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Abstract 

This paper describes a simple analytical tool for the calculation of the shear strength of r.c. rectangular members with shear 
reinforcement and subjected to only truss action. The proposed method considers simplified stress fields and evaluates the shear 
strength of members subjected to axial force, bending moment and shear force by means of the application of the static theorem of 
limit analysis. Unlike most of the formulations proposed in codes and in other research studies, the proposed method considers a 
single physical model to explain the resistance to axial force, bending moment and shear force, and simultaneously satisfies the 
equilibrium under all the above internal forces. The paper identifies basic points of the N-M-V ultimate domain and reports relations 
and procedures to calculate the values of the internal forces of these points as well as the internal forces of the points in between. 
The method is applied to a set of beam and column members and a comparison is drawn between the shear strength resulting from 
the simplified method and that from a more complex non-linear mathematical program proposed in the past by the same author. 
Finally, to prove the value of the method and define the field of reliable application, the proposed method is applied to members 
tested in laboratory by other researchers and characterised by different geometric and mechanical properties. 
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1. Physical model 

The considered method simulates the sole truss action and is applied to members characterised by a rectangular 
cross-section endowed with longitudinal and transverse reinforcements (Fig. 1). The member is subjected to constant 
axial force and to bending moment and shear force. The longitudinal steel bars are distinguished into flange and web 
bars. The flange bars are concentrated at the centroid of their cross-section. The longitudinal bars of the web are 
distributed over the cross-sectional area between the longitudinal bars of the opposite flanges and are characterised by 
the reinforcement ratio  lw slw 1 2   A b h c c , where Aslw is the cross-sectional area of the longitudinal bars of 
the web, b is the width of the cross-section, h is the depth of the cross-section, c1 is the mechanical cover to the 
longitudinal reinforcement in tension, i.e. the distance between the external surface of the cross-section and the 
centroid of the entire longitudinal reinforcement of the flange in tension, and c2 is the mechanical cover to the 
longitudinal reinforcement in compression. 

The transverse reinforcement consists of hoops and ties. The cross-sectional area of this reinforcement is considered 
through the transverse reinforcement ratio  sw sw  A b s , where s is the spacing of the hoops and Asw is the projection 
of the cross-sectional area of the transverse reinforcement per layer in the direction of the applied shear force.  

The cross-section of the member is divided into three parts, named F1, F2 and F3, as shown in Figure 1a. In each of 
these parts the response of concrete and steel is defined by means of simplified stress fields. The stress-strain 
constitutive behaviour of concrete and steel is considered to be perfectly plastic. However, while longitudinal and 
transverse steel bars are assumed to resist both compression and tension, concrete is assumed to resist compression 
only. In the following sections, steel stresses are considered positive when tensile whereas stresses of concrete are 
considered positive when compressive. The geometry of zones F1, F2 and F3 of the cross-section is identified by the 
separation lines of the central part F3. The position of these two lines is defined by coordinates y1 and y2 (see Fig. 1a). 

1.1. Stress fields 

In the outermost parts of the cross-section (called F1 and F2) longitudinal reinforcement and concrete are subjected 
to stresses that are parallel to the longitudinal member axis. The stresses of the longitudinal (flange and web) 
reinforcement in F1 and F2 are called 1 and 2  , respectively. The stresses of concrete in zones F1 and F2 are called 
c1 and c2. Stresses 1 , 2  , c1 and c2 are constant within the single part of the cross-section (i.e. F1 and F2).  

In the central part of the cross-section (called F3) longitudinal and transverse reinforcements experience stresses 
that are constant and parallel to the axis of the steel bars. In particular, the stress field relative to the transverse 
reinforcement is inclined at an angle equal to 90° with respect to the longitudinal axis of the member as hoops and 
ties are assumed here orthogonal to the longitudinal axis of the member. Still in F3, concrete is assumed to experience 
compressive stresses c3 inclined at an unknown angle  with respect to the longitudinal member axis. To derive the 

   
(a) (b) 

Figure 1. (a) Parts F1, F2 and F3 of the cross-section and (b) elements E1 and E2 of the member 
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equilibrium equations that involve stresses of concrete and steel of the central part of the cross-section (F3) two 
elements are considered (E1 and E2), which are obtained by cutting the reinforced concrete member by means of three 
(see Fig. 1b). Element E1 is obtained by cutting the member with one plane parallel to the compressive stress of 
concrete and with two other planes that are parallel and orthogonal to the longitudinal member axis. This element is 
subjected to the stress 3  of the longitudinal reinforcement, to the stress s3 of the hoops, to the tangential stress 
and to the equivalent normal stress 3 of concrete and steel bars.  

The equilibrium equations along y and z-axes give  

s3 sw cos sin  0       (1) 

3 lw 3sin cos sin 0           (2) 

To obtain equilibrium equations involving the normal stress of concrete c3 the element E2 is considered, which is 
obtained by cutting the member with two planes parallel and orthogonal to the compressive stress of concrete and 
with a plane parallel to the longitudinal member axis. This element is subjected to the stress s3 of the hoops and to 
the compressive stress c3 of concrete. The condition y = 0 applied to this element states that 

 2
s3 sw c3 sin 0       (3) 

The normal stress of concrete in F3 in the direction of the longitudinal member axis ( c3,l ) is linked to the 
compressive stress c3 by means of the relation 2

c3,l c3 cos    . 

1.2. Internal forces 

The axial force of the generic cross-section is calculated as the sum of the contributions of the parts F1, F2 and F3. 
Specifically, the first contribution N1 is given by the expression 

    1 1 slf1 lw 1,lim 1 c1 c,lim 1        N A b y y b y y  (4) 

where Aslf1 is the cross-sectional area of the longitudinal bars of the flange in tension, c,limy   is the distance from 
the geometric centre of the cross-section to the external surface of the cross-section and 1,limy  is the distance from 
the geometric centre of the cross-section to the centroid of the longitudinal bars of the flange in tension. 

The second contribution N2 is defined by the relation 

    2 2 slf2 lw 2,lim 2 c2 c,lim 2        N A b y y b y y  (5) 

where Aslf2 is the cross-sectional area of the longitudinal bars of the flange in compression and 2,limy  is the distance 
from the geometric centre of the cross-section to the centroid of the longitudinal bars of the flange in compression.  

The third contribution N3 is defined by the relation  

  
2

3 2 1 3 lw s3 sw 2

cos

sin

       
 

N b y y   (6) 

Similar to the axial force, the bending moment of the generic cross-section is calculated as the sum of the 
contributions of the parts F1, F2 and F3. These contributions may be evaluated by means of the following relations 
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    2 2lw 2 2
1 1 c1 c,lim 1slf1 1,lim 1,lim 1

22

       
  

bb
M y yA y y y  (7) 

    2 2lw 2 2
2 2 c2 c,lim 2slf2 2,lim 2,lim 2

22

       
  

bb
M y yA y y y  (8) 

  
2

2 2
3 2 1 3 lw s3 sw 2

cos
2 sin

        
 


b

M y y  (9) 

Finally, the shear force V is given by the integral of the shear stresses in F3, i.e. 

 2 1  V b y y   (10) 

2. N-M-V ULTIMATE INTERACTION DOMAIN  

The N-M-V ultimate domain is identified by the envelope of M-V interaction domains characterized by different 
values of the axial force. The construction of the single quadrant of each M-V domain is based on five points, later 
called PV, PM, P1, P2 and P3. As shown in Figure 1 (where the interactions curves are derived by means of the 
proposed simplified method with the design values of the mechanical properties of the materials and cotg in the range 
from 1 to 2.5), point PV and PM are at the ends of the quadrant as corresponding to a null bending moment or shear 
force, respectively. Point P2 identifies the point with the maximum shear strength. If more than one point is 
characterised by the same maximum shear strength, point P2 identifies the point of this group with the maximum 
bending moment. Point P3 identifies the point of the interaction domain with the same shear strength as point P2 but 
with the lowest bending moment. Point P1 does not correspond to the maximum value of either the internal forces. 
However, it identifies a change in the cross-section behaviour that has been noted when examining the results of the 
reference nonlinear mathematical programming problem (Rossi and Recupero 2013, Rossi 2013). The central zone 
F3, which is generally quite large in P2 and has a null area in PM, does not shrink linearly from P2 to PM. In particular, 
in the first part of this route from P2 to PM one of the ending lines of the central zone F3 tends to remain close to one 
of the limit positions of F3 (i.e. the y-coordinate of this line is either 1,lim y or 2,limy ) while the other ending line 
slowly tends to the first one and reduces the area of the central zone. Then, the two ending lines move closer to each 
other and reach the common position corresponding to point PM. The point corresponding to the end of the first 
behaviour and to the beginning of the second is reported here as P1.  

Owing to this, the generic M-V ultimate interaction curve may be characterised by a number of distinct basic points 
ranging from two to five.  

3. Ultimate state of stress in zone F3 

With the sole exception of PM, the shear force of the single basic point is calculated as the maximum of the shear 
forces corresponding to angles  variable in an assigned range of values. Once a value of the angle has been selected, 
the normal stresses of concrete ( c3 ) and hoops ( s ) in zone F3 are calculated by Equation (3). To this end, the 
normal stress c3  is first fixed equal to the concrete strength under biaxial stress state and the normal stress s  is 
obtained by Equation (3). If this latter value is lower than the yield strength of the transverse reinforcement, the above 
values of c3  and s  are assumed as the normal stresses of concrete and hoops in zone F3. If this is not the case, s  
is assumed equal to the yield strength of the transverse reinforcement and c3  is obtained by Equation (3). The normal 
stress of concrete c3,l  is calculated as 2

c3 cos  . 
This paper shows how the internal forces corresponding to PV are calculated. For the internal forces corresponding 

to the other points and to the intermediate points, readers are referred to (Rossi, 2021). 
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4. Internal forces corresponding to point PV 

Point Pv is characterised by a null bending moment and by an assigned axial force. The shear force corresponding 
to a value of the angle  is evaluated taking into account six combinations of values of the variables y1, y2, 1 , 2  ,

3  , c1 , c2  (see Table 1). In each combination, the values of one or two variables are not fixed as they are to be 
calculated case by case to ensure a null bending moment on the cross-section. These free variables are highlighted in 
Table 1 by grey hatches. The proposed combinations intend to maximize the size of zone F3 for assumed limit stresses 
of concrete or steel. The corresponding axial resistances are identified by ( , i)V

RN (i=1 to 6) and increase with the 
number in the superscript of the parameter. In particular, the first combination of the variables identifies the maximum 
axial compressive resistance whereas the latter identifies the maximum axial tensile resistance of the cross-section.  

If the maximum stress resultant in the longitudinal reinforcement is symmetric with respect to the x-axis, the limits 
of zone F3 and the distributions of the normal stresses are symmetric with respect to the x-axis. If this is not the case, 
the proposed combinations allow limits of zone F3 and distributions of normal stresses that are non-symmetric. In 
particular, if the maximum contribution of Aslf1 to the rotational equilibrium is not lower than that of Aslf2, i.e. 

slf1 1,limyA f y ≥ slf2 2,limyA f y , the proposed combinations of  y1, y2, 1 , 2  , 3  , c1 , c2  are reported in Table 1. 
The axial resistance ( ,1)V

RN  is calculated assuming that 2   and 3   are equal to the compressive yield stress of steel 
while c2  is equal to the compressive strength of concrete fc. The variables ( ,1)

1
Vy  and ( ,1)

2
Vy  are null if 

slf1 1,limyA f y = slf2 2,limyA f y  while they are equal to –y1,lim if slf1 1,limyA f y > slf2 2,limyA f y . The free variables 
c1  and 1  must be specified to provide a null bending moment. To this end, the stress 1  is first set equal to the 

compressive yield stress of steel and c1  is calculated by the following equation to ensure a null bending moment  

 
 

2 2
2 3 1 slf1 1,lim lw 1,lim 1

c1 2 2
c,lim 1

0.5        


  M M A y b y y

b y y
  (14) 

where the bending moment contributions M2 and M3 are reported in Equations (8) and (9). If the value of c1  
resulting from Equation (14) is positive and lower than fc, it is accepted as the value of c1  and 1  is assumed equal 
to the compressive yield stress of steel. If this is not the case, c1  is set equal to the limit of the concrete strength (0 
or fc) nearer to the value obtained by the above calculation and 1  is calculated by means of the rotational equilibrium 
equation  

 
 

2 2
2 3 c1 c,lim 1

1 2 2
slf1 1,lim lw 1,lim 10.5

   
 

  


 

M M b y y

A y b y y
  (15) 

 

Figure 2. Simplified ultimate M-V interaction curves (fc=30 MPa; fc2=15.8 MPa; fy=fyw=450 MPa; N=0) 
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The axial resistance (V,2)
RN  is determined assuming that the variable y1 is equal to 1,lim y , the stresses 2  , 3   

are equal to the compressive yield stress of steel and the stress of concrete in zones F1 and F2 is null. The free stress 
1 is first assumed equal to the compressive yield stress of steel and the value of the variable y2 is calculated by 

rotational equilibrium, i.e.  

 
 

1
2 22 2

2 c2 c,lim 3 lw c3,l 1 1slf2 2,lim lw 2,lim
2

c2 2 lw 3 lw c3,l

0.5 0.50.5

0.5 0.5 0.5

              
          

  

 

b y b y MA y b y
y

b b b
 (16) 

where the bending moment contribution M1 is reported in Equation (7). If the value of y2 resulting from 
Equation (16) is not higher than 2,limy , it is assumed as the value of the variable y2. If this is not the case, y2 is fixed 
equal to 2,limy  and 1  is calculated by Equation (15). 

The axial resistance (V,3)
RN  corresponds to null values of variables 2  , 3  , c1 , c2  and to a value of y1 equal 

to 1,lim y . The free stress 1 is first assumed equal to the tensile yield stress of steel and the value of the variable y2 
is calculated by Equation (16). If this value of y2 is higher than 2,limy , y2 is fixed equal to 2,limy  and 1  is 
calculated by Equation (15). 

The axial resistance (V,4)
RN  is calculated assuming that the variable y1 is equal to 1,lim y , 2  and 3   are equal 

to the tensile yield stress of steel and the stresses of concrete in zones F1 and F2 are null. The values of the free variables 
y2 and 1  are calculated as proposed for the axial resistance (V,2)

RN , except that in this case the tentative value of 
1  is equal to the tensile yield stress of steel. The axial resistance (V,5)

RN is calculated assuming that the variable y2 
is null, 2  and 3   are equal to the tensile yield stress of steel and the stresses of concrete in zones F1 and F2 are 
null. The stress 1 is first assumed equal to the tensile yield stress of steel and the value of the variable y1 is calculated 
by the rotational equilibrium, i.e.  

 
 

1
2 22 2

1 c1 c,lim 3 lw c3,l 2 2slf1 1,lim lw 1,lim
1

c1 1 lw 3 lw c3, l

0.5 0.50.5

0.5 0.5 0.5

              
         

  

 

b y b y MA y b y
y

b b b
 (17) 

If the solution of Equation (17) is not lower than 1,lim y , it is assumed as the value of the variable y1. If this is not 
the case, y1 is fixed equal to 1,lim y  and 1  is calculated by Equation (15). 

Finally, the axial force (V,6)
RN  is the tensile axial resistance of the cross-section and is calculated assuming that the 

variables y1 and y2 are null if slf1 1,limyA f y = slf2 2,limyA f y  while they are equal to 1,lim y if slf1 1,limyA f y >
slf2 2,limyA f y . Stresses 2  and 3   are equal to the tensile yield stress of steel and the stress of concrete in zones 

F1 and F2 is null. The variable 1  is free and is calculated by Equation (15). If the maximum contribution of Aslf1 to 
the rotational equilibrium is lower than that of Aslf2, i.e. slf1 1,limyA f y < slf2 2,limyA f y  , other combinations reported 

Table 1. Reference axial resistances for point PV:  

slf1 l1,limyA f y ≥ slf2 l2,limyA f y  (Notes: grey hatches identify the free variables) 

Symbol y1 y2              l1   l2  l3   c1                      c2                        
        

( ,1)V
RN  ( ,1)

1
Vy  ( ,1)

2
Vy   -fy -fy  fc 

( ,2)V
RN  -yl1,lim   -fy -fy 0 0 

( ,3)V
RN  -yl1,lim   0 0 0 0 

( ,4)V
RN  -yl1,lim   fy fy 0 0 

( ,5)V
RN  ( ,5)

1
Vy  0  fy fy 0 0 

( ,6)V
RN  ( ,6)

1
Vy  ( ,6)

2
Vy   fy fy 0 0 
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in (Rossi, 2021) must be used and considerations similar to those described above may be applied to calculate the free 
variables or set the value of the variables y1 and y2.  

To obtain the values of the variables corresponding to the assigned axial force, the axial resistances V
RN  are 

compared to the axial force N. Independently of the value of the shear force, the cross-section is able to sustain the 
assigned axial force N only if this value is in the range from (V,1)

RN  to (V,6)
RN . If this is the case, the values of the 

axial resistances that are immediately lower and higher than the assigned axial force are first identified. Then, to obtain 
the value of the variables corresponding to the assigned axial force and to a null bending moment, a simple method 
reported is applied (Rossi, 2021).  

5. Comparison with results of the reference nonlinear mathematical programming problem   

The method is applied to some reinforced concrete members and the results are compared with those deriving from 
the reference nonlinear mathematical programming problem. The cross-section of the members considered in the first 
set of tests is rectangular (30x60 cm²) and representative of beams subjected to shear force and bending moment acting 
in the plane where the lateral stiffness of the member is maximum. The transverse reinforcement consists of 
rectangular hoops. The longitudinal reinforcement of the tension side consists of bars with cross-sectional area equal 
to either 6.28, 12.57 or 28.27 cm² and mechanical cover equal to 5 cm. The longitudinal reinforcement on the 
compression side is defined by means of the geometric ratio u=Aslf2/Aslf1, which is equal to either 1, 0.50 or 0. The 
longitudinal reinforcement in the web consists of bars with cross-sectional area equal to 6.28 cm². The hoops consist 
of 8 mm diameter bars with spacing equal to either 5, 10, 15 or 25 cm. The yield stress fy of longitudinal and transverse 
bars is equal to 45 MPa. The cylindrical compression strength of concrete fc is equal to 30 MPa. The reduced 
compressive strength of concrete under biaxial state of stress fc2 is derived from the compressive strength fc as 

 c2 c c0.6 1 250 f f f and is equal to 15.8 MPa. 
In accordance with other researchers (Walther and Miehlbradt, 1990), the minimum and maximum values of the 

cotangent of the angle θ are suggested to be calculated by means of the following relations  

 mincotg cotg    I                                  maxcotg cotg( )   I  (18) 

where I is the angle of inclination of the first crack with respect to the longitudinal axis of the member and  is 
the maximum excursion allowed for the angle . The angle is assumed equal to 23.2°. Owing to this, in the absence 
of any axial load, I =45° and the values obtained by Equation (18) are 0.4 and 2.5, as sometimes considered in codes. 

The ultimate M-V interaction domains of the members are reported in Figure 2 (exemplary derived, as in Fig. 1, 
with reference to the design values of the mechanical properties of the materials and assuming cotg in the range from 
1 to 2.5). The comparison with the results of the reference nonlinear mathematical programming problem proves the 
accuracy of the simplified method in reproducing the results of the non-linear programming problem. In particular, 
the domains reflect the expected variations in the shear strength because of longitudinal and transverse reinforcements. 

 

Figure 9. Simplified ultimate M-V interaction domains for beams according to the refined (dashed red line) and simplified methods 
(continuous black line) 
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To validate further this method, the ultimate interaction domains have also been calculated for members subjected to 
axial force. The cross-section considered in this second set of tests is rectangular (30x50 cm²) and representative of 
columns subjected to axial force, shear force and bending moment acting in the plane where the lateral stiffness is 
maximum. The cross section is endowed with equal longitudinal reinforcement on its opposite sides. The longitudinal 
reinforcement on the tension (and compression) side consists of either 4.62, 7.84 or 12.50 cm² with mechanical cover 
equal to 5 cm, whereas the longitudinal reinforcement in the web consists of bars with cross-sectional area equal to 
6.28 cm². The hoops consist of 8 mm diameter bars with spacing equal to either 5, 10, 15 or 25 cm. The normalised 
axial force N/(Acfc) is equal to either 0, 0.1, 0.3 and 0.5. Again, the yield stress fy of longitudinal and transverse bars 
is equal to 45 MPa and fc=30 MPa. Further, the reduced compressive strength of concrete under biaxial state of stress 
fc2 is equal to 15.8 MPa. The ultimate interaction domains of these members are reported in Figure 3 where they are 
compared to those resulting from the reference nonlinear mathematical programming problem. Again, the comparison 
proves the ability of the simplified method to reproduce the results of the more complicated method and reflects the 
variations because of the different axial force. 

6. Comparison with results of laboratory tests  

The method has been validated against results of 73 laboratory tests on members with different properties (Rossi, 
2021). The parameter adopted for comparison of theoretical and experimental results is V exp numR V V , where Vnum 
is the ultimate shear force obtained by means of the proposed method and Vexp is the maximum shear force recorded 
during the laboratory test. The values of RV vary from 0.83 to 1.41, with a mean value of 1.11, a standard deviation of 
0.139 and a coefficient of variation equal to 0.125. In view of these results, the application of the proposed method is 
suggested for normalised axial force not higher than 0.45 and for shear span ratios not lower than 2.5. 

7. Conclusion 

The paper proposes a simple procedure for the calculation of the shear strength resulting from the only truss action 
in reinforced concrete rectangular members with shear reinforcement and subjected to axial force, bending moment 
and shear force.  

The main conclusions of the study are: 

- the proposed procedure provides the N-M-V ultimate interaction domain of the cross-section by means of simple 
equations or procedures and is easy to implement within structural programs to perform safety checks of 
members. 

- the proposed procedure identifies points of the N-M-V ultimate interaction domain characteristic of limits of 
behaviour of steel and concrete.  

- the comparison between the results of the proposed method and those of a more refined non-linear programming 
problem highlights that the differences between the results of the two methods are negligible.  

- the comparison between the results of the proposed method and those of laboratory tests highlights that the 
proposed method can be reliably applied to predict the shear strength of members characterised by normalised 
axial force not higher than 0.45 and by shear span ratios not lower than 2.5.  
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