by taking account of both interconnectivity and closeness when 

identifying clusters. The Chameleon algorithm has four main phases (Fig. 

5.3): 
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1. Calculates for each data object, its first k more similar objects, or kNN (k 

Nearest Neighbors); 

2. Builds the k-nearest-neighbors graph, where each node corresponds to a 

data object. An edge between nodes indicates that the two represented 

objects share more than k neighbors;  

3. Partitions graph into clusters, by minimizing the edge cut (see Section 

5.3.4): given a cluster C, it corresponds to find the minimum weight of 

edges, whose elimination makes two disconnected partitions Ci and Cj 

from C. Karypis et al. (1999) refer to this value as absolute 

interconnectivity EC(C) or EC(Ci, Cj); 

4. Applies the agglomerative hierarchical clustering, by iteratively 

merging pairs of clusters whose relative interconnectivity RI, multiplied 

by the relative closeness RC, is the highest. The iteration stops when 

there are only a user-defined number of clusters. 

 

The edge cut measures the absolute interconnectivity of two partitions. 

The relative interconnectivity RI(Ci, Cj) between two clusters Ci and Cj, is 

calculated as the ratio of the absolute interconnectivity between the two 

clusters EC(Ci, Cj), and the mean of internal interconnectivities of each 

single cluster EC(Ci) and EC(Cj): 
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By using relative interconnectivity, Chameleon overcomes the limitation 

of establish an absolute interconnectivity value for all clusters, making it 

flexible to the discovery of cluster of different shapes and densities.   

In the same way we can calculate the relative closeness defining the 

absolute closeness of clusters SEC(Ci, Cj), that is the average weight 

(opposed to the sum of weights for interconnectivity) of the edges that 

connect vertices in Ci to those in Cj. The relative closeness is defined as: 
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The average weight computation makes the algorithm more tolerant to the 

presence of outliers and noise, especially if we consider that connections 

between clusters come from the k-nearest-neighbors graph. In the first 

phase of the algorithm, the graph construction highlights the identity of 

outliers and noise. The computational complexity of this algorithm is 

O(N2) in the worst case. 

 

 
 

Fig. 5.3. An illustration of Chameleon phases. Redrawn from Karypis et al. (1999). 

 

5.3.3. Density-based Clustering 

 

Density-based clustering allows discovering clusters of arbitrary shape. 

Here, clusters are defined as dense regions of objects in the data space, 

separated by regions of low density, which represent noise. The basic idea 

of density-based algorithms, first proposed in DBSCAN (Ester et al., 1996), 

is to grow a given cluster guaranteeing that the density in its 

neighborhood, represented by the surrounding number of objects, exceeds 

some specified threshold. This kind of algorithm is able to detect clusters 

of arbitrary shape. A further product of clustering is to filter out outliers 

(or noise). Since outliers carry useful hidden knowledge related to a 

potential abnormal behavior, their detection has been applied in fields 
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such as fraud detection, intrusion discovery, marketing, and 

pharmaceutical testing.  

In the following subsection we will examine three principal algorithms, 

basilar for the development of further enhanced density-based methods, 

focusing on cluster definitions rather than the computational complexity: 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise; Ester et 

al., 1996), OPTICS (Ordering Points To Identify the Clustering Structure; 

Ankerst et al., 1999) and DENCLUE (DENsity based CLUstEring; Hinneburg 

and Keim, 1998). 

 

DBSCAN. DBSCAN relies on the idea that objects, which form dense 

regions, should be grouped together into clusters. Usually DBSCAN runs 

on data sets drawn from a metric space and uses a distance function to 

compare objects. Given a data set D of N objects, and two fixed threshold 

values, ε and MinPts, DBSCAN makes use of the following structures and 

definitions (Ester et al., 1996): (i) ε-neighborhood, (ii) core object, (iii) directly 

density-reachable, (iv) density-reachable and (v) density-connected clusters.  

 

 
 

Fig. 5.4. Examples of (a) directly density-reachable, (b) density-reachable and (c) 

density-connected in density-based clustering (from Cannata et al., 2011a). Suppose 

MinPts = 3. Grey and black dots indicate the points to group into clusters, black circles 

delineate the area of radius ε  around black dots, the arrow denotes the relation of 

direct density-reachability. In (a) dot p is the so-called core point, while q is directly 

density-reachable from p. In (b) dot q is density-reachable from p. In (c) dot q is 

density-connected to p and o is a point such that both p and q are density reachable 

from o. 

 

DBSCAN defines the ε-neighborhood of an object p as the set of objects Nε 

that fall within a circle of radius ε, centered in p. If |Nε| ≥ MinPts then p is 

called a core object. All points in Nε are called directly density reachable from 

p (Fig. 5.4a). An object p is density-reachable from an object q if there is a 

chain of objects p1,...,pm, p1 = q, pm = p such that each pi+1 is directly density-
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reachable from pi, for 1 ≤ i ≤ m (Fig. 5.4b). A point p is density-connected to a 

point q if there is a point o such that both, p and q, are density reachable 

from o (Fig. 5.4c). A cluster is a maximal set of density-connected objects. 

DBSCAN scans once object in D, and for each object p, it checks its Nε. 

When Nε contains more than MinPts, it creates a new cluster with p as core 

point, and iteratively collects directly density-reachable points from p. The 

process terminates when no new points can be added to any cluster. A 

point in D is an outlier if does not belong to any cluster. The space can be 

indexed to speed up the kNN search. In such a case the computational 

complexity of DBSCAN is O(N log N), where N is the number of points in 

the dataset. Otherwise, it is O(N2).  

The basic structure of DBSCAN presents a particular shortcoming when 

clusters having different densities have to be discovered (Fig. 5.5). Since 

the definition of density is set at the beginning, by parameters MinPts and 

ε, such a global setting could cause low quality clustering. Usually, 

empirical parameters setting is difficult to determine, especially for real-

world or high-dimensional data.  

 

 
 

Fig. 5.5. An example of clustering with DBSCAN, using PyDBSCAN software (Cassisi 

et al., 2011a). The dataset presents clusters of different densities. (a) MinPts = 10 and ε = 

8. The ε is large enough to permit DBSCAN to find the green cluster (into red circle), 

but is too large to distinguish different clusters into the blue cluster (into yellow 

circle). (b) MinPts = 10 and ε = 15. The ε is small enough to permit DBSCAN to find the 

three clusters circumscribed by yellow circles, but is too small to detect the cluster 

indicated by the red circle. 

 

Many other sophisticated techniques have been proposed to overcome 

these limitations: SNN (Ertoz et al., 2003) meets the problem of variety in 

density and high-dimensionality. Other approaches, including automatic 
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parameter settings, can be found in (Vadapalli et al., 2006) and (Cassisi et 

al. 2012b; see also Section 5.5.2). The notion of density-connectivity of 

DBSCAN has been used also for subspace clustering (Zimek, 2008; see also 

Section 5.3.6). 

 

OPTICS. In the previous subsection, it has been noted how parameter 

setting can affect clustering results on DBSCAN. In many cases, to 

understand the best combination of parameter values MinPts and ε, it 

should be convenient to run several executions of the algorithm. 

Unfortunately, the search for the different pairs of parameters can bring to 

long computation time. However, it has also been noted how a single pair 

of parameters can be adequate only partially, when different densities are 

present into the dataset. To overcome these problems, OPTICS algorithm 

is used. Even if it is not a real clustering algorithm, it makes an ordered list 

of the dataset objects, which reflects the density structure of dataset 

clusters. This structure contains information, which can be extractable 

running DBSCAN with a wide range of density levels. 

Fixed a value for MinPts, and a sufficient large value for ε, it stores for 

each point two interesting values, the core-distance and the reachability-

distance, first defined by Ankerst et al. (1999), representing the relative 

density value. 

Let p be an object from a database D, let ε be a distance value, let Nε(p) be 

the ε-neighbourhood of p, let MinPts be an integer number and let kdist(p) be 

the distance from p of its kth nearest neighbour. The core-distance cd, with 

respect to ε and MinPts, of object p is defined as:  
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The core-distance is the smallest distance ε’ between p and an object in its 

ε-neighbourhood such that p would be a core object. 

Let p and o be objects from a database D, the reachability-distance rd, of p 

with respect to ε, MinPts, and o is defined as:  
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The reachability-distance of p is the smallest distance such that p is 

density-reachable from a core object o. 

The above values are useful for DBSCAN to extract clusters for each ε’< ε. 

Furthermore, the reachability plot offers a high informative content (Fig. 

5.6). Algorithms based on its study, such as ξ-clustering (Ankerst et al., 

1999), cluster_tree (Sander et al., 2003), or that proposed by Brecheisen et al. 

(2004), can catch, if exist, hierarchies between clusters and then build the 

relative dendrogram. 

 

 
 

Fig. 5.6. An example of the reachability plot (red line on bottom plot) for a dataset of N 

= 473 objects. “Valleys” on the red line correspond to the clusters. 

 

DENCLUE. The basic idea of this algorithm is to establish how objects can 

influence each other: greater the influence, the shorter the distance among 

them, and vice versa. The algorithm needs a definition of “influence” 

function for each point, which indicates this relation. At this point, it is 

intuitive to understand that clusters are disposed into space regions where 

the sum of objects influence is high. DENCLUE bases on the following 

definitions: (i) basic influence function (ii) density function, (iii) gradient, (iv) 

density attractor, and (v) density attracted.  

Let be x and y two objects of dataset D, the basic influence function fB(x,y) 

describes the influence of a data object y, respect to x. Hinneburg and 
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Keim (1998) provided two examples of basic influence function, the Square 

Wave influence function and the Gaussian influence function: 
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Both functions depend on σ: greater its value, the greater the influence of y 

on x. 

The density function fBD(x) indicates the influence of the entire dataset on x. 

It can be calculated as the sum of the basic influence function of all data 

objects in D, respect to x: 
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In real applications, the computation of density function fBD(x) needs to be 

approximated to fBkNN(x)(x), since it is very expensive to compute it for all 

objects in dataset: a density information for x can be taken by exploring 

only its neighbors, so (Eq. 35) can be transformed in: 
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The gradient of the density function fBD is defined as: 
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Clusters can then be determined mathematically by identifying density 

attractors, where density attractors are local maxima of fBD. An object x is 

density attracted from a density attractor x*, if there is a chain of object x0, 

x1, …, xk, such that the gradient of xi-1 is in the direction of xi (or have the 

same sign), for each 0 < i < k. More formally:  
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In what follows we can give two definitions of cluster for DENCLUE 

(Hinneburg and Keim, 1998): 

 

1. Given parameters σ and ξ, a center-defined cluster of a density attractor 

x*, is a subset of object C of D, such that for each x in C, x is density 

attracted from x*, and fBD(x*) ≥ ξ. All objects in D density attracted by 

an x0* having fBD(x*) ≤ ξ, are considered outliers. 

2. Given a set of density attractors X, parameters σ and ξ , an arbitrary 

shape cluster is a subset of object C of D, which satisfies the two 

following conditions: (i) for each x in C, exists a x* in X, such that x is 

density attracted from x*, and fBD(x*) ≥ ξ; (ii) for each pair x1* and x2*, 

exist a path P of objects in D, from x1* to x2*, such that fBD(p) ≥ ξ, for 

each p in P. 

 

It is interesting to observe the general formal structure of DENCLUE. 

Depending on the basic influence function, and on the chosen parameters 

σ and ξ, this algorithm traces other clustering methods. For example, 

using the square wave influence function, the search for arbitrary shape 

clusters coincides with DBSCAN, with MinPts = ξ, and ε = σ. Indeed, the 

density attractor definition equals to the core object definition, while 

density attracted definition equals to directly density-reachable definition. 

More, using different values of σ (Fig. 5.7), it is possible to produce 

hierarchies of cluster, typical in hierarchical clustering: starting with small 

σ values, for smaller clusters, going to greater values of σ, to find cluster 

even larger, until all objects are merged in only one cluster: the root of the 

dendrogram. 

To speed up computations, space can be indexed, by creating a map of the 

space, and memorizing it into a tree indexing structure. The first step 

consists of data space subdivision into hypercubes with an edge length of 

2σ. In this sense, it can be also considered a grid-based algorithm (see 

Section 3.5). In the light of it, the density function is calculated for each 

populated hypercube H. A hypercube H is said to be a highly populated 
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hypercube if |H| ≥ ξc, where ξc is an outlier bound. Two hypercubes H1 

and H2 are said to be connected if d(mean(H1), mean(H2)) ≤ 4σ. 

 

 
 

Fig. 5.7. On top, the plotting of Fisher’s Iris dataset (Fisher, 1936), where X corresponds 

to the first attribute (sepal length), and Y to the third (petal length). On the bottom, 

from left to right, several density function distributions on grid, using an even larger 

σ. Redrawn from Hinneburg and Keim (1998). 

 

5.3.4. Graph-based Clustering 

 

Graph-based algorithms analyze dataset clusters, by representing the 

dataset as a particular data structure G, a graph, consisting in a set V of 

vertices (or nodes), and a set E of edges, connecting pairs of vertices (Fig. 

5.8). The graph construction is usually based on the distance matrix (Eq. 

2.6) calculated on the dataset.  It is usual to map a dataset object x with a 

vertex v, and distance or similarity relation (satisfying several conditions) 

between objects with edges. The cluster analysis will come from studying 

the graph structure (as we have just seen for CHAMELEON algorithm in 

Section 5.3.2). In this section, we will define what is graph clustering, and 

we will present some of the most common techniques to perform it. 
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Fig. 5.8. An example of a graph G with 9 vertices. Redrawn from Tang and Liu (2010). 

 

Graph clustering is the task of grouping the vertices of the graph into 

clusters, taking into consideration the edge structure of the graph, in such 

a way that there should be many edges within each cluster and relatively 

few between the clusters (Schaeffer, 2007). In literature, the graph clustering 

problem is also known as graph community detection problem (Tang and 

Liu, 2010; Fortunato, 2010). Approximately, graph clustering techniques 

are classified into four categories (Tang and Liu, 2010), depending on the 

community definitions: 

 

1. Node-Centric Community; 

2. Group-Centric Community; 

3. Network-Centric Community; 

4. Hierarchy-Centric Community; 

 

Node-Centric Community. Vertices belonging to a cluster (or community) 

satisfy certain properties. It is usual to consider cluster a subset of vertices 

of the graph, where every two vertices in the cluster are connected by an 

edge (or forming a clique). Clique definition for clusters is very strict, and 

its detection is an NP-complete problem (Schaeffer, 2007). There are several 

methods belonging to this class, as the Clique Percolation Method (CPM; 

Palla et al., 2005), that relaxes this definition, allowing also overlapping 

between clusters. Given in input a parameter k, after discovering all 

cliques of size k in the graph G, the CPM target is to create a graph of 

cliques G’. In G’ each found clique is a node, and edges are drawn for each 
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pair of cliques sharing k-1 vertices. The connected components (Cormen et 

al., 1990) of the resulting graph are considered clusters. 

 

Group-Centric Community. The definition of cluster is relative to density, 

or the number of edges connecting cluster vertices. In this category, a sub-

graph G’(V’, E’) is considered to be a cluster if it is a quasi-clique, or γ-dense, 

that is: 
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Consider that a clique of size k, have a total number of k(k-1)/2 edges 

connecting all its vertices. Thus, if the sub-graph G’ is a clique, the left side 

of (Eq. 5.21) is equal to 1. 

 

Network-Centric Community. Network-centric criterion needs to consider 

the connections within a network in a global sense (Tang and Liu, 2010). 

There are several approaches in this category, such as the clustering based 

on vertices similarity, usually defined from the Jaccard’s coefficient (Eq. 

5.10) or the cosine similarity (Eq. 2.11). Among them we will focus on 

spectral clustering, one of the most interesting technique for graph 

clustering (von Luxburg, 2006). 

As we mentioned before, a graph G is usually represented by a N × N 

distance matrix (Eq. 2.6), where N is the number of vertices in G; we refer 

to this structure as A. Spectral clustering makes strong use of matrices, 

because global information about graph structure can be provided by the 

spectrum of the matrix. The matrix spectral analysis refers to the 

computation of the matrix eigenvectors (Friedberg et al., 1989), ordered by 

the magnitude (strength) of their corresponding eigenvalues. 

All spectral clustering algorithms consist in four basic stages: (i) the 

construction of a matrix representation, the utility matrix, depending on 

the objective function; (ii) the computation of eigenvalues and 

eigenvectors of the utility matrix; (iii) the mapping of each vertex to a 

lower-dimensional representation, based on more or less important 

eigenvectors (again depending on the objective function); (iv) clustering 
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by applying algorithms as k-Means (Section 3.1.1) to cluster on low 

dimensional space. 

When partitioning graphs, there are several models or objective functions 

to follow (Tang and Liu, 2010): 

 

1. Latent space model. The objective function is to map vertices on a low 

dimensional space, where distances between vertices are preserved, 

respect to the original space. This can be done by using, for instance, 

the MDS (Multi-Dimensional Scaling) (Borg and Groenen, 2005). Given 

a distance matrix A for G, let be S a N × l matrix representing the 

dataset of cardinality N on the low dimensional space, with l attributes. 

It can be shown that (Borg and Groenen, 2005):  
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where I is a N × N  identity matrix (or the matrix containing all zero 

elements, except on the diagonal, where elements are set to 1), ||1|| is 

a N-dimensional column vector, and ° indicates the element-wise 

matrix multiplication. The objective function is to minimize the 

difference SST – P. The MDS problem corresponds to find the top 

eigenvector V of P, since the optimal S corresponds to VΛ1/2 (Tang and 

Liu, 2010), where Λ are the largest eigenvalues corresponding to V. The 

utility matrix to use for spectral clustering is P. 

 

2. Minimum cut problem using the edge cut (or minimum cut). We 

remember that cut(Ci, Cj) is the minimum weight of edges in a cluster 

C, whose elimination makes two disconnected partitions Ci and Cj 

(Section 5.3.1). If all edges have the same weight, it is the minimum 

number of edges disconnecting two partitions Ci and Cj. The edge cut 

often returns an unbalanced partition (Fig. 5.9). There are other 

different ways to estimate a cut. The ratio cut, and the normalized cut for 

a particular partitioning π are: 
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where vol(Ci) indicates the number of edges in Ci (or degree of Ci). Both 

ratio cut and normalized cut prefer balanced partitions (Fig. 5.9).  

In this case spectral clustering can take advantage of two main types of 

utility matrix, corresponding to the name of Laplacian matrices. Before 

introducing them, we will define the degree matrix D, where each cell (i, 

i) indicates the degree of the ith vertex in G. The degree of a vertex v is 

denoted as the number of edges incident to it. D is a diagonal matrix, 

since non-zero elements are only on the trace. Both D and A are N × N 

matrices. 

The first type of Laplacian matrix is the unnormalized Laplacian matrix, 

defined as: 

 

ADL          (5.25)  

 

usually used for the ratio cut approach.  

 

 
 

Fig. 5.9. An example of different partitions on a graph G of 9 vertices, where edges 

have the same weight. Redrawn from Tang and Liu (2010). The green dashed line 

represents the minimum cut (or edge cut), that produces an unbalanced partitioning π1. 

The red dashed line represents another cut producing a balanced partitioning π2. If we 

compute the normalized and the ratio cut for both partitions, we can see that both 

measures prefer the balanced partition π2: ratio_cut(π1) = 1/2 (1/1 + 1/8) = 9/16 = 0.56 > 

ratio_cut(π2) = 1/2 (2/4 + 4/5) = 9/20 = 0.45; normalized_cut(π1) = 1/2 (1/1 + 1/27) = 14/27 = 

0.52 > normalized_cut(π2) = 1/2 (2/12 + 2/16) = 7/48 = 0.15. 
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There are two versions of the second type, for the normalized cut 

approach, introduced by Shi and Malik (2000) and Ng et al. (2002), 

called normalized Laplacian matrix, and defined as: 

 

)( 2/12/1  ADDILsym       (5.26) 
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The objective function corresponds to find the top eigenvectors of L, 

with the smallest eigenvalues. 

 

3. Modularity maximization. Modularity measures the strength of a 

community partition by considering the degree distribution. The 

modularity for a cluster C is the fraction of the edges that fall within C, 

minus the expected (didj / 2N): 
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where di and dj are respectively the degrees of vertices i and j in C, and 

m is the total edges in the graph of size N. If the graph is partitioned 

into k clusters, the modularity for the entire graph will be: 
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For larger value of M(G), the graph G presents a good community 

structure. Then, for spectral clustering, the utility matrix is the 

following modularity matrix B:  

 

)2/( mDDAB T        (5.30) 

 

and the objective function corresponds to find the top eigenvectors of 

B, with largest eigenvalues. 
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Hierarchy-Centric Community. The approach is similar to that introduced 

in Section 5.3.2. There are both divisive and agglomerative methods. For 

agglomerative methods, in the initial phase, each vertex is a cluster, and 

they are merged iteratively into large communities, following a certain 

criterion among those, proposed above, for graph clustering. For divisive 

methods, the entire graph is initially a community. A common technique, 

to iteratively build lower level communities, is to recursively remove the 

“weakest” edge, or the edge with highest betweenness. The betweenness is 

the number of shortest paths connecting any pair of vertices that pass 

through the edge (Schaeffer, 2007): edges with higher betweenness tend to 

be “bridges” within communities (Tang and Liu, 2010). 

 

5.3.5 Grid-based Clustering 

  

In general, a grid-based clustering algorithm consists of the following five 

basic steps (Gan et al., 2007): (i) partitioning the data space into a finite 

number of cells (or creating grid structure); (ii) estimating the cell density 

for each cell; (iii) sorting the cells according to their densities; (iv) 

identifying cluster centers; and (v) traversal of neighbor cells. The main 

feature of grid-based clustering is that it can take advantage of parallel 

processing, to significantly reduce the computational complexity. Among 

them we will discuss the most known STING (STatistical INformation Grid-

based method) (Wang et al., 1997) and Wavecluster (Sheikholeslami et al., 

1998) algorithms. Grid-based methods are fast and handle outliers well. 

Grid-based methodology is also used as an intermediate step in many 

other algorithms as CLIQUE (see Section 5.3.6). 

 

STING. The algorithm STING is designed to deal with numerical 

attributes (spatial data) and to allow region oriented queries (Berkhin, 

2002). STING builds a hierarchical tree, where each node is a grid cell 

having four children (default), each of which is a grid cell, recursively (Fig. 

5.10). In a bottom-up way, from leaf nodes to root, it collects the following 

statistical information for each grid cell: number of contained objects, 

mean, standard deviation, minimum, maximum and distribution type. 

Higher level cells statistical information can be easily obtained from the 

lower level cells. 
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The type of distribution is measured by using a chi-squared (χ2 ) test 

(Greenwood and Nikulin, 1996). If the aggregate distribution of an higher 

level cell does not correspond with the children cells’ distribution, it is set 

to none.  

STING offers several advantages: (i) the grid structure allows statistical 

information for each cell, and these are calculated once through the 

database in O(N) time, in the initial phase; (ii) after generating the 

hierarchical structure, the query processing time is O(g), where g is the 

total number of grid cells at the lowest level, which is usually much 

smaller than N. However, the quality of clustering is high sensitive to the 

grid resolution. When resolution gets lower, although it allows fast 

processing time, the clustering result may appear “isothetic” (Han and 

Kamber, 2000). During the clustering process, it considers spatial 

relationships between neighboring children, only on horizontal or vertical 

boundary, by excluding diagonal. Then, the lower the resolution, the 

lower the quality. 

 

 

 
 

Fig. 5.10. Hierarchical grid structure of STING. Redrawn from Wang et al. (1997). 

 

Wavecluster. This algorithm also works with numerical attributes, and 

supports an advanced multi-resolution, since it bases clustering analysis 

on the wavelet transform, a very common technique in signal processing 

(Chui, 1992; Graps, 1995). Wavelet transform has also been used to 
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compress data (Chan and Fu, 1999). To understand how to take advantage 

of this technique, it is necessary to discuss the relationship between spatial 

data and multidimensional signals (Sheikholeslami et al., 1998). 

Multidimensional spatial data objects can be represented in an m-

dimensional space, called also feature space. Numerical attributes of a 

spatial object are represented by a vector (see Chapter 2), where each 

element corresponds to a numerical attribute, or feature. Thus, an object 

with m numerical attributes represents a point in the m-dimensional 

feature space. Data clustering means to identify sparse and dense regions 

on this feature space. 

Now, look at the feature space from a signal processing perspective 

(Sheikholeslami et al., 1998). Objects on the feature space form a m-

dimensional signal. The high frequency sections of the signal correspond 

to the cluster boundaries on the feature space, while low frequency 

sections correspond to the regions of the feature spaces where objects are 

concentrated (cluster centers).  

Wavelet transform is a signal processing technique that decomposes a 

signal into different frequency sub-bands (for example, high frequency 

and low frequency sub-bands). The key idea in this approach is to apply 

wavelet transform on the feature space to find low frequency parts that 

correspond to clusters. 

 

 
 

Fig. 5.11. Multi-resolution of a feature space. a) High resolution; b) medium resolution; 

c) low resolution.  From Sheikholeslami et al. (1998). 

 

Main features: (i) unsupervised clustering, since it does not need any input 

parameter; (ii) effective outliers removing, by using low pass filters; (iii) 

hierarchical clustering, because it finds clusters at different levels of 
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resolution (Fig. 5.11), by the multi-resolution decomposition property of 

wavelet transform (Chui, 1992); (iv) fast computation time, since wavelet 

transform computation needs O(n) time, and can also be parallelized. 

 

5.3.6 Other techniques 

 

In this section we will give a concise introduction to the other approaches 

for clustering. We will start from model-based clustering, that defines 

cluster objects as samples coming from a particular statistical distribution. 

Then, we will present some suitable approaches for dealing with high-

dimensional data: subspace clustering and neural networks.  

 

Model-based Clustering. Model-based clustering methods try to find a 

statistic model for data. They assume that data are generated by a mixture 

of underlying probability distributions (Fraley and Raftery, 2002). Each 

cluster is assumed to come from each distribution. The clustering problem, 

in this case, becomes the estimation of the parameters of the assumed 

mixture model. 

Let pj (xi | ϴj) be the probability of finding an object xi of dataset D, in the 

jth distribution, where ϴj are the parameters of the jth distribution; and let 

k be the number of distributions (or clusters) in the mixture. The likelihood 

λ of the observed objects in D is:  
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where γj is the probability that an object belongs to the jth distribution. 

In the mixture likelihood approach, the goal is to estimate the parameters 

ϴj (for 0 < j ≤ k) that maximize the above value. If we assume that data 

come from a mixture of k Gaussian distribution, we aim to find mean and 

standard deviation of each distribution that maximize the likelihood λ 

(Fig. 5.12). 

The EM (Expectation-Maximization; Dempster et al., 1977) algorithm is the 

most widely used method for estimating the parameters of a finite mixture 

probability density (Gan et al., 2007). Partitional algorithms, such as k-

means (Section 5.3.1), are usually included in this class of clustering 
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algorithms, since the center refinement process, can be implemented using 

the EM algorithm. Among model-based algorithms we refer to MCLUST 

(Fraley and Raftery, 1999). 

 

 
 

Fig. 5.12. Model based clustering, using MCLUST (Fraley and Raftery, 1999), on Fisher’s 

Iris dataset (Fisher, 1936), by selection of sepal length and petal length attributes. In 

this case the selected model is Gaussian. Each cluster is overlaid by the relative shape 

of Gaussian distribution function.  

 

Subspace Clustering. Subspace clustering deals with clustering of high 

dimensional data. A common way to overcome problems of high 

dimensional data spaces, is to map them into lower dimensional spaces, 

by selection of a small number of feature (feature selection), or extracting a 

set of new feature (feature extraction), where data variance is maximized, 

similarly to the Principal Component Analysis (PCA; Smith, 2002; also 

described in Appendix C). Unfortunately, these methods bring to a partial 

evaluation for clustering, because take in consideration only clusters 

extractable from a single combination of features. The idea behind this 
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approach is that different clusters can be discovered selecting different 

subsets of attributes (or subspaces). A naïve solution, to solve this limit, is 

to test all possible subspaces to find clusters. However, in real applications 

this search can be expensive, since all potential subspaces for a dataset 

with m attributes (features) are 2m – 1. The literature offers several methods 

to find clusters on subspaces. Here we sketch two of the most known 

algorithms: CLIQUE (Agrawal et al., 1998) and PROCLUS (Aggarwal et al., 

1999).  

CLIQUE was the first algorithm to treat the subspace clustering. It uses a 

grid-based approach, because divides the space into equi-sized cells of 

width ξ. Only cells containing at least τ objects are considered dense. A 

cluster is then defined as a maximal set of adjacent dense cells. The 

algorithm works in a bottom-up way. Starting with all 1-dimensional 

dense cells, (k+1)-dimensional dense cells are computed from the set of k-

dimensional dense cells in an APRIORI-like style (Han and Kamber, 2000). 

For the downward closure property, if a (k+1)-dimensional cell contains a 

projection onto a k-dimensional cell that is not dense, then the (k+1)-

dimensional cell can also not be dense (Zimek, 2008). There are some 

variants of CLIQUE such as ENCLUS (Cheng et al., 1999) and MAFIA 

(Nagesh et al., 2001). 

PROCLUS (PROjected CLUStering) try to find the subsets of attributes (or 

projection) where the a considered set of points cluster best. It finds 

projected clusters by locating the cluster centers and finding the 

appropriate set of dimensions in which each cluster exists. The problem of 

finding cluster centers has been introduced by k-medoids method (see 

Section 5.3.1). The general approach is to find the best set of medoids by a 

hill climbing process similar to the one used in CLARANS, but generalized 

to deal with projected clustering.  

There are many other algorithms in literature (e.g. Parsons et al., 2004), 

each proposing different approaches. An exhaustive review of density-

based clustering applied to the subspace clustering can be found in Zimek 

(2008). 

 

Neural Network Clustering. Another common approach, to deal with high-

dimensional data, is the use of artificial neural networks. A neural network 

consists of a set of input/output units (or neurons), and a set of weighted 
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connections among them. The main properties that make popular neural 

networks for clustering are: (i) they can be implemented easily on parallel 

and distributed processing architectures, and (ii) they learn by adjusting 

their interconnection weights so as to best fit the data (Han and Kamber, 

2000). One of the most known neural networks for clustering analysis are 

SOM (Self Organizing Maps) or Kohonen’s maps (Kohonen, 2001).  

A SOM consists basically of two layers. The input layer consists of N 

elementary computational units or neurons corresponding to vector 

objects of the input dataset D of size N. These units are connected to a 

second layer of output neurons U that form a map. A reference weight 

vector v, also called prototype vector, is associated with each output neuron 

in the map. SOM then maps high-dimensional input data vectors onto 

two-dimensional grid of prototype vectors that are easier to visualize and 

explore than the original data. 

By means of lateral connections, the neurons in U form a lattice structure 

of dimensionality N’ (Figs. 5.13-14), which is typically much smaller than 

N (Utlsch, 2000). The fundamentals of SOM are the competition between 

nodes in the output layer U.  

Self-organization refers to the ability of a biological or technical system to 

adapt its internal organization to structures sensed in the input of the 

system. The neural network approach, at each time t, consists of two 

modalities: (i) a training step, and (ii) an updating step. Before starting, 

output vectors weights are set with random values.  

In the training step, an input vector x is compared with each prototype 

vector on the map, using a distance measure, to find the most similar: the 

Best Matching Unit (BMU). In the updating step, the prototype vector of 

each output neuron i is updated following the rule: 
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where α(t) is the learning rate, hbi is a neighbor function between neuron i 

and the BMU. With this function, the closer a node is to the BMU, the 

more its weights become more like the input vector. The farther away the 

neighbor is from the BMU, the less it learns. Both the learning rate and the 

neighbor function decrease monotonically over time. In particular, 

assuming hbi to be Gaussian, it can be expressed as: 
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where rb and ri are respectively the position of BMU and neurons i, while 

σ(t) is the standard deviation of the Gaussian. 

 

 
 

Fig. 5.13. SOM lattice structure. The red point indicates the BMU. Gray points are 

relative to the neighborhood of the BMU. Redrawn from Di Salvo et al. (2012). 

 

 
 

Fig. 5.14. Different types of SOM grid structure, with different neighboring relation. 

Hexagonal on the left, rectangular on the right. Redrawn from Di Salvo et al. (2012). 

 

To make an example of clustering, consider to pass, in the training step, 

objects from a dataset, once iteration. If the dataset presents several similar 

objects forming clusters (with similar attributes, or weights), they will be 

mapped in a particular region of the SOM, because they represent a 

repeated input for the map. Thus, a group of neighboring output vectors 
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will be influenced, and their weights will be accosted to input cluster 

objects. For this reason, SOM are also most used for visualization of 

dataset structures for high-dimensional data. The low-dimensional map 

obtained by SOM algorithm provides a 2D projection of the high 

dimensional data that can be visually inspected. A common way to 

visualize the presence of clusters after SOM learning process is the so 

called unified distance matrix (U-matrix). In order to calculate the U-

Matrix the averaged distances between each neuron and its neighbors are 

computed. This method provides a color matrix representing distances 

between neighboring map units, and thus shows the cluster structure of 

the map: high values of U-matrix indicate a cluster border while uniform 

areas of low values indicate clusters themselves (Ultsch, 1993). An 

example of 3D features space and the U-Matrix obtained after a learning 

process of SOM is shown in Fig. 5.15. 

 

 
 

Fig. 5.15. a) 3D feature space with 7 clusters. b) A rectangular U-Matrix after training 

step: the blue regions are related to clusters, or regions where distance between 

neighboring neurons is small. 

 

5.3.7 Evaluating clustering 

 

Most algorithms base the validity of the results, by showing experiments 

on 2-dimensional or max 3-dimensional datasets. It is clear that they have 

more problems when try to visualize high-dimensional data:  in this case, 

they need some adequate visualization techniques such as SOM (Section 
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5.3.6) or Parallel coordinates (Fig. 5.16; Inselberg and Dimsdale, 1990). 

However, assessment by visualization relates to the validator, and a 

numeric universal measure is needed to test the quality of clustering.  

 
Fig. 5.16. Parallel coordinates visualization of Fisher’s Iris data (Fisher, 1936) using 

MATLAB (http://www.mathworks.it/). 

 

There are two general reasonable criterions for evaluation and selection of 

an optimal clustering scheme: (i) compactness, for which distances among 

members of each cluster should be minimized; (ii) separation, for which 

distances among clusters should be maximized. In literature three main 

types of clustering assessment are cited (Fig. 5.17; Gan et al., 2007). In 

particular, an external assessment of validity compares the recovered 

clustering structure C, with an a priori structure P and attempts to quantify 

match between the two. 

 
Fig. 5.17. A diagram of validity indices. Redrawn from Gan et al. (2007). 
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An essential task, when using this approach, is to test whether the dataset 

is randomly structured or not (or Null Hypothesis; Halkidi et al. 2001). If 

the dataset has a low cluster tendency, there is or no benefit in performing 

cluster analysis. An internal examination of validity tries to determine if 

the clustering structure is intrinsically appropriate for the data. This 

assessment considers whether a given cluster is unusually compact or 

isolated compared to other clusters of the same size in random data 

(Aldridge, 2006). These first two approaches involve statistical testing, 

which is computationally expensive (Gan et al., 2007). The third approach, 

the relative test, compares two structures and measures their relative merit 

(Jain et al., 1999). It does not involve statistical testing, but aims to find the 

best clustering scheme based on certain assumptions and parameters. 

Indices used for this comparison are discussed in detail in Jain and Dubes 

(1988) and Dubes (1993).  

One common validation measure, using relative criteria, is the Davies-

Bouldin (DB) index (Davies and Bouldin, 1979). Such an index is function 

of the number of clusters, the inter-cluster and within-cluster distances. 

Formally it is defined as follows: 

 











 

 


 ),(

)()(
max

1

1 ji

jnin
N

i
ji CCd

CSCS

N
DB      (5.34) 

 

where Sn(C) is the average distance of all objects in C to their cluster 

center, D(Qi, Qj) is the distance between centers of clusters Ci and Cj, 

respectively.  

Small values of DB correspond to compact clusters whose centers are far 

away from each other. In the light of it, the number of clusters that 

minimizes DB is taken as the optimal number of clusters. A possible 

approach may be the use of validity algorithms such as Davies-Bouldin 

(DB) index to validate k-means clustering results, explained in Section 5.3.1: 

the number of clusters that minimizes DB is taken as the optimal number. 

An example of 3-class k-means together with DB index is shown in Figure 

5.18. In particular, Figure 5.18a shows the best 3-clustering structure of the 

data set, while Figure 5.18b shows the value of DB index for increasing 
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value of k. The best cluster number is chosen on the basis of minimum 

value of DB index. 

 

 
 

Fig. 5.18. a) Best clustering structure computed using Davies-Bouldin index for a 

feature space with 3 clusters. b) Clustering result using k-means with k = 3. 
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5.4 Outlier detection 

 

All density-based clustering algorithms (Section 5.3.3) naturally deal with 

outliers by avoiding inserting them into clusters. They commonly use the 

distance to the k-th nearest neighbor to detect them. However, they are 

able to capture only certain types of noise when clusters of different 

densities are present. In fact, an object close to a tight cluster may be more 

likely to be an outlier than an object that is further away from a weaker 

cluster. Few approaches are directly concerned with outlier detection. 

These algorithms, in general, consider outliers from a more global 

perspective, assuming objects belonging to a known statistical 

distribution. 

Recently, attention has been placed on local outlier detection (Fig. 5.19) 

(Breunig et al., 2000; Papadimitriou et al., 2003; Jin et al., 2006), in which 

outliers are locally compared with neighbors (i) by taking into account 

their density distribution or (ii) by measuring the similarity using 

symmetric relations (neighbors and reverse neighbors).  

Breunig et al. (2000) introduce the Local Outlier Factor (LOF) to rank objects 

with respect to their outlierness. It uses a definition for the reachability-

distance for an object p similar to that introduced in Section 5.3.3 for 

OPTICS: 
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and defines local reachability density of an object p as: 
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where Nk(p) represents the set of k-nearest neighbors of an object p. The 

local outlier factor of object p captures the degree to which we can call p an 

outlier. It is the average of the ratio of the local reachability density of p 

and those of p’s k-nearest neighbors (Breunig et al., 2000): 
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Although LOF does not suffer from the local density problem, selecting a 

suitable k, for k-nearest neighbors search, is non-trivial. LOCI 

(Papadimitriou et al., 2003) overcomes this shortcoming by using 

statistical values derived from the data. Jin et al. (2006) propose an 

algorithm (INFLO) to efficiently discover top-n outliers using clusters, for 

a given value of k. Density distribution is estimated by considering both 

neighbors and reverse neighbors. This results in meaningful outliers 

detection (Fig. 5.20).  

 

 
Fig. 5.19. p is a local outlier (from Jin et al., 2006). 

 

 
Fig. 5.20. Basing on local neighborhood, p is not so much outlier as in Fig. 5.19. Same 

consideration can be done for r. q is the most probable outlier (from Jin et al., 2006).  

 

To define INFLO, let kdist(p) be the distance from p to its k-th nearest object. 

The inverse of kdist(p) is called k-local density. The reverse k-nearest 
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neighborhood of p is the set of all objects having p among their k nearest 

neighbors. The k-influence space of p is the collection of those objects 

among the k closest to p which also belong to its reverse k-nearest 

neighborhood. Then, INFLOk of p is defined as the average of k-local 

densities of objects belonging to the influence space of p. We formally 

explain such definitions. 

 

Definition 5.4.1. The k-local density of p, denoted as denk(p), is the inverse 

of the kdist(p):  
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Definition 5.4.2. The reverse k-nearest neighborhood of an object p is 

defined as: 
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Definition 5.4.3. Following Jin et al. (2006), the density distribution 

around an object p can be estimated through the k-influence space defined 

as:  
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The k-nearest-neighbors set Nk(p) is always not empty, whereas the size of 

RNk(p) depends on the number of times p is classified as k nearest neighbor 

of an object. 

 

Definition 5.4.4. The k-influenced outlierness of p is defined as: 

 

)()(

)(

)(
)(

pdenpIS

pden

pINFLO
kk

pISo
k

k
k




       (5.41)  

 

The higher INFLOk of p is, the more likely such an object is a local outlier. 
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5.5 Enhancing Density-Based Clustering 

 

The basic structure of density-based clustering presents some common 

drawbacks: (i) parameters have to be set; (ii) the behavior of the algorithm 

is sensitive to the density of the starting object; and (iii) adjacent clusters of 

different densities could not be properly identified.  Although these 

problems have been subject of intensive investigation (Ram et al., 2009) a 

satisfactory solution has not been found, yet. 

In (Cassisi et al., 2012b), we propose a simple but effective method able to 

overcome the above shortcomings and boost the DBSCAN performances. 

We introduce the concept of space stratification which ranks the objects in 

the space according to density criteria. Usually, a reasonable density 

estimator relies on k-nearest neighbors (knn) distances. Objects with small 

knn distance values belong to dense regions of the space, while large 

values refer to sparse regions or outliers. The limit of a basic method is 

that it can detect only global outliers (i.e., objects lying far away from the 

rest of data). Those objects have large knn distance values. Whereas, local 

outliers are objects located near to dense regions, and therefore may have 

small knn distance values. Alternatively, the degree of outlierness can be 

used as sorting criterion to rank the objects in the space. As an example, 

the INFLO function (see Section 5.4) efficiently identifies local outliers in a 

generic space by using the concept of local outlier factor. However, a 

stratification based only on this method does not highlight different 

density areas (Figure 5.21(a)). 

In our work, we use the stratification based on both INFLO function and 

knn distances. More precisely, the choice of INFLO is motivated by the 

following reasons. INFLO defines a new neighborhood relationship, called 

Influence Space (IS), allowing a better estimation of the neighborhoods 

density distribution (Hinneburg and Keim, 1998). Since IS uses both the 

nearest neighbors (Nk) and reverse nearest neighbors (RNk), INFLO 

outperforms other measures (e.g. LOF, Breunig et al., 2000) in detecting 

local outliers. Nevertheless, our ranking procedure (stratification) based 

on a linear combination of INFLO and knn distances shows more 

robustness in detecting outliers than INFLO. Moreover, clustering based 

on IS makes the cluster expansion phase (Daszykowski et al., 2002) highly 

sensitive to local density changes. Our main contribution consists of 
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replacing the classic neighborhood relationship introduced in (Ester et al., 

1996), called ε-neighbourhood (see Section 5.3.3), with a novel approach for 

density-based clustering that takes advantage of the Influence Space. In 

addition, in order to enhance performance, we exploit stratification by 

projecting a generic k-dimensional space into a (k+1)-dimensional space, 

where the new dimension refers to the relative ranking value. 

Consequently, the method results effective in distinguishing slightly 

different density areas and in detecting local and global outliers. A 

comprehensive evaluation of the method indicates that it outperforms 

DBSCAN and OPTICS in all the standard benchmark datasets. 

 

 
 

Fig. 5.21: Stratification based on both INFLOk and DFk measures. Layers, representing 

different density regions of the dataset, are distinguished by different colors (red for 

first layer, green for the second, and so on). (a) Strata obtained using algorithm Stratify 

in Table 5.1 in connection with the INFLOk measure. (b) Stratification of the space 

related to (a). (c) Strata obtained using algorithm Stratify in connection with the DFk 

measure. (d) Stratification of the space related to (c). From Cassisi et al. (2012b). 
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5.5.1. Stratification based outlier detection 

 

Let (D, d) be a metric space, where D is the universe of data and d be the 

metric distance function. Let  niDxxS ii ,...,2,1,|   be a finite subset of 

U of size n ≥ 1. Let d(x, y) be the distance of object y from x, where Syx , . 

Let  


Sy
yxdxw ),()(  be the sum of distances of x from the remaining 

objects of S.  

Stratification can be considered as a pre-processing step to analyze and 

discover main data properties. It divides data into layers, where objects 

belonging to the same layer have global similar characteristics. The 

stratification process consists of the following steps: (i) sorting the objects 

in S according to the function w; (ii) partition S into an ordered list of 

subsets on the basis of w. This ordered list of sets, P, is called stratification 

of S. 

 

Definition 5.5.1. Given two subsets A and B of S, they satisfy the 

stratification 

relation w  if and only if, Ax  and By , w(x) ≤ w(y). 

 

Definition 5.5.2. Let P = {S1, S2, . . . , Sh} be a set of h disjoint subsets of S. 

We 

call P a stratification of S if P is a linearly ordered set with respect to w . 

 

By using the above definitions the space can be partitioned into subsets 

which are concentric (toroidal). The above definition can be generalized to 

the knn-stratification. 

Let wk be the function which maps each object x into the sum of the 

distances from x to the nearest k objects. Let be the set of k-nearest 

neighbors of x in S. For each object x in S, we compute the k-nearest 

neighbors and store the sum of their distances from x. Therefore: 

 

 


)(
),()(

xNyk
k

yxdxw        (5.42) 

 



117 

 

Definition 5.5.3. Let P = {S1, S2, . . . , Sh} be a set of h disjoint subsets of S. 

We call P a knn-stratification of S if P is a linearly ordered set with respect 

to 
kw . 

 

The knn-stratification allows to partition the dataset with respect to the 

density of the k-nearest neighborhood. A partition of the stratification will 

contain objects that are similar with respect to the wk function. The largest 

element Sh of P is a subset containing the outliers of S, indeed the objects 

of the dataset which are far from their k-nearest neighbors. Besides 

classical outlier analysis algorithms (Aggarwal and Yu, 2001), recent 

studies have focused on mining local outliers computing the density 

distribution of their neighbors, as we have just seen in Section 5.4. 

Although intuitive, when outliers are in the location where the density 

distributions in the neighborhood are significantly different, for example, 

in the case of objects from a sparse cluster close to a denser cluster, this 

may cause wrong estimations. Outlierness function such as INFLO are 

suitable for these purposes. In our method, in order to improve treatment 

of density variance, INFLOk is normalized with respect to the size of RNk. 

We call the new measure AINFLOk (Adjusted INFLOk). This function 

indicates how much an object is a local or a global outlier. A density 

measurement based on AINFLOk and knn-stratification improves DBSCAN 

clustering since distinguishes clusters having small density variance. 

 

Definition 5.5.4. The Adjusted INFLOk of x is defined as:  
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Definition 5.5.5. By linearly combining the knn-stratification and the 

AINFLOk measure, we obtain the following density function: 

 

)()()( xwxAINFLOxDF kkk        (5.44) 

 

The DFk function is a monotonic function with respect to the outlierness of 

an object. By sorting the objects in relation to the DFk in an increasing 

order, we note that at some point the function becomes steeper. We 
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stratify the input dataset by using the density function DFk in the 

algorithm STRATIFY of Table 5.1. The algorithm computes the average 

AINFLOk and uses such a measure to partition the dataset into layers of 

decreasing density. The last layer of the dataset will be the set of all 

candidate outliers. 

In Figure 5.21, we compare the behavior of INFLOk and DFk on the dataset 

D1 obtained from Guha et al. 1998. The basic idea behind the DFk function 

is to merge the knowledge carried by INFLOk and wk. The shape of the 

INFLOk function is typically the one showed in Fig. 5.21(a). However, most 

of the objects having a high INFLOk are not outliers. By adding the 

function wk to INFLOk we are able to reduce the false positive outliers. 

Furthermore, candidate outliers have always a very high DFk values and 

they cause the exponential growth of the function. 

 

Algorithm STRATIFY(D, k) 

begin 

n = |D|; 

for i=1 to n do 

D[i].DFk = DF(D[i].data,k); 

D[i].AINFLOk = AINFLO(D[i].data,k); 

end for 

Sort D using DFk field as sorting key; 

cut = 1; 

layer = 1; 

δ = avg(D[1...n].AINFLOk) + var(D[1...n].AINFLOk); 

while cut < n do 

cut = FindStrata(D, cut, layer, δ, n); 

layer = layer + 1; 

end while 

end 

 

Table 5.1. The algorithm STRATIFY. D is the dataset of objects to be clustered. 

It is loaded into a data structure having as fields data, layer, AINFLOk, DFk. 

Given in input k, DF and AINFLO are subroutines calculating, respectively, the 

DFk and the AINFLOk function value of D[i. δ is a particular threshold used in 

FindStrata (Table 5.2) to stop stratification. The objects in the last strata of D 

are candidate to be outliers. All the remaining objects are considered members 

of some cluster.  
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Algorithm FindStrata(D, start_idx, new_layer, δ, n) 

begin 

new_cut = start_idx; // cut point index 

layer = new_layer;   // index of the new layer 

μDF = avg(D[start_idx...n].DFk); 

while S[new_cut].DFk < μDF do 

new_cut = new_cut + 1; 

end while 

μAINFLO = avg(D[start_idx...new_cut-1].AINFLOk); 

for i=start_idx to new_cut-1 do 

D[i].layer = layer; 

end for 

if μAINFLO < δ then 

return new_cut; 

end if 

noise = layer + 1; // noise is the last layer index 

for i=new_cut to n do 

D[i].layer = noise;  

end for 

return n 

end 

 

Table 5.2. The FindStrata method extracts the strata from the current subset of 

D. Then it checks if the average AINFLOk of the computed strata is above δ; we 

use δ = avg(D[1…n].AINFLOk) + var(D[1…n].AINFLOk) (Table 5.1). The objects 

in the last layer of D are candidate to be outliers. 

 

Through such an observation, the algorithm STRATIFY, in Table 5.1, can 

be adapted to identify only the outliers of the dataset. DFk is a monotonic 

increasing function (see Fig. 5.21c), and the slope of lines can be computed. 

We name s1 and s2 the slope of lines approximating the first and the last 

layer values, respectively. The former characterizes data forming clusters, 

while the latter is relative to sparse regions. Then, starting from the first 

object in the last layer and following the ordering, we heuristically set as 

outliers all objects xi such that: 
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In Figure 5.22, we show the results of such a method. 
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Fig. 5.22. Outlier detection based on the DFk function and STRATIFY algorithm. For 

each dataset, on the top, we show the partitions corresponding to the DFk curve. 

Following Breunig et al. (2000), k has been set to 10 for t8, D1, t4, and can473; k = 20 for 

t5 and t7. From Cassisi et al. (2012b). 

 

5.5.2. Development of a new density-based algorithm 

 

We propose the following method, to improve the quality of DBSCAN 

algorithm:  

 

 Remove outliers from the dataset for clustering by applying the 

STRATIFY algorithm presented of Table 5.1; 
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 The knowledge inferred during the outlier detection phase is 

embedded into the new residual space by adding a new dimension, 

whose value, for each point, represents the sum of distances of ISk; 

 

 ISk improves separation of clusters with different densities. Clusters 

having the same densities will be embedded into a common strata 

related to the new dimension. 

 

 We apply the proposed density based clustering algorithm called 

ISDBSCAN, in the new residual dataset (see Table 5.3 for the 

pseudocode). For each object, we compute ISk the neighborhood. Then 

a random point is selected and a depth-first cluster expansion 

procedure is applied. The method constructs a cluster around a point p 

until a border point or an outlier is reached. A border point is 

recognized by the algorithm by checking the size of ISk. When the 

algorithm, reaches an object p whose size of ISk (p) is below a certain 

threshold (a threshold valued of 2k/3 has given experimentally 

satisfactory results), the subset is not processed and the point is 

classified as noise. 

 
Algorithm ISDBSCAN(D, k) 

begin 

i = 1; 

while D ≠ Ø do 

p = Randomly pick an object from D; 

Ci = MakeCluster(D, p, k, i); 

D = D \ Ci; 

if |Ci| > k then 

membership(p) = i; //assign p to i-th cluster 

i = i + 1; 

else 

membership(p) = noise; // assign p to noise 

end if 

end while 

return {C1, C2, ..., Ci-1}; 

end 

 

Table 5.3. Pseudocode of the ISDBSCAN algorithm. The MakeCluster 

subroutine is shown in Table 5.4. 
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Algorithm MakeCluster(D, p, k, i) 

begin 

if |ISk(p)| > 2k/3 then 

for each q in ISk(p) do 

if membership(q) = -1 then 

membership(q) = i; 

C = C + {q}; 

C = C + MakeCluster(D, q, k, i); 

end if 

end for 

end if 

return C; 

end 

 

Table 5.4. The MakeCluster subroutine is a depth-first algorithm. The 

threshold, which defines the size of ISk, determines a stop condition during the 

MakeCluster. It has been set to 2k/3. k is the number of neighbors, and is the 

only parameter to be set. 

 

In Figure 5.23, we depict the embedding of two datasets provided by 

Fahim et al. (2009a). Pictures show contours representing the levels in 

which the points have been embedded by using ISk and Nk, respectively. 

The pictures show that the embedding using the ISk function is able to 

separate clusters and gives a smoother treatment of the objects lying in the 

clusters' border with respect to the Nk function. 

Note that, the algorithm presented above needs only one parameter to be 

set which is k. This parameter represents the number of k-nearest 

neighbors needed to have a sound size of ISk. In some cases, small 

dimension of ISk sets can be viewed as gateways of close clusters. Finally, 

the algorithm is independent of the starting point and naturally 

discriminates clusters having different densities. This does not happen to 

DBSCAN and variants of it (Fahim et al., 2009b), for which it is convenient 

to start from points of highest density. 

ISDBSCAN looks, for expanding clusters, at ISk-neighbourhood instead of 

the ε-neighbourhood. Whereas the new neighbourhood relationship is 

symmetric, objects belonging to clusters of different densities, cannot be 

considered as neighbors. So, it can randomly select any object to start with 

cluster expansion, because this method naturally recognizes density 
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differences, overcoming classical DBSCAN limitations (see some example 

on Figs. 5.24-25).  

 

 
 

Fig. 5.23. Density levels on the dataset can3147 (left column) and can383 (right column). 

We have used as third dimension ISk and Nk, respectively. The plots (second and third 

rows) represent two dimensional contour graphs of the three dimensional datasets 

given in the first rows, using ISk and Nk, respectively. ISk function separates clusters 

and gives a smoother treatment of the objects lying in the clusters' border with respect 

to the Nk function. We can observe that the difference between close two dimensional 

contour lines in Nk is much higher that the corresponding using ISk. From Cassisi et al. 

(2012b). 
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Fig. 5.24. Left column: ISDBSCAN applied on 2Ddatasets. Center column: ISDBSCAN 

performance and relative ISk 3D projections. Right column: corresponding best 

DBSCAN results. From Cassisi et al. (2012b). 

 

This system proposes a stratification process that contains a good heuristic 

to remove noise (global and local outliers). This step provides further 

information for enhancing both classic and proposed clustering 

implementations. For DBSCAN, it automatically determines the denser 

core-point from which to start expanding clusters; while given a fixed 

parameter MinPts, it allows to properly estimate the ε parameter value, by 

analyzing the DFk curve. For ISDBSCAN, makes computation of ISk-
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neighborhood (useful for expanding cluster phase), and the relative 

distances, that can be used to project data in a new space to amplify 

density differences.  

 

 
 

Fig. 5.25. Datasets after removing noise. Left column: ISDBSCAN on NNk 3D 

projections. Center: ISDBSCAN on ISk 3D projections . Right: comparison with best 

DBSCAN results. From Cassisi et al. (2012b). 

 

Since ISDBSCAN suffers the presence of uniform distributed noise (for 

example by classifying it as a whole cluster; see Fig 5.24 on center column 

at row 3), stratification step allows also to efficiently remove it before 
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clustering. Even though the proposed method deals with low-dimensional 

data, the ISDBSCAN procedure can be used as subroutine of methods for 

solving subspace clustering problems in high-dimension (see Zimek, 2008 

for a survey). 

 

5.5.3 DBStrata 

 

The proposed ISDBSCAN algorithm is implemented in a software system 

called DBStrata (Cassisi et al., 2011b). DBStrata has been developed in 

Python 2.6, it uses Python Scientific Library (Scipy/Numpy) and the PyQt 

Graphical User Interface Library. It interacts using a GUI, which allows to 

run density-based clustering, stratification pre-processing phase, outlier 

detection, ISk-projection, and ISDBSCAN clustering. Moreover, for 

comparisons purpose a framework allows to run the OPTICS module (see 

Section 5.3.3). 

 

 
 

Fig. 5.25. The DBStrata main interface. The software available for download at the 

following web site http://www.dmi.unict.it/~cassisi/DBStrata/. 
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The main interface allows to apply density-based clustering to loaded 

files, including stratification pre-processing phase, useful to help user on 

DBSCAN parameters setting, outlier detection, ISk-projection, and 

ISDBSCAN clustering (see the software map in Fig. 5.26). It can be 

considered the main program; from this interface, user can calls the other 

part of the software relative to OPTICS framework. 

When the application starts, the only action allowed is the Open action 

under the File menu. This opens a dialog box to load .tsv (tab-separated-

values) files, that stores data table in which columns of data are separated 

by tabs. The layout has six group boxes: 1) Data Properties; 2) Plotting File; 

3) Stratification; 4) DBSCAN Settings; 5) DBSCAN Output. After the file is 

loaded, the first four group boxes are enabled. 

 

 
 

Fig. 5.26. Structure and flow diagram of the software. Main interface calls only another 

interface to clustering with OPTICS system. 

 

Data Properties group shows minimum and maximum values for each 

coordinate, and the diameter of the space; it is a read-only group.  

Plotting File group contains the plot of the loaded file. Our Python 

implementation (Python 2.6)  uses the Matplotlib library that offers good 

quality in data plotting. In addition to the figures canvas is made available 

a navigation toolbar. 
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Stratification group allows editing of first input k to perform stratification 

(default k=10). The following plots are included: 

 

1. Stratification layers with different colors; 

2. Ordering based on sum of NNk distances from p, ωk; 

3. Relative AINFLO values; 

4. DFk curve partitioned into the returned layers; 

5. (Optional) Dataset Bipartition discriminating outliers; 

6. (Optional) Dataset ISk projection. 

Stratification returns the S.O.I. (Start Outliers Index), the number of layers, 

and the range value for ε defined between ε1 and ε2, setting respectively 

the “Min MinPts” and “Max MinPts” line edit placed on the DBSCAN 

Settings group. In this last, the interval [ε1, ε2] is by default divided into 10 

intervals for a multiple execution of the algorithm. Although automatic 

setting can be useful and precise in many cases, before clustering 

execution it is always advisable to check the sum of NNk distances 

ordering plot to ensure logical settings, and especially to verify that the 

S.O.I. has visual feedback with the surge of the curve. A not suitable 

setting can bring long running execution time for DBSCAN. Due to this, all 

edit lines can be edited for custom handling of parameters range. You can 

also choose to proceed step-by-step (Next Step button), or make a single 

run (DBSCAN button). Our implementation uses kd-Tree for data indexing, 

whose Python implementation is available on 

http://sites.google.com/site/mikescoderama/Home/kd-tree-knn. 

Both optional bipartition and ISk projection are modified versions of the 

original dataset and are saved into the working directory. ISDBSCAN 

Settings group also allows running of ISDBSCAN with input parameter k 

on each dataset version.  

Clustering Output group shows the output of the algorithm relative to the 

input parameters: number of clusters, outliers found, and a validation 

index for clustering inspired to (Davies and Bouldin, 1979). It allows to 

display its results in a dedicated dialog Other Filters to filter the result of 

seismic signals clustering (only 2D dataset), it includes: noise removing; 
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selection of a labeled cluster or of main clusters having a number of points 

greater than a percentage of dataset size; and moving average of each 

filtering, by defining the size of the moving average window. 

The Main Frame (Fig. 5.25) offers the vast majority of the software tools. 

Under Tools action, user can call another interface relative to OPTICS 

framework. The routine to calculate Reachability and Core Distance plot was 

imported from http://chemometria.us.edu.pl/index.php?goto=downloads, 

referring to (Daszykowski, et al., 2002).  

The window was designed to present the main dataset characteristics 

retrievable from OPTICS algorithm. In the left section, OPTICS plots group 

shows reachability plot, core distance plot, and a visual path of dataset 

ordering. In the right section, Clustering group includes the choice to 

cluster through DBSCAN, setting the relative parameter; or to use the 

system proposed in (Sander, et al., 2003) to discover, if exist, the 

hierarchies between clusters on different densities dataset.  



130 

 



131 

 

 

Chapter 6 
 

Geophysical application of data mining 
 

 

 

This chapter contains a collection of works, concerning the application of 

data mining on geophysical data, that became object of publication 

(Aliotta et al., 2010; Cannata et al., 2011a; Lo Castro et al., 2011a; Lo Castro 

et al., 2011b; Cassisi et al., 2012a; Montalto et al., 2012). This was made 

possible thanks to the collaboration with the INGV (Istituto Nazionale di 

Geofisica e Vulcanologia), Section of Catania - Osservatorio Etneo, which 

makes available its data for this kind of research. 

 

6.1 Clustering and classification of infrasonic events at Mount 

Etna using pattern recognition techniques 

 

Active volcanoes generate sonic and infrasonic signals, whose 

investigation provides useful information for both monitoring purposes 

and the study of the dynamics of explosive phenomena. 

Over the last decades, Mt. Etna volcano (Italy) has been characterized by a 

remarkable increase in the frequency of shortlived, but violent eruptive 

episodes at the summit craters. Between 1900 and 1970, about 30 

paroxysmal eruptive episodes occurred at the summit craters, while there 

have been more than 180 since then (Behncke and Neri, 2003). The summit 

area of Mt. Etna is currently characterized by four active craters: Voragine, 

Bocca Nuova, Southeast Crater and Northeast Crater (hereafter referred to 

as VOR, BN, SEC and NEC, respectively; see Fig. 6.1). These craters are 

characterized by persistent activity that can be of different and sometimes 

coexistent types: degassing, lava filling or collapses, low rate lava 

emissions, phreatic, phreato-magmatic or strombolian explosions and lava 

fountains (e.g. Cannata et al. 2008). At Mt. Etna in 2006, a permanent 

infrasound network was deployed providing useful information to 



132 

 

monitor the explosive activity (Cannata et al. 2009a,b; Di Grazia et al. 

2009). Unfortunately, sometimes during the winter 

season owing to bad weather conditions, the lack of signals from some 

summit stations prevents applying the aforementioned location 

algorithms.  

 

 
 

Fig. 6.1. Digital elevation model of Mt. Etna with the location of the infrasonic sensors 

(triangles and squares), composing the permanent infrasound network. The upper 

right inset shows the distribution of the four summit craters (VOR, Voragine; BN, 

Bocca Nuova; SEC, Southeast Crater; NEC, Northeast Crater) (from Cannata et al., 

2011a). 

 

Here, we propose a new system, based on pattern recognition techniques, 

able to identify at Mt. Etna the active summit crater from the infrasonic 

point of view using only the signal recorded by a single station. 

First, by a parametric power spectrum method, the features describing 

and characterizing the infrasound events were extracted: peak frequency 
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and quality factor. Then, together with the peak-to-peak amplitude, these 

features constituted a 3-dimensional feature space; by means of DBSCAN 

algorithm (see Section 5.3.3) three clusters were recognized inside it. After 

the clustering process, by using a common location method (semblance 

method) and additional volcanological information concerning the 

intensity of the explosive activity, we were able to associate each cluster to 

a particular source vent and/or a kind of volcanic activity. Finally, for 

automatic event location, clusters were used to train a model based on 

Support Vector Machine (SVM; see Section 4.1.5), calculating optimal 

hyperplanes able to maximize the margins of separation among the 

clusters. After the training phase this system automatically allows 

recognizing the active vent with no location algorithm and by using only a 

single station. This work was partly performed with grants of the ‘Flank 

project’ (INGV-DPC 2007–2009). 

 

6.1.1 Infrasound features at Mt. Etna 

 

Some recent studies have shown that the infrasonic signal at Mt. Etna is 

generally composed of amplitude transients (named ‘infrasonic events’), 

characterized by short duration (from 1 to over 10 s), impulsive 

compression onsets and peaked spectra with most of energy in the 

frequency range 1–5 Hz (Fig. 5.2; Gresta et al. 2004; Cannata et al. 2009a,b). 

Similar features are also observed at several volcanoes, though 

characterized by different volcanic activity, such as Stromboli (Ripepe et 

al. 1996), Klyuchevskoj (Firstov and Kravchenko 1996), Sangay (Johnson 

and Lees 2000), Karymsky (Johnson and Lees 2000), Erebus (Rowe et al. 

2000), Arenal (Hagerty et al. 2000) and Tungurahua (Ruiz et al. 2006). 

Since the deployment of the infrasound permanent network at Mt. Etna in 

2006, two summit craters have been recognized as active from the 

infrasonic point of view: SEC and NEC (Cannata et al. 2009a,b). The 

former has been characterized by sporadic explosive activity with 

different intensity, from ash emission to lava fountaining, while the latter 

mainly by degassing. According to Cannata et al. (2009a,b), these craters 

generate infrasound signals with different spectral features and duration: 

‘SEC events’, showing a duration of about 2 s, dominant frequency mainly 

higher than 2.5 Hz and higher peak-to-peak amplitude than the NEC 
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events (Fig. 5.6a); ‘NEC events’, lasting up to 10 s and characterized by 

dominant frequency generally lower than 2.5 Hz (Fig. 6.2b). 

 

 
 

Fig. 6.2. Infrasonic events recorded by EBEL station and corresponding Short Time 

Fourier Transform, obtained by using 2.56-s long windows overlapped by 1.28 s. The 

event in (a) is a typical ‘SEC event’, the one in (b) a typical ‘NEC event’ (from Cannata 

et al., 2011a). 

 

6.1.2 Data acquisition and infrasound signal characterization 

 

In the following subsections (i) data acquisition and event detection, (ii) 

features extraction and (iii) the semblance algorithm are briefly described. 

 

Data acquisition and event detection.  Since 2006, the permanent 

infrasound network run by Istituto Nazionale di Geofisica e Vulcanologia, 

Section of Catania, has been composed of a number of stations ranging 

from one to eight depending on the considered period, located at distances 

ranging between 1.5 and 7 km from the centre of the summit area (Fig. 

5.1). Today, some stations are equipped with Monacor condenser 

microphones MC-2005, with a sensitivity of 80 mV Pa−1 in the 1–20 Hz 

infrasonic band, while others with GRASS 40AN microphone with a flat 
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response with sensitivity of 50 mV Pa−1 in the frequency range 0.3–20000 

Hz. The infrasonic signals are transmitted in real-time by means of radio 

link to the data acquisition centre in Catania where they are acquired at a 

sampling rate of 100 Hz. At Mt. Etna we use EBEL as reference station, 

because it generally shows a very good signal-to-noise ratio and, unlike 

the other summit stations, its maintenance is generally feasible even 

during the winter season. Once the infrasound signal is recorded, the 

signal portions of interest, that are the infrasonic events, have to be 

extracted. Then, the root mean square (rms) envelope of the infrasonic 

recordings is calculated by a moving window of fixed length. 

Successively, we calculate the percentile envelope on moving windows of 

rms envelope. For a given time-series, the pth percentile can be defined as 

the value such that at most (100 × p) per cent of the measurements are less 

than this value and 100(1 – p) per cent are greater. In light of this, the 

estimation of percentile enables us to efficiently detect amplitude 

transients and estimate background signal level. The percentage threshold 

should be chosen on the basis of both the amount of transients in the 

signal that have to be included or excluded in our calculations and the 

signal-to-noise ratio. The performance of this method was compared with 

the short time average/long time average (STA/LTA) technique (e.g. 

Withers 1997; Withers et al. 1998). The lengths of short and long windows, 

mainly depending on the frequency content of the investigated signal, 

were fixed respectively to 2.5 and 12.5 times the dominant period of the 

signal (equal to roughly 0.3 s), considered a reasonable compromise 

between sensitivity and noise reduction (Withers 1997), and the detection 

threshold to 1.7. As shown in Fig. 6.3, the trigger results obtained by the 

two methods were similar; nevertheless, the technique based on percentile 

was also able to detect transients very close to each other. 

 

Infrasonic signal features extraction. Often the decomposition of a time 

series into purely harmonic components (Fourier transform case) can be 

impractical. In fact, the actual oscillations observed in geophysics often 

decay (or grow) exponentially with time, due to some mechanisms of 

energy dissipation (or supply), as if the frequency were complex 

(Kumazawa et al. 1990). Therefore, the spectral structure will be 
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reasonably represented in the complex frequency space (Kumazawa et al. 

1990).  

 

 
 

Fig. 6.3. (a) Three-minute long infrasound signal recorded by EBEL station, (b) 

corresponding rms envelope (black line) calculated by using a moving window of 0.7 s 

and (c) STA/LTA values. The horizontal grey dashed line in (b) indicates the detection 

threshold calculated by a percentile value of 5 multiplied by 5. The horizontal grey 

dashed line in (c) indicates the detection threshold fixed at 1.7. The arrows at top of 

(b,c) indicate the onset time of the detected events (from Cannata et al., 2011a). 

 

Since infrasonic events can be represented as decaying complex 

exponential functions, to determine their complex frequency the Sompi 
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method can be used (Kumazawa et al. 1990, and references therein). This 

is a high-resolution spectral analysis method based on an autoregressive 

(AR) filter. By this method, a given time series is resolved into a number of 

‘wave elements’ that consist of decaying harmonic components, and 

additional noise (more details about Sompi method are reported in the 

Appendix B). Each wave element is specified by two complex parameters 

z and α (Kumazawa et al. 1990): 

 

)exp( iwz           (6.1) 

 
 iAe          (6.2) 

 

where γ and ω are the real and imaginary parts of the complex angular 

frequency, A and θ correspond to the real amplitude and phase of the 

wave element referred to some origin point and finally i is √−1. Another 

two parameters, ordinary real frequency and ‘gradient’ or ‘growth rate’, 

referred as to f and g, respectively (Kumazawa et al. 1990), are given by: 

 

 2/f          (6.3) 

 

 2/g          (6.4) 

 

Finally, the ‘dissipation factor’ or ‘quality factor’ Q is defined as: 

 

gfQ 2/          (6.5) 

 

Generally, to represent a set of complex frequencies, their locations are 

plotted on a 2-D plane with f and g axes. The wave elements scattering 

widely in the plot, as the AR order changes, are considered noise. It is also 

possible to identify some wave elements densely populated on the 

theoretical frequency lines that remain mainly stable as the AR order 

changes. They are considered dominant spectral components (Hori et al. 

1989). An example of frequency-growth rate domain for an infrasound 

event recorded by EBEL station is reported in Fig. 6.4.  
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Fig. 6.4. (a) Infrasound event recorded by EBEL station, and corresponding (b) 

frequency-growth rate plot (AR order 2–60) and (c) amplitude spectrum. The grey area 

in (a) represents the window used to calculate the frequency-growth rate plot in (b). 

The dashed lines in (b) represent lines along which the quality factor (Q) is constant. 

Clusters of points in (b) indicate dominant spectral components of the signal; scattered 

points represent noise (from Cannata et al., 2011a). 

 

Therefore, in summary, the spectral features of an infrasonic event can be 

described by the two parameters Q and f. Further, in addition to frequency 

and quality factor, the third feature used to characterize the infrasound 
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events is the peak-to-peak amplitude, depending on both distance source-

station and energy of the infrasonic source. 

 

Semblance algorithm. The location of the source of the infrasonic events, 

generally coinciding with active vents, is of great importance for volcanic 

monitoring. Therefore, different location techniques, generally based on 

grid searching procedures, were developed (e.g. Ripepe and Marchetti, 

2002; Jones et al. 2008; Johnson et al. 2010; Montalto et al. 2010). 

The semblance technique is based on the semblance function that is a 

measure of the similarity of multichannel data (Neidell and Taner 1971). 

For infrasonic events this method applies a 2-D grid searching procedure 

over a surface covering the summit area and coinciding with the 

topographic surface. The infrasonic source is assumed to be in each node 

of the grid, and for each node the theoretical travel times at the sensors are 

first calculated. Then, infrasonic signals at different stations are delayed 

and compared by the semblance function. Finally, the source is located in 

the node where the delayed signals show the largest semblance value. 

Therefore, the semblance function is assumed representative of the 

probability that a node has to be the source location (further details about 

the method are reported in Montalto et al. 2010). In Fig. 6.5 two examples 

of infrasound location are reported for a SEC event and a NEC event. 

 

6.1.3 Learning phase 

 

In the proposed system, the learning phase merges together results of 

clustering and classification analysis (Fig. 6.6). DBSCAN and SVM are 

applied on infrasound event features together with geophysical 

information used to ‘label’ the recognized clusters. About 665 events, 

recorded during 2007 September–November at EBEL station, were 

detected and filtered in frequency range 0.5–5 Hz. The feature extraction 

from the detected events was performed by Sompi method (see also 

Appendix B) using 2-s long windows of infrasonic signal recorded at 

EBEL station and AR order equal to two. The sharply monochromatic 

nature of the investigated signals justifies the choice of this low order 

(Lesage 2008). 
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Fig. 6.5. Examples of space distribution of semblance values, calculated by locating two 

infrasonic events at Mt. Etna, and corresponding infrasonic signals at four different 

stations shifted by the time delay that allows obtaining the maximum semblance. The 

red squares and stars in the top plot indicate four station sites and the nodes with the 

maximum semblance value, respectively. The black lines in the top plot are the 

altitude contour lines from 3 to 3.3 km a.s.l. (from Cannata et al., 2011a). 

 

Frequency and quality factor of the events, together with peak-to-peak 

amplitude, constituted the feature space and are plotted in Fig. 6.7. Then, 

to discover clusters in this space, ‘data clustering’ techniques based on 

DBSCAN algorithm (Section 5.3.3) were applied. Using such an algorithm 

we found three main clusters (called cluster 1, 2 and 3) and other outlier 

points that can be considered as noise (Fig. 6.8). Points belonging to each 

cluster are related to infrasonic events that were located using Semblance 

location method (Section 6.1.2). In accordance with Cannata et al. (2009b), 

during 2007 September–November, two infrasonic sources were found, 

NEC and SEC. In particular, a cluster was composed of events generated 

by NEC (cluster 1) and the other two by SEC. Such last two clusters were 

related to different kinds of explosive activity at SEC. In particular, the 

events belonging to cluster 3 were coincident with ‘more visible’ 

explosions, characterized by a relevant presence of ash, whereas the 
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events of cluster 2 were hardly visible in the monitoring video-camera 

recordings (Cannata et al. 2009b). 

 

 

 

Fig. 6.6. Scheme of the learning system (from Cannata et al., 2011a). 

 

 
 

Fig. 6.7. Feature space with frequency, quality factor and peak-to-peak amplitude of 

the infrasound events recorded at EBEL station during 2007 September–November 

2007. 
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Fig. 6.8. Clustering of the feature space reported in Fig. 10. The clusters are indicated 

with blue (cluster 1) and green circles (cluster 3) and light green triangles (cluster 2), 

the outliers with black diamonds (from Cannata et al., 2011a). 

 

Features clustering together with labels provide the patterns for SVM 

learning process. As mentioned in Section 4.1.5, optimization of 

parameters C (regularization parameter) and σ (radial basis function 

kernel parameter, see Eq. 4.9) is a key step in SVM learning because their 

values determine classification performance (Devos et al. 2009). As a 

consequence, model selection is applied with the aim of finding the best 

pair of parameters C and σ that minimizes the error rate estimated as the 

ratio between misclassified and hit patterns. These parameters can be 

chosen using a cross-validation (CV) approach (Hastie et al. 2002), which 

is a statistical method for learning algorithms evaluation and model 

selection. In particular, in K-fold CV the available data set is partitioned 

into K subsets or ‘folds’: K–1 folds are used for SVM learning purpose, and 

the remaining fold for model validation (Fig. 6.9). Thus, K iteration of 

learning and validation are performed and for each ith iteration the 

training process is carried out using K−1 folds and the ith fold for 

validation (Fig. 6.9).  

All SVM training algorithms are computed using one-against-all method 

(see Section 5.2.1). Since we worked on a small data set, a simple 

exhaustive grid search can be performed (Hsu et al. 2007). In particular, C 



143 

 

was systematically changed in the range [1–100] with a step of 10, σ in the 

range [0.1–10] with a step of 0.5 and a K-fold CV with K = 10 was used. 

 

 
 

Fig. 6.9. Basic scheme of K-Fold Cross Validation (from Cannata et al., 2011a). 

 

The entire procedure can be summarized as follows (Fig. 6.10): (1) a grid 

value of C and σ is defined; (2) for each pair of C and σ values, a mean 

error rate is computed averaging the error rate values obtained by the K 

SVM models; (3) the pair of C and σ with the minimum error rate is 

selected; (4) such a pair is used to train the final SVM model with the 

whole data set, comprising all the K folds. Here, the best parameter values 

were C = 1 and σ = 0.1, for which mean CV error minimized to 0.6 per cent. 

 

6.1.4 Testing phase and final system 

 

To verify the system, the trained SVM is tested by classifying new 

unknown infrasonic events and then assigning them to their source crater. 

The reliability is verified using events not analysed during the previous 

learning phase (Section 5.2.2). To this end, a new test data set of about 610 

events, recorded during 2 months, 2007 August and December, was used 

and labelled by location algorithm based on semblance method (Section 

5.1.3). Moreover, the events belonging to cluster 2 and cluster 3 were 

labelled using information related to the intensity of the explosive activity 

(Cannata et al. 2009b).  
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Fig. 6.10. Best SVM model selection using K-Fold Cross-Validation (from Cannata et 

al., 2011a). 
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The quality of classification is quantified using confusion matrix (Table 

6.1), where each column represents the instances in the predicted class 

(based on the SVM model), while each row represents the instances in the 

actual class (based on the previously attributed labels). Thus, the entries 

on the diagonal count the events in which prediction agrees with known 

labels, whereas the other entries the misclassified events. 63 elements were 

wrong assigned, providing an error rate of about 11.97 per cent. 

Misclassifications were mostly concentrated in the second and third 

classes that are related to the two different explosion activities of SEC 

crater. Indeed, such a distinction is qualitative and not clearcut, hence 

many halfway events can be misclassified. If we do not take into account 

the distinction between clusters 2 and 3, and consider them as a single 

cluster, the error decreases to 5.25 per cent.  

 

 PREDICTED 

Cluster 1 Cluster 2 Cluster 3 

 

ACTUAL 

Cluster 1 476 9 6 

Cluster 2 9 15 8 

Cluster 3 8 33 46 

 

Table 6.1. Confusion matrix calculated in the testing phase. Each column 

represents the instances in the predicted class (based on the SVM model), 

while each row represents the instances in the actual class (based on the 

previously attributed labels). Thus, the entries on the diagonal (bold numbers) 

count the events in which prediction agrees with known labels, whereas the 

other entries the misclassified events. 

 

Finally, the proposed system can be summarized as follows (Fig. 6.11): (i) 

triggering procedures is performed on buffer of acquired signal; (ii) then, 

if events are found, the system evaluates whether there is a sufficient 

number of stations for semblance location algorithm; (iii) if the number of 

stations is not sufficient, alternative ‘single station’ location is performed 

by extracting signal features and classifying them using the trained SVM. 

It is also worth noting that SVM classifier is also applied offline on 

localizable events to evaluate its performance in distinguishing NEC 

events (cluster 1) from SEC events (clusters 2 and 3). In this case, events 

belonging to clusters 2 and 3 are simply considered SEC events and then 
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labelled based on the source vent, with no further distinction depending 

on the type of explosive activity. This task is carried out by comparing the 

results of the classifier with the location parameters provided by the 

semblance algorithm. By the inspection of the obtained error rate, a new 

clustering execution is necessary when classification of new signals is not 

aligned with that of infrasonic network classifier. This may be caused by 

the creation of a new active vent or by the changing activity of a pre-

existing vent; in such a case the system must be updated. 

 

 
 

Fig. 6.11. Flow chart of  the proposed location system (from Cannata et al., 2011a). 

 

6.2 Characterization of particles shapes by CAMSIZER 

measurements and cluster algorithms 

 

The shape is a very important feature affecting the properties and the 

physics behaviours of materials of different natures. In volcanological 

area, the study of the volcanic ash particles shape, emitted during 

explosive eruptions, allows to get information about: 

 

 the origin and the fragmentation mechanisms of them; 

 the post-eruptive processes, such as the alteration, deposition and 

transport (Riley et al., 2003); 
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 the residence time in the atmosphere. 

 

Precisely because of the latter information, the shape parameter is used 

in some models for the scattering ashes (Scollo et al., 2008). The 

measurement and quantification of a particle shape are hard challenges, 

especially when the number of the particles to analyze is high and their 

size is small (i.e. sub-millimeter), as in the case of volcanic ash. The 

current methods in volcanology used for quantitative measurements of 

the particle shape are based on image processing, and are mainly 

achieved by manual outputs (e.g. investigations under microscope). The 

innovation of this procedure arises from the use of CAMSIZER 

(www.retsch-technology.com), an instrument developed by the German 

leader company Retsch Technology. This instrument, massively used in 

the industrial field for the quality control of many types of materials (Lo 

Castro and Andronico, 2008),  permits to obtain very important 

information both on size and shape parameters of a high number of 

particles (hundreds of thousands data). Moreover, we used clustering 

and classification algorithms in order to group particles according to 

their morphologic characteristics.  

 

6.2.1 Definition of the shape 

 

In literature, the most commonly used definitions are often based on the 

notion of invariance property of the object shape respect to the basic 

geometric transformations: translation, rotations, scale factor (Dryden 

and Mardia, 1998). According to this definition, a set of different 

numerical “descriptors” are used to identify different shapes (ISO 9276-6, 

2008). 

Given a specific shape S, it is possible to describe it by a set of measures 

and properties, called features. For example, a shape can be described by 

its area, or perimeter, or by the number of cavities or picks. More 

formally, the shape characterization process implies a set of 

transformations Ti, such that the shape of each transformation can be 

represented by a set of scalar measures (features) Fk (Costa and Cesar, 

2001) with k = 1, 2, ..., n (Fig. 6.12), saved in an array F = (F1, F2, ..., Fn). 
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Fig. 6.12. Scheme illustrating the characterization of a generic shape S according to a 

series of features F (from Lo Castro et al., 2011a). 

 

Each feature must have a strong discrimination power, and must 

emphasize the property of interest (for example, if we want to 

characterize polygons, the feature corresponding to the number of sides 

will be more significant than the number of cavities). Methods to 

calculate the shape descriptors can be classified in: 

 

a) qualitative methods: refer to the visual appearance of a given particle 

(e.g. rounded, sub-angular and angular particles), and are generally 

based on comparative charts (Fig. 6.13). 

 

 
 

Fig. 6.13. Comparative chart of Russell, Taylor (1937) and Pettijohn (1972) for the 

qualitative characterization of shape (modified after Muller, 1967), from Lo Castro et 

al. (2011a). 
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b) quantitative methods: based on numeric values, which can be 

calculated from images or from physics properties of the particles. 

 

Quantitative methods based on image analysis are used for our scope. 

The image analysis is a versatile technique, and is applied in a broad 

range of disciplines. Given a real (tridimensional) particle, the image 

analysis needs an input device to collect images (generally a camera, or 

microscope, or scanner). The acquired images will be transformed in 

bidimensional digital images (the projections of the particles), and given 

in input to a software, able to read them and to calculate information, 

such as the dimensional parameters and the shape (Fig. 6.14). 

 

 
 

Fig. 6.14. Scheme showing the basic instruments for image analysis (redrawn from Lo 

Castro et al., 2011a). 
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There are several tools to perform the image analysis. Microscopic 

analysis has so far been the reference technique, because allows to 

directly measure the size and the shape of the particles. However, this 

manual technique involves many hours of work, and it is subject to 

human errors. Modern systems allow to more precisely analyze 

thousands of particles at time. Among them we can distinguish: 

 

a) Static image analysis, in which the particles are stationed on a moving 

treadmill, framed by a camera and a microscope (Fig. 6.15). This 

method can manage only a limited number of data and, above all, 

particles are oriented according to their base. 

b) Dynamic image analysis, where particles fall down at certain velocity v, 

into a corridor, and are framed by one or more cameras (Fig. 6.15b). 

Particles are arbitrarily oriented during the fall. 

 

 
 

Fig. 6.15. Different Image Analysis methodologies: a) static and b) dynamic (from Lo 

Castro et al., 2011a). 

 

6.2.2 Methodology 

 

The proposed system, developed in collaboration with Deborah Lo 

Castro of INGV, bases on measures obtained by CAMSIZER, followed by 

automatic clustering and classification analysis. The complete process is 

shown on Fig. 6.16). 

 



151 

 

 
 

Fig. 6.16. Scheme of the methodology used in the research (from Lo Castro et al., 

2011a). 

 

CAMSIZER. In the first step, the CAMSIZER, communicating with 

external software (Alp-reader and Contproc, provided by Retsch 

Technology), returns a set of output files, relative to dimensional and 

shape parameters of the chosen sample for the analysis. CAMSIZER ® is 

a laboratory device, created by Retsch Technology (www.retsch-

technology.com), which dynamically and concurrently analyzes the 

shape of solid particles of size ranging from 30 μm to 30 mm. The device 

(Fig. 6.17) is composed by a funnel for inputting samples, a vibrating 

plate for particles sliding (feeder), ending with a precipice where 

particles fall down into a monitored chamber. In the chamber each 

particle, illuminated by a white light, is captured by two cameras, 

exclusively calibrated for large (CCD-Basic) and small (CCD-Zoom) size 

particles (Fig. 6.18). The detected images are the projections of the 

shadows of each particle. For a more precision on measurements, each 

projection is scanned in 64 different directions of measure. 
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Fig. 6.17. Main components of CAMSIZER (from http://www.retsch-

technology.com/rt/products/dynamic-image-analysis/camsizer/function-features/). 

 

 
 

Fig. 6.18. Structure of the CAMSIZER camera (from 

http://www.horiba.com/fileadmin/uploads/Scientific/Documents/PSA/CAMSIZER_bro

chure.pdf). 
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Results are stored into the following output files: 

 

 Raw Data File (*.rdf): native file of the CAMSIZER software, storing all 

information about measures. 

 Excel File (*.xls): result table for parameters relative to each 

granulometric class. 

 Alp File (*.alp): stores dimensional and shape parameters of each 

measured particle. It is read from an external software (Alpreader). 

 Kon File (*.kon): stores information about particles contouring. It is 

read from a special software (Contproc).  

 

Features. A simple method to characterize a particle shape consists on 

using the ratio between two dimensional measures (xi and xj), to obtain the 

Conventional Shape Descriptor (Sij) (Hentschel and Page, 2003): 

 

jiij xxS           (6.6) 

 

According to the type of the chosen dimensional measures, the obtained 

parameter will be sensitive to a specific aspect of the shape. Hentschel 

and Page (2003) applied cluster analysis on different parameter 

combinations, in order to identify few parameters to describe particle 

shape. 

From this research they found that the shape, for a range 

of commercial powders and bulk materials, can be efficiently described by 

two conventional shape descriptors: Aspect Ratio (AR) for particle stretch, 

and the Form Factor (FF) (Cox, 1927; Kuo et al., 1998) for sphericity and 

irregular contours. These parameters are normally used in volcanology for 

the description of the volcanic particles (Riley et al., 2003), and then are 

extracted from .alp file and used for this work. For our experiment, a 

further parameter, stored on .kon files, is used to describe the angularity of 

a particle. 

The following formally explains the chosen parameter: 

 

a) Aspect Ratio (AR) is the ratio between the width (xcmin) and the height 

(xFemax) of the particle projection (Fig. 6.19), and describes its stretch 

degree (Fig. 6.19a): 
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maxmin / xFexc         (6.7) 

 

Globular particles have an AR value near to 1, while the AR value of a 

stretched particles is < 1; 

 

b) Form Factor (FF) is defined as the ratio between the area of the 

projection of a given particle (A) and its perimeter (P), and refers to the 

degree of circularity (Fig. 6.19b): 

 

2

4

P

A
         (6.8) 

 

In 2D, a perfect circle has FF = 1, while irregular shapes have FF < 1, 

because an irregular shapes have a greater perimeter. 

 

c) Angularity refers to the particle contour and to its irregularity. From 

.kon file we considered the Epolygon parameter, that measures the mean 

value of the vertices of a polygon (convex angles α), defined as the 

polygon which best fits with a given contour, multiplied by the relative 

height h (Fig. 6.19c): 
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       (6.9) 

 

This value depends on the number of vertices of the polygon: a perfect 

circle has Epolygon = 0, while a sharp contour has Epolygon = 1. 

 

 
 

Fig. 6.19. Schemes describing the shape parameters used: a) aspect ratio; b) sphericity; 

c) angularity. 
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6.2.3 Data analysis 

 

The step of calibration was performed using only well-known shapes, 

such as spheres, cubes and cylinders, created by a simulation software 

provided by the CAMSIZER (Fig. 6.20).  

 

 
 

Fig. 6.20. Graphical interface of the simulation software of CAMSIZER (on top) and 

simulated shapes used in the experiments (bottom). 

 

The measurements will be done both for the simulated shapes and for 

the real samples. The results, saved on the .alp and .kon files, were used to 

extract the 3 parameters we need to describe the shapes and the relative 

labels or class of belonging: sphere (S), cubes (Cu), and cylinders (Ci) 

(Table 5.2). The selected data was given in input to the PyDBSCAN 

software (Cassisi et al., 2011a).  

The real samples (Fig. 6.21) are 1.2 × 1.2 × 1.2 cm standard rubber cubes, 

plastic spheres (diameter = 2 cm) and wood cylinders (length = 4 cm and 

diameter = 1 cm). Samples were analyzed with CAMSIZER, by 

performing tests on a single sample and on a set of samples. 
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Fig. 6.21. Material used in the experiments: a) plastic spheres; b) standard rubber 

cubes; c) wood cylinders. 

 

 

b/l SPHT Epol

S 0.997 0.9971 0.0955

S 0.997 0.9979 0.0958

S 0.997 0.9961 0.0872

S 0.9969 0.9996 0.0871

S 0.997 10.011 0.0872

S 0.9971 0.9988 0.0954

… … … …

Ci 0.4988 0.7682 0.2669

Ci 0.4987 0.7647 0.3759

Ci 0.4983 0.753 0.2591

Ci 0.4989 0.7947 0.2466

Ci 0.4984 0.7862 0.1777

Ci 0.4995 0.726 0.4422

… … … …

Cu 0.7744 0.8645 0.3561

Cu 0.8413 0.9152 0.3356

Cu 0.6524 0.8538 0.4431

Cu 0.6499 0.779 0.4456

Cu 0.748 0.9173 0.3731

Cu 0.6625 0.802 0.4328

Cu 0.7045 0.8648 0.4042

… … … …  
 

Table 6.2. Input data interface for the clustering software. Labels of the shape 

typologies are shown in the first column (S=sphere; Ci=cylinders; Cu=Cubes). 

The other 3 columns report the shape parameters (b/l=aspect ratio; SPHT= 

sphericity; Epol= angularity). 
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6.2.4 Results 

 

Fig. 6.22 shows a 3D feature space (b/l, SPHT, Epol), 3 different clouds of 

density and then 3 clusters for the density-based clustering definition (see 

Section 5.3.3), corresponding to the 3 different shapes: 

 

 Spheres are grouped in a small region where b/l, SPHT, and Epol are 

all equal to 1. 

 Cylinders have b/l value between 0.5 and 0.9, with a higher percentage 

around 0.6, because are more stretched than spheres. The SPHT value 

is practically constant, and ranges from 0.75 to 0.85, while Epol value 

ranges in a more large interval starting from 0.1 (more rounded 

particles) to 0.5 (more angular particles). Such a difference is due to the 

various directions and the relative projections of the cylinders during 

the “fall” into the measurement chamber of the instrument (Fig. 6.22b). 

 Cubes present high b/l and SPHT values, ranging from 0.6 to 0.9, and a 

quasi-constant value for Epol (≈ 0.4), because any projections of the 

cube in its fall always maintains a certain angularity. 

 

Using the same sample dataset of the clustering process, we tested a 

classification model based on SVM to compute the maximum marginal 

hyperplane (see Section 4.1.5) separating the obtained clusters. Fig. 6.23 

shows a 2D projection of the dataset where the 3 cluster are divided into 3 

well-defined areas. 

To check the quality of the classification model we tested the system by 

using a new dataset representing real spheres (cluster 1), cubes (cluster 2) 

and cylinders (cluster 3), and storing the classification results into a 

confusion matrix (see Section 6.1.4), showed in Fig. 6.24.  

In this case 619 spheres (cluster 1) are well classified, while only 10 are 

classified as cubes (cluster 2). Same thing for the cubes, where 365 sample 

are classified as cubes (cluster 2), while 78 as spheres (cluster 1). For 

cylinders we observed that 111 samples are well classified as cylinders 

(cluster 3), while 11 samples are labeled as spheres (cluster 1). From this 

matrix we can calculate a total error rate about 0.08 %. 
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Fig. 6.22. a) Density clusters showing the 3 different analysed shapes in a 3D space 

defined by the descriptive features; b) the same diagram a with the different shape 

typologies. 

 

6.2.5 Future works 

 

This technique allows good classification for elementary shapes (spheres, 

cubes, cylinders). The next step of this research will be aimed to the 

realization of new experiments about volcanic materials (lapillus and ash) 

which, unlike the materials described herein, are composed by very 

irregular shapes and therefore more difficult to characterize. Preliminary 

tests highlight the exigency of using more particular shape descriptors, 

that can be based, for example, on the conversion of a two-dimensional 

shape to a one-dimensional “time series” (Want et al., 2008). 
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Fig. 6.23. 2D diagram showing the optimal hyperplane separating the 3 clusters, 

obtained by the SVM analysis. 

 

 

 
 

Fig. 6.24. Real materials used during the testing phase (on the left, with labels) and 

confusion matrix (on the right). The cluster 1 is relative to spheres, the cluster 2 to 

cubes, and the cluster 3 to cylinders. 
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6.3 Motif discovery on seismic amplitude time series: the case 

study of Mt. Etna 2011 eruptive activity 

 

Mt. Etna volcano (Italy) is one of the most active volcanoes in the world. 

The summit area is currently characterized by four active craters: 

Voragine, Bocca Nuova, South-East Crater and North-East Crater 

(hereafter referred to as VOR, BN, SEC and NEC, respectively; see Fig. 

5.1). Over time, the summit activity has consisted of persistent degassing 

and different, and sometimes coexistent, eruptive types also from its 

flanks such as: phreatic, phreato-magmatic, strombolian explosions, lava 

fountaining, and lava effusion (e.g., Chester et al., 1985; Branca and Del 

Carlo, 2005). After the 2008-2009 eruption at the volcano’s eastern flank 

(Cannata et al., 2011b), the activity resumed in 2010 with minor explosive 

activities from BN, NEC and SEC (Spina et al., 2012), and continued in 

2011 with several lava fountaining episodes taking place at a new crater, 

opened to the east of SEC and named as “new SEC”. Each of the lava 

fountaining episodes showed an initial strombolian phase and lava 

effusion, that emplaced on the upper Valle del Bove (e.g., Bonaccorso et 

al., 2011a; Calvari et al., 2011). The paroxysmal behaviour of such short-

lasting violent phases is not uncommon at Etna and during recent decades 

it has become more and more frequent. Indeed, between 1900 and 1970, 

about 30 paroxysmal eruptive episodes occurred at the summit craters, 

while there have been almost 200 since then (Behncke and Neri, 2003).  

The geophysical surveillance of active volcanoes is routinely carried out 

mainly by observing the patterns of seismic activity and ground 

deformations (e.g. Scarpa and Gasparini, 1996). Commonly, seismic unrest 

in the form of earthquakes and tremor have almost always preceded 

and/or accompanied volcanic unrest phases at different types of volcanoes 

(McNutt, 2000). Seismic activity is considered a critical indicator, and often 

a reliable short- to midterm (days to weeks) eruption forecaster, and a 

marker of the level and evolution of ongoing volcanic activity (McNutt, 

2000).  

We can distinguish two different groups of seismic signals in volcanic 

areas—those associated with shear failures in the volcanic edifice, which 

are called volcano-tectonic (VT) or high-frequency earthquakes, and the 

seismic signals associated with fluid processes (Lahr et al., 1994; Chouet, 
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1996; McNutt, 2005). These include long period (LP) events, volcanic 

tremor, which share the same spectral components, and very long period 

(VLP) events, characterized by lower frequency content. The main 

difference between LP 

events and volcanic tremors is their duration. Similarly to earthquakes, LP 

event duration is in the order of seconds whereas volcanic tremor can last 

from minutes to months. Alparone et al. (2003) qualitatively observed that 

some recurrent patterns can be recognized in the seismic amplitude time 

series. Specific volcano states, for example lava fountain activity, may 

have a recognizable amplitude pattern. 

The task of extracting previously unknown recurrent patterns (also called 

motifs) from available data constitutes a crucial step in geophysical time 

series analysis. Many algorithms for efficiently mining motifs have been 

proposed, especially in bioinformatics (Lawrence et al., 1993; Bailey and 

Elkan, 1995;  Pevzner and Sze, 2000; Tompa and Buhler, 2001). Since naïve 

algorithms are computationally time-expensive, as quadratic in the length 

of time series, most researchers have abandoned searching for exact 

solution methods, such as the cross-correlation approach, and have 

focused on investigating approximated solutions to the problem. Many of 

them have made use of data dimensionality reduction. 

In this work, we apply an exact time series motif discovery technique to 

explore recurrent patterns within the seismic amplitude time series of Mt. 

Etna 2011 periodic eruptive activity (1 January – 16 November 2011). To 

this end, the seismic amplitude time series were computed using a root 

mean square (RMS), which provides information on the volcano states 

and/or external seismic sources. Although belonging to exact solution 

methods, this technique allowed us to reduce computation time in finding 

motifs in the investigated time series. 

 

6.3.1 Data analysis 

 

On Mt Etna, the broadband permanent seismic network consists of 32 

stations equipped with broadband (40 s cutoff period), three-component 

Trillium seismometers (Nanometrics) acquiring at a sampling rate of 100 

Hz in real-time. The signal recorded by the vertical component of the 

reference station EBEL (Fig. 6.1) from 1 January–16 November 2011 was 
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filtered in the 0.5–5.0 Hz band, which comprises most of the volcanic 

tremor energy of Mt Etna (Cannata et al. 2008, 2010). RMS was calculated 

on 10-minute-long moving windows, chosen as a compromise between 

acceptable time resolution and the fairly small time series (Fig. 6.25). 

 

 
 

Fig. 6.25. RMS of seismic signal recorded by the vertical component of EBEL station 

and filtered in the band 0.5-5.0 Hz. The vertical dashed red lines indicate the episodes 

of lava fountains (from Cassisi et al., 2012a). 

 

6.3.2 Motif discovery theory 

 

The brute-force search algorithm is a simple solution that performs a 

sequential scan of the database. Suppose a simple case, where we have a 

time series database (TSDB) of L time series, each of length m. At each 

step, the current analyzed time series Ti (0 < i ≤ L) is compared with all the 

following time series Ti+1, …, TL (Fig. 6.26) by computing distances or 

similarity coefficients (e.g. cross-correlation) between time series, whether 

they use metric or non-metric measures such as Euclidean (Lie Hetland, 

2004) or Dynamic Time Warping (Berndt and Clifford, 1994), respectively. 

For each comparison, if the distance (or similarity) between Ti with a Tj (i < 

j ≤ L) satisfies some user-defined threshold, then the pair (Ti, Tj) is 

candidate to be a motif. This step is repeated for all Ti. Each step will 

perform L-1 comparisons at step 1, L-2 at step 2, until to 1 comparison at 

step L-1. Then, the total number of comparisons can be calculated as (L + L 

- 1 +… + 1) = L(L - 1) / 2. This value is quadratic respect to the TSDB size. In 

computer science this computation is referred to achieve a complexity 

O(L2). Moreover, each comparison makes a number of operations that is 

proportional to m, for a total computational complexity of O(mL2). A 

typical application of such a method makes use of the cross-correlation to 
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quantify similarity between time series (e.g. Brown et al., 2008). Since this 

kind of algorithm is computationally time-expensive, some researchers 

have abandoned searching for exact solution methods, such as the cross-

correlation approach, and have focused on investigating approximated 

solutions to the problem. Moreover, over the last years, novel time series 

algorithms, dealing with high dimensional data, have been developed to 

optimize the computational time even using the raw representation of 

data. One of such algorithms is the Mueen-Keogh (MK) algorithm (Mueen 

et al., 2009), that was here applied to perform exact motif discovery in 

seismic RMS time series. Such an algorithm makes use of Euclidean 

distance to carry out comparisons between time series, instead of more 

complex and accurate measurements used on time series 

classification/clustering, such as DTW. Recent works showed its 

effectiveness on various domains (Ding et al., 2008), especially when 

datasets expand and the difference between the two measures rapidly 

decreases (Shieh and Keogh, 2008). 

 

 

 

Fig. 6.26. At step i (0 < i ≤ L), if the distance between Ti with a Tj (i < j ≤ L; in this figure j 

= i+1) is less than some user-defined threshold, then the pair (Ti, Tj) is candidate to be a 

motif. This step is repeated for all Ti. The x-axis is relative to time, and the y-axis to a 

generic time dependent variable (indicated by v).  

 

Before presenting the algorithm, we list some basic notations and 

definitions of the analysis method. 
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Definition 6.3.1. A Time Series is a sequence T=(t1, t2,…, tm), which is an 

ordered set of m real valued numbers; 

 

Definition 6.3.2. A Time Series Database (D) is an unordered set of time 

series, possibly of different lengths;  

 

Definition 6.3.3. The Time Series Motif of D is a pair of time series {Ti, Tj} in 

D, which is the most similar among all possible pairs. More 

formally, jiba ,,, the pair {Ti, Tj} is the motif if d(Ti,Tj) ≤ d(Ta,Tb), i≠j and 

a≠b; 

 

Definition 6.3.4. The kth-Time Series motif is the kth most similar pair in the 

database D. The pair {Ti, Tj} is the kth motif if there a set S of pairs of time 

series of size exactly k-1 exists, such that 

  STTDT did  , and  STT dj , , and     STTSTT bayx  ,,  d(Tx,Ty) ≤ 

d(Ti,Tj) ≤ d(Ta,Tb); 

 

Definition 6.3.5. The Range motif with range r is the maximal set of time 

series with the property that the maximum distance between them is less 

than 2r. More formally, S is a range motif with range r if   ,, STT yx   d(Tx, 

Ty) ≤ 2r and STSDT yd   d(Td,Ty) > 2r; 

 

Definition 6.3.6. A subsequence of length n of a time series T=(t1, t2, …, tm) 

(with n<<m) is a time series Ti,n=(t1, ti+1, …, ti+n-1) for 1 ≤ i ≤ m-n+1; 

 

Definition 6.3.7. The Subsequence Motif is a pair of subsequences {Ti,n, Tj,n} 

of a long time series T that are most similar. More formally, jiba ,,, the 

pair {Ti,n, Tj,n} is the subsequence motif if d(Ti,n, Tj,n) ≤ d(Ta,n, Tb,n), |i-j| ≥ w 

and |a-b| ≥ w for w > 0. 

 

Let us explain the idea behind the algorithm. The first improvement for 

the brute-force method is the application of the early abandoning idea (Fig. 

6.27). In order to search the nearest neighbour of a time series Q, it needs 

to compute the point-to-point distance from Q for each time series in the 

database. At each step, if we know the nearest neighbour distance from Q 

(or the best-so-far), we can stop computation as soon as the current distance 
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exceeds this value, and skip scanning the next time series. Initially the 

algorithm assumes the best-so-far value to be infinity. 

 

 
 

Fig. 6.27. Q is the time series query. To find the Q nearest neighbor, we compare Q 

with each time series in the database. At each step, with the early abandoning method, 

once the sum of accumulated distances (gray lines) exceeds the best-so-far value, the 

full Euclidean distance surely exceeds this threshold, and we can skip scanning the 

next time series (redrawn from Mueen et al., 2009). 

 

The second improvement regards the creation of a database index (see also 

Section 2.2). In this case, the indexing consists in choosing a random object 

as “pivot” (or reference point; hereafter referred to as O1; Fig. 6.28) and 

linearly ordering the space {O1, O2, O3, …, On} by using the distance from 

it, dist’(Oi) = dist(O1, Oi) (with 0 < i ≤ n), considered as sorting key. We then 

record distances between adjacent pairs: {dist’(O2) – dist’(O1)}, {dist’(O3) – 

dist’(O2)}, …, {dist’(On) – dist’(On-1)}. This transformation maintains two 

useful properties: (i) even if the saved distances cannot be true, they are 

always lower than the true distances, thanks to the triangle inequality 

property (Fig. 6.29); and (ii) if two objects are close in the original space, 

they must be close in the new projection too (but the contrary is not 

always true). 

Thanks to these two improvements, MK algorithm is still worst case 

quadratic, but generally it reduces the computational time by three orders 

of magnitude with respect to the classical brute-force method (Mueen et 

al., 2009). 
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Fig. 6.28. A simple indexing example in 2D space. Objects can be arranged in a one-

dimensional representation by measuring their distance from a randomly chosen 

point: the reference point (O1 in this case) (redrawn from Mueen et al., 2009). 

 

We now provide an example of the analytical procedure to show how the 

linear ordering, combined with the best-so-far, permits to make space 

pruning to enhance motif search. At first we choose O1 as the current 

reference point, then we set the best-so-far value to the distance from its 

nearest neighbour O2, scan across the linear ordering (Fig. 6.28), measure 

the true distances between adjacent pairs, and update them. As soon as a 

pair of objects having distance value less than the best-so-far is found, we 

update the best-so-far to this last value. Successively, if the found value 

does not match the true best-so-far, scanning again the linear ordering, we 

can prune off all pairs of objects with mutual distance greater than the 

resulting best-so-far value. In fact, the triangle inequality property ensures 

that these are lower than the true distances, thus they cannot be the 

candidates. Using a simple heuristic to find good reference points, and 

thus making multiple pruning rounds with multiple reference points, 
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Mueen et al. (2009) demonstrated how this technique speeds-up the 

computation time.  

 

 
 

Fig. 6.29. Assume working with metric distance functions as the Euclidean distance. If 

we refer the A, B and C points to O1, O2 and O3 of Fig. 5.29 respectively, we can use the 

triangle inequality property to assert that dist(O2,O3) is greater than the value {O2,O3} = 

dist(O1,O3) - dist(O1,O2) (saved on the linear ordering). 

 

The power of early-abandoning method can be related to the familiar effect 

of the birthday paradox in probability theory (Brink, 2012), for which in a 

dataset consisting of 23 people, the chance of any two people sharing a 

birthday is 50.7%, while 99% probability can be reached in a set of just 57 

people. There are so many possible ways for pairs to be similar, that it is 

reasonable to think that the algorithm can find a very low best-so-far 

rapidly. 

 

5.3.3 Results 

 

The used Matlab tool developed by Mueen et al. (2009; 

http://www.cs.ucr.edu/~eamonn/exact_motif/) allows applying the 

described technique to investigate likely subsequence motifs into a single 

time series. In order to run the tool we need 5 input values:  

 

 m, the length of the time series;  

 R, the number of reference points to use; 
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 n, the length of the searched motif;  

 X, the coefficient used for motif range r (default X=2 in definition 5.3.5), 

in this case r corresponds to the best-so-far;  

 K, the number of desired groups of motifs. The kth group corresponds 

to the kth subsequence motif (see definitions 4 and 7), combined with all 

subsequences distant from it at most Xr (see definition 5). 

 

Since the analyzed time series of seismic RMS starts from 00:00 on 1 

January 2011 to 17:40 on 16 November 2011, with a 10 minutes time step, 

we theoretically deal with a time series of m = 

[6*24*(31+28+31+30+31+30+31+31+30+31+15)] + [6*17] + [4] = 46042. 

However, since data present missing values, we consider the real input 

number of points m = 43103. The parameter R was fixed to 10, as suggested 

by Mueen et al. (2009).  

In order to choose the other three parameters we run experiments by 

systematically changing their values within defined ranges. For each 

experiment, and then for each n, X, K combination, we count the number 

of subsequences in each group and evaluated the similarity among them 

by using another similarity measure, the average cross correlation 

(indicated by ACC; Figs. 6.30-6.32).  

The parameter n was fixed to 50, 100 and 150, roughly corresponding to 8, 

17, and 25 hours. Such a range was chosen on the basis of the duration of 

the “seismo-volcanic phenomena” of interest. Indeed, the investigated 

period was characterized by lava fountains, that last from a few hours to a 

couple of days (taking into account also the strombolian phases preceding 

and following the lava fountain phase). As shown in Figs. 6.30-6.32, 

variations in n scarcely affect both number of subsequences and ACC. The 

analysis was focused on experiments having n = 100, because the most 

significant volcanic tremor amplitude changes during the analyzed lava 

fountains generally take place in time windows shorter than 17 hours.  We 

explored X values fixed to 2, 3 and 4 because, already in this small range, 

the number of significant motif groups (i.e. those having high ACC) 

widely changed. Indeed, for X > 4 the method found a few groups 

including a very large number of subsequences (with relatively low ACC). 

Among the considered values for X, the choice of the optimum one is very 

delicate, and, similarly to the cross correlation threshold used to classify 
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earthquakes into families of similar events (e.g. Ferretti et al., 2005), there 

is no objective means to determine the right value. Such a threshold 

depends on how similar the motifs, belonging to a given group, are 

needed to be for a particular application. There is no similarity threshold 

value that has a general validity. We chose X=3, because it permits to 

obtain a good compromise between the number of groups, and the 

number of subsequences with fairly high ACC within each group (number 

of subsequences < 20, and ACC generally higher than 0.5). The last 

parameter is K, whose maximum value was chosen equal to 20, because 

the MK algorithm does not produce any motifs beyond this limit in all the 

performed experiments. Considering the plot with n=100 and X=3 (Fig. 

6.31), we chose to take into account the first K=8 groups. Indeed, in 

correspondence to such a value the plot shows both the maximum 

downward slope of the ACC line (left plot) and the maximum upward 

slope of the subsequence number line (right plot). Once the values of the 5 

input parameters were fixed, the MK algorithm was applied on the 

seismic RMS time series. Figures 6.33-6.34 report the 8 groups of motifs 

with their time locations within the original RMS series. The first 2 groups 

are related to the initial phases of the 2011 lava fountain episodes (Fig. 

6.33), with group 1 showing quicker increases (~5 hours on average) in the 

volcanic tremor amplitude than group 2 (~10 hours on average). Groups 3 

and 4 provide information on the final phases of the lava fountain 

episodes. These are characterized by volcanic tremor amplitude 

decreasing trends, which, also in this case, can be more or less rapid 

(motifs 3 and 4, ~30 and 60 minutes on average, respectively; Fig. 6.33). An 

example of seismic signal recorded during a lava fountain taking place on 

10 April 2011, together with RMS time series calculated on 10-minute-long 

moving windows, is reported in Fig. 6.35. Groups 5 and 6 are composed of 

portions of RMS time series typified by very sharp increases and decreases 

(from seconds to a few minutes; Fig. 6.34), respectively. These sudden 

changes result from the occurrence of VT earthquakes clearly recorded at 

EBEL station (examples are reported in Fig. 6.36). Group 7 includes motifs 

of gradual decreases in the seismic RMS, taking place roughly in 5-10 

hours, associated with decreases in the volcanic tremor amplitude, and 

sometimes related to waning phases of the strombolian activity (Figs. 6.34 

and 6.37a,b). 
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Fig. 6.30. On the left column the average correlation coefficient (ACC) for each group 

of motifs of size n = 50. On the right column the relative number of subsequences 

within each group. From top to bottom we show the experiments using X varying from 

2 to 4. Points in the plots related to k values, producing no results (no motifs found), 

are missing. 
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Fig. 6.31. On the left column the average correlation coefficient (ACC) for each group 

of motifs of size n = 100. On the right column the relative number of subsequences 

within each group. From top to bottom we show the experiments using X varying from 

2 to 4. Points in the plots related to k values, producing no results (no motifs found), 

are missing. 
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Fig. 6.32. On the left column the average correlation coefficient (ACC) for each group 

of motifs of size n = 150. On the right column the relative number of subsequences 

within each group. From top to bottom we show the experiments using X varying from 

2 to 4. Points in the plots related to k values, producing no results (no motifs found), 

are missing. 
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Fig. 6.33. Upper and bottom panels: motifs found in RMS time series (the bold blue 

and red lines indicate the first and second motifs, respectively). Middle panel: RMS 

time series with the time intervals corresponding to the found motifs (green and red 

areas). 
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Fig. 6.34. Upper and bottom panels: motifs found in RMS time series (the bold blue 

and red lines indicate the first and second motifs, respectively). Middle panel: RMS 

time series with the time intervals corresponding to the found motifs (green and red 

areas). 
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Finally, group 8 clusters motifs of quick increases of RMS followed by 

decreasing trends, reflecting either earthquakes or brief variations of the 

volcanic tremor amplitude or sequences of energetic LP events (Figs. 6.36 

and 6.37c,d). Similarly to groups 5 and 6, the variations of the group 8 

generally take place in a few minutes. 

 

5.3.4 Discussion and conclusions 

 

Seismic RMS, together with helicorder and RSAM (real-time seismic 

amplitude measurements), is one of the most used geophysical parameters 

in volcano activity monitoring (e.g., Endo and Murray, 1991; Qamar et al., 

2008). Over time, it has been observed that many eruptions were preceded 

and/or accompanied by increases in seismic energy that might have 

resulted from increases in the volcanic tremor amplitude and/or rate and 

amplitude of seismic transients such as VT earthquakes and LP events 

(e.g., Lahr et al., 1994; McNutt, 2000; Moran et al., 2008). In particular, at 

Mt. Etna many authors highlighted the close relationships between 

volcanic activity changes and variations of the features of volcanic 

tremor/long period events (e.g. Alparone et al., 2003; Alparone et al., 2007; 

Patanè et al., 2008; Aiuppa et al., 2010). Alparone et al. (2003) carried out a 

qualitative study of the seismic amplitude time series, finding three 

different repeating patterns of increase of volcanic tremor energy 

corresponding to the onset of lava fountain phases. However, variations in 

seismic amplitude time series can also be associated with phenomena 

external to volcanic eruptions such as distant earthquakes.  

In order to discriminate between the two cases, we applied an exact time 

series motif discovery technique on seismic RMS time series to 

quantitatively search for recurrent patterns (Figs. 6.33-6.34). This 

permitted us to observe that different phenomena are characterized by 

distinct RMS trends, i.e. earthquakes are accompanied by sharp increase 

and decrease in RMS (lasting from seconds to minutes; Figs.6.34 and 6.36), 

while lava fountains by slower changes (taking place in hours, sometimes 

even days; Figs. 6.33, 6.35). The opportunity to assess such a difference 

between the two kinds of motifs, and hence to distinguish the two source 
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phenomena might represent a complementary information for the 

monitoring purposes in volcanic areas.  

Analysis of long RMS time series can provide motifs related to specific 

phenomena (earthquakes, lava fountain initial phases and so on), that can 

be used as templates, with which to compare the RMS calculated on real-

time seismic data. Then, if a good match is found, the evolution of an 

ongoing eruptive activity could be inferred without any further 

information. The opportunity to understand the RMS behavior in its 

increasing phase might be of primary importance, especially in cases of 

violent and short-time evolving eruptive phases such as lava fountaining 

episodes. Indeed, lava fountains release copious amounts of volcanic ash 

and gases into the atmosphere, which may cause danger to the aviation 

(e.g., Scollo et al., 2009).  

At volcano observatories, the routine surveillance and monitoring of 

volcanic activity can also be carried out by networks of visible and 

infrared cameras (e.g., Spampinato et al., 2011). These allow the real-time, 

automatic ground observations that provide information on volcano 

activity changes. However, these observations are heavily dependent on 

external effects such as weather conditions, presence of gas and ash along 

the line-of-sight, which can inhibit and sometimes preclude the visibility. 

Hence, in these cases the possibility of assessing the kind of phenomenon 

occurring at the surface by seismic parameters becomes of primary 

importance. In order to be used as templates for comparison with the RMS 

calculated in real-time, motifs need to be tested on long time series. 

Indeed, according to what has been qualitatively reported by Alparone et 

al. (2003), not all the lava fountains showed exactly the same RMS 

behavior. The initial phase of the eruptive phenomena can be 

accompanied either by gradual or quicker RMS increases, and likewise the 

final phases may show more or less rapid RMS decreases. Integrating our 

results with volcanological observations of the eruptive activity at the 

surface, we suggest that the kind of patterns with which lava fountain 

phases started, i.e. gradual or sharp, depend on the duration of the 

Strombolian activity that characterized the early stages of all the 2011 lava 

fountains. In particular, we observed that the longer the strombolian 

activity the lower the slope of the motif (see groups 1 and 2 for 

comparison; Fig. 6.33). 
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Fig. 6.35. (a) Seismic signal recorded by the vertical component of EBEL station from 9 

to 10 April 2011 and (b) corresponding RMS time series calculated on 10-minute-long 

moving windows. 

 

Similarly, we believe that the contrasting behavior of the lava fountaining 

waning stages might result from the combination between the duration of 

the strombolian phase and that of lava effusion following the paroxysmal 

phase (see groups 3 and 4 for comparison; Fig. 6.33). If this is the case, and 

assuming the 2011 lava fountaining events have been fed by constant 

magma supply, we can infer that the different shape of RMS motifs 

observed might relate to the modalities with which the energy of the event 

is released at the surface, and thus to the magma transport mechanisms 

occurring in the volcano shallow feeder system.  
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Fig. 6.36. (a,c) Seismic signal recorded by the vertical component of EBEL station on 23 

June and 9 September 2011 and (b,d) corresponding RMS time series calculated on 10-

minute -long moving windows. 
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Fig. 6.37. (a,c) Seismic signal recorded by the vertical component of EBEL station on 3 

January and 16 February 2011 and (b,d) corresponding RMS time series calculated on 

10-minute -long moving windows. 
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This is only one example of prospective application of this fairly novel MK 

technique in seismology. In future, a further useful application might be 

the detection of repeating earthquakes within a continuous seismic signal, 

for instance used to detect variations of attenuation (e.g. Antolik et al., 

1996). Many Authors demonstrated how the common detecting 

techniques, based on the comparison between the power of a short time 

window with the power of a long time window (STA/LTA; e.g. Withers et 

al., 1998), are sometimes ineffective to detect seismic events especially in 

conditions of low signal to ratio (e.g. Gibbons and Ringdall, 2006; Schaff, 

2008, 2009). For this reason, techniques based on the cross-correlation 

detectors were developed. Such techniques have been used when the 

waveforms of the events of interest are known (sometimes called 

“templates”; Shelly, 2010), as well as when there is no a-priori knowledge 

(e.g. running auto-correlation; Brown et al., 2008).  

However, the drawback of these methods, limiting or even preventing 

their applications on very big datasets, is the computational complexity, 

that in the latter case (no a-priori knowledge) is equal to run a brute-force 

search algorithm, using cross-correlation coefficient as similarity function. 

MK algorithm overcomes such limitation by means of two optimization 

techniques i.e. the early-abandoning basic concept and the space indexing. 

Even if their implementation does not reduce the searching theoretical 

complexity, with respect to the brute-force algorithm, it is able to speed-up 

in practice the computation time, especially when dealing with huge 

datasets (Mueen et al., 2009). The early-abandoning is a simple and intuitive 

enhancement for searching, allowing it to skip many unnecessary steps. 

Since MK algorithm uses a metric (the Euclidean) distance function to 

perform similarity among time series, it can take advantage of the triangle 

inequality metric property to build an indexing structure corresponding to 

a pivot-based linear ordering. This is a well-known architecture in 

similarity searching area, because it enhances performances allowing 

pruning operations in the searching space (Zezula et al., 2005). 

 

 

 

 



181 

 

6.4 An application of segmentation method on seismo-

volcanic time series 

 

In this section we show an application of segmentation algorithm (see 

Section 3.6). Segmentation on seismo-volcanic time series data (Montalto 

et al., 2012) provides a good method for data compression, allowing faster 

transmission and visualization. 

The time series used for the experiments come from the seismic RMS 

signal, acquired from summit stations on Mt Etna. In particular, the RMS 

was calculated on 10-minute-long moving windows, from which the 

automatic trigger of seismic transients is performed. Skipping details on 

data elaboration procedure, the final information are relative to the 

volcanic tremor amplitude and to the number of seismo-volcanic events. 

These information, currently used for volcano monitoring, are managed 

and stored into databases that, over the time, get larger and larger. 

Moreover, analysts may request to display such a data on very large time 

intervals. In this case the segmentation method to obtain and display a 

‘light’ version of time series, which does not lose the information content.  

The scheme in Fig. 6.38 provides a representation of the system used for 

the elaboration of the above time series. It starts from the extraction of the 

data from the database containing the RMS time series and the number of 

seismo-volcanic transient. Then, data are input to the segmentation 

algorithm to obtain a compressed version. Segmented data can be stored 

again into a new database structure used for transmission and 

visualization purposes. 

Fig. 6.39 shows the result of two segmentation processes, relative to the 

time series (of length m = 8760) showing the number (per hour) of seismo-

volcanic events, registered during 2009, and using two different error 

thresholds. The first experiment, which uses a relative high error 

threshold, returns a representation of m’ = 42 points (Fig. 6.39a). Although 

points follow the trend of the original time series, the considered 

representation offers little detail. To refine the approximation degree, we 

used a smaller error threshold. Fig. 6.39b shows the resulting time series of 

m’’ = 199 points. In this last case the improved approximation allows to see 

also faster variations. 
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The segmentation was applied also to the RMS time series. In the reported 

examples, the RMS time series was calculated on 10-minute-long moving 

windows and filtered in frequency range 0.5–5 Hz. Fig. 6.40 shows the 

result of two different approximations of a time series of length m = 52560, 

with 532 (Fig. 6.40a) and 171 (Fig. 6.40b) points. 

Both representations well maintain information about the original time 

series trend. Smaller the error threshold is chosen, more precise will be the 

approximation of the time series. Differently from a simple moving 

average, the information content remains unaltered, so information about 

fast variations are not lost. 

 

 

 

Fig. 6.38. Scheme of the system using segmentation process. 
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Fig. 6.39. Time series representing the number of LP events registered during 2009. The 

dashed line indicates the original time series, while the red line represents the 

segmented time series. (a) Segmentation with 42 points (high error threshold); (b) 

Segmentation with 199 points (smaller error threshold). 
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Fig. 6.40. Time series representing RMS of seismic signal recorded by the vertical 

component of EBEL station and filtered in the band 0.5-5.0 Hz (black line). The 

number of point of the time series is 52560. The red line represent the segmented time 

series. (a) Segmentation with 532 points; (b) Segmentation with 171 points.  
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6.5 Monitoring volcano activity through Hidden Markov 

Model 

 

During 2011, Mt. Etna was mainly characterized by cyclic occurrences of 

lava fountains, totaling to 18 episodes. During this time interval Etna 

volcano’s states (“Quiet”, “Pre-fountain”, ”Fountain”, ”Post-fountain”; 

Fig. 6.41), whose automatic recognition is very useful for monitoring 

purposes, turned out to be strongly related to the trend of RMS of the 

seismic signal recorded by stations close to the summit area. Since RMS 

behavior is considered to be stochastic, we can try to model the system, 

assuming to be a Markov process, by using Hidden Markov models (HMMs). 

HMMs analysis seeks to recover the sequence of hidden states from the 

observed emissions (Fig. 4.8). In our framework, observed emissions are 

characters generated by the SAX (Lin et al., 2007; see also Section 3.8) 

technique, which maps RMS time series values with discrete literal 

emissions. The experiments show how it is possible to guess volcano 

states by means of HMMs and SAX. 

 

 
 

Fig. 6.41. Diagram of volcano’s states transitions. 

 

6.5.1 Modelling RMS values distribution 

 

As we have just seen in Section 3.8, to give significance to the symbolic 

transformation, it is necessary to deal with a system producing symbols 

with equal probability, or with a Gaussian distribution. This is the first 

assumption to use the SAX algorithm, because breakpoints (Def. 3.8.1) 

correspond to quantiles of the cumulative of a normal distribution 

function. However, this is a limit for our purposes: the probability 
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distribution of RMS values are not approximated by a Gaussian (Fig. 6.42), 

and even if Lin et al. (2007) advised that this limit can be overcome by 

normalizing data, we don’t want to perform any transformation to 

maintain the correctness as well as the significance of the signal. 

 

Distribution fitting 

 

We performed a chi-square goodness-of-fit test by assuming the null 

hypothesis that the data in the RMS are random samples from a known 

distribution with parameters estimated from the samples (i.e. the RMS 

values).  

The chi-square test compares the observed frequency distribution in the 

sample, O, with the expected frequency distribution, E. The difference 

between the observed and expected (O - E) is squared to remove negative 

signs, and then standardized by the expected frequency in that class or 

range, in order to obtain a standardized measure of the difference between 

the two distributions. The sum of these standardized differences is then 

calculated and compared to a chi-square distribution with n-1 degrees of 

freedom, where n is the number of frequency classes used in the 

calculation. The formula used is thus of the form: 
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To do this we used chi2gof from MATLAB Statistic Toolbox 

(http://www.mathworks.it/it/help/stats/chi2gof.html). The result h of this 

procedure is 1 if the null hypothesis can be rejected at the 5% significance 

level. The result h is 0 if the null hypothesis cannot be rejected at the 5% 

significance level. The null distribution can be an arbitrary discrete or 

continuous distribution (e.g. normal, Poisson, gamma, lognormal, 

exponential). The test is performed by grouping the data into bins, 

calculating the observed and expected counts for those bins, and 

computing the chi-square test statistic. chi2gof sets the number of bins, 

nbins, to 10 by default, and compares the test statistic to a chi-square 

distribution with nbins – 3 degrees of freedom to take into account the two 

estimated parameters. 
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Fig. 6.42. Histogram of RMS values calculated on the seismic signal recorded at EBEL 

station in the period starting from 00:00 on 1 January 2011 to 00:00 on 1 December 2011. 

The red shape is relative to the Gaussian distribution fitted to the RMS values 

distribution. 

 

We tested RMS distribution with several known distributions, and for 

each test the above procedure rejected the null hypothesis, so we decided 

to make a non-parametric estimation through the kernel density 

estimation (KDE) of the dfittool (Distribution Fitting Tool of MATLAB 

Statistic Toolbox). There are some techniques to evaluate the number of 

bins (Appendix E) to use for the histogram computation (Fig. 6.42). We 

chose to apply the Freedman-Diaconis rule (Eq. E.3), because the Sturges’ 

rule (Eq. E.1) is not indicated when the number of samples is > 200, while 

the Scott’s rule (Eq. E.2) requires knowledge about the distribution of the 

data, and assumes its normality, which we don’t have.  

 

Symbolization 

 

To get breakpoints we picked quantiles from the custom cdf (cumulative 

distribution function) of the RMS distribution (Fig. 6.43). Since values 

corresponding to fountain activity are much rarer than values 

corresponding to quiet periods, they can be considered outliers. In this 

case the regions between zero and the fifth percentile and between the 

ninety-fifth and one hundredth percentiles are of great interest (Lodder 

and Hieftje, 1988). If we want to ensure a symbolization with at least a  

Gaussian distribution, we cannot ignore them and then we have to 

redefine the breakpoints definition (Def. 3.8.1) by adding to the original 
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breakpoints (initially we set the alphabet size to 4, and then kept the first, 

the second and the third quantile) also the 1%, 5% and the 95%, 99% of the 

cumulative frequency. With this system we will deal with a number of 

symbols equal to 8. The results of this choice are shown in Fig 6.44. 

 

 
 

Fig. 6.43. The cumulative distribution function plot of RMS data registered at EBEL 

station in the period starting from 00:00 on 1 January 2011 to 00:00 on 1 December 2011. 

The red shape is relative to the calculated (with dfittool of the MATLAB Statistics 

Toolbox) non-parametric distribution fitted to the RMS values distribution. 

 

 
 

Fig. 6.44. Histogram relative to the occurrences of each symbol generated by SAX 

algorithm on the above mentioned RMS time series, using our breakpoints definition. 

We can notice the normal distribution tendency. 
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6.5.2 Implementing the framework 

 

After having calculated custom breakpoints, we were able to produce 

symbols using the SAX technique. For each symbol we added a ‘+’ or a ‘-‘ 

basing on the value corresponding to the symbol: if it is greater than the 

previous on the time series, then we add a ‘+’, else we add a ‘-‘ (Fig. 6.45).  

 

 
 

Fig. 6.45. Our symbolization includes the use of an additional symbol (‘+’, ‘-‘) basing 

on the value corresponding to the symbol: if it is greater than the previous on the time 

series, then we add a ‘+’, else we add a ‘-‘. 

 

We also add to our alphabet the symbol ‘_’ relative to the RMS values 

equal to -1 indicating the lack of signal (Fig. 6.46). This further addition 

makes our framework more robust on states classification, without 

significantly altering the symbols distribution (Fig. 6.47). Then, the 
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complete alphabet is the following:  O = {‘a-‘, ‘a+’, ‘b-‘, ‘b+’, ‘c-‘, ‘c+’, ‘d-‘, 

‘d+’, ‘e-‘, ‘e+’, ‘f-‘, ‘f+’, ‘g-‘, ‘g+’, ‘h-‘, ‘h+’, ‘_’}. 

 

 
 

Fig. 6.46. The red rectangle highlights a period of absence of signal (lack), indicated 

with -1 values. We convert them with the literal symbol ‘_’. 

 

 

 
 

Fig. 6.47. Histogram relative to the occurrences of each symbol generated by our 

framework on the above mentioned RMS time series. Without considering the bar 

relative to the ‘_’ symbol (which varies in relation to the ‘holes’ in the signal), we can 

notice how the normal distribution tendency is not altered respect to that shown in 

Fig. 6.44. 
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HMM settings 

 

As we saw in Section 4.2.1, an HMM is denoted by  EOAS ,,, :  

 

1. Volcano states are “Quiet”, “Pre-fountain”, ”Fountain”, ”Post-

fountain”. We decided to include other two states to set our HMM, 

because the managed RMS time series shows values relative to 

other two phenomena: a) peaks relative to earthquakes; b) values 

equal to -1 when there is no signal, then S = {‘Quiet‘, ‘Pre-fountain‘, 

‘Fountain‘, ‘Post-fountain‘, ‘No Signal‘, ‘Earthquake‘} (Fig. 6.48). 

2. The state transition matrix  
ijaA   relative to the diagram in Fig. 

6.48 is shown in Table 6.4.  

3. The set of possible observations is O = {‘a-‘, ‘a+’, ‘b-‘, ‘b+’, ‘c-‘, ‘c+’, ‘d-

‘, ‘d+’, ‘e-‘, ‘e+’, ‘f-‘, ‘f+’, ‘g-‘, ‘g+’, ‘h-‘, ‘h+’, ‘_’}. 

4. The emission matrix  ijeE   is shown in Table 6.5. 

5. We denoted the state ‘Quiet’ as starter states, so π = {1, 0, 0, 0, 0, 0}. 

 

 
 

Fig. 6.48. The diagram of states transition used in our framework. It includes other two 

‘symbolic’ states respect that shown in Fig. 6.9: “Earthquake” and “No signal”. 

 

Both emission and state transition matrices (Tables 6.4 and 6.5) are based 

on a statistical analysis conducted on the period relative to the first month 

of the signal (January 2011), which provided information about the 
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studied states. The testing phase, described in the following paragraph, is 

applied on the rest of the signal (from February to December 2011). 

 

6.5.3 Classification results 

 

To recover the sequence of the volcano states from the RMS signal we 

applied the Viterbi algorithm of the HMM R-package (http://cran.r-

project.org/web/packages/HMM/index.html) on the part of time series not 

learned by the model. Figs. 6.49-52 show some snapshots of the results. 

To test the quality of states classification, we selected the most important 

episodes visible from RMS and saved their HMM classification into a 

confusion matrix (Table 6.3; see also Section 6.1.4), where each column 

represents the state predicted by the HMM, while each row represents 

states attributed by an accurate event classification conducted by the 

analysts. The signal relative to the tested period was characterized by 

several peaks: some corresponding to 17 eruptive episodes, and other 

(averagely smaller than previous) due to local, regional and teleseismic 

earthquakes. Table 6.3 allows to evaluate the classification result: we are 

interested in the blue-filled part, related to fountains phenomena. We 

completely ignored the ‘Noise’ state, given the banality of its classification.  

The row ‘Quiet’, in the confusion matrix, contains instances relative to 

periods of small increments of tremor or to LP events. In all cases they 

were related to ‘Quiet’ states, according to our aims. In only two cases the 

classification conducted to the ‘Earthquake’ state, because noise in the 

signal caused very high peaks (see the [Quiet, Eq] entry in the confusion 

matrix of Table 6.3). 

The most important row, for monitoring purposes, is the ‘Pre’ state. 

Almost all eruptive episodes are preceded by an increasing in tremor. In 

the tested signal this happens for all episodes. All real ‘Pre’ fountain states 

were classified as ‘Pre’, included an “aborted” episode on 7 July (Fig. 6.52).  

We obtained good results for the ‘Fountain’ state. Even if we can notice 11 

occurrences of ‘Post’ classification for ‘Fountain’ state (see the [Fountain, 

Post] entry), they are a subset of the 17 occurrences in the [Fountain, 

Fountain] entry, because they just relates to a quickly identification of the 

‘Post’ state, when the fountain is going to its final phase, which is 

represented by ever lower RMS values.  
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Regarding the identification of the ‘Post’ fountain state, an ordinary 

mistake was noted: since values belonging to ‘Post’ fountain are very 

similar to values relative to ‘Pre’ fountain, they can bring the HMM to 

assign them to ‘Pre’ state (see the [Post, Pre] entry). This can also be seen, 

for example, in Figs. 6.49 and 6.51: in the descending phase of the signal 

peak, corresponding to the fountain, there are some yellow circles, 

representing ‘Pre’ state classification, between blue and green circles, 

representing respectively ‘Post’ and ‘Quiet’ states classification. This is not 

worried because, if this assignment occurs, it follows systematically a 

previous identification of the ‘Post’ state. So, a specific rule can be applied 

at a later stage. 

The blank-filled part of the confusion matrix, in Table 6.3, is relative to the 

earthquakes identification, which is out of our intentions. In any case, 

most of the earthquakes are related to the ‘Quiet’ state (see the [Eq, Quiet] 

entry), or to the ‘Earthquake’ state (see the [Eq, Eq] entry). It is worth noting 

that the heavy influence of the earthquakes on the signal can sometimes 

lead to the identification of a ‘Pre’ state (5 instances in the [Eq, Pre] entry). 

However, this can be solved by the application of adequate filters on the 

RMS signal, in a previous step of the data acquisition (see the KDD 

process in Fig. 1.1). If we calculate statistics on the focused part (blue in 

Table 6.3), we can estimate a ‘hit’ rate of 63.51%. This could be daunting if 

we give importance to the [Fountain, Post] and the [Post, Pre] entries. By 

excluding them we reach an ‘hit’ rate of 95,91%. 

 

 

 PREDICTED 

Quiet Pre Fountain Post Eq 

 

ACTUAL 

Quiet 6 0 0 0 2 

Pre 0 18 0 0 0 

Fountain 0 2 17 11 0 

Post 0 14 0 6 0 

Eq 9 5 1 1 3 

 

Table 6.3. Confusion matrix calculated on events occurring during February – 

December 2011. The ‘Eq’ label refers to ‘Earthquake’. 
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Fig. 6.49. A typical trend of RMS time series when a fountain occurs. In almost all 

cases, the HMM can distinguish when the volcano state is going to fountain (red 

circles), by passing in the “Pre-fountain” state (yellow circles) and discriminating the 

“Post-fountain” state (blue circles) when the RMS value goes down. 

 

 

 
 

Fig. 6.50. In this case, before the fountain (peak in the time series) there is a period 

with relatively high RMS values, which lead the HMM to assume the “Pre-fountain” 

state. 
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Fig. 6.51. Another fountain (right peak in the time series) preceded by an earthquake 

(left peak in the time series). Also in this case the HMM recognizes the two different 

phenomena. 

 

 

 
 

Fig. 6.52. RMS signal relative to the aborted fountain on 7 July 2011. 
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Trans Matrix QUIET PRE FOUNTAIN POST NOS EQ Sum Probs 

QUIET 0,93 0,01 0 0 0,01 0,05 1 

PRE 0,3 0,58 0,1 0 0,01 0,01 1 

FOUNTAIN 0 0 0,69 0,29 0,01 0,01 1 

POST 0,3 0,09 0 0,59 0,01 0,01 1 

NOS 0,1 0 0 0 0,9 0 1 

EQ 0,79 0 0 0 0,01 0,2 1 

 

Table 6.4. Guess transition matrix for the HMM model. 

 

 

Emiss Matrix a- a+ b- b+ c- c+ d- d+ e- e+ f- f+ g- g+ h- h+ _ Sum Probs 

QUIET 0,01 0,01 0,02 0,02 0,05 0,05 0,12 0,12 0,12 0,12 0,12 0,11 0,05 0,05 0,01 0,01 0,01 1 

PRE 0,02 0,02 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,2 0,34 0,3 0,01 0,01 1 

FOUNTAIN 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,3 0,55 0,01 1 

POST 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,05 0,02 0,5 0,3 0,01 1 

NOS 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,84 1 

EQ 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,43 0,42 0,01 1 

 

Table 6.5. Guess emission matrix for the HMM model. 
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Conclusions 
 

 

 

 

This thesis submits the application and engineering of data mining 

algorithms. The discussion seeks to propose both purely theoretical solutions, 

to improve the efficiency of certain techniques, and applicative solutions in 

geophysics. 

The thesis mainly focuses on the issue of "similarity matching" in connection 

with mining. We introduced this concept, exposing the usefulness of 

appropriate data structures to perform similarity search, and the choice of 

suitable similarity/distance measures to enhance the efficiency and the 

effectiveness. We highlighted the importance of some techniques to reduce 

the data dimensionality, because data are often represented by a large 

number of attributes (as in the case of time series, which is the main 

representation of the phenomena studied in a geophysical context). We then 

provided experiments and comparisons among several data compression 

methods, and proposed a new data-storage engine able to speed the 

elaboration and visualization of geophysical time series. 

Concerning the similarity matching field, an important section was devoted 

to the clustering, with a detailed review of the main techniques, which allow 

the unsupervised analysis of similar objects in datasets. We described a new 

algorithm of density-based clustering, developed by the thesis' author, which 

is particularly competitive with other algorithms constituting the state-of-art 

in this area.  

We also demonstrated the importance of the applications of data mining on 

geophysical data which, for our experiments, were kindly provided by the 

Istituto Nazionale di Geofisica e Vulcanologia (INGV), Section of Catania - 

Osservatorio Etneo, which also granted funds for the author's doctorate cycle. 

Since the amount of data is very large and there is a standard representation 

for each type of signal, we were able to process and analyze them by means 

of data mining techniques. We performed real-time data analysis, by 
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developing several systems addressing to the monitoring task of the 

volcanoes. Important results were achieved on infrasonic signals monitoring 

on Mount Etna. In particular, we proposed a novel infrasonic events location 

system based on DBSCAN and SVM, which make use of the infrasonic signal 

features to find associations among signals and active craters. Another 

application based on Hidden Markov Models was developed for volcanic 

tremor analysis with the aim of finding critical states of Mount Etna volcano. 

Other techniques, such as the Mueen-Keogh algorithm, were applied on 

historical seismic data for the extraction of recurrent patterns, which is a 

crucial step in the analysis of geophysical time series. Its application allowed 

increasing the amount of useful information for monitoring purposes, and a 

promising tool to use for the analysis of other geophysical data. 
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Appendix A 
 

Covariance Matrix 
 

 

 

Covariance is a well-known concept in statistics. Let D be a data set with n 

objects, each of which is described by m attributes v1, v2, . . . , vm . The 

attributes v1, v2, . . . , vm are also referred to as variables. The covariance 

between two variables vi and vj (with 0 < i, j ≤ m) is defined to be the ratio of 

the sum of the products of their deviation from the mean to the number of 

objects: 
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where xk(i) denotes the ith attribute of xk (See Eq. 2.1), and μi is the mean of all 

data points in the ith variable: 
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The covariance matrix is a m × m matrix in which the entry (i,j) contains the 

covariance between variable vi and vj: 
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Appendix B 

 

SOMPI method 
 

 

 

Time-series modelling consists of estimating the governing dynamics of the 

hypothetical linear system that has yielded the given time-series data 

(Kumazawa et al. 1990). In these approaches, a signal is considered as the 

impulse response of an AR or an autoregressive moving average (ARMA) 

filter. In general, ARMA filter is a discrete-time system that takes an input 

sequence xn and produces an output sequence yn. This kind of system can be 

described by a linear-constant difference equation: 
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where {ak} and {bk} are the system coefficients, p and q are the order of the AR 

and MA parts of the filter, respectively. The coefficients of the AR filter can be 

obtained by solving the modified Yule–Walker equation (Marple 1987) and 

the coefficients of the MA filter can be estimated using the Durbin method 

(Kay 1988; Mars et al. 2004). As argued in Lesage (2008), this process is 

affected by numerical instabilities and long computation time. Furthermore, 

the deconvolution of the AR part alone gives good estimation of the duration 

and spectral content of the considered signals (Lesage 2008). 

To estimate the AR coefficients, the Sompi method (Kumazawa et al. 1990) 

can be implemented. Unlike the traditional spectral estimators in real 

frequency space, this method yields a line-shaped spectrum in complex 

frequency space. The basic concepts of the AR model and the formulation 

based on the maximum likelihood principle lead to a model estimation 

algorithm different from other AR methods (Fukao and Suda 1989; 

Kumazawa et al. 1990). By Sompi analysis, a time-series is deconvoluted into 
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a linear combination of coherent oscillation with decaying amplitude and 

additional noise. Let (xn) time-series that can be considered the sum of signal 

(un) and Gaussian white noise (en): 

 

nnn eux           (B.2) 

 

where un is described as a set of decaying sinusoids: 
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and zk is defined as: 

 

))(2exp( tifgz kkk          (B.4) 

 

where Δt is the sampling step and the symbol ∗ represents the complex 

conjugate. In eq. (B.3) Ck represents the complex amplitude of the kth sinusoid 

at the complex frequency given by fk−igk and i is √−1. The time-series (ui) is 

defined as the sequence satisfying the AR equation: 
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where (aj; j=−m, . . . ,m) are real AR coefficients. An exhaustive treatment 

about aj coefficients estimations is reported in Hori et al. (1989), Fukao and 

Suda (1989) and Kumazawa et al. (1990). Briefly, a way to compute the 

coefficients aj that satisfy eq. (B.5) is the minimization of the functional S: 
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under the condition: 
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This minimization problem leads to an eigenvalue problem where coefficients 

aj are the eigenvectors corresponding to minimum eigenvalues. Now, once 

the aj are calculated, the Sompi characteristic equation is defined as: 
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The roots zk and zk∗ of eq. B.8 give the complex frequencies expressed in eq. 

B.4. Let (xi) a time-series, Sompi method extracts m wave elements 

characterized by a complex frequency fk – igk where fk is the frequency, gk is 

the growth rate. 
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Appendix C 
 

Data transformation 
 

 

 

In Chapter 1 we introduced how the all data mining techniques suffer the 

GIGO problem, for which if the input data is not good, also the results will be 

bad. Data transformation is a preprocessing step on data mining which aims 

to avoid that data representation “fakes” the real information. 

 

Data normalization 

 

The normalization (or standardization), used for quantitative data types (see 

Section 2.1), is a typical data transformation. Let us suppose, for example, to 

calculate the distance between two dataset objects, which attributes range 

over different scales (Fig. C.1). If we calculate the Euclidean distance (Eq. 

2.13) between them, the attribute defined on the greater range will be 

dominant in the computation of the distance value, of course. The problem is 

that all variables have the same representation, but not the same valence, and 

then we may consider an attribute more important than others, even when 

we do not want. We so need to homogenize all attributes, giving to all the 

same weight. 

A common used normalization technique is the z-score normalization that, for 

each attribute, subtracts its mean value (calculated on the dataset), and 

divides it for the attribute standard deviation (Gan et al., 2007): 
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The new dataset attributes will have mean = 0 and variance = 1.  
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Fig. C.1. An example dataset, where attributes values range on different scales. 

 

Another common used technique is the min-max normalization, which 

subtracts to each attribute the minimum value on it, and divides it for the 

range amplitude (maximum minus minimum value), to obtain the same 

range for each attribute, between 0 and 1 (Gan et al., 2007): 
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When attribute values are not arranged on a linear scale, (i.e. the ratio-scaled 

attributes, Section 2.1), but have exponential trend, is better to make a 

logarithmic transformation (Han and Kamber, 2000): 

 

)log(= ijij xy          (C.3) 

 

Another kind of transformation consists in the reduction of the number of 

attributes describing the dataset objects. The target is to input only essential 

attributes needed from data mining algorithms to work efficiently and 

effectively. There are two main ways to obtain this: the feature selection and 

the feature extraction.  
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The information gain (Han and Kamber, 2000; Quinlan, 1986) is one of the 

principal tools for feature selection, especially for classification by decision 

trees. It bases on entropy concept (Shannon and Weaver, 1949) and calculates 

the relevance of each attribute for the classification. Let be the dataset divided 

into k classes, the dataset entropy is computed as: 
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where pi is the probability of a dataset object to belong to a specific class Ci. To 

calculate the information associated to an attribute A, let us suppose to divide 

its interval value into v intervals {a1, a2, …, av}, and let us create a dataset 

partition {D1, D2, …, Dv}, for which Di contains all tuples having a value 

belonging to the interval ai for the attribute A. The information associated to 

the attribute A will be: 
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where Info(Dj) is the entropy value of the partition Dj. The lower the value, 

the greater its informative contribution for the classification. The information 

gain of an attribute is computed in the following way: 

 

)()(=)( DInfoDInfoAGain A-       (C.6) 

 

The attribute Ai with higher Gain(Ai) is more discriminant for classification. 

 

The most known method for the feature extraction is the PCA (Principal 

Component Analysis). Let be the dataset represented by a N × m matrix (Eq. 

2.1) where each object is represented by m attributes, constituting the feature 

space. Geometrically each attribute is a dimension (or reference axis) of this 

space (Fig. C.2). PCA aims to perform a rotation of the reference axes so that 

they maximize the variance of each dimension. 
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The first principal component is the dimension (or attribute) with maximum 

variance, the second principal component, orthogonal to the first, is the 

dimension with second maximum variance, and so on. A dimensionality 

reduction technique consists into select the first k components, with k<<m, 

which contains the main information about the data structure (see Section 

3.3). 

  

 
 

Fig C.2. x and y correspond to original features. v1 and v2 are the new axes corresponding 

to the new PCA features (image from 

http://www.cs.cornell.edu/courses/cs322/2008sp/schedule.html). 

 

A typical procedure for the principal components analysis is the following, 

and is also known as Karhunen-Loève transformation (there exists other 

principal components analysis techniques such as the SVD, see Section 3.3): 

 

1. Input are normalized data, so that all attributes range in the same interval 

values. This step ensures that attributes defined on large intervals do not 

dominate on small intervals defined attributes.  

2. Calculate the covariance matrix (Appendix A) on normalized dataset. 

3. Calculate eigenvectors and eigenvalues of the covariance matrix. 

Eigenvectors are the principal components: they are orthogonal with each 
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other, and constitute the base of normalized data. Their linear 

combination with the relative eigenvalues allow to obtain the original 

input data.  

4. Principal components are sorted according to the relative eigenvalues 

(which represent their variance): the larger is the value, the more 

important is the component. 

5. Since components are sorted in decreasing mode, data dimensionality can 

be reduced by deleting less important components, i.e. with smaller 

variance. The data reconstruction, using only more important 

components, appears to be a good approximation of original data. 
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Appendix D 
 

Regression 
 

 

 

Regression is a widespread technique for prediction of quantitative variables. 

It aims to approximate the function generating observations. The prediction is 

validated calculating the error between the model predicted values and the 

true values. Regression models are classified in linear and non linear. The 

linear regression model studies the relation between two variables, trying to 

find a possible dependence and its nature. In other words, the linear 

regression tries to plot into a graph a straight line interpolating points (the 

observations), whose attributes are the two variables values, so that the line 

minimizes the distance from points (Fig. D.1). 

 

 
 

Fig. D.1. Example of linear regression. Image from 

http://it.wikipedia.org/wiki/Regressione_lineare. 
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A regression function can be represented through the following formula: 

 

 bxay  

 

where y is the dependent variable, x is the independent variable, a is the y-

intercept of the line, b is the slope and  is the error term and represents the 

distance between the line and each point (the residual). a and b are the 

regression coefficients.  

The goal of the linear regression is to minimize the value of , by choosing the 

appropriate values for a and b. There are several methods to estimate these by 

observing x and y values. The most used is the means square error method, 

which calculates the line minimizing the sum of the squares of the residuals. 

In analytical terms the problem consists on the minimization of the following 

function: 
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where n is the number of observation, and then: 
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The solution can be calculated by equating to zero the partial derivatives of S 

with respect to a and b: 
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Dividing by n the Equations (D.3-4) and making the system with them, we 

obtain: 
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By defining: 
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we can calculate the values for a and b by using Equations (D.5-7): 
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xbya           (D.9) 

 

The applied method provides the parameters of the line best approximating 

data, but does not provide the correlation coefficient. It is possible to 

determine it with the formula in Eq. 2.12. 

The linear regression is efficient only when data are linearly dependent. It 

presents some limits, such as the sensitivity to outliers, and the assumption of 

considering the errors as belonging to a Gaussian distribution. The 

Generalized Linear Models (GLM; Nelder and Wedderburn, 1972) overcome this 

last limitation, but still maintaining the same analysis structure. A special 

case of GLM is the logistic regression, described in (Wooff, 2004). When y 
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variable is not a linearly dependent from x, then is the case of non linear least 

squares (NLS; George et al.,2003).  
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Appendix E 
 

Determining the width of histogram bars 
 

 

 

A histogram plot is a natural way to represent samples drawn from a 

univariate variable. It shows the range, central tendencies and shape of the 

data distribution. However, to make a histogram plot, an important decision 

is relative to the number of bars (or bins) to use. 

 

Sturge’s rule 

 

Most statistical software use Sturges (1926) rule which says the data range 

should be split into k equally spaced classes where: 

 

 nk 2log1         (E.1) 

 

Sturges' rule is not good when data exhibits skewness or any other non-

normality. 

 

Scott’s rule 

 

Scott (1979) proposed that the bar width w should be determined as follows: 

3
49.3

n
w


          (E.2) 

where σ is the sample standard deviation of the n data values. With this 

equation the rule tries to minimize the bias in variance of the histogram 

compared with the data set. It requires knowledge about the distribution 

form of the data, which we rarely have, so the above equation assumes 

normality. It is restrictive in practice. 
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Freedman – Diaconis rule 

 

Freedman and Diaconis (1981) proposed that the bar width w should be 

determined as follows: 

3
2

n

IQR
w           (E.3) 

where IQR is the sample inter-quartile range of the n data values, i.e. the 

difference between the 75th and 25th percentile of the data. 
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