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Abstract: South Italy is characterised by a semi-arid climate with scarce rain and high evaporative 

demand. Since climate change could worsen this condition, the need to optimise water resources in 

this area is crucial. In citrus cultivation, which involves one of the most important crops bred in 

Southern Italy, and more generally in Mediterranean regions, deficit irrigation strategies are imple-

mented in order to cope with limited resource availability. On this basis, knowledge on how the 

territorial distribution of citrus would change in relation to these strategies represents valuable in-

formation for stakeholders. Therefore, the objective of this study was to determine the probability 

of the presence of citrus in Sicily based on changes in the percentage of water deficit in order to 

identify and analyse change in the surface area as well as the location of the crop. The methodology 

was based on the application of species distribution models (SDM) and Geographic Information 

Systems (GIS) to the case study of the province of Syracuse in Sicily. Different geostatistical and 

machine learning models were applied based on bioclimatic variables measured over three decades, 

a Digital Terrain Model and irrigation. Assessment of the outcomes was carried out using classifica-

tion evaluation metrics. The analysis of the outcomes showed that uncorrelated predictor layers 

mainly included water input that most affected the probability of the presence of citrus fruits. More-

over, GIS analyses showed that deficit irrigation strategies would generate an overall reduction of 

cultivation surfaces in the territory (e.g., for the Random Forest model the surface reduction was 

equal to 41.15%) and a decrease of citrus presence in southern areas of the considered territory. In 

this area, climate conditions are less favourable in terms of temperature and precipitation; thus, 

these analyses provide useful information for decision support tools in agriculture and land use 

policy. 

Keywords: VisTrails:SAHM software; citrus; spatial distribution; probability of presence;  

Mediterranean climate; predictor layers 

 

1. Introduction 

The sustainable use of natural resources is one of the most important targets of 

Agenda 2030. This target becomes even more crucial in agriculture considering that global 

warming, by producing temperatures that increase and modify weather patterns, could 

have considerable effects on resources vital for agriculture, such as water availability. 

Sicily is a region highly suited to agriculture. In 2018, the production of citrus fruits 

in Sicily reached a value of around 600 million euros, calculated based on the basic prices 

of the citrus sector and the agricultural sector in South Italy. Sicily is the primary national 

region for citrus production, incorporating extended areas such as, for example, the Plain 

of Catania, which covers 43,000 hectares [1]. 

In the Syracuse province, especially in the territories of Carlentini, Lentini and Fran-

cofonte, there is an excellent quality of citrus fruits recognised at the European level with 

the label of PGI (Protected Geographical Indications). 
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In the Mediterranean semi-arid environment, irrigation plays a crucial role in the 

success of citrus production. It is therefore essential to manage the available water re-

sources in a sustainable way in order to optimise the productivity of citrus groves as well 

as enhance their adaptation to conditions of water shortage. For instance, this has been 

the case in drought management in Morocco, which has a high level of production (about 

2.2 million tons of citrus in 2014) and an increasing  area of cultivated citrus (24 percent 

between 2008 and 2014) [2]. 

Species distribution models (SDM) and Geographic Information Systems (GIS) have 

been applied for different types of geospatial studies at different territorial levels (global, 

regional, provincial and municipal). Examples of those applications range from ecologo-

climatic and geographical divergence of plant species [3] to potential biomass exploitation 

[4], risk assessments, prediction of future potential establishment of invasive species [5] 

and climate adaptation planning for protected areas [6]. 

SDMs are frequently used to forecast shifts in the geographic distribution of species  

under conditions of climate change. When associations between species ranges and envi-

ronmental factors can be reliably used to estimate ecological requirements, these associa-

tions can be utilised to forecast species range shifts under climate change scenarios [7]. In 

this field, the use of GIS tools provides an added value to the analysis of spatial distribu-

tion of the probability of species presence and to the analysis of input and output produc-

tion. 

The use of satellite remote sensing to map the distribution of invasive plants has been 

complemented by SDMs. In particular, some authors [8] tested the response of the soft-

ware and five models on the distribution of an invasive species (Tamarix spp.) along the 

Arkansas River in Southeastern Colorado, and a previous study [9] analysed the distribu-

tion of Bromus tectorum L. in Rocky Mountain National Park (CO, USA). 

A key issue limiting the use of SDMs is the development of sound and replicable 

models; therefore, reliable processes should be proposed and easily replicable outputs 

such as response curves for expert review should be considered. 

In SDMs, the application of algorithms to a specific species and specific conditions 

requires in-depth investigation. In fact, based on the state-of-the-art, there is a lack of in-

vestigation of the feasibility of employing these promising tools in relation to citrus pro-

duction in the Mediterranean area. Specific studies are required to improve the applica-

tion of these tools in order to provide useful information for decision support tools in 

agriculture and land use policy in specific climatic conditions. 

Therefore, the main aim of the present study was to produce valuable information 

for resource optimisation by pursuing the following objectives: (1) investigate the feasi-

bility of SDM application to citrus in the Mediterranean climate; (2) analyse the main fac-

tors influencing the presence of the citrus plant; (3) simulate the effects of deficit irrigation 

on the spatial distribution of citrus in the territory. 

2. Materials and Methods 

The methodology was based on the application of SDM and GIS tools. Different ge-

ostatistical and machine learning models were applied and the outcomes were compared 

using appropriate metrics. In particular, VisTrails:SAHM software was utilised. 

VisTrails:SAHM is an open-source provenance management and scientific workflow sys-

tem designed to integrate the best of both scientific workflow and scientific visualisation 

systems. It combines a provenance-enabled workflow system with powerful visualisation 

techniques [10]. The software allowed for utilisation of the SDM algorithms (i.e., MaxEnt, 

Boosted Regression Tree (BRT), Multivariate Adaptive Regression Splines (MARS), Gen-

eralized Linear Model (GLM) and Random Forest (RF)) in order to predict the distribution 

of citrus across geographic space. 

The strength of this software is the use of several algorithms that facilitate identifica-

tion of the best representative model for the data. 
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The methodology defined in this study was developed in three phases. The first 

phase concerns the acquisition and processing of the input dataset, with the support of 

GIS tools to manage spatial data. In the second phase, the modules of the software 

VisTrails:SAHM (VisTrails v.2.2.3 and SAHM v.2.0.1) were analysed and applied. Finally, 

the results obtained were assessed through specific metrics and mapped by using GIS 

tools. 

2.1. Study Area and Period of Simulations 

The methodology was applied to the case study of the province of Syracuse in Sicily 

(Italy). The province of Syracuse extends for about 2100 km2 and represents the southern-

most geographical part of Italy (Figure 1). From a geological point of view, the Syracuse 

area is characterised by a mountain range called Monti Iblei [11]. 

Based on data availability, described in the following sections, the year 2000 was used 

for the simulation period, although the methodology could also be applied to different 

time series. 

 

Figure 1. Location of Syracuse province within Sicily (Italy). 

2.2. Input Data Acquisition and Processing 

The VisTrails:SAHM requires data regarding the presence of the species in .csv format 

and other predictor layers in raster format (i.e., .tiff). 

Citrus presence (Figure 1) data were obtained by overlaying the Sicilian Technical 

Regional Cartography (TRC) with the IT2000 orthophotos available in the Sicilian Land 

Information System (SITR). The orthophotos are derived from aerial acquisition, are geo-

metrically corrected and are georeferenced within the ATA2000 project, which is commis-

sioned by the Sicilian Region. The overlay was carried out by using GIS software (specif-

ically, ArcGIS® for Desktop 10.3 and QGIS 3.10.0). In detail, about 10,000 georeferenced 

presence points were used as input data in the VisTrails:SAHM. 

By using the GIS tools, 19 bioclimatic variables (Table 1) provided by the WorldClim 

database for three decades, from 1970 to 2000, were represented in raster format. World-

Clim data are routinely used for cropland suitability studies because they provide a com-

prehensive picture of monthly, quarterly and annual bioclimatic conditions [12]. 

Table 1. Explanation of the WorldClim bioclimatic variables. 

Variables Description Unit of Measure 

BIO1 Annual Mean Temperature Degrees Celsius 

BIO2 Mean Diurnal Range Degrees Celsius 

BIO3 Isothermality Percent 

BIO4 Temperature Seasonality Temperature (degrees Celsius) 

BIO5 Max Temperature of Warmest Month Degrees Celsius 

BIO6 Min Temperature of Coldest Month Degrees Celsius 
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BIO7 Temperature Annual Range Degrees Celsius 

BIO8 Mean Temperature of Wettest Quarter Degrees Celsius 

BIO9 Mean Temperature of Driest Quarter Degrees Celsius 

BIO10 Mean Temperature of Warmest Quarter Degrees Celsius 

BIO11 Mean Temperature of Coldest Quarter Degrees Celsius 

BIO12 Annual Precipitation Millimeters 

BIO13 Precipitation of Wettest Month Millimeters 

BIO14 Precipitation of Driest Month Millimeters 

BIO15 Precipitation Seasonality (Coefficient of Variation) Percent 

BIO16 Precipitation of Wettest Quarter Millimeters 

BIO17 Precipitation of Driest Quarter Millimeters 

BIO18 Precipitation of Warmest Quarter Millimeters 

BIO19 Precipitation of Coldest Quarter Millimeters 

Furthermore, the set of covariates was enriched by the Digital Terrain Model (DTM), 

in metres, which brings valuable information about the effects of altitude on plant pres-

ence. This layer is related to a 20 m resolution and DTM_20 was the related predictor. 

To simulate the effects of deficit irrigation, the watering volume was gradually re-

duced by 10% from the 100% values acquired from the A.C.Q.U.A project (‘Agrumicultura 

Consapevole della Qualità e Uso dell’Acqua’—‘Awareness of quality and use of water in 

Citrus cultivation’) [13], which surveyed the actual irrigation volumes in the area under 

study. These data can be acquired from the WebGIS of the project (http://www.distret-

toagrumidisicilia.it/wp-content/web_gis/index.html accessed on 5 January 2023). To 

transform irrigation data from point data to continuous data, the ‘Kriging Ordinary’ in-

terpolation method was applied with default settings to the irrigation data to produce a 

map in raster format, hereafter named Sir_Irr (m3 ha−1), suitable for the models’ input (Fig-

ure 2). 

 

Figure 2. Irrigation volumes map with data from the A.C.Q.U.A. project. 
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2.3. Modules Selection 

In the second phase of the methodology, the modules within VisTrails:SAHM were 

selected based on the scheme defined by Morisette et al. [14] (Figure 3). The scheme es-

tablishes which modules are suitable for each phase of the model in relation to problems 

of the type examined in this study. In addition to that scheme, the ApplyModel module 

was added to allow comparison among various simulations of increasing deficit irriga-

tion. 

 

Figure 3. VisTrails v.2.2.3 pipeline with the SAHM v.2.0.1 (Software for Assisted Habitat Modeling) 

for this specific study. 

The most important software modules, at each stage, were the following: 

- in the ‘Preprocessing phase’, the key module to speed up the input processing phase 

was the PARC module, which allows for projection, aggregation, resampling and 

clipping of input geospatial data to match the TemplateLayer; 

- in the ‘Preliminary model analysis and decision’ phase, the ModelSelectionSplit and 

CovariateCorrelationAndSelection modules were used. The first module reserves some 

of the data from the model training process for testing the model and reports evalu-

ation metrics on all models. Based on the literature in this field, the training ratio of 

70% with a testing ratio equal to 30% for presence data was considered in this study. 

In fact, the amount of presence data proved to be critical for the prediction, and those 

ratios produced a more robust model [6,8,9]. 

Finally, the CovariateCorrelationSelector module provides a breakpoint in the model-

ling workflow to allow the user to evaluate how each variable explains the distribution of 

the sampled data points and allows the user to remove any variables that may be highly 

correlated with others [15]; in fact, collinearity can lead to large model prediction errors 

[6]. To select only predictors that were less strongly correlated, the maximum value be-

tween the Pearson, Spearman and Kendall coefficients calculated for the pairs of variables was 

used; specifically, the threshold value for the three coefficients was set to ±0.8 [4,16,17]. 

Therefore, since coefficient values higher than the thresholds infer that there is a strong 
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association between the two variables, in this case one of the two variables was considered 

and the other was discarded. 

The description of the influence of predictors in the model was analysed through the 

responseCurve graphs provided by the software for each model. They describe the values 

of each predictor in relation to the probability of presence in order to select the range 

where the probability is higher, and describe the contribution of the predictor to the prob-

ability for the specific model [18]. 

2.4. Accuracy Measures 

In this study, the measurement of the accuracy of the SDM classifications was con-

ducted through calculation of the Receiver Operating Characteristic (ROC) curve and the 

related metric Area Under the Curve (AUC), a threshold-independent metric that evalu-

ates the ability of a model to discriminate the presence from the background [8,9]. 

For the interpretation of the values of the area under the ROC curve it is possible to 

refer to the classification reported in the study of D’Arrigo et al. [19]: 

1) AUC = 0.5 the test is not informative; 

2) 0.5 < AUC ≤ 0.7 the test is inaccurate; 

3) 0.7 < AUC ≤ 0.9 the test is moderately accurate; 

4) 0.9 < AUC < 1.0 the test is highly accurate; 

5) AUC = 1 perfect test. 

Moreover, ΔAUC values, computed as the difference between the AUC of the train-

ing and the AUC of the testing, were considered for assessing overfitting, according to 

Mukherjee et al. [20]. Specifically, when the ΔAUC value exceeds 0.05, overfitting occurs 

[21]. 

Moreover, True Skills Stat (TSS) [22] was considered in this study to compare the dif-

ferent models by applying the following relations (Equation (1)): 

TSS = Sensitivity + Specificity − 1 (1)

in which Sensitivity (Equation (2)) (or True Positive Rate—TPR) and Specificity (Equation 

(3)) (or True Negative Rate—TNR) are defined as: 

Sensitivity (TPR) = 
  ��

��� ��
 (2)

Specificity (TNR) = 
  ��

��� ��
 (3)

where TP is the number of True Positives, FN is the number of false negatives, TN is the 

number of True Negatives, and FP is the number of False Positives. 

The thresholds for significance of these metrics are referred to as random rankings. 

These have on average an AUC value of 0.5, whereas a perfect ranking achieves the best 

possible AUC value equal to 1.0; models with values above 0.75 are considered potentially 

useful [23]. TSS ranges from −1 to +1, where +1 indicates perfect agreement and zero or 

negative values indicate a performance no better than random [19].In this study, accord-

ing to some authors [24,25], the difference ΔTSS between training and testing was com-

puted in order to analyse TSS.  

To divide the continuous model predictions into binary presence/absence predic-

tions, the maps were produced by using thresholds specifically computed by the software 

for each model [26]. 

Elaborations on output surfaces at a 10% step of probability (classes 1 to 10) were 

carried out by computing the weighted variation in percentage between the surface Supi 

related to the considered deficit irrigation level and the surface Sup100 related to 100% ir-

rigation, according to the following relation (Equation (4)): 

���� =  
(�����������)

 ������
  (4)
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Moreover, other elaborations were carried out to relate the surface area of the class 

to the overall surface of the province. 

3. Results and Discussion 

All models showed a quite stable output: there was wide consensus among the dif-

ferent models on the location of areas with the highest probability of presence for the spe-

cies. Specifically, the results showed that the highest probability of presence of citrus trees 

in the study area was found in the northern areas of the province and in eastern ones (i.e., 

in the municipalities of Syracuse, Noto and Avola). The central and southern areas were 

considered unsuitable by all models (Figure 4). General results were consistent with data 

showing that reliable processes have been proposed. 

In Figure 4, according to Akpoti [18], the probability was subdivided into pres-

ence/absence through the utilisation of the threshold values computed by each SDM in 

order to allow comparisons among the different models’ outputs. The threshold values 

obtained for this case study were: 0.59 for RF; 0.55 for Mars; 0.4095 for MaxEnt; 0.61 for 

GLM; and 0.57 for BRT. 

Based on these thresholds and the use of GIS tools, a detailed territorial analysis at 

the provincial level was carried out (Figure 4). Presence areas (in green colour) have a 

continuous aspect in GLM, MARS and MaxEnt models (Figure 4b–d), whereas in RF and 

BRT models (Figure 4a,e) those areas are composed of polygons with holes. The greatest 

differences among the models’ outputs were found in the northern part of the province 

(especially in the municipalities of Francofonte, Carlentini and Augusta) and in the inner 

part of the territory (municipalities of Sortino and Floridia), where, for instance, the MARS 

model showed no presence of the species. 

The overall surface area (km2) where the models predict a probability of presence 

above the threshold (in green) are the following: 519.59 for BRT; 484.35 for GLM; 505.17 

for MARS; 676.30 for MaxEnt; and 401.45 for RF. Therefore, the RF model underestimated 

most compared to the average value of the model predictions, whereas the MaxEnt model 

overestimated. The differences among the simulations of the presence areas obtained by 

the BRT, GLM and MARS models were not great (with a maximum of about 35 km2), and 

the information of the territorial distribution of probability of presence acquired by GIS 

representation was extremely valuable. 

For a more in-depth spatial analysis of the results, the probability was subdivided 

into 10 classes, at 10% intervals of probability, in order to refine comparison among the 

different areas (Figure 5). The surfaces of each class were calculated for each model by 

using the QGIS software (Table 2). From the comparison of Class 10 obtained by the RF 

and BRT models, the localisation of the areas was similar (in the municipalities of Lentini, 

Augusta, Carlentini, Francofonte, Melilli, Sortino, Siracusa and Avola e Noto) and quite 

spread out, though the surfaces were wider in the RF model than in the BRT model. In the 

GLM model, Class 10 was found in a lower number of areas (in the municipalities of Fran-

cofonte and Lentini) and in even fewer for the MARS model (in Carlentini municipality). 

The greatest surface areas for Class 1 (1178.5 km2) and Class 10 (116.1 km2) were confirmed 

for the RF model. 
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(e)  

Figure 4. Probability Maps, obtained by applying the threshold for probability for each model, in 

the province of Syracuse: (a) BRT; (b) GLM; (c) MARS; (d) MaxEnt; and (e) RF. 

  
(a) (b) 
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(c) (d) 

 

 

(e)  

Figure 5. Probability Maps, obtained by applying the 10-classes subdivision for probability, for each 

model in the province of Syracuse: (a) BRT; (b) GLM; (c) MARS; (d) MaxEnt; and (e) RF. 

Moreover, the sum of the surfaces from Class 7 to Class 10 for each model that re-

quired summing the values from Class 5 to 10, except for the MaxEnt model, confirmed 

the outcomes obtained by the application of the thresholds, i.e., MaxEnt had the highest 

area (703.1 km2) whereas RF had the lowest one (393.3 km2). GLM was close to the mean 
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value of the overall surface computed on all of the models’ outputs (496.46 km2) and BRT 

and MARS slightly overestimated the overall surface area (444.8 and 442.7 km2, respec-

tively), whereas MaxEnt highly overestimated and RF moderately underestimated com-

pared to the average value. 

Table 2. Values of the surface areas (km2) for each class and model: in bold green the presence data, 

while in red the absence data. 

Class BRT RF MAXENT GLM MARS 

1 961.8 1178.5 688.7 826.0 715.9 

2 187.9 175.3 197.3 189.6 210.9 

3 140.3 111.2 235.4 175.0 173.4 

4 133.3 84.5 278.4 163.9 191.8 

5 125.4 79.8 315.5 120.1 232.2 

6 115.6 80.3 385.4 130.1 136.1 

7 122.50 82.3 2.2 176.6 122 

8 147.90 88.1 0.0 190.4 152.8 

9 153.40 106.8 0.0 127.1 164.3 

10 21.00 116.1 0.0 4.3 3.6 

To assess which model had a higher capability to estimate the probability of the pres-

ence of citrus, the metrics produced by the SDM in VisTrails:SAHM were considered and 

analysed. 

The analysis of the metrics for the classifications (Tables 2 and 3) highlighted that the 

AUC of all the models exceeded 0.83; therefore, the classifications were assessed as ‘very 

good’, and the TSS was higher than 0.50. 

Based on the results reported in Table 2, the BRT model had the highest metrics for 

training among the models whereas the MARS model showed the lowest metrics. 

In Table 3, the BRT model shows a ΔAUC equal to 0.08, thus highlighting that model 

overfitting is high, and therefore this SDM was not considered as adequate. In detail, over-

fitting would make the algorithm produce very different predictions for similar data (low 

bias and high variance). The lowest ΔAUC equal to 0 was found for the RF model, while 

the values for MARS, GLM and MaxEnt showed a ΔAUC in the order of hundredths, thus 

also suitable because of the low overfitting associated. 

Moreover, for ΔTSS, Table 4 shows that the BRT model had a high value (about 0.15) 

compared to those of the other SDMs, which had values in the range 0 ÷ 0.005. 

Based on all the considerations described above, RF can be considered the model with 

the highest ability to predict citrus coverage. Therefore, the subsequent simulations on 

deficit irrigation were carried out by applying the RF model. 

Table 3. Values of the metrics for training and testing and for each model. 

 Model Metrics for Training Model Metrics for Testing 

BRT GLM MARS MAXENT RF BRT GLM MARS MAXENT RF 

AUC 0.91 0.85 0.83 0.86 0.88 0.83 0.85 0.83 0.85 0.88 

PCC 82.60 76.30 75.70 77.60 81.10 75.15 76.33 75.40 77.70 80.82 

TPR 0.82 0.76 0.76 0.77 0.81 0.75 0.76 0.76 0.79 0.81 

TNR 0.83 0.77 0.76 0.78 0.81 0.75 0.77 0.75 0.77 0.81 

TSS 0.65 0.53 0.51 0.55 0.62 0.50 0.53 0.51 0.55 0.62 

  



Agronomy 2023, 13, 549 12 of 17 
 

 

Table 4. Values of ΔAUC e ΔTSS for the different SDMs. 

 BRT GLM MARS MAXENT RF 

ΔAUC 0.0819 0.002  - 0.001 0.006 0 

ΔTSS 0.148941  - 0.001 0  - 0.003 0.005 

3.1. Deficit Irrigation 

To simulate the effects of deficit irrigation, the watering volume was gradually re-

duced by 10%, from 100% of the actual irrigation volume to 50%. 

Based on the results of the elaborations, the probability maps showed that the in-

creasing reduction of irrigation volume produced a reduction of the probability values of 

species presence, though the localisation of the areas was similar (Figure 6). Moreover, the 

greater the reduction of irrigation volume the greater the reduction of probability. The 

considerations derived from the maps are confirmed by the numerical data processed (Ta-

bles 5 and 6). 

For RF, the sum of the surface areas from Class 7 to 10 proved that the deficit irriga-

tion simulations would cause a maximum surface reduction of 173.41 km2 (at a deficit 

irrigation equal to 50% of the actual) and a minimum one of 75.99 km2 (at a deficit irriga-

tion equal to 90% of the actual value) with an average value of 122.32 km2 (Table 5). 

The reduction of irrigation would highly affect the probability of species presence, 

especially for Classes 9 and 10. For instance, for a 90% irrigation the surface of Class 10 

would decrease by 85.36%(compared to 100% irrigation), and would decrease from 5.51% 

to 0.81% in relation to the whole surface of the province (Tables 6 and 7).  In contrast, for 

a deficit irrigation equal to 80% of the actual value, the surface area for Class 10 is 9.20 km2 

(- 92.07%) and 37.56 km2 (- 64.82%) for Class 9 (Tables 5 and 6). However, an increase of 

the surface of intermediate classes, mainly 6 and 7, would occur. For instance, the surface 

of Class 7 would increase by 65.29 km2 (mainly in the municipality of Lentini) compared 

to 100% irrigation, under the hypothesis of a reduction of irrigation to 60%. 

Although the loss of probability in one class could be compensated by the area in a 

lower class (albeit always considering the Classes 7 to 10, that have a higher probability 

than about 0.6, according to the thresholds of presence/absence), the surface loss would 

range from 19.3% (at 90% deficit irrigation) to 44.09% (at 50% deficit irrigation). 

In Table 6, the weighted variation in percentage between the deficit irrigation level 

and the 100% irrigation was reported; Dsup shows that the probability of presence drasti-

cally reduced for Classes 8 to 10 during increased irrigation reduction in the territory. This 

is confirmed in the probability maps, where as the irrigation contribution decreases there 

is a progressive reduction in the extent of the presence of the species in the areas until the 

presence remains only in the north and east of the provincial territory. 

Therefore, the spatial analysis outcomes show that eastern and northern areas of the 

province would be the most suitable for deficit irrigation for this kind of species, whereas 

for the southern citrus producing areas of the province it would not be advisable to per-

form deficit irrigation. 
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Figure 6. Probability Maps for RF model, reporting a deficit irrigation of 80% (a) and 50% (b) of the 

actual value, in the province of Syracuse. 

Table 5. Values of the surface areas Si (km2) for the deficit irrigation from 100% to 50% of the actual 

value and the ten classes, for the RF model. 

Surface Areas Si [km2] for RF 

Sir_Irr [%] 
Class 1 

(0–0.1) 

Class 2 

(0.1–0.2) 

Class 3 

(0.2–0.3) 

Class 4 

(0.3–0.4) 

Class 5 

(0.4–0.5) 

Class 6 

(0.5–0.6) 

Class 7 

(0.6–0.7) 

Class 8 

(0.7–0.8) 

Class 9 

(0.8–0.9) 

Class 10 

(0.9–1) 

100 1178.51 175.31 111.24 84.47 79.82 80.29 82.30 88.11 106.78 116.12 

90 1037.24 258.91 135.18 114.69 110.68 128.96 133.06 104.70 62.56 17.00 

80 938.60 297.99 173.17 132.91 126.14 150.23 146.69 90.47 37.56 9.20 

70 897.24 323.55 190.02 136.93 126.88 151.10 148.63 88.85 33.04 6.73 

60 878.25 338.28 195.36 145.18 130.22 159.13 147.59 75.55 29.10 4.30 

50 873.12 347.13 191.05 147.93 142.12 181.72 130.23 66.01 20.48 3.18 

Table 6. Values of the weighted difference in percentage Dsup, for the deficit irrigation from 100% 

to 50% of the actual value and the ten classes, for the RF model. 

Dsup [%] 

Sir_Irr [%] Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 

90 - 11.99 47.69 21.51 35.77 38.65 60.62 61.67 18.82 - 41.42 - 85.36 

80 - 20.36 69.98 55.67 57.34 58.02 87.10 78.24 2.68 - 64.82 - 92.07 

70 - 23.87 84.55 70.81 62.09 58.96 88.19 80.59 0.84 - 69.06 - 94.20 

60 - 25.48 92.96 75.61 71.87 63.14 98.19 79.32 - 14.26 - 72.75 - 96.29 

50 - 25.91 98.00 71.74 75.13 78.04 126.33 58.23 - 25.08 - 80.82 - 97.26 
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Table 7. Values of the ratio between the surface areas Si and the total area of the province Stot for the 

deficit irrigation from 100% to 50% of the actual value and the ten classes, for the RF model. 

Si/Stot [%] 

Sir_Irr [%] Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 

100 55.88 8.31 5.27 4.01 3.78 3.81 3.90 4.18 5.06 5.51 

90 49.18 12.28 6.41 5.44 5.25 6.11 6.31 4.96 2.97 0.81 

80 49.18 12.28 6.41 5.44 5.25 6.11 6.31 4.96 2.97 0.44 

70 44.50 14.13 8.21 6.30 5.98 7.12 6.96 4.29 1.78 0.32 

60 42.54 15.34 9.01 6.49 6.02 7.16 7.05 4.21 1.57 0.20 

50 41.40 16.46 9.06 7.01 6.74 8.62 6.17 3.13 0.97 0.15 

The analysis of the ResponseCurve produced for the RF model (Figure 7) provided 

useful information about the range of the predictors that most contribute to the probabil-

ity values. 

 

Figure 7. ResponseCurves of the predictors for the RF model, for the case study analysed. 

The predictors Bio_15 (Precipitation Seasonality (Coefficient of Variation)), Bio_16 

(Precipitation of Wettest Quarter), Bio_19 (Precipitation of Coldest Quarter), Bio_9 (Mean 
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Temperature of Driest Quarter), Bio_17 (Precipitation of Driest Quarter), Bio_3 (Isother-

mality), DTM_20 and Sir_Irr were considered by the models as those affecting the proba-

bility of the presence of citrus in the case study analysed. 

The analysis of the ResponseCurve graphs produced valuable information on each pre-

dictor range associated with the fitted values while holding all other predictors constant 

at their means. These graphs can be studied to assess whether the relationships agree with 

the biological meaning of the species under study [15]. 

Specifically, the graph for DTM_20 showed that the altitudes suitable for citrus pro-

duction were correctly identified by the RF model, i.e., points with a probability greater 

than the threshold were found for altitudes lower than 400 m a.s.l. [27,28]. The response 

curves of predictors showed the following ranges where the predicted value for the prob-

ability of citrus presence is higher: Bio_3 between 35% and 39%, showing the diurnal tem-

perature range lower than annual one; Bio_19 greater than 180 mm, representing the level 

of overall precipitation during the coldest quarter of the year; Bio_15 greater than 70%, 

showing the variation of monthly precipitation during the year; Bio_16 above 220 mm of 

rain, showing the precipitation amount in the wettest quarter; Bio_17 above 15 mm, indi-

cating the minimum precipitation of the driest quarter. The contribution to prediction, 

equal to about 0.45, deriving from the values of Sir_Irr confirms the importance of water 

input for the citrus crop; in fact, most of the influential bioclimatic variables are related to 

precipitation. 

It is well known, in fact, that citrus trees require large volumes of water compared to 

other tree crops, especially when precipitation scarcity is recurrent, and require suitable 

temperature levels and other growing conditions beneficial for achieving high quality 

productions. Therefore, water consumption is one of the most demanding issues for the 

citrus sector, especially in times of climate variability and change. 

4. Conclusions 

The research study described in this paper investigated the feasibility of applying 

algorithms for SDMs to predict citrus distribution in a territory in order to derive infor-

mation on SDM application in the Mediterranean climate and analyse the main factors 

that influence the presence of the citrus plant. The aim of providing improved knowledge 

on spatial distribution of the species was also achieved by analysing the effects of deficit 

irrigation in the case study of the province of Syracuse, Italy. 

This study represents the first step toward an in-depth spatial knowledge of citrus in 

Mediterranean areas in relation to bioclimatic variables and other driving factors. Climate 

covariates and terrain elevation as well as irrigation were analysed in this study as major 

predictors suitable for this knowledge. General uniformities in the models’ predictions 

suggest that the multi-model approach contributes to an increased consistency of out-

comes. Modeling showed that the BRT and RF models produced higher evaluation met-

rics compared to the other models; however, the BRT model suffered from overfitting. GIS 

contributed to the analysis of the outcomes by showing and quantifying the spatial distri-

bution of citrus presence as well as by allowing comparison among the simulations of 

different levels of irrigation. 

This study was limited to the analysis of outcomes related to the default settings of 

the models’ parameters. Investigation on model parameters is the object of on-going stud-

ies aimed at fine-tuning the performance of the predictions, and research is in progress to 

investigate input data by involving computation of the bioclimatic data from local 

weather stations. Further analysis could consider predictions of future probability of spe-

cies presence based on climate models for the determination of future bioclimatic predic-

tors. 
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