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A B S T R A C T

Infection with meticillin-resistant Staphylococcus aureus (MRSA) continues to have significant morbidity

and mortality. Vancomycin, which has been the mainstay of treatment of invasive MRSA infections, has

several drawbacks related to its pharmacological properties as well as varying degrees of emerging

resistance. These resistant subpopulations are difficult to detect, making therapy with vancomycin less

reliable. The newer agents such as linezolid, daptomycin, ceftaroline, and the newer glycopeptides

telavancin and oritavancin are useful alternatives that could potentially replace vancomycin in the

treatment of certain conditions. By summarising the discussions that took place at the III MRSA

Consensus Conference in relation to the current place of vancomycin in therapy and the potential of the

newer agents to replace vancomycin, this review focuses on the challenges faced by the laboratory and

by clinicians in the diagnosis and treatment of MRSA infections.
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1. Introduction

Meticillin-resistant Staphylococcus aureus (MRSA) remains a
key pathogen both in community and hospital settings. Despite the
availability of antimicrobial agents such as vancomycin and
teicoplanin, and more recently linezolid and daptomycin, both
morbidity and mortality from MRSA infections remain substantial
[1,2]. The previous expert consensus conference, which took place
in Florence, Italy, published a paper in 2012 [3]. This review is a
summary of the discussions that took place at the International
Society of Chemotherapy MRSA panel meeting held in Naples in
March 2012.

The last few years have seen a surge in the availability of
antimicrobial agents active against MRSA, e.g. linezolid, dapto-
mycin, tigecycline, telavancin and ceftaroline. However, the spread
of resistance determinants among MRSA has continued. Fortu-
nately, there are still only a small number of reports of fully
vancomycin-resistant MRSA. The spread of MRSA has been
reduced in many areas of the world (e.g. the UK, USA), but serious
MRSA infections often still result in poor outcomes [4]. Thus, there
is a continuing need to develop newer, more effective antimicro-
bial agents and to explore strategies that may enhance the potency
of existing agents. This may include pharmacokinetic/pharmaco-
dynamic (PK/PD) modelling studies, the use of combination
therapy, and revisiting the current breakpoints. Antimicrobial
susceptibility testing and the use of genotypic tests for resistance
gene detection need to be standardised and must include all
appropriate resistance gene alleles (e.g. mecA and mecC). Bovine
and human strains of MRSA isolated in Denmark and the UK were
reported to carry a novel mecA homologue (originally published as
LGA251 but now renamed mecC) in a novel type XI staphylococcal
cassette chromosome. This allele was present in ca. 70% of mecA-
negative MRSA isolates [5]. How widely this gene will spread still
has to be determined. Further complicating antimicrobial suscep-
tibility testing are reports of mecA-positive invasive isolates of S.

aureus that appear to be susceptible to oxacillin by phenotypic
testing [6]. Reasons for such discrepancies may include inducible
oxacillin resistance and heteroresistance, or a non-functional mecA

determinant owing to mutation. Such discrepancies may be rare
but, given the large denominator of MRSA infections, their impact
on clinical management could be significant.

2. Place of vancomycin in the treatment of MRSA

S. aureus has evolved from susceptibility to virtually all
antimicrobial agents, including penicillin, to multidrug resistance,
including resistance to the newer agents daptomycin and linezolid.
This includes varying degrees of resistance, such as vancomycin-
intermediate S. aureus (VISA) and heteroresistant VISA (hVISA),
that are a challenge both to laboratory detection and to clinical
care. It is likely that the emergence of VISA from vancomycin-
susceptible MRSA is a multistep process. VISA emerges from hVISA,
a term that is not formally defined [7]. These phenotypic changes
are orchestrated at the genetic level through a series of events [8].

A paper by Cafiso et al. underlines the complex genetic
mechanisms that occur in the transition of vancomycin-suscepti-
ble MRSA to hVISA and VISA [9]. One mechanism of reduced
susceptibility in VISA strains is a thickened cell wall. This is the end
result of a process that is achieved either by producing excess cell
wall precursors, by reduction in autolysis, or both [10]. The genetic
mechanisms that underlie these alterations include loss of agr

functions (the agr locus contains the hld gene encoding the d-
haemolysin) and alterations in atl, lytM and sceD, among others.
Phenotypic changes include a high rate of cell wall turnover
(enhanced expression of sceD) and a change to a positive surface
charge (mprF upregulation). They result in reduced surface binding
of antimicrobial agents such as vancomycin and daptomycin.
Further changes to the regulatory mechanisms that control cell
wall autolysis (i.e. downregulation of atl and lytM) give rise to cells
with the VISA phenotype. Moreover, antimicrobial agents can
induce these responses. For example, daptomycin leads to
upregulation of the mprF gene leading to its exclusion from the
cell by the increase in cell wall positive charges. Daptomycin-
resistant mutants additionally demonstrate increased expression
of the dlt operon, which increases the net surface charge on the cell.
Acquisition of a positive surface charge in daptomycin-resistant
cells is a dynamic process due to several mechanisms that operate
in opposite directions. Mishra et al. hypothesised that the initial
negative charge is a result of glutamate amidation on the cell
surface, which leads to rapid entrapment of positively charged
daptomycin molecules, followed by the overexpression of mprF

(perhaps as a result of daptomycin-mediated induction) leading to
acquisition of positive charges on the surface [11].

Whatever the genetic mechanisms, the ultimate biological
outcome is reduced in vitro susceptibility to vancomycin. The
extent to which these changes result in clinically relevant levels of
resistance is uncertain, although cumulative data and opinion
suggest that the utility of vancomycin in clinical practice may be
limited as a result of these evolutionary changes. Thus, in an
observational study of 1994 episodes of bacteraemia due to either
MRSA or meticillin-susceptible S. aureus (MSSA), treatment with a
glycopeptide was an independent predictor of higher mortality
irrespective of meticillin resistance [12]. However, a substudy of
532 episodes found that mortality was significantly higher if the
vancomycin E-test minimum inhibitory concentration (MIC) of the
causal isolate was >1.5 mg/mL regardless of whether treatment
was with vancomycin or flucloxacillin [13]. The latter finding
suggests that the complex changes associated with the VISA and
hVISA phenotypes have an influence on the course of infection
quite apart from the efficacy of glycopeptides.

Evidence for a reduction in vancomycin efficacy against MRSA
strains for which the vancomycin MIC is �2 mg/mL is accumulat-
ing; hence, the potential of clinical failure of vancomycin for
treating infections caused by such strains should be considered.
Risk factors for infection caused by MRSA strains with higher
vancomycin MICs include exposure to vancomycin in the month
prior to infection, recent hospitalisation or surgery, and bacter-
aemia prior to admission to an intensive care unit (ICU) [14,15].
Overcoming high vancomycin MICs by targeting higher trough
levels has not been successful. In a prospective cohort study,
Hidayat et al. reported that despite achieving the target trough
level of at least four times the vancomycin MIC of the infecting
isolate, patients in the high (�2 mg/mL) vancomycin MIC group
had significantly lower end-of-treatment responses (62% vs. 85%;
P = 0.02) and a numerically higher mortality (24% vs. 10%; P = 0.16)
compared with patients in the low (<2 mg/mL) vancomycin MIC
group, with high vancomycin MIC being an independent predictor
of poor outcome [16].

The global emergence of strains of S. aureus with reduced
susceptibility to vancomycin within what is considered the
susceptible range is widely acknowledged. However, there is
debate about whether there has been a gradual increase in the
MICs of vancomycin against S. aureus strains, i.e. ‘MIC creep’. The
phenomenon of vancomycin MIC creep, mostly in the susceptible
range, was first observed in the last decade, with several
independent studies reported increasing MICs in S. aureus strains
over a variable period of time [17–20]. However, other centres
found no evidence of MIC creep [21,22] or evidence of reduction in
MICs over time [15]. Alós et al. demonstrated that such MIC
changes were not observed in areas of low vancomycin use [23].
Kehrmann et al. suggested that the phenomenon was regional [24],
whilst storage may result in reduced MICs, thus calling into
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question the interpretation of studies including stored isolates
[25,26]. Finally, the ideal laboratory method for detection of hVISA,
which is conceivably responsible for even higher rates of failure of
vancomycin therapy, has yet to be established. van Hal et al.
compared the macromethod E-test (MET), the glycopeptide
resistance detection (GRD) E-test, the standard vancomycin E-
test, vancomycin broth microdilution (BMD) and VITEK1 2 testing
using population analysis profiling utilising the area under the
concentration–time curve (PAP-AUC) as the standard. The
sensitivities and specificities of MET, GRD E-test, BMD (with an
MIC cut-off �2 mg/mL) and standard vancomycin E-test (also with
an MIC cut-off �2 mg/mL) were 89% and 55%, 71% and 94%, 82% and
97%, and 71% and 94% respectively. The most cost-effective
strategy was BMD singly or in combination with PAP-AUC [27]. On
the other hand, there are practical difficulties in carrying our PAP-
AUC on a routine basis, and screening of isolates on brain–heart
infusion agar containing teicoplanin 5 mg/mL followed by MET has
been successfully used for determining the prevalence of hVISA
[28]. As is true for any other test, the sensitivity and specificity
depend upon the prevalence of hVISA. Although no methodology is
perfect, it could be argued that the likelihood of hVISA is greater
when the vancomycin MIC is �2 mg/mL by E-test, and lesser if the
MIC is lower, e.g. �0.5 mg/mL [29].

Loss of the d-haemolysin, referred to earlier as a potential
genetic marker for hVISA detection, and the diagnostic utility of
this phenomenon has been evaluated recently. Cafiso et al.
investigated 37 clinical isolates of MRSA and found a high
(>90%) degree of sensitivity for discriminating hVISA and VISA
strains from vancomycin-susceptible strains [30]. This method
may be suitable for centres with limited facilities to carry out PAP-
AUC.

The question of whether vancomycin MIC creep is associated
with clinical failure is critical. Some published studies report an
association between therapeutic failure and vancomycin MICs
[31–33]. In contrast, de Sanctis et al. found no association between
elevated vancomycin MICs and treatment failure for MRSA
infections [34]. Walraven et al. noted that the site of infection
(e.g. endocarditis and pneumonia) rather than the vancomycin MIC
was predictive of treatment failure, presumably reflecting the poor
tissue distribution of vancomycin. It is of note that the vancomycin
MIC90 (MIC at which �90% of strains are inhibited) of the MRSA
strains isolated from patients included in this study was 2 mg/mL,
making the interpretation difficult [35].

3. Development of new antistaphylococcal agents

In a meta-analysis of 22 studies, vancomycin MICs were
significantly associated with mortality irrespective of the source of
infection, although the effect was predominantly seen with
bloodstream infections [odds ratio = 1.58, 95% confidence interval
(CI) 1.06–2.37; P = 0.03] [36]. Furthermore, the breakpoint for
mortality prediction for MRSA infections appears to be �1.5 mg/mL
(using the E-test), which is lower than the reduced Clinical and
Laboratory Standards Institute (CLSI) susceptibility breakpoint of
�2 mg/mL (formerly �4 mg/mL). With bloodstream infections, the
effect on mortality was more pronounced in infections with strains
for which the vancomycin MICs were �1.5 mg/mL. Higher E-test
MICs (which may remain in the CLSI susceptible range) may
predict treatment failure because of poor antimicrobial efficacy,
particularly when the drug in question is vancomycin, given its PK/
PD properties (e.g. the AUC:MIC ratio of >400 is difficult to achieve
at least in relation to strains with high MICs). However, it is
possible that the elevated E-test MIC is simply a strain marker for
changes in genetic loci, such as agr polymorphisms, that affect
organism metabolism or virulence characteristics. Alternatively,
hVISA strains may have been included in the meta-analysis data
yielding vancomycin E-test MICs �2 mg/mL and this could
potentially skew the data in favour of higher mortality. Whether
the presence of hVISA strains was a significant confounding factor
in the meta-analysis is open to question. Holmes et al. reported
that while higher vancomycin MICs in MRSA strains were
associated with treatment failure, the effect was also seen in
MSSA strains for which the E-test vancomycin MICs were �1.5 mg/
mL [7]. In other words, patients with MSSA infections treated with
flucloxacillin had significantly worse outcomes if the infecting
MSSA strain gave a vancomycin E-test MIC result that was
�1.5 mg/mL [7]. Despite the drawbacks of the meta-analysis [36]
and the fact that the use of vancomycin per se may not be
associated with treatment failure [7], the findings of the meta-
analysis highlight concern with the use of vancomycin for the
treatment of MRSA infections in strains for which the vancomycin
MICs were elevated (�2 mg/mL by BMD or �1.5 mg/mL by E-test).
Thus, there is a gap in the clinical management of serious MRSA
infections even though it is not always possible to identify, with
precision, patients who would have an unfavourable outcome with
vancomycin. Data on newer agents have made it possible to
identify areas where these agents could be used with some benefit.
In the next section we discuss the data on some of the newly
licensed agents active against MRSA.

4. Newer agents for the treatment of MRSA

The true efficacy of the newer agents against MRSA infections in
comparison with vancomycin is unclear. The small number of
cases of vancomycin-resistant S. aureus (VRSA) infection, for which
vancomycin is of no benefit [37], is dwarfed by the number of VISA
and hVISA cases reported. Several licensed and investigational
agents appear to be effective for treating MRSA infections,
although defining their precise use needs more study. In this
section, we review some of the newer antimicrobials active against
MRSA.

4.1. Oxazolidinones

4.1.1. Linezolid and tedizolid

Linezolid is the only currently licensed oxazolidinone in clinical
practice. Its favourable PK/PD profiles are well known. Linezolid
was compared with vancomycin in a randomised, double-blind,
multicentre trial involving hospitalised adult patients with MRSA
pneumonia (hospital-acquired or healthcare-associated). Patients
received linezolid (600 mg twice daily) or vancomycin (15 mg/kg
twice daily) for 7–14 days with adjustment of the vancomycin dose
based on trough levels. Clinical success at the end of study was
achieved in 95 (57.6%) of 165 patients on linezolid and 81 (46.6%)
of 174 patients in the vancomycin group (per-protocol population),
a difference that was statistically significant (95% CI for difference,
0.5% to 21.6%; P = 0.042). Patients on vancomycin were more likely
to show signs of nephrotoxicity than those on linezolid (18.2% vs.
8.4%). The difference in clinical response was seen in various
subgroup analyses. Thus, patients on mechanical ventilation
receiving linezolid achieved a higher rate of clinical success
(55.5% vs. 44.2%) as did patients with bacteraemia (44.4% vs.
31.6%). In terms of vancomycin MIC, the difference in response was
less clear because of several factors. First, the number of patients
with infections caused by strains for which the vancomycin MIC
was >1 mg/mL was very small; second, the MICs were obtained by
the BMD method rather than by the E-test method. None the less,
the fact that the difference in clinical response was significant even
when a vast majority of patients had MRSA infection with strains
showing lower vancomycin MICs (�1 mg/mL) remains notewor-
thy. Also, there was a correlation between microbiological
response and clinical response, with patients on linezolid showing
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a 30% greater clearance of MRSA. However, there was no statistical
difference in mortality (Day 60), in contrast to the results of the
previous trials by the investigators. This was due to improved
survival among patients treated with vancomycin, which may have
been due to greater attention paid to vancomycin dosing during
the study period or because of the use of salvage therapy with
linezolid in patients in the vancomycin arm. Thus, despite the lack
of a demonstrable benefit in terms of survival (and noting that the
study [38] was not aimed at demonstrating survival), the choice of
therapy for MRSA hospital-acquired pneumonia must be consid-
ered cautiously, particularly due to concern of clinical failure when
treating infections with strains with elevated vancomycin MICs
but still within the susceptible range. Most international guide-
lines fall short of recommending linezolid as a first-line agent for
the treatment of MRSA hospital-acquired pneumonia. These new
data may impact on the existing recommendations.

The first description of linezolid resistance in S. aureus involved
ribosomal mutations in the 50S subunit. An outbreak of linezolid
resistance in 12 patients in a Spanish ICU was described in 2010
[39]. Strains of linezolid-resistant S. aureus isolated from patients
during this outbreak harboured the plasmid-mediated cfr (chlor-
amphenicol florfenicol resistance) gene rather than the G2675 T
ribosomal mutation observed in enterococci [40]. The cfr gene
encodes a methyltransferase that catalyses the methylation of
A2503 in the 23S rRNA gene of the large ribosomal subunit, thereby
conferring resistance to five different groups of antimicrobial
agents including pleuromutilins, chloramphenicol, florfenicol,
oxazolidinones and clindamycin. Several congeners of linezolid
[e.g. tedizolid (formerly torezolid)] demonstrate activity against
linezolid-resistant strains of staphylococci. Approximately 80% of
MRSA strains are inhibited by tedizolid at �4 mg/mL. An in vivo
MRSA mouse pneumonia model compared the efficacy of tedizolid
to linezolid and vancomycin regimens. BALB/c mice were
inoculated with MRSA and challenged with tedizolid (20 mg/kg
once daily), linezolid (120 mg/kg twice daily) or vancomycin
(25 mg/kg twice daily). On comparing the treatment groups with
the controls, the investigators demonstrated a rise in bacterial load
(1.1 log) in the controls and a reduction in bacterial load in all the
three treatment groups at 24 h, i.e. a 1.2, 1.6 and 0.1 log reduction
for tedizolid, linezolid and vancomycin, respectively, with no
statistically significant difference between the two oxazolidinones.
Vancomycin was less effective than both oxazolidinones (survival
of 61.1% vs. 94.7% in the tedizolid group and 89.5% in the linezolid
group) [41]. Similarly, a mouse thigh infection model demonstrat-
ed comparable efficacy for both tedizolid and linezolid [42]. In
studies on human volunteers, administration of tedizolid (200 mg
once daily for 3 days) led to concentrations in the epithelial lining
fluid and alveolar macrophages that were, respectively, 40 and 20
times higher than mean plasma free drug levels [43].

A randomised, double-blind, phase 2 trial evaluated 200, 300
and 400 mg of oral tedizolid (once daily for 5–7 days) in patients
with complicated skin and skin-structure infections (cSSSIs). MRSA
isolates represented a large (76%) proportion of the bacteria
recovered from the patients. Tedizolid MICs were lower compared
with linezolid [MIC50 (MIC at which �50% of strains are inhibited)
and MIC90 values of tedizolid against S. aureus (MSSA and MRSA)
were both 0.25 mg/mL, whilst the MIC50 and MIC90 of linezolid
were of 1 mg/mL and 2 mg/mL, respectively]. The overall microbi-
ological eradication rates and the rates of clinical cure were high
(both >95% for MSSA and MRSA in all three dosage groups) [44].
The greater potency of tedizolid (based on the MIC) could turn out
to be significant, particularly if linezolid resistance becomes
widespread. Tedizolid was active against linezolid-resistant strains
for which the linezolid MICs ranged from 32 mg/mL to >128 mg/
mL. However, the majority of strains in this study were coagulase-
negative staphylococci (CoNS) [45].
4.2. Cephalosporins

4.2.1. Ceftaroline

Data from the CeftAroliNe Versus VAncomycin in Skin and
Skin-Structure Infections (CANVAS) and the FOCUS trials are now
available [46–49]. The merits and drawbacks of the CANVAS trials
were briefly described in a previous consensus paper [3]. The
FOCUS trials demonstrated that ceftaroline is an effective agent in
the treatment of community-acquired pneumonia, but MRSA is
less of a concern in this disease population subset. Since the
publication of the previous consensus reports, several in vitro
studies and case series have been completed focusing on the
efficacy of ceftaroline against MRSA strains. Ho et al. [50]
investigated the outcome of ceftaroline for indications not
covered by its current licensed indications, i.e. therapy of bacterial
community-acquired pneumonia and acute bacterial skin and
skin-structure infections [51]. Six cases of recurrent MRSA
bacteraemia (while on vancomycin or daptomycin therapy) and
cases of endocarditis were reviewed by the authors [50].
Ceftaroline led to a rapid clearance of MRSA from the bloodstream
and sterilisation of heart valves within 2 weeks of ceftaroline
therapy. These data are encouraging given the high failure rate for
S. aureus bacteraemia. Ceftaroline may fill two crucial unmet
needs—bacteraemia and endocarditis—given its favourable PK/PD
profile particularly at a higher frequency of administration
(600 mg three times a day instead of twice daily). Ceftaroline is
now licensed in the USA and Europe. The Assessing Worldwide
Antimicrobial Resistance Evaluation (AWARE) Surveillance pro-
gramme used the US Food and Drug Administration (FDA)
susceptible breakpoint of �1 mg/mL and 98% of S. aureus strains
had a ceftaroline MIC at or below this cut-off and none had MICs
>2 mg/mL [52].

4.3. Newer glycopeptides

4.3.1. Telavancin

Telavancin is a lipoglycopeptide with multiple mechanisms of
action. In a cSSSI study, telavancin was non-inferior to vancomycin,
achieving 90% microbiological eradication in patients infected with
MRSA [53]. Rubinstein et al. published the combined data from the
Assessment of Telavancin for Treatment of Hospital-Acquired
Pneumonia (ATTAIN) double-blind, phase 3 trials. A total of 1503
patients were randomised to receive the study medications. Cure
rates with telavancin in the all-treated population were 58.9%
compared with 59.5% for vancomycin (95% CI for the difference,
�5.6% to 4.3%) for the all-treated population. In the clinically
evaluable population (n = 654), cure rates with telavancin were
82.4% compared with 80.7% with vancomycin (95% CI for the
difference, �4.3% to 7.7%). In the subset analysis, telavancin use
was associated with higher cure rates in patients with mono-
microbial S. aureus infection compared with vancomycin, but the
cure rates in patients with MRSA infection were similar for both
groups [54]. Since its licensing and availability, there have been
further reports on the clinical use of telavancin in specific patient
groups. Stryjewski et al. published a post hoc analysis of the
Assessment of TeLAvancin in complicated Skin and skin-structure
infections (ATLAS) trial, with a total of 1794 patients included in
their data set. Patients with major abscesses, infective cellulitis and
wound infections, and those with Panton–Valentine leukocidin-
producing MRSA infections treated with telavancin had similar
cure rates compared with patients who received vancomycin [55].
There are isolated case reports claiming successful clinical use of
telavancin in MRSA mitral valve endocarditis following daptomy-
cin failure [56], in polymicrobial osteomyelitis in combination
with rifampicin and meropenem [57] and in prosthetic joint
infection caused by meticillin-resistant CoNS [58].
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4.3.2. Oritavancin

Oritavancin is a synthetic derivative of chloroeremomycin, a
natural glycopeptide. Like vancomycin, it inhibits transglycosyla-
tion by binding to the terminal D-alanyl–D-alanine. Oritavancin
also binds to the pentaglycyl bridge in the peptidoglycan moiety,
which explains its activity against vancomycin-resistant bacteria
such as vancomycin-resistant enterococci (VRE) and VRSA. Finally,
oritavancin, like telavancin but unlike vancomycin, also causes cell
membrane disruption, resulting in depolarisation and cell death
[59].

The in vitro activity of oritavancin was assessed against 866
Gram-positive isolates, confirming its potent activity against a
wide range of resistant MRSA, meticillin-resistant CoNS and VRE,
including those resistant to newer agents such as daptomycin and
linezolid [60].

With a half-life of 195 h, oritavancin is suitable for once-daily
administration. In a phase 2 multicentre trial, 302 adult patients
with cSSSI were randomised to three groups that received a daily
dose of 200 mg for 3–7 days, a single dose of 1200 mg or a dose of
800 mg with an optional additional dose of 400 mg on Day 5.
Clinical response was assessed between Days 21 and 29. The cure
rates in the evaluable patients were 72.4% (55/76) in the daily-dose
group, 81.5% (66/81) in the 1200 mg single-dose group and 77.5%
(55/71) in the group with infrequent optional dosing. In patients
with MRSA at baseline, the cure rates were 78.3% (18/23), 73.0%
(27/37) and 87.0% (20/23), respectively, although the study did not
have sufficient power to discriminate amongst the MRSA
subgroup. There was no difference in the frequency of adverse
effects in the three groups. Both single and infrequent dosing
schedules of oritavancin were as effective as once-daily adminis-
tration [61]. The FDA, however, did not approve oritavancin for the
treatment of cSSSI as data in relation to MRSA were lacking. Since
then, two studies (SOLO I and SOLO II) have been registered with
ClinicalTrials.gov and both are expected to be undertaken soon.

4.4. Lipopeptides

4.4.1. Daptomycin

Daptomycin is rapidly bactericidal against S. aureus and
exhibits concentration-dependent killing in vitro. Its activity is
dependent upon the availability of calcium ions. Calcium ions
enhance the activity of daptomycin in two ways: first, by inducing
a conformational change leading to a charge-dependent oligomer-
isation and micelle formation; and second, by facilitating the
binding of daptomycin with the acidic polysaccharide of the
bacterial cell. Following this initial binding, the daptomycin
molecule undergoes a structural alteration that allows it to
penetrate deep into the membrane layer. It has been suggested
that the micelles dissociate and deliver individual daptomycin
molecules to the cell surface, which subsequently oligomerise
internally [62]. Resistance to daptomycin is associated with
mutations in the phospholipid biosynthesis gene including
cardiolipin synthase (cls2) and the CDP-diacylglycerol-glycerol-
3-phosphate 3-phosphatidyltransferase (pgsA) gene. The mprF

mutation previously described leads to the synthesis of lysinated
phosphatidylglycerol, thereby producing an overall positive
surface charge that then causes electrorepulsion of daptomycin
[63]. In this context, available data on b-lactam antibiotics and
daptomycin combination treatment are relevant. b-Lactam agents
by reducing the positive cell surface charge are able to counteract
the repulsion of daptomycin, thus facilitating the binding of the
latter to the cell surface [64]. In vitro data lend support to
daptomycin/b-lactam combinations: addition of oxacillin to a
medium containing daptomycin delayed the emergence of
daptomycin-resistant mutants in one such model [65]. Dhand
et al. report treating seven cases of MRSA that were refractory to
therapy with vancomycin or daptomycin with a combination of
antistaphylococcal b-lactam agents and daptomycin. All seven
cases had rapid clearance of bacteraemia, and the in vitro
experiment showed enhanced binding to daptomycin following
exposure to nafcillin in one such strain. In addition, the
investigators also confirmed a net reduction in the surface charge
in the presence of oxacillin, and killing curves demonstrated
enhanced killing by the antimicrobial combination [66]. Clinically,
strains exhibiting daptomycin resistance are rarely encountered
among MRSA; however, emergence of daptomycin resistance
among hVISA strains has been reported in multiple studies. The
genetic basis of resistance remains controversial. On the other
hand, in other studies the clinical outcome of patients treated with
daptomycin did not appear to be related to the vancomycin MIC
[67]. Isolates from patients who are likely to receive daptomycin
therapy should be tested for susceptibility to daptomycin by an
MIC method such as BMD or E-test. Novel strategies have been
used to treat patients with daptomycin-non-susceptible MRSA
infections. In a patient with infective endocarditis, combination
therapy with daptomycin and ceftaroline was successfully used to
clear persistent bacteraemia [68]. High-dose daptomycin in
combination with trimethoprim/sulfamethoxazole (TMP-SMX)
has also been used to treat complicated infections with dapto-
mycin-non-susceptible VISA strains [69]. In patients treated for
osteomyelitis, Moenster et al. reported significantly reduced
recurrence rates with daptomycin compared with vancomycin
(29% vs. 61.7%) [70]. Finally, salvage therapy with high dose
(�8 mg/kg) daptomycin has been evaluated for the treatment of
complicated bacteraemia, endocarditis, skin or wound infection,
and bone and joint infection. Approximately 5% of patients
developed breakthrough infection with daptomycin-non-suscep-
tible strains [71].

5. Older agents

The development and commercialisation of new antimicrobial
agents is complex and expensive. In this context, several older
agents have the potential to be clinically useful. A phase 2
randomised study comparing loading (1500 mg twice daily on
Day 1 followed by 600 mg twice daily) or non-loading (600 mg
twice daily) dose regimens of fusidic acid with linezolid (600 mg
twice daily) was recently reported. A total of 198 patients were
enrolled. The high-dose fusidic acid regimen demonstrated
comparable safety, tolerability and efficacy with linezolid for
the treatment of acute skin and skin-structure infections. In the
test-of-cure group, the success rates in the fusidic acid loading-
dose group and the linezolid group in the intention-to-treat
population were 85.9% and 94.8%, respectively [72]. Schmitz et al.
randomised patients with uncomplicated skin abscesses into two
groups; each group underwent incision and drainage followed by
either TMP-SMX or placebo. TMP-SMX did not reduce treatment
failure when compared with placebo but was associated with
lower recurrence rates [73]. A retrospective investigation
comparing TMP-SMX with vancomycin for the treatment of
MRSA bacteraemia found similar 30-day mortality between the
two groups (34.2% and 40.8% respectively) and a numerically
lower rate of relapse in the TMP-SMX group [74]. Doxycycline and
chloramphenicol have undergone trials, but in restricted settings.
The resurrection of older compounds, e.g. pleuromutilins, is a
welcome development [75]. Pleuromutilins were discovered in
1951 [76] and the first pleuromutilin for systemic use was tested
in a phase 2 trial in 2011 [77]. It is difficult to predict whether
some of these agents would be of benefit in the treatment of MRSA
infections. Their use may delay the spread of resistance to the
newer agents.
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6. Conclusions

Despite significant developments in the management and
treatment of MRSA infections, there are still important questions
that remain unanswered regarding the optimal therapy for these
infections. Even presumably objective assessments, such as the
determination of MICs for vancomycin, often show a lack of
correlation between various testing methods. In the absence of a
precise laboratory method that predicts the efficacy of vancomycin
(especially for hVISA strains), the early use of newer antimicrobial
agents other than glycopeptides may be a more reliable option,
particularly for invasive infections. Such a strategy obviously has
drawbacks (e.g. cost) that must be balanced against the benefit of
optimised early therapy. The challenge is to avoid inappropriate
empirical therapy for invasive MRSA infections as this has been
shown to be associated with higher mortality [4].
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