
1

UNIVERSITÀ DEGLI STUDI DI CATANIA
FACOLTÀ DI SCIENZE MM. FF. NN.

DIPARTIMENTO DI MATEMATICA E INFORMATICA

DOTTORATO DI RICERCA IN INFORMATICA

Tesi di Dottorato

GEOPHYSICAL TIME SERIES DATA MINING

Dottorando: Tutor:

Carmelo Cassisi Alfredo Pulvirenti

Placido Montalto

ANNO ACCADEMICO 2011-2012

2

3

A Maria Luisa,

e alla mia famiglia

4

5

Acknowledgements

It is a pleasure to thank the many people who made this thesis possible.

I would like to express my deep and sincere gratitude to my supervisors,

Dr. Alfredo Pulvirenti, Department of Computer Science, University of

Catania, and Dr. Placido Montalto, INGV Section of Catania –

Osservatorio Etneo. Their wide knowledge and their logical way of

thinking have been of great value for me. Their understanding,

encouraging and personal guidance have provided a good basis for the

present thesis.

I warmly thank Dr. Alfredo Pulvirenti for teaching me the discipline of

data mining and for introducing me to the world of research and work by

accepting me as a Ph.D. student. I am grateful to other people of the

Department of Computer Science, University of Catania, who supported

me in research: Prof. Alfredo Ferro and Dr. Rosalba Giugno, for their

encouragement and insightful comments.

My sincere thanks go to Dr. Placido Montalto for the continuous support

of my Ph.D. study and research, for his patience, motivation and

enthusiasm. His guidance helped me in all the time of research and

writing of this thesis. Besides him, I warmly thank two special INGV

colleagues, who helped me in my professional growth: Dr. Andrea

Cannata and Dr. Marco Aliotta. For their kind assistance, for providing a

stimulating and fun environment in which to learn and grow.

During this work I collaborated with many colleagues for whom I have

great regard, and I wish to extend my warmest thanks to all those who

have helped me with my work: Dr. Michele Prestifilippo, Dr. Deborah Lo

Castro, Dr. Daniele Andronico and Dr. Letizia Spampinato.

The financial support of the Istituto Nazionale di Geofisica e Vulcanologia

(INGV) Section of Catania – Osservatorio Etneo is gratefully

acknowledged. A special thanks goes to the director Dr. Domenico Patanè

for giving me the opportunity to work with an organization of such a

prestige.

6

Lastly, and most importantly, I want to thank my girlfriend Maria Luisa

for always believing in me and for all time spent together, advising me in

every important decision, and my family, especially my parents Rosario

and Donatella, which always supported me in any area of my life. I wish

to thank Giuseppe and Fulvia, my friends and all relatives for all the

emotional support, camaraderie, entertainment, and caring they provided.

I thank also all other saints for supporting me spiritually throughout my

life. In a special way my warm thanks go to Gianni and Gioacchino Paolo.

All these people raised me, supported me, taught me, and loved me. To

them I dedicate this thesis.

But above all, I praise God, the almighty for providing me all I need and

granting me the capability to proceed successfully.

7

Preface

The process of automatic extraction, recognition, description and

classification of patterns from huge amount of data plays an important

role in modern volcano monitoring techniques. In particular, the ability of

certain systems to recognize different volcano status can help the

researchers to better understand the complex dynamics underlying the

geophysical system. The geophysical data are automatically measured and

recorded by geophysical instruments. Their interpretation is very

important for the investigation of earth’s behavior.

The fundamental task of volcano monitoring is to follow volcanic activity

and promptly recognize any changes. To achieve such goals, different

geophysical techniques (i.e. seismology, ground deformation, remote

sensing, magnetic and electromagnetic studies, gravimetric) are used to

obtain precise measurements of the variations induced by an evolving

magmatic system. To proper exploit the wealth of such heterogeneous

data, algorithms and techniques of data mining are fundamental tools.

This thesis can be considered a detailed report about the application of the

data mining discipline in the geophysical area. After introducing the basic

concepts and the most important techniques constituting the state-of-art in

the data mining field, we will apply several methods able to reach

important results about the extraction of unknown recurrent patterns in

seismic and infrasonic signals, and we will show the implementation of

systems representing efficient tools for the monitoring purpose.

The thesis is organized as follows. Chapter 1 briefly introduces to the data

mining discipline; Chapter 2 discusses the similarity matching problem,

explaining the importance of using efficient data structures to perform

search, and the choice of adequate distance measures. It also lists the most

common similarity/distance measures used for data mining, devoting a

deepening part for time series similarity. Chapter 3 reviews the state-of-art

dimensionality reduction techniques for the summarization of time series

in data mining. Chapter 4 provides some basic principles on supervised

classification, while Chapter 5 analyzes main clustering methods, for the

unsupervised classification task, together with some recent developments.

8

A broad range of data mining applications will be devoted in Chapter 6,

where the classification and prediction tasks are applied on geophysical

data.

9

Contents

CHAPTER 1 - INTRODUCTION ... 13

1.1 TYPICAL DATA MINING TASKS .. 16

1.2 TIME SERIES DATA MINING .. 17

1.3 DATA MINING ON GEOPHYSICS... 18

CHAPTER 2 - FUNDAMENTALS ON SIMILARITY MATCHING 19

2.1 TYPES OF DATA .. 19

2.2 INDEXING .. 20

2.3 SIMILARITY AND DISTANCE MEASURES ... 22

2.3.1 Numerical Similarity Measures... 22

Mean Similarity .. 23

Root Mean Square Similarity: ... 23

Peak similarity .. 23

Cosine similarity ... 23

Cross-correlation .. 23

2.3.2 Numerical Distance Measures ... 24

Euclidean Distance ... 24

Manhattan Distance ... 24

Maximum Distance .. 24

Minkowski Distance .. 24

Mahalanobis Distance .. 25

2.3.3 Binary and Categorical Data Measures ... 25

2.3.4 Measures for Time Series Data .. 26

Dynamic Time Warping .. 28

Longest Common SubSequence ... 33

CHAPTER 3 - DIMENSIONALITY REDUCTION TECHNIQUES 35

3.1 DFT ... 36

3.2 DWT ... 39

3.3 SVD ... 41

3.4 DIMENSIONALITY REDUCTION VIA PAA .. 43

3.5 APCA ... 44

3.6 TIME SERIES SEGMENTATION USING PLA ... 46

3.7 CHEBYSHEV POLYNOMIALS APPROXIMATION.. 50

3.8 SAX ... 52

10

CHAPTER 4 - CLASSIFICATION AND PREDICTION 55

4.1 CLASSIFICATION .. 55

4.1.1 Fisher’s discriminant analysis ... 55

4.1.2 The perceptron criterion function .. 57

4.1.3 k-Nearest Neighbour (kNN) .. 59

4.1.4 Decision trees ... 59

4.1.5 Support Vector Machines (SVMs) ... 61

4.2 PREDICTION ... 64

4.2.1 Hidden Markov Models ... 64

Evaluation ... 66

Decoding .. 68

Learning ... 70

CHAPTER 5 - CLUSTERING .. 73

5.1 INTRODUCTION ... 73

5.2 DEFINITIONS .. 75

5.3 CLUSTERING METHODS ... 75

5.3.1. Partitional Clustering ... 77

K-Means ... 78

K-Medoids ... 79

5.3.2. Hierarchical Clustering .. 80

Mean Distance .. 80

Minimum Distance... 81

Maximum Distance .. 81

Average Distance ... 81

BIRCH .. 82

CURE .. 83

ROCK ... 84

CHAMELEON .. 84

5.3.3. Density-based Clustering ... 86

DBSCAN .. 87

OPTICS .. 89

DENCLUE ... 90

5.3.4. Graph-based Clustering .. 93

Node-Centric Community .. 94

Group-Centric Community .. 95

Network-Centric Community .. 95

Hierarchy-Centric Community .. 99

5.3.5 Grid-based Clustering .. 99

STING .. 99

Wavecluster ... 100

5.3.6 Other techniques .. 102

11

Model-based Clustering .. 102

Subspace Clustering ... 103

Neural Network Clustering .. 104

5.3.7 Evaluating clustering .. 107

5.4 OUTLIER DETECTION ... 111

5.5 ENHANCING DENSITY-BASED CLUSTERING .. 114

5.5.1. Stratification based outlier detection .. 116

5.5.2. Development of a new density-based algorithm 120

5.5.3 DBStrata .. 126

CHAPTER 6 - GEOPHYSICAL APPLICATION OF DATA MINING . 131

6.1 CLUSTERING AND CLASSIFICATION OF INFRASONIC EVENTS AT MOUNT

ETNA USING PATTERN RECOGNITION TECHNIQUES 131

6.1.1 Infrasound features at Mt. Etna .. 133

6.1.2 Data acquisition and infrasound signal characterization 134

Data acquisition and event detection .. 134

Infrasonic signal features extraction .. 135

Semblance algorithm ... 139

6.1.3 Learning phase ... 139

6.1.4 Testing phase and final system .. 143

6.2 CHARACTERIZATION OF PARTICLES SHAPES BY CAMSIZER

MEASUREMENTS AND CLUSTER ALGORITHMS .. 146

6.2.1 Definition of the shape ... 147

6.2.2 Methodology ... 150

CAMSIZER .. 151

Features .. 153

6.2.3 Data analysis .. 155

6.2.4 Results .. 157

6.2.5 Future works .. 158

6.3 MOTIF DISCOVERY ON SEISMIC AMPLITUDE TIME SERIES: THE CASE STUDY

OF MT. ETNA 2011 ERUPTIVE ACTIVITY.. 160

6.3.1 Data analysis .. 161

6.3.2 Motif discovery theory ... 162

5.3.3 Results .. 167

5.3.4 Discussion and conclusions ... 175

6.4 AN APPLICATION OF SEGMENTATION METHOD ON SEISMO-VOLCANIC TIME

SERIES .. 181

6.5 MONITORING VOLCANO ACTIVITY THROUGH HIDDEN MARKOV MODEL

 ... 185

6.5.1 Modelling RMS values distribution .. 185

Distribution fitting ... 186

Symbolization ... 187

12

6.5.2 Implementing the framework ... 189

HMM settings ... 191

6.5.3 Classification results .. 192

CONCLUSIONS .. 197

APPENDICES .. 199

A - COVARIANCE MATRIX .. 201

B - SOMPI METHOD ... 203

C -DATA TRANSFORMATION .. 207

D - REGRESSION .. 213

E - DETERMINING THE WIDTH OF HISTOGRAM BARS 217

Sturge’s rule .. 217

Scott’s rule .. 217

Freedman – Diaconis rule ... 218

REFERENCES .. 219

13

Chapter 1

Introduction

Data mining has a very recent origin and has no single definition. Various

definitions have been proposed:

"Data mining is the search for relationships and global patterns that exist in large

databases, but are ‘hidden’ among the vast amounts of data, such as a relationship

between patient data and their medical diagnosis. These relationships represent

valuable knowledge about the database and objects in the database and, if the

database is a faithful mirror, of the real world registered by the database"

(Holsheimer and Siebes, 1994).

“Data mining is the exploration and analysis, by means of automatic and semi-

automatic methods, of large amounts of data in order to discover meaningful

patterns and rules” (Berry et al., 1997).

Data mining can be considered as the ‘art’ of knowledge extraction from

huge amount of data. The term is often used as a synonym for Knowledge

Discovery in Databases (KDD):

"Knowledge discovery is the nontrivial extraction of implicit, previously

unknown, and potentially useful information from data" (Frawley et al., 1992).

It would be more accurate to speak of knowledge discovery when

referring to the process of knowledge extraction, and data mining as a

particular phase of this process, consisting in the application of specific

algorithms for the identification of "patterns" (Fayyad et al., 1996).

For example, in an industrial or operative domain, useful knowledge is

hidden but relevant information. Today the main problem of analysts is to

be capable to properly extract the wealth of information which is

intrinsically present in the data. Starting from the Fayyad et al. (1996)

14

considerations, the extraction process consists of several phases, each of

which brings its rate of information (Figure 1.1): selection from raw data;

pre-processing; transformation; application of algorithms for patterns

search (in this context a "pattern" means a structure, a model, or, in

general, a synthetic representation of the data), followed by their

interpretation and evaluation. The identified patterns can be considered,

in turn, the starting point to speculate and to verify new relationships

among phenomena. They also can be useful to make predictions on new

data sets.

Fig. 1.1. General schema of Knowledge Discovery in Database (KDD) process (redrawn

from Fayyad et al., 1996).

Data mining is a multidisciplinary field which borrows algorithms and

techniques from many research areas such as: machine learning, statistics,

neural networks, artificial intelligence, high performance computing

technology, database technology, data visualization techniques. The main

factors contributing to data mining progress are: the increasing of

electronic data, the cheap data storage, and new techniques for analysis

(machine learning, pattern recognition).

Algorithms are pillars of data mining techniques, and have to guarantee

the effectiveness and efficiency of analysis. Scalability is a fundamental

property, because data mining deals with huge amounts of data, and

15

algorithms’ implementation must provide high speed computation, faster

than manual data analysis. The execution time of a data mining algorithm

must be at least predictable and acceptable according to the size of the

analyzed database. Data mining algorithms have to adapt to the hardware

advances, trying to properly exploit its potential, such as the computing

on multiple processors (parallel or distributed computing), and then

afford the problems inherent to the database size.

Data mining is an interdisciplinary branch of the science which takes its

origins in statistics. The reason behind the wide usage of data mining

techniques relies on its simplicity (w.r.t. classical statistical methods), its

scalability and its wide range application domains. In principle any kind

of data can be analyzed with proper mining technique. However, data

mining has similar limits to all statistical approaches, such as the GIGO

(Garbage In, Garbage Out): if the input is “garbage”, then the output will be

“garbage”. Thus, the optimal strategy is to use statistics and data mining

as two complementary approaches.

The data mining techniques can be divided into two broad categories:

supervised and unsupervised learning techniques.

The supervised learning aims to realize a computer system able to

automatically solving a specific trained problem. In order to produce a

generalized model for the problem, a supervised learning algorithm

makes use of some examples, in particular: (i) it defines a set of input data

I; (ii) it defines a range of output values O; (iii) and defines a function h

that maps each input data to correct output value. Providing a large

number of examples, the algorithm of supervised learning will be able to

identify a new function h1 that will approximate the function h. Of course,

the goodness of the algorithm depends on the dataset used in the training

phase. In fact, it has to avoid the "overtraining" on input: a model is

considered to be good if it is able to predict the output of never learned

data, only with the knowledge provided by the input. It may happen in

fact that the model specializes only on the recognition of the sample of the

input data, producing the “overfitting” problem. Through the supervised

learning, data mining is able to face problems concerning: (i) classification

operations, where observations are "labeled" (or associated to a class) on

the basis of well-known characteristics of the class; (ii) model estimation,

such as to see whether the distribution of an observation follows a

16

statistical known model, such as the Gaussian distribution; (iii) attempt to

identify future trends (prediction) of an observed variable or

characteristic.

The unsupervised learning builds models without apriori knowledge.

Different from supervised learning, in the learning phase, the labels or the

model of the examples are not provided. The algorithms are based on

comparisons between data and the search for similarities and differences.

In this contest can be realized: (i) operations of grouping (or clustering), by

finding homogeneous groups that present characteristical regularities

within them and differences among groups (clusters); (ii) association rules,

which identify any associations between data. These last are widely

applied in the transactional database to find relationships between

products purchased together, as in the case of the market basket analysis,

to implement marketing strategies, such as promotional offers, or the

positioning of the products on the shelves.

1.1 Typical data mining tasks

Given a collection of objects, a database D, most of data mining research is

related to the similarity matching problem, including the following tasks:

 Indexing: given a query object Q, and a similarity/dissimilarity

measure dist(o,p) defined for Dpo  , , it consists on building a data

structure, allowing speed-up search of the nearest neighbor of Q in D.

There are two ways to post a similarity query [3]:

 k-nearest neighbors: dealing with the search of the set of first k

objects D more similar to Q.

 range query: finds the set DR of objects that are within

distance r from Q.

 Clustering: consists of division of data into groups (clusters) of similar

objects under some similarity/dissimilarity measure. The search for

clusters is unsupervised. It is often complementary to the

anomaly/outlier detection problem, which seeks for objects showing

different attributes respect to the whole dataset.

17

 Classification: assigns unlabeled objects to predefined classes after a

supervised learning process, based on classes properties.

1.2 Time series data mining

In the last years, there has been an increasing interest in methods dealing

with time series data. It depended on the rapid growth of generated daily

information from several areas, e.g., finance, computational biology,

sensor networks, location-based services, etc. A time series is “a sequence X

= (x1, x2, …, xm) of observed data over time”, where m is the number of

observations. Tracking the behavior of a specific phenomenon/data in time

can produce important information (Fig. 1.2). A large variety of real world

applications, such as meteorology, geophysics and astrophysics, collect

observations that can be represented as time series.

Fig. 1.2. Examples of time series data relative to a) monsoon, b) sunspots, c) ECG

(ElectroCardioGram), d) seismic signal.

18

Often in time series data mining these other two following tasks are

relevant:

 Summarization: given a raw time series Q of length m, makes a new

time series representation Q’ lighter than Q (with length m’ < m) in

term of space, that approximate Q fitness. This task is very important

to achieve the best performances on previous tasks.

 Prediction: finds a model for the sequence of observations, to check

dependencies among them, and then predict a future value. While in

the classification task an observation is assigned to a specific class,

providing an output of categorical, the prediction task provides a

specific observation value. It can be also used to replace missing values

on data.

1.3 Data mining on geophysics

The geophysical data are automatically measured and recorded by

geophysical instruments. Their interpretation is very important for the

investigation of earth’s behavior. Generally, the amount of data is very

large and relatively standard. It is suitable to be processed and be

analyzed by data mining techniques. The analysis can be conducted on

real time data, or on historical data.

The former task is the most interesting type of analysis, because permits to

monitor alert situations and to prevent most of human risks: this thesis

focuses on volcano monitoring. The latter task often consists of extracting

previously unknown recurrent patterns from available data, and

constitutes a crucial step in geophysical time series analysis, because allow

to increment the suitable amount of information for the monitoring task.

19

Chapter 2

Fundamentals on similarity matching

In data mining, several terms are used to refer to a single data into

database: object, point, record, observation, item or tuple. In this chapter, we

will use the term object to denote a single element of a dataset. In multi-

dimensional spaces, an object is described by a number of components or

features, which we will refer as attributes.

More formally, a dataset with N objects, each of which is described by m

attributes, is denoted by D = {x1, x2, . . . , xN}, where xi = (xi(1), xi(2), . . . , xi(m)) is

a vector denoting the ith object and xi(j) is a value denoting the jth attribute

of xi. The number of attributes m indicates the dimensionality of the data

set. The general representation of such data is a matrix N × m used by most

of the algorithms described below.





























)()()()(

)()()()(

)()()()(

)()()()(

m
N

j
NNN

m
i

j
iii

mj

mj

xxxx

xxxx

xxxx

xxxx

D













21

21

22

2

2

1

2

11

2

1

1

1

 (2.1)

2.1 Types of data

Data mining algorithms strongly depend on attributes of managed data

types. A basic classification distinguishes two main categories of

attributes: quantitative and qualitative. Quantitative attributes come from

numeric measurements, and can represent continuous values (e.g. height),

and discrete values (e.g. number of children). For quantitative attribute,

there is another distinction between interval attributes, where

measurements are disposed on a linear scale, and ratio attributes, which

are disposed on a nonlinear scale.

20

Qualitative attributes come from previously established categories, and

can be categorical (or nominal; e.g. eye’s color), binary (e.g. sex), and ordinal

(e.g. military rank). Binary attribute is a special case of categorical attribute

taking exactly two categories: it is possible to give same weight for both

categories (symmetric) or not (asymmetric). It is possible to realize a map

from interval to ordinal and nominal attributes, or from ordinal to

nominal, and vice-versa (Gan et al., 2007).

In the real world, however, there exist various other data types, such as

image data, graph, or time series containing, in turn, quantitative and/or

qualitative data.

2.2 Indexing

In many cases, datasets are supported by special data structures,

especially when dataset get larger, that are referred as indexing structures.

Indexing consists of building a data structure I that enables efficient

searching within database (Ng and Cai, 2004). Usually, it is designed to

face two principal similarity queries: the (i) k-nearest neighbors (knn), and

the (ii) range query problem. Given a query object Q in D, and a

similarity/dissimilarity measure d(x,y) defined for each pair x, y in D, the

former query deals with the search of the set of first k objects in D more

similar to Q. The latter query finds the set R of objects that are within

distance r from Q. When dealing with a collection of time series, a TSDB

(Time Series DataBase), given an indexing structure I, there are two ways to

post a similarity query (Ng and Cai, 2004):

 whole matching: given a TSDB of time series, each of length m, whole

matching relates to computation of similarity matching among time

series along their whole length.

 subsequence matching: given a TSDB of N time series S1, S2, …, SN, each of

length mi, and a short query time series Q of length mq < mi, with 0 < i <

N, subsequence matching relates to finding matches of Q into

subsequences of every Si, starting at every position.

21

Indexing is crucial for reaching efficiency on data mining tasks, such as

clustering or classification, especially for huge database such as TSDBs.

Clustering is related to the unsupervised division of data into groups

(clusters) of similar objects under some similarity or dissimilarity

(distances) measures. Sometimes, on time series domain, a similar problem

to clustering is the motif discovery problem (Mueen et al., 2009), consisting

of searching main cluster (or motif) into a TSDB. The search for clusters is

unsupervised. Classification assigns unlabeled objects to predefined

classes after a supervised learning process. Both tasks make massive use of

distance computations.

Distance measures play an important role in similarity matching problem.

Concerning a distance measure, it is important to understand if it can be

considered metric function. A metric function on a set D is a function

f : D × D → R (where R is the set of real numbers). For all x, y, z in D, this

function obeys to four fundamental properties:

1. f(x, y) ≥ 0 (non-negativity) (2.2)

2. f(x, y) = 0 if and only if x = y (identity) (2.3)

3. f(x, y) = f(y, x) (symmetry) (2.4)

4. f(x, z) ≤ f(x, y) + f(y, z) (triangle inequality) (2.5)

If any of these is not obeyed, the distance is considered non-metric. Using

a metric function is desired, because the triangle inequality property (Eq.

2.5) can be used to perform the indexing of the space for speed-up search

in large datasets. By means of adequate indexing data structures (general

tree structures) such as kd-tree (Bentley, 1975), R* tree (Beckmann et al.,

1990), or Antipole tree (Cantone et al., 2005), it is possible to perform

pruning during search on the space. Best efforts have been devoted to

similarity searching, with emphasis on metric space searching. In this

sense SISAP, a conference devoted to similarity searching

(http://sisap.org/Home.html) provides the Metric Space Library

(http://sisap.org/Metric_Space_Library.html) allowing to use a wide range

of indexing techniques for general spaces (metric and non-metric).

Another well known framework for indexing, overall for multimedia and

time series data, is GEMINI (GEneric Multimedia INdexIng; Faloutsos et al.,

22

1994), that designs fast search algorithms for locating objects series that

match, in an exact or approximate way, a query time series Q.

Algorithms dealing with relative small datasets mostly use a simple data

structure, an N × N matrix, called also distance matrix, proximity matrix, or

affinity matrix, storing distances between each pair of dataset objects:





























0)1,()2,()1,(

0

0

)2,3()1,3(

0)1,2(

0

NNdNdNd

dd

d

distMatrix







 (2.6)

where d(i,j) indicates distance between ith and jth object (for 0 < i, j < N).

For metric distance functions, the matrix is symmetric, because of the

metric symmetric property (Eq. 2.4), and all diagonal elements have zero

values, since d(i,i) = 0 for the identity property (Eq. 2.3). If we store

similarity measures instead of distances the resulting matrix will be called

similarity matrix.

2.3 Similarity and Distance Measures

A common data mining task is the estimation of similarity among objects.

A similarity measure is a relation between a pair of objects and a scalar

number. In this subsection some of the common distance measures, used

for numerical data and not, are formally described. Let be two objects X

and Y of m attributes, and xi and yi the ith attributes of X and Y,

respectively. Let us list the following measures.

2.3.1 Numerical Similarity Measures

Common intervals used to mapping the similarity are [-1, 1] or [0, 1],

where 1 indicates the maximum of similarity.

Considering the similarity between two attributes xi and yi as :

ii

ii
ii

yx

yx
yxnumSim




1),((2.7)

23

Mean Similarity





m

i
ii yxnumSim

m
YXtsim

1

),(
1

),((2.8)

Root Mean Square Similarity:





m

i
ii yxnumSim

m
YXrtsim

1

2),(
1

),((2.9)

Peak similarity (Fink and Pratt, 2004):

 
 










 


m

i ii

ii

yx

yx

m
YXpsim

1 ,max2
1

1
),((2.10)

Cosine similarity. In some applications, such as information retrieval, text

document clustering, and biological taxonomy, it is possible that the

measures mentioned above are not used. Often, when dealing with vector

objects, the most used distance function is the cosine similarity.

The cosine similarity computes the cosine of the angle θ between two

objects X and Y, and is defines as:

 
   






m

i i

m

i i

m

i ii

yx

yx

1

2

1

2

1cos  (2.11)

This measure provides values in range [-1, 1]. The lower boundary

indicates that the X and Y vectors are exactly opposite; the upper

boundary indicates that the vectors are exactly the same; finally the 0

value indicates the independence.

Cross-correlation. Another common similarity function used to perform

complete or partial matching between time series is the cross-correlation

function (or Pearson’s correlation function) (Von Storch and Zwiers, 2001).

24

The cross correlation between two time series X and Y of length m,

allowing a shifted comparison of l positions, is defined as:

  

   



 








m

i li

m

i i

li

m

i i

XY

YyXx

YyXx
r

1

2

1

2

1 (2.12)

where X and Y are the means of X and Y. The correlation rXY provides

the degree of linear dependence between the two vectors X and Y from

perfect linear relationship (rXY = 1), to perfect negative linear relation (rXY =

-1).

2.3.2 Numerical Distance Measures

Euclidean Distance. The most used distance function in many

applications. It is defined as:

2

1

1

2)(),(







 



m

i
ii yxYXd (2.13)

Manhattan Distance. Also called “city block distance”. It is defined as:





m

i
ii yxYXd

1

),((2.14)

Maximum Distance. It is defined to be the maximum value of the

distances of the attributes:

ii
mi

yxYXd 
0

max),((2.15)

Minkowski Distance. The Euclidean distance (Eq. 2.13), Manhattan distance

(Eq. 2.14), and Maximum distance (Eq. 2.15), are particular instances of the

Minkowski distance, called also Lp-norm. It is defined as:

pm

i

p
ii yxYXd

1

1

)(),(







 



 (2.16)

25

where p is called the order of Minkowski distance. In fact, for Manhattan

distance p = 1, for the Euclidean distance p = 2, while for the Maximum

distance p = ∞.

Mahalanobis Distance. The Mahalanobis distance is defined as:

   TyxyxYXd  1),((2.17)

where Σ is the covariance matrix (see Appendix A, Eq. A.3; Duda et al.,

2001).

2.3.3 Binary and Categorical Data Measures

Binary data can have only two values: 0 and 1 (or true and false, positive

and negative). To compute distance between two data objects X, Y,

containing m binary attributes, it is usual to fill a 2 × 2 matrix T, called

contingence table, which contains all possible test results:

   Y

mtrsqsum

tsts

rqrq

sum

XT






































0

1

01

 (2.18)

where q is the number of attributes that equal 1 for both objects X and Y, r

is the number of attributes that equal 1 for object X but that are 0 for object

Y, s is the number of attributes that equal 0 for object X but equal 1 for

object Y, and t is the number of attributes that equal 0 for both objects X

and Y.

For symmetric binary data, where both values have the same weight, it is

used a very common distance function, defined as:

m

sr

tsrq

sr
YXd







),((2.19)

26

For asymmetric binary data, by convention, 1 is associated to the weight

having more importance. This criterion has most application in medical

tests for diseases: positive test, the rarest, have greater significance than

negative test. So, it is usual to assign 1 to positive test and 0 to negative

test. t, in this case, is considered unimportant, and thus is ignored in the

computation of the following distance function:

srq

sr
YXd




),((2.20)

This distance function is often known as Jaccard distance (Han and

Kamber, 2000).

Categorical data are a generalization of binary data. Let r and s be two

categories of categorical data. A matching between these two categories

can be defined in this simple way:










sr

sr
sr

1

0
),( (2.21)

The Simple Matching distance for two categorical data X and Y, described

by m attributes, can be defined as:





m

i
ii yxYXd

1

),(),( (2.22)

where xi and yi corresponding to the ith attributes of X and Y, respectively.

2.3.4 Measures for Time Series Data

A time series is a sequence of real numbers representing measurements

over time. When treating time series, the similarity between two

sequences of the same length can be calculated by summing the ordered

point-to-point distance between them (Fig. 2.1), where “point” stays for a

single measurement into time series.

27

Fig. 2.1. x and y are two time series of a particular variable v, along the time axis t. The

Euclidean distance results the sum of the point-to-point distances (gray lines), along

all the time series.

In this sense, the most used distance function is the Euclidean distance

(Faloutsos et al., 1994), corresponding to the second degree of general Lp-

norm. This distance measure is cataloged as a metric distance function,

since it obeys to the metric properties: non-negativity, identity, symmetry

and triangle inequality (Eq. 2.3~2.5). Euclidean distance is surprisingly

competitive with other more complex approaches, especially when dataset

size gets larger (Shieh and Keogh, 2008). In every way, Euclidean distance

and its variants present several drawbacks, which make inappropriate

their use in certain applications:

 It compares only time series of the same length.

 It cannot handle outliers or noise.

 It is very sensitive respect to six signal transformations: shifting,

uniform amplitude scaling, uniform time scaling, uniform bi-scaling,

time warping and non-uniform amplitude scaling (Perng et al., 2000).

For these reasons, other distance measure techniques were proposed to

give more robustness to the similarity computation. In this sense it is

required to cite also the well known Dynamic Time Warping (DTW; Keogh

and Ratanamahatana, 2002) taking advantage of dynamic programming to

allow comparison of one-to-many points; and the Longest Common

SubSequence (LCSS) similarity measure (Vlachos et al., 2002), a similar

28

dynamic programming solution as DTW, but more resilient to noise. In the

literature there exist other distance measures that overcome signal

transformation problems, such as the Landmarks similarity, which does not

follow traditional similarity models that rely on point-wise Euclidean

distance (Perng et al., 2000) but, in correspondence of human intuition and

episodic memory, relies on similarity of those points (times, events) of

“greatest importance” (for example local maxima, local minima, inflection

points). Unfortunately, none of them is metric, so they cannot take

advantage of any indexing structure.

Dynamic Time Warping. Dynamic Time Warping (Berndt and Clifford,

1994) gives more robustness to the similarity computation. By this

method, also time series of different length can be compared, because it

replaces the one-to-one point comparison, used in Euclidean distance,

with a many-to-one (and viceversa) comparison. The main feature of this

distance measure is that it allows recognizing similar shapes, even if they

present signal transformations, such as shifting and/or scaling (Fig. 2.2).

Given two time series T = {t1, t2, . . . , tn} and S = {s1, s2, . . . , sm} of length n

and m, respectively, an alignment by DTW method exploits information

contained in an n × m distance matrix:























),(),(

),(),(

),(),(),(

1

2212

12111

mnn

m

STdSTd

STdSTd

STdSTdSTd

distMatrix




 (2.23)

where distMatrix(i, j) corresponds to the distance of ith point of T and jth

point of S d(Ti, Sj), with 1 ≤ i ≤ n and 1 ≤ j ≤ m.

The DTW objective is to find the warping path W = {w1, w2, . . . ,wk, . . ., wK} of

contiguous elements on distMatrix (with max(n, m) < K < m + n -1, and wk =

distMatrix(i, j)), such that it minimizes the following function:








  

K

k kwSTDTW
1

min),((2.24)

29

Fig. 2.2. Difference between DTW distance and Euclidean distance (green lines

represent mapping between points of time series T and S). The former allows many-to-

one point comparisons, while Euclidean point-to-point distance (or one-to-one).

The warping path is subject to several constraints (Keogh and

Ratanamahatana, 2002). Given wk = (i, j) and wk-1 = (i’, j’) with i, i’ ≤ n and j,

j’ ≤ m :

1. Boundary conditions. w1 = (1,1) and wK = (n, m).

2. Continuity. i – i’ ≤ 1 and j – j’ ≤ 1.

3. Monotonicity. i – i’ ≥ 0 and j – j’ ≥ 0.

The warping path can be efficiently computed using dynamic

programming (Cormen et al. 1990). By this method, a cumulative distance

matrix γ of the same dimension as the distMatrix, is created to store in the

cell (i, j) the following value (Fig. 2.3):

 )1,),,1),1,1min),(),  jijijiSTdji ji  (2.25)

30

Fig. 2.3. Warping path computation using dynamic programming. The lavender cells

correspond to the warping path. The red arrow indicates its direction. The warping

distance at the (i, j) cell will consider, besides the distance between Ti and Sj, the

minimum value among adjacent cells at positions: (i-1, j-1), (i-1, j) and (i, j-1). The

Euclidean distance between two time series can be seen as a special case of DTW,

where path’s elements belong to the γ matrix diagonal.

The overall complexity of the method is relative to the computation of all

distances in distMatrix that is O (nm). The last element of the warping

path, wK corresponds to the distance calculated with the DTW method.

In many cases, this method can bring to undesired effects. An example is

when a large number of points of a time series T are mapped to a single

point of another time series S (Fig. 2.4a, 2.5a). A common way to overcome

this problem is to restrict the warping path in such a way it has to follow a

direction along the diagonal (Fig. 2.4b, 2.5b). To do this, we can restrict the

path enforcing the recursion to stop at a certain depth, represented by a

threshold δ. Then, the cumulative distance matrix γ will be calculated as

follows:

 










otherwise

jijijijiSTd
ji ji 


)1,),,1),1,1min),(

),((2.26)

Figure 2.5a shows the computation of a restricted warping path, using a

threshold δ = 10. This constraint, besides limiting extreme or degenerate

mappings, allows to speed-up DTW distance calculation, because we need

to store only distances which are at most δ positions away (in horizontal

31

and vertical direction) from the distMatrix diagonal. This reduces the

computational complexity to O((n + m)δ). The above proposed constraint

is known also as Sakoe-Chiba band (Fig. 2.6a; Sakoe and Chiba, 1978) , and it

is classified as global constraint. Another most common global constraint

is the Itakura parallelogram (Fig. 2.6b; Itakura, 1975).

Fig. 2.4. Different mappings obtained with the classic implementation of DTW (a), and

with the restricted path version using a threshold δ = 10 (b). Green lines represent

mapping between points of time series T and S.

Local constraints are subject of research and are different from global

constraints (Keogh and Ratanamahatana, 2002), because they provide local

restrictions on the set of the alternative depth steps of the recurrence

function (Eq. 2.25). For example we can replace Eq. 2.25 with:

 )1,2),2,1),1,1min),(),  jijijiSTdji ji  (2.27)

to define a new local constraint.

32

Fig. 2.5. (a) Classic implementation of DTW. (b) Restricted path, using a threshold δ =

10. For each plot (a) and (b): on the center, the warping path calculated on matrix γ. On

the top, the alignment of time series T and S, represented by the green lines. On the

left, the time series T. On the bottom, the time series S. On the right, the color bar

relative to the distance values into matrix γ.

33

Fig. 2.6. Examples of global constraints: (a) Sakoe-Chiba band; (b) Itakura

parallelogram.

Longest Common SubSequence. Another well known method that takes

advantage of dynamic programming to allow comparison of one-to-many

points is the Longest Common SubSequence (LCSS) similarity measure

(Vlachos et al., 2002). An interesting feature of this method is that it is

more resilient to noise than DTW, because allows some elements of time

series to be unmatched (Fig. 2.7). This solution builds a matrix LCSS

similar to γ, but considering similarity instead of distances.

Given the time series T and S of length n and m, respectively, the

recurrence function is expressed as follows:

 























otherwisejiLCSSjiLCSS

STifjiLCSS

j

i

jiLCSS
ji

])1,[],,1[max(

,]1,1[1

,00

,00

, (2.28)

with 1 ≤ i ≤ n and 1 ≤ j ≤ m. Since exact matching between Ti and Sj can be

strict for numerical values (Eq. 3.22 is best indicated for string distance

computation, such as the edit distance), a common way to relax this

definition is to apply the following recurrence function:

 























otherwisejiLCSSjiLCSS

STifjiLCSS

j

i

jiLCSS
ji

])1,[],,1[max(

,]1,1[1

,00

,00

,


 (2.29)

The cell LCSS(n, m) contains the similarity between T and S, because it

corresponds to length l of the longest common subsequence of elements

34

between time series T and S. To define a distance measure, we can

compute (Ratanamahatana et al., 2010):

nm

lmn
STLCSSdist






2
),((2.30)

Also for LCSS the time complexity is O(nm), but it can be improved to

O((n + m)δ) if a restriction is used (i.e. when |i - j| < δ).

Fig. 2.7. Alignment using LCSS. Time series T (red line) is obtained from S (blue line),

by adding a fixed value = 5, and further “noise” at positions starting from 20 to 30. In

these positions there is no mapping (green lines).

35

Chapter 3

Dimensionality reduction techniques

Time series are often high dimensional data objects, thus dealing directly

with the raw representation can be expensive in terms of space and time.

In this sense, an important aspect to achieve efficiency, by means of space

compression, is the use of dimensionality reduction techniques; while

effective querying on time series data can be reached by using adequate

similarity measures and space indexing. The goal of this chapter is to

provide an overview of main dimensionality reduction algorithms (Cassisi

et al., 2012c). Mining high-dimensional involves addressing a range of

challenges, among them: i) the curse of dimensionality (Agrawal et al.,

1993), and ii) the meaningfulness of the similarity measure in the high-

dimensional space. A key aspect to achieve efficiency, when mining time

series data, is to work with a data representation that is lighter than the

raw data. This can be done by reducing the dimensionality of data, still

maintaining its main properties. An important feature to be considered,

when choosing a representation, is the lower bounding property.

Given two raw representations of the time series T and S, by this property,

after establishing a true distance measure dtrue for the raw data (such as the

Euclidean distance), the distance dfeature between two time series, in the

reduced space, R(T) and R(S), have to be always less or equal than dtrue:

),())(),((STdSRTRd truefeature  (3.1)

If dimensionality reduction techniques ensure that the reduced

representation of a time series satisfies such a property, we can assume

that the similarity matching in the reduced space maintains its meaning.

Moreover, we can take advantage of indexing structure such as GEMINI

(Section 2.2) to perform speed-up search even avoiding false negative

results. GEMINI was introduced to accommodate any dimensionality

reduction method for time series, and then allows indexing on new

36

representation (Ng and Cai, 2004). GEMINI guarantees no false negatives

on index search if two conditions are satisfied: (i) for the raw time series, a

metric distance measure must be established; (ii) to work with the reduced

representation, a specific requirement is that it guarantees the lower

bounding property. In the following subsections, we will review the main

dimensionality reduction techniques that preserve the lower bounding

property. By this property, after establishing a true distance measure for

the raw data (in this case the Euclidean distance), the distance between

two time series, in the reduced space, results always less or equal than the

true distance. Such a property ensures exact indexing of data (i.e. with no

false negatives). The following representations describe the state-of-art in

this field: spectral decomposition through Discrete Fourier Transform (DFT)

(Agrawal et al., 1993); Singular Value Decomposition (SVD) (Korn et al.,

1997); Discrete Wavelet Transform (DWT) (Chan and Fu, 1999); Piecewise

Aggregate Approximation (PAA) (Keogh et al., 2000); Piecewise Linear

Approximation (PLA) (Keogh et al., 2001); Adaptive Piecewise Constant

Approximation (APCA) (Chakrabarti et al., 2002); and Chebyshev Polynomials

(CHEB) (Ng and Cai, 2004). Many researchers have also included symbolic

representations of time series, that transform time series measurements

into a collection of discretized symbols; among them we cite the Symbolic

Aggregate approXimation (SAX) (Lin et al., 2007), based on PAA, and the

evolved multi-resolution representation iSAX 2.0 (Shieh and Keogh, 2008).

Symbolic representation can take advantage of efforts conducted by the

text-processing and bioinformatics communities, who made available

several data structures and algorithms for efficient pattern discovery on

symbolic encodings (Lawrence et al., 1993; Bailey and Elkan, 1995; Tompa

and Buhler, 2001).

3.1 DFT

The dimensionality reduction, based on the Discrete Fourier Transform

(DFT) (Agrawal et al., 1993), was the first to be proposed for time series.

The DFT decomposes a signal into a sum of sine and cosine waves, called

Fourier Series. Each wave is represented by a complex number known as

Fourier coefficient (Fig. 3.1) (Ng and Cai, 2004; Ratanamahatana et al., 2010).

The most important feature of this method is the data compression,

37

because the original signal can be reconstructed by means of information

carried by the waves with higher Fourier coefficient. The rest can be

discarded with no significant loss.

Fig. 3.1. The raw data is in the top-left plot. In the first row, the central plot (“Fourier

coefficients” plot) shows the magnitude for each wave (Fourier coefficient). Yellow

points are drawn for the top ten highest values. The remaining plots (in order from

first row to last, and from left to right) represent the waves corresponding to the top

ten highest coefficients in decreasing order, respectively of index {2, 100, 3, 99, 98, 4, 93,

9, 1, 97}, in the “Fourier coefficients” plot.

More formally, given a signal x = {x1, x2, . . . , xn}, the n-point Discrete

Fourier Transform of x is a sequence X = {X1, X2, . . . , Xn} of complex

numbers. X is the representation of x in the frequency domain. Each

wave/frequency XF is calculated as:

nFjex
n

X
n

i

n

ijF

iF ,,1)1(
1

1

2

 





 (3.2)

38

The original representation of x, in the time domain, can be recovered by

the inverse function:

nijeX
n

x
n

F

n

ijF

Fi ,,1)1(
1

1

2

 





 (3.3)

The energy E(x) of a signal x is given by:





n

i
ixxxE

1

22
)((3.4)

A fundamental property of DFT is guaranteed by the Parseval’s Theorem,

which asserts that the energy calculated on time series domain for signal x

is preserved on frequency domain, and then:

)()(
1

2

1

2
XEXxxE

n

F
F

n

i
i  



 (3.5)

If we use the Euclidean distance (Eq. 2.13), by this property, the distance

d(x,y) between two signals x and y on time domain is the same as

calculated in the frequency domain d(X,Y), where X and Y are the

respective transforms of x and y. The reduced representation X’ = {X1, X2, .

. . , Xk} is built by only keeping first k coefficients of X to reconstruct the

signal x (Fig. 3.2).

For the Parseval’s Theorem we can be sure that the distance calculated on

the reduced space is always less than the distance calculated on the

original space, because k ≤ n and then the distance measured using Eq.

2.13 will produce:

),(),()','(yxdYXdYXd  (3.6)

that satisfies the lower bounding property defined in Eq. 3.1.

The computational complexity of DFT is O(n2), but it can be reduced by

means of the FFT algorithm (Cooley and Tukey, 1965), which computes

the DFT in O(n log n) time. The main drawback of DFT reduction

39

technique is the choice of the best number of coefficients to keep for a

faithfully reconstruction of the original signal.

Fig. 3.2. The raw data is in the top-left plot. In the first row, the central plot (“Fourier

coefficients” plot) shows the magnitude (Fourier coefficient) for each wave. Yellow

points are drawn for the top ten highest values. The remaining plots (in order from

first row to last, and from left to right) represent the reconstruction of the raw data

using the wave with highest values (of index 2) firstly, then by adding the wave

relative to second highest coefficient (of index 100), and so on.

3.2 DWT

Another technique for decomposing signals is the Wavelet Transform (WT).

The basic idea of WT is data representation in terms of sum and difference

of prototype functions, called wavelets. The discrete version of WT is the

Discrete Wavelet Transform (DWT). Similarly to DFT, wavelet coefficients

give local contributions to the reconstruction of the signal, while Fourier

40

coefficients always represent global contributions to the signal over all the

time (Ratanamahatana et al., 2010).

The Haar wavelet is the simplest possible wavelet. Its formal definition is

given by Chan and Fu (1999). An example of DWT based on Haar wavelet

is shown in Table 3.1. The general Haar transform HL(T) of a time series T

of length n can be formalized as follows:

2

)12()2(
)(''

1'




iAiA
iA LL

L (3.7)

2

)12()2(
)(''

1'




iDiD
iD LL

L (3.8)

),,,,()(1 oLLLL DDDATH  (3.9)

where 0 < L’ ≤ L, and 1 ≤ i ≤ n.

Level (L) Averages coefficients (A) Wavelet coefficients (D)

1 10, 4, 6, 6

2 8, 6 3, 0

3 7 1

Table 3.1. The Haar transform of T = {10, 4, 8, 6} depends on the chosen level,

and corresponds to merging Averages coefficients (column 2) at the chosen

level and all Wavelet coefficients (column 3) in decreasing order from the

chosen level. At level 1 the representation is the same of time series: H1(T) =

{10, 4, 6, 6} + {} = {10, 4, 6, 6} = T. At level 2 is H2(T) = {8, 6} + {3, 0} + {} = {8, 6, 3, 0}.

At level 3 is H3(T) = {7} + {1} + {3, 0} = {7, 1, 3 0}.

The main drawback of this method is that it is well defined for time series

which length n is a power of 2 (n = 2m). The computational complexity of

DWT using Haar Wavelet is O(n).

Chan and Fu (1999) demonstrated that the Euclidean distance between

two time series T and S, d(T,S), can be calculated in terms of their Haar

transform d(H(T), H(S)), by preserving the lower bounding property in Eq.

3.1, because:

),(),(2))(),((STdSTdSHTHd  (3.10)

41

Fig. 3.3. DWT using Haar Wavelet with MATLAB Wavelet Toolbox™ GUI tools. T is a

time series of length n = 256 and it is shown on the top-left plot (Original Signal). On

the bottom-left plot (Original Coefficients) there are the entire AL, represented by blue

stems, and DL’ coefficients (L’ < L = 7), represented by green stems (stems’ length is

proportional to coefficients value). On the top-right plot, the Synthesized Signal by

selecting only the 64 biggest coefficients, as reported on the bottom-right plot (Selected

Coefficients): black points represent unselected coefficients.

3.3 SVD

As we have just seen in Chapter 2, a dataset with m time series (TSDB),

each of length n, can be represented by an m × n matrix D (Eq. 2.1). An

important result from linear algebra is that D can always be written in the

form (Golub and Van Loan, 1996):

TUWVD  (3.11)

where U is an m × n matrix, W and V are n × n matrices. This is called the

Singular Value Decomposition (SVD) of the matrix D, and the elements of the

n × n diagonal matrix W are the singular values wi:

42























nw

w

w

W









00

00

00

2

1

 (3.12)

V is orthonormal, because VVT = VTV = In, where In is the identity matrix of

size n. So, we can multiply both sides of Eq. 3.11 by V to get:

UWAVVUWVAV T  (3.13)

UW represents a set of n-dimensional vectors AV ={X1, X2, . . . , Xm} which

are rotated from the original vectors A={x1, x2, . . . , xm} (Ng and Cai, 2004):































































nmm w

w

w

U

U

U

X

X

X











00

00

00

2

1

2

1

2

1

 (3.14)

Similarly to sine/cosine waves for DFT (Section 3.1) and to wavelet for

DWT (Section 3.2), U vectors represent basis for AV, and their linear

combination with W (that represents their coefficients) can reconstruct AV.

We can perform dimensionality reduction by selecting the first ordered k

biggest singular values and their relative entries in A, V and U, to obtain a

new k-dimensional dataset that best fits original data (Fig. 3.4).

SVD is an optimal transform if we aim to reconstruct data, because it

minimizes the reconstruction error, but have two important drawbacks: (i)

it needs a collection of time series to perform dimensionality reduction (it

cannot operate on singular time series), because examines the whole

dataset prior to transform. Moreover, the computational complexity is

O(min(m2n, mn2)). (ii) This transformation is not incremental, because a

new data insertion requires a new global computation.

43

Fig. 3.4. SVD for a TSDB of m=7 time series of length n=50. It is possible to note in the

transformed data plot how only first k < 10 singular values are significant. In this

example we heuristically choose to store only first k=5 diagonal elements of V, and

their relative entries in A, U and W, because they represent about 95% of total variance.

This allows reducing space complexity from n to k, still maintaining almost unchanged

the information (see the reconstruction on the bottom-left plot).

3.4 Dimensionality reduction via PAA

Given a time series T of length n, PAA divides it into w equal sized

segments ti (1 < i ≤ w) and records values corresponding to the mean of

each segment mean(ti) (Fig. 3.5) into a vector PAA(T) = {mean(t1), mean(t2),

…, mean(tw)}, using the following formula:






i
w

n

i
w

n
j

ji t
n

w
tmean

1)1(

)((3.15)

When n is a power of 2, each mean(ti) essentially represents an Averages

coefficient AL(i), defined in Section 3.2, and w corresponds in this case to:

L

n
w

2
 (3.16)

44

Fig. 3.5. An approximation via PAA technique of a time series T of length n = 256, with

w = 8 segments.

The complexity time to calculate the mean values of Eq. 3.15 is O(n). The

PAA method is very simple and intuitive, moreover it is strongly

competitive with other more sophisticated transforms such as DFT and

DWT (Keogh and Kasetty, 2002; Yi and Faloutsos, 2000). Most of data

mining researches make use of PAA reduction for its simplicity. It is

simple to demonstrate how the distance on raw representation is bounded

below by the distances calculated on PAA representation (even using

Euclidean distance as reference point), satisfying Eq. 3.1. A limitation of

such a reduction, in some contexts, can be the fixed size of the obtained

segments.

3.5 APCA

In Section 3.2 we noticed that not all Haar coefficients in DWT are

important for the time series reconstruction. Same thing for PAA in

Section 3.4, where not all segment means are equally important for the

reconstruction, or better, we sometimes need an approximation with no-

fixed size segments. APCA is an adaptive model that, differently from

PAA, allows defining segments of variable size. This can be useful when

we find in time series areas of low variance and areas of high variance, for

45

which we want to have, respectively, few segments for the former, and

many segments for the latter.

Given a time series T = {t1, t2, . . . , tn} of length n, the APCA representation

of T is defined as (Chakrabarti et al., 2002):

  0,,,,, 011  crcrcvcrcvC MM (3.17)

where cri is the last index of the ith segment, and

 
ii crcri ttmeancv ,,11


 (3.18)

To find an optimal representation through the APCA technique, dynamic

programming can be used (Pavlidis, 1976; Faloutsos et al., 1997). This

solution requires O(Mn2) time. A better solution was proposed by

Chakrabarti et al. (2002), which finds the APCA representation in O(n log

n) time, and defines a distance measure for this representation satisfying

the lower bounding property defined in Eq. 3.1. The proposed method

bases on Haar wavelet transformation. As we have just seen in Section 3.2,

the original signal can be reconstructed by only selecting bigger

coefficients, and truncating the rest. The segments in the reconstructed

signal may have approximate mean values (due to truncation)

(Chakrabarti et al., 2002), so these values are replaced by the exact mean

values of the original signal. Two aspects to consider before performing

APCA:

1. Since Haar transformation deals only with time series length n = 2p, we

need to add zeros to the end of the time series, until it reaches the

desired length.

2. If we held the biggest M Haar coefficients, we are not sure if the

reconstruction will return an APCA representation of length M. We

can know only that the number of segments will vary between M and

3M (Chakrabarti et al., 2002). If the number of segments is more than

M, we will iteratively merge more similar adjacent pairs of segments,

until we reach M segments.

46

Algorithm Compute_APCA(T,M)

begin

Padded = false;

if length(T) mod 2 <> 0 then

Padding of T with zeros until length(T) mod 2 ==

0;

Padded = true;

Perform the Haar DWT on T;

Sort coefficients in order of decreasing normalized

magnitude, truncate after M;

C = Reconstruct approximation of T from retained

coeffs;

if Padded then

 Truncate C to the original length;

Replace approximate segment mean values with exact mean

values;

while the number of segments of C is greater than M do

 Merge the pair of segments with least rise in error;

end while;

end.

Table 3.2. An algorithm for the APCA, from Chakrabarti et al. (2002).

3.6 Time series segmentation using PLA

As with most computer science problems, representation of data is the key

to efficient and effective solutions. A suitable representation of a time

series may be Piecewise Linear Approximation (PLA), where the original

points are reduced to a set of segments.

PLA refers to the approximation of a time series T, of length N, using K

consecutive segments with K much smaller than n (Fig. 3.6). This

representation makes the storage, transmission and computation of the

data more efficient (Keogh et al., 2004). In the light of it, PLA may be used

to support clustering, classification, indexing and association rule mining

of time series data (e.g. Di Salvo et al., 2012).

The process of time series approximation using PLA is known as

segmentation and is related to clustering process where each segment can

be considered as a cluster (Salvador and Chan, 2004).

47

Fig. 3.6: The trend approximation (red line) of the original time series (black line)

obtained by PLA.

There are several techniques to segment a time series and they can be

distinguished into off-line and on-line approaches. In the former approach

an error threshold is fixed by the user, while the latter uses a dynamic

error threshold that changes, according to specific criteria, during the

execution of the algorithm. Although off-line algorithms are simple to

realize, they are less effective than the online ones. The classic approaches

to time series segmentation are the sliding window (Table 3.3), bottom-up

(Table 3.4) and top-down (Table 3.5) algorithms.

Sliding window is an on-line algorithm and works growing a segment

until the error for the potential segment is greater than the user-specified

threshold, then the subsequence is transformed into a segment; the

process repeats until the entire time series has been approximated by its

PLA (Keogh et al., 2004). A way to estimate error is by taking the mean of

the sum of the square of vertical differences between the best-fit line and

the actual data points. Another commonly used measure of goodness of fit

is the distance between the best fit line and the data point furthest away in

the vertical direction (Keogh et al., 2004).

48

Algorithm Seg_TS = Sliding_Window(T,max_error)

begin

anchor = 1;

while not finished segmenting time series

i = 2;

while (calculate_error(T[anchor:(anchor + i)]) <

max_error)

i = i + 1;

end while;

Seg_TS = concat(Seg_TS, create_segment(T[anchor:

anchor + (i-1)]);

anchor = anchor + i;

end while;

end.

Table 3.3. An algorithm for sliding window approach, from (Keogh et al.,

2001).

Algorithm Seg_TS = Top_Down(T,max_error)

begin

best_so_far = inf;

for i = 2 to length(T) - 2

// Find best place to split the time series.

improvement_in_approximation =

improvement_splitting_here(T,i);

if improvement_in_approximation < best_so_far

breakpoint = i;

best_so_far = improvement_in_approximation;

end if;

end for;

// Recursively split the left segment if necessary.

if calculate_error(T[1:breakpoint]) > max_error

Seg_TS = Top_Down(T[1: breakpoint]);

end if;

// Recursively split the right segment if necessary.

if (calculate_error(T[(breakpoint+1):length(T)]) >

max_error)

Seg_TS = Top_Down(T[breakpoint + 1: length(T)]);

end if.

end.

Table 3.4. An algorithm for top-down approach, from (Keogh et al., 2001).

49

Algorithm Seg_TS = Bottom_Up(T,max_error)

begin

for i = 1:2:length(T)

// Create initial fine approximation.

Seg_TS = concat(Seg_TS,create_segment(T[i:i+1]));

end for;

for i = 1:length(Seg_TS)–1

// Find cost of merging each pair of segments.

merge_cost(i) =

calculate_error([merge(Seg_TS(i), Seg_TS(i+1))]);

end for;

while min(merge_cost) < max_error

// Find “cheapest” pair to merge.

index = min(merge_cost);

// Merge them.

Seg_TS(index) =

merge(Seg_TS(index),Seg_TS(index+1)));

// Update records.

delete(Seg_TS(index+1));

merge_cost(index) =

calculate_error(merge(Seg_TS(index),Seg_TS(index+1

)));

merge_cost(index-1) =

calculate_error(merge(Seg_TS(index-

1),Seg_TS(index)));

end while;

end.

Table 3.5. An algorithm for bottom-up approach, from (Keogh et al., 2001).

In the top-down approach a segment, that represents the entire time-

series, is recursively split until the desired number of segment or an error

threshold is reached. Dually, the bottom-up algorithm starts from the

finest approximation of the time series using n/2 segments and merging

50

the two most similar adjacent segments until the desired number of

segment or an error threshold is reached.

However, an open question is the choice of best k number of segments.

This problem involves a trade-off between compression and accuracy of

time series representation. As suggested by Salvador and Chan (2004), the

appropriate number of segments may be estimated using evaluation

graph. It is defined as a two dimensional plot where x-axis is the number

of segments, while y-axis is a measure of the segmentation error. The best

number of segments is provided by the point of maximum curvature, also

called “knee”, of the evaluation graph (Fig. 3.7).

Fig. 3.7: Evaluation graph. The best number of segments is provided by the knee of the

curvature.

3.7 Chebyshev Polynomials approximation

By this technique, the reduction problem is resolved by considering the

values of the time series T as values of a function f, and approximating it

with a polynomial function of degree n which well fits f:





n

i

i
in xaxP

0

)((3.19)

where each ai corresponds to coefficients and xi to the variables of degree i.

51

There are many possible ways to choose the polynomial: Fourier

transforms (Section 3.1), splines, non-linear regressions, etc. Ng and Cai

(2004) hypothesized that one of the best approaches is the polynomial that

minimizes the maximum deviation from the true value, which is called the

minimax polynomial. It has been shown that the Chebyshev approximation

is almost identical to the optimal minimax polynomial, and is easy to

compute (Mason and Handscomb, 2003). Thus, Ng and Cai (2004)

explored how to use the Chebyshev polynomials (of the first kind) as a basis

for approximating and indexing n-dimensional (n ≥ 1) time series. The

Chebyshev polynomial CPm(x) of the first kind is a polynomial of degree m

(m = 0, 1, …), defined as:

]1,1[))arccos(cos()( xxmxCPm (3.20)

It is possible to compute every CPm(x) using the following recurrence

function (Ng and Cai, 2004):

)()(2)(21 xCPxxCPxCP mmm   (3.21)

for all m ≥ 2 with CP0(x) = 1 and CP1(x) = x. Since Chebyshev polynomials

form a family of orthogonal functions, a function f(x) can be approximated

by the following Chebyshev series expansion:






 
0

)())((
i

ii
CP xCPcxfS (3.22)

where ci refer to the Chebyshev coefficients. We refer the reader to the paper

(Ng and Cai, 2004) for the conversion of a time series, which represents a

discrete function, to an interval function required for the computation of

Chebyshev coefficients. Given two time series T and S, and their

corresponding vectors of Chebyshev coefficients, C1 and C2, the key

feature of their work is the definition of a distance function dCheb between

the two vectors that guarantees the lower bounding property defined in

Eq. 3.1. Since it results:

),(),(2121 TTdCCd truecheb  (3.23)

52

the indexing with Chebyshev coefficients admits no false negatives. The

computational complexity of Chebishev approximation is O(n), where n is

the length of the approximated time series.

Fig. 3.8: An example of approximation of a time series T of length n = 10000 with a

Chebyshev series expansion (Eq. 3.22) where i is from 0 to k = 100, using the chebfun

toolbox for MATLAB (http://www2.maths.ox.ac.uk/chebfun/).

3.8 SAX

Many symbolic representations of time series have been introduced over

the past decades. The challenge in this field is to create a real correlation

between the distance measure defined on the symbolic representation, and

that defined on original time series. SAX is the most known symbolic

representation technique on time series data mining that ensures both a

considerable dimensionality reduction, and the lower bounding property,

allowing enhancing of time performances on most of data mining

algorithm.

Given a time series T of length n, and an alphabet of arbitrary size a, SAX

returns a string of arbitrary length w (typically w << n). The alphabet size a

is an integer, where a > 2. SAX method is PAA-based (see Section 3.4),

since it transforms PAA means into symbols, according to a defined

transformation function.

To give a significance to the symbolic transformation, it is necessary to

deal with a system producing symbols with equal probability, or with a

Gaussian distribution. This can be achieved by normalizing time series,

since normalized time series have generally a Gaussian distribution (Lin et

al., 2007). This is the first assumption to consider about this technique.

53

However, for data not obeying to this property, the efficiency of the

reduction is slightly deteriorated. Given the Gaussian distribution, it is

simple to determine the “breakpoints” that will produce a equal-sized

areas of probability under the Gaussian curve. What follows gives the

principal definitions to understand SAX representation.

Definition 3.8.1. Breakpoints: A sorted list of numbers B = β1, . . . , βa−1 such

that the area under a N(0, 1) Gaussian curve from βi to βi+1 = 1/a (β0 and βa

are defined as −∞ and ∞, respectively) (Table 3.6). For example, if we want

to obtain breakpoints for an alphabet of size a = 4, we have to compute the

first (q1), the second (q2), and the third (q3) quartiles of the inverse

cumulative Gaussian distribution, corresponding to the 25%, 50% and 75%

of the cumulative frequency: β1 = q1, β2 = q2, β3 = q3.

i\a 3 4 5 6 7 8

1 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15

2 0.43 0 -0.25 -0.43 -0.57 -0.67

3

0.67 0.25 0 -0.18 -0.32

4

0.84 0.43 0.18 0

5

0.97 0.57 0.32

6

1.07 0.67

7

1.15

Table 3.6. A look-up table for breakpoints used for alphabet of size 2 < a < 9.

Definition 3.8.2. Alphabet: A collection of symbols alpha = α1, α2,…, αa of

size a used to transform mean frames into symbols.

Definition 3.8.3. Word: A PAA approximation PAA(T) = {mean(t1),

mean(t2), …, mean(tw)} of length w can be represented as a word SAX(T) =

{sax(t1), sax(t2), …, sax(tw)}, with respect to the following mapping function:

   )1,0(, 1 ajwitmeanifftsax jijji    (3.24)

Lin et al. (2007) defined a distance measure for this representation, such

that the real distance calculated on original representation is bounded

54

below from it. An extension of SAX technique, iSAX, was proposed by

Shieh and Keogh (2008) which allows to get different resolutions for the

same word, by using several combination of parameters a and w.

Fig. 3.9: An example of conversion of a time series T (blue line) of length n = 128, into a

word of length w = 8, using an alphabet alpha = {a,b,c,d,e,f,g,h} of size a = 8. The left

plot refers to the Gaussian distribution divided into equal areas of size 1/a. PAA mean

frames falling into two consecutive cutlines (gray lines) will be mapped into the

corresponding plotted symbol (colored segments). The PAA plot shows the PAA

representation (red line), while SAX plot shows the conversion of PAA(T) into the

word SAX(T) = {c,g,e,g,f,g,a,a}. Images generated by MATLAB and code provided by

SAX authors (Lin et al., 2007).

55

Chapter 4

Classification and prediction

Classification process can be defined as the task in which objects are

classified on the basis of a priori knowledge patterns. The main difference

between clustering and classification process is the unsupervised nature of

the clustering. While the clustering process attempts to derive meaningful

classes directly from the data, the traditional classification methods

involve a special input training set of classes in which known objects are

placed. The choice of classification algorithm is strictly related to the data

structure and is guided by the prediction performance obtained by the

chosen model. In time series analysis, also the prediction of symbolic time

series or sequences is sometimes called classification. Han and Kamber

(2000) view that predicting class labels is classification, and predicting

values (e.g. using regression techniques) is prediction.

In this section we will briefly introduce, in the first part, some basic

methods for the discriminant analysis, the most known classification

technique. The second part focuses on a prediction task, spending

attention on Hidden Markov Models.

4.1 Classification

The discriminant analysis, known as supervised classification, is a

classification technique proposed by Fisher (1936). It bases on

identification of the attributes able to discriminate the observations of a

sample and to classify them in different groups with respect to their

attributes.

4.1.1 Fisher’s discriminant analysis

Fisher's linear discriminant, used for Linear Discriminant Analysis (LDA) is

a classification method that projects high-dimensional data onto a line and

56

performs classification in this one-dimensional space. The projection w is

chosen to maximize the distance between the means of the two classes

while minimizing the variance within each class. To that purpose Fisher-

LDA considers maximizing the following objective:

wSw

wSw
wJ

W
T

B
T

)((4.1)

where SB is the between classes scatter matrix and SW is the within classes

scatter matrix. The definitions of the scatter matrices are:

   
c

T
ccB xxS  (4.2)

  



c ci

T
ciciW xxS  (4.3)

where x is the overall mean of the dataset.

Fig. 4.1. Let be μ1 e μ2 the mean values of class 1 (represented by red objects) and 2

(represented by green objects), respectively. In this simple example, the couple of

values (1
~ , 2

~) and (1


, 2


) are the projected class means respectively on the first

attribute (the horizontal axis) and on the second attribute (the vertical axis). The

projection on second attribute returns a best separation among them

because 2121
~~ 


 .

57

Assume we have a set of samples partitioned into two classes (Fig. 4.1).

Oftentimes you will see that for two classes SB is defined as

  TBS 2121'   (4.4)

This is the scatter of class 1 with respect to the scatter of class 2 and hence

corresponds to computing the scatter relative to a different vector.

4.1.2 The perceptron criterion function

Another well known method for linear discriminant analysis is the

perceptron criterion function. It is the first method using the neural

network engineering (other best solutions are SOM, described in Section

5.3.6). Suppose to deal with a two dimensional dataset D with n objects,

where each object is represented by a point with two attributes x and y,

and we know the label l for each object: -1 or 1 (in Fig. 4.2 they are

represented respectively by red and blue points).

Fig 4.2. An example of 2D dataset with two classes represented by red and blue points.

The perceptron function aim to discover the values of parameters w1 and w2 which best

separates the two classes.

58

Perceptron learning phase(D,η)

begin

t = 0;

Randomly initialize w1,t and w2,t;

while convergence is reached do

Pick (xt, yt, lt) from the training set D;

if sign(w1,txt + w2,t – yt)∙sign(lt) < 0 then

δ-rule(w1,t,w2,t,xt,yt,lt,η)

end if

t = t + 1;

end while

end

Table 4.1 Learning phase of the perceptron. It calls the δ-rule to calibrate w

values.

δ-rule(w1,t,w2,t,xt,yt,lt,η)

begin

if lt < 0 and (w1,txt + w2,t – yt) ≥ 0 then

w1,t+1 = w1,t - ηxt;

w2,t+1 = w1,t - η;

end if

if lt ≥ 0 and (w1,txt + w2,t – yt) < 0 then

w1,t+1 = w1,t + ηxt;

w2,t+1 = w1,t + η;

end if

end

Table 4.2 With the δ-rule if the line which linearly separates the two classes

exists, then it will be discovered; else the perceptron learning phase (Table 6.1

will continue indefinitely.

A discriminant function wants to find the values of vector w (in this case

containing w1 and w2) such that:

0)()(21  iii lsignywxwsign (4.5)

for each object i of attribute (xi, yi), with 0 < i < n. To do this a learning

phase is needed. The procedure to calculate w is shown on Tables 4.1-2: it

59

needs a parameter η relative to the learning rate. At time t=0 the values of

w are randomly initialized.

The perceptron method, like the Fisher’s method, has several limits,

among them the application on linearly separable cases (obviously), a high

generalization error, and a high sensitivity to class boundary objects.

4.1.3 k-Nearest Neighbour (kNN)

The k-Nearest Neighbour algorithm is widely used for the classification of

objects belonging to Euclidean spaces. It consists on to choice a class label

for a new observation, basing on the known class of the k nearest neighbor

samples (Fig. 4.3).

Fig. 4.3. A dataset with two classes (distinct with red and blue points). The new

observation class (the white point) is chosen with respect to the majority class of its k

(in this case k = 7) nearest neighbors.

4.1.4 Decision trees

Decision trees are predictive models and belong to the decisional theory

field. In data mining, decision trees were introduced to solve problems

connected to data classification.

Looking at the structure (Fig. 4.4), the tree nodes correspond to logical

statements about the value of one or more attributes of the observation.

60

The first node is the root and contains the first (possibly more important)

test for classification, while the leaf nodes contain the class labels.

Fig. 4.4. Internal nodes represent tests on attributes. Leaf nodes represent classes

(redrawn from Han and Kamber, 2000).

The construction of a decision tree consists of several stages:

1. Selection of the splitting attribute, or that most characterizing the

observations. The algorithm identifies the most important attribute

and splits the database into two partitions with respect to this. At each

level the algorithm identifies the attribute that best performs the

partition on the available observation. For this scope methods for

feature selection are used, such as the information gain, described in

Appendix C.

2. Determination of the branch factor: each parent node can generate one

or more child nodes.

3. Evaluation of the best split: after the choice of the attribute, the

algorithm identifies the split value which realizes the best division

between observations.

4. Choice of the type of partition to realize: algorithms usually perform a

recursive partition.

5. Choice of the tree dimensions, by establishing the minimum number

of leaves or the tree depth, to avoid making estimation errors.

6. A pruning step, which try to optimize the decision process basing on

certain criteria.

61

7. In a final step, the algorithms try to solve problems about missing

values by ignoring them or, for example, creating a special class for

them.

Among the most important classification algorithms implementing

decision trees we mention:

 Automatic Interaction Detection (AID; Kass, 1980);

 Chi-Square Automatic Interaction Detection (CHAID; Hawkins and Kass,

1982);

 Classification And Regression Trees (CART; Breiman et al., 1984);

 ID3 (Quinlan, 1986);

 C4.5 (Quinlan, 1993).

This model achieves widespread success because has very small

processing time, but presents some negative aspects, including the

inability to examine continue attributes. Moreover, even if data can be

perfectly divided into classes and uses only simple threshold tests, there is

no foolproof way to predict the number of branches or spears that emit

from decisions or sub-decisions.

4.1.5 Support Vector Machines (SVMs)

SVMs are a popular machine learning method for solving problems in

classification and regression, able to guarantee high classification quality

(Burges 1998). In recent years, novel applications of SVM have been

performed in several research areas such as biology (e.g. Noble 2004;

Cheng et al. 2006) and volcano seismology (e.g. Masotti et al. 2008; Langer

et al. 2009). The SVM algorithm can be summarized as follows. It first uses

a non-linear mapping to transform the original data set into a higher

dimension space. Next, it identifies a hyperplane able to maximize the

margin of separation among the classes of the training set. Such a

hyperplane is called maximum marginal hyperplane (MMH). The margin in

SVMs denotes the distance from the boundary to the closest data in the

feature space (Fig. 4.5).

62

Fig. 4.5. Two-feature planes each of which with two classes of data (black squares and

grey circles) and a separating line (dashed lines): the left one shows a small margin

between clusters, the right one a larger margin (redrawn from Kecman 2001).

With appropriate mapping, data from two classes can always be separated

by a hyperplane. The problem of computing the MMH can be formulated

in terms of quadratic programming in the following way (Hwanjo et al.

2003):

 
  


l

i

l

i

l

j
jijijii xxkyyW

1 1 1

),(
2

1
)( (4.6)

subject to:

.0:0
1

Ciy i

l

i
ii 



 (4.7)

The number of training data is denoted by l, α is a vector of l variables,

where each component αi corresponds to a training data (xi, yi). C is the

soft margin parameter controlling the influence of the outliers (or noise) in

training data. The kernel for linear boundary function is xiyi, a scalar

product of two data points. The non-linear transformation of the feature

space is performed by replacing k(xi, yi) with an advanced kernel ϕ, such

as polynomial kernel:

63

p
i

Txx)1( (4.8)

or a radial basis function kernel:

)
2

1
exp(

2

2 ixx 


 (4.9)

The use of an advanced kernel is an attractive computational shortcut,

which avoids the expensive creation of a complicated feature space. An

advanced kernel is a function that operates on the input data but has the

effect of computing the scalar product of their images in a usually much

higher-dimensional feature space (or even an infinite-dimensional space),

which allows one to work implicitly with hyperplanes in such highly

complex spaces (Fig. 4.6).

Fig. 4.6. Two classes of data in the original 2-D space (left) and in a higher-dimensional

feature space (right) (from Cannata et al., 2011a).

The extension of SVM to multiclass problems can be performed using two

different methods called one-against-one and one-against-all. The former

constructs k(k−1)/2 classifier where each one is trained on data from two

classes. The latter constructs k SVM classifier. In this last case, the ith SVM

is trained using all training patterns belonging to ith class with positive

labels and the other with negative labels. A point is assigned to the class

for which the distance from margin is maximal. Finally, the output of one-

64

against-all method is the class that corresponds to SVM with highest

output value (Weston and Watkins 1999; Hsu and Lin 2002).

4.2 Prediction

Prediction is usually understood as forecasting the next few values of a

numeric or symbolic series. For the prediction of numeric time series there

is a huge amount of literature especially in the field of statistics. Common

methods for time series modeling and prediction are ARIMA (Auto

Regressive Integrated Moving Average) (Box et al., 1994) models for

stationary processes. More simple techniques like regression (Appendix

D) or more complicated techniques like supervised neural nets (Tang and

Fishwick, 1991; see also Section 5.3.6), or Support Vector Machines (Section

4.1.5; Burges, 1998) can also be used. In the following subsection we will

describe Markov Chains and Hidden Markov Models (Rabiner, 1989) because

they are commonly used.

4.2.1 Hidden Markov Models

A stochastic process is formally defined by a set of random variables {s(t)},

where parameter t corresponds to time. In general, the future behaviour of

a system depends on its past, i.e. the states s(t) and s(t’), corresponding to

different times t and t’, are dependent random variables. Markov process

is an interesting class of stochastic processes, where a future state depends

only on its most recent states (Bharucha-Reid, 1960). The first-order

Markov Models are the most used for its simplicity, because a future state

s(t), is a function of only its nearest past state s(t-1):

))1(()( tsfts (4.10)

If f is a deterministic function, then the Markov model is deterministic. In

pattern recognition f is a probabilistic function, for which s(t) is reached

with a certain probability from the state s(t-1). A typical diagram of a

probabilistic first-order Markov model is in Fig. 4.7.

65

Fig 4.7. In this model there are three states (S1, S2, S3). aij (0 < i,j < 3) indicates the

probability, at a certain time t, of transition from the state Si to a state Sj.

Assuming the system varies into a finite set of states, whose identity is not

visible to the reader, the Hidden Markov Model (HMM; Rabiner, 1989) is a

statistical model whose purpose is to recover the sequence of hidden

states, by reading several observations (or tokens), which are the only

outputs provided by the system (Fig 4.8).

For each state is associated a probability distribution over all possible

output tokens. Transitions among the states are governed by a set of

probabilities. Given a sequence of tokens, we learn an HMM and derive a

sequence of hidden states that correspond to the sequence of tokens.

Formally, an HMM, denoted by  EOAS ,,, is described with the

following parameters:

1. A set of m states  mSSSS ,,, 21  .

2. A m × m state transition matrix  
ijaA  whose (i, j) entry is the

probability of a transition from state Si to state Sj.

3. A set of possible observations, or tokens,  nOOOO ,,, 21  .

4. An m × n emission matrix  ijeE  whose (i,j) entry gives the

probability of emitting symbol Oj given that the model is in state Si.

5. Start probabilities πi, where 121  m  , which denote the

probability of starting at a given state in the first time point.

66

Fig. 4.8. Hidden Markov Models analysis seeks to recover the sequence of hidden

states from the observed emissions.

Three main problems are associated to HMMs:

1) Evaluation: Given a model λ, and a sequence of observations o, find

P(o | λ).

2) Decoding: Given a model λ, and a sequence of observations o, find the

sequence s of states that maximize P(s | o, λ).

3) Learning: Given a model λ, with unspecified transition/emission

probabilities, find parameters  EOAS ,,, that maximize P(o | λ).

Evaluation

There are two ways to compute the probability P(o | λ) of an observed

sequence o, given a model λ: forward or backward algorithm.

Forward algorithm. Let the forward variable αt(i) be:

)|)(),()2()1(()( iT STsToooPi   (4.11)

the probability to observe a sequence o = o(1),o(2),...,o(T) and state in Si at

time T, given a model λ. This probability can be calculated recurrently:

1. Inizialization:

miei oiIi  1,)())1((1  (4.12)

67

where I(o(1)) is the index of the token in O equal to o(1).

2. Induction (Fig. 4.9):

11,1,)()())1((
1

1 







 



  Ttmjeaij tojI

m

i
ijtt  (4.13)

3. Termination:





m

i
T ioP

1

)()|( (4.14)

Backward algorithm. Let the backward variable βt(i) be:

)|)(),()2()1(()( it StsTototoPi   (4.15)

the probability to observe a sequence o = o(t+1),o(t+2),...,o(T) and state in Si

at time t, given a model λ. This probability can be calculated recurrently:

1. Inizialization:

miiT  1,1)( (4.16)

where I(o1) is the index of the token in O equal to o1.

2. Induction (Fig. 4.10):

11,1,)()(
1

1))1((







 



 Ttmijeai
m

j
ttojIijt  (4.17)

3. Termination:





m

i
oiIi ieoP

1
1))1(()()|( (4.18)

68

Computational complexity of forward-backward algorithm is O(Tm2).

Fig. 4.9. The “trellis” for the forward algorithm. The forward variable αt+1(j) is

calculated as a function of the same variable at time t, according to Eq. 6.9.

Fig. 4.10. The “trellis” for the backward algorithm. The backward variable βt(i) is

calculated as a function of the same variable at time t+1, according to Eq. 6.13.

Decoding

Given an observed sequence o = o(1),o(2),...,o(T) and a model λ, to find the

most probable hidden state sequence s = s(1), s(2), ..., s(T), the Viterbi

algorithm (Viterbi, 1967; Forney, 1973) is applied. It is a dynamic

69

programming solution adapted to Markov model. Let us define the

following variables:

),|)()2()1((max)(
)1(),...,2(),1(

 oStsssPi i
tsss

t 


 (4.19)

that is the highest probability which accounts for the first t observations

ending at time t in state Si. By induction we have (Rabiner, 1989):

))1((1)])((max[)(  tojIijt
i

t eaiPj  (4.20)

To retrieve the state sequence, we need to keep track of the arguments

maximizing Eq. 4.20 in the variable ψt(j), for each t and j. Viterbi procedure

for finding the best state sequence reads as follows:

1. Inizialization:

miei oiIi  1,)())1((1  (4.21)

mii  1,0)(1 (4.22)

2. Recursion:

mjTteaij tojIijt
mi

t  


1,1,])([max)())((1
1

 (4.23)

mjTtaij ijt
mi

t  


1,1],)([maxarg)(1
1

 (4.24)

3. Termination:

)]([max*
1

iP T
mi



 (4.25)

)]([maxarg)(*
1

ijq T
mi

T 


 (4.26)

4. Path (state sequence) backtracking:

11*),()(* 11   Ttqjq ttt  (4.27)

70

Learning

Adjust parameters of the model λ to maximize P(o | λ) for a given

observed sequence o = o(1),o(2),...,o(T). There is no optimal way to estimate

the model parameters (Rabiner, 1989), but it is possible to choose them

such that P(o | λ) is locally maximized by means of a optimization

algorithm, such as the Baum-Welch procedure (Baum et al., 1970), that is a

particular case of a generalized Expectation–Maximization (EM) algorithm

(Dempster et al., 1977). Let us define the variable:

),|)1(,)((),( oStsStsPji jit  (4.28)

that represents the joint probability of state Si at time t and state Sj at time

t+1. From the definition of backward and forward variable we can write it

as:


 






m

i

m

j
ttojIijt

ttojIijtttojIijt

t

jeai

jeai

oP

jeai
ji

1 1
)1())1((

)1())1(()1())1((

)()(

)()(

)|(

)()(
),(








 (4.29)

The posterior probability of state Si at time t is:





m

j
tt jii

1

),()( (4.30)

This equation has the following properties: (i) the expected number of

transitions from state Si is equal to 




1

1

)(
T

t
t i , while (ii) the expected number

of transitions from state Si to Sj is equal to 




1

1

),(
T

t
t ji . Using above

expressions one can re-estimate the parameters of HMM, closing the loop

of the EM-type algorithm:

)(iti   (4.31)

71










 1

1

1

1

)(

),(

T

t
t

T

t
t

ij

i

ji

a





 (4.32)











 1

1

1

)(,1

)(

)(

T

t
t

T

Ojtot
t

ij

i

i

e





 (4.33)

72

73

Chapter 5

Clustering

The main data mining target is to explore huge amount of data to retrieve

patterns information. Clustering is an important task in data mining,

dealing with division of data, in order to create groups of similar objects

that are dissimilar to the objects belonging to the other groups. It makes

use of tools and methodologies from statistics to numerical analysis, to

model data or, informally, to summarize data information. Clustering

plays an important role in a wide range of application areas, from biology,

geophysics, information technology to marketing. Such applications

usually deal with large datasets and many attributes that need to be

explored with automatic or semi-automatic methods. The goal of this

chapter is to provide a comprehensive description of the main clustering

algorithms used in data mining. A final section will be devoted to the

description of a development of a new clustering technique.

5.1 Introduction

Clustering can be considered the most important unsupervised learning

process for the hidden patterns problem; it relates to the division of

unlabeled data into groups (clusters) of similar objects. Clustering differs

from classification because the latter assigns objects to predefined classes

after a supervised learning process: clustering is an unsupervised form of

learning by observation, while classification is learning by example (Han and

Kamber, 2000). For real time classification, clustering spends a lot of time

to explore the entire dataset and recognize classes, because learns on

running; while a classifier makes use of acquired knowledge to perform

fast classification. However, during classifier training, classes labeling can

be expensive, in terms of human resources, and very difficult: in most

cases, it is desirable to perform clustering on initial data to obtain groups

74

of similar objects for assigning labels, and then train a classifier by means

of these labels.

Cluster analysis is an important activity in humans learning processes. As

example, children learn, continuously and unconsciously, to distinguish

between dogs and cats, or between animals and plants,

applying clustering patterns, which for psychologists are known as laws

of Gestalt (Hothersall, 2004). Humans perform competitively with

automatic clustering procedures in two dimensions, but most real

problems involve clustering in higher dimensions. It is difficult for

humans to obtain an intuitive interpretation of data embedded in a high-

dimensional space (Jain et al., 1999). For this reason, clustering algorithms

play an important role in a broad range of applications in many fields. In

marketing they can be used to find groups of customers with similar

behavior; in biology for classification of plants and animals given their

features; in seismology for earthquake studies: by clustering observed

earthquake epicenters, to identify dangerous zones; on social networks to

discover social circles based on links between users; on world wide web

for document classification; in image processing for image segmentation.

Each application uses a particular representation for data (images, graphs,

time series, documents, etc.): in many cases, in fact, clustering term is

associated with “segmentation” (for images) or “partitioning” (for graphs)

or to “pattern (or motif) discovery” when dealing with time series.

Algorithms are applied in different manner, in relation to the managed

data type, and to the purpose of results. A very important feature in this

sense is the choice of a distance or similarity measure (see Chapter 2) for

objects comparisons; if it does not exist, algorithms have to define some,

which is not always easy, especially for data with high number of

attributes or containing different types of attributes.

Managing different types of attributes is not the only requirement.

Clustering algorithms need to overcome several issues: scalability; easy

parameters setting; presence of noise data or outliers; dynamic systems;

high-dimensional data. Unfortunately, it is very difficult to satisfy all these

requirements. Indeed, current clustering techniques do not address all the

requirements adequately, because there is no one universally applicable.

75

5.2 Definitions

The main goal of clustering is to return a partition P = {C1, C2, . . . , Ck} of

dataset D, of cardinality k such that:

jiCCCCCD jik  ,21  (5.1)

The above definition (Berkhin, 2002) gives a strict sense to clustering,

because one object can belong only to one cluster. There are other

approaches, such as the fuzzy clustering (Yang, 1993), that relaxes this

definition allowing an object to belong to more clusters, each with a

corresponding probability. Generally, the definition of cluster combines

several reasonable criteria (Gan et al., 2007): cluster objects share the same

or closely related properties (attributes); show small mutual distance (or

high similarity); and are clearly distinguishable from the complement (the

rest of the objects in the dataset). For example, some researchers (Ester et

al., 1996) suggested, for spatial databases, that datasets contain clusters if

there are continuous and relative densely populated regions of the space,

and these are surrounded by continuous and relatively empty regions of

the space.

Distance measures play an important role in data clustering, since it is

fundamental to the definition of a cluster. To compare a pair of objects, a

definition of relationship is needed. On literature this relation is referred

to similarity or distance measure. When grouping similar objects, using

similarity, the goal is to maximize the measure value; on the contrary,

using distance, the goal is to minimize the measure value.

5.3 Clustering methods

In literature a wide range of clustering techniques was proposed. In this

section we want to provide a categorization of principal types of

clustering, and focus on description of the main techniques. The first thing

to consider, when classifying methods, is the type of clustering result. In

this sense, can be distinguished hierarchical from partitioning methods,

exclusive from overlapping and fuzzy methods, and complete versus partial

methods (Tan et al., 2005).

76

Clustering returns a partition P = {C1, C2, . . . , Ck} of dataset D. Partitioning

methods return a simple division of non-overlapping subsets, each of

which is a cluster, according to (Eq. 5.1). Hierarchical methods divide the

dataset in several levels of partitioning P1, P2, …, Pl, and establish a

hierarchy between clusters, in the form of a tree, also called dendrogram

(Fig. 5.1): a cluster can be a subset of a greater cluster, or contains other

subsets corresponding to minor clusters.

Exclusive clustering is different from overlapping clustering, because the

former does not allow any intersection of objects between clusters (see Eq.

5.1) while, for the latter, objects can belong to different clusters. Similar

concept to overlapping we found for fuzzy clustering, but in this case

clusters are considered fuzzy sets. In mathematics, an object x belongs to a

fuzzy set Ci with a certain probability p (Zadeh, 1965):  1,0)( iCxp , and

the sum of all probabilities of x, calculated with respect to each cluster,

must sum to 1:





k

i
iCxp

1

1)((5.2)

Last distinction can be found between complete clustering and partial

clustering. In the first case, every object in D is assigned to a particular

cluster Ci in P. In the second case, there are unclassifiable objects that are

assigned to any cluster: these objects are considered outlier or noise data.

However, since many concepts may overlap among clustering methods, it

is useful to present an organized classification of different clustering

methods, based on their definition of cluster:

1. Partitioning methods;

2. Hierarchical methods;

3. Density-based methods;

4. Graph-based methods;

5. Grid-based methods;

6. Model-based methods;

7. Subspace-clustering methods;

8. Neural-network clustering methods.

77

Fig. 5.1. Divisive versus agglomerative hierarchical clustering (see Section 3.2). An

example of iterations for a dataset D = {x1, x2, . . . , x8}. The constructed hierarchy tree is

often called dendrogram.

Partitioning, hierarchical, density-based, graph-based and grid-based

methods will be explained respectively from Section 5.3.1 to Section 5.3.5.

In Section 5.3.6 we will introduce the remaining approaches: model-based,

subspace clustering, and neural network clustering. In Section 5.3.7 we

will give a brief introduction to the techniques and measures used for

validation of clustering results.

5.3.1. Partitional Clustering

Partitioning methods have long been the most popular algorithms before

the advent of data mining. The most well-known and commonly used

78

partitioning methods are k-Means, k-Medoids, and their variations (Han

and Kamber, 2000). These algorithms follow the same steps when perform

clustering:

1. Choose arbitrarily k random objects from dataset of N objects, each

representing a cluster center, as initial solution;

2. Assign an object to a cluster, according to the nearest center;

3. Compute the new cluster centers after each assignment;

4. Iterate the (2) and (3) steps, until the cluster centers do not change

(convergence criterion).

This kind of algorithm has high computational complexity, and results are

inadequate for clustering of large dataset. In literature, other partitioning

algorithms try to address the scalability problem, typically using

techniques of data sampling, among them: CLARA (Clustering LARge

Applications; Rousseeuw and Kaufman, 1990), and CLARANS (Clustering

Large Applications based on RANdomized Search; Ng and Han, 1994) which

obtains good clustering results with a computational complexity of O(N2)

in the worst case.

 K-Means. For k-Means algorithm (MacQueen, 1967) the centers, treated at

the above step (2), correspond to the calculated means of each cluster. So,

the convergence is reached when the following value, called square error

function, does not change during iterations:


 


k

i Cp
i

i

mpE
1

2)((5.3)

where mi denotes the mean of cluster Ci. The main drawback of this

approach is the high sensitivity to outliers, because they can distort the

distribution of calculated centers. The achievement of the convergence

criterion is a NP-complete problem (Garey et al., 1982), so the real

implementation of these algorithms needs to stop after a certain number of

steps t. The total complexity of this algorithm is O(Nkt).

79

K-Medoids. k-Means performances are much altered in presence of

outliers. To diminish such sensitivity, instead of consider a cluster means

as centers, is useful to pick a representative object (often the median) from

cluster and elect it as center. In this case, the center is a real data object, not

imaginary. Differently from k-Means, at each iteration, the centers are not

calculated. Every time, a new representative object orandom is selected from

data and replaced with another existent representative object oj, only if

orandom error results less than oj error. The error function will be calculated

as:


 


k

i Cp
i

i

opE
1

2)((5.4)

where oi denotes the representative object of cluster Ci. PAM is the first

algorithm to implement k-Medoids method. The complexity of each

iteration is O(k(N-k)2) (Han and Kamber, 2000). For large values of N and k,

such computation becomes very costly. To deal with larger data sets, it is

necessary to sample data. CLARA is a more efficient implementation of k-

Medoids method working only with a small portion, chosen from the data

(a sample). If the selected sample is a good representative, the clustering

result will be similar to PAM, but with a computational time complexity

O(ks2+k(N-k)), where s is the sample size (Han and Kamber, 2000).

However, it is not always easy to make a good choice for the

representative sample (Gonzalez, 1985).

Another improvement of k-Medoids algorithm is CLARANS. Respect to

CLARA, where the selected sample is fixed for all iterations, CLARANS

performs a selection of a random sample in each iteration.

One of the limits of partitioning methods is the a-priori establishing of the

number k of clusters. It is not a simple choice to understand the optimal

number of clusters into a dataset, and the literature offers a wide range of

techniques to perform a comparison between different clustering results

(an exhaustive review can be found in Halkidi et al., 2001). An interesting

feature of this method is the determination of the “natural” number knat of

clusters in a database. They propose to run CLARANS once for each k from

2 to N. For each clustering result, a clustering validity measure, called

silhouette coefficient (Rousseeuw and Kaufman, 1990), is calculated. The

80

clustering with maximum score is chosen as the “natural” clustering.

Unfortunately, this enhancement adds computational complexity, and the

running time of this approach is also prohibitive for large N, because it is

has O(n2) complexity.

Both k-Means and k-Medoids methods are centroid based, and their

application is useful when clustering dataset contain spherical shape

clusters. They obtain low quality of clustering when deal with clusters of

arbitrary shape.

5.3.2. Hierarchical Clustering

Hierarchical clustering algorithms can be classified into two main types:

agglomerative and divisive (Fig. 5.1). In agglomerative (or bottom-up)

hierarchical clustering, the two most similar clusters are merged to form a

large cluster at each step, and this processing is continued until the

desired number of clusters is obtained. In a divisive (or top-down)

hierarchical algorithm, the process is reversed by starting with all data

points into one cluster, and subdividing it into smaller clusters by several

criteria (Gan et al., 2007).

In both cases, it is necessary to establish a way to measure distance

between an object and a cluster or between two clusters. Let us start by

taking reference on agglomerative technique (for divisive technique will

be the exact opposite). Let be D a dataset of size N, P0 = {C1, C2, . . . , Cn0} the

first partitioning of D, where each object corresponds to a cluster (n0 = N),

and Pl = {C1, C2, . . . , Cnl}, the partitioning of D at level l (nl < nl+1 ≤ n0). The

iterative criterion is to find, at each level l, the most similar pair of cluster

Cr and Cs (0 < r, s < nl) such that the distance between them is minimized.

The following subsections describe the most popular ways to form

hierarchies between clusters.

Mean Distance (Fig. 5.2a). By this method, distance between clusters is

calculated by calculating distance between cluster centers. It is used for the

average-linkage hierarchical clustering. Let be μ the cluster center of C,

calculated as:

81

 Cxx
C

i

C

i
i  



,
1

1

 (5.5)

Then, the distance between Cr and Cs is defined as:

),(),(srsr dCCd  (5.6)

Minimum Distance (Fig. 5.2b). Used for single-linkage hierarchical

clustering. In this case, distance between clusters Cr and Cs is calculated

taking into account the pair of object xi and xj, belonging respectively to Cr

and Cs, which are closer:

),(min),(
)0,0(

ji
CjCi

sr xxdCCd
sr 

 (5.7)

Maximum Distance (Fig. 5.2c). Opposite to the minimum distance

criterion, it is used for complete-linkage hierarchical clustering. In such a

way, the distance between clusters Cr and Cs is calculated taking account

of the pair of object xi and xj, belonging respectively to Cr and Cs, that are

farthest:

),(max),(
)0,0(

ji
CjCi

sr xxdCCd
sr 

 (5.8)

Average Distance (Fig. 5.2d). In this case, the distance between clusters Cr

and Cs corresponds to the average distance of all pair distances between xi

and xj, belonging to Cr and Cs, respectively:


 


r sC

i

C

j
ji

sr

sr xxd
CC

CCd
1 1

),(
1

),((5.9)

Two algorithms which specify agglomerative and divisive methodologies

are AGNES (AGglomerative NESting) and DIANA (DIvisive ANAlysis;

Rousseeuw and Kaufman, 1990), among the first to implement the

hierarchical clustering. AGNES and DIANA today are exceeded, because

do not address to several issues, such as the recognition of clusters of

arbitrary shape (natural clusters), and are very sensitive to the presence of

82

noise or outliers. Therefore, other sophisticated techniques were proposed.

In particular, for hierarchical clustering, we want to mention BIRCH

(Balanced Iterative Reducing and Clustering using Hierarchies; Zhang et al.,

1997), CURE (Clustering Using REpresentatives; Guha et al., 1998), ROCK

(RObust Clustering using linKs; Guha et al., 1999) and CHAMELEON

(Karypis et al., 1999).

Fig. 5.2. Distance measure between clusters. (a) Mean distance. (b) Minimum distance.

(c) Maximum distance. (d) Average distance.

BIRCH. BIRCH is a hierarchical clustering algorithm, whose best

peculiarity is the high data compression level. It is best indicated when

data objects are vectors of numbers.

The basic concept about this method is to group data in several sub-

clusters, whose number is much less than dataset cardinality, into a

balanced tree data structure, called CFTree. Each node of the tree, called

Cluster Feature (CF), is a light data structure, saved on the host device

central memory, containing statistics about sub-tree starting from it. These

two structures allow speed-up operations of inserting, deleting and

searching, especially for large dataset, since operations in balanced tree

have O (log N) computational complexity. CF is a record <n, LS, SS>

summarizing as follow: number n of points of the sub-cluster, a vector LS

representing the linear sum of sub-cluster’s objects, and a vector SS

83

representing the square sum of sub-cluster’s objects. These clustering

features are sufficient to calculate all of the measurements needed for

making clustering decisions in BIRCH (Han and Kamber, 2000).

The CFTree management requires the setting of two parameters: B

(branching factor), and T (threshold), indicating respectively the maximum

number of children for internal tree nodes, and the maximum diameter of

sub-clusters contained in the leaf nodes. There are two main phases in the

CFTree: (i) the initialization phase, where data are disposed into a

hierarchy of clusters, corresponding to the tree structure; and (ii) the

updating phase, where all operations of insertion are performed. If a leaf

node have a diameter greater than T, it is necessary to perform a split of

the sub-cluster.

The overall complexity of BIRCH algorithm is O(N). The main drawbacks

of this method are: (i) it has limited effectiveness when dealing with

clusters of arbitrary shape, because of using notion of diameter for clusters

boundary; (ii) outliers or noise data can bring to several undesirable

splitting operations. It is more robust when managing spherical clusters.

CURE. Algorithms often make use of a central cluster object to represent

the entire cluster (i.e. the mean object). CURE algorithm makes use of a set

of well distributed points to represent a cluster, instead of a single object.

This feature produces two immediate positive results: (i) it is possible to

discover also clusters of ellipsoidal shape (but not of arbitrary shape yet);

(ii) the clustering is less sensible to noise, even if it is not specific for

outlier discovery.

It is an agglomerative method, so initially each input object is a cluster. In

order to compute the distance between a pair of clusters, for each cluster, c

representative points are stored. These are determined by first choosing c

well scattered points within the cluster, and then shrinking them toward

the mean of the cluster by a fraction α (Han and Kamber, 2000). The

distance between two clusters is then the distance between the closest pair

of representative points (Eq. 5.7; Guha et al., 1998). Its computational

complexity is O(N2 log N) in the worst case. The parameter α is used to

control the shapes of clusters.

84

ROCK. ROCK is born to deal with categorical data. ROCK performs

distance comparisons for clustering, by considering the neighborhoods of

each data object. The ROCK idea is that, if two objects x, y, have similar

neighbors, then they are very similar and can be merged. The used

similarity measure, called Jaccard’s coefficient, is the exact opposite of the

distance introduced in (Eq. 2.20). In this case we consider the number of

same neighbors as the number of same attributes:

srq

q

srq

sr
yxsim







 1),((5.10)

If the Jaccard’s coefficient between x and y exceeds a specified threshold ϴ

(i.e. sim(x,y) ≥ ϴ), then x and y are merged in the same cluster. Based on

this definition, after calculating the similarity matrix for each pair of

objects, ROCK first builds links between objects having similarity greater

than ϴ, to obtain a sparse graph of similarity. Then, it performs

agglomerative hierarchical clustering on this graph. Guha et al. (1999)

demonstrated that the worst-case time complexity of ROCK is

O(N2+Nmmma+N2logN), where mm and ma are the maximum and average

number of neighbors, respectively, and N is the number of objects.

CHAMELEON. CHAMELEON guarantees better performances than

previous agglomerative hierarchical clustering algorithms, since it

overcomes the principal limitations of ROCK and CURE algorithms.

CURE is able to find clusters of different shape and size, because it uses

the closeness relation (Eq. 5.7), which emphasizes clusters proximity, to

perform hierarchical agglomeration. However, it ignores information

about the interconnectivity of items in two clusters. Contrariwise, ROCK

ignores information about the closeness of two clusters, because it uses

links (or similar neighbors) to define similarity: even if a pair of objects x

and y in different clusters are neighbors, it is very unlikely that the pairs

have a large number of common neighbors. For the definition of links, the

interconnectivity between clusters is emphasized, but proximity between

clusters is ignored. Chameleon tries to overcome weakness of both

algorithms, by taking account of both interconnectivity and closeness when

identifying clusters. The Chameleon algorithm has four main phases (Fig.

5.3):

85

1. Calculates for each data object, its first k more similar objects, or kNN (k

Nearest Neighbors);

2. Builds the k-nearest-neighbors graph, where each node corresponds to a

data object. An edge between nodes indicates that the two represented

objects share more than k neighbors;

3. Partitions graph into clusters, by minimizing the edge cut (see Section

5.3.4): given a cluster C, it corresponds to find the minimum weight of

edges, whose elimination makes two disconnected partitions Ci and Cj

from C. Karypis et al. (1999) refer to this value as absolute

interconnectivity EC(C) or EC(Ci, Cj);

4. Applies the agglomerative hierarchical clustering, by iteratively

merging pairs of clusters whose relative interconnectivity RI, multiplied

by the relative closeness RC, is the highest. The iteration stops when

there are only a user-defined number of clusters.

The edge cut measures the absolute interconnectivity of two partitions.

The relative interconnectivity RI(Ci, Cj) between two clusters Ci and Cj, is

calculated as the ratio of the absolute interconnectivity between the two

clusters EC(Ci, Cj), and the mean of internal interconnectivities of each

single cluster EC(Ci) and EC(Cj):

2

)()(

),(
),(

ji

ji

ji
CECCEC

CCEC
CCRI


 (5.11)

By using relative interconnectivity, Chameleon overcomes the limitation

of establish an absolute interconnectivity value for all clusters, making it

flexible to the discovery of cluster of different shapes and densities.

In the same way we can calculate the relative closeness defining the

absolute closeness of clusters SEC(Ci, Cj), that is the average weight

(opposed to the sum of weights for interconnectivity) of the edges that

connect vertices in Ci to those in Cj. The relative closeness is defined as:

86

)()(

),(
),(

j

ji

j

i

ji

i

ji

ji

CSEC
CC

C
CSEC

CC

C

CCSEC
CCRC






 (5.12)

The average weight computation makes the algorithm more tolerant to the

presence of outliers and noise, especially if we consider that connections

between clusters come from the k-nearest-neighbors graph. In the first

phase of the algorithm, the graph construction highlights the identity of

outliers and noise. The computational complexity of this algorithm is

O(N2) in the worst case.

Fig. 5.3. An illustration of Chameleon phases. Redrawn from Karypis et al. (1999).

5.3.3. Density-based Clustering

Density-based clustering allows discovering clusters of arbitrary shape.

Here, clusters are defined as dense regions of objects in the data space,

separated by regions of low density, which represent noise. The basic idea

of density-based algorithms, first proposed in DBSCAN (Ester et al., 1996),

is to grow a given cluster guaranteeing that the density in its

neighborhood, represented by the surrounding number of objects, exceeds

some specified threshold. This kind of algorithm is able to detect clusters

of arbitrary shape. A further product of clustering is to filter out outliers

(or noise). Since outliers carry useful hidden knowledge related to a

potential abnormal behavior, their detection has been applied in fields

87

such as fraud detection, intrusion discovery, marketing, and

pharmaceutical testing.

In the following subsection we will examine three principal algorithms,

basilar for the development of further enhanced density-based methods,

focusing on cluster definitions rather than the computational complexity:

DBSCAN (Density-Based Spatial Clustering of Applications with Noise; Ester et

al., 1996), OPTICS (Ordering Points To Identify the Clustering Structure;

Ankerst et al., 1999) and DENCLUE (DENsity based CLUstEring; Hinneburg

and Keim, 1998).

DBSCAN. DBSCAN relies on the idea that objects, which form dense

regions, should be grouped together into clusters. Usually DBSCAN runs

on data sets drawn from a metric space and uses a distance function to

compare objects. Given a data set D of N objects, and two fixed threshold

values, ε and MinPts, DBSCAN makes use of the following structures and

definitions (Ester et al., 1996): (i) ε-neighborhood, (ii) core object, (iii) directly

density-reachable, (iv) density-reachable and (v) density-connected clusters.

Fig. 5.4. Examples of (a) directly density-reachable, (b) density-reachable and (c)

density-connected in density-based clustering (from Cannata et al., 2011a). Suppose

MinPts = 3. Grey and black dots indicate the points to group into clusters, black circles

delineate the area of radius ε around black dots, the arrow denotes the relation of

direct density-reachability. In (a) dot p is the so-called core point, while q is directly

density-reachable from p. In (b) dot q is density-reachable from p. In (c) dot q is

density-connected to p and o is a point such that both p and q are density reachable

from o.

DBSCAN defines the ε-neighborhood of an object p as the set of objects Nε

that fall within a circle of radius ε, centered in p. If |Nε| ≥ MinPts then p is

called a core object. All points in Nε are called directly density reachable from

p (Fig. 5.4a). An object p is density-reachable from an object q if there is a

chain of objects p1,...,pm, p1 = q, pm = p such that each pi+1 is directly density-

88

reachable from pi, for 1 ≤ i ≤ m (Fig. 5.4b). A point p is density-connected to a

point q if there is a point o such that both, p and q, are density reachable

from o (Fig. 5.4c). A cluster is a maximal set of density-connected objects.

DBSCAN scans once object in D, and for each object p, it checks its Nε.

When Nε contains more than MinPts, it creates a new cluster with p as core

point, and iteratively collects directly density-reachable points from p. The

process terminates when no new points can be added to any cluster. A

point in D is an outlier if does not belong to any cluster. The space can be

indexed to speed up the kNN search. In such a case the computational

complexity of DBSCAN is O(N log N), where N is the number of points in

the dataset. Otherwise, it is O(N2).

The basic structure of DBSCAN presents a particular shortcoming when

clusters having different densities have to be discovered (Fig. 5.5). Since

the definition of density is set at the beginning, by parameters MinPts and

ε, such a global setting could cause low quality clustering. Usually,

empirical parameters setting is difficult to determine, especially for real-

world or high-dimensional data.

Fig. 5.5. An example of clustering with DBSCAN, using PyDBSCAN software (Cassisi

et al., 2011a). The dataset presents clusters of different densities. (a) MinPts = 10 and ε =

8. The ε is large enough to permit DBSCAN to find the green cluster (into red circle),

but is too large to distinguish different clusters into the blue cluster (into yellow

circle). (b) MinPts = 10 and ε = 15. The ε is small enough to permit DBSCAN to find the

three clusters circumscribed by yellow circles, but is too small to detect the cluster

indicated by the red circle.

Many other sophisticated techniques have been proposed to overcome

these limitations: SNN (Ertoz et al., 2003) meets the problem of variety in

density and high-dimensionality. Other approaches, including automatic

89

parameter settings, can be found in (Vadapalli et al., 2006) and (Cassisi et

al. 2012b; see also Section 5.5.2). The notion of density-connectivity of

DBSCAN has been used also for subspace clustering (Zimek, 2008; see also

Section 5.3.6).

OPTICS. In the previous subsection, it has been noted how parameter

setting can affect clustering results on DBSCAN. In many cases, to

understand the best combination of parameter values MinPts and ε, it

should be convenient to run several executions of the algorithm.

Unfortunately, the search for the different pairs of parameters can bring to

long computation time. However, it has also been noted how a single pair

of parameters can be adequate only partially, when different densities are

present into the dataset. To overcome these problems, OPTICS algorithm

is used. Even if it is not a real clustering algorithm, it makes an ordered list

of the dataset objects, which reflects the density structure of dataset

clusters. This structure contains information, which can be extractable

running DBSCAN with a wide range of density levels.

Fixed a value for MinPts, and a sufficient large value for ε, it stores for

each point two interesting values, the core-distance and the reachability-

distance, first defined by Ankerst et al. (1999), representing the relative

density value.

Let p be an object from a database D, let ε be a distance value, let Nε(p) be

the ε-neighbourhood of p, let MinPts be an integer number and let kdist(p) be

the distance from p of its kth nearest neighbour. The core-distance cd, with

respect to ε and MinPts, of object p is defined as:



 


otherwisepk

MinPtspNUNDEFINED
pcd

dist

MinPts
)(

)(
)(,



 (5.13)

The core-distance is the smallest distance ε’ between p and an object in its

ε-neighbourhood such that p would be a core object.

Let p and o be objects from a database D, the reachability-distance rd, of p

with respect to ε, MinPts, and o is defined as:



 


otherwisepodistocd

MinPtsoNUNDEFINED
oprd MinPts

)],(),(max[

)(
),(,



 (5.14)

90

The reachability-distance of p is the smallest distance such that p is

density-reachable from a core object o.

The above values are useful for DBSCAN to extract clusters for each ε’< ε.

Furthermore, the reachability plot offers a high informative content (Fig.

5.6). Algorithms based on its study, such as ξ-clustering (Ankerst et al.,

1999), cluster_tree (Sander et al., 2003), or that proposed by Brecheisen et al.

(2004), can catch, if exist, hierarchies between clusters and then build the

relative dendrogram.

Fig. 5.6. An example of the reachability plot (red line on bottom plot) for a dataset of N

= 473 objects. “Valleys” on the red line correspond to the clusters.

DENCLUE. The basic idea of this algorithm is to establish how objects can

influence each other: greater the influence, the shorter the distance among

them, and vice versa. The algorithm needs a definition of “influence”

function for each point, which indicates this relation. At this point, it is

intuitive to understand that clusters are disposed into space regions where

the sum of objects influence is high. DENCLUE bases on the following

definitions: (i) basic influence function (ii) density function, (iii) gradient, (iv)

density attractor, and (v) density attracted.

Let be x and y two objects of dataset D, the basic influence function fB(x,y)

describes the influence of a data object y, respect to x. Hinneburg and

91

Keim (1998) provided two examples of basic influence function, the Square

Wave influence function and the Gaussian influence function:



 


otherwise

yxdif
yxfSquare 1

),(0
),(


 (5.15)

2

2

2

),(

),(

yxd

Gauss eyxf  (5.16)

Both functions depend on σ: greater its value, the greater the influence of y

on x.

The density function fBD(x) indicates the influence of the entire dataset on x.

It can be calculated as the sum of the basic influence function of all data

objects in D, respect to x:





N

i
iB

D
B xxfxf

1

),()((5.17)

In real applications, the computation of density function fBD(x) needs to be

approximated to fBkNN(x)(x), since it is very expensive to compute it for all

objects in dataset: a density information for x can be taken by exploring

only its neighbors, so (Eq. 35) can be transformed in:





)(

)(),()()(
xkNNx

iB
xkNN

B
D

B

i

xxfxfxf (5.18)

The gradient of the density function fBD is defined as:





N

i
iBi

D
B xxfxxxf

1

),()()((5.19)

Clusters can then be determined mathematically by identifying density

attractors, where density attractors are local maxima of fBD. An object x is

density attracted from a density attractor x*, if there is a chain of object x0,

x1, …, xk, such that the gradient of xi-1 is in the direction of xi (or have the

same sign), for each 0 < i < k. More formally:

92

ki
xf

xf
xxxxxx

i
D

B

i
D

B
iik 










 0,
)(

)(
*,,

1

1
10  (5.20)

In what follows we can give two definitions of cluster for DENCLUE

(Hinneburg and Keim, 1998):

1. Given parameters σ and ξ, a center-defined cluster of a density attractor

x*, is a subset of object C of D, such that for each x in C, x is density

attracted from x*, and fBD(x*) ≥ ξ. All objects in D density attracted by

an x0* having fBD(x*) ≤ ξ, are considered outliers.

2. Given a set of density attractors X, parameters σ and ξ , an arbitrary

shape cluster is a subset of object C of D, which satisfies the two

following conditions: (i) for each x in C, exists a x* in X, such that x is

density attracted from x*, and fBD(x*) ≥ ξ; (ii) for each pair x1* and x2*,

exist a path P of objects in D, from x1* to x2*, such that fBD(p) ≥ ξ, for

each p in P.

It is interesting to observe the general formal structure of DENCLUE.

Depending on the basic influence function, and on the chosen parameters

σ and ξ, this algorithm traces other clustering methods. For example,

using the square wave influence function, the search for arbitrary shape

clusters coincides with DBSCAN, with MinPts = ξ, and ε = σ. Indeed, the

density attractor definition equals to the core object definition, while

density attracted definition equals to directly density-reachable definition.

More, using different values of σ (Fig. 5.7), it is possible to produce

hierarchies of cluster, typical in hierarchical clustering: starting with small

σ values, for smaller clusters, going to greater values of σ, to find cluster

even larger, until all objects are merged in only one cluster: the root of the

dendrogram.

To speed up computations, space can be indexed, by creating a map of the

space, and memorizing it into a tree indexing structure. The first step

consists of data space subdivision into hypercubes with an edge length of

2σ. In this sense, it can be also considered a grid-based algorithm (see

Section 3.5). In the light of it, the density function is calculated for each

populated hypercube H. A hypercube H is said to be a highly populated

93

hypercube if |H| ≥ ξc, where ξc is an outlier bound. Two hypercubes H1

and H2 are said to be connected if d(mean(H1), mean(H2)) ≤ 4σ.

Fig. 5.7. On top, the plotting of Fisher’s Iris dataset (Fisher, 1936), where X corresponds

to the first attribute (sepal length), and Y to the third (petal length). On the bottom,

from left to right, several density function distributions on grid, using an even larger

σ. Redrawn from Hinneburg and Keim (1998).

5.3.4. Graph-based Clustering

Graph-based algorithms analyze dataset clusters, by representing the

dataset as a particular data structure G, a graph, consisting in a set V of

vertices (or nodes), and a set E of edges, connecting pairs of vertices (Fig.

5.8). The graph construction is usually based on the distance matrix (Eq.

2.6) calculated on the dataset. It is usual to map a dataset object x with a

vertex v, and distance or similarity relation (satisfying several conditions)

between objects with edges. The cluster analysis will come from studying

the graph structure (as we have just seen for CHAMELEON algorithm in

Section 5.3.2). In this section, we will define what is graph clustering, and

we will present some of the most common techniques to perform it.

94

Fig. 5.8. An example of a graph G with 9 vertices. Redrawn from Tang and Liu (2010).

Graph clustering is the task of grouping the vertices of the graph into

clusters, taking into consideration the edge structure of the graph, in such

a way that there should be many edges within each cluster and relatively

few between the clusters (Schaeffer, 2007). In literature, the graph clustering

problem is also known as graph community detection problem (Tang and

Liu, 2010; Fortunato, 2010). Approximately, graph clustering techniques

are classified into four categories (Tang and Liu, 2010), depending on the

community definitions:

1. Node-Centric Community;

2. Group-Centric Community;

3. Network-Centric Community;

4. Hierarchy-Centric Community;

Node-Centric Community. Vertices belonging to a cluster (or community)

satisfy certain properties. It is usual to consider cluster a subset of vertices

of the graph, where every two vertices in the cluster are connected by an

edge (or forming a clique). Clique definition for clusters is very strict, and

its detection is an NP-complete problem (Schaeffer, 2007). There are several

methods belonging to this class, as the Clique Percolation Method (CPM;

Palla et al., 2005), that relaxes this definition, allowing also overlapping

between clusters. Given in input a parameter k, after discovering all

cliques of size k in the graph G, the CPM target is to create a graph of

cliques G’. In G’ each found clique is a node, and edges are drawn for each

95

pair of cliques sharing k-1 vertices. The connected components (Cormen et

al., 1990) of the resulting graph are considered clusters.

Group-Centric Community. The definition of cluster is relative to density,

or the number of edges connecting cluster vertices. In this category, a sub-

graph G’(V’, E’) is considered to be a cluster if it is a quasi-clique, or γ-dense,

that is:


 2/)1'('

'

VV

E
 (5.21)

Consider that a clique of size k, have a total number of k(k-1)/2 edges

connecting all its vertices. Thus, if the sub-graph G’ is a clique, the left side

of (Eq. 5.21) is equal to 1.

Network-Centric Community. Network-centric criterion needs to consider

the connections within a network in a global sense (Tang and Liu, 2010).

There are several approaches in this category, such as the clustering based

on vertices similarity, usually defined from the Jaccard’s coefficient (Eq.

5.10) or the cosine similarity (Eq. 2.11). Among them we will focus on

spectral clustering, one of the most interesting technique for graph

clustering (von Luxburg, 2006).

As we mentioned before, a graph G is usually represented by a N × N

distance matrix (Eq. 2.6), where N is the number of vertices in G; we refer

to this structure as A. Spectral clustering makes strong use of matrices,

because global information about graph structure can be provided by the

spectrum of the matrix. The matrix spectral analysis refers to the

computation of the matrix eigenvectors (Friedberg et al., 1989), ordered by

the magnitude (strength) of their corresponding eigenvalues.

All spectral clustering algorithms consist in four basic stages: (i) the

construction of a matrix representation, the utility matrix, depending on

the objective function; (ii) the computation of eigenvalues and

eigenvectors of the utility matrix; (iii) the mapping of each vertex to a

lower-dimensional representation, based on more or less important

eigenvectors (again depending on the objective function); (iv) clustering

96

by applying algorithms as k-Means (Section 3.1.1) to cluster on low

dimensional space.

When partitioning graphs, there are several models or objective functions

to follow (Tang and Liu, 2010):

1. Latent space model. The objective function is to map vertices on a low

dimensional space, where distances between vertices are preserved,

respect to the original space. This can be done by using, for instance,

the MDS (Multi-Dimensional Scaling) (Borg and Groenen, 2005). Given

a distance matrix A for G, let be S a N × l matrix representing the

dataset of cardinality N on the low dimensional space, with l attributes.

It can be shown that (Borg and Groenen, 2005):

P
N

IAA
N

ISS
TTT )11

1
)()(11

1
(

2

1
 (5.22)

where I is a N × N identity matrix (or the matrix containing all zero

elements, except on the diagonal, where elements are set to 1), ||1|| is

a N-dimensional column vector, and ° indicates the element-wise

matrix multiplication. The objective function is to minimize the

difference SST – P. The MDS problem corresponds to find the top

eigenvector V of P, since the optimal S corresponds to VΛ1/2 (Tang and

Liu, 2010), where Λ are the largest eigenvalues corresponding to V. The

utility matrix to use for spectral clustering is P.

2. Minimum cut problem using the edge cut (or minimum cut). We

remember that cut(Ci, Cj) is the minimum weight of edges in a cluster

C, whose elimination makes two disconnected partitions Ci and Cj

(Section 5.3.1). If all edges have the same weight, it is the minimum

number of edges disconnecting two partitions Ci and Cj. The edge cut

often returns an unbalanced partition (Fig. 5.9). There are other

different ways to estimate a cut. The ratio cut, and the normalized cut for

a particular partitioning π are:





k

i i

ji

C

CCcut

k
cutratio

1

),(1
)(_  (5.23)

97





k

i i

ji

Cvol

CCcut

k
cutnormalized

1)(

),(1
)(_  (5.24)

where vol(Ci) indicates the number of edges in Ci (or degree of Ci). Both

ratio cut and normalized cut prefer balanced partitions (Fig. 5.9).

In this case spectral clustering can take advantage of two main types of

utility matrix, corresponding to the name of Laplacian matrices. Before

introducing them, we will define the degree matrix D, where each cell (i,

i) indicates the degree of the ith vertex in G. The degree of a vertex v is

denoted as the number of edges incident to it. D is a diagonal matrix,

since non-zero elements are only on the trace. Both D and A are N × N

matrices.

The first type of Laplacian matrix is the unnormalized Laplacian matrix,

defined as:

ADL  (5.25)

usually used for the ratio cut approach.

Fig. 5.9. An example of different partitions on a graph G of 9 vertices, where edges

have the same weight. Redrawn from Tang and Liu (2010). The green dashed line

represents the minimum cut (or edge cut), that produces an unbalanced partitioning π1.

The red dashed line represents another cut producing a balanced partitioning π2. If we

compute the normalized and the ratio cut for both partitions, we can see that both

measures prefer the balanced partition π2: ratio_cut(π1) = 1/2 (1/1 + 1/8) = 9/16 = 0.56 >

ratio_cut(π2) = 1/2 (2/4 + 4/5) = 9/20 = 0.45; normalized_cut(π1) = 1/2 (1/1 + 1/27) = 14/27 =

0.52 > normalized_cut(π2) = 1/2 (2/12 + 2/16) = 7/48 = 0.15.

98

There are two versions of the second type, for the normalized cut

approach, introduced by Shi and Malik (2000) and Ng et al. (2002),

called normalized Laplacian matrix, and defined as:

)(2/12/1  ADDILsym (5.26)

)(1ADILrw
 (5.27)

The objective function corresponds to find the top eigenvectors of L,

with the smallest eigenvalues.

3. Modularity maximization. Modularity measures the strength of a

community partition by considering the degree distribution. The

modularity for a cluster C is the fraction of the edges that fall within C,

minus the expected (didj / 2N):
















CjCi

ji

ij

dd

N
ACM

, 2

1
)((5.28)

where di and dj are respectively the degrees of vertices i and j in C, and

m is the total edges in the graph of size N. If the graph is partitioned

into k clusters, the modularity for the entire graph will be:

 
 













k

l CjCi

ji

ij

ll

dd

N
AGM

1 , 2

1
)((5.29)

For larger value of M(G), the graph G presents a good community

structure. Then, for spectral clustering, the utility matrix is the

following modularity matrix B:

)2/(mDDAB T (5.30)

and the objective function corresponds to find the top eigenvectors of

B, with largest eigenvalues.

99

Hierarchy-Centric Community. The approach is similar to that introduced

in Section 5.3.2. There are both divisive and agglomerative methods. For

agglomerative methods, in the initial phase, each vertex is a cluster, and

they are merged iteratively into large communities, following a certain

criterion among those, proposed above, for graph clustering. For divisive

methods, the entire graph is initially a community. A common technique,

to iteratively build lower level communities, is to recursively remove the

“weakest” edge, or the edge with highest betweenness. The betweenness is

the number of shortest paths connecting any pair of vertices that pass

through the edge (Schaeffer, 2007): edges with higher betweenness tend to

be “bridges” within communities (Tang and Liu, 2010).

5.3.5 Grid-based Clustering

In general, a grid-based clustering algorithm consists of the following five

basic steps (Gan et al., 2007): (i) partitioning the data space into a finite

number of cells (or creating grid structure); (ii) estimating the cell density

for each cell; (iii) sorting the cells according to their densities; (iv)

identifying cluster centers; and (v) traversal of neighbor cells. The main

feature of grid-based clustering is that it can take advantage of parallel

processing, to significantly reduce the computational complexity. Among

them we will discuss the most known STING (STatistical INformation Grid-

based method) (Wang et al., 1997) and Wavecluster (Sheikholeslami et al.,

1998) algorithms. Grid-based methods are fast and handle outliers well.

Grid-based methodology is also used as an intermediate step in many

other algorithms as CLIQUE (see Section 5.3.6).

STING. The algorithm STING is designed to deal with numerical

attributes (spatial data) and to allow region oriented queries (Berkhin,

2002). STING builds a hierarchical tree, where each node is a grid cell

having four children (default), each of which is a grid cell, recursively (Fig.

5.10). In a bottom-up way, from leaf nodes to root, it collects the following

statistical information for each grid cell: number of contained objects,

mean, standard deviation, minimum, maximum and distribution type.

Higher level cells statistical information can be easily obtained from the

lower level cells.

100

The type of distribution is measured by using a chi-squared (χ2) test

(Greenwood and Nikulin, 1996). If the aggregate distribution of an higher

level cell does not correspond with the children cells’ distribution, it is set

to none.

STING offers several advantages: (i) the grid structure allows statistical

information for each cell, and these are calculated once through the

database in O(N) time, in the initial phase; (ii) after generating the

hierarchical structure, the query processing time is O(g), where g is the

total number of grid cells at the lowest level, which is usually much

smaller than N. However, the quality of clustering is high sensitive to the

grid resolution. When resolution gets lower, although it allows fast

processing time, the clustering result may appear “isothetic” (Han and

Kamber, 2000). During the clustering process, it considers spatial

relationships between neighboring children, only on horizontal or vertical

boundary, by excluding diagonal. Then, the lower the resolution, the

lower the quality.

Fig. 5.10. Hierarchical grid structure of STING. Redrawn from Wang et al. (1997).

Wavecluster. This algorithm also works with numerical attributes, and

supports an advanced multi-resolution, since it bases clustering analysis

on the wavelet transform, a very common technique in signal processing

(Chui, 1992; Graps, 1995). Wavelet transform has also been used to

101

compress data (Chan and Fu, 1999). To understand how to take advantage

of this technique, it is necessary to discuss the relationship between spatial

data and multidimensional signals (Sheikholeslami et al., 1998).

Multidimensional spatial data objects can be represented in an m-

dimensional space, called also feature space. Numerical attributes of a

spatial object are represented by a vector (see Chapter 2), where each

element corresponds to a numerical attribute, or feature. Thus, an object

with m numerical attributes represents a point in the m-dimensional

feature space. Data clustering means to identify sparse and dense regions

on this feature space.

Now, look at the feature space from a signal processing perspective

(Sheikholeslami et al., 1998). Objects on the feature space form a m-

dimensional signal. The high frequency sections of the signal correspond

to the cluster boundaries on the feature space, while low frequency

sections correspond to the regions of the feature spaces where objects are

concentrated (cluster centers).

Wavelet transform is a signal processing technique that decomposes a

signal into different frequency sub-bands (for example, high frequency

and low frequency sub-bands). The key idea in this approach is to apply

wavelet transform on the feature space to find low frequency parts that

correspond to clusters.

Fig. 5.11. Multi-resolution of a feature space. a) High resolution; b) medium resolution;

c) low resolution. From Sheikholeslami et al. (1998).

Main features: (i) unsupervised clustering, since it does not need any input

parameter; (ii) effective outliers removing, by using low pass filters; (iii)

hierarchical clustering, because it finds clusters at different levels of

102

resolution (Fig. 5.11), by the multi-resolution decomposition property of

wavelet transform (Chui, 1992); (iv) fast computation time, since wavelet

transform computation needs O(n) time, and can also be parallelized.

5.3.6 Other techniques

In this section we will give a concise introduction to the other approaches

for clustering. We will start from model-based clustering, that defines

cluster objects as samples coming from a particular statistical distribution.

Then, we will present some suitable approaches for dealing with high-

dimensional data: subspace clustering and neural networks.

Model-based Clustering. Model-based clustering methods try to find a

statistic model for data. They assume that data are generated by a mixture

of underlying probability distributions (Fraley and Raftery, 2002). Each

cluster is assumed to come from each distribution. The clustering problem,

in this case, becomes the estimation of the parameters of the assumed

mixture model.

Let pj (xi | ϴj) be the probability of finding an object xi of dataset D, in the

jth distribution, where ϴj are the parameters of the jth distribution; and let

k be the number of distributions (or clusters) in the mixture. The likelihood

λ of the observed objects in D is:

)|()|,,,;,,,(
1 1

2121 ji

N

i

k

j
jkk xpD  

 

 (5.31)

where γj is the probability that an object belongs to the jth distribution.

In the mixture likelihood approach, the goal is to estimate the parameters

ϴj (for 0 < j ≤ k) that maximize the above value. If we assume that data

come from a mixture of k Gaussian distribution, we aim to find mean and

standard deviation of each distribution that maximize the likelihood λ

(Fig. 5.12).

The EM (Expectation-Maximization; Dempster et al., 1977) algorithm is the

most widely used method for estimating the parameters of a finite mixture

probability density (Gan et al., 2007). Partitional algorithms, such as k-

means (Section 5.3.1), are usually included in this class of clustering

103

algorithms, since the center refinement process, can be implemented using

the EM algorithm. Among model-based algorithms we refer to MCLUST

(Fraley and Raftery, 1999).

Fig. 5.12. Model based clustering, using MCLUST (Fraley and Raftery, 1999), on Fisher’s

Iris dataset (Fisher, 1936), by selection of sepal length and petal length attributes. In

this case the selected model is Gaussian. Each cluster is overlaid by the relative shape

of Gaussian distribution function.

Subspace Clustering. Subspace clustering deals with clustering of high

dimensional data. A common way to overcome problems of high

dimensional data spaces, is to map them into lower dimensional spaces,

by selection of a small number of feature (feature selection), or extracting a

set of new feature (feature extraction), where data variance is maximized,

similarly to the Principal Component Analysis (PCA; Smith, 2002; also

described in Appendix C). Unfortunately, these methods bring to a partial

evaluation for clustering, because take in consideration only clusters

extractable from a single combination of features. The idea behind this

104

approach is that different clusters can be discovered selecting different

subsets of attributes (or subspaces). A naïve solution, to solve this limit, is

to test all possible subspaces to find clusters. However, in real applications

this search can be expensive, since all potential subspaces for a dataset

with m attributes (features) are 2m – 1. The literature offers several methods

to find clusters on subspaces. Here we sketch two of the most known

algorithms: CLIQUE (Agrawal et al., 1998) and PROCLUS (Aggarwal et al.,

1999).

CLIQUE was the first algorithm to treat the subspace clustering. It uses a

grid-based approach, because divides the space into equi-sized cells of

width ξ. Only cells containing at least τ objects are considered dense. A

cluster is then defined as a maximal set of adjacent dense cells. The

algorithm works in a bottom-up way. Starting with all 1-dimensional

dense cells, (k+1)-dimensional dense cells are computed from the set of k-

dimensional dense cells in an APRIORI-like style (Han and Kamber, 2000).

For the downward closure property, if a (k+1)-dimensional cell contains a

projection onto a k-dimensional cell that is not dense, then the (k+1)-

dimensional cell can also not be dense (Zimek, 2008). There are some

variants of CLIQUE such as ENCLUS (Cheng et al., 1999) and MAFIA

(Nagesh et al., 2001).

PROCLUS (PROjected CLUStering) try to find the subsets of attributes (or

projection) where the a considered set of points cluster best. It finds

projected clusters by locating the cluster centers and finding the

appropriate set of dimensions in which each cluster exists. The problem of

finding cluster centers has been introduced by k-medoids method (see

Section 5.3.1). The general approach is to find the best set of medoids by a

hill climbing process similar to the one used in CLARANS, but generalized

to deal with projected clustering.

There are many other algorithms in literature (e.g. Parsons et al., 2004),

each proposing different approaches. An exhaustive review of density-

based clustering applied to the subspace clustering can be found in Zimek

(2008).

Neural Network Clustering. Another common approach, to deal with high-

dimensional data, is the use of artificial neural networks. A neural network

consists of a set of input/output units (or neurons), and a set of weighted

105

connections among them. The main properties that make popular neural

networks for clustering are: (i) they can be implemented easily on parallel

and distributed processing architectures, and (ii) they learn by adjusting

their interconnection weights so as to best fit the data (Han and Kamber,

2000). One of the most known neural networks for clustering analysis are

SOM (Self Organizing Maps) or Kohonen’s maps (Kohonen, 2001).

A SOM consists basically of two layers. The input layer consists of N

elementary computational units or neurons corresponding to vector

objects of the input dataset D of size N. These units are connected to a

second layer of output neurons U that form a map. A reference weight

vector v, also called prototype vector, is associated with each output neuron

in the map. SOM then maps high-dimensional input data vectors onto

two-dimensional grid of prototype vectors that are easier to visualize and

explore than the original data.

By means of lateral connections, the neurons in U form a lattice structure

of dimensionality N’ (Figs. 5.13-14), which is typically much smaller than

N (Utlsch, 2000). The fundamentals of SOM are the competition between

nodes in the output layer U.

Self-organization refers to the ability of a biological or technical system to

adapt its internal organization to structures sensed in the input of the

system. The neural network approach, at each time t, consists of two

modalities: (i) a training step, and (ii) an updating step. Before starting,

output vectors weights are set with random values.

In the training step, an input vector x is compared with each prototype

vector on the map, using a distance measure, to find the most similar: the

Best Matching Unit (BMU). In the updating step, the prototype vector of

each output neuron i is updated following the rule:

)]()[()()()1(tvxthttvtv ibiii   (5.32)

where α(t) is the learning rate, hbi is a neighbor function between neuron i

and the BMU. With this function, the closer a node is to the BMU, the

more its weights become more like the input vector. The farther away the

neighbor is from the BMU, the less it learns. Both the learning rate and the

neighbor function decrease monotonically over time. In particular,

assuming hbi to be Gaussian, it can be expressed as:

106

)(2/ 22

)(trr
bi

ibeth 
 (5.33)

where rb and ri are respectively the position of BMU and neurons i, while

σ(t) is the standard deviation of the Gaussian.

Fig. 5.13. SOM lattice structure. The red point indicates the BMU. Gray points are

relative to the neighborhood of the BMU. Redrawn from Di Salvo et al. (2012).

Fig. 5.14. Different types of SOM grid structure, with different neighboring relation.

Hexagonal on the left, rectangular on the right. Redrawn from Di Salvo et al. (2012).

To make an example of clustering, consider to pass, in the training step,

objects from a dataset, once iteration. If the dataset presents several similar

objects forming clusters (with similar attributes, or weights), they will be

mapped in a particular region of the SOM, because they represent a

repeated input for the map. Thus, a group of neighboring output vectors

107

will be influenced, and their weights will be accosted to input cluster

objects. For this reason, SOM are also most used for visualization of

dataset structures for high-dimensional data. The low-dimensional map

obtained by SOM algorithm provides a 2D projection of the high

dimensional data that can be visually inspected. A common way to

visualize the presence of clusters after SOM learning process is the so

called unified distance matrix (U-matrix). In order to calculate the U-

Matrix the averaged distances between each neuron and its neighbors are

computed. This method provides a color matrix representing distances

between neighboring map units, and thus shows the cluster structure of

the map: high values of U-matrix indicate a cluster border while uniform

areas of low values indicate clusters themselves (Ultsch, 1993). An

example of 3D features space and the U-Matrix obtained after a learning

process of SOM is shown in Fig. 5.15.

Fig. 5.15. a) 3D feature space with 7 clusters. b) A rectangular U-Matrix after training

step: the blue regions are related to clusters, or regions where distance between

neighboring neurons is small.

5.3.7 Evaluating clustering

Most algorithms base the validity of the results, by showing experiments

on 2-dimensional or max 3-dimensional datasets. It is clear that they have

more problems when try to visualize high-dimensional data: in this case,

they need some adequate visualization techniques such as SOM (Section

108

5.3.6) or Parallel coordinates (Fig. 5.16; Inselberg and Dimsdale, 1990).

However, assessment by visualization relates to the validator, and a

numeric universal measure is needed to test the quality of clustering.

Fig. 5.16. Parallel coordinates visualization of Fisher’s Iris data (Fisher, 1936) using

MATLAB (http://www.mathworks.it/).

There are two general reasonable criterions for evaluation and selection of

an optimal clustering scheme: (i) compactness, for which distances among

members of each cluster should be minimized; (ii) separation, for which

distances among clusters should be maximized. In literature three main

types of clustering assessment are cited (Fig. 5.17; Gan et al., 2007). In

particular, an external assessment of validity compares the recovered

clustering structure C, with an a priori structure P and attempts to quantify

match between the two.

Fig. 5.17. A diagram of validity indices. Redrawn from Gan et al. (2007).

109

An essential task, when using this approach, is to test whether the dataset

is randomly structured or not (or Null Hypothesis; Halkidi et al. 2001). If

the dataset has a low cluster tendency, there is or no benefit in performing

cluster analysis. An internal examination of validity tries to determine if

the clustering structure is intrinsically appropriate for the data. This

assessment considers whether a given cluster is unusually compact or

isolated compared to other clusters of the same size in random data

(Aldridge, 2006). These first two approaches involve statistical testing,

which is computationally expensive (Gan et al., 2007). The third approach,

the relative test, compares two structures and measures their relative merit

(Jain et al., 1999). It does not involve statistical testing, but aims to find the

best clustering scheme based on certain assumptions and parameters.

Indices used for this comparison are discussed in detail in Jain and Dubes

(1988) and Dubes (1993).

One common validation measure, using relative criteria, is the Davies-

Bouldin (DB) index (Davies and Bouldin, 1979). Such an index is function

of the number of clusters, the inter-cluster and within-cluster distances.

Formally it is defined as follows:











 

 


),(

)()(
max

1

1 ji

jnin
N

i
ji CCd

CSCS

N
DB (5.34)

where Sn(C) is the average distance of all objects in C to their cluster

center, D(Qi, Qj) is the distance between centers of clusters Ci and Cj,

respectively.

Small values of DB correspond to compact clusters whose centers are far

away from each other. In the light of it, the number of clusters that

minimizes DB is taken as the optimal number of clusters. A possible

approach may be the use of validity algorithms such as Davies-Bouldin

(DB) index to validate k-means clustering results, explained in Section 5.3.1:

the number of clusters that minimizes DB is taken as the optimal number.

An example of 3-class k-means together with DB index is shown in Figure

5.18. In particular, Figure 5.18a shows the best 3-clustering structure of the

data set, while Figure 5.18b shows the value of DB index for increasing

110

value of k. The best cluster number is chosen on the basis of minimum

value of DB index.

Fig. 5.18. a) Best clustering structure computed using Davies-Bouldin index for a

feature space with 3 clusters. b) Clustering result using k-means with k = 3.

111

5.4 Outlier detection

All density-based clustering algorithms (Section 5.3.3) naturally deal with

outliers by avoiding inserting them into clusters. They commonly use the

distance to the k-th nearest neighbor to detect them. However, they are

able to capture only certain types of noise when clusters of different

densities are present. In fact, an object close to a tight cluster may be more

likely to be an outlier than an object that is further away from a weaker

cluster. Few approaches are directly concerned with outlier detection.

These algorithms, in general, consider outliers from a more global

perspective, assuming objects belonging to a known statistical

distribution.

Recently, attention has been placed on local outlier detection (Fig. 5.19)

(Breunig et al., 2000; Papadimitriou et al., 2003; Jin et al., 2006), in which

outliers are locally compared with neighbors (i) by taking into account

their density distribution or (ii) by measuring the similarity using

symmetric relations (neighbors and reverse neighbors).

Breunig et al. (2000) introduce the Local Outlier Factor (LOF) to rank objects

with respect to their outlierness. It uses a definition for the reachability-

distance for an object p similar to that introduced in Section 5.3.3 for

OPTICS:

)],(),(max[),(podistokoprd distk  (5.35)

and defines local reachability density of an object p as:






















)(

),(

/1)(
)(

pN

oprd

plrd
k

pNo
k

k
k (5.36)

where Nk(p) represents the set of k-nearest neighbors of an object p. The

local outlier factor of object p captures the degree to which we can call p an

outlier. It is the average of the ratio of the local reachability density of p

and those of p’s k-nearest neighbors (Breunig et al., 2000):

112

)(

)(

)(

)(
)(

pN

plrd

olrd

pLOF
k

pNo k

k

k
k




 (5.37)

Although LOF does not suffer from the local density problem, selecting a

suitable k, for k-nearest neighbors search, is non-trivial. LOCI

(Papadimitriou et al., 2003) overcomes this shortcoming by using

statistical values derived from the data. Jin et al. (2006) propose an

algorithm (INFLO) to efficiently discover top-n outliers using clusters, for

a given value of k. Density distribution is estimated by considering both

neighbors and reverse neighbors. This results in meaningful outliers

detection (Fig. 5.20).

Fig. 5.19. p is a local outlier (from Jin et al., 2006).

Fig. 5.20. Basing on local neighborhood, p is not so much outlier as in Fig. 5.19. Same

consideration can be done for r. q is the most probable outlier (from Jin et al., 2006).

To define INFLO, let kdist(p) be the distance from p to its k-th nearest object.

The inverse of kdist(p) is called k-local density. The reverse k-nearest

113

neighborhood of p is the set of all objects having p among their k nearest

neighbors. The k-influence space of p is the collection of those objects

among the k closest to p which also belong to its reverse k-nearest

neighborhood. Then, INFLOk of p is defined as the average of k-local

densities of objects belonging to the influence space of p. We formally

explain such definitions.

Definition 5.4.1. The k-local density of p, denoted as denk(p), is the inverse

of the kdist(p):

)(

1
)(

pk
pden

dist

k  (5.38)

Definition 5.4.2. The reverse k-nearest neighborhood of an object p is

defined as:

 )(|)(qNpDqpRN kk  (5.39)

Definition 5.4.3. Following Jin et al. (2006), the density distribution

around an object p can be estimated through the k-influence space defined

as:

)()()(pRNpNpIS kkk  (5.40)

The k-nearest-neighbors set Nk(p) is always not empty, whereas the size of

RNk(p) depends on the number of times p is classified as k nearest neighbor

of an object.

Definition 5.4.4. The k-influenced outlierness of p is defined as:

)()(

)(

)(
)(

pdenpIS

pden

pINFLO
kk

pISo
k

k
k




 (5.41)

The higher INFLOk of p is, the more likely such an object is a local outlier.

114

5.5 Enhancing Density-Based Clustering

The basic structure of density-based clustering presents some common

drawbacks: (i) parameters have to be set; (ii) the behavior of the algorithm

is sensitive to the density of the starting object; and (iii) adjacent clusters of

different densities could not be properly identified. Although these

problems have been subject of intensive investigation (Ram et al., 2009) a

satisfactory solution has not been found, yet.

In (Cassisi et al., 2012b), we propose a simple but effective method able to

overcome the above shortcomings and boost the DBSCAN performances.

We introduce the concept of space stratification which ranks the objects in

the space according to density criteria. Usually, a reasonable density

estimator relies on k-nearest neighbors (knn) distances. Objects with small

knn distance values belong to dense regions of the space, while large

values refer to sparse regions or outliers. The limit of a basic method is

that it can detect only global outliers (i.e., objects lying far away from the

rest of data). Those objects have large knn distance values. Whereas, local

outliers are objects located near to dense regions, and therefore may have

small knn distance values. Alternatively, the degree of outlierness can be

used as sorting criterion to rank the objects in the space. As an example,

the INFLO function (see Section 5.4) efficiently identifies local outliers in a

generic space by using the concept of local outlier factor. However, a

stratification based only on this method does not highlight different

density areas (Figure 5.21(a)).

In our work, we use the stratification based on both INFLO function and

knn distances. More precisely, the choice of INFLO is motivated by the

following reasons. INFLO defines a new neighborhood relationship, called

Influence Space (IS), allowing a better estimation of the neighborhoods

density distribution (Hinneburg and Keim, 1998). Since IS uses both the

nearest neighbors (Nk) and reverse nearest neighbors (RNk), INFLO

outperforms other measures (e.g. LOF, Breunig et al., 2000) in detecting

local outliers. Nevertheless, our ranking procedure (stratification) based

on a linear combination of INFLO and knn distances shows more

robustness in detecting outliers than INFLO. Moreover, clustering based

on IS makes the cluster expansion phase (Daszykowski et al., 2002) highly

sensitive to local density changes. Our main contribution consists of

115

replacing the classic neighborhood relationship introduced in (Ester et al.,

1996), called ε-neighbourhood (see Section 5.3.3), with a novel approach for

density-based clustering that takes advantage of the Influence Space. In

addition, in order to enhance performance, we exploit stratification by

projecting a generic k-dimensional space into a (k+1)-dimensional space,

where the new dimension refers to the relative ranking value.

Consequently, the method results effective in distinguishing slightly

different density areas and in detecting local and global outliers. A

comprehensive evaluation of the method indicates that it outperforms

DBSCAN and OPTICS in all the standard benchmark datasets.

Fig. 5.21: Stratification based on both INFLOk and DFk measures. Layers, representing

different density regions of the dataset, are distinguished by different colors (red for

first layer, green for the second, and so on). (a) Strata obtained using algorithm Stratify

in Table 5.1 in connection with the INFLOk measure. (b) Stratification of the space

related to (a). (c) Strata obtained using algorithm Stratify in connection with the DFk

measure. (d) Stratification of the space related to (c). From Cassisi et al. (2012b).

116

5.5.1. Stratification based outlier detection

Let (D, d) be a metric space, where D is the universe of data and d be the

metric distance function. Let  niDxxS ii ,...,2,1,|  be a finite subset of

U of size n ≥ 1. Let d(x, y) be the distance of object y from x, where Syx , .

Let  


Sy
yxdxw),()(be the sum of distances of x from the remaining

objects of S.

Stratification can be considered as a pre-processing step to analyze and

discover main data properties. It divides data into layers, where objects

belonging to the same layer have global similar characteristics. The

stratification process consists of the following steps: (i) sorting the objects

in S according to the function w; (ii) partition S into an ordered list of

subsets on the basis of w. This ordered list of sets, P, is called stratification

of S.

Definition 5.5.1. Given two subsets A and B of S, they satisfy the

stratification

relation w if and only if, Ax and By , w(x) ≤ w(y).

Definition 5.5.2. Let P = {S1, S2, . . . , Sh} be a set of h disjoint subsets of S.

We

call P a stratification of S if P is a linearly ordered set with respect to w .

By using the above definitions the space can be partitioned into subsets

which are concentric (toroidal). The above definition can be generalized to

the knn-stratification.

Let wk be the function which maps each object x into the sum of the

distances from x to the nearest k objects. Let be the set of k-nearest

neighbors of x in S. For each object x in S, we compute the k-nearest

neighbors and store the sum of their distances from x. Therefore:

 


)(
),()(

xNyk
k

yxdxw (5.42)

117

Definition 5.5.3. Let P = {S1, S2, . . . , Sh} be a set of h disjoint subsets of S.

We call P a knn-stratification of S if P is a linearly ordered set with respect

to
kw .

The knn-stratification allows to partition the dataset with respect to the

density of the k-nearest neighborhood. A partition of the stratification will

contain objects that are similar with respect to the wk function. The largest

element Sh of P is a subset containing the outliers of S, indeed the objects

of the dataset which are far from their k-nearest neighbors. Besides

classical outlier analysis algorithms (Aggarwal and Yu, 2001), recent

studies have focused on mining local outliers computing the density

distribution of their neighbors, as we have just seen in Section 5.4.

Although intuitive, when outliers are in the location where the density

distributions in the neighborhood are significantly different, for example,

in the case of objects from a sparse cluster close to a denser cluster, this

may cause wrong estimations. Outlierness function such as INFLO are

suitable for these purposes. In our method, in order to improve treatment

of density variance, INFLOk is normalized with respect to the size of RNk.

We call the new measure AINFLOk (Adjusted INFLOk). This function

indicates how much an object is a local or a global outlier. A density

measurement based on AINFLOk and knn-stratification improves DBSCAN

clustering since distinguishes clusters having small density variance.

Definition 5.5.4. The Adjusted INFLOk of x is defined as:

)(

)(
)(

xRN

xINFLO
xAINFLO

k

k
k  (5.43)

Definition 5.5.5. By linearly combining the knn-stratification and the

AINFLOk measure, we obtain the following density function:

)()()(xwxAINFLOxDF kkk  (5.44)

The DFk function is a monotonic function with respect to the outlierness of

an object. By sorting the objects in relation to the DFk in an increasing

order, we note that at some point the function becomes steeper. We

118

stratify the input dataset by using the density function DFk in the

algorithm STRATIFY of Table 5.1. The algorithm computes the average

AINFLOk and uses such a measure to partition the dataset into layers of

decreasing density. The last layer of the dataset will be the set of all

candidate outliers.

In Figure 5.21, we compare the behavior of INFLOk and DFk on the dataset

D1 obtained from Guha et al. 1998. The basic idea behind the DFk function

is to merge the knowledge carried by INFLOk and wk. The shape of the

INFLOk function is typically the one showed in Fig. 5.21(a). However, most

of the objects having a high INFLOk are not outliers. By adding the

function wk to INFLOk we are able to reduce the false positive outliers.

Furthermore, candidate outliers have always a very high DFk values and

they cause the exponential growth of the function.

Algorithm STRATIFY(D, k)

begin

n = |D|;

for i=1 to n do

D[i].DFk = DF(D[i].data,k);

D[i].AINFLOk = AINFLO(D[i].data,k);

end for

Sort D using DFk field as sorting key;

cut = 1;

layer = 1;

δ = avg(D[1...n].AINFLOk) + var(D[1...n].AINFLOk);

while cut < n do

cut = FindStrata(D, cut, layer, δ, n);

layer = layer + 1;

end while

end

Table 5.1. The algorithm STRATIFY. D is the dataset of objects to be clustered.

It is loaded into a data structure having as fields data, layer, AINFLOk, DFk.

Given in input k, DF and AINFLO are subroutines calculating, respectively, the

DFk and the AINFLOk function value of D[i. δ is a particular threshold used in

FindStrata (Table 5.2) to stop stratification. The objects in the last strata of D

are candidate to be outliers. All the remaining objects are considered members

of some cluster.

119

Algorithm FindStrata(D, start_idx, new_layer, δ, n)

begin

new_cut = start_idx; // cut point index

layer = new_layer; // index of the new layer

μDF = avg(D[start_idx...n].DFk);

while S[new_cut].DFk < μDF do

new_cut = new_cut + 1;

end while

μAINFLO = avg(D[start_idx...new_cut-1].AINFLOk);

for i=start_idx to new_cut-1 do

D[i].layer = layer;

end for

if μAINFLO < δ then

return new_cut;

end if

noise = layer + 1; // noise is the last layer index

for i=new_cut to n do

D[i].layer = noise;

end for

return n

end

Table 5.2. The FindStrata method extracts the strata from the current subset of

D. Then it checks if the average AINFLOk of the computed strata is above δ; we

use δ = avg(D[1…n].AINFLOk) + var(D[1…n].AINFLOk) (Table 5.1). The objects

in the last layer of D are candidate to be outliers.

Through such an observation, the algorithm STRATIFY, in Table 5.1, can

be adapted to identify only the outliers of the dataset. DFk is a monotonic

increasing function (see Fig. 5.21c), and the slope of lines can be computed.

We name s1 and s2 the slope of lines approximating the first and the last

layer values, respectively. The former characterizes data forming clusters,

while the latter is relative to sparse regions. Then, starting from the first

object in the last layer and following the ordering, we heuristically set as

outliers all objects xi such that:

22

)()(211 ssxDFxDF ikik 


  (5.45)

In Figure 5.22, we show the results of such a method.

120

Fig. 5.22. Outlier detection based on the DFk function and STRATIFY algorithm. For

each dataset, on the top, we show the partitions corresponding to the DFk curve.

Following Breunig et al. (2000), k has been set to 10 for t8, D1, t4, and can473; k = 20 for

t5 and t7. From Cassisi et al. (2012b).

5.5.2. Development of a new density-based algorithm

We propose the following method, to improve the quality of DBSCAN

algorithm:

 Remove outliers from the dataset for clustering by applying the

STRATIFY algorithm presented of Table 5.1;

121

 The knowledge inferred during the outlier detection phase is

embedded into the new residual space by adding a new dimension,

whose value, for each point, represents the sum of distances of ISk;

 ISk improves separation of clusters with different densities. Clusters

having the same densities will be embedded into a common strata

related to the new dimension.

 We apply the proposed density based clustering algorithm called

ISDBSCAN, in the new residual dataset (see Table 5.3 for the

pseudocode). For each object, we compute ISk the neighborhood. Then

a random point is selected and a depth-first cluster expansion

procedure is applied. The method constructs a cluster around a point p

until a border point or an outlier is reached. A border point is

recognized by the algorithm by checking the size of ISk. When the

algorithm, reaches an object p whose size of ISk (p) is below a certain

threshold (a threshold valued of 2k/3 has given experimentally

satisfactory results), the subset is not processed and the point is

classified as noise.

Algorithm ISDBSCAN(D, k)

begin

i = 1;

while D ≠ Ø do

p = Randomly pick an object from D;

Ci = MakeCluster(D, p, k, i);

D = D \ Ci;

if |Ci| > k then

membership(p) = i; //assign p to i-th cluster

i = i + 1;

else

membership(p) = noise; // assign p to noise

end if

end while

return {C1, C2, ..., Ci-1};

end

Table 5.3. Pseudocode of the ISDBSCAN algorithm. The MakeCluster

subroutine is shown in Table 5.4.

122

Algorithm MakeCluster(D, p, k, i)

begin

if |ISk(p)| > 2k/3 then

for each q in ISk(p) do

if membership(q) = -1 then

membership(q) = i;

C = C + {q};

C = C + MakeCluster(D, q, k, i);

end if

end for

end if

return C;

end

Table 5.4. The MakeCluster subroutine is a depth-first algorithm. The

threshold, which defines the size of ISk, determines a stop condition during the

MakeCluster. It has been set to 2k/3. k is the number of neighbors, and is the

only parameter to be set.

In Figure 5.23, we depict the embedding of two datasets provided by

Fahim et al. (2009a). Pictures show contours representing the levels in

which the points have been embedded by using ISk and Nk, respectively.

The pictures show that the embedding using the ISk function is able to

separate clusters and gives a smoother treatment of the objects lying in the

clusters' border with respect to the Nk function.

Note that, the algorithm presented above needs only one parameter to be

set which is k. This parameter represents the number of k-nearest

neighbors needed to have a sound size of ISk. In some cases, small

dimension of ISk sets can be viewed as gateways of close clusters. Finally,

the algorithm is independent of the starting point and naturally

discriminates clusters having different densities. This does not happen to

DBSCAN and variants of it (Fahim et al., 2009b), for which it is convenient

to start from points of highest density.

ISDBSCAN looks, for expanding clusters, at ISk-neighbourhood instead of

the ε-neighbourhood. Whereas the new neighbourhood relationship is

symmetric, objects belonging to clusters of different densities, cannot be

considered as neighbors. So, it can randomly select any object to start with

cluster expansion, because this method naturally recognizes density

123

differences, overcoming classical DBSCAN limitations (see some example

on Figs. 5.24-25).

Fig. 5.23. Density levels on the dataset can3147 (left column) and can383 (right column).

We have used as third dimension ISk and Nk, respectively. The plots (second and third

rows) represent two dimensional contour graphs of the three dimensional datasets

given in the first rows, using ISk and Nk, respectively. ISk function separates clusters

and gives a smoother treatment of the objects lying in the clusters' border with respect

to the Nk function. We can observe that the difference between close two dimensional

contour lines in Nk is much higher that the corresponding using ISk. From Cassisi et al.

(2012b).

124

Fig. 5.24. Left column: ISDBSCAN applied on 2Ddatasets. Center column: ISDBSCAN

performance and relative ISk 3D projections. Right column: corresponding best

DBSCAN results. From Cassisi et al. (2012b).

This system proposes a stratification process that contains a good heuristic

to remove noise (global and local outliers). This step provides further

information for enhancing both classic and proposed clustering

implementations. For DBSCAN, it automatically determines the denser

core-point from which to start expanding clusters; while given a fixed

parameter MinPts, it allows to properly estimate the ε parameter value, by

analyzing the DFk curve. For ISDBSCAN, makes computation of ISk-

125

neighborhood (useful for expanding cluster phase), and the relative

distances, that can be used to project data in a new space to amplify

density differences.

Fig. 5.25. Datasets after removing noise. Left column: ISDBSCAN on NNk 3D

projections. Center: ISDBSCAN on ISk 3D projections . Right: comparison with best

DBSCAN results. From Cassisi et al. (2012b).

Since ISDBSCAN suffers the presence of uniform distributed noise (for

example by classifying it as a whole cluster; see Fig 5.24 on center column

at row 3), stratification step allows also to efficiently remove it before

126

clustering. Even though the proposed method deals with low-dimensional

data, the ISDBSCAN procedure can be used as subroutine of methods for

solving subspace clustering problems in high-dimension (see Zimek, 2008

for a survey).

5.5.3 DBStrata

The proposed ISDBSCAN algorithm is implemented in a software system

called DBStrata (Cassisi et al., 2011b). DBStrata has been developed in

Python 2.6, it uses Python Scientific Library (Scipy/Numpy) and the PyQt

Graphical User Interface Library. It interacts using a GUI, which allows to

run density-based clustering, stratification pre-processing phase, outlier

detection, ISk-projection, and ISDBSCAN clustering. Moreover, for

comparisons purpose a framework allows to run the OPTICS module (see

Section 5.3.3).

Fig. 5.25. The DBStrata main interface. The software available for download at the

following web site http://www.dmi.unict.it/~cassisi/DBStrata/.

127

The main interface allows to apply density-based clustering to loaded

files, including stratification pre-processing phase, useful to help user on

DBSCAN parameters setting, outlier detection, ISk-projection, and

ISDBSCAN clustering (see the software map in Fig. 5.26). It can be

considered the main program; from this interface, user can calls the other

part of the software relative to OPTICS framework.

When the application starts, the only action allowed is the Open action

under the File menu. This opens a dialog box to load .tsv (tab-separated-

values) files, that stores data table in which columns of data are separated

by tabs. The layout has six group boxes: 1) Data Properties; 2) Plotting File;

3) Stratification; 4) DBSCAN Settings; 5) DBSCAN Output. After the file is

loaded, the first four group boxes are enabled.

Fig. 5.26. Structure and flow diagram of the software. Main interface calls only another

interface to clustering with OPTICS system.

Data Properties group shows minimum and maximum values for each

coordinate, and the diameter of the space; it is a read-only group.

Plotting File group contains the plot of the loaded file. Our Python

implementation (Python 2.6) uses the Matplotlib library that offers good

quality in data plotting. In addition to the figures canvas is made available

a navigation toolbar.

128

Stratification group allows editing of first input k to perform stratification

(default k=10). The following plots are included:

1. Stratification layers with different colors;

2. Ordering based on sum of NNk distances from p, ωk;

3. Relative AINFLO values;

4. DFk curve partitioned into the returned layers;

5. (Optional) Dataset Bipartition discriminating outliers;

6. (Optional) Dataset ISk projection.

Stratification returns the S.O.I. (Start Outliers Index), the number of layers,

and the range value for ε defined between ε1 and ε2, setting respectively

the “Min MinPts” and “Max MinPts” line edit placed on the DBSCAN

Settings group. In this last, the interval [ε1, ε2] is by default divided into 10

intervals for a multiple execution of the algorithm. Although automatic

setting can be useful and precise in many cases, before clustering

execution it is always advisable to check the sum of NNk distances

ordering plot to ensure logical settings, and especially to verify that the

S.O.I. has visual feedback with the surge of the curve. A not suitable

setting can bring long running execution time for DBSCAN. Due to this, all

edit lines can be edited for custom handling of parameters range. You can

also choose to proceed step-by-step (Next Step button), or make a single

run (DBSCAN button). Our implementation uses kd-Tree for data indexing,

whose Python implementation is available on

http://sites.google.com/site/mikescoderama/Home/kd-tree-knn.

Both optional bipartition and ISk projection are modified versions of the

original dataset and are saved into the working directory. ISDBSCAN

Settings group also allows running of ISDBSCAN with input parameter k

on each dataset version.

Clustering Output group shows the output of the algorithm relative to the

input parameters: number of clusters, outliers found, and a validation

index for clustering inspired to (Davies and Bouldin, 1979). It allows to

display its results in a dedicated dialog Other Filters to filter the result of

seismic signals clustering (only 2D dataset), it includes: noise removing;

129

selection of a labeled cluster or of main clusters having a number of points

greater than a percentage of dataset size; and moving average of each

filtering, by defining the size of the moving average window.

The Main Frame (Fig. 5.25) offers the vast majority of the software tools.

Under Tools action, user can call another interface relative to OPTICS

framework. The routine to calculate Reachability and Core Distance plot was

imported from http://chemometria.us.edu.pl/index.php?goto=downloads,

referring to (Daszykowski, et al., 2002).

The window was designed to present the main dataset characteristics

retrievable from OPTICS algorithm. In the left section, OPTICS plots group

shows reachability plot, core distance plot, and a visual path of dataset

ordering. In the right section, Clustering group includes the choice to

cluster through DBSCAN, setting the relative parameter; or to use the

system proposed in (Sander, et al., 2003) to discover, if exist, the

hierarchies between clusters on different densities dataset.

130

131

Chapter 6

Geophysical application of data mining

This chapter contains a collection of works, concerning the application of

data mining on geophysical data, that became object of publication

(Aliotta et al., 2010; Cannata et al., 2011a; Lo Castro et al., 2011a; Lo Castro

et al., 2011b; Cassisi et al., 2012a; Montalto et al., 2012). This was made

possible thanks to the collaboration with the INGV (Istituto Nazionale di

Geofisica e Vulcanologia), Section of Catania - Osservatorio Etneo, which

makes available its data for this kind of research.

6.1 Clustering and classification of infrasonic events at Mount

Etna using pattern recognition techniques

Active volcanoes generate sonic and infrasonic signals, whose

investigation provides useful information for both monitoring purposes

and the study of the dynamics of explosive phenomena.

Over the last decades, Mt. Etna volcano (Italy) has been characterized by a

remarkable increase in the frequency of shortlived, but violent eruptive

episodes at the summit craters. Between 1900 and 1970, about 30

paroxysmal eruptive episodes occurred at the summit craters, while there

have been more than 180 since then (Behncke and Neri, 2003). The summit

area of Mt. Etna is currently characterized by four active craters: Voragine,

Bocca Nuova, Southeast Crater and Northeast Crater (hereafter referred to

as VOR, BN, SEC and NEC, respectively; see Fig. 6.1). These craters are

characterized by persistent activity that can be of different and sometimes

coexistent types: degassing, lava filling or collapses, low rate lava

emissions, phreatic, phreato-magmatic or strombolian explosions and lava

fountains (e.g. Cannata et al. 2008). At Mt. Etna in 2006, a permanent

infrasound network was deployed providing useful information to

132

monitor the explosive activity (Cannata et al. 2009a,b; Di Grazia et al.

2009). Unfortunately, sometimes during the winter

season owing to bad weather conditions, the lack of signals from some

summit stations prevents applying the aforementioned location

algorithms.

Fig. 6.1. Digital elevation model of Mt. Etna with the location of the infrasonic sensors

(triangles and squares), composing the permanent infrasound network. The upper

right inset shows the distribution of the four summit craters (VOR, Voragine; BN,

Bocca Nuova; SEC, Southeast Crater; NEC, Northeast Crater) (from Cannata et al.,

2011a).

Here, we propose a new system, based on pattern recognition techniques,

able to identify at Mt. Etna the active summit crater from the infrasonic

point of view using only the signal recorded by a single station.

First, by a parametric power spectrum method, the features describing

and characterizing the infrasound events were extracted: peak frequency

133

and quality factor. Then, together with the peak-to-peak amplitude, these

features constituted a 3-dimensional feature space; by means of DBSCAN

algorithm (see Section 5.3.3) three clusters were recognized inside it. After

the clustering process, by using a common location method (semblance

method) and additional volcanological information concerning the

intensity of the explosive activity, we were able to associate each cluster to

a particular source vent and/or a kind of volcanic activity. Finally, for

automatic event location, clusters were used to train a model based on

Support Vector Machine (SVM; see Section 4.1.5), calculating optimal

hyperplanes able to maximize the margins of separation among the

clusters. After the training phase this system automatically allows

recognizing the active vent with no location algorithm and by using only a

single station. This work was partly performed with grants of the ‘Flank

project’ (INGV-DPC 2007–2009).

6.1.1 Infrasound features at Mt. Etna

Some recent studies have shown that the infrasonic signal at Mt. Etna is

generally composed of amplitude transients (named ‘infrasonic events’),

characterized by short duration (from 1 to over 10 s), impulsive

compression onsets and peaked spectra with most of energy in the

frequency range 1–5 Hz (Fig. 5.2; Gresta et al. 2004; Cannata et al. 2009a,b).

Similar features are also observed at several volcanoes, though

characterized by different volcanic activity, such as Stromboli (Ripepe et

al. 1996), Klyuchevskoj (Firstov and Kravchenko 1996), Sangay (Johnson

and Lees 2000), Karymsky (Johnson and Lees 2000), Erebus (Rowe et al.

2000), Arenal (Hagerty et al. 2000) and Tungurahua (Ruiz et al. 2006).

Since the deployment of the infrasound permanent network at Mt. Etna in

2006, two summit craters have been recognized as active from the

infrasonic point of view: SEC and NEC (Cannata et al. 2009a,b). The

former has been characterized by sporadic explosive activity with

different intensity, from ash emission to lava fountaining, while the latter

mainly by degassing. According to Cannata et al. (2009a,b), these craters

generate infrasound signals with different spectral features and duration:

‘SEC events’, showing a duration of about 2 s, dominant frequency mainly

higher than 2.5 Hz and higher peak-to-peak amplitude than the NEC

134

events (Fig. 5.6a); ‘NEC events’, lasting up to 10 s and characterized by

dominant frequency generally lower than 2.5 Hz (Fig. 6.2b).

Fig. 6.2. Infrasonic events recorded by EBEL station and corresponding Short Time

Fourier Transform, obtained by using 2.56-s long windows overlapped by 1.28 s. The

event in (a) is a typical ‘SEC event’, the one in (b) a typical ‘NEC event’ (from Cannata

et al., 2011a).

6.1.2 Data acquisition and infrasound signal characterization

In the following subsections (i) data acquisition and event detection, (ii)

features extraction and (iii) the semblance algorithm are briefly described.

Data acquisition and event detection. Since 2006, the permanent

infrasound network run by Istituto Nazionale di Geofisica e Vulcanologia,

Section of Catania, has been composed of a number of stations ranging

from one to eight depending on the considered period, located at distances

ranging between 1.5 and 7 km from the centre of the summit area (Fig.

5.1). Today, some stations are equipped with Monacor condenser

microphones MC-2005, with a sensitivity of 80 mV Pa−1 in the 1–20 Hz

infrasonic band, while others with GRASS 40AN microphone with a flat

135

response with sensitivity of 50 mV Pa−1 in the frequency range 0.3–20000

Hz. The infrasonic signals are transmitted in real-time by means of radio

link to the data acquisition centre in Catania where they are acquired at a

sampling rate of 100 Hz. At Mt. Etna we use EBEL as reference station,

because it generally shows a very good signal-to-noise ratio and, unlike

the other summit stations, its maintenance is generally feasible even

during the winter season. Once the infrasound signal is recorded, the

signal portions of interest, that are the infrasonic events, have to be

extracted. Then, the root mean square (rms) envelope of the infrasonic

recordings is calculated by a moving window of fixed length.

Successively, we calculate the percentile envelope on moving windows of

rms envelope. For a given time-series, the pth percentile can be defined as

the value such that at most (100 × p) per cent of the measurements are less

than this value and 100(1 – p) per cent are greater. In light of this, the

estimation of percentile enables us to efficiently detect amplitude

transients and estimate background signal level. The percentage threshold

should be chosen on the basis of both the amount of transients in the

signal that have to be included or excluded in our calculations and the

signal-to-noise ratio. The performance of this method was compared with

the short time average/long time average (STA/LTA) technique (e.g.

Withers 1997; Withers et al. 1998). The lengths of short and long windows,

mainly depending on the frequency content of the investigated signal,

were fixed respectively to 2.5 and 12.5 times the dominant period of the

signal (equal to roughly 0.3 s), considered a reasonable compromise

between sensitivity and noise reduction (Withers 1997), and the detection

threshold to 1.7. As shown in Fig. 6.3, the trigger results obtained by the

two methods were similar; nevertheless, the technique based on percentile

was also able to detect transients very close to each other.

Infrasonic signal features extraction. Often the decomposition of a time

series into purely harmonic components (Fourier transform case) can be

impractical. In fact, the actual oscillations observed in geophysics often

decay (or grow) exponentially with time, due to some mechanisms of

energy dissipation (or supply), as if the frequency were complex

(Kumazawa et al. 1990). Therefore, the spectral structure will be

136

reasonably represented in the complex frequency space (Kumazawa et al.

1990).

Fig. 6.3. (a) Three-minute long infrasound signal recorded by EBEL station, (b)

corresponding rms envelope (black line) calculated by using a moving window of 0.7 s

and (c) STA/LTA values. The horizontal grey dashed line in (b) indicates the detection

threshold calculated by a percentile value of 5 multiplied by 5. The horizontal grey

dashed line in (c) indicates the detection threshold fixed at 1.7. The arrows at top of

(b,c) indicate the onset time of the detected events (from Cannata et al., 2011a).

Since infrasonic events can be represented as decaying complex

exponential functions, to determine their complex frequency the Sompi

137

method can be used (Kumazawa et al. 1990, and references therein). This

is a high-resolution spectral analysis method based on an autoregressive

(AR) filter. By this method, a given time series is resolved into a number of

‘wave elements’ that consist of decaying harmonic components, and

additional noise (more details about Sompi method are reported in the

Appendix B). Each wave element is specified by two complex parameters

z and α (Kumazawa et al. 1990):

)exp(iwz   (6.1)

 iAe (6.2)

where γ and ω are the real and imaginary parts of the complex angular

frequency, A and θ correspond to the real amplitude and phase of the

wave element referred to some origin point and finally i is √−1. Another

two parameters, ordinary real frequency and ‘gradient’ or ‘growth rate’,

referred as to f and g, respectively (Kumazawa et al. 1990), are given by:

 2/f (6.3)

 2/g (6.4)

Finally, the ‘dissipation factor’ or ‘quality factor’ Q is defined as:

gfQ 2/ (6.5)

Generally, to represent a set of complex frequencies, their locations are

plotted on a 2-D plane with f and g axes. The wave elements scattering

widely in the plot, as the AR order changes, are considered noise. It is also

possible to identify some wave elements densely populated on the

theoretical frequency lines that remain mainly stable as the AR order

changes. They are considered dominant spectral components (Hori et al.

1989). An example of frequency-growth rate domain for an infrasound

event recorded by EBEL station is reported in Fig. 6.4.

138

Fig. 6.4. (a) Infrasound event recorded by EBEL station, and corresponding (b)

frequency-growth rate plot (AR order 2–60) and (c) amplitude spectrum. The grey area

in (a) represents the window used to calculate the frequency-growth rate plot in (b).

The dashed lines in (b) represent lines along which the quality factor (Q) is constant.

Clusters of points in (b) indicate dominant spectral components of the signal; scattered

points represent noise (from Cannata et al., 2011a).

Therefore, in summary, the spectral features of an infrasonic event can be

described by the two parameters Q and f. Further, in addition to frequency

and quality factor, the third feature used to characterize the infrasound

139

events is the peak-to-peak amplitude, depending on both distance source-

station and energy of the infrasonic source.

Semblance algorithm. The location of the source of the infrasonic events,

generally coinciding with active vents, is of great importance for volcanic

monitoring. Therefore, different location techniques, generally based on

grid searching procedures, were developed (e.g. Ripepe and Marchetti,

2002; Jones et al. 2008; Johnson et al. 2010; Montalto et al. 2010).

The semblance technique is based on the semblance function that is a

measure of the similarity of multichannel data (Neidell and Taner 1971).

For infrasonic events this method applies a 2-D grid searching procedure

over a surface covering the summit area and coinciding with the

topographic surface. The infrasonic source is assumed to be in each node

of the grid, and for each node the theoretical travel times at the sensors are

first calculated. Then, infrasonic signals at different stations are delayed

and compared by the semblance function. Finally, the source is located in

the node where the delayed signals show the largest semblance value.

Therefore, the semblance function is assumed representative of the

probability that a node has to be the source location (further details about

the method are reported in Montalto et al. 2010). In Fig. 6.5 two examples

of infrasound location are reported for a SEC event and a NEC event.

6.1.3 Learning phase

In the proposed system, the learning phase merges together results of

clustering and classification analysis (Fig. 6.6). DBSCAN and SVM are

applied on infrasound event features together with geophysical

information used to ‘label’ the recognized clusters. About 665 events,

recorded during 2007 September–November at EBEL station, were

detected and filtered in frequency range 0.5–5 Hz. The feature extraction

from the detected events was performed by Sompi method (see also

Appendix B) using 2-s long windows of infrasonic signal recorded at

EBEL station and AR order equal to two. The sharply monochromatic

nature of the investigated signals justifies the choice of this low order

(Lesage 2008).

140

Fig. 6.5. Examples of space distribution of semblance values, calculated by locating two

infrasonic events at Mt. Etna, and corresponding infrasonic signals at four different

stations shifted by the time delay that allows obtaining the maximum semblance. The

red squares and stars in the top plot indicate four station sites and the nodes with the

maximum semblance value, respectively. The black lines in the top plot are the

altitude contour lines from 3 to 3.3 km a.s.l. (from Cannata et al., 2011a).

Frequency and quality factor of the events, together with peak-to-peak

amplitude, constituted the feature space and are plotted in Fig. 6.7. Then,

to discover clusters in this space, ‘data clustering’ techniques based on

DBSCAN algorithm (Section 5.3.3) were applied. Using such an algorithm

we found three main clusters (called cluster 1, 2 and 3) and other outlier

points that can be considered as noise (Fig. 6.8). Points belonging to each

cluster are related to infrasonic events that were located using Semblance

location method (Section 6.1.2). In accordance with Cannata et al. (2009b),

during 2007 September–November, two infrasonic sources were found,

NEC and SEC. In particular, a cluster was composed of events generated

by NEC (cluster 1) and the other two by SEC. Such last two clusters were

related to different kinds of explosive activity at SEC. In particular, the

events belonging to cluster 3 were coincident with ‘more visible’

explosions, characterized by a relevant presence of ash, whereas the

141

events of cluster 2 were hardly visible in the monitoring video-camera

recordings (Cannata et al. 2009b).

Fig. 6.6. Scheme of the learning system (from Cannata et al., 2011a).

Fig. 6.7. Feature space with frequency, quality factor and peak-to-peak amplitude of

the infrasound events recorded at EBEL station during 2007 September–November

2007.

142

Fig. 6.8. Clustering of the feature space reported in Fig. 10. The clusters are indicated

with blue (cluster 1) and green circles (cluster 3) and light green triangles (cluster 2),

the outliers with black diamonds (from Cannata et al., 2011a).

Features clustering together with labels provide the patterns for SVM

learning process. As mentioned in Section 4.1.5, optimization of

parameters C (regularization parameter) and σ (radial basis function

kernel parameter, see Eq. 4.9) is a key step in SVM learning because their

values determine classification performance (Devos et al. 2009). As a

consequence, model selection is applied with the aim of finding the best

pair of parameters C and σ that minimizes the error rate estimated as the

ratio between misclassified and hit patterns. These parameters can be

chosen using a cross-validation (CV) approach (Hastie et al. 2002), which

is a statistical method for learning algorithms evaluation and model

selection. In particular, in K-fold CV the available data set is partitioned

into K subsets or ‘folds’: K–1 folds are used for SVM learning purpose, and

the remaining fold for model validation (Fig. 6.9). Thus, K iteration of

learning and validation are performed and for each ith iteration the

training process is carried out using K−1 folds and the ith fold for

validation (Fig. 6.9).

All SVM training algorithms are computed using one-against-all method

(see Section 5.2.1). Since we worked on a small data set, a simple

exhaustive grid search can be performed (Hsu et al. 2007). In particular, C

143

was systematically changed in the range [1–100] with a step of 10, σ in the

range [0.1–10] with a step of 0.5 and a K-fold CV with K = 10 was used.

Fig. 6.9. Basic scheme of K-Fold Cross Validation (from Cannata et al., 2011a).

The entire procedure can be summarized as follows (Fig. 6.10): (1) a grid

value of C and σ is defined; (2) for each pair of C and σ values, a mean

error rate is computed averaging the error rate values obtained by the K

SVM models; (3) the pair of C and σ with the minimum error rate is

selected; (4) such a pair is used to train the final SVM model with the

whole data set, comprising all the K folds. Here, the best parameter values

were C = 1 and σ = 0.1, for which mean CV error minimized to 0.6 per cent.

6.1.4 Testing phase and final system

To verify the system, the trained SVM is tested by classifying new

unknown infrasonic events and then assigning them to their source crater.

The reliability is verified using events not analysed during the previous

learning phase (Section 5.2.2). To this end, a new test data set of about 610

events, recorded during 2 months, 2007 August and December, was used

and labelled by location algorithm based on semblance method (Section

5.1.3). Moreover, the events belonging to cluster 2 and cluster 3 were

labelled using information related to the intensity of the explosive activity

(Cannata et al. 2009b).

144

Fig. 6.10. Best SVM model selection using K-Fold Cross-Validation (from Cannata et

al., 2011a).

145

The quality of classification is quantified using confusion matrix (Table

6.1), where each column represents the instances in the predicted class

(based on the SVM model), while each row represents the instances in the

actual class (based on the previously attributed labels). Thus, the entries

on the diagonal count the events in which prediction agrees with known

labels, whereas the other entries the misclassified events. 63 elements were

wrong assigned, providing an error rate of about 11.97 per cent.

Misclassifications were mostly concentrated in the second and third

classes that are related to the two different explosion activities of SEC

crater. Indeed, such a distinction is qualitative and not clearcut, hence

many halfway events can be misclassified. If we do not take into account

the distinction between clusters 2 and 3, and consider them as a single

cluster, the error decreases to 5.25 per cent.

 PREDICTED

Cluster 1 Cluster 2 Cluster 3

ACTUAL

Cluster 1 476 9 6

Cluster 2 9 15 8

Cluster 3 8 33 46

Table 6.1. Confusion matrix calculated in the testing phase. Each column

represents the instances in the predicted class (based on the SVM model),

while each row represents the instances in the actual class (based on the

previously attributed labels). Thus, the entries on the diagonal (bold numbers)

count the events in which prediction agrees with known labels, whereas the

other entries the misclassified events.

Finally, the proposed system can be summarized as follows (Fig. 6.11): (i)

triggering procedures is performed on buffer of acquired signal; (ii) then,

if events are found, the system evaluates whether there is a sufficient

number of stations for semblance location algorithm; (iii) if the number of

stations is not sufficient, alternative ‘single station’ location is performed

by extracting signal features and classifying them using the trained SVM.

It is also worth noting that SVM classifier is also applied offline on

localizable events to evaluate its performance in distinguishing NEC

events (cluster 1) from SEC events (clusters 2 and 3). In this case, events

belonging to clusters 2 and 3 are simply considered SEC events and then

146

labelled based on the source vent, with no further distinction depending

on the type of explosive activity. This task is carried out by comparing the

results of the classifier with the location parameters provided by the

semblance algorithm. By the inspection of the obtained error rate, a new

clustering execution is necessary when classification of new signals is not

aligned with that of infrasonic network classifier. This may be caused by

the creation of a new active vent or by the changing activity of a pre-

existing vent; in such a case the system must be updated.

Fig. 6.11. Flow chart of the proposed location system (from Cannata et al., 2011a).

6.2 Characterization of particles shapes by CAMSIZER

measurements and cluster algorithms

The shape is a very important feature affecting the properties and the

physics behaviours of materials of different natures. In volcanological

area, the study of the volcanic ash particles shape, emitted during

explosive eruptions, allows to get information about:

 the origin and the fragmentation mechanisms of them;

 the post-eruptive processes, such as the alteration, deposition and

transport (Riley et al., 2003);

147

 the residence time in the atmosphere.

Precisely because of the latter information, the shape parameter is used

in some models for the scattering ashes (Scollo et al., 2008). The

measurement and quantification of a particle shape are hard challenges,

especially when the number of the particles to analyze is high and their

size is small (i.e. sub-millimeter), as in the case of volcanic ash. The

current methods in volcanology used for quantitative measurements of

the particle shape are based on image processing, and are mainly

achieved by manual outputs (e.g. investigations under microscope). The

innovation of this procedure arises from the use of CAMSIZER

(www.retsch-technology.com), an instrument developed by the German

leader company Retsch Technology. This instrument, massively used in

the industrial field for the quality control of many types of materials (Lo

Castro and Andronico, 2008), permits to obtain very important

information both on size and shape parameters of a high number of

particles (hundreds of thousands data). Moreover, we used clustering

and classification algorithms in order to group particles according to

their morphologic characteristics.

6.2.1 Definition of the shape

In literature, the most commonly used definitions are often based on the

notion of invariance property of the object shape respect to the basic

geometric transformations: translation, rotations, scale factor (Dryden

and Mardia, 1998). According to this definition, a set of different

numerical “descriptors” are used to identify different shapes (ISO 9276-6,

2008).

Given a specific shape S, it is possible to describe it by a set of measures

and properties, called features. For example, a shape can be described by

its area, or perimeter, or by the number of cavities or picks. More

formally, the shape characterization process implies a set of

transformations Ti, such that the shape of each transformation can be

represented by a set of scalar measures (features) Fk (Costa and Cesar,

2001) with k = 1, 2, ..., n (Fig. 6.12), saved in an array F = (F1, F2, ..., Fn).

148

Fig. 6.12. Scheme illustrating the characterization of a generic shape S according to a

series of features F (from Lo Castro et al., 2011a).

Each feature must have a strong discrimination power, and must

emphasize the property of interest (for example, if we want to

characterize polygons, the feature corresponding to the number of sides

will be more significant than the number of cavities). Methods to

calculate the shape descriptors can be classified in:

a) qualitative methods: refer to the visual appearance of a given particle

(e.g. rounded, sub-angular and angular particles), and are generally

based on comparative charts (Fig. 6.13).

Fig. 6.13. Comparative chart of Russell, Taylor (1937) and Pettijohn (1972) for the

qualitative characterization of shape (modified after Muller, 1967), from Lo Castro et

al. (2011a).

149

b) quantitative methods: based on numeric values, which can be

calculated from images or from physics properties of the particles.

Quantitative methods based on image analysis are used for our scope.

The image analysis is a versatile technique, and is applied in a broad

range of disciplines. Given a real (tridimensional) particle, the image

analysis needs an input device to collect images (generally a camera, or

microscope, or scanner). The acquired images will be transformed in

bidimensional digital images (the projections of the particles), and given

in input to a software, able to read them and to calculate information,

such as the dimensional parameters and the shape (Fig. 6.14).

Fig. 6.14. Scheme showing the basic instruments for image analysis (redrawn from Lo

Castro et al., 2011a).

150

There are several tools to perform the image analysis. Microscopic

analysis has so far been the reference technique, because allows to

directly measure the size and the shape of the particles. However, this

manual technique involves many hours of work, and it is subject to

human errors. Modern systems allow to more precisely analyze

thousands of particles at time. Among them we can distinguish:

a) Static image analysis, in which the particles are stationed on a moving

treadmill, framed by a camera and a microscope (Fig. 6.15). This

method can manage only a limited number of data and, above all,

particles are oriented according to their base.

b) Dynamic image analysis, where particles fall down at certain velocity v,

into a corridor, and are framed by one or more cameras (Fig. 6.15b).

Particles are arbitrarily oriented during the fall.

Fig. 6.15. Different Image Analysis methodologies: a) static and b) dynamic (from Lo

Castro et al., 2011a).

6.2.2 Methodology

The proposed system, developed in collaboration with Deborah Lo

Castro of INGV, bases on measures obtained by CAMSIZER, followed by

automatic clustering and classification analysis. The complete process is

shown on Fig. 6.16).

151

Fig. 6.16. Scheme of the methodology used in the research (from Lo Castro et al.,

2011a).

CAMSIZER. In the first step, the CAMSIZER, communicating with

external software (Alp-reader and Contproc, provided by Retsch

Technology), returns a set of output files, relative to dimensional and

shape parameters of the chosen sample for the analysis. CAMSIZER ® is

a laboratory device, created by Retsch Technology (www.retsch-

technology.com), which dynamically and concurrently analyzes the

shape of solid particles of size ranging from 30 μm to 30 mm. The device

(Fig. 6.17) is composed by a funnel for inputting samples, a vibrating

plate for particles sliding (feeder), ending with a precipice where

particles fall down into a monitored chamber. In the chamber each

particle, illuminated by a white light, is captured by two cameras,

exclusively calibrated for large (CCD-Basic) and small (CCD-Zoom) size

particles (Fig. 6.18). The detected images are the projections of the

shadows of each particle. For a more precision on measurements, each

projection is scanned in 64 different directions of measure.

152

Fig. 6.17. Main components of CAMSIZER (from http://www.retsch-

technology.com/rt/products/dynamic-image-analysis/camsizer/function-features/).

Fig. 6.18. Structure of the CAMSIZER camera (from

http://www.horiba.com/fileadmin/uploads/Scientific/Documents/PSA/CAMSIZER_bro

chure.pdf).

153

Results are stored into the following output files:

 Raw Data File (*.rdf): native file of the CAMSIZER software, storing all

information about measures.

 Excel File (*.xls): result table for parameters relative to each

granulometric class.

 Alp File (*.alp): stores dimensional and shape parameters of each

measured particle. It is read from an external software (Alpreader).

 Kon File (*.kon): stores information about particles contouring. It is

read from a special software (Contproc).

Features. A simple method to characterize a particle shape consists on

using the ratio between two dimensional measures (xi and xj), to obtain the

Conventional Shape Descriptor (Sij) (Hentschel and Page, 2003):

jiij xxS  (6.6)

According to the type of the chosen dimensional measures, the obtained

parameter will be sensitive to a specific aspect of the shape. Hentschel

and Page (2003) applied cluster analysis on different parameter

combinations, in order to identify few parameters to describe particle

shape.

From this research they found that the shape, for a range

of commercial powders and bulk materials, can be efficiently described by

two conventional shape descriptors: Aspect Ratio (AR) for particle stretch,

and the Form Factor (FF) (Cox, 1927; Kuo et al., 1998) for sphericity and

irregular contours. These parameters are normally used in volcanology for

the description of the volcanic particles (Riley et al., 2003), and then are

extracted from .alp file and used for this work. For our experiment, a

further parameter, stored on .kon files, is used to describe the angularity of

a particle.

The following formally explains the chosen parameter:

a) Aspect Ratio (AR) is the ratio between the width (xcmin) and the height

(xFemax) of the particle projection (Fig. 6.19), and describes its stretch

degree (Fig. 6.19a):

154

maxmin / xFexc (6.7)

Globular particles have an AR value near to 1, while the AR value of a

stretched particles is < 1;

b) Form Factor (FF) is defined as the ratio between the area of the

projection of a given particle (A) and its perimeter (P), and refers to the

degree of circularity (Fig. 6.19b):

2

4

P

A
 (6.8)

In 2D, a perfect circle has FF = 1, while irregular shapes have FF < 1,

because an irregular shapes have a greater perimeter.

c) Angularity refers to the particle contour and to its irregularity. From

.kon file we considered the Epolygon parameter, that measures the mean

value of the vertices of a polygon (convex angles α), defined as the

polygon which best fits with a given contour, multiplied by the relative

height h (Fig. 6.19c):








i i

i

i
i

polygon
h

h
E 



 (6.9)

This value depends on the number of vertices of the polygon: a perfect

circle has Epolygon = 0, while a sharp contour has Epolygon = 1.

Fig. 6.19. Schemes describing the shape parameters used: a) aspect ratio; b) sphericity;

c) angularity.

155

6.2.3 Data analysis

The step of calibration was performed using only well-known shapes,

such as spheres, cubes and cylinders, created by a simulation software

provided by the CAMSIZER (Fig. 6.20).

Fig. 6.20. Graphical interface of the simulation software of CAMSIZER (on top) and

simulated shapes used in the experiments (bottom).

The measurements will be done both for the simulated shapes and for

the real samples. The results, saved on the .alp and .kon files, were used to

extract the 3 parameters we need to describe the shapes and the relative

labels or class of belonging: sphere (S), cubes (Cu), and cylinders (Ci)

(Table 5.2). The selected data was given in input to the PyDBSCAN

software (Cassisi et al., 2011a).

The real samples (Fig. 6.21) are 1.2 × 1.2 × 1.2 cm standard rubber cubes,

plastic spheres (diameter = 2 cm) and wood cylinders (length = 4 cm and

diameter = 1 cm). Samples were analyzed with CAMSIZER, by

performing tests on a single sample and on a set of samples.

156

Fig. 6.21. Material used in the experiments: a) plastic spheres; b) standard rubber

cubes; c) wood cylinders.

b/l SPHT Epol

S 0.997 0.9971 0.0955

S 0.997 0.9979 0.0958

S 0.997 0.9961 0.0872

S 0.9969 0.9996 0.0871

S 0.997 10.011 0.0872

S 0.9971 0.9988 0.0954

… … … …

Ci 0.4988 0.7682 0.2669

Ci 0.4987 0.7647 0.3759

Ci 0.4983 0.753 0.2591

Ci 0.4989 0.7947 0.2466

Ci 0.4984 0.7862 0.1777

Ci 0.4995 0.726 0.4422

… … … …

Cu 0.7744 0.8645 0.3561

Cu 0.8413 0.9152 0.3356

Cu 0.6524 0.8538 0.4431

Cu 0.6499 0.779 0.4456

Cu 0.748 0.9173 0.3731

Cu 0.6625 0.802 0.4328

Cu 0.7045 0.8648 0.4042

… … … …

Table 6.2. Input data interface for the clustering software. Labels of the shape

typologies are shown in the first column (S=sphere; Ci=cylinders; Cu=Cubes).

The other 3 columns report the shape parameters (b/l=aspect ratio; SPHT=

sphericity; Epol= angularity).

157

6.2.4 Results

Fig. 6.22 shows a 3D feature space (b/l, SPHT, Epol), 3 different clouds of

density and then 3 clusters for the density-based clustering definition (see

Section 5.3.3), corresponding to the 3 different shapes:

 Spheres are grouped in a small region where b/l, SPHT, and Epol are

all equal to 1.

 Cylinders have b/l value between 0.5 and 0.9, with a higher percentage

around 0.6, because are more stretched than spheres. The SPHT value

is practically constant, and ranges from 0.75 to 0.85, while Epol value

ranges in a more large interval starting from 0.1 (more rounded

particles) to 0.5 (more angular particles). Such a difference is due to the

various directions and the relative projections of the cylinders during

the “fall” into the measurement chamber of the instrument (Fig. 6.22b).

 Cubes present high b/l and SPHT values, ranging from 0.6 to 0.9, and a

quasi-constant value for Epol (≈ 0.4), because any projections of the

cube in its fall always maintains a certain angularity.

Using the same sample dataset of the clustering process, we tested a

classification model based on SVM to compute the maximum marginal

hyperplane (see Section 4.1.5) separating the obtained clusters. Fig. 6.23

shows a 2D projection of the dataset where the 3 cluster are divided into 3

well-defined areas.

To check the quality of the classification model we tested the system by

using a new dataset representing real spheres (cluster 1), cubes (cluster 2)

and cylinders (cluster 3), and storing the classification results into a

confusion matrix (see Section 6.1.4), showed in Fig. 6.24.

In this case 619 spheres (cluster 1) are well classified, while only 10 are

classified as cubes (cluster 2). Same thing for the cubes, where 365 sample

are classified as cubes (cluster 2), while 78 as spheres (cluster 1). For

cylinders we observed that 111 samples are well classified as cylinders

(cluster 3), while 11 samples are labeled as spheres (cluster 1). From this

matrix we can calculate a total error rate about 0.08 %.

158

Fig. 6.22. a) Density clusters showing the 3 different analysed shapes in a 3D space

defined by the descriptive features; b) the same diagram a with the different shape

typologies.

6.2.5 Future works

This technique allows good classification for elementary shapes (spheres,

cubes, cylinders). The next step of this research will be aimed to the

realization of new experiments about volcanic materials (lapillus and ash)

which, unlike the materials described herein, are composed by very

irregular shapes and therefore more difficult to characterize. Preliminary

tests highlight the exigency of using more particular shape descriptors,

that can be based, for example, on the conversion of a two-dimensional

shape to a one-dimensional “time series” (Want et al., 2008).

159

Fig. 6.23. 2D diagram showing the optimal hyperplane separating the 3 clusters,

obtained by the SVM analysis.

Fig. 6.24. Real materials used during the testing phase (on the left, with labels) and

confusion matrix (on the right). The cluster 1 is relative to spheres, the cluster 2 to

cubes, and the cluster 3 to cylinders.

160

6.3 Motif discovery on seismic amplitude time series: the case

study of Mt. Etna 2011 eruptive activity

Mt. Etna volcano (Italy) is one of the most active volcanoes in the world.

The summit area is currently characterized by four active craters:

Voragine, Bocca Nuova, South-East Crater and North-East Crater

(hereafter referred to as VOR, BN, SEC and NEC, respectively; see Fig.

5.1). Over time, the summit activity has consisted of persistent degassing

and different, and sometimes coexistent, eruptive types also from its

flanks such as: phreatic, phreato-magmatic, strombolian explosions, lava

fountaining, and lava effusion (e.g., Chester et al., 1985; Branca and Del

Carlo, 2005). After the 2008-2009 eruption at the volcano’s eastern flank

(Cannata et al., 2011b), the activity resumed in 2010 with minor explosive

activities from BN, NEC and SEC (Spina et al., 2012), and continued in

2011 with several lava fountaining episodes taking place at a new crater,

opened to the east of SEC and named as “new SEC”. Each of the lava

fountaining episodes showed an initial strombolian phase and lava

effusion, that emplaced on the upper Valle del Bove (e.g., Bonaccorso et

al., 2011a; Calvari et al., 2011). The paroxysmal behaviour of such short-

lasting violent phases is not uncommon at Etna and during recent decades

it has become more and more frequent. Indeed, between 1900 and 1970,

about 30 paroxysmal eruptive episodes occurred at the summit craters,

while there have been almost 200 since then (Behncke and Neri, 2003).

The geophysical surveillance of active volcanoes is routinely carried out

mainly by observing the patterns of seismic activity and ground

deformations (e.g. Scarpa and Gasparini, 1996). Commonly, seismic unrest

in the form of earthquakes and tremor have almost always preceded

and/or accompanied volcanic unrest phases at different types of volcanoes

(McNutt, 2000). Seismic activity is considered a critical indicator, and often

a reliable short- to midterm (days to weeks) eruption forecaster, and a

marker of the level and evolution of ongoing volcanic activity (McNutt,

2000).

We can distinguish two different groups of seismic signals in volcanic

areas—those associated with shear failures in the volcanic edifice, which

are called volcano-tectonic (VT) or high-frequency earthquakes, and the

seismic signals associated with fluid processes (Lahr et al., 1994; Chouet,

161

1996; McNutt, 2005). These include long period (LP) events, volcanic

tremor, which share the same spectral components, and very long period

(VLP) events, characterized by lower frequency content. The main

difference between LP

events and volcanic tremors is their duration. Similarly to earthquakes, LP

event duration is in the order of seconds whereas volcanic tremor can last

from minutes to months. Alparone et al. (2003) qualitatively observed that

some recurrent patterns can be recognized in the seismic amplitude time

series. Specific volcano states, for example lava fountain activity, may

have a recognizable amplitude pattern.

The task of extracting previously unknown recurrent patterns (also called

motifs) from available data constitutes a crucial step in geophysical time

series analysis. Many algorithms for efficiently mining motifs have been

proposed, especially in bioinformatics (Lawrence et al., 1993; Bailey and

Elkan, 1995; Pevzner and Sze, 2000; Tompa and Buhler, 2001). Since naïve

algorithms are computationally time-expensive, as quadratic in the length

of time series, most researchers have abandoned searching for exact

solution methods, such as the cross-correlation approach, and have

focused on investigating approximated solutions to the problem. Many of

them have made use of data dimensionality reduction.

In this work, we apply an exact time series motif discovery technique to

explore recurrent patterns within the seismic amplitude time series of Mt.

Etna 2011 periodic eruptive activity (1 January – 16 November 2011). To

this end, the seismic amplitude time series were computed using a root

mean square (RMS), which provides information on the volcano states

and/or external seismic sources. Although belonging to exact solution

methods, this technique allowed us to reduce computation time in finding

motifs in the investigated time series.

6.3.1 Data analysis

On Mt Etna, the broadband permanent seismic network consists of 32

stations equipped with broadband (40 s cutoff period), three-component

Trillium seismometers (Nanometrics) acquiring at a sampling rate of 100

Hz in real-time. The signal recorded by the vertical component of the

reference station EBEL (Fig. 6.1) from 1 January–16 November 2011 was

162

filtered in the 0.5–5.0 Hz band, which comprises most of the volcanic

tremor energy of Mt Etna (Cannata et al. 2008, 2010). RMS was calculated

on 10-minute-long moving windows, chosen as a compromise between

acceptable time resolution and the fairly small time series (Fig. 6.25).

Fig. 6.25. RMS of seismic signal recorded by the vertical component of EBEL station

and filtered in the band 0.5-5.0 Hz. The vertical dashed red lines indicate the episodes

of lava fountains (from Cassisi et al., 2012a).

6.3.2 Motif discovery theory

The brute-force search algorithm is a simple solution that performs a

sequential scan of the database. Suppose a simple case, where we have a

time series database (TSDB) of L time series, each of length m. At each

step, the current analyzed time series Ti (0 < i ≤ L) is compared with all the

following time series Ti+1, …, TL (Fig. 6.26) by computing distances or

similarity coefficients (e.g. cross-correlation) between time series, whether

they use metric or non-metric measures such as Euclidean (Lie Hetland,

2004) or Dynamic Time Warping (Berndt and Clifford, 1994), respectively.

For each comparison, if the distance (or similarity) between Ti with a Tj (i <

j ≤ L) satisfies some user-defined threshold, then the pair (Ti, Tj) is

candidate to be a motif. This step is repeated for all Ti. Each step will

perform L-1 comparisons at step 1, L-2 at step 2, until to 1 comparison at

step L-1. Then, the total number of comparisons can be calculated as (L + L

- 1 +… + 1) = L(L - 1) / 2. This value is quadratic respect to the TSDB size. In

computer science this computation is referred to achieve a complexity

O(L2). Moreover, each comparison makes a number of operations that is

proportional to m, for a total computational complexity of O(mL2). A

typical application of such a method makes use of the cross-correlation to

163

quantify similarity between time series (e.g. Brown et al., 2008). Since this

kind of algorithm is computationally time-expensive, some researchers

have abandoned searching for exact solution methods, such as the cross-

correlation approach, and have focused on investigating approximated

solutions to the problem. Moreover, over the last years, novel time series

algorithms, dealing with high dimensional data, have been developed to

optimize the computational time even using the raw representation of

data. One of such algorithms is the Mueen-Keogh (MK) algorithm (Mueen

et al., 2009), that was here applied to perform exact motif discovery in

seismic RMS time series. Such an algorithm makes use of Euclidean

distance to carry out comparisons between time series, instead of more

complex and accurate measurements used on time series

classification/clustering, such as DTW. Recent works showed its

effectiveness on various domains (Ding et al., 2008), especially when

datasets expand and the difference between the two measures rapidly

decreases (Shieh and Keogh, 2008).

Fig. 6.26. At step i (0 < i ≤ L), if the distance between Ti with a Tj (i < j ≤ L; in this figure j

= i+1) is less than some user-defined threshold, then the pair (Ti, Tj) is candidate to be a

motif. This step is repeated for all Ti. The x-axis is relative to time, and the y-axis to a

generic time dependent variable (indicated by v).

Before presenting the algorithm, we list some basic notations and

definitions of the analysis method.

164

Definition 6.3.1. A Time Series is a sequence T=(t1, t2,…, tm), which is an

ordered set of m real valued numbers;

Definition 6.3.2. A Time Series Database (D) is an unordered set of time

series, possibly of different lengths;

Definition 6.3.3. The Time Series Motif of D is a pair of time series {Ti, Tj} in

D, which is the most similar among all possible pairs. More

formally, jiba ,,, the pair {Ti, Tj} is the motif if d(Ti,Tj) ≤ d(Ta,Tb), i≠j and

a≠b;

Definition 6.3.4. The kth-Time Series motif is the kth most similar pair in the

database D. The pair {Ti, Tj} is the kth motif if there a set S of pairs of time

series of size exactly k-1 exists, such that

  STTDT did  , and  STT dj , , and     STTSTT bayx  ,, d(Tx,Ty) ≤

d(Ti,Tj) ≤ d(Ta,Tb);

Definition 6.3.5. The Range motif with range r is the maximal set of time

series with the property that the maximum distance between them is less

than 2r. More formally, S is a range motif with range r if   ,, STT yx  d(Tx,

Ty) ≤ 2r and STSDT yd  d(Td,Ty) > 2r;

Definition 6.3.6. A subsequence of length n of a time series T=(t1, t2, …, tm)

(with n<<m) is a time series Ti,n=(t1, ti+1, …, ti+n-1) for 1 ≤ i ≤ m-n+1;

Definition 6.3.7. The Subsequence Motif is a pair of subsequences {Ti,n, Tj,n}

of a long time series T that are most similar. More formally, jiba ,,, the

pair {Ti,n, Tj,n} is the subsequence motif if d(Ti,n, Tj,n) ≤ d(Ta,n, Tb,n), |i-j| ≥ w

and |a-b| ≥ w for w > 0.

Let us explain the idea behind the algorithm. The first improvement for

the brute-force method is the application of the early abandoning idea (Fig.

6.27). In order to search the nearest neighbour of a time series Q, it needs

to compute the point-to-point distance from Q for each time series in the

database. At each step, if we know the nearest neighbour distance from Q

(or the best-so-far), we can stop computation as soon as the current distance

165

exceeds this value, and skip scanning the next time series. Initially the

algorithm assumes the best-so-far value to be infinity.

Fig. 6.27. Q is the time series query. To find the Q nearest neighbor, we compare Q

with each time series in the database. At each step, with the early abandoning method,

once the sum of accumulated distances (gray lines) exceeds the best-so-far value, the

full Euclidean distance surely exceeds this threshold, and we can skip scanning the

next time series (redrawn from Mueen et al., 2009).

The second improvement regards the creation of a database index (see also

Section 2.2). In this case, the indexing consists in choosing a random object

as “pivot” (or reference point; hereafter referred to as O1; Fig. 6.28) and

linearly ordering the space {O1, O2, O3, …, On} by using the distance from

it, dist’(Oi) = dist(O1, Oi) (with 0 < i ≤ n), considered as sorting key. We then

record distances between adjacent pairs: {dist’(O2) – dist’(O1)}, {dist’(O3) –

dist’(O2)}, …, {dist’(On) – dist’(On-1)}. This transformation maintains two

useful properties: (i) even if the saved distances cannot be true, they are

always lower than the true distances, thanks to the triangle inequality

property (Fig. 6.29); and (ii) if two objects are close in the original space,

they must be close in the new projection too (but the contrary is not

always true).

Thanks to these two improvements, MK algorithm is still worst case

quadratic, but generally it reduces the computational time by three orders

of magnitude with respect to the classical brute-force method (Mueen et

al., 2009).

166

Fig. 6.28. A simple indexing example in 2D space. Objects can be arranged in a one-

dimensional representation by measuring their distance from a randomly chosen

point: the reference point (O1 in this case) (redrawn from Mueen et al., 2009).

We now provide an example of the analytical procedure to show how the

linear ordering, combined with the best-so-far, permits to make space

pruning to enhance motif search. At first we choose O1 as the current

reference point, then we set the best-so-far value to the distance from its

nearest neighbour O2, scan across the linear ordering (Fig. 6.28), measure

the true distances between adjacent pairs, and update them. As soon as a

pair of objects having distance value less than the best-so-far is found, we

update the best-so-far to this last value. Successively, if the found value

does not match the true best-so-far, scanning again the linear ordering, we

can prune off all pairs of objects with mutual distance greater than the

resulting best-so-far value. In fact, the triangle inequality property ensures

that these are lower than the true distances, thus they cannot be the

candidates. Using a simple heuristic to find good reference points, and

thus making multiple pruning rounds with multiple reference points,

167

Mueen et al. (2009) demonstrated how this technique speeds-up the

computation time.

Fig. 6.29. Assume working with metric distance functions as the Euclidean distance. If

we refer the A, B and C points to O1, O2 and O3 of Fig. 5.29 respectively, we can use the

triangle inequality property to assert that dist(O2,O3) is greater than the value {O2,O3} =

dist(O1,O3) - dist(O1,O2) (saved on the linear ordering).

The power of early-abandoning method can be related to the familiar effect

of the birthday paradox in probability theory (Brink, 2012), for which in a

dataset consisting of 23 people, the chance of any two people sharing a

birthday is 50.7%, while 99% probability can be reached in a set of just 57

people. There are so many possible ways for pairs to be similar, that it is

reasonable to think that the algorithm can find a very low best-so-far

rapidly.

5.3.3 Results

The used Matlab tool developed by Mueen et al. (2009;

http://www.cs.ucr.edu/~eamonn/exact_motif/) allows applying the

described technique to investigate likely subsequence motifs into a single

time series. In order to run the tool we need 5 input values:

 m, the length of the time series;

 R, the number of reference points to use;

168

 n, the length of the searched motif;

 X, the coefficient used for motif range r (default X=2 in definition 5.3.5),

in this case r corresponds to the best-so-far;

 K, the number of desired groups of motifs. The kth group corresponds

to the kth subsequence motif (see definitions 4 and 7), combined with all

subsequences distant from it at most Xr (see definition 5).

Since the analyzed time series of seismic RMS starts from 00:00 on 1

January 2011 to 17:40 on 16 November 2011, with a 10 minutes time step,

we theoretically deal with a time series of m =

[6*24*(31+28+31+30+31+30+31+31+30+31+15)] + [6*17] + [4] = 46042.

However, since data present missing values, we consider the real input

number of points m = 43103. The parameter R was fixed to 10, as suggested

by Mueen et al. (2009).

In order to choose the other three parameters we run experiments by

systematically changing their values within defined ranges. For each

experiment, and then for each n, X, K combination, we count the number

of subsequences in each group and evaluated the similarity among them

by using another similarity measure, the average cross correlation

(indicated by ACC; Figs. 6.30-6.32).

The parameter n was fixed to 50, 100 and 150, roughly corresponding to 8,

17, and 25 hours. Such a range was chosen on the basis of the duration of

the “seismo-volcanic phenomena” of interest. Indeed, the investigated

period was characterized by lava fountains, that last from a few hours to a

couple of days (taking into account also the strombolian phases preceding

and following the lava fountain phase). As shown in Figs. 6.30-6.32,

variations in n scarcely affect both number of subsequences and ACC. The

analysis was focused on experiments having n = 100, because the most

significant volcanic tremor amplitude changes during the analyzed lava

fountains generally take place in time windows shorter than 17 hours. We

explored X values fixed to 2, 3 and 4 because, already in this small range,

the number of significant motif groups (i.e. those having high ACC)

widely changed. Indeed, for X > 4 the method found a few groups

including a very large number of subsequences (with relatively low ACC).

Among the considered values for X, the choice of the optimum one is very

delicate, and, similarly to the cross correlation threshold used to classify

169

earthquakes into families of similar events (e.g. Ferretti et al., 2005), there

is no objective means to determine the right value. Such a threshold

depends on how similar the motifs, belonging to a given group, are

needed to be for a particular application. There is no similarity threshold

value that has a general validity. We chose X=3, because it permits to

obtain a good compromise between the number of groups, and the

number of subsequences with fairly high ACC within each group (number

of subsequences < 20, and ACC generally higher than 0.5). The last

parameter is K, whose maximum value was chosen equal to 20, because

the MK algorithm does not produce any motifs beyond this limit in all the

performed experiments. Considering the plot with n=100 and X=3 (Fig.

6.31), we chose to take into account the first K=8 groups. Indeed, in

correspondence to such a value the plot shows both the maximum

downward slope of the ACC line (left plot) and the maximum upward

slope of the subsequence number line (right plot). Once the values of the 5

input parameters were fixed, the MK algorithm was applied on the

seismic RMS time series. Figures 6.33-6.34 report the 8 groups of motifs

with their time locations within the original RMS series. The first 2 groups

are related to the initial phases of the 2011 lava fountain episodes (Fig.

6.33), with group 1 showing quicker increases (~5 hours on average) in the

volcanic tremor amplitude than group 2 (~10 hours on average). Groups 3

and 4 provide information on the final phases of the lava fountain

episodes. These are characterized by volcanic tremor amplitude

decreasing trends, which, also in this case, can be more or less rapid

(motifs 3 and 4, ~30 and 60 minutes on average, respectively; Fig. 6.33). An

example of seismic signal recorded during a lava fountain taking place on

10 April 2011, together with RMS time series calculated on 10-minute-long

moving windows, is reported in Fig. 6.35. Groups 5 and 6 are composed of

portions of RMS time series typified by very sharp increases and decreases

(from seconds to a few minutes; Fig. 6.34), respectively. These sudden

changes result from the occurrence of VT earthquakes clearly recorded at

EBEL station (examples are reported in Fig. 6.36). Group 7 includes motifs

of gradual decreases in the seismic RMS, taking place roughly in 5-10

hours, associated with decreases in the volcanic tremor amplitude, and

sometimes related to waning phases of the strombolian activity (Figs. 6.34

and 6.37a,b).

170

Fig. 6.30. On the left column the average correlation coefficient (ACC) for each group

of motifs of size n = 50. On the right column the relative number of subsequences

within each group. From top to bottom we show the experiments using X varying from

2 to 4. Points in the plots related to k values, producing no results (no motifs found),

are missing.

171

Fig. 6.31. On the left column the average correlation coefficient (ACC) for each group

of motifs of size n = 100. On the right column the relative number of subsequences

within each group. From top to bottom we show the experiments using X varying from

2 to 4. Points in the plots related to k values, producing no results (no motifs found),

are missing.

172

Fig. 6.32. On the left column the average correlation coefficient (ACC) for each group

of motifs of size n = 150. On the right column the relative number of subsequences

within each group. From top to bottom we show the experiments using X varying from

2 to 4. Points in the plots related to k values, producing no results (no motifs found),

are missing.

173

Fig. 6.33. Upper and bottom panels: motifs found in RMS time series (the bold blue

and red lines indicate the first and second motifs, respectively). Middle panel: RMS

time series with the time intervals corresponding to the found motifs (green and red

areas).

174

Fig. 6.34. Upper and bottom panels: motifs found in RMS time series (the bold blue

and red lines indicate the first and second motifs, respectively). Middle panel: RMS

time series with the time intervals corresponding to the found motifs (green and red

areas).

175

Finally, group 8 clusters motifs of quick increases of RMS followed by

decreasing trends, reflecting either earthquakes or brief variations of the

volcanic tremor amplitude or sequences of energetic LP events (Figs. 6.36

and 6.37c,d). Similarly to groups 5 and 6, the variations of the group 8

generally take place in a few minutes.

5.3.4 Discussion and conclusions

Seismic RMS, together with helicorder and RSAM (real-time seismic

amplitude measurements), is one of the most used geophysical parameters

in volcano activity monitoring (e.g., Endo and Murray, 1991; Qamar et al.,

2008). Over time, it has been observed that many eruptions were preceded

and/or accompanied by increases in seismic energy that might have

resulted from increases in the volcanic tremor amplitude and/or rate and

amplitude of seismic transients such as VT earthquakes and LP events

(e.g., Lahr et al., 1994; McNutt, 2000; Moran et al., 2008). In particular, at

Mt. Etna many authors highlighted the close relationships between

volcanic activity changes and variations of the features of volcanic

tremor/long period events (e.g. Alparone et al., 2003; Alparone et al., 2007;

Patanè et al., 2008; Aiuppa et al., 2010). Alparone et al. (2003) carried out a

qualitative study of the seismic amplitude time series, finding three

different repeating patterns of increase of volcanic tremor energy

corresponding to the onset of lava fountain phases. However, variations in

seismic amplitude time series can also be associated with phenomena

external to volcanic eruptions such as distant earthquakes.

In order to discriminate between the two cases, we applied an exact time

series motif discovery technique on seismic RMS time series to

quantitatively search for recurrent patterns (Figs. 6.33-6.34). This

permitted us to observe that different phenomena are characterized by

distinct RMS trends, i.e. earthquakes are accompanied by sharp increase

and decrease in RMS (lasting from seconds to minutes; Figs.6.34 and 6.36),

while lava fountains by slower changes (taking place in hours, sometimes

even days; Figs. 6.33, 6.35). The opportunity to assess such a difference

between the two kinds of motifs, and hence to distinguish the two source

176

phenomena might represent a complementary information for the

monitoring purposes in volcanic areas.

Analysis of long RMS time series can provide motifs related to specific

phenomena (earthquakes, lava fountain initial phases and so on), that can

be used as templates, with which to compare the RMS calculated on real-

time seismic data. Then, if a good match is found, the evolution of an

ongoing eruptive activity could be inferred without any further

information. The opportunity to understand the RMS behavior in its

increasing phase might be of primary importance, especially in cases of

violent and short-time evolving eruptive phases such as lava fountaining

episodes. Indeed, lava fountains release copious amounts of volcanic ash

and gases into the atmosphere, which may cause danger to the aviation

(e.g., Scollo et al., 2009).

At volcano observatories, the routine surveillance and monitoring of

volcanic activity can also be carried out by networks of visible and

infrared cameras (e.g., Spampinato et al., 2011). These allow the real-time,

automatic ground observations that provide information on volcano

activity changes. However, these observations are heavily dependent on

external effects such as weather conditions, presence of gas and ash along

the line-of-sight, which can inhibit and sometimes preclude the visibility.

Hence, in these cases the possibility of assessing the kind of phenomenon

occurring at the surface by seismic parameters becomes of primary

importance. In order to be used as templates for comparison with the RMS

calculated in real-time, motifs need to be tested on long time series.

Indeed, according to what has been qualitatively reported by Alparone et

al. (2003), not all the lava fountains showed exactly the same RMS

behavior. The initial phase of the eruptive phenomena can be

accompanied either by gradual or quicker RMS increases, and likewise the

final phases may show more or less rapid RMS decreases. Integrating our

results with volcanological observations of the eruptive activity at the

surface, we suggest that the kind of patterns with which lava fountain

phases started, i.e. gradual or sharp, depend on the duration of the

Strombolian activity that characterized the early stages of all the 2011 lava

fountains. In particular, we observed that the longer the strombolian

activity the lower the slope of the motif (see groups 1 and 2 for

comparison; Fig. 6.33).

177

Fig. 6.35. (a) Seismic signal recorded by the vertical component of EBEL station from 9

to 10 April 2011 and (b) corresponding RMS time series calculated on 10-minute-long

moving windows.

Similarly, we believe that the contrasting behavior of the lava fountaining

waning stages might result from the combination between the duration of

the strombolian phase and that of lava effusion following the paroxysmal

phase (see groups 3 and 4 for comparison; Fig. 6.33). If this is the case, and

assuming the 2011 lava fountaining events have been fed by constant

magma supply, we can infer that the different shape of RMS motifs

observed might relate to the modalities with which the energy of the event

is released at the surface, and thus to the magma transport mechanisms

occurring in the volcano shallow feeder system.

178

Fig. 6.36. (a,c) Seismic signal recorded by the vertical component of EBEL station on 23

June and 9 September 2011 and (b,d) corresponding RMS time series calculated on 10-

minute -long moving windows.

179

Fig. 6.37. (a,c) Seismic signal recorded by the vertical component of EBEL station on 3

January and 16 February 2011 and (b,d) corresponding RMS time series calculated on

10-minute -long moving windows.

180

This is only one example of prospective application of this fairly novel MK

technique in seismology. In future, a further useful application might be

the detection of repeating earthquakes within a continuous seismic signal,

for instance used to detect variations of attenuation (e.g. Antolik et al.,

1996). Many Authors demonstrated how the common detecting

techniques, based on the comparison between the power of a short time

window with the power of a long time window (STA/LTA; e.g. Withers et

al., 1998), are sometimes ineffective to detect seismic events especially in

conditions of low signal to ratio (e.g. Gibbons and Ringdall, 2006; Schaff,

2008, 2009). For this reason, techniques based on the cross-correlation

detectors were developed. Such techniques have been used when the

waveforms of the events of interest are known (sometimes called

“templates”; Shelly, 2010), as well as when there is no a-priori knowledge

(e.g. running auto-correlation; Brown et al., 2008).

However, the drawback of these methods, limiting or even preventing

their applications on very big datasets, is the computational complexity,

that in the latter case (no a-priori knowledge) is equal to run a brute-force

search algorithm, using cross-correlation coefficient as similarity function.

MK algorithm overcomes such limitation by means of two optimization

techniques i.e. the early-abandoning basic concept and the space indexing.

Even if their implementation does not reduce the searching theoretical

complexity, with respect to the brute-force algorithm, it is able to speed-up

in practice the computation time, especially when dealing with huge

datasets (Mueen et al., 2009). The early-abandoning is a simple and intuitive

enhancement for searching, allowing it to skip many unnecessary steps.

Since MK algorithm uses a metric (the Euclidean) distance function to

perform similarity among time series, it can take advantage of the triangle

inequality metric property to build an indexing structure corresponding to

a pivot-based linear ordering. This is a well-known architecture in

similarity searching area, because it enhances performances allowing

pruning operations in the searching space (Zezula et al., 2005).

181

6.4 An application of segmentation method on seismo-

volcanic time series

In this section we show an application of segmentation algorithm (see

Section 3.6). Segmentation on seismo-volcanic time series data (Montalto

et al., 2012) provides a good method for data compression, allowing faster

transmission and visualization.

The time series used for the experiments come from the seismic RMS

signal, acquired from summit stations on Mt Etna. In particular, the RMS

was calculated on 10-minute-long moving windows, from which the

automatic trigger of seismic transients is performed. Skipping details on

data elaboration procedure, the final information are relative to the

volcanic tremor amplitude and to the number of seismo-volcanic events.

These information, currently used for volcano monitoring, are managed

and stored into databases that, over the time, get larger and larger.

Moreover, analysts may request to display such a data on very large time

intervals. In this case the segmentation method to obtain and display a

‘light’ version of time series, which does not lose the information content.

The scheme in Fig. 6.38 provides a representation of the system used for

the elaboration of the above time series. It starts from the extraction of the

data from the database containing the RMS time series and the number of

seismo-volcanic transient. Then, data are input to the segmentation

algorithm to obtain a compressed version. Segmented data can be stored

again into a new database structure used for transmission and

visualization purposes.

Fig. 6.39 shows the result of two segmentation processes, relative to the

time series (of length m = 8760) showing the number (per hour) of seismo-

volcanic events, registered during 2009, and using two different error

thresholds. The first experiment, which uses a relative high error

threshold, returns a representation of m’ = 42 points (Fig. 6.39a). Although

points follow the trend of the original time series, the considered

representation offers little detail. To refine the approximation degree, we

used a smaller error threshold. Fig. 6.39b shows the resulting time series of

m’’ = 199 points. In this last case the improved approximation allows to see

also faster variations.

182

The segmentation was applied also to the RMS time series. In the reported

examples, the RMS time series was calculated on 10-minute-long moving

windows and filtered in frequency range 0.5–5 Hz. Fig. 6.40 shows the

result of two different approximations of a time series of length m = 52560,

with 532 (Fig. 6.40a) and 171 (Fig. 6.40b) points.

Both representations well maintain information about the original time

series trend. Smaller the error threshold is chosen, more precise will be the

approximation of the time series. Differently from a simple moving

average, the information content remains unaltered, so information about

fast variations are not lost.

Fig. 6.38. Scheme of the system using segmentation process.

183

Fig. 6.39. Time series representing the number of LP events registered during 2009. The

dashed line indicates the original time series, while the red line represents the

segmented time series. (a) Segmentation with 42 points (high error threshold); (b)

Segmentation with 199 points (smaller error threshold).

184

Fig. 6.40. Time series representing RMS of seismic signal recorded by the vertical

component of EBEL station and filtered in the band 0.5-5.0 Hz (black line). The

number of point of the time series is 52560. The red line represent the segmented time

series. (a) Segmentation with 532 points; (b) Segmentation with 171 points.

185

6.5 Monitoring volcano activity through Hidden Markov

Model

During 2011, Mt. Etna was mainly characterized by cyclic occurrences of

lava fountains, totaling to 18 episodes. During this time interval Etna

volcano’s states (“Quiet”, “Pre-fountain”, ”Fountain”, ”Post-fountain”;

Fig. 6.41), whose automatic recognition is very useful for monitoring

purposes, turned out to be strongly related to the trend of RMS of the

seismic signal recorded by stations close to the summit area. Since RMS

behavior is considered to be stochastic, we can try to model the system,

assuming to be a Markov process, by using Hidden Markov models (HMMs).

HMMs analysis seeks to recover the sequence of hidden states from the

observed emissions (Fig. 4.8). In our framework, observed emissions are

characters generated by the SAX (Lin et al., 2007; see also Section 3.8)

technique, which maps RMS time series values with discrete literal

emissions. The experiments show how it is possible to guess volcano

states by means of HMMs and SAX.

Fig. 6.41. Diagram of volcano’s states transitions.

6.5.1 Modelling RMS values distribution

As we have just seen in Section 3.8, to give significance to the symbolic

transformation, it is necessary to deal with a system producing symbols

with equal probability, or with a Gaussian distribution. This is the first

assumption to use the SAX algorithm, because breakpoints (Def. 3.8.1)

correspond to quantiles of the cumulative of a normal distribution

function. However, this is a limit for our purposes: the probability

186

distribution of RMS values are not approximated by a Gaussian (Fig. 6.42),

and even if Lin et al. (2007) advised that this limit can be overcome by

normalizing data, we don’t want to perform any transformation to

maintain the correctness as well as the significance of the signal.

Distribution fitting

We performed a chi-square goodness-of-fit test by assuming the null

hypothesis that the data in the RMS are random samples from a known

distribution with parameters estimated from the samples (i.e. the RMS

values).

The chi-square test compares the observed frequency distribution in the

sample, O, with the expected frequency distribution, E. The difference

between the observed and expected (O - E) is squared to remove negative

signs, and then standardized by the expected frequency in that class or

range, in order to obtain a standardized measure of the difference between

the two distributions. The sum of these standardized differences is then

calculated and compared to a chi-square distribution with n-1 degrees of

freedom, where n is the number of frequency classes used in the

calculation. The formula used is thus of the form:









n

i i

ii
n

E

EO

1

2
2

1

)(
 (6.10)

To do this we used chi2gof from MATLAB Statistic Toolbox

(http://www.mathworks.it/it/help/stats/chi2gof.html). The result h of this

procedure is 1 if the null hypothesis can be rejected at the 5% significance

level. The result h is 0 if the null hypothesis cannot be rejected at the 5%

significance level. The null distribution can be an arbitrary discrete or

continuous distribution (e.g. normal, Poisson, gamma, lognormal,

exponential). The test is performed by grouping the data into bins,

calculating the observed and expected counts for those bins, and

computing the chi-square test statistic. chi2gof sets the number of bins,

nbins, to 10 by default, and compares the test statistic to a chi-square

distribution with nbins – 3 degrees of freedom to take into account the two

estimated parameters.

187

Fig. 6.42. Histogram of RMS values calculated on the seismic signal recorded at EBEL

station in the period starting from 00:00 on 1 January 2011 to 00:00 on 1 December 2011.

The red shape is relative to the Gaussian distribution fitted to the RMS values

distribution.

We tested RMS distribution with several known distributions, and for

each test the above procedure rejected the null hypothesis, so we decided

to make a non-parametric estimation through the kernel density

estimation (KDE) of the dfittool (Distribution Fitting Tool of MATLAB

Statistic Toolbox). There are some techniques to evaluate the number of

bins (Appendix E) to use for the histogram computation (Fig. 6.42). We

chose to apply the Freedman-Diaconis rule (Eq. E.3), because the Sturges’

rule (Eq. E.1) is not indicated when the number of samples is > 200, while

the Scott’s rule (Eq. E.2) requires knowledge about the distribution of the

data, and assumes its normality, which we don’t have.

Symbolization

To get breakpoints we picked quantiles from the custom cdf (cumulative

distribution function) of the RMS distribution (Fig. 6.43). Since values

corresponding to fountain activity are much rarer than values

corresponding to quiet periods, they can be considered outliers. In this

case the regions between zero and the fifth percentile and between the

ninety-fifth and one hundredth percentiles are of great interest (Lodder

and Hieftje, 1988). If we want to ensure a symbolization with at least a

Gaussian distribution, we cannot ignore them and then we have to

redefine the breakpoints definition (Def. 3.8.1) by adding to the original

188

breakpoints (initially we set the alphabet size to 4, and then kept the first,

the second and the third quantile) also the 1%, 5% and the 95%, 99% of the

cumulative frequency. With this system we will deal with a number of

symbols equal to 8. The results of this choice are shown in Fig 6.44.

Fig. 6.43. The cumulative distribution function plot of RMS data registered at EBEL

station in the period starting from 00:00 on 1 January 2011 to 00:00 on 1 December 2011.

The red shape is relative to the calculated (with dfittool of the MATLAB Statistics

Toolbox) non-parametric distribution fitted to the RMS values distribution.

Fig. 6.44. Histogram relative to the occurrences of each symbol generated by SAX

algorithm on the above mentioned RMS time series, using our breakpoints definition.

We can notice the normal distribution tendency.

189

6.5.2 Implementing the framework

After having calculated custom breakpoints, we were able to produce

symbols using the SAX technique. For each symbol we added a ‘+’ or a ‘-‘

basing on the value corresponding to the symbol: if it is greater than the

previous on the time series, then we add a ‘+’, else we add a ‘-‘ (Fig. 6.45).

Fig. 6.45. Our symbolization includes the use of an additional symbol (‘+’, ‘-‘) basing

on the value corresponding to the symbol: if it is greater than the previous on the time

series, then we add a ‘+’, else we add a ‘-‘.

We also add to our alphabet the symbol ‘_’ relative to the RMS values

equal to -1 indicating the lack of signal (Fig. 6.46). This further addition

makes our framework more robust on states classification, without

significantly altering the symbols distribution (Fig. 6.47). Then, the

190

complete alphabet is the following: O = {‘a-‘, ‘a+’, ‘b-‘, ‘b+’, ‘c-‘, ‘c+’, ‘d-‘,

‘d+’, ‘e-‘, ‘e+’, ‘f-‘, ‘f+’, ‘g-‘, ‘g+’, ‘h-‘, ‘h+’, ‘_’}.

Fig. 6.46. The red rectangle highlights a period of absence of signal (lack), indicated

with -1 values. We convert them with the literal symbol ‘_’.

Fig. 6.47. Histogram relative to the occurrences of each symbol generated by our

framework on the above mentioned RMS time series. Without considering the bar

relative to the ‘_’ symbol (which varies in relation to the ‘holes’ in the signal), we can

notice how the normal distribution tendency is not altered respect to that shown in

Fig. 6.44.

191

HMM settings

As we saw in Section 4.2.1, an HMM is denoted by  EOAS ,,, :

1. Volcano states are “Quiet”, “Pre-fountain”, ”Fountain”, ”Post-

fountain”. We decided to include other two states to set our HMM,

because the managed RMS time series shows values relative to

other two phenomena: a) peaks relative to earthquakes; b) values

equal to -1 when there is no signal, then S = {‘Quiet‘, ‘Pre-fountain‘,

‘Fountain‘, ‘Post-fountain‘, ‘No Signal‘, ‘Earthquake‘} (Fig. 6.48).

2. The state transition matrix  
ijaA  relative to the diagram in Fig.

6.48 is shown in Table 6.4.

3. The set of possible observations is O = {‘a-‘, ‘a+’, ‘b-‘, ‘b+’, ‘c-‘, ‘c+’, ‘d-

‘, ‘d+’, ‘e-‘, ‘e+’, ‘f-‘, ‘f+’, ‘g-‘, ‘g+’, ‘h-‘, ‘h+’, ‘_’}.

4. The emission matrix  ijeE  is shown in Table 6.5.

5. We denoted the state ‘Quiet’ as starter states, so π = {1, 0, 0, 0, 0, 0}.

Fig. 6.48. The diagram of states transition used in our framework. It includes other two

‘symbolic’ states respect that shown in Fig. 6.9: “Earthquake” and “No signal”.

Both emission and state transition matrices (Tables 6.4 and 6.5) are based

on a statistical analysis conducted on the period relative to the first month

of the signal (January 2011), which provided information about the

192

studied states. The testing phase, described in the following paragraph, is

applied on the rest of the signal (from February to December 2011).

6.5.3 Classification results

To recover the sequence of the volcano states from the RMS signal we

applied the Viterbi algorithm of the HMM R-package (http://cran.r-

project.org/web/packages/HMM/index.html) on the part of time series not

learned by the model. Figs. 6.49-52 show some snapshots of the results.

To test the quality of states classification, we selected the most important

episodes visible from RMS and saved their HMM classification into a

confusion matrix (Table 6.3; see also Section 6.1.4), where each column

represents the state predicted by the HMM, while each row represents

states attributed by an accurate event classification conducted by the

analysts. The signal relative to the tested period was characterized by

several peaks: some corresponding to 17 eruptive episodes, and other

(averagely smaller than previous) due to local, regional and teleseismic

earthquakes. Table 6.3 allows to evaluate the classification result: we are

interested in the blue-filled part, related to fountains phenomena. We

completely ignored the ‘Noise’ state, given the banality of its classification.

The row ‘Quiet’, in the confusion matrix, contains instances relative to

periods of small increments of tremor or to LP events. In all cases they

were related to ‘Quiet’ states, according to our aims. In only two cases the

classification conducted to the ‘Earthquake’ state, because noise in the

signal caused very high peaks (see the [Quiet, Eq] entry in the confusion

matrix of Table 6.3).

The most important row, for monitoring purposes, is the ‘Pre’ state.

Almost all eruptive episodes are preceded by an increasing in tremor. In

the tested signal this happens for all episodes. All real ‘Pre’ fountain states

were classified as ‘Pre’, included an “aborted” episode on 7 July (Fig. 6.52).

We obtained good results for the ‘Fountain’ state. Even if we can notice 11

occurrences of ‘Post’ classification for ‘Fountain’ state (see the [Fountain,

Post] entry), they are a subset of the 17 occurrences in the [Fountain,

Fountain] entry, because they just relates to a quickly identification of the

‘Post’ state, when the fountain is going to its final phase, which is

represented by ever lower RMS values.

193

Regarding the identification of the ‘Post’ fountain state, an ordinary

mistake was noted: since values belonging to ‘Post’ fountain are very

similar to values relative to ‘Pre’ fountain, they can bring the HMM to

assign them to ‘Pre’ state (see the [Post, Pre] entry). This can also be seen,

for example, in Figs. 6.49 and 6.51: in the descending phase of the signal

peak, corresponding to the fountain, there are some yellow circles,

representing ‘Pre’ state classification, between blue and green circles,

representing respectively ‘Post’ and ‘Quiet’ states classification. This is not

worried because, if this assignment occurs, it follows systematically a

previous identification of the ‘Post’ state. So, a specific rule can be applied

at a later stage.

The blank-filled part of the confusion matrix, in Table 6.3, is relative to the

earthquakes identification, which is out of our intentions. In any case,

most of the earthquakes are related to the ‘Quiet’ state (see the [Eq, Quiet]

entry), or to the ‘Earthquake’ state (see the [Eq, Eq] entry). It is worth noting

that the heavy influence of the earthquakes on the signal can sometimes

lead to the identification of a ‘Pre’ state (5 instances in the [Eq, Pre] entry).

However, this can be solved by the application of adequate filters on the

RMS signal, in a previous step of the data acquisition (see the KDD

process in Fig. 1.1). If we calculate statistics on the focused part (blue in

Table 6.3), we can estimate a ‘hit’ rate of 63.51%. This could be daunting if

we give importance to the [Fountain, Post] and the [Post, Pre] entries. By

excluding them we reach an ‘hit’ rate of 95,91%.

 PREDICTED

Quiet Pre Fountain Post Eq

ACTUAL

Quiet 6 0 0 0 2

Pre 0 18 0 0 0

Fountain 0 2 17 11 0

Post 0 14 0 6 0

Eq 9 5 1 1 3

Table 6.3. Confusion matrix calculated on events occurring during February –

December 2011. The ‘Eq’ label refers to ‘Earthquake’.

194

Fig. 6.49. A typical trend of RMS time series when a fountain occurs. In almost all

cases, the HMM can distinguish when the volcano state is going to fountain (red

circles), by passing in the “Pre-fountain” state (yellow circles) and discriminating the

“Post-fountain” state (blue circles) when the RMS value goes down.

Fig. 6.50. In this case, before the fountain (peak in the time series) there is a period

with relatively high RMS values, which lead the HMM to assume the “Pre-fountain”

state.

195

Fig. 6.51. Another fountain (right peak in the time series) preceded by an earthquake

(left peak in the time series). Also in this case the HMM recognizes the two different

phenomena.

Fig. 6.52. RMS signal relative to the aborted fountain on 7 July 2011.

196

Trans Matrix QUIET PRE FOUNTAIN POST NOS EQ Sum Probs

QUIET 0,93 0,01 0 0 0,01 0,05 1

PRE 0,3 0,58 0,1 0 0,01 0,01 1

FOUNTAIN 0 0 0,69 0,29 0,01 0,01 1

POST 0,3 0,09 0 0,59 0,01 0,01 1

NOS 0,1 0 0 0 0,9 0 1

EQ 0,79 0 0 0 0,01 0,2 1

Table 6.4. Guess transition matrix for the HMM model.

Emiss Matrix a- a+ b- b+ c- c+ d- d+ e- e+ f- f+ g- g+ h- h+ _ Sum Probs

QUIET 0,01 0,01 0,02 0,02 0,05 0,05 0,12 0,12 0,12 0,12 0,12 0,11 0,05 0,05 0,01 0,01 0,01 1

PRE 0,02 0,02 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,2 0,34 0,3 0,01 0,01 1

FOUNTAIN 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,3 0,55 0,01 1

POST 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,05 0,02 0,5 0,3 0,01 1

NOS 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,84 1

EQ 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,43 0,42 0,01 1

Table 6.5. Guess emission matrix for the HMM model.

197

Conclusions

This thesis submits the application and engineering of data mining

algorithms. The discussion seeks to propose both purely theoretical solutions,

to improve the efficiency of certain techniques, and applicative solutions in

geophysics.

The thesis mainly focuses on the issue of "similarity matching" in connection

with mining. We introduced this concept, exposing the usefulness of

appropriate data structures to perform similarity search, and the choice of

suitable similarity/distance measures to enhance the efficiency and the

effectiveness. We highlighted the importance of some techniques to reduce

the data dimensionality, because data are often represented by a large

number of attributes (as in the case of time series, which is the main

representation of the phenomena studied in a geophysical context). We then

provided experiments and comparisons among several data compression

methods, and proposed a new data-storage engine able to speed the

elaboration and visualization of geophysical time series.

Concerning the similarity matching field, an important section was devoted

to the clustering, with a detailed review of the main techniques, which allow

the unsupervised analysis of similar objects in datasets. We described a new

algorithm of density-based clustering, developed by the thesis' author, which

is particularly competitive with other algorithms constituting the state-of-art

in this area.

We also demonstrated the importance of the applications of data mining on

geophysical data which, for our experiments, were kindly provided by the

Istituto Nazionale di Geofisica e Vulcanologia (INGV), Section of Catania -

Osservatorio Etneo, which also granted funds for the author's doctorate cycle.

Since the amount of data is very large and there is a standard representation

for each type of signal, we were able to process and analyze them by means

of data mining techniques. We performed real-time data analysis, by

198

developing several systems addressing to the monitoring task of the

volcanoes. Important results were achieved on infrasonic signals monitoring

on Mount Etna. In particular, we proposed a novel infrasonic events location

system based on DBSCAN and SVM, which make use of the infrasonic signal

features to find associations among signals and active craters. Another

application based on Hidden Markov Models was developed for volcanic

tremor analysis with the aim of finding critical states of Mount Etna volcano.

Other techniques, such as the Mueen-Keogh algorithm, were applied on

historical seismic data for the extraction of recurrent patterns, which is a

crucial step in the analysis of geophysical time series. Its application allowed

increasing the amount of useful information for monitoring purposes, and a

promising tool to use for the analysis of other geophysical data.

199

Appendices

200

201

Appendix A

Covariance Matrix

Covariance is a well-known concept in statistics. Let D be a data set with n

objects, each of which is described by m attributes v1, v2, . . . , vm . The

attributes v1, v2, . . . , vm are also referred to as variables. The covariance

between two variables vi and vj (with 0 < i, j ≤ m) is defined to be the ratio of

the sum of the products of their deviation from the mean to the number of

objects:

))((
1

),cov()(

1

)(
j

j
k

n

k
i

i
kji xx

n
vv   



 (A.1)

where xk(i) denotes the ith attribute of xk (See Eq. 2.1), and μi is the mean of all

data points in the ith variable:





n

k

i
ki x

n 1

)(1
 (A.2)

The covariance matrix is a m × m matrix in which the entry (i,j) contains the

covariance between variable vi and vj:





















),cov(),cov(

),cov(),cov(

),cov(),cov(),cov(

1

2212

12111

mmm

m

vvvv

vvvv

vvvvvv





 (A.3)

202

203

Appendix B

SOMPI method

Time-series modelling consists of estimating the governing dynamics of the

hypothetical linear system that has yielded the given time-series data

(Kumazawa et al. 1990). In these approaches, a signal is considered as the

impulse response of an AR or an autoregressive moving average (ARMA)

filter. In general, ARMA filter is a discrete-time system that takes an input

sequence xn and produces an output sequence yn. This kind of system can be

described by a linear-constant difference equation:

 
 

 
p

k

q

k
knkknkn ybxax

1 1

 (B.1)

where {ak} and {bk} are the system coefficients, p and q are the order of the AR

and MA parts of the filter, respectively. The coefficients of the AR filter can be

obtained by solving the modified Yule–Walker equation (Marple 1987) and

the coefficients of the MA filter can be estimated using the Durbin method

(Kay 1988; Mars et al. 2004). As argued in Lesage (2008), this process is

affected by numerical instabilities and long computation time. Furthermore,

the deconvolution of the AR part alone gives good estimation of the duration

and spectral content of the considered signals (Lesage 2008).

To estimate the AR coefficients, the Sompi method (Kumazawa et al. 1990)

can be implemented. Unlike the traditional spectral estimators in real

frequency space, this method yields a line-shaped spectrum in complex

frequency space. The basic concepts of the AR model and the formulation

based on the maximum likelihood principle lead to a model estimation

algorithm different from other AR methods (Fukao and Suda 1989;

Kumazawa et al. 1990). By Sompi analysis, a time-series is deconvoluted into

204

a linear combination of coherent oscillation with decaying amplitude and

additional noise. Let (xn) time-series that can be considered the sum of signal

(un) and Gaussian white noise (en):

nnn eux  (B.2)

where un is described as a set of decaying sinusoids:

  
k

n
kk

n
kkn zCzCu)()(** (B.3)

and zk is defined as:

))(2exp(tifgz kkk   (B.4)

where Δt is the sampling step and the symbol ∗ represents the complex

conjugate. In eq. (B.3) Ck represents the complex amplitude of the kth sinusoid

at the complex frequency given by fk−igk and i is √−1. The time-series (ui) is

defined as the sequence satisfying the AR equation:




 
m

mj
jijua 0 (B.5)

where (aj; j=−m, . . . ,m) are real AR coefficients. An exhaustive treatment

about aj coefficients estimations is reported in Hori et al. (1989), Fukao and

Suda (1989) and Kumazawa et al. (1990). Briefly, a way to compute the

coefficients aj that satisfy eq. (B.5) is the minimization of the functional S:

 


 

 














mN

mNi

m

mj
jijxaS

2

 (B.6)

under the condition:

205





m

mj
ja 12 (B.7)

This minimization problem leads to an eigenvalue problem where coefficients

aj are the eigenvectors corresponding to minimum eigenvalues. Now, once

the aj are calculated, the Sompi characteristic equation is defined as:




 
m

mj

j
jza 0 (B.8)

The roots zk and zk∗ of eq. B.8 give the complex frequencies expressed in eq.

B.4. Let (xi) a time-series, Sompi method extracts m wave elements

characterized by a complex frequency fk – igk where fk is the frequency, gk is

the growth rate.

206

207

Appendix C

Data transformation

In Chapter 1 we introduced how the all data mining techniques suffer the

GIGO problem, for which if the input data is not good, also the results will be

bad. Data transformation is a preprocessing step on data mining which aims

to avoid that data representation “fakes” the real information.

Data normalization

The normalization (or standardization), used for quantitative data types (see

Section 2.1), is a typical data transformation. Let us suppose, for example, to

calculate the distance between two dataset objects, which attributes range

over different scales (Fig. C.1). If we calculate the Euclidean distance (Eq.

2.13) between them, the attribute defined on the greater range will be

dominant in the computation of the distance value, of course. The problem is

that all variables have the same representation, but not the same valence, and

then we may consider an attribute more important than others, even when

we do not want. We so need to homogenize all attributes, giving to all the

same weight.

A common used normalization technique is the z-score normalization that, for

each attribute, subtracts its mean value (calculated on the dataset), and

divides it for the attribute standard deviation (Gan et al., 2007):

j

jij

ij σ

μx
z

-
= (C.1)

The new dataset attributes will have mean = 0 and variance = 1.

208

Fig. C.1. An example dataset, where attributes values range on different scales.

Another common used technique is the min-max normalization, which

subtracts to each attribute the minimum value on it, and divides it for the

range amplitude (maximum minus minimum value), to obtain the same

range for each attribute, between 0 and 1 (Gan et al., 2007):

jj

jij

ij

x
x

minmax

min
='

-

-
 (C.2)

When attribute values are not arranged on a linear scale, (i.e. the ratio-scaled

attributes, Section 2.1), but have exponential trend, is better to make a

logarithmic transformation (Han and Kamber, 2000):

)log(= ijij xy (C.3)

Another kind of transformation consists in the reduction of the number of

attributes describing the dataset objects. The target is to input only essential

attributes needed from data mining algorithms to work efficiently and

effectively. There are two main ways to obtain this: the feature selection and

the feature extraction.

209

The information gain (Han and Kamber, 2000; Quinlan, 1986) is one of the

principal tools for feature selection, especially for classification by decision

trees. It bases on entropy concept (Shannon and Weaver, 1949) and calculates

the relevance of each attribute for the classification. Let be the dataset divided

into k classes, the dataset entropy is computed as:

i

k

i
i ppDInfo 2

1=

log=)(∑- (C.4)

where pi is the probability of a dataset object to belong to a specific class Ci. To

calculate the information associated to an attribute A, let us suppose to divide

its interval value into v intervals {a1, a2, …, av}, and let us create a dataset

partition {D1, D2, …, Dv}, for which Di contains all tuples having a value

belonging to the interval ai for the attribute A. The information associated to

the attribute A will be:

∑-
v

j
j

j

A DInfo
D

D
DInfo

1=

)(=)((C.5)

where Info(Dj) is the entropy value of the partition Dj. The lower the value,

the greater its informative contribution for the classification. The information

gain of an attribute is computed in the following way:

)()(=)(DInfoDInfoAGain A- (C.6)

The attribute Ai with higher Gain(Ai) is more discriminant for classification.

The most known method for the feature extraction is the PCA (Principal

Component Analysis). Let be the dataset represented by a N × m matrix (Eq.

2.1) where each object is represented by m attributes, constituting the feature

space. Geometrically each attribute is a dimension (or reference axis) of this

space (Fig. C.2). PCA aims to perform a rotation of the reference axes so that

they maximize the variance of each dimension.

210

The first principal component is the dimension (or attribute) with maximum

variance, the second principal component, orthogonal to the first, is the

dimension with second maximum variance, and so on. A dimensionality

reduction technique consists into select the first k components, with k<<m,

which contains the main information about the data structure (see Section

3.3).

Fig C.2. x and y correspond to original features. v1 and v2 are the new axes corresponding

to the new PCA features (image from

http://www.cs.cornell.edu/courses/cs322/2008sp/schedule.html).

A typical procedure for the principal components analysis is the following,

and is also known as Karhunen-Loève transformation (there exists other

principal components analysis techniques such as the SVD, see Section 3.3):

1. Input are normalized data, so that all attributes range in the same interval

values. This step ensures that attributes defined on large intervals do not

dominate on small intervals defined attributes.

2. Calculate the covariance matrix (Appendix A) on normalized dataset.

3. Calculate eigenvectors and eigenvalues of the covariance matrix.

Eigenvectors are the principal components: they are orthogonal with each

211

other, and constitute the base of normalized data. Their linear

combination with the relative eigenvalues allow to obtain the original

input data.

4. Principal components are sorted according to the relative eigenvalues

(which represent their variance): the larger is the value, the more

important is the component.

5. Since components are sorted in decreasing mode, data dimensionality can

be reduced by deleting less important components, i.e. with smaller

variance. The data reconstruction, using only more important

components, appears to be a good approximation of original data.

212

213

Appendix D

Regression

Regression is a widespread technique for prediction of quantitative variables.

It aims to approximate the function generating observations. The prediction is

validated calculating the error between the model predicted values and the

true values. Regression models are classified in linear and non linear. The

linear regression model studies the relation between two variables, trying to

find a possible dependence and its nature. In other words, the linear

regression tries to plot into a graph a straight line interpolating points (the

observations), whose attributes are the two variables values, so that the line

minimizes the distance from points (Fig. D.1).

Fig. D.1. Example of linear regression. Image from

http://it.wikipedia.org/wiki/Regressione_lineare.

214

A regression function can be represented through the following formula:

 bxay

where y is the dependent variable, x is the independent variable, a is the y-

intercept of the line, b is the slope and  is the error term and represents the

distance between the line and each point (the residual). a and b are the

regression coefficients.

The goal of the linear regression is to minimize the value of , by choosing the

appropriate values for a and b. There are several methods to estimate these by

observing x and y values. The most used is the means square error method,

which calculates the line minimizing the sum of the squares of the residuals.

In analytical terms the problem consists on the minimization of the following

function:

  
 


n

i

n

i
iii bxaybaSS

1 1

22),( (D.1)

where n is the number of observation, and then:

   baSba
ba

,minarg,
,

 (D.2)

The solution can be calculated by equating to zero the partial derivatives of S

with respect to a and b:

   
 




 n

i

n

i
ii

n

i
ii xbanybxay

a

S

1 11

02 (D.3)

   
 




 n

i

n

i
i

n

i
iii

n

i
iii xbxayxxbxay

b

S

1 1

2

11

02 (D.4)

Dividing by n the Equations (D.3-4) and making the system with them, we

obtain:

215

 

 











































































21

2

1

1

2

1

2

1

2

11

2

1

1

0
1

11

x
n

x

yxyx
n

b

xbya

yx
n

xbyxx
n

b
xbya

x
n

b
xayx

n

xbya

x
n

b
xayx

n

xbay

n

i
i

n

i
ii

n

i
ii

n

i
i

n

i
i

n

i
ii

n

i
i

n

i
ii

 (D.5)

By defining:

yxyx
n

S
n

i
iixy  

1

1
 (D.6)

 21

2

x
n

x

S

n

i
i

xx 

 (D.7)

we can calculate the values for a and b by using Equations (D.5-7):

xx

xy

S

S
b  (D.8)

xbya  (D.9)

The applied method provides the parameters of the line best approximating

data, but does not provide the correlation coefficient. It is possible to

determine it with the formula in Eq. 2.12.

The linear regression is efficient only when data are linearly dependent. It

presents some limits, such as the sensitivity to outliers, and the assumption of

considering the errors as belonging to a Gaussian distribution. The

Generalized Linear Models (GLM; Nelder and Wedderburn, 1972) overcome this

last limitation, but still maintaining the same analysis structure. A special

case of GLM is the logistic regression, described in (Wooff, 2004). When y

216

variable is not a linearly dependent from x, then is the case of non linear least

squares (NLS; George et al.,2003).

217

Appendix E

Determining the width of histogram bars

A histogram plot is a natural way to represent samples drawn from a

univariate variable. It shows the range, central tendencies and shape of the

data distribution. However, to make a histogram plot, an important decision

is relative to the number of bars (or bins) to use.

Sturge’s rule

Most statistical software use Sturges (1926) rule which says the data range

should be split into k equally spaced classes where:

 nk 2log1 (E.1)

Sturges' rule is not good when data exhibits skewness or any other non-

normality.

Scott’s rule

Scott (1979) proposed that the bar width w should be determined as follows:

3
49.3

n
w


 (E.2)

where σ is the sample standard deviation of the n data values. With this

equation the rule tries to minimize the bias in variance of the histogram

compared with the data set. It requires knowledge about the distribution

form of the data, which we rarely have, so the above equation assumes

normality. It is restrictive in practice.

218

Freedman – Diaconis rule

Freedman and Diaconis (1981) proposed that the bar width w should be

determined as follows:

3
2

n

IQR
w  (E.3)

where IQR is the sample inter-quartile range of the n data values, i.e. the

difference between the 75th and 25th percentile of the data.

219

References

Aggarwal, Wolf, Yu, Procopiuc, Park (1999). “Fast algorithms for projected

clustering”. In Proceedings of the 1999 ACM SIGMOD international conference on

Management of data, pages 61-72. ACM Press.

Aggarwal, Yu (2001). “Outlier detection for high dimensional data”. In

Proceedings of the 2001 ACM SIGMOD international conference on Management of

data, page 46. ACM, 2001.

Agrawal, Faloutsos, Swami (1993). “Efficient similarity search in sequence

databases”. Proc. of the 4th Conference on Foundations of Data Organization and

Algorithms, pp. 69–84.

Agrawal, Gehrke, Gunopulos, Raghavan (1998). “Automatic subspace

clustering of high dimensional data for data mining applications”. In

SIGMOD Record ACM Special Interest Group on Management of Data, pages 94–

105. New York: ACM Press.

Aiuppa, Cannata, Cannavò, Di Grazia, Ferrari, Giudice, Gurrieri, Liuzzo,

Mattia, Montalto, Patanè, Puglisi (2010). “Patterns in the recent 2007-2008

activity of Mount Etna volcano investigated by integrated geophysical and

geochemical observations”, Geochem. Geophys. Geosyst. 11, 9, doi:

10.1029/2010GC003168.

Aliotta, Cannata, Cassisi, Montalto, Privitera, Pulvirenti (2010).

“Unsupervised clustering of infrasonic events at Mount Etna using DBSCAN

and SVM”. In: Geophysical Research Abstracts- EGU General Assembly 2010.

Vienna, 2-7 May 2010, vol. 12.

220

Aldridge (2006). “Clustering an overview”, in Lecture Notes in Data Mining,

Berry M.W., and Browne, M. eds., pp. 99-107, World Scientific.

Alparone, Andronico, Lodato, Sgroi (2003). “Relationship between tremor

and volcanic activity during the Southeast Crater eruption on Mount Etna in

early 2000”, J. Geophys. Res. 108(B5), 2241, doi:10.1029/2002JB001866.

Alparone, Cannata, Gresta (2007). “Time variation of spectral and wavefield

features of volcanic tremor at Mt. Etna (January–June 1999)”, J. Volcanol.

Geotherm. Res. 161, 318-332, doi:10.1016/j.jvolgeores.2006.12.012.

Ankerst, Breunig, Kriegel, Sander (1999): “OPTICS: Ordering Points To

Identify the Clustering Structure”. Proc. ACM SIGMOD ‘99 Int. Conf. on

Management of Data, Philadelphia.

Antolik, Nadeau, Aster, McEvilly (1996). “Differential analysis of coda Q

using similar microearthquakes in seismic gaps, part 2: Application to

seismograms recorded by the Parkfield high resolution seismic network”,

Bull. Seismol. Soc. Am. 86, 890-910.

Bailey, Elkan (1995). “Unsupervised learning of multiple motifs in

biopolymers using expectation maximization”. Machine Learning Journal 21,

51–80.

Baum, Petrie, Soules, Weiss (1970). "A maximization technique occurring in

the statistical analysis of probabilistic functions of Markov chains", Ann.

Math. Statist., vol. 41, no. 1, pp. 164–171, 1970.

Beckmann, Kriegel, Schneider, Seeger (1990). “The R*-tree: An Efficient and

Robust Access Method for Points and Rectangles”. Proc. ACM SIGMOD Int.

Conf. on Bentley Management of Data, Atlantic City, NJ. p. 322-331.

Behncke, Neri (2003). “Cycles and trends in the recent eruptive behaviour of

Mount Etna (Italy)”, Can. J. Earth Sci., 40, pp. 1405–1411.

221

Bentley (1975). “Multidimensional binary search trees used for associative

searching”. Communications of ACM. Vol. 18., 509-517.

Berkhin (2002). “Survey of clustering data mining techniques”. Technical

report, Accrue Software, San Jose, CA.

Berndt, Clifford (1994). “Using dynamic time warping to find patterns in time

series”, AAAI-94 workshop on knowledge discovery in databases, 229–248.

Berry, M. J. A. and G. Linoff (1997). Data Mining Techniques for Marketing, Sales

and Customer Support. New York: John Wiley & Sons.

Bharucha-Reid (1960). Elements of the Theory of Markov Processes and Their

Applications. New York: McGraw-Hill, 1960.

Bonaccorso, Caltabiano, Currenti, Del Negro, Gambino, Ganci, Giammanco,

Greco, Pistorio, Salerno, Spampinato, Boschi (2011a). “Dynamics of a lava

fountain revealed by geophysical, geochemical and thermal satellite

measurements: The case of the 10 April 2011 Mt Etna eruption”, Geophys. Res.

Lett. 38, L24307, doi:10.1029/2011GL049637.

Borg, Groenen (2005). Modern Multidimensional Scaling: theory and applications

(2nd ed.). New York: Springer-Verlag. pp. 207–212.

Box, Jenkins, Reinsel (1994). Time Series Analysis: Forecasting & Control.

Prentice Hall, 3rd edition.

Branca, Del Carlo (2005). “Types of eruptions of Etna volcano AD 1670-2003:

implications of short-term eruptive activity”, Bull Volc, 67, 732-742.

Brecheisen, Kriegel, Kröger, Pfeifle (2004). “Visually mining through cluster

hierarchies”. Proc. SIAM Int. Conf. on Data Mining (SDM’04), Lake Buena

Vista.

222

Breiman, Friedman, Olshen, Stone (1984). Classification and Regression Trees.

Wadsworth International Group.

Breunig, Kriegel, Ng, Sander (2000). “LOF: identifying density-based local

outliers”. Sigmod Record, 29(2):93-104.

Brink (2012). “A (probably) exact solution to the Birthday Problem”,

Ramanujan Journal, doi: 10.1007/s11139-011-9343-9.

Brown, Beroza, Shelly (2008). “An autocorrelation method to detect low

frequency earthquakes within tremor”, Geophys. Res. Lett. 35, L16305,

doi:10.1029/2008GL034560

Burges (1998). “A tutorial on support vector machines for pattern

recognition”, Data Min. Knowl. Discov., 2, 121–167.

Calvari, Salerno, Spampinato, Gouhier, La Spina, Pecora, Harris, Labazuy,

Biale, Boschi (2011). “An unloading foam model to constrain Etna’s 11–13

January 2011 lava fountaining episode”, J. Geophys. Res. 116, B11207,

doi:10.1029/2011JB008407.

Cannata, Catania, Alparone, Gresta (2008). “Volcanic tremor at Mt. Etna:

inferences on magma dynamics during effusive and explosive activity”, J.

Volc. Geotherm. Res., 178, doi:10.1016/j.jvolgeores.2007.11.027.

Cannata, Montalto, Privitera, Russo, Gresta, (2009a). “Tracking eruptive

phenomena by infrasound: May 13, 2008 eruption at Mt. Etna”, Geophys. Res.

Lett., 36, doi:10.1029/2008GL036738.

Cannata, Montalto, Privitera, Russo (2009b). “Characterization and location of

infrasonic sources in active volcanoes: Mt. Etna, September–November 2007”,

J. geophys. Res., 114, doi:10.1029/2008JB006007.

223

Cannata, Giudice, Gurrieri, Montalto, Alparone, Di Grazia, Favara, Gresta

(2010). “Relationship between soil CO2 flux and volcanic tremor at Mt Etna:

implications for magma dynamics”. Env. Earth Sci. doi:10.1007/s12665-009-

0359-z.

Cannata, Montalto, Aliotta, Cassisi, Pulvirenti, Privitera, Patanè

(2011a). “Clustering and classification of infrasonic events at Mount Etna

using pattern recognition techniques”. Geophysical Journal International, 185:

253–264.

Cannata, Sciotto, Spampinato, Spina (2011b). “Insights into explosive activity

at eruptive fissure closely-spaced vents by infrasound signals: example of Mt.

Etna 2008 eruption”, J. Volcanol. Geotherm. Res. 208, 1-11.

Cantone, Ferro, Pulvirenti, Reforgiato (2005). “Antipole tree indexing to

support range search and k-nearest neighbour search in metric spaces”. IEEE

Transactions on Knowledge and Data Engineering. Vol. 17, p. 535-550.

Cassisi, Montalto, Pulvirenti, Aliotta, Cannata (2011a). “Pydbscan un

software per il clustering di dati”. Rapporti Tecnici INGV, n. 182.

Cassisi, Giugno, Montalto, Pulvirenti, Aliotta, Cannata (2011b). “DBStrata: a

system for density-based and outlier detection based on stratification”. In

Proceedings of the Fourth International Conference on SImilarity Search and

APplications (SISAP '11). ACM, New York, NY, USA, 107-108.

Cassisi, Aliotta, Cannata, Montalto, Patanè, Pulvirenti, Spampinato (2012a).

“Motif discovery on seismic amplitude time series: the case study of Mt. Etna

2011 eruptive activity”. Pure and Applied Geophysics. 0033-4553, pp. 1-17.

Cassisi, Ferro, Giugno, Pigola, Pulvirenti (2012b). “Enhancing density-based

clustering: parameter reduction and outlier detection”. Information Systems,

Elsevier, ISSN 0306-4379, 10.1016/j.is.2012.09.001.

224

Cassisi, Montalto, Aliotta, Cannata, Pulvirenti (2012c). “Similarity measures

and dimensionality reduction techniques for time series data mining”. In

Advances in Data Mining Knowledge Discovery and Applications, Adem Karahoca

(Ed.), ISBN: 978-953-51-0748-4, InTech. 10.5772/49941

Chakrabarti, Keogh, Mehrotra, Pazzani (2002). “Locally adaptive

dimensionality reduction for indexing large time series databases”. ACM

Trans. Database Syst. 27, 2, pp 188-228.

Chan, Fu (1999). “Efficient time series matching by wavelets”. In proceedings of

the 15th IEEE Int'l Conference on Data Engineering. Sydney, Australia, Mar 23-

26. pp 126-133.

Cheng, Fu, Zhang (1999). “Entropy-based subspace clustering for mining

numerical data”. In Proceedings of the 5th ACM International Conference on

Knowledge Discovery and Data Mining (SIGKDD), San Diego, CA, pages 84–93.

Cheng, Randall, Baldi (2006). “Prediction of protein stability changes for

single-site mutations using support vectormachines”, Proteins, 62, 1125–1132,

doi:10.1002/prot.20810.

Chester, Duncan, Guest, Kilburn (1985). Mount Etna, Stanford University

Press, Stanford, California.

Chouet (1996). “Long-period volcano seismicity: its source and use in

eruption forecasting”. Nature 380, 309–316.

Chui (1992). An Introduction to Wavelets. San Diego: Academic Press.

Cooley, Tukey (1965). “An algorithm for the machine calculation of complex

Fourier series”, Math. Comput. 19, 297–301.

Cormen, Leiserson, Rivest (1990). Introduction to Algorithms. The MIT Press,

McGraw-Hill Book Company.

225

Costa, Cesar (2001). Shape analysis and classification: theory and practice. CRC

Press, Boca Raton.

Cox (1927). “A method of assigning numerical and percentage values to the

degree of roundness”. J. Paleont., 1, pp.61-73.

Daszykowski , Walczak, Massart (2002). “Looking for natural patterns in

analytical data. Part 2. Tracing local density with OPTICS”. Journal of Chemical

Information and Computer Sciences - 2002. - Vol. 42. - p. 500-507.

Davies, Bouldin (1979). "A Cluster Separation Measure". IEEE Transactions on

Pattern Analysis and Machine Intelligence (2): 224.

Dempster, Laird, Rubin (1977). "Maximum Likelihood from Incomplete Data

via the EM Algorithm". Journal of the Royal Statistical Society. Series B

(Methodological) 39 (1): 1–38. JSTOR 2984875. MR 0501537.

Devos, Ruckebusch, Durand, Duponchel, Huvenne (2009). “Support vector

machines (SVM) in near infrared (NIR) spectroscopy: focus on parameters

optimization and model interpretation”, Phys. Chem. B, 113, 6031–6040.

Di Salvo, Montalto, Nunnari, Neri, Puglisi (2012). “Multivariate time series

clustering on geophysical data recorded at Mt. Etna from 1996 to 2003”.

Journal of Volcanology and Geothermal Research.

Ding, Trajcevski, Scheuermann, Wang, Keogh (2008). “Querying and Mining

of Time Series Data: Experimental Comparison of Representations and

Distance Measures”, Proceedings of the VLDB Endowment, doi:

10.1145/1454159.1454226.

Dryden, Mardia (1998). Statistical Shape Analysis. Wiley, Chichester.

226

Dubes (1993). “Cluster analysis and related issues”. Handbook of Pattern

Recognition and Computer Vision, World Scienti5c Publishing Co., Inc., River

Edger, NJ, USA, pp. 3–32.

Duda, Hart, Stork (2001). Pattern Classification. John Wiley & Sons.

Endo, Murray (1991). “Real-time seismic amplitude measurement (RSAM): A

volcano monitoring and prediction tool”, Bulletin of Volcanology 53, 533-545.

Ertöz, Steinbach, Kumar (2003). “Finding clusters of different sizes, shapes,

and densities in noisy, high dimensional data”. In SIAM international

conference on data mining. Volume 47.

Ester, Kriegel, Sander, Xu (1996). “A density-based algorithm for discovering

clusters in large spatial databases with noise”. In Proceedings of the 2nd ACM

SIGKDD, pages 226–231, Portland, Oregon, USA.

Fahim, Saake, Salem, Torkey, Ramadan (2009a). “Enhanced density based

spatial clustering of application with noise”. In Proceedings of the 2009

International Conference on Data Mining, pp. 517-523.

Fahim, Saake, Salem, Torkey, Ramadan (2009b). “Improved dbscan for spatial

databases with noise and di_erent densities”. Georgian Electronic Scientific

Journal: Computer Science and Telecommunications, 3:53-60.

Faloutsos, Ranganathan, Manolopoulos (1994). “Fast subsequence matching

in time-series databases”. Proceedings of the 1994 ACM SIGMOD International

Conference on Management of Data. Minneapolis.

Faloutsos, Jagadish, Mendelzon, Milo (1997). “A signature technique for

similarity-based queries”. In Proceedings of the SEQUENCES 97 (Positano-

Salerno, Italy).

227

Fayyad, Piatetsky-Shapiro, Smyth (1996). “From Data Mining to Knowledge

Discovery in Databases”. AI Magazine, 17(3):37-54.

Ferretti, Massa, Solarino (2005). “An improved method for the recognition of

seismic families: application to the Garfagnana-Lunigiana area (Italy)”. Bull.

Seism. Soc. Am. 95, 1903–1915.

Fink, Pratt (2004). “Indexing of compressed time series”. In Mark Last,

Abraham Kandel, and Horst Bunke, editors, Data Mining in Time Series

Databases, pages 43-65. World Scientific, Singapore.

Firstov, Kravchenko (1996). “Estimation of the amount of explosive gas

released in volcanic eruptions using airwaves”, Volcanol. Seismol., 17, 547–560.

Fisher (1936). “The Use of Multiple Measurements in Taxonomic

Problems”. Annals of Eugenics 7 (2): 179–188.

Forney (1973). “The Viterbi Algorithm”, Proceedings of the IEEE, March 1973;

61 (3) : pp. 268 - 278.

Fortunato (2010). “Community detection in graphs”. Physics Reports 486, pp.

75-174. Eprint arXiv: 0906.0612.

Fraley, Raftery (1999). “MCLUST: Software for Model-Based Cluster

Analysis”. Journal of Classification, 16, 297-306.

Fraley, Raftery (2002). “Model-based clustering, discriminant analysis, and

density estimation”. Journal of the American Statistical Association, 97(458):611–

631.

Frawley, Piatetsky-Shapiro, Matheus (1992). "Knowledge Discovery in

Databases - An Overview", in Knowledge Discovery in Databases 1991, pp. 1--30.

Reprinted in AI Magazine, Fall 1992.

228

Freedman, Diaconis (1981). “On this histogram as a density estimator: L2

theory”. Zeit. Wahr. ver. Geb., 57, 453–476.

Friedberg, Insel, Spence (1989), Linear algebra (2nd ed.), Englewood Cliffs, NJ

07632: Prentice Hall.

Fukao, Suda (1989). “Core modes of the Earth’s free oscillations and structure

of the inner core”, Geophys. Res. Lett., 16, 401–404.

Gan, Ma, Wu (2007). “Data Clustering: Theory, Algorithms, and

Applications”, ASA-SIAM Series on Statistics and Applied Probability, volume

20.

George, Seber, Wild (2003). Nonlinear Regression. Wiley-Interscience.

Gibbons, and Ringdal (2006). “The detection of low magnitude seismic events

using array-based waveform correlation”, Geophys. J. Int. 165, 149–166.

Golub, Van Loan (1996). Matrix Computations, 3rd edition. Baltimore, MD:

Hopkins University Press.

Gonzalez (1985). “Clustering to minimize the maximum intercluster

distance”. Theoret. Computer Science, 38(1985), 293-306.

Graps (1995). An introduction to wavelets. IEEE.

Greenwood, Nikulin (1996). A guide to chi-squared testing. Wiley, New York.

Gresta, Ripepe, Marchetti, D’Amico, Coltelli, Harris, Privitera (2004).

“Seismoacoustic measurements during the July–August 2001 eruption at Mt.

Etna volcano, Italy”. J. Volc. Geotherm.Res., 137, 219–230.

http://www.libreriauniversitaria.it/books-author_george+a+f+seber-seber_f_a_george.htm
http://www.libreriauniversitaria.it/books-author_christopher+j+wild-wild_j_christopher.htm
http://www.libreriauniversitaria.it/books-publisher_Wiley_Interscience-wiley_interscience.htm

229

Guha, Rastogi, Shim (1998). “CURE: A clustering algorithm for large

databases”. ACM SIGMOD International Conference on Management of Data,

pages 73–84.

Guha, Rastogi, Shim (1999). “Rock: a robust clustering algorithm for

categorical attributes”. In Proc. of the 15th Int’l Conf. on Data Eng., 1999.

Hagerty, Schwartz, Garces, Protti (2000). “Analysis of seismic and acoustic

observations at Arenal Volcano, Costa Rica, 1995–1997”. J. Volc.Geotherm. Res.,

101, 27–65.

Halkidi, Batistakis, Vazirgiannis (2001). “On clustering validation

techniques”. Journal of Intelligent Information Systems, Vol. 17 (2001), pp. 107-

145.

Han, Kamber (2000). Data Mining: Concepts and Techniques (2nd Edition),

Morgan Kaufmann, San Francisco, CA.

Hastie, Tibshirani, Friedman (2002). The Elements of Statistical Learning, p. 533,

Springer, New York.

Hawkins, Kass, (1982). “Automatic Interaction Detection”, in Topics in Applied

Multivariate Analysis, Hawkins, Douglas M. (ed), Cambridge University Press,

Cambridge, pp. 269–302.

Hentschel, Page (2003). “Selection of Descriptors for Particle Shape

Characterization”. Part. Part. Syst. Charact. 20 (2003) 25 ± 38.

Hinneburg, Keim (1998): “An Efficient Approach to Clustering in Large

Multimedia Databases with Noise”. Proceedings of the 4th International

Conference on Knowledge Discovery and Data Mining, New York.

Holsheimer, Siebes (1994). Data Mining: The Search for Knowledge in Databases.

pp. 1-78.

230

Hori, Fukao, Kumazawa, Furumotom, Yamamoto (1989). “A new method of

spectral analysis and its application to the Earth’s free oscillations: the

‘Sompi’ method”, J. geophys. Res., 94(B6), 7535–7553.

Hothersall (2004). History of Psychology (4th Edition), McGraw-Hill.

Hsu, Lin (2002). “A comparison of methods for multi-class support vector

machines”, IEEE Trans. Neural Netw., 13, 415–425.

Hsu, Chang Lin (2007). A practical guide to support vector classification,

http://www.csie.ntu.edu.tw/∼cjlin/papers/ guide/guide.pdf (last accessed 2011

January 31).

Hwanjo, Yang, Han (2003). “Classifying large data sets using SVMs with

hierarchical clusters”, in Proceedings of the Ninth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Washington, DC.

Inselberg, Dimsdale (1990). “Parallel coordinates: A tool for visualizing

multidimensional geometry”. In VIS ’90: Proceedings of the 1st conference on

visualization, pages 361–378. Los Alamitos, CA: IEEE Computer Society.

ISO 9276-6 (2008). Representation of results of particle size analysis -- Part 6:

Descriptive and quantitative representation of particle shape and morphology.

Itakura (1975). “Minimum prediction residual principle applied to speech

recognition”. IEEE Trans Acoustics Speech Signal Process. ASSP 23:52–72.

Jain, Dubes (1988). Algorithms for Clustering Data. Prentice-Hall Englewood

Cliffs, N.J.

Jain, Murty, Flynn (1999). “Data clustering: A survey”. ACM Comput. Surv.,

31:264–323.

231

Jin, Tung, Han, Wang (2006). “Ranking outliers using symmetric

neighborhood relationship”. Advances in Knowledge Discovery and Data Mining,

pp. 577-593.

Johnson, Lees (2000). “Plugs and chugs: seismic and acoustic observations of

degassing explosions at Karymsky, Russia and Sangay, Ecuador”, J. Volc.

Geotherm. Res., 101, 67–82.

Johnson, Lees, Varley (2010). “Characterizing complex eruptive activity at

Santiaguito, Guatemala using infrasound semblance in networked arrays”, J.

Volc. Geotherm. Res., 199, doi:10.1016/j.jvolgeores.2010.08.005.

Jones, Johnson, Aster, Kyle, McIntosh (2008). “Infrasonic tracking of large

bubble bursts and ash venting at Erebus volcano, Antarctica”, J. Volc.

Geotherm. Res., 177, doi:10.1016/j.jvolgeores.2008.02.001.

Karypis, Han, Kumar (1999). “CHAMELEON: Hierarchical clustering using

dynamic modeling”. IEEE Computer, 32(8):68–75.

Kay (1988). Modern Spectral Estimation, Theory and Application, Prentice-Hall,

Englewood Cliffs, NJ.

Kass (1980). “An Exploratory Technique for Investigating Large Quantities of

Categorical Data”, Applied Statistics, Vol. 29, No. 2, pp. 119–127.

Keogh, Chakrabarti, Pazzani, Mehrotra (2000). “Dimensionality reduction for

fast similarity search in large time series databases”. Journal of Knowledge and

Information Systems.

Keogh, Chu, Hart, Pazzani (2001). “An Online Algorithm for Segmenting

Time Series”. In Proc. IEEE Intl. Conf. on Data Mining, pp. 289-296, 2001.

Keogh, Kasetty (2002). “On the need for time series data mining benchmarks:

a survey and empirical demonstration”. Proceedings of the Eighth ACM

232

SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.

102-111.

Keogh, Ratanamahatana (2002). “Exact indexing of dynamic time warping”.

In proceedings of the 26th Int'l Conference on Very Large Data Bases. Hong Kong.

pp 406-417.

Keogh, Chu, Hart, Pazzani (2004). “Segmenting time series: a survey and

novel approach”. In: Last, M., Kandel, A., Bunke, H. (Eds.), Data mining in

time series database. World Scientific Publishing Company, pp. 1-21.

Kohonen (2001). Self-Organizing Maps (3rd edition). Springer Series in

Information Sciences, Vol. 30, Springer, New York.

Korn, Jagadish, Faloutsos (1997). “Efficiently supporting ad hoc queries in

large datasets of time sequences”. Proceedings of SIGMOD ’97, Tucson, AZ, pp

289-300.

Kumazawa, Imanishi, Fukao, Furumoto, Yamamoto (1990). “A theory of

spectral analysis based on the characteristic property of a linear dynamic

system”, Geophys. J. Int., 101, 613–630.

Kuo, Rollings, Lynch (1998). “Morphological study of coarse aggregates using

image analysis”. Journal of Materials in Civil Engineering, 10(3), 135-142.

Lahr, Chouet, Stephens, Power, Page (1994). “Earthquake classification,

location, and error analysis in a volcanic environment: implications for the

magmatic system of the 1989–1990 eruptions” at Redoubt Volcano, Alaska. J.

Volcanol. Geotherm. Res. 62, 137–152.

Langer, Falsaperla, Masotti, Campanini, Spampinato, Messina, (2009).

“Synopsis of supervised and unsupervised pattern classification techniques

applied to volcanic tremor data at Mt Etna, Italy”, Geophys. J. Int., 178,

doi:10.1111/j.1365–246X.2009.04179.x.

233

Lawrence, Altschul, Boguski, Liu, Neuwald, Wootton (1993). “Detecting

subtle sequence signals: A Gibbs sampling strategy for multiple alignment”.

Science 262, 208–14.

Lesage (2008). “Automatic estimation of optimal autoregressive filters for the

analysis of volcanic seismic activity”, Nat. Hazards Earth Syst. Sci., 8, 369–376.

Lie Hetland (2004). “A survey of recent methods for efficient retrieval of

similar time sequences”, in Data Mining in Time Series Databases (eds. Last M.,

Kandel, A., Bunke H.), World Scientific, Singapore.

Lin, Keogh, Wei, Lonardi (2007). “Experiencing SAX: a novel symbolic

representation of time series”. Data Mining Knowledge Discovery, 15(2).

Lo Castro, Andronico (2008). “Operazioni di base per la misura della

distribuzione granulometrica di particelle vulcaniche tramite il CAMSIZER”.

Rapporti Tecnici INGV, n. 79.

Lo Castro, Andronico, Cassisi, Montalto, Prestifilippo (2011a).

“Implementazione di una nuova procedura per caratterizzare la forma di

particelle mediante misure al CAMSIZER e algoritmi di clustering”.

QUADERNI DI GEOFISICA, ISSN: 1590-2595.

Lo Castro, Andronico, Cassisi, Montalto, Prestifilippo, Beckmann, Dueffels,

Westermann (2011b). “A New Technique for the Characterization of Volcanic

Particle Shape by CAMSIZER and Cluster Algorithms”. In: Conferenza A.

RITTMANN “Per Giovani Ricercatori”. Nicolosi (Catania), 7-9 Giugno 2011.

Lodder , Hieftje (1988). “Quantile analysis: a method for characterizing data

distributions”. Applied Spectroscopy 42:1512–1520.

MacQueen (1967): “Some Methods for classification and Analysis of

Multivariate Observations”, Proceedings of 5-th Berkeley Symposium on

234

Mathematical Statistics and Probability, Berkeley, University of California Press,

1:281-297.

Marchetti, Ripepe, Ulivieri, Caffo, Privitera (2009). “Infrasonic evidences for

branched conduit dynamics at Mt. Etna volcano, Italy”, Geophys. Res. Lett., 36,

L19308, doi:10.1029/2009GL040070.

Marple (1987). Digital Spectral Analysis with Applications, Prentice Hall,

Englewood Cliffs.

Mars, Lacoume, Mari, Glangeaud (2004). “Traitement du Signal Pour

Géologues et géophysiciens”, Techniques avancées, Vol. 3, Technip.

Mason, Handscomb (2003). Chebyshev Polynomials. Chapman & Hall.

Masotti, Campanini, Mazzacurati, Falsaperla, Langer, Spampinato (2008).

“TREMOrEC: a software utility for automatic classification of volcanic

tremor”, Geochem. Geophys.Geosyst., 9(1), Q04007, doi:10.1029/2007GC001860.

McNutt (2000). “Seismic Monitoring”, In Encyclopedia of Volcanoes (eds.

Sigurdsson, H., B. Houghton, S.R. McNutt, H. Rymer, and J. Stix) (Academic

Press, San Diego, CA) pp. 1095-1119.

McNutt (2005). “Volcanic seismology”, Annu. Rev. Earth Planet. Sci. 32, 461–

491.

Montalto, Cannata, Privitera, Gresta, Nunnari, Patanè (2010). “Towards an

automatic monitoring system for infrasonic events at Mt. Etna: strategies for

source location and modeling”, Pure appl. Geophys., 167, doi:10.1007/s00024–

010-0051-y.

Montalto, Aliotta, Cannata, Cassisi (2012). “Segmentazione delle serie

temporali nell’analisi dei dati: un esempio di applicazione a dati sismo-

vulcanici”. Rapporti Tecnici INGV, n. 224.

235

Moran, Malone, Qamar, Thelen, Wright, Caplan-Auerbach (2008). “Seismicity

associated with renewed dome building at Mount St. Helens, 2004–2005”, In

A Volcano Rekindled: The Renewed Eruption of Mount St. Helens, 2004–2006 (eds.

D. R. Sherrod, W. E. Scott, and P. H. Stauffer) (USGS Professional Paper 1750)

pp. 27–50.

Mueen, Keogh, Zhu, Cash, Westover (2009). “Exact Discovery of Time Series

Motif”. SIAM International Conference on Data Mining SDM 2009.

Muller (1967). Methods in sedimentary petrology. Hafner, New York.

Nagesh, Goil, Choudhary (2001). “Adaptive grids for clustering massive data

sets”. In Proceedings of the 1st SIAM International Conference on Data Mining

(SDM), Chicago, IL.

Neidell, Taner (1971). “Semblance and other coherency measures for

multichannel data”. Geophysics, 36, 482–497, doi:10.1190/1.1440186.

Nelder, Wedderburn (1972). "Generalized Linear Models". Journal of the Royal

Statistical Society. Series A (General) (Blackwell Publishing) 135 (3): 370–384.

Ng, Han (1994). “Efficient and Effective Clustering Methods for Spatial Data

Mining”. Proc. 20th Int. Conf. on Very Large Data Bases, 144-155. Santiago,

Chile.

Ng, Jordan, Weiss (2002). “On spectral clustering: analysis and an algorithm".

In Advances in Neural Information Processing Systems, T. Dietterich, S. Becker,

and Z. Ghahramani (Eds.), 14 (pp. 849 – 856). MIT Press.

Ng, Cai (2004): “Indexing Spatio-Temporal Trajectories with Chebyshev

Polynomials”. SIGMOD 2004.

236

Noble (2004). Support vector machine applications in computational biology,

in Kernel Methods in Computational Biology, pp. 71–92, eds Schölkopf, B.,

Tsuda, K., Vert, J., The MIT Press, Cambridge, MA.

Palla, Derényi, Farkas, Vicsek (2005). “Uncovering the overlapping

community structure of complex networks in nature and society”. Nature 435,

814.

Papadimitriou, Kitagawa, Gibbons, Faloutsos (2003). “LOCI: Fast outlier

detection using the local correlation integral. In Data Engineering, 2003.

Proceedings 19th International Conference on, pp. 315-326. IEEE.

Parsons, Haque, Liu (2004). “Subspace clustering for high dimensional data:

A review”. SIGKDD Explorations, 6(1):90–105.

Patanè, Di Grazia, Cannata, Montalto, Boschi (2008). “The shallow magma

pathway geometry at Mt. Etna volcano”, Geochem. Geophys. Geosyst. 9, 12,

doi:10.1029/2008GC002131.

Pavlidis (1976). “Waveform segmentation through functional

approximation”. IEEE Trans.Comput. C-22, 7 (July).

Perng, Wang, Zhang, Parker (2000). “Landmarks: a newmodel for similarity-

based pattern querying in time series databases”. Proc.2000 ICDE, pp. 33–42.

Pettijohn, Potter, Siever (1972). Sand and Sandstone. Springer-Verlag, Berlin,

pp. 618. Wadell.

Pevzner, Sze (2000). “Combinatorial approaches to finding subtle signals in

DNA sequences”, Proc. 8th Int. Conf. Intelligent Systems for Molecular Biology,

269–78.

Qamar, Malone, Moran, Steele, Thelen (2008). “Near-real-time information

products for Mount St. Helens—tracking the ongoing eruption”, In A Volcano

237

Rekindled: The Renewed Eruption of Mount St. Helens, 2004–2006 (eds. D. R.

Sherrod, W. E. Scott, and P. H. Stauffer) (USGS Professional Paper 1750) pp.

61–70.

Quinlan (1986). “Induction of decision trees”. Machine Learning, 1:81–106,

1986.

Quinlan (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.

Rabiner (1989). “Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition”. Proceedings of the IEEE, 77 (2), p. 257–

286.

Ram, Sharma, Jalal, Agrawal, Singh (2009). “An enhanced density based

spatial clustering of applications with noise”. In Advance Computing

Conference, 2009. IACC 2009. IEEE International, pp. 1475-1478.

Russell, Taylor (1937). “Roundness and shape of Mississippi River sands”. J.

Geol., 45, 225–267.

Ratanamahatana, Lin, Gunopulos, Keogh, Vlachos, Das (2010): “Mining Time

Series Data”. Data Mining and Knowledge Discovery Handbook, pp. 1049-1077.

Riley, Rose, Bluth (2003). “Quantitative shape measurements of distal

volcanic ash”. Journal of Geophysical Research, vol. 108, no. b10, 2504,

doi:10.1029/2001jb000818.

Ripepe, Poggi, Braun, Gordeev (1996).” Infrasonic waves and volcanic tremor

at Stromboli”, Geophys. Res. Lett., 23, 181–184.

Ripepe, Marchetti (2002). “Array tracking of infrasonic sources at Stromboli

volcano”, Geophys. Res. Lett., 29(22), 2076, doi:10.1029/2002GL015452.

http://www.informatik.uni-trier.de/~ley/db/reference/dmkdh/dmkdh2010.html#RatanamahatanaLGKVD10

238

Rousseeuw, Kaufman (1990). Finding groups in data. JohnWiley & Sons, Inc,

New York.

Rowe, Aster, Kyle, Dibble, Schlue (2000). “Seismic and acoustic observations

at Mount Erebus Volcano, Ross Island, Antarctica, 1994–1998”, J. Volc.

Geotherm. Res., 101, 105–128.

Ruiz, Lees, Johnson (2006). “Source constraints of Tungurahua volcano

explosion events”, Bull. Volcanol., 68, 480–490.

Sakoe, Chiba (1978). “Dynamic programming algorithm optimization for

spoken word recognition”. IEEE Trans Acoustics Speech Signal Process. ASSP

26:43-49.

Salvador, Chan, (2004). “Determining the number of clusters/segments in

hierarchical clustering/segmentation algorithms”. Proceedings of the 16th IEEE

International Conference on Tools with Artificial Intelligence, pp. 576-584.

Sander, Qin, Lu, Niu, Kovarsky (2003). “Automatic extraction of clusters from

hierarchical clustering representations “. Advances in Knowledge Discovery and

Data Mining. Springer, p. 567.

Scarpa, Gasparini (1996). “A review of volcano geophysics and volcano-

monitoring methods, in Monitoring and mitigation of volcano hazards” (eds.

Scarpa, Tilling) (Springer, Heidelberg), pp 3–22.

Scollo, Folch, Costa (2008). “A parametric and comparative study of different

tephra fallout models”. Journal of Volcanology and Geothermal Research, 176,

199–211.

Scollo, Prestifilippo, Spata, D’Agostino, Coltelli (2009). “Monitoring and

forecasting Etna volcanic plumes”, Nat. Hazards Earth Syst. Sci. 9, 1573–1585.

Schaeffer (2007). “Graph Clustering”. Computer Science Review 1(1):27-64.

239

Schaff (2008). “Semiempirical statistics of correlation-detector performance”,

Bull. seism. Soc. Am. 98, 1495–1507.

Schaff (2009). “Broad-scale applicability of correlation detectors to China

seismicity”, Geophys. Res. Lett. 36, L11301, doi:10.1029/2009GL038179.

Scott (1979). “On optimal and data-based histograms”. Biometrika, 66, 605–

610.

Scott (2009). "Sturges' rule". WIREs Computational Statistics 1: 303–306.

Shannon,Weaver (1949). The mathematical theory of communication. University

of Illinois Press, Urbana, IL.

Sheikholeslami, Chatterjee, Zhang (1998). “Wavecluster: A multiresolution

clustering approach for very large spatial databases”. In Proceedings of the 24th

Conference on VLDB, pages 428–439, New York, NY.

Shelly (2010). “Periodic, chaotic, and doubled earthquake recurrence intervals

on the deep San Andreas Fault”, Science 328, 1385-1388.

Shi, Malik (2000). “Normalized cuts and image segmentation”. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22 (8), 888 – 905.

Shieh and Keogh (2008). “iSAX: Indexing and Mining Terabyte Sized Time

Series”. SIGKDD, pp 623-631.

Smith (2002). A Tutorial on Principal Components Analysis . [Online] Available:

http://www.itu.dk/courses/SIGB/F2011/untitled%20folder/Reading/pca-

smithTutorial.pdf

http://www.sciencemag.org/cgi/content/abstract/328/5984/1385?ijkey=Y7WFnemn511bc&keytype=ref&siteid=sci
http://www.sciencemag.org/cgi/content/abstract/328/5984/1385?ijkey=Y7WFnemn511bc&keytype=ref&siteid=sci

240

Spampinato, Calvari, Oppenheimer, Boschi (2011). “Volcano surveillance

using infrared cameras”, Earth Science Reviews, doi:

10.1016/j.earscirev.2011.01.003.

Spina, Lo Castro, Sciotto, Andronico (2012). “Investigation of 2010 ash

emission episodes at Mt Etna by combining volcanological and seismo-

acoustic analyses”, EGU General Assembly 2012, Geophys. Res. Abstr. vol. 14,

EGU2012-5534-1, 2012.

Sturges (1926). “The choice of a class-interval”. J. Amer. Statist. Assoc., 21, 65–

66.

Tan, Steinbach, Kumar (2005). Introduction to Data Mining (1st Edition), Addiso

Tang, Fishwick (1991). “Feed-forward neural nets as models for time series

forecasting”. Technical Report TR91-008, University of Florida, Gainesville, FL,

USA.

n-Wesley Longman Publishing Co., Inc., Boston, MA.

Tang, Liu (2010). Community Detection and Mining in Social Media, Morgan &

Claypool Publishers, Synthesis Lectures on Data Mining and Knowledge

Discovery.

Tompa, Buhler (2001). “Finding motifs using random projections”. In

proceedings of the 5th Int’l Conference on Computational Molecular Biology.

Montreal, Canada, Apr 22-25. pp 67-74.

Ultsch (1993). “Self organized features planes for monitoring and knowledge

acquisition of a chemical process”. International Conference on Artificial Neural

Networks, Springer-Verlag,London, pp. 864-867.

Ultsch (2000). “The neuro-data-mine”. Symposia on Neural Computation

(NC’2000), Berlin, Germany.

241

Vadapalli, Valluri, Karlapalem (2006). “A simple yet effective data clustering

algorithm”. ICDM '06. Sixth International Conference on Data Mining.

Vergniolle, Brandeis (1994). “Origin of the sound generated by Strombolian

explosions”, Geophys. Res. Lett., 21, 1959–1962.

Viterbi (1967). “Error Bounds for Convolutional Codes and an Asymptotically

Optimum Decoding Algorithm”, IEEE Transactions on Information Theory,

April 1967; IT - 13 (2) : pp. 260 - 269.

Vlachos, Kollios, Gunopulos (2002). “Discovering similar multidimensional

trajectories”. Proc. 2002 ICDE, pp. 673–684.

von Luxburg (2006). “A tutorial on spectral clustering”. Technical Report 149,

Max Planck Institute for Biological Cybernetics.

Von Storch, Zwiers (2001). Statistical analysis in climate research. Cambridge

Univ Pr. ISBN 0521012309.

Wang, Yang, Muntz (1997). “STING: a statistical information grid approach to

spatialdata mining”. In Proceedings of the 23rd Conference on VLDB, pages 186–

195, Athens, Greece.

Wang, Ye, Keogh, Shelton (2008). “Annotating Historical Archives of

Images”. JCDL 2008.

Weston, Watkins (1999). Multi-class support vector machines, presented at the

Proceedings ESANN99, ed. M.Verleysen, Brussels,Belgium.

Withers (1997). An automated local/regional seismic event detection and location

system using waveform correlation, PhD thesis, New Mexico Tech., Socorro,

NM.

242

Withers, Aster, Young, Beiriger, Harris, Moore, Trujillo (1998). “A

comparison of select trigger algorithms for automated global seismic phase

and event detection”, Bull. seism. Soc. Am., 88, 95–106.

Yang (1993). “A survey of fuzzy clustering”, Math. Comput. Modelling 18, l-16.

Yi and C. Faloutsos (2000). “Fast Time Sequence Indexing for Arbitrary Lp

Norms”. VLDB.

Wooff (2004). “Logistic Regression: a Self-learning Text, 2nd edn”. Journal of

the Royal Statistical Society: Series A (Statistics in Society), 167: 192–194.

Zadeh (1965). "Fuzzy sets". Information and control. 8 (3) 338–353.

Zezula, Amato, Dohnal, Batko (2005). “Similarity Search: The Metric Space

Approach”, Advances in Database Systems, 32. Springer.

Zhang, Ramakrishnan, Livny (1997). “BIRCH: A new data clustering

algorithm and its applications”. Journal of Data Mining and Knowledge

Discovery, 1(2):141–182.

Zimek (2008). Correlation Clustering. PhD Thesis, Ludwig-Maximilians-

Universität München, Munich, Germany.

