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Abstract

The wide spread adoption of IoT technologies has resulted in generation
of huge amount of data, or Big Data, which has to be collected, stored and
processed through new techniques to produce value in the best possible way.
Distributed computing frameworks such as Hadoop, based on the MapRe-
duce paradigm, have been used to process such amounts of data by exploit-
ing the computing power of many cluster nodes.

Unfortunately, in many real big data applications the data to be processed
reside in various computationally heterogeneous data centers distributed in
different locations. In this context the Hadoop performance collapses dra-
matically.

To face this issue, we developed a Hierarchical Hadoop Framework (H2F)
capable of scheduling and distributing tasks among geographically distant
clusters in a way that minimizes the overall jobs’ execution time.

Our experimental evaluations show that using H2F improves significantly
the processing time for geodistributed data sets with respect to a plain Hadoop
system.
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L’ampia diffusione di tecnologie ha portato alla generazione di enormi
quantità di dati, o di Big Data, che devono essere raccolti, memorizzati e
elaborati attraverso nuove tecniche per produrre valore nel modo migliore. I
framework distribuiti di calcolo come Hadoop, basati sul paradigma MapRe-
duce, sono stati utilizzati per elaborare tali quantità di dati sfruttando la
potenza di calcolo di molti nodi di cluster.

Purtroppo, in molte applicazioni di big data, i dati da elaborare risiedono
in diversi data center computazionali eterogeni e distribuiti in luoghi diversi.
In questo contesto le performance di Hadoop crollano drasticamente.

Per affrontare questo problema, abbiamo sviluppato un Hierarchical Hadoop
Framework(H2F) in grado di pianificare e distribuire task tra cluster geografi-
camente distanti in modo da ridurre al minimo il tempo di esecuzione com-
plessivo delle applicazioni.

Le nostre valutazioni sperimentali mostrano che l’utilizzo di H2F migliora
notevolmente il tempo di elaborazione per dataset geodistribuiti rispetto ad
un semplice sistema Hadoop.
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Chapter 1

Motivation And Background

Parallel to expansion in service offerings of IT companies, there is growth in
another environment – the data environment. The volume of data is practi-
cally exploding by the day. Not only this, the data that is available now in
becoming increasingly unstructured. In this chapter, we analyze the major
technologies related to the high increase in the amount of produced data.

1.1 Internet of Things

Internet of Things is a neologism used in telecommunications, a term of
new honeycomb (first used by Kevin Ashton, a researcher at the MIT, Mas-
sachusetts Institute of Technology), which arises from the need to name real-
world objects connected to the internet.

The internet of things (or the "Internet of Things" original language) is
getting more and more consensus and is increasingly an opportunity for de-
velopment. Internet evolution has extended the internet to real objects and
places ("things"), which can now interact with the network and transfer data
and information. The object interacts with the surrounding world, as it has
"intelligence", it retrieves and transfers information between the internet and
the real world. From the refrigerator at home, to the clock, to the traffic
lights, everyone can be considered examples of IoT. The important thing is
that these objects are connected to the network, and that they have the ability
to transmit and receive data. In this way, these objects become "smart," and
can turn on and off "on their own" and as needed.
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The areas most affected by IoT applications are Smart Home, Smart Build-
ing, Smart City and Smart Mobility, but also, and for a long time, Smart Man-
ufacturing. In the field of energy, Smart Metering is widespread, while in the
world of mobility new opportunities are coming in the Smart Car.

FIGURE 1.1: Internet of Things

The IoT brings "intelligence" to information processing systems. Through
the Internet of things things can be remotely controlled (remote control of
things), and they are capable of transmitting data from which you can extract
useful information about the operation of those objects, and the interaction
between these objects and who uses them (The consumer).

Over a million new IoT devices are being connected to the Internet daily,
and that process is accelerating. Mobile phones and tablets equipped with
multiple sensors are transmitting data on a constant basis. In the home, var-
ious automation devices like Nest thermostats and Dropcams are also con-
tributing to the data glut.

Moreover internet of things is a growing technology in industrial applica-
tions, manufacturing companies are currently implementing this “intelligent
connectivity of smart devices” in their factories and on the shop floor.

The emerging Industrial IoT gives rise to what is predicted to be a sweep-
ing change that will fundamentally reconfigure industry. It is being called
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the next Industrial Revolution. This revolution follows the previous three in-
dustrial revolutions, which are usually identified as mechanization (powered
by steam engines in the 1800s), mass production (powered by electricity and
the assembly line in the early 1900s) and automation (powered by comput-
ers in the late 1900s). As the fourth industrial revolution, it has taken on the
name Industry 4.0, in keeping with the way new versions or releases of soft-
ware are usually designated. This is appropriate, considering that the latest
industrial revolution is powered by the Internet and Web-enabled software
applications capable of processing streams of manufacturing data.

In Industry 4.0, industrial processes and associated machines become smarter
and more modular, while new protocol standards allow previously isolated
control equipment to communicate with each other, enabling a hypercon-
nected network across multiple industrial ecosystems. All this is driving
higher levels of utilization and greater flexibility for meeting customer de-
mand.

The payoff for manufacturers who implement Industrial IoT solutions lies
in better decision-making. When devices are connected, the data they gener-
ate can flow into software applications that create the information individu-
als can use to make choices that are timely and effective. By understanding
the results of these choices more fully, decision-makers can achieve strategic
objectives or benchmark performance. Decisions will be based on knowledge
and wisdom, not theory or guesswork. Better decisions mean fewer mistakes
and less waste.

The Internet of Things is the key technology enabling this digital trans-
formation. Smart, always connected things with instant access to contextual
information, as well as devices and applications with artificial intelligence
designed to optimize processes and improve how we live, work, and interact
with each other, are all changing the way we conceive, produce, deliver, and
consume goods and services.

Experts predict that as many as 25 to 50 billion new IP-enabled IoT de-
vices will be deployed and online by 2020. As a result, IoT has created an
explosion of data that is designed to move freely between devices and loca-
tions, and across network environments, remote offices, mobile workers, and
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public cloud environments, making it difficult to consistently track and se-
cure. Managing the huge amount of data that those billions of portable sens-
ing devices produce every day is one of the main technological challenge.

1.2 BigData

Every time we use a computer, turn on the smartphone or open an app on the
tablet, we leave our fingerprint made of data. Beyond data flows produced
by IT systems and infrastructures to support production, distribution, and
delivery of services, big data is a phenomenon associated with the massive
evolution of individual uses and habits.

Big Data is a term that has become popular to indicate the exponential
growth and availability of data, whether they are stitched or not. We talk
about big data when dealing with data sets that can not be processed and
analyzed, using traditional processing methods.

FIGURE 1.2: Big Data 5v

The analyst and researcher Doug Laney has defined the main features
that can be summarized in the 3V acronym:
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• Volume: the size of the datasets to handle in this context is remarkable,
usually speaking of the order of hundreds of Terabytes, if not Petabyte.
The main source of data is the Internet, as it involves millions of users
who daily produce new data, just think of the most famous social me-
dia that collect a lot of users. Even without considering Internet data
volume in many businesses is very large and current technologies to
handle them have considerable costs. This has led to the need to study
new storage paradigms to facilitate processing.

• Velocity: in this context we mean the velocity of generation of new data
which can be very large and therefore it is indispensable to detect them,
store them and analyze them as quickly as possible. The simplest so-
lution to speed up analysis and acquisition would be to use fast and
efficient memories, but the high cost per megabyte of these technolo-
gies is in contrast to the first Big Data feature, the Volume. The use of
common DBMS (Database Management System) is not recommended
because of the complexity of the operations implemented, which, in
addition to the large size of the data involved, results in considerable
response times. The solution to increase speed is to rely on parallel
processing systems, such as clusters of computers.

• Variety: the data should be not necessarily structured but may have a
heterogeneous nature. If you think about the Web and the multime-
dia content it provides, text, images, and videos, you understand that
data types such as their structure are not standardized, so more general
management tools are required.

To these general features of Big Data have been added two more:

• Variability: data over time can also change very quickly, even if you
consider the large size you understand how difficult it is to take into
account all the changes. However, an analyst needs consistent and up-
to-date data to provide correct evaluations and efficient solutions.

• Value: data comes from different sources today. And it’s still a business
to compare, clean up and transform data through systems. However, it
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is necessary to correlate and link the relationships, and data hierarchies
to drive the useful information they contain.

The Big Data also comes from the ever-expanding multimedia that orig-
inates from the proliferation of fixed and mobile devices we use to live and
work. According to a Cisco survey (Cisco, 2017), for example, currently 78%
of the US band is occupied by video, but in 2018 it will be saturated for 84%.
Videosharing and a culture of the image that brings people to share every
kind of photo shoot will help those who will manage this data to better un-
derstand tastes and trends, better orienting decisions.

Big data analytics can point the way to various business benefits, includ-
ing new revenue opportunities, more effective marketing, better customer
service, improved operational efficiency and competitive advantages over
rivals. Big data analytics applications enable data scientists, predictive mod-
elers, statisticians and other analytics professionals to analyze growing vol-
umes of structured transaction data, plus other forms of data that are often
left untapped by conventional business intelligence (BI) and analytics pro-
grams.

On a broad scale, data analytics technologies and techniques provide a
means of analyzing data sets and drawing conclusions about them to help
organizations make informed business decisions.

Traditional global data center traffic is currently measured in the zettabytes,
and is predicted to more than triple to 15.3 ZB annually by 2020. However,
according to Forbes (Forbes, 2016), the total volume of data generated by IoT
will reach 600 ZB per year by 2020, which is 275 times higher than projected
traffic going from data centers to end users and devices (2.2 ZB), and 39 times
higher than total projected data center traffic (15.3 ZB.)

The features of BigData, through multiple platforms and business func-
tions, make it difficult to manage them through well-established technolo-
gies, and at the moment there is no definitive solution that can solve all the
problems. Let’s not forget that there is still a great deal of unused or under-
used data inside companies, since it is cost-intensive or because of the lack of
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structure that can be dealt with normal management systems in a profitable
way.

1.3 Cloud

The Cloud has been evoked by many as the “right place” where produced
data ought to be stored and mined. The Cloud can scale very well with re-
spect to both the data dimension and the computing power that is required
for elaboration purposes. Cloud computing has been revolutionising the IT
industry by adding flexibility to the way IT is consumed, enabling organisa-
tions to pay only for the resources and services they use. In an effort to reduce
IT capital and operational expenditures, organisations of all sizes are using
Clouds to provide the resources required to run their applications. Clouds
vary significantly in their specific technologies and implementation, but of-
ten provide infrastructure, platform, and software resources as services.

FIGURE 1.3: Cloud Infrastructure

The most often claimed benefits of Clouds include offering resources in a
pay-as-you-go fashion, improved availability and elasticity, and cost reduc-
tion. Clouds can prevent organisations from spending money for maintain-
ing peak-provisioned IT infrastructure that they are unlikely to use most of
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the time. Companies can easily negotiate resources with the cloud provider
as required. Cloud providers usually offer three different basic services: In-
frastructure as a Service (IaaS); Platform as a Service (PaaS); and Software as
a Service (SaaS):

• IaaS delivers infrastructure, which means storage, processing power,
and virtual machines. The cloud provider satisfies the needs of the
client by virtualizing resources according to the service level agree-
ments (SLAs);

• PaaS is built on top of IaaS and allows users to deploy cloud applica-
tions created using the programming and run-time environments sup-
ported by the provider. It is at this level that big data DBMS are imple-
mented;

• SaaS is one of the most known cloud models and consists of applica-
tions running directly in the cloud provider

Since the cloud virtualizes resources in an on-demand fashion, it is the most
suitable and compliant framework for big data processing, which through
hardware virtualization creates a high processing power environment for big
data.

Currently, several cloud computing platforms, e.g., Amazon Web Ser-
vices, Google App Engine, IBM’s Blue Cloud, and Microsoft Azure, provide
an easy locally distributed, scalable, and on-demand big-data processing.
However, these platforms do not take into account data locality, i.e., geo-
distributed data, and hence, necessitate data movement to a single location
before the computation. In contrast, in the present time, data is generated
geo-distributively at a much higher speed as compared to the existing data
transfer speed, for example, data from modern satellites. Many organizations
operate in different countries and hold datacenters across the globe. More-
over, the data can be distributed across different systems and locations even
in the same country.

We can list a few of the many real scenarios that need to face the prob-
lem of geographically and unevenly distributed big data. Social networks
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generate huge amounts of data worldwide. Data get stored on many data
centers usually located in different countries (or continents, at least). Since
the analysis has to span to many data centers, a careful design of the pro-
cedures enforcing the data analysis is needed (Facebook, 2012) in order to
have reliable results within the desired time. Multinational retail corpora-
tions (Walmart, 2015) produce up to petabytes of data daily. Data generated
by the transactions of thousands (or even millions) of customers purchas-
ing goods all over the world are stored in many data centers and need to be
promptly and reliably analyzed. Again, being data natively distributed over
physically distant data centers (not just in one site), data computing strate-
gies usually employed in the one-site scenarios may not be effective. There
are other applications and that process and analyze a huge amount of mas-
sively geo-distributed data to provide the final output, for example: climate
science, data generated by multinational companies, sensor networks, stock
exchanges, web crawling, biological data processing such as DNA sequenc-
ing and human microbiome investigations, protein structure prediction, and
molecular simulations, stream analysis, video feeds from distributed cam-
eras, log files from distributed servers, geographical information systems
(GIS), and scientific applications.

Several big-data processing programming models and frameworks such
as MapReduce, Hadoop, have been designed to process huge amount of data
through parallel computing, distributed databases, and cluster computing.
In next chapter we introduce these models and analyze their behaviour in a
geo-distributed environment.
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Chapter 2

Big Data Computing Approaches

Technologies for big data analysis have arisen in the last few years as one
of the hottest trend in the ICT scenario. Several programming paradigms
and distributed computing frameworks have appeared to address the spe-
cific issues of big data systems. Application parallelization and divide-and-
conquer strategies are, indeed, natural computing paradigms for approach-
ing big data problems, addressing scalability and high performance. Further-
more, the availability of grid and cloud computing technologies, which have
lowered the price of on-demand computing power, have spread the usage of
parallel paradigms, such as the MapReduce (Dean and Ghemawat, 2004), for
big data processing.

2.1 MapReduce

MapReduce has emerged as an effective programming model for addressing
these challenges: today it is one of the most famous computing paradigm for
big data widely used both in academic and in business scenarios. MapRe-
duce is a framework for processing parallelizable problems across large datasets
using a large number of nodes. MapReduce comes from the experience gained
within Google in distributed computing on large amounts of data in com-
puter clusters. The strong need for parallelization within the company has
led to an abstraction that could accelerate the development of parallel ap-
plications, relegating details of parallelization, fault management, and data
distribution. The MapReduce paradigm is inspired by the map and reduce
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functions used within the functional programming languages that allow you
to transform and aggregate a list of elements.
The map function has a parameter lists, an array of elements and a function,
and returns a list of results deriving from the application of the passed func-
tion to the elements of the starting array:

map : ([x0, x1, .., xn− 1], f(.))→ [f(x0), f(x1), .., f(xn− 1)] (2.1)

The reduce function, also known as a fold, receives an initial value, a list
of elements and a combining function, and returns a return value. The fold
function proceeds by combining the elements of the data structure using the
function in a systematic way:

reduce : ([y0, y1, .., yn− 1], g(i), s)→ g(yn− 1, g(yn, ..g(y0, s)...)) (2.2)

MapReduce differs from functional computation using map and reduces for
some details but the main idea remains to consider algorithms as a sequence
of two-phase, transformation and group aggregation. The first significant
difference concerns the data format: the MapReduce paradigm predicts that
data, both in input and output, is seen as entity pairs: the first component
is called the key, the second component value. Both components are not de-
fined a priori, but are free to assume any form: the set of definitions is free
and dependent on specific computation. A single computation in the MapRe-
duce paradigm can be divided into three sequential phases: map, shuffle and
reduce.

Map phase is the critical step which makes this possible. Mapper brings a
structure to unstructured data. In the map phase, the mapper takes a single
(key, value) pair as input and produces any number of (key, value) pairs as
output . It is important to think of the map operation as stateless, that is,
its logic operates on a single pair at a time (even if in practice several input
pairs are delivered to the same mapper). To summarize, for the map phase,
the user simply designs a map function that maps an input (key, value) pair
to any number (even none) of output pairs. Most of the time, the map phase
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FIGURE 2.1: Overall MapReduce Process

is simply used to specify the desired location of the input value by changing
its key.

The shuffle phase is automatically handled by the MapReduce frame-
work. The underlying system implementing MapReduce routes all of the
values that are associated with an individual key to the same reducer.

In the reduce phase, the reducer takes all of the values associated with a
single key k and outputs any number of (key, value) pairs. This highlights
one of the sequential aspects of MapReduce computation: all of the maps
need to finish before the reduce stage can begin. Since the reducer has access
to all the values with the same key, it can perform sequential computations
on these values. In the reduce step, the parallelism is exploited by observing
that reducers operating on different keys can be executed simultaneously.

MapReduce programs are not guaranteed to be fast. The main benefit of
this programming model is to exploit the optimized shuffle operation of the
platform, and only having to write the Map and Reduce parts of the pro-
gram. In practice, the author of a MapReduce program however has to take
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the shuffle step into consideration; in particular the partition function and
the amount of data written by the Map function can have a large impact on
the performance and scalability. When designing a MapReduce algorithm,
the author needs to choose a good tradeoff between the computation and the
communication costs. Communication cost often dominates the computa-
tion cost, and many MapReduce implementations are designed to write all
communication to distributed storage for crash recovery.

2.2 Hadoop

Apache Hadoop (The Apache Software Foundation, 2011) is an open source
framework written in Java, inspired by Google’s MapReduce paradigm. Its
main purpose is to provide large-scale storage and processing services of
large datasets in hardware commodity clusters. Hadoop was created by
Doug Cutting in 2005 but actually originated in the Nutch project for the cre-
ation of an Open Source search engine. Subsequently, other support projects
were created to provide additional features, we mention some of them:

• Hbase: A NoSql database distributed on Hadoop and HDFS.

• Hive: Data warehousing system on Hadoop.

• Mohaut: extension designed for Artificial Intelligence and Data Mining
applications.

• Pig: a platform for creating MapReduce programs for Hadoop.

A MapReduce application on a Hadoop cluster is recognized as a Job. It is
possible to locate five blocks that cost the Hadoop execution environment.

The two main ones are YARN (Yet Another Resource Negotiator), which
is responsible for identifying and providing the computing resources needed
for the application and Hadoop Distributed File System (HDFS), which pro-
vides a distributed and reliable file system. The YARN and HDFS infrastruc-
tures work in pairs but are completely decoupled and independent, basically
HDFS communicates to YARN the position of data in the cluster.
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FIGURE 2.2: Overall Hadoop Architecture

The MapReduce framework is just one of the possible applications that
can be implemented over YARN to leverage its services. The cluster con-
stitutes the hardware of the system, that represents the set of hosts, called
nodes which can be grouped into racks. Nodes start services that define the
role within the cluster. There are two types of nodes:

• Master nodes, where coordination demons are started for HDFS and
YARN.

• Slave nodes, where service demons communicate their computing and
storage resources.

In order to understand the hadoop functionality we analyze in detail the two
main components.

HDFS is the distributed file system of Hadoop, which will store the in-
put and output data generated while executing the MapReduce application.
HDFS is based on the POSIX standard, but sacrifices complete compatibility
to provide specific services to match in pair with Hadoop MapReduce, such
as:

• Large file-oriented behavior, as you work with files ranging from hun-
dreds of MegaBytes to some Terabytes.

• Efficiency in sequential access, to support write-one paradigm, read-
many-times.
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FIGURE 2.3: HDFS Architecture

File system architecture relies on the services provided by two major demons,
the datanode and the namenode, and allows client entities to access transpar-
ently to reading and writing. The slave nodes execute the datanode daemon
that deals with storing the data in blocks. The block size is configurable,
usually 64 megabytes are used, and the blocks match files in the local file
system of the slave. The namenode is unique within the HDFS cluster and
represents the master in the HDFS architecture. The main role is to provide a
namespace for the filesystem, to locate the data in the distributed system, and
to manage the block replication factor. The master stores the metadata on all
data blocks in the cluster, such as the list of datanodes that contain a copy or
which files they belong to. A data exchange of heartbeat with fixed frequency
is established between datanodes and namenodes. These messages, on the
one hand, report to the master the state of the data nodes with information
on the available storage resources, on the other hand it allows the namenode,
in the responses, to provide commands to the slaves to perform the required
operations.
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HDFS has been designed to be a simple but fault tolerance oriented sys-
tem. Replication, for example, has an active role in preventing data loss
in case of sporadic failures, and heartbeat messages keep the namenode in-
formed of data status, and in case of failure the master may choose to restore
the level of default replication factor. In addition, the choice to replicate data
allows access to data in parallel and allows you to choose "close" computing
resources to the data to be processed. The replication factor is configurable
by the client, default is set to 3, and replicas are deployed in the cluster to
ensure good balancing, even though no single storage space is available.

HDFS relies on a partial knowledge of network topology through the
"Rack-Awareness", which allows you to know which rack is connected to
a precise cluster datanode. This information is used to deploy data block
replicas to minimize the risk of data loss caused by node and rack failures.
The ultimate goal is therefore to improve data reliability and availability and
more efficient use of the intranet to which the cluster relies. The choice of
replication distribution policy must evaluate the various trade-offs, eg plac-
ing them on different racks facilitates data retrieval in case of failure, but on
the other hand increases the cost of writing to be made on multiple racks. The
implementation of Rack-Awareness relies on the correct allocation of hosts to
their racks, which is performed by a user-defined script during the initializa-
tion phase of the cluster. Typical operations of a filesystem are reading and
writing files:

• Reading, client who wants to read a file contacts the namenode, which
returns the datanodes that have a copy of the blocks that make up the
file. Subsequently, the blocks are retrieved from the individual datan-
odes by interrogating them directly. In order to minimize the band-
width used and read latency, HDFS tries to meet a reading request with
a "close" replica to the reader. In fact, namenode provides the list of
datanodes sorted by distance from the client. Namenode only provides
location blocks, so clients can access data concurrently.

• Writing, client who wants to write a file first requires permission to
the namenode, which first checks the access permissions and creates
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a metadata record for the file. The HDFS master provides the client
with a list of datanodes on which to place the data blocks. The first
datanode receives the data directly from the client, saves them on the
local file system, and immediately sends them to the next datanode in
the list on another connection. At the end, you will have a number of
replicas you want and write confirmations that run the datanodes in
the opposite direction that will reach the client contacting the namen-
ode to let you know the end of the writing. The namenode waits for
all data nodes to communicate, via heartbeat, that all file blocks have
reached the minimum number of replicas before considering writing
successfully completed.

FIGURE 2.4: YARN Architecture

YARN provides an intermediate level of resource and computing man-
agement and was introduced only from version 2.0 of Hadoop. The earlier
versions implemented their MapReduce paradigm directly on the services of-
fered by HDFS, in a centralized architecture in which the master, JobTracker,
had to manage the recording and supervision of resources in the cluster and
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manage its allocation to the various submitted applications. YARN decou-
plates the original tasks of the jobTracker, assigning a host the ResourceMan-
ager role for the resource management, and delegating to the other, the Ap-
plication Master, the coordination of the resources obtained by the Resource
Manager for the Job execution. The Resource Manger is unique within a clus-
ter and has a cetralized and global vision of available resources, and its main
task is to allocate computing units, called Containers, represented by RAM
and CPU number. On slave nodes the NodeManager demon monitors local
resources and manages the Container lifecycle, and returns this information
to the Resource Manager during messages exchanging through Heartbeat.

A client requires an application submission through an interface provided
by the Resource Manager, which models it as a JOB and send it to the Re-
source Scheduler. In the initialization phase, the Resource Manager allocates
a Container to run the Application Manager, which manages the applica-
tion lifecycle and the required resources to complete the tasks in which a Job
is divided. In order to obtain Containers, The Application Master exploits
the Heathbeat service to send particular resource-request messages to the
Resource Manager, defining location and quality specifications. Then the Re-
source Manager, in accordance with the scheduling policies, will try to satisfy
the demands of the Application Master.

The Resource Manager exposes two interfaces to the outside:

• one to clients submitting their applications

• one to the ApplicationMaster, to negotiate access to resources

The Resource Manager has a global view of the cluster and all its resources,
which greatly simplifies the task of the scheduler if it wants to get specific
requirement, such as fairness.

The Application Master encodes resource requirements in terms of a resource-
request, which defines container number, priority, location, and container
resources by number of cores and amount of RAM. In response to the Ap-
plication Manager requests, the Resource Manager allocates containers by
assigning a token to ensure resource access security and reports the status of
those completed.
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The main task of the Application Master is to coordinate the execution of
an application in accordance with the resources in the cluster. It runs inside
a container allocated by the Resource Manager during the job initialization.
The Application Master periodically sends Heartbeat messages to Resource
Manager to update it about its liveness status and requests. When it receives
the response with the available container list, the Application Master can
update the execution plan of the application by launching the Hadoop Tasks.
The MapReduce Application Master defines two task types, the MAP Task,
and the REDUCE Task. The Resource Manager does not interpret container
status but the ApplicationMaster evaluates the success or failure of execution
on a container and the progress of the application.

The "worker" nodes that perform the Hadoop tasks run the Node Man-
ager daemon. This manages the allocated containers and monitors the status
during the lifecycle. Once registered with the Resource Manager, the Node
Manager sends Heartbeat messages containing their status and receives in-
structions to execute. In YARN, the containers, including the one who host
the Application Master, are described by a Container Launch Context (CLC).
This entity defines the set of environment variables, security token, payload
for Node Manager services, and the needed procedures to start tasks. The
Node Manager configures the environment and initialize their own moni-
toring system with constraints on the resources specified during allocation
phase. Containers can be "killed" when Resource Manager reports that the
application is terminated, when the scheduler wants to preempt, or when
Node Manager notices that the container reaches the allocation limits on that
node or when the Application Master no longer needs its computation. When
a application is completed it is removed from all nodes. Node Manager
periodically also monitors the health status of the physical node to detect
any HW/SW nature problems. When a problem is detected, Node Manager
changes its state into unhealthy and communicates it to the Resource Man-
ager, allowing the scheduler to allocate no more containers to the faulty node.
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2.3 Distributed computing approaches

As we introduced in the previous chapter, the number of applications that
need to utilize large volumes of potentially distributed data is nowadays
more and more increasing. Data get stored on many data centers usually lo-
cated in different countries (or continents, at least). Since analysis has to span
many data centers, a careful design of the procedures enforcing the data anal-
ysis is needed in order to have reliable results within the desired time. Being
data natively distributed over physically distant data centers (not just in one
site), data computing strategies usually employed in the one-site scenarios
may not be effective.

Hadoop is known to perform well only when the whole data set resides
in a cluster of nodes and nodes are connected to each other’s by means of
high-speed network links (Heintz et al., 2014). Therefore, the Hadoop frame-
work seems to unfit the scenarios described which, instead, are subjected to
two strong constraints: 1) data are scattered among many sites and 2) sites’
interconnecting links are not as fast as the links interconnecting the nodes of
a typical cluster.

Researchers followed two approaches to process data in geographic envi-
ronments in an efficient way:

• elaborated and improved versions of the Hadoop framework which
tries to get awareness of the heterogeneity of computing nodes and net-
work links (Geo-hadoop approach)

• hierarchical frameworks which splits the MapReduce job into many
subjobs which are sent to as many computing nodes hosting Hadoop
instances which do the computation and send back the result to a co-
ordinator node that is in charge of merging the subjobs’ output (Hierar-
chical approach)

The former approach’s strategy is to optimize the Hadoop’s native steps and
it’s described in this section. The latter’s will be analyzed in the next section.



22 Chapter 2. Big Data Computing Approaches

Geo-hadoop reconsiders the four steps of the job’s execution flow (Push,
Map, Shuffle, Reduce) in a panorama where data are not available at a clus-
ter but are instead spread over multiple (geographically distant) sites, and
the available resources (compute nodes and network bandwidth) are imbal-
anced among. To reduce the job’s average makespan, the four steps must be
smartly coordinated. Some have launched modified version of Hadoop ca-
pable of enhancing only a single step (Kim et al., 2011; Mattess, Calheiros,
and Buyya, 2013). Heintz et al.(Heintz et al., 2014) study the dynamics of
the steps and claim the need for a comprehensive, end-to-end optimization
of the job’s execution flow. They propose an analytical model which looks
at parameters such as the network links, the nodes capacity and the appli-
cations profile, and turns the makespan optimization problem into a linear
programming problem solvable by means of Mixed Integer Programming
techniques. In (Zhang et al., 2014) authors propose a modified version of the
Hadoop algorithm that improves the job performance in a cloud based multi-
data center computing context. Improvements span the whole MapReduce
process, and concern the capability of the system to predict the localization
of MapReduce jobs and to prefetch the data allocated as input to the Map
processes. Changes in the Hadoop algorithm regarded the modification of
the job and task scheduler, as well as of the HDFS’ data placement policy. In
(Fahmy, Elghandour, and Nagi, 2016) authors shows a Hadoop HDFS layer
extension that leverages the spatial features of the data and accordingly co-
locates them on the HDFS nodes that span multiple data centers.

Several other works in this area try to improve the performance of MapRe-
duce by modifying the job scheduler. In (You, Yang, and Huang, 2011), au-
thors propose a Load Aware scheduler that aims to improve the Resources’
utilization in a heterogeneous MapReduce cluster with dynamic Workload.
The Load Aware scheduler consists of two modules: 1) a "data collection
module" that senses the system-level information from all nodes in the clus-
ter; 2) a task scheduling module that estimates the task’s completion time
using the system-level information gathered. In (Cheng et al., 2017), authors
introduce a self-tuning task scheduler for multi-wave MapReduce applica-
tions environments. The scheduler adopts a genetic algorithm approach to
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search the optimal task-level configurations based on the feedback reported
by a task analyzer. In (Li et al., 2017), authors propose a scheduling algo-
rithm capable of minimize inter-DC traffic of a cross-DC MapReduce job by
formulating an optimization problem that jointly optimizes input data fetch-
ing and task placement. Their solution relies on an optimization model based
on historical statistics for a given Job. We also considered works in literature
not focusing on MapReduce, although focusing on similar scenarios. For ex-
ample, authors in (Convolbo et al., 2016) propose a data-replication aware
scheduling algorithm which can makes use of the replicas to optimize the
makespan of a job submitted to a geo-distributed system. Their approach
relies on a global centralized scheduler that maintains a local FIFO queue for
all submitted jobs. The system model they propose, does not involve data
transfers because of the expensive delay in geo-distributed environments. A
given task can only be scheduled on a data center which already has its re-
quired data. Authors in (Yu and Pan, 27) leverage on optimal data allocation
to improve the performance of data-intensive applications. Specifically, it ad-
dresses the balanced data placement problem for geographically distributed
computing nodes, with joint considerations of the localized data serving and
the co-location of associated data.

2.4 Hierarchical approach

The Hierarchical approach’s strategy is to make a smart decomposition of
the job into multiple subjobs and then exploit the native potential of the plain
Hadoop. In the following we revise some relevant works from this approach.

Hierarchical approaches mainly envisions two computing levels: a bot-
tom level, where plain MapReduce is run on locally available data, and a top
level, where a centralized entity coordinates the splitting of the workload into
many subjobs and gathering and packaging of the subjobs’ output. A clear
advantage of this approach is that there is no need to modify the Hadoop al-
gorithm, as its original version can be used to elaborate data on a local clus-
ter. Still a strategy needs to be conceived to establish how to redistribute data
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among the available clusters in order to optimize the job’s overall makespan.
The hierarchical approach relies on a Global Reducer component, which is

responsible for collecting and packaging all the output produced by subjobs
at the bottom-level. The packaging task consists in running a new Reduce
Task on the overall collected data. An application designer is requested to
implement the MapReduce algorithm in such a way that the applied oper-
ations are “associative”, i.e., they can be run in a recursive way both at the
bottom level and at the top level of the hierarchy, and the execution order
of the operations does not impact on the final result (Jayalath, Stephen, and
Eugster, 2014).

In (Luo et al., 2011) authors introduce a hierarchical MapReduce archi-
tecture and a load-balancing algorithm that distribute the workload across
multiple data centers. The balancing process is fed with the number of cores
available at each data center, the number of Map tasks runnable at each data
center and the features (CPU or I/O bound) of the job’s application. The
authors also suggest to compress data before migrating them among data
canters. Jayalath et al.(Jayalath, Stephen, and Eugster, 2014) list the issues
connected to the execution of the MapReduce on geographically distributed
data. They specifically address a scenario where multiple MapReduce op-
erations need to be performed, one after the other, on the same data. They
lean towards a hierarchical approach, and propose to represent all the pos-
sible jobs’ execution paths by means of a data transformation graph to be
used for the determination of optimized schedules for job sequences. The
well-known Dijkstra’s shortest path algorithm is then used to determine the
optimized schedule. In (Yang et al., 2007) authors introduce an extra MapRe-
duce phase named “merge”, that works after map and reduce phases, and
extends the MapReduce model for heterogeneous data. The model turns to
be useful in the specific context of relational database, as it is capable of ex-
pressing relational algebra operators as well as of implementing several join
algorithms.

The framework proposed in our work follows a hierarchical approach.
We envisaged two levels of computation in which at the bottom level the
data processing occurs and the top level is entitled with gathering the results
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of computation and packaging the final result.
With respect to the literature, our proposal distinguishes for some inno-

vative ideas. First, we address a scenario where multiple requests for job exe-
cution arrive and need to be handled. Also, we introduce the concept of data
granularity. Our approach allows for the whole data set to be broken into
small pieces (data blocks) that can be smartly moved across the Sites accord-
ing to specific needs.
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Chapter 3

Hierarchical Hadoop Framework

The Hierarchical Hadoop Framework (H2F) we propose, addresses the is-
sues concerning the computation of big amounts of data unevenly sparse in a
distributed computing context that is composed of heterogeneous resources.
Specifically, H2F faces three dimensions of imbalance: the non-uniform size
of the data scattered throughout the computing context, the inhomogeneous
capability of the computing resources on which the jobs will run and the un-
even speed of the network links that interconnect the computing resources.
Such a threefold imbalance exacerbates the problem of carrying on computa-
tion on big data. Current parallel computing techniques employed in these
tough contexts have shown to be inefficient. One for all, the MapReduce and
its well known open source implementation Hadoop failed to hit good per-
formance because they only pursue the data locality principle and are com-
pletely unaware of the features of the underlying (imbalanced) computing
context (Heintz et al., 2014).

In the following we present the motivating scenario that guided us through
the design of the H2F. Suppose that company A is running its business in
multiple countries worldwide, and that in every country a point of presence
(POP or Site) is maintained that collects data from the company’s activities.
Each POP runs a local data center equipped with some computing resources.
Computing resources owned by a POP are interconnected by means of high-
speed links (intra-POP links) to form a powerful cluster. POPs are connected
to each other via a Virtual Private Network (VPN) that is set up over geo-
graphic network links (inter-POP links). Also, all resources (both computing
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and links) are virtualised in order to form a cloud of resources that can be
flexibly configured according to the need.

c
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FIGURE 3.1: Motivating scenario

Suppose that each Site produces some raw data that need to be mined,
and that the amount of such data varies from Site to Site. Suppose also that
the computing power each Site is capable of devoting to the mining purpose
is different from Site to Site. A snapshot of the just described situation is
represented in the Figure 3.1. What the company would need is a way to
quickly crunch all the data by means of some parallel computing techniques
capable of exploiting at best the heterogeneous resources provided by its own
computing infrastructure. Basically, our proposal pushes forward the idea of
giving all Sites a mining task that is proportional to its computing power,
i.e., the most powerful the Site the more data it will have to mine. Since the
distribution of the data does not follow the distribution of the computing
power (a big amount of data might happen to reside at a low-power Site) the
solution we propose features the shift of data from Site to Site. Since those
data movements would happen through inter-POP links, which are known
to be slow, a cost is incurred. The H2F design strives to give an answer to the
problem of how to exploit at best the most powerful Sites while minimizing
the cost incurred for data shifts.
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3.1 Design And Architecture

According to the MapReduce computing paradigm, a generic computation
is called job (Dean and Ghemawat, 2004). Upon a job submission, a schedul-
ing system is responsible for splitting the job in several tasks and mapping the
tasks to a set of available nodes within a cluster. The performance of a job
execution is measured by its completion time, or makespan, i.e., the time for
a job to complete. Apart from the size of the data to be processed, that time
heavily depends on the job’s execution flow determined by the scheduling sys-
tem (the sequence of tasks that the job is split in) and the computing power
of the cluster nodes where the tasks are actually executed.

In an imbalanced computing context things get more complicated. When
a job is submitted, the question is how to schedule at best imbalanced re-
sources over unevenly distributed data in such a way that the job completion
time get minimized. We address the context imbalance problem by adopting
a hierarchical approach to the parallel data computation. According to this
approach, a top-level layer is responsible for running the logic to sense the com-
puting context’s features and orchestrating smart computing plans, while a
bottom-level layer is in charge of enforcing the plans while exploiting at best
well known parallel computing techniques. The top-level layer, therefore, is
where smart decisions must be taken in respect to, e.g., which of the many
chunks of sparse data should be mined by a given computing resource. Ba-
sically, instead of letting the data be computed by resources that reside at the
same data place, the intuition here is to move data wherever the largest pos-
sible computing power is available, provided that the benefit gained from the
exploitation of the best computing resources overcomes the cost incurred for
moving the data close to those resources. In order to support smart decisions
at this level, we designed and implemented a graph-based meta-model ca-
pable of capturing the characteristics of the distributed computing contexts
(in terms of computing resources, network links and data distribution) and
of representing the job’s potential execution paths in a structured way. The
bottom-level layer, instead, is where the actual computation occurs, and is
populated by dummy computing resources capable of running naive parallel
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computing algorithms.
In summary, the H2F grounds on the idea of getting the most powerful

computing resources to a) attract as many data chunks as possible, b) aggre-
gate them and c) run plain MapReduce routines on the overall gathered data.
The proposed approach does not intend to deliver a new parallel computing
paradigm for imbalanced computing contexts. It rather aims at preserving
and exploiting the potential of the current parallel computing techniques,
even in tough computing context, by creating two management levels that
cater to the needs of smart computation and the needs for fast computation
respectively.
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FIGURE 3.2: Job Execution Flow
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The solution we propose is depicted in the scenario of Figure 3.2. Com-
puting Sites populate the bottom level of the hierarchy. Each site owns a
certain amount of data and is capable of running plain Hadoop jobs. Upon
the reception of a subjob request from the top-level, a Site performs the whole
MapReduce process on the local cluster(s) and returns the result of the elab-
oration to the top-level. The Top-level Manager owns the system’s business
logic and is in charge of the management of the imbalanced computing con-
text. Upon the submission of a top-level job (i.e., a job that needs to elabo-
rate on distributed data), the business logic schedules the set of subjobs to
be spread throughout the distributed context, collects the subjob results and
packages the overall calculation result. In the depicted scenario the num-
bered arrows describe a typical execution flow triggered by the submission
of a top-level job. This specific case envisioned a shift of data from one Site
to another Site, and the run of local MapReduce sub-jobs on two Sites. Here
follows a step-by-step description of the actions taken by the system to serve
the top-level job:

1. The Top-Level Manager receives a job submission.

2. A Top-level Job Execution Plan (TJEP) is generated using information
on:

• the status of the Bottom-level layer such as the distribution of the
data set among Sites

• the current computing availability of Sites,

• the topology of the network and d) the current capacity of its links.

3. The Top-Level Manager executes the TJEP. Following the plan instruc-
tions, it orders Site1 to shift some data to Site4.

4. The actual data shift from Site1 to Site4 takes place.

5. According to the plan, the Top-Level Manager sends a message to trig-
ger the run of subjobs on the Sites where data are residing. In particular,
Top-level Map tasks are triggered to run on Site2 and Site4 respectively
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(we remind that a Top-level Map task corresponds to a MapReduce sub-
job).

6. Site2 and Site4 executes local Hadoop subjobs on their respective data
sets.

7. Sites sends the results obtained from local executions to the Top-Level
Manager.

8. A global reducing routine within the Top-Level Manager collects all
the partial results coming from the Bottom-level layer and performs
the reduction on these data.

9. Final result is forwarded to the Job submitter.

The whole job execution process is transparent to the submitter, who just
needs to provide the job to execute and a pointer to the target data the job
will have to process.

FIGURE 3.3: Overall architecture
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The H2F architecture (see Figure 3.3) is made up of several modules that
are in charge of taking care of the steps of the job’s execution flow depicted
in Figure 3.2. Each Site is an independent system that runs an instance of
the architecture in one of two distinctive modes according to the role to be
played. Out of the Sites, only one can activate the orchestrating mode that will
let the Site play the Top-Level Manager role; the Top-Level Manager owns
the “smart” orchestrating business logic of the system and coordinates all
the system activities. The rest of Sites will have to activate the computing mode
that will entitle them to act as Bottom-Level Executors, i.e., those who execute
the dirty work of data crunching. Of course, there is nothing preventing a
Top-Level Manager Site to also play the Bottom-Level Executor role.

The Top-Level Manager role is taken by enabling the following modules:

• Master: this module is in charge of receiving Top-level job execution re-
quests, extracting the job information and forwarding them to the Or-
chestrator, that in turn exploits them for the generation of the Top level
Job Execution Plan (TJEP). The Master enforces the generated plan.
Moreover, at the end of the job processing, it receives from the Global
Reducer the final result and forwards it to the job submitter.

• Orchestrator: is the component that generates the TJEP. The TJEP is
generated by crossing information concerning the submitted job and
the execution context in the form of Sites’ overall available computing
capacity and inter-Site bandwidth capacity.

• Global Reducer: collects the results obtained from the execution of sub-
jobs on the local Sites and performs the reduction on those results.

The Bottom-Level Executor role is activated by turning on the following
modules:

• Node Coordinator: owns all the information on the node (Site) status.

• File Manager: implements the routine for the load and the storage of
data blocks and keeps track of the file namespace.
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• Hadoop Handler: provides the APIs to interact with the features of-
fered by plain Hadoop. It is designed to decouple the system from the
underlying plain Hadoop platform thus making the framework inde-
pendent of the specific Hadoop version deployed in the Site.

• Network Manager: handles the signaling among Sites in the network.

Finally, a command line interface component (CLI) is provided to users to
submit a job execution request to the overall framework.

3.2 Job modelling

We have designed a graph-based representation model of a job’s execution
path which captures a) the characteristics of the imbalanced computing con-
text (in terms of Sites’s computing capacity, network links’ bandwidth and
data distribution over the Sites) and b) the job’s features. By using this model,
the Job Scheduler (a sub-module within the Orchestrator) automatically gen-
erates a finite number of potential job execution paths and then searches for
the one that minimizes the job makespan. Basically, a job execution path is a
sequence of actions driving the job execution. Actions may be of three types:
Site-to-Site data shift, on-Site data elaboration (the Top-level Map phase),
global reduction of elaborated data. We have spoken of “potential” execu-
tion paths as there may be many alternative paths that a job may follow in its
execution. The discussion about the selection of the best alternative follows
up in Chapter 4.

The job’s execution path representation is based on a graph model where
each graph node represents a Data Computing Element (Site), a Data Trans-
port Element (network link) or a Queue Element. Queues have been intro-
duced to model the delay suffered by a subjob when waiting for the comput-
ing resource to be freed by other subjobs. Arcs between nodes are used to
represent the sequence of nodes in an execution path (see Figure 3.4). A node
representing a computing element elaborates data, therefore it will produce
an output data flow whose size is different than that of the input data; this
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node introduces a delay in the job process which is dependent on the com-
puting capacity of the represented Site and on the size of the data to crunch.
A node representing a data transport element just transports data, so for that
node the output data size equals the input data size; obviously, a delay is
introduced by this node which depends on the bandwidth capacity of the
represented network link. A node representing a queue does not alter the
data size but, obviously, introduces a delay in the job processing.
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FIGURE 3.4: Nodes and arcs in the job’s execution path model

Nodes are characterized by two parameters: the compression factor βapp,
that is used to estimate the data produced by a node, and the Throughput,
defined as the amount of data that the node is able to process per time unit.
The βapp value for Data Computing Element is equal to the ratio of the pro-
duced output data to the input data to elaborate, while for the Data Transport
Elements it is equals to 1 because there is no data computation occurring
in a data transfer. The Throughput of a Data Computing Element depends
on the Site’s computing capacity, while for the Data Transport Elements the
Throughput corresponds to the link capacity. For a Queue element the βapp

is set to 1 (no computation occurs); also, since the concept of Throughput is
not easily applicable to this node (it would depend on the computing process
of other nodes), we will stick to the calculus of the delay introduced by the
queue by estimating the residual computing time of the “competing” nodes
(i.e., nodes of other jobs modeling the same contended computing resource).

In general, a node’s execution time is defined as the ratio of the input data
size to the Throughput of the node. In the Figure 3.4, the label value of the
arc connecting node Nodej to node Nodej+1 is given by:

DataSizej,j+1 = DataSizej−1,j × βj (3.1)

A generic node Nodej’s execution time is defined as:
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Tj =
DataSizej−1,j

Throughputj
(3.2)

Both the βapp and the Throughput are specific to the job’s application that
is going to be executed (i.e., the particular algorithm that elaborates on the
data), and of course are not available at job submission time. To estimate
these parameters, we run the job on small-sized samples of the data to elabo-
rate (a chunk of input data, e.g. 1 GB) on test machines with known compu-
tational resources. These test results allow us to build an Application Profile
made of both the βapp and the Throughput parameters, which is be used as
input for the elaboration of the TJEP. The estimation procedure is described
in details in section 3.3, where we proposed a study of the job’s Application
Profile and analyzed the behavior of well known Map Reduce applications.

As already anticipated, the execution path model is influenced by the
distributed computing context. The number of the job’s potential execution
paths depends on: a) the set of computing nodes, b) the links’ number and
capacity and c) the data size. In our approach the entire data set can be split
into data blocks of same size, with the aim of moving certain data blocks
from Site to Site. A study on the estimate of the optimum data block size is
conducted in Section 3.4. Data granularity provides the advantage of hav-
ing more flexible schemes of data distribution over the sites. Of course, the
higher the number of the data blocks (i.e., the smaller the data block size), the
higher the number of job’s potential execution paths. Moreover the graph
that models a job’s execution path has as many branches as the number of
Map Reduce sub-jobs that will be run. Every branch starts at the root node
(initial node) and ends at the Global Reducer’s node. We define the execution
time of a branch to be the sum of the execution times of the nodes belong-
ing to the branch; the Global reducer node’s execution time is left out of this
sum. Note that execution carried out through branches are independent of
each other’s, so branches will have different execution times. In order for the
Global reducing to start, all branches will have to produce and move their
results to the reducer Site. Therefore the longest among the branches’ execu-
tion times determines when the global reducing is allowed to start. Finally,



3.3. Application Profiling 37

the execution time of the Global reducer is given by the summation of the
sizes of the data sets coming from all the branches over the node’s estimated
throughput.

3.3 Application Profiling

The formulas (3.1) and (3.2) bind the execution time of a node (either com-
puting or transport) to the βapp and the Throughput. Since these parameters
are not available at job submission time, but are nonetheless necessary for
the computation of the job’s best execution path, we devised a procedure to
make an accurate estimate of them. The basic idea is that once a MapReduce
job has been submitted, some test machines run the job on small-sized sam-
ples of the data targeted by the job. From the study of the job’s behaviour on
the test machines, we are able to build the job’s Profile, which is made up of
the estimated βapp and Throughput respectively. Eventually, that profile will
be used in the computation of the job’s execution time.

The strategy is very simple: we measure the βapp and the Throughput on
the test machines (nominal values) and try to guess what the βapp and the
Throughput would be on the real computing nodes (guessed values). Of
course, the estimate procedure is prone to errors, which will unavoidably
propagate up to the computation of the job’s execution time. The challenge
here is to keep the estimate error little enough to avoid that the Scheduler’s
computed execution time appreciably deviates from the one that will even-
tually be observed on the real computation. Chapter 5 will report on the
gap between the job’s execution time guessed by the Scheduler and the one
observed when running the job in a real distributed computing context.

We approached the study of the job’s profile by investigating on the be-
haviour of two well-known MapReduce applications: WordCount and In-
vertedIndex. We intended to study the behaviour of both the Map and the
Reduce phases of each application when varying the computing power of
the machine running the job and the size of the data to be crunched. Tests
were run on four machines having different computing power. The Giga-flop
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(Gflop) was used as unit of measure of the computing power. Specifically, the
machines chosen for the tests had 15, 50, 100 and 150 Gflops respectively1.
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FIGURE 3.5: WordCount application: Throughput VS data size:
a) Map step, b) Reduce step

Further, in the study sample data of the following sizes were used: 500MB,
1GB, 2GB, 4GB, 8GB and 16GB. In Figure 3.5 we report the values of the
Throughput observed with data size variation in the WordCount case. The

1The machines’ computing power was assessed with the Linpack benchmark
(http://www.netlib.org/benchmark/hpl/)
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graphs are parameterized to the computing power. They show that, inde-
pendently of the computing power value, the Throughput is not affected by
the variation of the data size (apart from the cases of data size smaller than 1
GB).
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FIGURE 3.6: WordCount: Throughput VS computing power: a)
Map step, b) Reduce step
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FIGURE 3.7: InvertedIndex: Throughput VS computing power:
a) Map step, b) Reduce step

In Figure 3.6 we report the trend of the WordCount’s Throughput (both in
the Map and in the Reduce case) with computing power (CP) variation. This
time, the graphs are parameterized to the data size. Also, for almost all data
sizes the Throughput can be considered a linear function of the CP (only the
500MB curve in the Map graph raises an exception) and the observed slope
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is almost the same no matter the data size. For instance, looking at Figure
3.6(a) the Map slope value is approximatively:

MapSlopeWordCount =
14.81− 7.04

150− 50
= 0.078

MB

s ·Gflops

We repeated the experiment for the InvertedIndex application.
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FIGURE 3.8: InvertedIndex application: Throughput VS data
size: a) Map step, b) Reduce step

In Figure 3.7 we report the Throughput’s trend when the CP varies. Again,
we can observe a linear dependence of the Throughput from the CP. For the
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InvertedIndex Map the observed slop value is:

MapSlopeInvIndex =
31.37− 20.05

150− 50
= 0.113

MB

s ·Gflops

In Figure 3.8, the (Throughput vs data size) graph is depicted; for the In-
vertedIndex application we observed that the Throughput is not affected by
the variation of the data size as well. From these observations, we can con-
clude that if we had to guess the Throughput of a MapReduce application on
a computing node with a certain CP, then a linear function of the CP may con-
fidently be used to estimate it. Of course, the Map and Reduce’s Throughput
slope have to first be computed by means of the just described procedure.

The study of the βapp aimed to prove that this parameter is not influenced
by both the heterogeneity and the size of the input data that a computing
node has to process. Again, the study was conducted on the WordCount
and the InvertedIndex applications. For each application, the test envisioned
two experiments. In the first experiment, the application was executed on
different data samples (taken from Wikipedia) of 500MB, 1GB, 2GB and 4GB
size respectively. In the second experiments, the 4GB data sample was split
into smaller data blocks, and the application was run on every block.
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FIGURE 3.9: βapp trend in the WordCount application

In particular, four sub-experiments were run where the 4GB data sample
was split into data blocks of 500MB, 1GB and 2GB size respectively. The re-
sults observed for the WordCount’s βapp are shown in Figure 3.9. The graph
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FIGURE 3.10: βapp trend in the InvertedIndex application

in Figure 3.9(a) shows that the variance between the maximum and the min-
imum of the βapp values is negligible, so we can deduce that the size of input
data does not affect the compression factor in an appreciable way. Figure
3.9(b) reports the result of the second experiment. The reader may notice
that whatever the particular data sample (split, in the figure), no appreciable
variation of the βapp can be observed.

The same test was specularly conducted for the InvertedIndex applica-
tion on a 8GB data sample (specifically, a StackOverFlow dump). Results are
reported in Figure 3.10. The considerations made for the WordCount appli-
cation apply for the InvertedIndex as well. To conclude, the investigation
showed that the βapp is invariant to both the size and the type of the consid-
ered input data, and that the value of βapp computed on a small-sized data
sample can be reasonably used as a good estimate of the βapp of a big data set
as well. The estimate error among the βapp and the Throughput on the test
machines and the βapp and the Throughput on the real computing nodes is
negligible and does not affect Scheduler’s computed execution time. Exper-
iments described in Chapter 5 on the gap between the job’s execution time
guessed by the Scheduler and the one observed when running the job in a
real distributed computing context support this statement and prove the fea-
sibility of the approach.
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3.4 Data Block’s Size

As mentioned in Section 3.2, our approach allows the entire data set to be
split into data blocks of same size, with the aim of moving some data blocks
from Site to Site. In this section we study the impact that varying the data
block size might have on the performance of the job, and propose a mech-
anism to estimate the data block size that maximizes the performance. Of
course, the data block size is not an independent variable and its impact
must be regarded along with that of other variables that characterise the dis-
tributed computing environment, namely the available computing resources
and the network links’ capacity.

We recall the intuition on which we grounded our proposal: in the aim of
exploiting at best the distributed computing resources, a Site holding great
computing capacity ought to attract as much data as possible, provided that
the network paths followed by those data do not penalize too much the gath-
ering of the data at that Site. Moving data to a Site turns out to be convenient
if a) the Site offers much computing capacity and b) the network connect-
ing the data’s initial location and the Site’s location provides a good capacity.
To measure the fitness of a Site in regard to this purpose, we introduce the
following parameters:

• CPUrate: is the Site’s computing power normalized to the overall con-
text’s computing power.

• Connectivity: represents the capability of the Site to exchange data with
other sites in the computing context.

The CPUrate of Site Si is given by:

CPUrate(Si) =
CPU(Si)∑N
j=1CPU(Sj)

The Connectivity of Site Si is defined as the arithmetic mean of all end-to-
end nominal network bandwidths between the considered Site and the other
Sites in the distributed computing context. It is represented as:
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Connectivity(Si) =

∑N
j=1Bandwidthi,j

N − 1

where Bandwidthi,j is the nominal network capacity between node i and
node j, and N is the number of Sites belonging to the distributed context. We
also define the Connectivityrate as the connectivity of a Site normalized to the
overall connectivity of the distributed context. So, for Site Si it is given by:

Connectivityrate(Si) =
Connectivity(Si)∑N
j=1 Connectivity(Sj)

Now, for each Site we compute a score as a linear function of both the
Connectivityrate and the CPUrate described above. The score function is given
by:

Score(Si) = K ∗ CPUrate(Si) + (1−K) ∗ Connectivityrate(Si)

where K is an arbitrary constant in the range [0,1]. We ran several tests in
order to best tune the K value. In our scenarios good results were observed
by setting K values close to 0.5, i.e., values that balance the contribution of
the network and of the computing power. Seeking for an optimum K value,
though, was out of the scope of this work.

Finally, we define the NominalBlockSize as:

NominalBlockSize = min
∀i

Score(Si) ∗ JobInputSize (3.3)

where JobInputSize is the total amount of data to be processed by the
given Job. The NominalBlockSize is the data block size found by the de-
scribed heuristic method. Of course, there is no guarantee that such a value is
the optimum (i.e., the one that maximizes the job performance), but it is very
likely that the optimum value is near the NominalBlockSize. A procedure is
then run to seek for the optimum in the proximity of the NominalBlockSize.

Given the NominalBlockSize, we generate a set of values in the range
[0.5 · NominalBlockSize,MinChunkSize], where MinChunkSize is to the
minimum size of the data chunks located at the Sites. For each data block size
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in the range, we compute the best job execution path by feeding the LAHC
scheduling algorithm with the current context, the job information and the
selected data block size. Finally, the data block size producing the minimum
job makespan is selected as the best candidate.

For a better comprehension of the mechanism, we provide the following
example. Let us suppose that the computing context is made up of three Sites
(S1, S2 and S3) interconnected through a star network topology, as depicted
in the Figure 3.11. In this example, the overall data to process is 10GB large
and is distributed in this way: S1 ← 1GB, S2 ← 3GB and S2 ← 6GB.

L2 = 10 MB/s 

S2 = 50 GFLOPS  

S1 = 100 GFLOPS

L1 = 5 MB/s 

L3 = 10 MB/s 

S3 = 150 GFLOPS

FIGURE 3.11: Example Topology

The CPUrate, Connectivity and Connectivityrate for Site S1 will be respec-
tively:

CPUrate(S1) =
100

50 + 100 + 150
= 0.33

Connectivity(S1) =
5 + 5

2
= 5

Connectivityrate(S1) =
5

5 + 7.5 + 7.5
= 0.25

By setting K to 0.5, the score of Site S1 will be:

Score(S1) = 0.5 ∗ CPUrate(S1) + 0.5 ∗ Connectivityrate(S1) = 0.33
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Similarly, the Score(S2) and Score(S3) will be respectively 0.271 and 0.43.
The minimum score is then on Site S2; according to our approach, the selected
NominalBlockSize will be:

NominalBlockSize = Score(S2) ∗ JobInputSize = 0.271 ∗ 10GB = 271MB

In this case, the optimal size search procedure will have to seek for the
optimal size in the range [135MB, 1GB], as 1 GB is the size of the smallest
among the data chunks (located at S1).

In order to assess the effectiveness of the discussed explorative approach
some experiments were run. Starting from the reference scenario depicted
in the Figure 3.12, we designed some configurations (that are meant to rep-
resent different, concrete computing scenarios) by tuning up the following
parameters: the CPU Power of each Site, the network links’ capacity and the
initial distribution of the data among the Sites. The experiments were done
by simulating the execution of a job that needed to process 10GB of data.
Specifically, we considered a sample job for which a βapp value of 0.5 was
estimated. The parameter that is put under observation is of course the job
makespan. The objective of the experiment is to prove the capability of the job
scheduler to derive the execution path ensuring the job’s optimum makespan
by varying the data block size. Of course, this has to hold true independently
of the distributed computing scenario that is being considered.

S1

S2

S3 S4

S5

S6

L3 L4

L2

L1 L6

L5

FIGURE 3.12: Reference Topology
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Sites [GFLOPS] Links [MB/sec]
Config S1 S2 S3 S4 S5 S6 L1 L2 L3 L4 L5 L6

1 50 50 50 50 50 50 10 10 10 10 10 10
2 50 25 50 25 50 25 10 10 10 10 10 10
3 50 50 50 50 50 50 5 10 5 10 5 10
4 25 50 25 50 25 50 10 5 10 5 10 5
5 50 25 50 25 50 25 10 5 10 5 10 5

TABLE 3.1: Configurations used for the tests

Config_1 Config_2 Config_3 Config_4 Config_5
NominalBlockSize 1.67GB 1.38GB 1.52GB 1.52GB 1.24GB

TABLE 3.2: Nominal Block Size computed for the five Configu-
rations

We created five configurations, which have been reported in the Table
3.1. Each configuration represents a specific distributed computing context.
As the reader may notice, going from Config1 to Config5 the computing
scenarios get more and more unbalanced.

In the tests, for each configuration the job scheduler was fed with the
context data. According to our mechanism, the optimal data block size is
to be sought in the range [0.5 ∗NominalBlockSize,MinChunkSize]. For the
chosen configurations, the calculus in the formula 3.3 gave values reported
in the Table 3.2.

The exploration procedure extracts a finite number of points belonging to
that range, and that will constitute the points to be checked. The points are
selected in this way: starting from the left edge of the range, the next points
to be selected are obtained by stepping to the right by a fixed quantity of 10%
of the MinChunkSize. Of course, for a finer search a smaller step might be
chosen: this would generate a higher number of points, which in turn would
mean a heavier burden to the job scheduler with no guarantee of a consistent
benefit.

In the first battery of tests, the job’s input data were equally spread so
that Sites would host 1.7GB data each. Results from tests run on the five
configurations are shown in Figure 3.13, where the assessed job’s makespan
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is plotted against the data block size. It is important to notice that, with the
exception of Config1, for all of the configurations the graph has mainly a
parabolic trend with a clearly identified minimum which is very close to the
NominalBlockSize.
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FIGURE 3.13: First battery of tests: results from the scenarios
where data are evenly distributed among Sites

In the second battery of tests the configurations almost remained the same;
the only modification regarded the initial data placement. In particular, a
single Site was chosen to host the entire 10GB data. For the sake of com-
pleteness, we repeated the test selecting every time a different Site to host
the data. It was observed that the data’s initial placement is not a bias to the
experiment. In the Figure 3.14 we report the results of the case where the Site
chosen to host the data is S4. This time the trend is more like a slope, but
again the minimum is localised around the NominalBlockSize.

In the last battery of tests we split up the job’s input data into two equally
sized data chunks and distributed them among two Sites in the cluster. We
repeated the experiment by taking into account each pair of Sites in the sce-
nario. The choice of the Sites pair was observed to be uninfluential. In the
Figure 3.15 the results obtained by equally distributing data on S1 and S3 are
reported for each of the five configurations. The same considerations made
before on the minimum apply here.

To conclude, the intuition that the optimal data block size depends on
the connectivity and on the computing power distribution of the computing
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FIGURE 3.14: Second battery of tests: results from the scenarios
where overall data are initially placed in S4
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FIGURE 3.15: Third battery of tests: results from the scenarios
where data are initially placed on Sites S1 and S3

context (formalized in the formula 3.3) was proved to be true. According
to this, the procedure of the search for the optimal data block size has been
embedded as a subroutine of the job scheduler in its task of searching for the
best job execution path. Given that the optimum data block size was always
found to be close to the NominalBlockSize value, the exploration procedure
will focus on a very limited boundary of that value (3 to 4 points will be
checked at most).
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Chapter 4

Job Scheduler

The TJEP generated by the Orchestrator contains both directives on how data
have to be re-distributed among Sites and the articulation of subjobs that
have to be run on the Sites. In order to compute the TJEP, the Orchestrator
calls on a scheduling strategy that is capable of predicting which execution
path will ensure the highest job performance in terms of completion time.

When dealing with a single job, the job scheduler strives to find the com-
bination of available resources that guarantees the best possible performance
to the job itself. This scenario describes a “happy path” that occurs when all
the resources (computing elements and network links) are available to the job
and do not need to be shared with other pending jobs. Unfortunately, there
may be many job requests to be served even at the same time, and usually the
jobs’ arrival times are never known beforehand. In next section we discuss a
job scheduling strategy conceived to serve multiple job requests.

4.1 Multi-Jobs Scheduling

The objective is to get the job to complete in the shortest possible time by
putting at its disposal all the resources requested by the job, provided that
those resources are not being used by other jobs.

The scheduler will then enforce a first-come-first-served strategy, reserv-
ing resources to jobs according to their arrival time. When a job is assigned a
computing resource (a Site, in our case), the resource can not be either shared
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with other running jobs or pre-empted by any new job. In the case of net-
work resources, instead, links are shared by all jobs that need to move data
from Site to Site. As a result, a job may happen to be put on a wait state if
the desired computing resource is busy; on the other hand, it may also expe-
rience a transfer delay if it needs to move data through a network link that is
shared with other jobs.
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FIGURE 4.1: Reference scenario

In order to give the reader an idea of how the job scheduling works, we
provide a simple example. The reference scenario is a distributed computing
environment made up of five Sites which are interconnected through geo-
graphic links as represented in Figure 4.1. Upon a job submission, the job
scheduler elaborates a TJEP, according to which the target data might be con-
veniently shifted from Site to Site and the job is split into a number of subjobs
that will eventually run on the Sites where data reside. H2F considers data
logically and physically divided into data blocks of fixed size. Thanks to this
distinctive feature, H2F is capable of generating TJEPs which allow for the
transfer of even small portions of data from a site to one or more sites.

When crafting a TJEP for a new submitted job, the job scheduler will have
to also take into account the resource usage plan of already running jobs. In
the example we provide, three jobs are submitted one after the other and are
served according to their arrival time. In Figure 4.2 we show how the job
scheduler handles the three job execution requests. Each top-level job is split
into subjobs which are instructed to run into the Sites that hold the data. For
instance, Job1 is split into Job1.1, Job1.2 and Job1.3 which will run in Sites S1,
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S2 and S3 respectively. Subjobs are scheduled to run on a given Site only
when the data to be elaborated are available on that Site. Depending on the
TJEP instructions, in fact, some data may happen to be moved to a different
Site before scheduling the subjob that will have to crunch them. This is the
case of Job1.2, whose start is delayed until the target data are moved to their
final computing destination (the reader may notice the time gap between
Job1’s submission time and Job1.2’s start time). Conversely, Job3’s subjobs are
scheduled to run right after Job3 is submitted, as no data shift is prescribed
in its TJEP. But, while Job1’s subjobs are allowed to run at their scheduled
start time (computing resources are free at that time), all Job3’s subjobs will
have to wait until their requested computing resources are freed (Job3.1 waits
until Job1.2 releases S2, Job3.2 waits until Job2.2 releases S4, Job3.3 waits until
Job2.3 releases S5).
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FIGURE 4.2: Multi job scheduling

In the previous chapter we described the representation model of a job’s
execution path, now we show an example of execution path modeling on a
reference scenario. The example will refer to distributed computing context
shown in Figure 4.1 and to the job submission timing shown in Figure 4.2.

We then consider three jobs requesting to execute on some data sparsely
distributed among the five Sites. In this example we will assume that data
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FIGURE 4.3: Graph modeling potential execution paths for Job
2 and Job 3

are partitioned in data blocks, each having a size of 5 GB, and that every job
needs to access and elaborate 15 GB of data. Specifically: Job1 is requesting
to access data initially residing in S1 (one data block of 5GB) and S3 (two
data blocks of 5GB each); Job2 is requesting to access data initially residing
in S1 (one data block) and S5 (two data blocks); Job3 is requesting to access
data initially residing in S2, S4 and S5, each holding one data block of 5GB.
Figure 4.3 shows the graph model representing two potential execution paths
generated by the job scheduler for J2 and J3 respectively. For the sake of
simplicity and clearness of the picture, we omitted to report the path for J1.
According to the model, the plan for J2 envisions three execution branches:

1. a data block is moved from S1 to S3 traversing the links L111 and L113;
here, the subjob Job2.1 will suffer a delay because the resource S3 is
locked by subjob Job1.3 (see Figure 4.2); once S3 has been released, Job2.1
accesses and elaborates the data block; the output of the elaboration is
shifted to S1 through the links L113 and L111; here, the global reduction
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takes place1.

2. a data block is moved from S5 to S4 traversing the links L225 and L224;
here, Job2.2 accesses and elaborates the data block; the output of the
elaboration is shifted to S1 through the links L224, L1122 and L111; here,
the global reduction takes place.

3. Job2.3 accesses and elaborates the data block residing in S5; the output
of the elaboration is shifted to S1 through the links L225, L1122 and L111;
here, the global reduction takes place.

Likewise, the plan for J3 envisions three execution branches. In none
of the branch there is a data shift: all subjobs will work on the data blocks
initially residing in the targeted Sites. Interestingly, all the subjobs suffers a
delay, because the requested computing resources are found locked by other
subjobs. We point out again that the paths depicted in the Figure 4.3 are only
potential execution paths (not necessarily the best) for J2 and J3. For any job,
the task of the scheduler is to explore all the potential execution paths and to
identify the one that provides for the shortest execution.

4.2 Scheduling Algorithm

The job scheduling algorithm’s task is to search for an execution path which
minimizes a given job’s execution time. Let us consider the whole job’s
makespan divided into two phases: a pre-processing phase, during which the
job execution plan is defined, and a processing phase, that is when the real
execution is enforced. Obviously, the better the plan, the faster the job’s ex-
ecution. Yet, the benefit of a good plan might get wasted if the time it takes
to conceive the plan (the pre-processing phase) increases without control. In
this section we describe the job scheduling strategies for the execution plan
generation.

1Note that the global reduction step will start only after all the data elaborated by the
subjobs have been gathered in S1.
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Our first approach’s strategy was to explore the entire space of all poten-
tial execution paths for a job and to find the one providing the best execution
time by leveraging on the combinatorial theory.

All potential execution paths are explored by applying combinatorics op-
eration. First, the algorithm analyzes all computing nodes (Sites) to find the
best mapper nodes’ combination. A combination is a way of selecting map-
per nodes from the collection of all available Sites. The algorithm computes
a k-combination of all nodes with k ranging from 1 to the number of avail-
able Sites, where K is the number of mappers. The overall number of k-
combination is:

n∑
k=1

Cn,k =
n∑

k=1

n!

k!(n− k)!
(4.1)

For each k-combination, the algorithm computes the needed data trans-
fers. Those transfers consists in moving data blocks from the Sites that hold
them to the mapper nodes. The basic assumption we make is that overall
data to be processed must be divided into equally sized data blocks. There-
fore, Sites holding data will hold one or more data blocks. Those blocks need
to be re-distributed to mapper nodes. Of course, a Site holding data may also
be a mapper, therefore will happen to be assigned one or more data blocks.
In order to represent all possible assignments of data blocks to mappers, we
call on the Integer Partitioning technique (Andrews, 1976). A partition of a
positive integer n, also called an integer partition, is a way of writing n as a
sum of positive integers. It is possible to partition n as a sum of m addenda,
in which case we will refer to it as a partition of the number n of order m.
Finally, our objective is to compute the partitions of the integer n of order
m, where n is the total number of data blocks and m is the number of nodes
candidates to become mappers.

By the notation P (n,m) we refer to the number of partitions of the integer
number n in the order m. So, in the case that we have 5 data blocks to dis-
tribute over 2 Sites, two configurations are possible: 1) 1 data block on one
Site, 4 data blocks on the other one; 2) 2 data blocks on one Site, 3 data blocks
on the other one;. Generalizing, the overall number of partitions of a number
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n in all the orders m=1,2,..,n is:

P (n) =
n∑

m=1

P (n,m) (4.2)

Of course, the data blocks configuration tells us just the ways to “group”
data blocks for distribution, but the distribution phase complicates the prob-
lem, as there are many possible ways to distribute group of data blocks
among sites. In the example concerning the P (5, 2), 1 data block may go
to mapper1 (in Site1) and 4 data blocks may go to mapper2 (in Site2), and by
permutation, 4 data block may go to mapper1 and 1 to mapper2. So for the
distribution of data blocks we have to call on the permutation theory.

Algorithm 1: Execution paths evaluation algorithm
Data: P (n,m) : Set of all m− order partitions for n datablocks
Data: Cm : Set of all combinations of possible m mapper nodes
Result: bestTree with the lowest execution time
begin

bestTree←− null
for ci ∈ Cm do

for pj ∈ P (n,m) do
tree←− generateExecutionPathTree(ci, pj)
if bestTree = null

⋃
tree.executionT ime < bestTree.executionT ime then

bestTree←− tree
end

end
end
return bestTree

end

In the listing 1 the reader may find the pseudo-code for the calculus of
the best execution path; the code iterates on all generated trees and search
for the one ensuring the best execution path. Listing 2 describes the steps to
generate a single tree.

In the end, the calculus of the number of all the execution paths for a cer-
tain application must consider both the block data distribution configuration
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(eq. 4.2) and the combination of mappers (eq. 4.1).
Indeed, the number of generated execution paths depends on both the

number of blocks to be processed and the complexity of the network. The
growth in the number of blocks involves a significant increase in the num-
ber of partitions. Moreover the network topology affects the path genera-
tion since impacts on the number of combinations that grow as the num-
ber of available sites. For example, in the case of n=7 the number of gener-
ated paths will be around 18.000. For n=8 more than 150.000 configurations
were obtained. Treating the problem of the generation of execution paths as
an integer partitioning problem allowed us to apply well known algorithms
working in constant amortized time that guarantee acceptable time also on
off-the-shelf PCs (Zoghbi and Stojmenovic, 1994).

The described approach explores the entire space of all potential execu-
tion paths and find the best (minimum) execution time. Unfortunately the
number of potential paths to visit may be very large, if we consider that many
sites may be involved in the computation and that the data sets targeted by
a job might be fragmented at any level of granularity. Of course, the time
to seek for the best execution plan considerably increases with the number
of fragments and the number of network’s sites. That time may turn into an
unacceptable overhead that would affect the performance of the overall job.
If on the one hand such an approach guarantees for the optimal solution, on
the other one it is not scalable.

In order to get over the scalability problem, we propose a new approach
that searches for a good (not necessarily the best) job execution plan which
still is capable of providing an acceptable execution time for the job. The new
approach aims to keep the pre-processing phase as short as possible, though
it may cause a time stretch during the processing phase. We will prove that,
despite the time stretch of the job’s execution, the overall job’s makespan will
benefit.

Well known and common optimization algorithms follow an approach
based on a heuristic search paradigm known as the one-point iterative search.
One point search algorithms are relatively simple in implementation, compu-
tationally inexpensive and quite effective for large scale problems. In general,
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a solution search starts by generating a random initial solution and explor-
ing the nearby area. The neighboring candidate can be accepted or rejected
according to a given acceptance condition, which is usually based on an eval-
uation of a cost functions. If it is accepted, then it serves as the current solu-
tion for the next iteration and the search ends when no further improvement
is possible. Usually the search ends when no further improvement is pos-
sible. Different one-point search methods are distinguished by their accep-
tance condition, which is usually based on an evaluation of the cost functions
of generated solutions. The simplest evaluation method accepts only candi-
dates with the same or better cost function value than the current one. This
method is regarded to be very fast, but not sufficiently powerful as it usually
tends to get stuck quickly in a local optimum. This search procedure can be
improved by employing an alternative acceptance condition which include
candidates with lower scores of the function cost.

Several methodologies have been introduced in the literature for accept-
ing candidates with worse cost function scores. In many one-point search
algorithms, this mechanism is based on a so called cooling schedule (CS) (Ha-
jek, 1988). The common property of these methods is that their acceptance
condition is regulated by an arbitrary control parameter (such as tempera-
ture, threshold), which starting from an initial value at the beginning of the
search it is varied in the course of the search. To terminate the search pro-
cedure this parameter must reach its final value where no worsening moves
are accepted and the search converges. The variation of the control param-
eter is defined by a user and it can have a significant impact on the overall
performance of the algorithm. A weak point of the cooling schedule is that
its optimal form is problem-dependent. Moreover, it is difficult to find this
optimal cooling schedule manually.

The job’s execution path generation and evaluation, which represent our
optimization problem, are strictly dependent on the physical context where
the data to process are distributed. An optimization algorithm based on the
cooling schedule mechanism would very likely not fit our purpose. Find-
ing a control parameter that is good for any variation of the physical con-
text and in any scenario is not an easy task; and if it is set up incorrectly,
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the optimization algorithm fail shortening the search time. As this parame-
ter is problem dependent, its fine-tuning would always require preliminary
experiments. Unfortunately, such preliminary study can lead to additional
processing overhead. Based on these considerations, we have discarded op-
timization algorithms which envision a phase of cooling schedule.

The optimization algorithm we propose to use in order to seek for a job ex-
ecution plan is the Late Acceptance Hill Climbing (LAHC) (Burke and Bykov,
2008). The LAHC is an one-point iterative search algorithm which starts from
a randomly generated initial solution and, at each iteration, evaluates a new
candidate solution. The LAHC maintains a fixed-length list of the previously
computed values of the cost function. The candidate solution’s cost is com-
pared with the last element of the list: if it is not worse, it is accepted. After
the acceptance procedure, the cost of the current solution is added on top
of the list and the last element of the list is removed. This method allows
some worsening moves which may prolong the search time but, at the same
time, helps avoiding local minima. The LAHC approach is simple, easy to
implement and yet is an effective search procedure. In fact, it doesn’t employ
any variant of a cooling schedule and, therefore, might have a wider appli-
cability than cooling schedule based algorithms, it’s free from setting "power
affecting" parameters and then is almost not sensitive to initialization. This
algorithm depends on just the input parameter L, representing the length of
the list. It is possible to make the processing time of LAHC independent
of the length of the list by eliminating the shifting of the whole list at each
iteration.

The search procedure carried out by the LAHC is better detailed in re-
ported in the Algorithm 3 listing. The LAHC algorithm first generates an
initial solution which consists of a random assignment of data blocks to map-
pers. The resulting graph represents the execution path. The evaluated cost
for this execution path is the current solution and it is added to the list. At
each iteration, the algorithm evaluates a new candidate (assignment of data
blocks and mappers nodes) and calculates the cost for the related execution
path. The candidate cost is compared with the last element of the list and, if
not worse, is accepted as the new current solution and added on top of the
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list. This procedure will continue until the reach of a stopping condition. The
last found solution will be chosen as the execution path to enforce.

In the next chapter we compare the LAHC algorithm with the scheduler’s
algorithm based on a combinatorial approach. Objective of the comparison
is to prove that the newly introduced algorithm scales better and is even
capable of producing better performance in terms of reduced job makespan.
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Algorithm 2: Execution path creation algorithm
Data: Topology : network topology
Data: DataHosts : Set of all nodes that owns data blocks
Result: Tree: execution path tree
Function: generateExecutionPathTree(Mappers, Partitions)

begin
for hz ∈ DataHosts do

tree.root.addChild(hz)
nodepointer ←− hz

for mi ∈ mappers do
pathtoMapper←− Topology.findPath(hi, mi)
for node ∈ pathtoMapper do

if node.isLink then
node.InputData← nodepointer.OutputData
node.Throughput←−
Topology.getLinkCapacity(node)

else
if node.isMapper then

node.InputData←− blockSizeV alue∗partitioni

node.Throughput←− mapperThroughput
end

end
nodepointer.add(node)
nodepointer ←− node

end
pathtoGlobalReducer←−
Topology.findPath(mi, GlobalReducer)

for node ∈ pathtoGlobalReducer do
if node.isLink then

node.InputData← nodepointer.OutputData
node.Throughput←−
Topology.getLinkCapacity(node)

else
if node.isGlobalReducer then

node.InputData←−
blockSizeV alue ∗ partitioni ∗ βapp

node.setThroughput←−
globalReducerThroughput

end
end
nodepointer.add(node)
nodepointer ←− node

end
end

end
return tree

end
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Algorithm 3: Late Acceptance Hill Climbing algorithm applied to the
problem of job execution time minimization

Produce random job execution path (initial solution) s
Calculate initial solution’s cost function C(s)
Specify the list length L
begin

for k ∈ {0..L− 1} do
C(k)← C(s)

end
Assign the initial number of iteration I ← 0
repeat

Produce a new job execution path (new candidate solution) s∗
Calculate its cost function C(s∗)
v ← I mod L
if C(s∗) ≤ Cv then

accept candidate (s← s∗)
end
else

reject candidate (s← s)
end
Add cost value on top of the list Cv ← C(s)
Increment the number of iteration I ← I + 1

until a chosen stopping condition;
end
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Chapter 5

Experiments And Results

In this chapter we describe several tests run to analyze the Job Scheduler
performance and to estimate how well H2F performs against a plain Hadoop
framework.

5.1 Scheduler accuracy

In order to test the effectiveness of the job scheduler, we carried out exper-
iments in a multi-job environments. The reference scenario is a distributed
computing environment made up of five Sites which are interconnected through
geographic links as represented in Figure 4.1. Upon a job submission, the job
scheduler elaborates a TJEP, according to which the target data might be con-
veniently shifted from Site to Site and the job is split into a number of subjobs
that will eventually run on the Sites where data reside.

We reproduced the reference scenario with a small scale testbed environ-
ment. Specifically, we used a VirtualBox instance to create a virtual cluster
composed of 5 Sites. The network infrastructure is managed by two virtual
OpenFlow switches. All network link’s capacity is set to 10 MB/s. Each Site
is equipped with a single core vCPU with a computing power of 20 GFLOPS
and 2GB of vRAM. As for the jobs, we selected three well known applica-
tions: the WordCount, the InvertedIndex and the ArithmeticMean. Those
applications were chosen as a representative set (yet non-exhaustive) of the
spectrum of applications that can be treated as MapReduce problems. In par-
ticular, among the three applications, the WordCount is the most I/O bound
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and is also very CPU intensive, while the ArithmeticMean is CPU intensive
and has very few interactions with the I/O. The InvertedIndex is as CPU
intensive as the other applications, but lies in the middle in terms of I/O
boundness.

All the results we report in this section include an overhead time, which is
the time needed to set up the computation. In the case of H2F, the overhead
is the sum of up to three components: the time taken by the job scheduler to
elaborate the execution path that is set to 10 seconds in the LAHC algorithm
configuration (details in section 5.2); depending on the execution plan, the
time to transfer raw data from a site to another one; the time taken by the site
to load the received data into the local HDFS. In the case of the plain Hadoop
framework, the overhead is just the time to load the raw data in the HDFS.
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FIGURE 5.1: Estimated vs actual execution time: a)WordCount,
b)InvertedIndex, c)ArithmeticMean

In this set of tests we ran fifty experiments for each application in order
to prove the ability of the job scheduler to correctly estimate the execution
time of the jobs. Objective of the test is to compare, for every submitted job,
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the execution time estimated by the job scheduler with the actual time the job
takes to run and gather the final result. In each test we submitted a sequence
of three jobs. Jobs’ interarrival time followed a Poissonian law with a mean
time of 20 seconds. Each job was instructed to process 3GB of data.

In Figure 5.1 we reported the results of three different tests where jobs
were instructed to run the three applications WordCount, InvertedIndex and
ArithmeticMean respectively. For all applications the error committed by the
scheduler is pretty low. In fact, the gap between the actual and the expected
time is around 5% on average. Also, in every test our scheduler overestimates
job 1 processing time and underestimates job 2 and job 3 times. This trend
can be explained by the fact that the testbed is a virtual computing environ-
ment, and of course when job 2 and job 3 are submitted there may be extra
processing going on in the background (which the job scheduler is unaware
of) that impacts the job performance.

5.2 Combinatorial vs LAHC

In previous section 5.1 we reported the result of tests aimed at showing the
Job Scheduler’s ability to estimate the job’s execution time. In this section
we report the result of a comparison test we ran to measure the increase of
performance that the LAHC job scheduling algorithm is able to provide with
respect to the combinatorial algorithm discussed in 4.2. Main objective of
the test is to study the scalability of the two algorithms. To this purpose, we
designed some configurations - that are meant to represent different scenar-
ios - by tuning up the following parameters: the number of Sites populating
the geographic context, the network topology interconnecting the Sites and
number of data blocks distributed among the Sites. The experiments were
done by simulating the execution of a job with given βapp and Throughput.
Specifically, we considered a sample Job for which a βapp value of 0.5 was es-
timated. The results that we show is an average evaluated over 10 runs per
configuration.
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In the considered scenarios, each node is equipped with a 20 GFLOPS of
computing power and each network’s link has a 10 MB/s bandwidth. Fur-
ther, the size of every data block is set to 500MB.

S
5
=20GFLOPS

R
22R

11

L
1122

=10MB/s

L
113

=10MB/s

L
111

= 10MB/s
L225=10MB/s

L
224

= 10MB/s

L
112

=10MB/s

S
1
=20GFLOPS

S
2
=20GFLOPS

S3=20GFLOPS
S

4
=20GFLOPS

FIGURE 5.2: Network topology with 5 Sites

As for the LAHC algorithm, we also ran several preliminary tests in order
to find a proper list’s size value. From those tests, we observed that this
parameter does not have a substantial impact on the search of the execution
path by the LAHC, neither it impairs the overall LAHC performance.

For the test purpose, it was arbitrarily set it to 100. Moreover, we set the
stopping condition for the LAHC to 10 seconds, meaning that the algorithm
stops its search after 10 seconds of computation. This parameter’s value,
again, comes from preliminary tests that were run in order to figure out what
an acceptable stopping condition would be. From those tests we observed
that pushing that parameter to higher values did not bring any substantial
benefit in the search of the job execution path. Finally, the two scheduling
algorithms were both run on the same physical computing node, which is
equipped with an i7 CPU architecture and a 16 GB RAM.

A first battery of tests was run on a network topology made up of five
Sites interconnected to each other’s in the way that is shown in Figure 5.2.
From this topology, five different configurations were derived by consider-
ing the number of data blocks set to 5, 10, 20, 40 and 80 respectively. A second
battery of tests was then run for another network topology that was obtained
by just adding a new Site to the former topology (the new Site was attached
to switch R22 just in between S5 and S4). That, of course, made things more
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Combinatorial

# of DataBlocks
Scheduling
Time [sec]

Execution
Time [sec]

Makespan
[sec]

Overhead
[%]

5 1.49 6375 6376 0.02
10 5.63 13250 13256 0.04
20 256.02 26250 26506.02 0.96
40 3215.42 49000 52215.42 6.15
80 42280 96750 139030 30.41

TABLE 5.1: KPIs measured in the 5-node network topology
with Combinatorial algorithm

LAHC

# of DataBlocks
Scheduling
Time [sec]

Execution
Time [sec]

Makespan
[sec]

Overhead
[%]

5 10.32 6375 6385 0.16
10 10.01 13250 13260 0.07
20 10.01 26250 26260 0.038
40 10.01 49750 49760 0.020
80 10.32 106500 106510 0.0097

TABLE 5.2: KPIs measured in the 5-node network topology
with LAHC algorithm

complicated since the number of combinations of all possible job execution
path increases. As for this network topology, the same data block configura-
tions were considered. Unfortunately, we had to stop the 80 data-block test
as it took more than two days for the combinatorial algorithm to run without
even finishing.

The KPI that is put under observation is the job makespan. That KPI is fur-
ther decomposed in two sub-KPIs: the job scheduling time and the job execution
time. Throughout the tests, the two sub-KPIs were measured. Results of the
first battery of tests are shown in Table 5.1 and in Table 5.2. In the tables, for
each algorithm, we report the following measures: scheduling time, execu-
tion time, makespan (which is the sum of the previous two measures) and
the overhead (the percentage of the scheduling time over the makespan).

The reader may notice that in the cases of 5 and 10 data blocks respectively
the combinatorial algorithm outperforms the LAHC in terms of makespan.
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(a)

(b)

FIGURE 5.3: Execution paths in the 5-node network topol-
ogy and the 40 data-blocks configuration: a) combinatorial; b)

LAHC
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In those cases, the LAHC managed to find the global optimum (we remind
that the combinatorial always finds the optimum) but the LAHC overhead is
higher than that of the combinatorial (which is capable of finding the solution
in much less than 10 seconds). In the case of 20 data blocks, the LAHC is
still able to find a global optimum, so the performance of the two algorithm
terms of execution time are equal. But in this case the combinatorial took
more than 200 seconds to find the solution, while the scheduling time for the
LAHC is always ten seconds long. So the LAHC slightly outperforms the
combinatorial in the makespan. Finally, in the cases of 40 and 80 data blocks
the LAHC finds a just local optimum (the LAHC’s execution time is lower
than the combinatorial’s). In spite of that, being the scheduling time of the
combinatorial extremely long, in the makespan comparison the LAHC once
more outperforms the combinatorial.

In Figure 5.3 we have reported the two execution paths found by the two
algorithms in the case of 40 data blocks. While the combinatorial’s is the best
possible path and the LAHC’s is only a local optimum, the two paths look
very much alike. The only difference, which is highlighted in the red boxes,
concerns the computation of the data residing in Site S3. While the LAHC
schedules the computation of the data on the Site S3 itself, the combinatorial
manages to balance to computation between Site S3 and Site S5, thus speed-
ing up the overall execution time.

Combinatorial

# of DataBlocks
Scheduling
Time [sec]

Execution
Time [sec]

Makespan
[sec]

Overhead
[%]

5 1.87 7125 7126 0.03
10 594 12250 12844 4.62
20 10795.30 23500 34295.3 31.48
40 404980.31 44350 449330.31 90.13

TABLE 5.3: KPIs measured in the 6-node network topology
with Combinatorial algorithm

Results of the second battery of tests are shown in Table 5.3 and in Table
in Table 5.4. The reader will notice that in the new network topology, which
is a little more complex than the previous one, the combinatorials has some
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LAHC

# of DataBlocks
Scheduling
Time [sec]

Execution
Time [sec]

Makespan
[sec]

Overhead
[%]

5 10.36 7125 7135 0.14
10 10.13 12250 12260 0.083
20 10.02 23500 23510 0.043
40 10.10 47000 47010 0.021

TABLE 5.4: KPIs measured in the 6-node network topology
with LAHC algorithm

scalability issues even with a relatively simplex data configuration (for 10
data blocks, the scheduling time takes more than 500 seconds. In the cases
of 20 and 40 blocks respectively, the LAHC confirms to be the best as it is
capable of finding very good execution paths (though not the best) in a very
short scheduling time.
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FIGURE 5.4: Makespan in the 5-node network topology
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FIGURE 5.5: Makespan in the 6-node network topology
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In Figures 5.4 and 5.5 we reported a graphical representation of the makespan
performance of the two algorithms. In the graph, for the ease of representa-
tion, the values in y-axis are reported in a logarithmic scale. The final consid-
eration that we draw is that the combinatorial algorithm is extremely poor in
terms of scalability. In fact, the performance will degrade significantly as the
number of data blocks grows. The LAHC solution was proved to scale very
well. Despite the solutions it finds are local optima, even for very complex
scenarios they are very close to the global optima found by the combinatorial.

5.3 Comparison standard hadoop vs H2F

In this Section we describe several tests run to estimate how well H2F per-
forms against a plain Hadoop framework. The performance indicator upon
which the comparison is made is the Job’s completion time (makespan). In
order to reproduce an imbalanced distributed computing context, we set up a
testbed environment consisting of four Sites. Each Site represents a comput-
ing facility, may hold raw data and runs an instance of the H2F framework.

Sites are interconnected to each others through network links. The net-
work topology of the testbed environment is depicted in Figure 5.6. For the
test purpose we employed: two sites (S3, S4) equipped with an i7 CPU archi-
tecture and 8GB RAM, which guarantees for an estimated computing node’s
capacity of 150 GFLOPS 1; two Sites (S1, S2) having a Core 2 Duo CPU and
4GB RAM, for an estimated computing power of 15 GFLOPS each. Therefore,
speaking of computing power the testbed is natively imbalanced. Finally,
each network link’s nominal bandwidth is 40MB/sec.

As for the Jobs to test, we selected three well known applications: the
WordCount, the InvertedIndex and the ArithmeticMean.

Since the H2F was designed to boost the performance of the MapReduce
paradigm in distributed computing contexts where imbalance exists in terms

1The computing capacity was assessed with the Linpack benchmark
(http://www.netlib.org/benchmark/hpl/)
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L1 

S1 = 15 GFLOPS  S2 = 15 GFLOPS

L2 

L3 

S4 = 150 GFLOPSS3 = 150 GFLOPS

L4 

FIGURE 5.6: Network topology of testbed environment

of Sites’ computing capacity, network links’ bandwidth and raw data distri-
bution respectively, we designed some context configurations (scenarios) re-
producing different situations of imbalance. The scenarios were generated
by tuning up the initial distribution of the raw data among the sites and the
capacity of the network links interconnecting the sites.

The first scenario focuses on the data distribution. The configurations we
used for this test are listed in Table 5.5. Each table row represents a config-
uration where the displayed numbers are the the percentage of the overall
input data residing in each site. So, for instance, in the Config1, the 40% of
data resides in S1, the 30% in S2, the 20% in S3 and the 10% in S4.

S1 S2 S3 S4

Config1 40% 30% 20% 10%
Config2 40% 40% 20% 0%
Config3 30% 0% 70% 0%

TABLE 5.5: Configurations of the data blocks’ distribution

Results obtained from running the three applications on both the H2F and
the Hadoop framework are reported in Figure 5.7.

The result that we show is an average evaluated over 10 runs per configu-
ration. A point we would like to stress is that all the depicted results include
the overhead time, which is the time needed for preparing the data to the com-
putation. In the case of the H2F, the overhead is the sum of four components:
the time taken by the Job scheduler to elaborate the optimum execution path
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FIGURE 5.7: H2F vs Hadoop: comparison of job’s execution
time for a) Config1, b) Config2 and c) Config3 in the 5GB raw

data scenario

and the optimum data block size; depending on the execution plan, the time
to transfer raw data from site to site; the time taken by the site to load the
received data onto the local HDFS; the time the Global reducer has to wait
in order for the last block of map-reduced data to arrive. In the case of the
plain Hadoop framework the overhead is just the time to load the raw data
on the HDFS. In regard to the H2F, the time take by the Job Scheduler for
the specific testbed and the considered scenarios was never over a hundred
seconds. Of course, the job scheduling time may increase in the case of more
complex network topologies and bigger amounts of raw data.

Taking a closer look at Figure 5.7, regardless the raw data’s initial distri-
bution, we notice that the H2F framework is able to execute the WordCount
application faster than how the plain Hadoop implementation does. The ex-
ecution performance of the other two applications are almost similar but H2F
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slightly prevails. Some considerations need to be made in respect to this re-
sult. First, the use of the H2F for this specific scenario is discouraged. But
the bad performance of the H2F is due to the fact that, for the relatively small
amount of data being considered (5GB), the overhead time has a stronger im-
pact on the H2F than on the plain Hadoop framework. Second, the better
performance of the WordCount observed in the H2F is not surprising if we
consider that the application is very much CPU intensive, and the H2F is
capable of outperforming the plain Hadoop despite it suffers from a longer
overhead time.

In the second scenario, the overall raw data size was set to 50 GB and
while the rest of configurations remained unchanged. Collected results are
shown in Figure 5.8. What we observe here is that with the increase in the
raw data size, the difference of performance between the H2F and the plain
Hadoop gets even more marked (15-20 % on average). In fact, with respect
to the agnostic plain Hadoop, the H2F is able to identify the source of com-
putation that are capable of boosting the computing process (because of their
greater computing capacity). This time, being the computation time longer
than the 5 GB case, the impact of the overhead time is very low.

Finally, we designed one last scenario where the network links’ capacity
is intentionally imbalanced with the purpose to show that the H2F is capable
to adapt to such an imbalance and yet schedule an optimum execution path
for the considered job. In Table 5.6 we report the values of the links’ band-
width for the two configurations that we designed. In the configurations, the
remaining parameters are left unchanged with respect to the previous sce-
nario (50 GB data, input data distributed among Sites as defined in config1).

TABLE 5.6: Links’ Configurations

L1[MB/s] L2[MB/s] L3[MB/s] L4[MB/s]

Config4 20 20 40 40
Config5 20 40 20 40

In Figure 5.9 the results of the tests run on these configurations are shown.
Again, the execution times observed for the H2F are shorter than Hadoop’s.
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FIGURE 5.8: H2F vs Hadoop: comparison of job’s execution
time for a) Config1, b) Config2 and c) Config3 in the 50GB

raw data scenario
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FIGURE 5.9: H2F vs Hadoop: comparison of job’s execution
time for a) Config4 and c) Config5

The aim of all these tests was to challenge the capability of the H2F to
adapt to different distributed computing environments, and to also prove
that it may provide better performance than the plain Hadoop framework.
Despite the H2F suffers from longer overhead times, tests have showed that
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the time for the H2F to complete a job (no matter the application type) is
lower that the time observed in the Hadoop case. This holds true for any of
the designed scenarios.
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