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Abstract: The use of beneficial microorganisms, such as plant growth promoting rhizobacteria (PGPR)
and mycorrhizal fungi, for organic farming could improve the productivity and the resilience of
vegetable crops. Both PGPR and PGPF are allowed for organic farming, and they represent new
important tools for regenerating poor and marginal soils in transition to environmentally friendly
farming. In the experiment, the effects of PGPM-based products were evaluated on snap bean in
combination with two irrigation regimes. The experimental design adopted was split-plot, with the
main plot represented by the irrigation regime (reintegration of 100 and 60% of the ETc), the sub-plot
by the microbial consortia, and finally the sub-sub-plot by genotype (‘Domino’ and ‘Maxi’). Seeds
were sown in a cold greenhouse and the growing cycle finished after 86 days from sowing. The results
showed a significant increase of the yield due to the application of PGPM compared to the control.
The deficit irrigation applied (ETc 60%) affected plants growth in the two genotypes and their related
production differently (in average 2.20 kg m−2 for Domino and 3.63 kg m−2 for Maxi), showing
a positive effect of PGPM on yield (in average 2.47 kg m−2 without PGPM and 3.36 kg m−2 with
PGPM) and product quality. Furthermore, an interesting negative correlation between the number of
nodules and the yield was also observed, as a consequence of their early outcome which increased
plant productivity in relation to the experimental factors.

Keywords: PGPM; drought stress; nodules; organic farming; sustainability

1. Introduction

Nowadays, sustainable agricultural methodologies based on ecological principles
and natural rules is of primary importance in order to respond to the intensification
of agriculture based worldwide on the efficient use of available resources [1]. The key
challenge is to increase the production of foods and feeds with minimal environmental
impacts in terms of nutrient leaching, biodiversity loss, greenhouse gas emissions, and
resource exhaustion [2]. This frame-low input in farming practices represents a primary
goal of enhancing the sustainability of cropping schemes in order to cope with climate
change and achieve high yields in more environmentally friendly conditions [3–6]. To
meet what was mentioned—besides a number of approaches which can be adopted, such
as low nitrogen supply [7], cropping in soilless conditions [8,9], and overall breeding for
resistance [10–14]—deficit irrigation, where possible, represents a sustainable way to save
water [15–21]. Although deficit irrigation represents a limiting factor in horticulture, re-
searchers’ interest in assessing protocols to save water in agriculture has increased [17,22].
To this aim, the use of helpful microorganisms, such as plant-growth-promoting rhizobac-
teria (PGPR), added in the rhizosphere, has been shown to increase plants’ potential
resistance to abiotic stresses such as water shortage in a number of crops [11], including
tomato wheat, rice [23], and common bean [24]. The naturally occurring soil-dwelling
microbiota, in fact, represents a useful way to establish long-term resilient farming sys-
tems [25]. The rhizosphere is the soil region that is adhered to plant roots and represents
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the area with the highest microbial activity where chemical, physical and microbiological
interactions take place with intensive feedbacks on plant growth [26]. The rhizosphere
includes plant-growth-promoting rhizobacteria (PGPR) which exert their enhancing roles
through both direct and indirect pathways [27]. Direct mechanisms involve phytohormone
production, atmospheric nitrogen fixation, iron sequestration, and inorganic phosphate
solubilization [28]. On the other hand, PGPR indirectly promote plant growth by inducing
anti-phytopathogen compound production and, as a consequence, they develop abiotic
stress tolerance abilities such as drought and salinity resistance [29–32].

According to scientific literature, [23,24,33], common bean, Phaseolus vulgaris L., has a
high agronomic interest worldwide [34]. It belongs to the Fabaceae family, and similar to
other legume crops, it has a key role in improving soil fertility by boosting nitrogen input
by symbiotic N fixation [35]. Common bean represents 50% of grain legumes used for direct
human consumption and remains the most important grain legume and vegetable crop in
the twenty-first century [36]. Originating from two different gene pools, Mesoamerican
and Andean, its broad adaptation, consumer preference, and easiness of production for
both dry seeds and green pods allows it to keep an edge over the other legumes [37].
Common bean presently offers a distinctive opportunity to understand how both the host
and the environment contribute to rhizosphere microbiome assembly and vice versa, due
to the pre-existing genetic differences in each gene pool followed by divergent breeding
history [25,38].

Within the framework of the H2020 BRESOV project, of which the overall target is to
increase plants’ tolerance to biotic and abiotic stresses and to adapt varieties to the specific
requirements of organic and low-input production processes, we evaluated the effects of a
commercial product based on PGPM (Trichoderma spp., Bacillus spp., Pseudomonas spp., etc.)
on two different green bean cultivars under a deficit irrigation regime.

2. Materials and Methods
2.1. Plant Material

The experiment was carried out during spring 2021. The seeds of snap beans were
sown directly into the soil in a cold greenhouse at the experimental farm of ITAKA s.r.l.
company located in Comiso — South East of Sicily— (37◦00′09.7” N, 14◦.34′45.4” E) on
11 March 2021. Two commercial varieties, ‘Maxi’ (Phaseolus vulgaris L. var nanus) from
Hild company and ‘Domino’ (Phaseolus vulgaris L. var vulgaris) from De Bolster, were
adopted in the experiment. The two varieties are both present on the market for green pod
consumption and were part of a much larger seed set used in the contest of the BRESOV
project by different partners.

Seeds were sown in rows with a space of 50 cm between rows and 40 cm along the
row. For each spot, a total of 5 seeds were sown with a density of 20 plants m−2.

2.2. Irrigation Regimes

Before experiment onset, the field was prepared with a tiller and abundantly watered
during the first week of March [39]. The irrigation system was arranged by using driplines
with drippers at a distance of 0.20 m from each other, and served by a reservoir located
near the greenhouse. Water counters were installed upstream the dripline, one for each
of the two main plots. A weather station (Watchdog 2500 series) was installed in the field
provided by Ecosearch s.r.l. (Montone, Italy) From the weather station, 6 probes were
installed—2 for each repetition, at 0.05 and at 0.25 m of depth, respectively—in order to
monitor the percentage of humidity in the soil. For the determination of water stress, crop
reference evapotranspiration (ET0) provided by the weather station was taken into account
daily, and it was assumed that ETc 100 was the gradient corresponding to soil saturation.

For the first 3 weeks from experiment onset, plants were irrigated with the same
water volumes until the unfolding of the 4th leaf; after this period, the irrigation was
differentiated considering 100% of water requirement (ETc 100) and a deficit irrigation
corresponding to 60% of ETc (ETc 60).



Agriculture 2023, 13, 865 3 of 13

2.3. Microorganisms Treatments

Exactly one week before sowing the snap bean seeds, the first treatment with PGPM
(MO) was carried out according to the protocol provided by ITAKA s.r.l.; to this purpose, the
commercial product Maxi Soil® was used. This formulate consists of a microbial consortium
containing three species of Trichoderma(T. harzianum, T. asperelum, T. atroviride) and Bacillus
amylofiquefaciens, B. azotoformans, B. megaterium, B. pumilus, B. subtilis, Pseudomonas lurida,
P. fluorescence, Streptomyces griseus, and S. lydicus.

One week after sowing, the second treatment with MO was carried out. Maxi Soil was
diluted in water at a rate of 0.5 g L−1 (0.5 g m−2) and applied to the soil by fertigation.

2.4. Morpho-Physiological Parameters

Pods were harvested at commercial maturity after 65, 72, 79, and 86 days from sowing.
At every harvest, the total yield and the number of pods for each plant were recorded;
moreover, starting from the second harvest, three pods per plant were randomly collected
in order to analyze the pod’s weight and diameter. At the end of the cropping cycle, ten
entire plants per plot were removed from the field in order to register the fresh and dry
weight of both epigeal and hypogeal portions. To calculate the percentage of dry matter,
the epigeal and hypogeal portions of the plants were dried in a heater for 72 h at 68 ◦C until
constant weight, then the dry weight was weighted and the percentage of dry matter was
calculated. Before the destructive assay, the number of the ramification of the first order
and the number of root nodules were recorded.

During the cropping cycle, 55 days after sowing, the SPAD (Soil Plant Analysis De-
velopment) index was registered using a “SPAD 502 Plus Chlorophyll Meter” (Spectrum
technologies, Inc., Aurora, IL, USA).

2.5. Experimental Design

The experimental design was a “Split-plot” with 3 factors (Figure 1). The main factor
was represented by the two different irrigation regimes based on crop evapotranspiration
(ETc). ETc was calculated according to the Penman–Monteith formula [39]. The sub-plot
was represented by application or no application of PGPMs (MO or NMO); the sub-sub-plot
was represented by the two adopted genotypes (GE) of snap bean. Each repetition was
divided into 2 equal plots corresponding to the two different water regimes. Each plot
was divided into 4 sub-plots, 1.00 m equidistant between each other, and representing
the combination of the 3 experimental factors. Each elemental plot was 4.60 m long and
consisted of 3 rows with 0.50 m equidistant between them. Each row was divided in half in
such a way to obtain 6 sub-sub-plots within, in which a randomization of the 2 varieties of
snap bean with 3 repetitions for each was arranged.

2.6. Statistical Analysis

The data obtained were subjected to statistical analysis with the Student-Newman-
Keuls ANOVA 1 test performed with the software CoStat version 6.451(CoHort Software,
Birmingham, England). Correlation and PCA were performed by using IBM SPSS Statistics
for Windows, Version 28.0 (IBM Corp: Armonk, NY, USA).

2.7. Climatic and Soil Conditions

During the experiment, climatic conditions were stable over the whole cultivation
season, with the relative humidity of the air ranging from a minimum of 30% to a maximum
of 80% (Figure 2). The night and day shift in air temperature during the growing period
varied from 3 ◦C to 18 ◦C at night and from 22 ◦C to 46 ◦C during the daytime (Figure 2).
Concerning the soil temperatures, at 25 cm of depth, the temperatures ranged from a
minimum of 7.8 ◦C (Tmin) to a maximum of 29.4 ◦C (Tmax), while on the surface, at 5 cm
of depth, it ranged from a minimum of 18.8 ◦C (Tmin) to a maximum of 46.1 ◦C (Tmax), as
shown on Figure 1. Concerning the relative humidity (R.U.) of the soil, it varied from 11 to
54% and from 63 to 93% for the minimum and the maximum R.U., respectively (Figure 2).
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The greenhouse temperature was maintained on a range between 10 ◦C Tmin and 35 ◦C
Tmax (Figure 2) by opening or closing both the windows and doors.
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Figure 1. Experimental design. The experimental field was arranged as “split plot” with three
experimental factors and three replications. The two different irrigation regimes were based on ETc
(ETc 100 and ETc 60). The sub-plot was represented by application or not of PGPMs (MO or NMO);
the sub-sub-plot was represented by the two genotypes of snap bean adopted: Domino (A) and
Maxi (B).

In order to evaluate the soil characteristics for the snap bean cultivation, soil sam-
ples were collected at 30 cm depth and uniformed in bulk. The soil characteristics were
uniform among the field and belonged to the sandy-loamy typology. These kinds of soil
characteristics are optimal for snap bean cultivation [40–42], and are shown in Table 1.
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Figure 2. Records of air and soil temperatures (◦C) and relative humidity (%) in greenhouse during
the growing period.

Table 1. Soil analysis of the experimental field.

Soil Analysis

Fine ground (<2 mm) 989 g/kg
Sand (0.02–2 mm) 856 g/kg

Silt (0.002–0.02 mm) 53 g/kg
Clay (<0.002 mm) 91 g/kg
Total Limestone 5 g/kg

Total Nitrogen (N) 1 g/kg
Organic carbon 6.7 g/kg

C/N Ratio 6.7
Assimilable phosphorus

(P2O5) 144 mg/kg

Exchangeable potassium
(K2O) 706 mg/kg

pH 7.6
specific conductivity (25 ◦C) 3.63 dS/m

Cation exchange capacity
(CSC) 11.5 meq/100 g

Degree of saturation in bases
(GDB) 100 %

Exchangeable Calcium 7.9 meq/100 g
Exchangeable Magnesium 1.7 meq/100 g

Exchangeable sodium 0.4 meq/100 g
Exchangeable potassium

(saturated extract) 1.5 meq/100 g

Calcium 68.89 %
Magnesium 14.45 %

Sodium (ESP) 3.63 %
Potassium 13.03 %

K/Mg Ratio 0.9
Mg/K Ratio 1.11
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3. Results
3.1. Production and Plants Characteristics

The yield in pods (kg m−2) was significantly affected by ETc, MO, and GE.
Considering the effect of ETc, the yield ranged from 2.92 to 4.05 kg m−2 for ETc 60

and ETc 100, respectively. Regarding the influence of MO, the yield varied from 3.08 to
3.89 kg m−2 for NMO and MO, respectively. Different yield was also observed due to
GE, as B was observed to have a higher yield (4.04 kg m−2) compared to A (2.92 kg m−2)
(Table 2 and Figure 3).

Table 2. Table with all characters analyzed with statistical analysis (ANOVA—Student-Newman-Keuls).

ETc 100 ETc 60
MEAN

NMO MO NMO MO

A B x A B x A B x A B x ETc
100

ETc
60 NMO MO A B TOT

Yield kg m−2 3.45 3.91 3.68 3.84 5.00 4.42 2.00 2.95 2.47 2.40 4.32 3.36 4.05 2.92 3.08 3.89 2.92 4.04 3.48
Pod N◦ m−2 820.0 335.9 578.0 803.6 504.6 654.1 651.2 341.4 496.3 747.1 548.9 648.0 616.0 572.1 537.1 651.0 755.5 432.7 594.1
Pod Ø (mm) 5.88 6.88 6.38 6.71 9.00 7.86 6.09 5.78 5.93 6.49 8.76 7.63 7.12 6.78 6.16 7.74 6.29 7.61 6.95

Pod length (cm) 11.7 11.3 11.5 12.0 14.3 13.1 10.8 9.0 9.9 12.4 13.1 12.8 12.3 11.3 10.7 12.9 11.7 11.9 11.8
Pod weight (g) 4.3 12.4 8.4 5.0 10.8 7.9 3.1 7.9 5.5 3.2 7.8 5.5 8.1 5.5 6.9 6.7 3.9 9.8 6.8

N◦ Branch 4.3 4.0 4.2 5.3 4.7 5.0 6.3 5.7 6.0 6.0 5.0 5.5 4.6 5.8 5.1 5.3 5.5 4.8 5.2
E.F.W. (g) 252.0 170.7 211.3 278.7 282.0 280.3 125.0 146.7 135.8 163.3 210.0 186.7 245.8 161.3 173.6 233.5 204.8 202.3 203.5
I.F.W. (g) 27.3 14.0 20.7 20.7 16.0 18.3 15.0 10.0 12.5 21.7 16.7 19.2 19.5 15.8 16.6 18.8 21.2 14.2 17.7

E.D.M. (%) 16.9 17.3 17.1 16.0 15.9 16.0 31.7 40.1 35.9 34.2 33.0 33.6 16.5 34.7 26.5 24.8 24.7 26.6 25.6
I.D.M. (%) 19.6 24.1 21.8 53.3 46.8 50.0 51.4 52.3 51.9 60.3 70.5 65.4 35.9 58.6 36.9 57.7 46.2 48.4 47.3

N◦ nodules 85.0 40.7 62.8 80.0 26.3 53.2 114.7 56.0 85.3 70.3 17.7 44.0 58.0 64.7 74.1 48.6 87.5 35.2 61.3
SPAD 43.5 44.4 44.0 45.2 45.5 45.3 43.6 45.2 44.4 46.3 48.2 47.3 44.6 45.9 44.2 46.3 44.6 45.8 45.2

Analysis of variance—Student-Newman-Keuls

ETc MO GE ETc ×MO ETc × GE MO ×
GE

ETc ×MO ×
GE

Yield kg m−2 *** *** *** n.s. n.s. n.s. n.s.
Pod N◦ m2 n.s. * *** n.s. n.s. n.s. n.s.

Pod Ø (mm) n.s. ** * n.s. n.s. * n.s.
Pod length (cm) n.s. ** n.s. n.s. n.s. n.s. n.s.
Pod weight (g) *** n.s. ** n.s. ** n.s. n.s.

N◦ Branch * n.s. n.s. n.s. n.s. n.s. n.s.
E.F.W. (g) ** * n.s. n.s. n.s. n.s. n.s.
I.F.W. (g) n.s. n.s. * n.s. n.s. n.s. n.s.

E.D.M. (%) *** n.s. n.s. n.s. n.s. n.s. n.s.
I.D.M. (%) *** *** n.s. * n.s. n.s. n.s.

Nod N◦ n.s. ** *** n.s. n.s. n.s. n.s.
SPAD * *** * n.s. n.s. n.s. n.s.

n.s.: not significant; *: p value = 0.05%; **: p value = 0.01%; ***: p value = 0.001%.

Furthermore, the number of pods per m−2 was significantly affected by MO and GE.
Concerning the effect of MO, the values ranged from 537.1 to 651.0 for NMO and MO,
respectively, whereas GE ranged from 432.7 to 755.5 for B and A, respectively (Table 2). The
pod diameter was affected by the interaction of MO × GE. Among A, the values varied in
average from 5.99 to 6.60 mm for NMO and MO, respectively, and among B from 6.33 to
8.88 for NMO and MO, respectively (Table 2). The pod length was significantly affected by
MO; longer pods were observed for MO (12.9 cm) than NMO (10.7 cm) (Table 2). The pod
weight was statistically influenced by the interaction of ETc × GE. Among A, the values
fluctuated from 3.2 to 4.6 g for ETc 60 and Etc 100, respectively, and values for B ranged
from 7.9 to 11.6 g for ETc 60 and ETc 100, respectively (Table 2).

Significant variations were noted in the snap bean development between the different
treatments among the cultivars. Plant epigeous fresh weight (E.F.W.) was significantly
affected by ETc and MO, ranging from 161.3 g to 245.8 g for ETc 60 and ETc 100, respectively,
and from 173.6 to 233.5 g for NMO and MO, respectively (Table 2). Otherwise, plants’
hypogeous fresh weight (I.F.W.) was significantly affected by GE, with values ranging
from 14.2 to 21.2 g for B and A, respectively. The plant epigeous dry matter (E.D.M. %)
was significantly influenced by ETc, ranging from 16.5 to 34.7% for ETc 100 and Etc 60,
respectively, whereas the ipogeous dry matter (I.D.W.) significantly differed according to
the interaction between ETc ×MO. Among ETc 100, the values ranged from 21.84 to 50.0%
for ETc 100 NMO and MO, respectively, whereas among ETc 60, values ranged from 51.9
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to 65.4% for NMO and MO, respectively (Table 1). The number of first-order branches
was significantly influenced only by ETc, with values ranging from 4.6 to 5.8 for ETc 100
and ETc 60, respectively. Regarding the nodulation expressed by the number of nodules,
it was significantly affected by MO and GE. Concerning the effect of MO, the number of
nodules varied from 48.6 to 74.1 for MO and NMO, respectively, and regarding GE, the
values fluctuated from 35.2 to 87.5 for B and A, respectively (Table 2 and Figure 4).
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  Yield kg 
m−2 

Pod N° 
m2 Pod Ø (mm) 

Pod 
Length 

(cm) 

Pod 
Weight 

(g) 
N° Branch E.F.W. 

(g) 
I.F.W. 

(g) 
E.D.M. 

(%) 
I.D.M. 

(%) 
N° Nod-

ules SPAD 

Yield kg m−2 1            
Pod N° m2 −0.092 1           

Figure 4. Details of roots and nodules among the thesis. Differences in nodulation can be observed
between the two different irrigation regimes (ETc 100 and ETc 60), by application of PGPMs (MO or
NMO) and between the two genotypes of snap bean adopted: Domino (A) and Maxi (B).

The SPAD was significantly influenced by ETc, MO, and GE. Regarding ETc, the
values ranged from 44.6 to 45.9 for ETc 60 and ETc 100, respectively. Concerning the MO
application, the values varied from 44.2 to 46.3 for NMO and MO, respectively. Regarding
GE values, the range fluctuated from 44.6 to 45.8 for A and B, respectively (Table 2).
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3.2. Correlations

The Pearson’s correlations determined among the experimental factors highlighted
some parameters for better understanding and distinguishing the effect of the microbial
treatment in deficit regime conditions between the two genotypes studied (Table 3). The
yield was positively correlated with pod diameter, pod length, and the pod weight, which
indicates how the pod’s characteristics influenced the yield. It is interesting that the yield
was also positively correlated to the E.F.W. and negatively correlated to the N◦ of branches
and the N◦ of nodules. Regarding the pod number, it was positively correlated with the
I.F.W and the N◦ of nodules, and negatively correlated with the pod weight. The pod
diameter was positively correlated with the pod length and the pod weight, and was
otherwise negatively correlated with the N◦ of nodules. The pod length was positively
correlated with E.F.W. instead, and the pod weight was negatively correlated with the N◦

of branches and the N◦ of nodules. The N◦ of branches was positively correlated with
E.D.M., I.D.M., and the N◦ of nodules. Concerning E.F.W., it was positively correlated with
I.F.W. and negatively correlated with E.D.M; otherwise, E.D.M. was positively correlated
with I.D.M.

Table 3. Pearson’s correlations of the characteristics analyzed.

Yield kg
m−2

Pod N◦
m2

Pod Ø
(mm)

Pod
Length

(cm)

Pod
Weight

(g)

N◦
Branch

E.F.W.
(g)

I.F.W.
(g)

E.D.M.
(%)

I.D.M.
(%)

N◦ Nod-
ules SPAD

Yield kg m−2 1
Pod N◦ m2 −0.092 1

Pod Ø (mm) 0.582 ** −0.177 1
Pod length (cm) 0.506 * 0.257 0.730 ** 1
Pod weight (g) 0.670 ** −0.745 ** 0.475 * 0.169 1

N◦ Branch −0.520 ** 0.229 −0.163 −0.150 −0.523 ** 1
E.F.W. (g) 0.413 * 0.221 0.355 0.415 * 0.102 −0.035 1
I.F.W. (g) −0.050 0.608 ** −0.137 0.317 −0.391 0.182 0.502 * 1

E.D.M. (%) −0.472 * −0.189 −0.142 −0.260 −0.269 0.423 * −0.598 ** −0.353 1
I.D.M. (%) −0.050 0.076 0.359 0.168 −0.233 0.432 * −0.116 −0.318 0.589 ** 1

N◦ nodules −0.622 ** 0.518 ** −0.604 ** −0.261 −0.691 ** 0.464 * −0.161 0.398 0.045 −0.226 1
SPAD 0.444 * −0.068 0.432 * 0.230 0.207 −0.039 −0.172 −0.301 0.299 0.583 ** −0.446 * 1

*: Correlation significative at 0.05; **: correlation significative at 0.01.

Interesting correlations were also found regarding the SPAD, which was positively
correlated with yield, pod diameter, and I.D.M, whereas it was negatively correlated with
the number of nodules.

3.3. Principal Component Analysis (PCA)

From the analysis of the data by principal component analysis, a total of 12 principal
components (PC) were observed, and among them, the first two were responsible for 70.39%
of the total variance registered. The first two PC were used to describe the distribution
in a two-dimensional space limited by the principal detected components (Figure 5). The
PCA analysis showed that the PC1 is positively correlated with yield, pod Ø, pod length,
pod weight, and E.F.W., and was negatively correlated with N◦ of branches, E.D.M., and
nodule N◦, representing 44.70% of the total variance (Table 4, Figure 5). Concerning the
PC2, it was positively correlated to Pod N◦ and I.F.W., and it represented 29.09% of the total
variance (Table 4). The distribution of the studied parameters can be subdivided into two
main blocks, one represented (in the space at the bottom) by genotype B while genotype A
is distributed in the space at the top (Figure 5). The PCA clearly shows different responses
to MO under the different ETcs; the distance between the MO and NMO sample is higher
in B than A in both ETc 60 and 100. Interestingly, there is poor distance between 60_MO_B
and 100_MO_B.
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Table 4. PCs matrix related to the characteristics analyzed.

Component Scores

PC1 PC2

Yield kg m−2 0.976 0.068
Pod N◦ m−2 −0.299 0.722
Pod Ø (mm) 0.849 −0.246

Pod length (cm) 0.705 0.229
Pod weight (g) 0.762 −0.335

N◦ Branch −0.745 −0.353
E.F.W. (g) 0.668 0.576
I.F.W. (g) −0.032 0.844

E.D.M. (%) −0.547 −0.750
I.D.M. (%) −0.076 −0.624

N◦ nodules −0.850 0.458
SPAD 0.417 −0.570

% of Variance 42.00 28.39
Extraction Method: Principal Component Analysis with two components extracted.

Extraction Method: Principal Component Analysis with two components extracted.

4. Discussion

Abiotic stresses are hostile to plant growth and development. In particular, water
deficiency is a severe constraint that affects growth and limits agricultural productivity on
a global scale, a reason why several authors focused their attention on the optimization of
strategies to ameliorate water deficit [43–46].

Plant-growth-promoting microbe (PGPM) treatment may be advantageous in the
contest of water deficit regimes; it is demonstrated, in fact, that both PGPR and PGPF guar-
antees the survival of the plant during a drought through a variety of processes including
osmotic adjustments, improved phytohormone synthesis, and antioxidant activity, among
others, and these mechanisms also promote the plant’s development while improving crop
yield [27,47–50].

Farmers and companies now recognize the usefulness of PGPM in promoting plant
growth and yield. In fact, several PGPM-based formulates are commercialized and
widespread [27,51]. On the basis of the recent literature [52–54], the hypothesis to verify
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is that this type of formulation could be useful in overcoming drought stress by improv-
ing plants’ growth and final yield. The results obtained from the present experiment are
compatible with what has already been reported in literature [54–57], and confirm the
usefulness of the formulation in improving yields both in optimal water supply and in
case of drought stress. In literature, it is reported that the factors influencing the efficacy of
microbial treatments are complex and genotype dependent [27]. Consequently, a different
effectiveness of the consortium was found between the two cultivars used in the experiment
(Domino and Maxy). Despite this, for both genotypes, an increase in terms of yield, pod
diameter, and fresh weight were observed for the plants where the PGPM-based product
was applied in both irrigation regimes. Between the two genotypes, Maxy benefited more
from the treatment than Domino (Table 2), confirming the hypothesis that applying soil
microorganisms to cropping schemes is genotype dependent. In particular, comparing
the data obtained in ETc 100 in the untreated control theses with the ETc 60 theses treated
with MO, it’s clear that the values are comparable (Figure 5), thus observing compensation
of the stress by the treatment. This result is of high importance when concerning water
shortages in many environments and/or the need to save water for a better approach to
the sustainability of farming practices.

Another interesting point of discussion concerns the nodulation. The nodules of
legumes are of particular interest for the scientific community, as the site of nitrogen
fixation by means of symbiotic nitrogen-fixing bacteria. Root nodules of legumes are the
product of a highly specific interaction between the bacteria involved (rhizobia) and plants’
roots or stems [58]. The inverse correlations observed between yield, pod size, and number
of nodules are interesting. The number of nodules observed on the roots was lower in
plants with higher yield and pod diameter, both in relation to ETc, GE, and to the Maxy Soil
application. However, as reported in literature and as confirmed by the cumulative yield
curve (Figure 2), this can be explained by assuming a greater metabolic activity of the plant,
which close to the end of the cropping cycle, has reinvested its resources by subtracting
nutrients from the nodules to reinvest them in the growth of the pods. In fact, the literature
reports how the plant can regulate nodulation according to its specific needs [59]. Obviously,
in order to better clarify the effect of this type of commercial microbial formulations on
nodulation, more specific and in-depth studies are needed, focusing on the interaction
between applied PGPMs, symbiotic rhizobia, and the plant response.

5. Conclusions

The PGPM based products mentioned in the present paper has brought an increase in
yield both in optimal irrigation conditions and in deficit water conditions. The increase
of yield was observed in both genotypes, but between these, the cultivar “Maxy” took the
greatest advantage of the treatment, observing an almost complete compensation of the
water stress. Furthermore, the inverse correlation between nodulation and yield suggests a
reinvestment of the plant’s nutritional resources in the last phases of the cropping cycle,
which leads to the detriment of the nodules, and benefits the pods’ growth.

According to what is reported in literature, the study confirms the effectiveness of
PGPM applications in improving the growth and yield of crops both under optimal condi-
tions and under stress, while taking into account the variability found between genotypes.
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