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“Someday, someone will best me. But it won’t be today, and it won’t be you.”

“Last Word”, Magic: The Gathering.
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Abstract

In the last decade food understanding from digital media has become a challenge

with applications in many different domains. On the other hand, food is a crucial

part of human life and what people eat strongly affects their health and characterize

their identity. For this reason food plays a key role in world economy. The focus

of my Ph.D. thesis is the study of food image understanding from the perspective

of Computer Vision and Machine Learning. As first original scientific contribution

I propose an approach to perform discrimination between food VS non-Food im-

ages. For this study I adopted the One-Class Classification paradigm which allows

to build a binary classifier by performing learning from the samples of one class

only. Specifically, a One-Class Support Vector Machine is trained by employing

food images. The second contribution of my work is related to food retrieval and

classification. Since food is intrinsically deformable and presents high variability in

appearance, this task is very challenging and requires an in-depth study of images

representation. To this aim I propose a new representation model related to the

neuroscientific notion of Anti-Texton. The third problem considered in this thesis

is about food volume and carbohydrates estimation. Last but not least, new food

datasets has been introduced for the scientific community. To address Food VS

Non-Food problem, three datasets has been employed: the public UNICT-FD889

food dataset and two new datasets downloaded by Flickr. The latter two, include

respectively 4805 food images and 8005 non-food ones. Moreover, UNICT-FD889

has been extended from 889 to 1200 classes and annotated across 8 groups: Ap-

petizer, Main Course, Second Course, Single Course, Side Dish,Dessert, Breakfast,

Fruit. To evaluate volume estimation performance a novel dataset of 80 different

plates has been built. This dataset includes RGB images, as well as depth map and

3D models. In thesis appendices, I report the other works produced during my Ph.D

studies and also a comprehensive discussion on Cultural Heritage preservation and

exploitation through modern technologies. These works mainly focus on 3D model

reconstructions, semantic annotation platforms and virtual unrolling of papyri.
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Chapter 1

Introduction

1.1 Motivation

It is well-known that food plays a fundamental role in people life and global eco-

nomic. Eating choice are strongly correlated to people culture, financial situation

and, most of all, health conditions [1]. Diseases like obesity may even influence the

economic situation of a country, because of the direct medical costs, productivity

costs, transportation costs and human capital cost [2]. Furthermore, allergic dis-

eases can make very risky the food intake. For these reasons, the current imaging

technologies (e.g., smartphones and wearable devices) are taking a dominant role

in the food intake monitoring (Fig.s 1.1(a) and 1.1(b)). They make possible the

building of automatic and accurate system to assess people’s diet and, consequently,

to raise society’s awareness among the quality of life.

The ability to automatically detect images which depicts food and then the

recognition of it, is fundamental to assist people during their daily meals. Automatic

food image retrieval and classification could replace the inaccurate manual dietary

assessment, that is based on self-reporting. Hence, food understanding engines

embedded in mobile devices can be used to create food-logs that help the experts

(e.g., nutritionists, psychologists) to understand the behaviour, habits and/or eating

disorders of people, especially the ones affect by chronic diet-related diseases. All

these critical aspects of dietary habits and food intake, have motivated this thesis.

The following section provides a more detailed discussion about the fundamental

role of food in human life and the relevant contribution of Computer Vision and

Machine Learning technologies to address food-related problems.
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(a) (b)

Figure 1.1: (a) An example of wearable camera; (b) a mobile app for automatic diet
monitoring.

1.1.1 Food Impact on Human life

People often ignore the impact that food has in their life. They do not have time to

take into account the eating healthy and nutritional food. Hence, usually they prefer

fast food or a snack loaded with sugar instead of a regular nutritional meal. Unfor-

tunately, an inadequate nutrition is one of the main cause of many chronic diseases

such as obesity, diabetes, cancer, osteoporosis, dental diseases and cardiovascular

ones [3, 1]. In early 2002, a Joint WHO/FAO Expert Consultation recognized that

the growing epidemic of chronic disease that afflicts most of the countries in the world

is correlated to dietary and lifestyle changes. Although standards of living have im-

proved, food availability raised and become more diversified, there have also been

serious negative effects in terms of inappropriate dietary habits, decreased physical

activities and a corresponding increase in diet-related chronic diseases, especially

among poor people. The impact of chronic diseases in the society rapidly increasing

all over the world. It has been estimated that, in 2001, chronic diseases contributed

60% of the 56.5 million reported deaths in the world and 46% of the global burden

of disease. Moreover, this percentage is expected to increase to 57% by 2020. Al-

most half of the total chronic disease deaths are related to cardiovascular problems.

On the other hand, obesity and diabetes are also showing alarming trends: they

already affect a large part of the population, and they have even started to appear
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earlier in life. In most of the regions of WHO (World Health Organization), deaths

caused by chronic diseases dominate the mortality statistics [1]. This situation leds

the governments, the concerned international agencies as well as non-governmental

organizations to address food and nutrition policy, health promotion, and strategy

for the control and prevention of chronic diseases.

1.1.2 Food Perception

Global obesity epidemic led a large number of researchers to study human percep-

tion of food, the relationship to food choices and amount of food intake and the

role of the visual stimuli. In [4, 5, 6] the authors studied the relationship between

brain activity, eating habits and food visual perceptions. Killgore et al. [4], corre-

lated orbitofrontal and anterior cingulate cortex activity of 13 women to the view

of high-calorie and low-calorie foods. They found out that bodymass index (BMI)

is negatively correlated with both cingulate and orbitofrontal activity during high-

calorie viewing, and just with the orbitofrontal activity during low-calorie viewing.

This suggests a relationship between weight and responsiveness of the orbitofrontal

cortex to images which depict rewarding food. In [5], the authors found that main-

tenance of a reduced body weight was associated with changes in brain activity

elicited by food-related visual cues. They perform their test on 6 obese patients and

proved that this kind of brain activity can be reduced through leptin administra-

tion. Medic et al. [6], examined the food choice and magnetic resonance imaging

(MRI) of overweight and lean people during an unlimited buffet. Their aim was to

assess the capability of the two groups (lean and overweight people) to evaluate the

healthiness of food. Results shown that both are able to well distinguish healthy

from unhealthy food. This suggests that obesity can be related on how the presence

of food surpasses prior value-based decision-making.

In [7] Delwiche, described how visual cues can affect taste an flavour of food.

For example, flavour, can be viewed not just a mere combination of raw materials

or chemicals components, but also as a combination of different stimuli. Multiple

factors, including visual appearance, can influence the interpretation of the primary

stimuli and change the perception of taste, smell, and flavour.

McCrickerd and Forde [8] focused on how visual and smell cues lead food choice.

Specifically, they described how the size of food and the amount of food served can
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effect the food intake. Simply splitting foods like cookies or chocolate bars, so they

are viewed as smaller more numerous pieces, results in a reduction of intake of that

food without changing palatability. Moreover, there are evidences which indicate

that some adults and children choose and consume larger portions when served with

larger dishware.

By observing that people seem to give more importance on the expected pleasure

from food then the actual food intake, Petit [9] et al. discussed how food-related

contents published in social media can help to choice of healthy meal. Seeing food

presented in an appetizing and/or “ready to be eaten” way, gives the possibility to

the viewer’s brain to vividly imagine the consumption experience. Currently, the

food industry uses social media to promote their products with good-looking food

photos. Hence, the authors claimed that public health prevention and organizations

could promote healthy lifestyles by exploiting the same food industry strategies.

The aforementioned works prove that would be interesting and technically pos-

sible to use Computer Vision and Machine Learning to extract information on how

the food is presented and then try to find a correlation with health statistics.

1.2 Aims and Findings

The aim of this thesis is the investigation of food understanding. This term can be

refereed to a set methods and approaches to extract information about food through

automatic visual contents analysis. In my thesis I address three different problems:

• binary classification of food vs non-food images;

• retrieval and classification of food images;

• segmentation and volume estimation of food items in a dish.

Additionally, I introduce novel food datasets to address the aforementioned prob-

lems.

My approach for food vs non-food classification is based on one-class classification

paradigm. This means, that a class only is used to build the mathematical model

used to distinguish among two classes. A one-class classifier is trained only on

positive samples. In classification phase, it considers all the negative samples like
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“anomalies”. In this thesis, food is considered as positive class, whereas non-food

as the negative one.

Food recognition and classification is investigated to study the best represen-

tation for food images, i.e. the one that achieves the best performance. Since

texture-oriented representations have shown the best results, I propose a new de-

scriptor called Anti-Texton, which considers Textons co-occurrences to improve the

state-of-art Texton-based representation.

Finally, I present a database that contains annotated RGB and RGB-D images

from 80 different meals served on a round dish accompanied by accelerometer data.

Each meal consists of two to four different food items of know weight, volume and

nutrient composition. Along with the dataset, the results of different baseline meth-

ods for segmentation, depth and volume estimation are discussed.

1.3 Contributions

The main contributions of this thesis, related to the food understanding, are sum-

marised below:

• the original study of food Vs non-Food via One-Class Classification approach;

• the introduction of two new dataset of food and non-food images respectively;

• a comprehensive study of discrimination capability of texture (Texton) for

food classification and recognition;

• the introduction of an original descriptor based on the notion of Anti-Texton;

• an extend version of the dataset UNICT-FD889 (i.e., UNICT-FD1200), with

311 new classes and a new labelling across 8 categories;

• a novel food dataset which includes RGB-D images and 3D models, to address

volume and nutrients estimation;

• a baseline on the new dataset, for segmentation, depth estimation and volume

estimation tasks.

The contributions about Cultural Heritage, reported in Appendix A are:



Chapter 1. Introduction 6

• the proposal of new method to perform virtual unrolling;

• the introduction of a new platform of semantic annotation, to present the

studies conducted on Morgantina Silver Treasure;

• an accurate comparison of different 3D scanners, evaluated on an architectural

element;

• a study of the compatibility between two parts of a Kouros through modern

technologies.

The contributions of this thesis have been published in international conference,

journal and book chapters.

International Journals:

• D. Allegra, E. Ciliberto, P. Ciliberto, G. Petrillo, F. Stanco, C. Trombatore.

“X-ray Computed Tomography for virtually unrolling damaged papyri”. Ap-

plied Physics A, 2016, Vol. 122(3). DOI: 10.1007/s00339-016-9796-1.

• G. M. Farinella, D. Allegra, M. Moltisanti, F. Stanco, S. Battiato. “Retrieval

and Classification of Food Images” Computers in Biology and Medicine, 2016,

Vol. 77 Pages 23-39. DOI: 10.1016/j.compbiomed.2016.07.006.

• M. F. Alberghina, F. Alberghina, D. Allegra, F. Di Paola, L. Maniscalco, G.

Milazzo, F. L. Maria Milotta, L. Pellegrino, S. Schiavone, F. Stanco. “Inte-

grated three-dimensional models for noninvasive monitoring and valorization

of the Morgantina silver treasure (Sicily)” Journal of Electronic Imaging, 2016,

Vol. 26(1). DOI: 10.1117/1.JEI.26.1.011015.

• F. Stanco, D. Tanasi, D. Allegra, F. L. M. Milotta, G. Lamagna, G. Mon-

terosso. “Virtual anastylosis of Greek sculpture as museum policy for public

outreach and cognitive accessibility” Journal of Electronic Imaging, 2017, Vol.

26(1). DOI: 10.1117/1.JEI.26.1.011025.

International Conferences:

https://doi.org/10.1007/s00339-016-9796-1
https://doi.org/10.1016/j.compbiomed.2016.07.006
http://dx.doi.org/10.1117/1.JEI.26.1.011015
http://dx.doi.org/10.1117/1.JEI.26.1.011025
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• G. M. Farinella, D. Allegra, F. Stanco, S. Battiato. “On the exploitation of one

class classification to distinguish food vs non-food images”. In: Lecture Notes

in Computer Science. Vol. 9281, 2015, pp. 375 – 383. DOI: 10.1007/978-3-

319-23222-5 46.

• D. Allegra, E. Ciliberto, P. Ciliberto, F. L. M. Milotta, G. Petrillo, F. Stanco,

C. Trombatore, “Virtual Unrolling Using X-Ray Computed Tomography”, Eu-

ropean Signal Processing Conference, 2015, pp. 2864-2868. DOI: 10.1109/EU-

SIPCO.2015.7362908.

• M. F. Alberghina, F. Alberghina, D. Allegra, F. Di Paola, L. Maniscalco, F. L.

M. Milotta, S. Schiavone, F. Stanco. “Archaeometric characterization and 3D

survey: new perspectives for monitoring and valorisation of Morgantina silver

Treasure (Sicily)”. International Conference on Metrology for Archaeology,

2015, Vol. 1.

• D. Allegra, G. Gallo, L. Inzerillo, M. Lombardo, F. L. M. Milotta, C. San-

tagati, F. Stanco. “Low Cost Handheld 3D Scanning for Architectural Ele-

ments Acquisition”, Smart Tools and Apps in computer Graphics, 2016. DOI:

10.2312/stag.20161372.

• F. Stanco, D. Tanasi, D. Allegra, F. L. M. Milotta. “3D Digital Imaging for

Knowledge Dissemination of Greek Archaic Statuary”, Smart Tools and Apps

in computer Graphics, 2016. DOI: 10.2312/stag.20161373.

• D. Allegra, M. Anthimopoulos, J. Dehais, Y. Lu, F. Stanco, G. M. Farinella

and S. Mougiakakou. “A Multimedia Database for Automatic Meal Assess-

ment Systems”International Workshop on Multimedia Assisted Dietary Man-

agement, 2017.

International Book Chapters:

• D. Allegra, G. Gallo, L. Inzerillo, M. Lombardo, F. L. M. Milotta, C. Santagati,

F. Stanco. “Hand Held 3D Scanning for Cultural Heritage: experimenting low

cost Structure Sensor scan”, A. Ippolito, M. Cigola (editors), Handbook of

Research on Emerging Technologies for Cultural Heritage, IGI Global, pp.

475-499 (2017). DOI: 10.4018/978-1-5225-0675-1.ch016.

https://doi.org/10.1007/978-3-319-23222-5_46
https://doi.org/10.1007/978-3-319-23222-5_46
https://doi.org/10.1109/EUSIPCO.2015.7362908
https://doi.org/10.1109/EUSIPCO.2015.7362908
http://dx.doi.org/10.2312/stag.20161372
http://dx.doi.org/10.2312/stag.20161373
http://dx.doi.org/10.4018/978-1-5225-0675-1.ch016
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The publications not related to this thesis have been reported in Appendix B.

1.4 Computer Vision for Food Understanding

Although food understanding has been largely addressed in the last decade by Com-

puter Vision researchers, it has a long history. Following the path of food-related

Computer Vision works, from the beginning in 1977, it is possible to coarsely define

four different areas:

• Food detection and recognition for automatic harvesting: automatic

detection and recognition of fruits and vegetables are useful to enhance robots

affordable and reliable vision systems in order to improve the harvesting pro-

cess in terms of quality and speed;

• Food quality assessment for industry aims: in the late 80s, industrial

meals production knew a large scale expansion, especially in developed coun-

tries. Consequently, the evaluation of produced food quality with vision sys-

tems became an interesting and valuable challenge;

• Food logging, dietary management and food intake monitoring: as

described in Section 1.1, the growth of the number of people affected by dis-

eases caused by a non healthy diet led the researchers to study the problem.

From late 90s, the focus was moved to the usage of Computer Vision solutions

to help food experts (e.g., nutritionists) for the monitoring and understanding

the relationships between patients and their meals;

• Food classification and retrieval: the large and fast spreading of mobile

cameras, together with the birth of social network services gave the possibil-

ity to upload and share pictures of food. For these reasons, in recent years,

classification and retrieval of food images become more and more popular.

In Fig. 1.2 it is reported a time-line that shows the periods on which the interest

for a certain area was growing and have got highest popularity by taking into account

the published papers in literature over the years.

Despite most of the solutions proposed in the different areas overlap, the main

goals of the developed systems are different. Hence, if a certain accuracy obtained by
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Automa�c Harves�ng

Industrial Meals Quality Assessment

Food Logging and Dietary Management

Food Images Sharing

1980 1990 2000 2010 2015

Figure 1.2: Food image analysis tasks employed during the years.

a system for the detection and recognition of food for automatic harvesting could be

acceptable by a robotic industry, there is no guarantee that the same performance

were sufficient in systems for diet monitoring, i.e. for patients with diseases like

diabetes or food allergy. For these reason it has been chosen to categorize works

about food in the aforementioned areas.

In the following subsections a detailed review the state-of-the-art works in the

identified research areas is provided, in order to remark the importance of Computer

Vision contribution.

1.4.1 Food detection and recognition for automatic harvest-

ing

Fruits harvesting can be addressed by different techniques, however it is really im-

portant that they do not cause damages to the fruit and/or to the tree/branches.

Hence, accurate systems for fruits/vegetables detection and recognition from images

are desirable in order to perform this task correctly. One of the first Computer Vi-

sion solution has been proposed by Parrish and Goksel in 1977 [10], and it is related

to apples detection. The system they designed consists of a B/W camera and an

optical red filter. First of all the acquired image is binarized through thresholding

operation and smoothed to mitigate noise and artifacts. Then, the region roundness

is estimated by measuring the difference between the longest horizontal and vertical
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segments inside the region itself. Finally, an image area is classified as apple through

a density estimation procedure and then a thresholding step.

In 1988 Levi et. al [11] implemented AID, a robot vision system for oranges

recognition. A pseudo-grey image is obtained by means of an electronic filter used

for image enhancement. The value of each pixel, coded using 6 bits, is proportional

to the difference between the pixel hue value and a reference hue value. Then, the

gradient is computed using a standard Sobel filter to get the magnitude and direc-

tions in two separate images. To correctly detect the oranges location, a gradient

template previously computed is used. Specifically, a matching between the de-

tected gradient and the template is performed. This approach allows to achieve an

accuracy of 70% in fruits detection.

Another orange recognition method is proposed in [12]. It is based on colour

images, in particular the Hue and Saturation components of each pixel are used as

dimensions of a two-dimensional feature space. Then, two thresholds based on the

maximum and minimum values for each component are used to define a region in the

feature plane. Each pixel inside this region is classified as orange. With this method

approximately 75% of the pixels are correctly classified. The authors extend their

study employing a Bayesian classifier [13], and exploiting the RGB values rather

than the Hue and Saturation components. Also in this case the goal is to separate

fruit pixels from the background pixels. The performed tests show an accuracy of

75%.

A machine video system for melon harvesting [14] was developed by The Purdue

University (USA) and The Volcani Center (Israel). This system is able to analyse

binary image to locate the melons and estimate their size. Basic operations like shape

and textures analysis are performed in order to obtain multiple candidate regions

from the original image. Subsequently, thanks to prior knowledge on the domain,

the candidates are evaluated to discard false positive and multiple detections by

achieving a true positive rate of 84%.

In 1995 The Italian institute CIRAA designed a robotic system called AGROBOT

[15]. The main aim was automatizing greenhouse operations. The images are ac-

quired through a colour monocular camera and are segmented via thresholding on

the Hue and Saturation histograms. This system is also able to extrapolate informa-

tion about the 3D geometry of the scene through stereo matching. The performances
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of AGROBOT shown high quality results: 90% of correctly detected ripe tomatoes;

the main error causes in this system are related to the occlusions.

Jiménez et al. [16], exploit the 3D information obtained with a laser scanner to

perform automatic harvesting of spherical fruits. Thanks to the laser scanner, it is

possible to map the points of the scene in the 3D world using spherical coordinates.

Then, for each points also the laser energy attenuation value is stored. Hence, the

scene can be described by four images: the azimuth angles, the elevation angles, the

distance from the sensor (i.e. a depth map) and the attenuation values. These images

are processed, and taking advantage of the information retrieved by the scanner, four

new images are produced in output. Three of them are actually used for the orange

recognition: one is an enhancement of the previous image representing the distance

from the sensor, the other two encode respectively the apparent reflectance and

the reflectance of the surfaces. The image analysis procedure is based on these two

information. Firstly, the apparent reflectance image is binarized through a threshold

to separate the background from the foreground; then the remaining pixels are

clustered using the Euclidean distance. The detected clusters with a low number of

pixels are immediately rejected as “not-fruit”. This step is performed to eliminate

the possibility of random small areas of a highly reflective non-fruit object. However

this reflectance-based approach is not able to detect fruits whose reflectance is under

0.3. For this reason, the authors proposed to use the Circular Hough Transform on

the distance image to detect fruits based on shape assumption.

1.4.2 Industrial food quality assessment

The food quality inspection is not strictly related to domain of dietary food moni-

toring, nevertheless it concerns food image analysis. Computer Vision systems have

been used to perform quality assessment since this task is very critical for food

industry that have to produce products that satisfy the customers.

In [17] Munkevik et al. describe an approach to check the quality of indus-

trial cooked meals. Firstly, they proposed to segment the food and then extract 18

different features from the segmented image. The selected features allow to repre-

sent different properties. Among them, the size of the food items on the plate, the

overlapping between different food items, the shape of the food item and also infor-

mation about the colour. Finally, a Self Organizing Feature Map [18] is employed
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to learn the model of a meal. The authors propose method extension in [19], where

they consider a larger number of food items an exploit an Artificial Neural Network

(ANN) to improve classification performances.

In 2007, Kilic et al. [20] addressed a beans quality classification problem. The

dataset used for the experiments consists of 511 images with a variable number of

beans. Morphological operators are employed for image segmentation, than the first

4 order statistic are computed on the RGB channels. To asses the beans quality

a score based on three levels for both, integrity and colour, has been proposed.

Although, 3 × 3 = 9 possible combinations can be defined with this quality score,

the authors decided to use 5 combinations only. Each combination is considered as

a different class. Finally, the classification is performed by using ANN and splitting

the dataset in the following way: 69 beans images for training, 71 for validation and

371 for testing.

The quality of pizza production has been addressed in several works, as the

ones of Du and Sun [21, 22]. The proposed algorithms are intended to inspect

three different pizza properties: shapes, toppings and sauce spread. While the

approach in [21] faces only the evenness of the topping, the method described in

[22] is more complex and involves also other parts of the pizza to be evaluated. To

perform quality assessment by exploiting shape, geometrical features such as the area

ratio, aspect ratio, eccentricity, roundness and also some coefficients of the Fourier

transform have been considered. Concerning the topping and the sauces, HSV colour

histograms and Principal Components Analysis (PCA) are used. Classification is

performed by considering four quality levels for the shape and five for topping and

sauce spread. To build the classification model a set of binary Support Vector

Machine (SVM) organized in a Directed Acyclic Graph (DAG) has been employed.

The dataset used for experiments includes 120 images for the shape, 120 images for

the sauce and 120 images for the topping.

Finally, a review about the methods for food quality assessment is presented

in [23, 24, 25]. The authors address the different acquisition systems as well as the

features that can be employed in different tasks. Last but not least, the machine

learning algorithms used to perform the decision for this task are analysed.

The inspection of the food quality is usually addressed in constrained environ-

ment, with a few food classes and low variability. For this reason, very simple
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features such as colour or shape information are enough to face the problem and

achieve very good results. This kind of scenario is different from the one where

images of food are acquired during real meals of a patient or they are downloaded

from a social networks. A generic system for food intake monitoring have to be able

to work in low constrained scenario without prior knowledge. Differently than an

industrial factory where the ingredients, the quantity and the appearance of food

are known in advance, in a generic food understanding problem there are many

variables. High number of food classes and ingredients, the food mixing as well as

illumination, orientation, different acquisition devices and so on, make this task very

challenging.

1.4.3 Food logging, dietary management and food intake

monitoring

Diet monitoring is a critical aspect of the human health, since can help to reduce

chronic disease risks such as diabetes or obesity. For this reason, since the ’70, com-

puter science has been exploited to assist the medical teams in dietary assessment

of the patients. However, the first systems for food logging and intake monitor-

ing were calculators for nutrition values that exploited standard food list [26, 27].

Hence, they did not use the Computer Vision techniques.

Since it has been proved that food diaries are effective instrument, in the last

decade Computer Vision researchers have put effort to propose reliable tools to

improve the automatic detection and recognition of food images, as well as the

nutritional merit evaluation. These types of tools can increase self-awareness of

eating habits, moreover to add photographs to the written diary have a more effective

impact on the patients. A discussion about the state-of-art systems for food logging

is given below.

FoodLog1 [28, 29, 30, 31, 32] is an Internet application that gives the possibility

to acquire and stores information regarding daily meals. The main aim of this

system is to help the users to keep note of their meals and, above all, to correctly

balance the main nutrients coming from different kinds of food (e.g., carbohydrates,

1http://www.foodlog.jp

http://www.foodlog.jp
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(a) (b)

Figure 1.3: (a) MyPyramid model and the five classes: grains, vegetables, meat, fruits,
milk; (b) The currently MyPlate model.

protein, etc.). The application enables the user to upload one or more pictures on a

remote folder, where the all the information are stored.

Kitamura et. al proposed FoodLoog in [28]. The images which include food items

are detected by using colour features based on HSV and RGB, as well as the shape

of the plate. Food detection is performed by training a SVM classifier according

to the following strategy: the images are divided in 300 blocks and each block is

classified as one of the five nutritional groups described in the “My Pyramid” official

model (grains, vegetables, meat & beans, fruits, milk) or as “non-food”. However

this model has been replaced in 2011 by “MyPlate” model 2. The old “MyPyramid”

model and the new “MyPlate” are depicted in Fig. 1.3

In 2009, Kitamura et al. [30] extended their previous work by exploiting more

local features. Colour information are coupled with SIFT descriptors [33] by se-

lecting keypoints with three different methods (Difference of Gaussians, centres of

grid, centres of circles). Further improvements are proposed in [31], by including a

pre-classification step and the customization of the food image estimator. Finally,

in [32] the Support Vector Machine classifier is replaced by a Naive Bayesian one.

Shroff et al. [34] proposed a system to help people affected by diabetes to follow

their dietary rules. The authors employ two different kinds of features: objected-

related features like colour, size, texture, shape; context features such as time of

2https://www.choosemyplate.gov/

https://www.choosemyplate.gov/
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the day or user preferences. ANN classifier is used by the authors to prove that the

context information lead an improvement in the accuracy of the monitoring system.

The work of Puri et al. [35] focuses on food recognition and 3D volume estima-

tion. Firstly the photos, captured under different lighting conditions and poses, are

normalized by color and scale by using a particular calibration card placed besides

the food items. For features selection they employ an Adaboost-based algorithm

that combines colour (in RGB and LAB space) and texture information (Maximum

Response filters). The goal is to perform a segmentation by classifying the different

food items in a plate. The final classifier is obtained as a linear combination of

several weak SVM classifiers, one for each feature. For 3D reconstruction they use

RANSAC [36] to estimate pose and then, dense stereo matching for depth estima-

tion.

Another work in which 3D reconstruction is exploited is the one of Dehais et

al. [37]. The 3D model is used for food volume estimation. Stereo pairs are used

to computer disparity map and then a dense points cloud is built and aligned with

respect to the estimated table plane. This algorithm is designed to work by employ-

ing a specific marker placed on the table. By assuming the different food items in

the plate are already segmented, each food segment is projected on the 3D model

for volume computation. They define the volume as the integral of the distance

between the surface of each segment and either the plate (identified by its rim and

reconstructed shape), or the table (identified by the reference pattern).

In [38] the authors categorise food from video sequences taken in a supervised

environment. The dishes are placed on a table covered with a black tablecloth. They

take into account an elliptical Region-of-Interest (ROI) and extracted different kind

of descriptors such as MSER [39], SURF [40] and STAR [41]. Hence, the images are

represented exploiting the Bag of Words paradigm and vocabulary with 10000 visual

words built by using K-means clustering. Subsequently each data point is associated

with the closest cluster using the Approximated Nearest Neighbour algorithm. To

capture information about colour, histogram in the HSV space is computed inside

the ROI and combined with the aforementioned descriptors. The final aim is to

classify the dish in a specific frame of the sequence. In the proposed approach each

unclassified frame is compared with frames that are already classified. To do this,

a similarity score is computed for both, the Bag of Words representation and the
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colour histograms. The score for the first representation is computed by exploiting

the term frequency-inverse document frequency (tf-idf) [42] technique, while for the

colour similarity, the correlation coefficient between the |L1|-norm of two histograms

is used. Finally, the two scores are linearly combined with different weights to obtain

a global score for the considered frame. Moreover, since the calories for the reference

dish are known, this score allow to roughly quantify the difference of them in the

two frames.

Food intake estimation is also studied in the work of Liu et al. [43] where a wear-

able system equipped with a camera and a microphone is proposed. The microphone

is used to detect chewing sounds, so that the Computer Vision part of the frame-

work can be activated. To identify frames which contains food, they propose to use

a simple approach based on ellipse detection and colour histograms. After the ellipse

is found, it is split in four quadrants and, for each of them, the colour histogram

is computed in the C-color space [44]. Finally, the food consumption evaluation is

performed by computing the difference between the histogram of subsequent frames.

1.4.4 Food classification and retrieval

In order to recognise food depicted in images, two computation strategies can be

usually considered: classification and retrieval. In both cases the task is to iden-

tify the category of a new food image observation on the basis of a training set

of data. The main difference between the two approaches stay in the mechanism

used to perform the task. In case of classification the training set is used just to

learn the decision function by considering the representation space of the images.

Hence, the training images are represented as vectors in a feature space through a

transformation function (e.g., Bag of Visual Word approach by considering SIFT or

Textons features [45, 46]) whereas a learning mechanism is used to train a classifier

(e.g., a Support Vector Machine) to discriminate data belonging to different classes.

After that, the training dataset is discarded and a new observation can be classified

by considering the employed feature space and the trained classification model. In

case of retrieval, the training set is maintained and the identification is performed

comparing the images through similarity measures (e.g., Bhattacharyya distance)

[47] after their representation in the feature space.
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In [48], a framework for food classification of japanese food is proposed. The

approach is trained and tested on a dataset with 50 classes. Three kinds of features

are extracted and used: a) Bag of SIFT; b) Colour Histograms c) Gabor Filters [49].

The keypoint sampling strategy on which the SIFT descriptor have been computed

is implemented with three different ways: using the DoG approach, by random sam-

pling and using a regular grid. To compute Color Histograms, the images are first

divided in 2× 2 regions, and for each region a 64-bin RGB histogram is calculated.

The region-based histograms are then concatenated into a 256-bin. In a similar way,

the images are split in 3× 3 and 4× 4 blocks to compute Gabor Filters responses.

The employed Gabor filters take into account four different scales and six orienta-

tion, so for the whole image a 216 or 384-dimensional vector arises as result of the

extraction step. While Color Histograms and Gabor Filters provide a representation

of the images by themselves, SIFT keypoints are clustered generating two different

vocabularies with 1000 and 2000 codewords and the images are represented using

the Bag of Words paradigm. Summing up, for each image 9 different representation

are provided, one coming from the Color Histograms, two from the Gabor Filters

with different blocking schemes and six from the combination of sampling strategies

and vocabulary size for SIFT features. Classification is performed using a Multiple

Kernel Learning SVM (MKL-SVM) [50]. In [51] the dataset is extended up to 85

classes, and 8 variants of Histogram of Oriented Gradients (HOG) [52] are intro-

duced as new features. Moreover, the χ2 kernel is employed as a kernel function

in the MKL-SVM. An extended version of the dataset, containing 100 food items,

has been used in [53] where candidate regions are identified using different methods

(whole image, Deformable Part Model (DPM) [54], a circle and the segmentation

method proposed in [55]). The final segmentation arises by integration of the results

of the aforementioned techniques. For each candidate region, four sets of features

are computed: Bag of SIFT and Bag of CSIFT [56], Spatial Pyramid Representation

[57], HOG and Gabor Filters. Then a MKL-SVM is trained for each category, and

a score is assigned to every candidate region. The experiments are conducted on

images containing both single and multiple food-item. In successive work [58] the

same approach is used, but the scores assigned by the classification algorithm are

re-arranged applying a manifold learning technique to the candidate regions.

The dataset used in [58, 53] is called UEC FOOD 100 (Fig. 1.4) and is an
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extension of the dataset presented in [51, 48]. On this dataset, other approaches

have been tested. For instance, pre-trained Convolutional Neural Networks (CNN)

[59] are used in [60] for feature extraction. The CNN features are coded using the

Fisher Vectors technique [61], and then the classification is performed by means of

SVM. Rav́ı et al. [62] exploited jointly different features in a hierarchy to obtain

real-time food intake classification. The hierarchy of features encodes, in some way,

the complexity of the images: on simple classes, the classification will rely on the

features at the first level, while on more complex classes more features will be used.

To represent the images, the Fisher Vector [63] technique is employed, and PCA is

applied as in [64]. To perform classification, a linear SVM is trained using the one-

vs-rest strategy. The UEC FOOD 100 has been extended to 256 categories (UEC

FOOD 256) in [65] using a so-called “foodness classifier” and transfer learning on

images coming from crowdsourcing. UEC FOOD 100 and UEC FOOD 256 have

been employed by Yanai et al. [66] to finetune a pre-trained deep convolutional

neural network (pre-trained with 2000 categories in the ImageNet).

Another dataset used in literature is the Pittsburgh Food Image Dataset (PFID)

[67]. This dataset is composed by 4545 still images, 606 stereo pairs, 303 videos for

structure from motion (360◦ videos), and 27 privacy-preserving videos of eating

events of volunteers. The images portrays 3 instances of 101 food items, bought in

11 different fast food chains. In [67], a baseline for future experiments is provided.

The authors use color histograms and Bag of SIFT features to train a multi-class

SVM. In [68], an ingredient based segmentation is performed using a Semantic Tex-

ton Forest [69]. Hence, pairwise statistics of local features are computed on the

segment connecting two points, and specifically: a) orientation; b) midpoint; c)

between-pair; d) distance. Moreover, two joint features are considered (Distance +

Orientation and Orientation + Midpoint). SVM with a χ2 kernel is employed for

classification purpose. The PFID is also used for calories estimation in [70]. SIFT

are extracted and a cosine-based distance function is used for matching. Rankings

on food categories can be obtained in two ways: 1) a ranking based matching, based

on top T items of each frame-based rankings; 2) a count-based matching based on

sum of keypoint matching counts over all video frames. Zong et al. [71] locate

the keypoints using the SIFT detector, applying the Local Binary Pattern (LBP)
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Figure 1.4: A sample of 32 images from 32 different classes of UEC FOOD 100 dataset.

[72]. Then they employ a BoW model, using a codeword filtering function to select

the most discriminative words in the vocabulary. Dictionary creation is performed

in a class-based manner. To provide spatiality, the shape context descriptor [73]

is calculated on the image space, considering the words as keypoints. The images

are classified by means a cost function which takes into account the Bhattacharyya

distance and the shape context matching cost. Nguyen et al. extended the pre-

vious mentioned approach introducing the Non-Redundant Local Binary Pattern

(NRLBP) [74] and propose two strategies to classify the images: the first makes

use of a SVM, the second is based on a cost function. Farinella et al. propose

two different approaches on the PFID: one [75] is based on the representation of

food images as Bag of Textons. Textons are computed using the responses of MR4

filters, then clustered in a class-based fashion obtaining a visual vocabulary. In the
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Figure 1.5: A sample of 9 images from PFID dataset

other approach [76] SIFT and SPIN [46] features are computed over a dense grid,

and multiple runs of the k-means algorithm are performed separately for SIFT and

SPIN. The vocabularies obtained in output are used as input for an Expectation-

Maximization based consensus clustering technique [77]. In both approaches, SVM

is used as classifier. The method proposed in [78] combines different descriptors

calculated on patched centred on the keypoints detected by the Harris-Laplace de-

tector. For each feature, a visual codebook with 1000 words is built, and for each

set a gaussian kernel is computed. The resulting kernels are used as input to train

a Sequential Minimal Optimization (SMO) MKL-SVM. A small sample of PFID

dataset is depicted in Fig. 1.5.

Bosch et al. propose a method for food identification based on global and local
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features [79]. As global features, they use: 1) 1st and 2nd moment statistics com-

puted on the color channels of the image; 2) entropy statistics; 3) predominant color

statistics. As local features, they consider small patches, and calculate the follow-

ing features: 1) local color statistics; 2) local entropy color; 3) Tamura features; 4)

Gabor filters; 5) SIFT descriptor; 6) Haar wavelets; 7) Steerable filters; 8) DAISY

descriptor [80]. While the global features are used as input for a SVM with a RBF

kernel, the Bag of Words approach is used with local features. Classification, in

this case, is done using a Nearest Neighbour algorithm. This approach was tested

on a subset of the dataset created at Purdue University [81]. The Purdue Food

Dataset is an extension of the USDA Food and Nutrient Database for Dietary Stud-

ies (FNDDS), created having in mind the goal of augmenting “an existing critical

food database with the types of information needed for dietary assessment from the

analysis of food images and other metadata”.

Rahmana et al. in [82] present a dataset with 209 acquired using a iPhone3, to

be used for retrieval purposes. They propose, as a baseline, Gabor filter variants to

ensure scale and rotation invariance to their algorithm. However, they perform also

a classification task, grouping the categories in 5 groups (Bread, Cereal, Veg, Fruit,

Fast).

Another system for mobile food recognition is proposed in [83]. Here, color his-

tograms on the RGB space are computed on 3× 3 blocks and a dictionary with 500

visual words is built on SURF descriptors, to enclose local features in the general de-

scription of the image. To classify the images, a linear SVM with explicit embedding

[84] is employed. It is interesting to note that the authors propose a system able

to suggest the direction to which the camera should be moved, in order to improve

classifier accuracy. Also, a dataset with 50 categories containing 100 images each is

presented.

A Computer Vision system for Chinese food identification has been proposed

by Chent et al. in [85]. The authors work on a database composed by 50 cate-

gories of ready-to-eat Chinese meals, with 100 images per category. On each image,

the following features are extracted: 1) SIFT with sparse coding; 2) LBP with
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Figure 1.6: A sample of 9 images from Chen et al.’ dataset.

multi-resolution sparse coding; 3) color histograms; 4) Gabor textures. A SVM is

trained for each feature using 5-fold cross validation; the fusion is done using the

Multi-Class AdaBoost algorithm. Marginally, the authors propose also a quantity

estimation technique using Microsoft Kinect, but this approach has been tested only

on a single item of “hot & sour soup”. A sample of this dataset is reported in Fig.

1.6.

A food recognition system integrated on a chopping board is the topic of the

work by Pham et al. [86]. In this work, an imaging system composed by a matrix

of optical fibres is placed under an appropriately prepared chopping board. The

sensor acquires the image and afterwards a 64-dimensional color histogram and a

64-dimensional vector of Bag of SURF features are computed. The algorithms used
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to classify the images are kNN and SVM. The training and testing phases make use

of a dataset composed by 1800 pictures of 12 food ingredients.

Random Forest (RF) [87] are used in [88] for mining discriminative regions.

Superpixels are generated from the images and dense SURF and color histograms

are computed and encoded using Fisher Vectors [61]. These descriptors are supplied

to the RF for training. Once the RF has been trained, the leaves constitute the set of

candidates for the components. Using a probability-based distinctiveness function,

the most discriminative leaves are selected. Hence, a linear binary SVM is trained

for each class, using the samples lying in the most discriminative leaves as positive

samples and hard negative samples to speedup the learning process. Alongside with

the algorithm, the authors present a novel dataset, called Food-101, composed by

1000 images for each one of the 101 most popular dishes on foodspotting.com.

Some images of these dataset is shown in Fig. 1.7.

In [89] Xin et al. propose UPMC Food-101 (Fig. 1.8), a new dataset of 101000

images to address the recipe recognition problem. This dataset includes the same

101 categories of Food-101 and 1000 new images for each one. Google Image Search

engine is exploited to retrieve 1000 images for each of the categories, moreover for

all the images the related HTML textual description is collected. To benchmark the

dataset, Bag of Word and CNN approaches are employed and textual information

are embodied to improve classification performance.

Other food dataset include images and related geocontext information, such as

GPS coordinates, restaurant where the dish is cooked an so on. Herranz et al. [90]

propose a probabilistic model to combine locations, restaurants and visual features

by exploiting a reduced set of the dataset collected by Ruihan et al.[91] from Insti-

tute of Computing Technology, CAS. To each of the restaurants are associated the

related geographical coordinates to uniquely locate it and a menu which includes at

least 3 dish categories. Then, for each of these categories, more than 15 images are

included.

The UNICT-FD899 [92] has been acquired by users with a smartphone in four

years during meals (i.e., iPhone 3GS or iPhone 4) in unconstrained settings (e.g.,

foodspotting.com
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Figure 1.7: A sample of 35 images from Food-101 dataset.

different backgrounds and light environmental conditions). Each dish has been ac-

quired trough a smartphone multiple times to introduce photometric (e.g., flash vs

no flash) and geometric variability (rotation, scale, point of view changes). The

overall dataset contains 3583 images acquired with smartphones. The dataset is

designed to push research in this application domain with the aim of finding a good

way to represent food images for recognition purposes. The first question the au-

thors try to answer is the following: are we able to perform a near duplicate image

retrieval (NDIR) in case of food images? Note that there is no agreement on the

technical definition of near-duplicates since it depends on “how much” variability

(both geometric and photometric) the system can tolerate. For instance, some ap-

proaches define the near duplicate of an image as the images obtained transforming



Chapter 1. Introduction 25

Figure 1.8: A sample of 15 images from UPMC Food-101 dataset.

the original by means of slight common editing, such as contrast equalization, scal-

ing, cropping, etc. Other techniques (e.g., [93, 94])consider as near duplicate the

images of the same scene but with different viewpoint and illumination. In [92], the

authors consider this last definition of near duplicate food images to test different

image representations on the proposed dataset. Then, they benchmark the proposed

dataset in the context of NDIR by using three standard image descriptors: Bag of

Textons [95], PRICoLBP [96] and SIFT [33]. Results confirm that textures and

colors are fundamental properties. The experiments performed point out that Bag

of Textons representation is more accurate than the other two approaches for NDIR.

UNICT-FD889 dataset is a collection of food images acquired by users in real cases

of meals. Each plate of food has been acquired multiple times (four in the average)

to guarantee the presence of geometric and photometric variabilities (Fig. 1.9). It
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Figure 1.9: A sample of 96 images included in UNIC-FD889 dataset.

is designed to arouse research in this application domain with the aim of finding a

good way to represent food images for recognition purposes.

A comparative analysis on features and classifiers is the core of [97]. The authors

test several features, basically related to three aspects (color, texture, local regions)

and two classifiers (kNN, Vocabulary Tree [98]) on a novel dataset composed by 42

classes, with a total of 1453 images.

FRIDa dataset has been proposed in [99] and includes 877 images belonging to 8

different categories: natural-food, transformed-food (e.g., cooked food), rotten-food

(e.g., moldy fruits), natural-non-food items (e.g., pinecone), artificial food-related

objects (e.g., fork, spoon), artificial objects, animals (e.g., butterfly), and scenes

(e.g., mountains). This dataset has been validated on a sample of 73 standard

variables (e.g., ambiguity, familiarity, etc.) as well as variables related to food items

(e.g., distance from eatability, perceived calorie content, etc.). In Fig. 1.10, some
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Figure 1.10: A sample of 3 images for the each of the 8 classes in FRIDa dataset.

images of this dataset is shown.

In [100] Pouladzadeh et al. introduced FooDD (Fig. 1.11). It is a dataset of 3000

images across a large variety of food photos taken from different devices and under

different illumination conditions. The authors have used color segmentation and

k-mean clustering in order to perform food segmentation; then, they have employed

Cloud SVM and deep neural network for recognition and calories estimation.

Table 1.1 summarizes the main features of the publicly available datasets re-

ported in the state-of-the-art works in the last years.
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Figure 1.11: A sample of 9 samples included in FooDD dataset.

Table 1.1: Publicly available food datasets.

Dataset Presented in Classes Img per Class # of Img
UEC FOOD 100 [53] 100 ≈ 100 9060
UEC FOOD 256 [65] 256 ≈ 100 31651

PFID [67] 101 18 1818
FRIDa [99] 8 ND 877

NTU-FOOD [85] 50 100 5000
ETHZ Food-101 [88] 101 1000 101000
UNICT-FD889 [92] 899 3/4 3583

FooDD [100] 23 ND 3000
UPMC Food-101 [89] 101 1000 101000
CAS Dataset [90] ND ND 117504
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Chapter 2

Food VS No-Food Via One Class

Classification

To build food monitoring systems that can automatically collect a food images the

automatic classification between food vs non-food images is the first problem to

solve.

This problem has been taken into account in [30, 101]. In [30] Kitamura et

al. presented a food-logging web system which consider this task to analyse the

food intake balance and visualise a food log. They used both global and local

features to represent images and SVM to classify them. Circle detection and color

information are exploited as feature to identify the presence of dishes in images.

However in real scenario not all the images of food include the plate. Moreover

the shape of the plate can be different. Kagaya et al. [101] used deep learning

for food detection and recognition. As in [30], to perform a proper training of the

method proposed in [101] both food images and non-food ones have to be employed.

This means that to train a food detector, the variability of the non-food classes

have to be captured in dataset used for training purpose. Despite could be simple

to collect images of food (e.g., by considering the current available food dataset or

images downloaded from website dedicated to food), to build a proper representative

dataset of non-food images can be a challenging task. Differently than cited works, I

investigate one-class classification approach (OCC)[102] to recognize when an image

is belonging to the food class. Multi-class classification methods, such as the ones

proposed in the aforementioned works, aim to classify an unknown image into one of

several predefined categories (two classes in case of food vs non-food classification).

One-class classification approaches allow to obtain a model of a single class, so
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Figure 2.1: A sample of 96 images included in UNIC-FD889 dataset.

the images that do not fit the model are labelled as an “anomaly” with respect

to that class. In this study, Bag of Words is employed to represent images by

using three different descriptors: Textons, Scale-invariant feature transform (SIFT)

and Pairwise Rotation Invariant Co-occurrence Local Binary Pattern (PRICoLBP).

One-class classification is performed by using one-class Support Vector Machine

(OSVM). To learn about the food class I have used the UNICT-FD889 dataset,

since it presents variability and considering that the images are collected in real

meal scenario with a mobile phone. Some samples of this dataset is reported in

Fig.2.1. I also used two more datasets for testing purpose which can be used as

benchmark to compare food vs non-food classification algorithms.
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2.1 Proposed Method

I considered the one-class classification paradigm (OCC) for food vs non-food classi-

fication problem [102, 103]. One-class classification algorithms learns about the class

to be identified assuming that representative training data of all the possible classes

are not available or very difficult to obtain. My choice is motivated by the fact that

in a training phase could be simple to have example of what a food image looks like,

but it is very difficult to define all the images classes related to the non-food class. If

one considers the problem of detecting food frames in videos acquired with wearable

glasses, the non-food class is composed by all the possible scene that a human can

observe in his life. This motivated us to perform a benchmark experiment, where

the unique class to be use for learning purpose is the food one. As training data to

represent the food space I have used the UNICT-FD889 dataset introduced in [92].

It contains 3583 food images belonging 889 different classes that are taken in real

scenarios during meals with an iPhone. (Fig. 2.1). To test the discriminative capa-

bility of the approach, two more datasets of food and non-food images respectively

composed by 4805 and 8005 images have been considered. These two dataset have

been downloaded by Flickr (Figs. 2.2 and 2.3)

I employed three different image descriptors as baseline for the experiments: Bag

of SIFT features [57, 33, 104], PRICoLBP [96] and Bag of Textons [57, 95]. These

descriptors have been chosen for the good results they exhibited in task as Texture

recognition and Food retrieval [95, 96, 92].

For Bag of SIFT I have considered a dense sampling on a grid with spacing of

8 pixels. For each grid point a 16 × 16 patch is extracted and SIFT descriptor is

computed consider the colour domain [105]. The codebook to be used for a Bag

of SIFT representation has been obtained through K-Means clustering with K =

2200. To obtain the PRICoLBP representation I used the original code provided

by the authors at http://qixianbiao.github.io. For both, grey and colour images I

set radius 2, neighbour points 8 and template 2. With these parameters I have a

1180-dimensional vector for gray whereas 3540-dimensional vector for RGB images.

To compute the Bag of Textons representation I employed the MR8 bank of filter

and the Schmidt one, in grey and Lab colour domain. I used a vocabulary of 2200

Textons to represent images.
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Figure 2.2: A sample of 96 images belonging to the non-food dataset downloaded by Flickr.

2.1.1 One-Class classification

The One-Class Classification (OCC) problem is different from the well-known bi-

nary classification problem, since in OCC the negative class is neither present nor

properly sampled. OCC can be successfully applied in different scenarios, like de-

tecting machine faults or homepage classification. For instance, a classifier should

detect when abnormal or faulty behaviour is occurring in a machine. The samples

related to the normal working of the machine (i.e., positive training data) are easy

to collect. Conversely, most of the faults will not occur (or will rarely occur), so

one will have small or no data for the negative class. In the case of a homepage

classifier (is a webpage “homepage” or not?), it is relatively easy obtain samples

of homepages (positive examples). However collecting samples of non-homepages

(negative examples) can be very challenging. Actually, it could be hard represent

the negative concept uniformly and this might involve human bias.

Since the negative data is limited or even absent, in OCC tasks only one side of
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Figure 2.3: A sample of 96 images belonging to the food dataset downloaded by Flickr.

the classification/decision boundary can be determined by using the data. For this

reason, one-class classification results in a harder problem of conventional multi-

class classification. Shortly, it is hard to define how closely the decision boundary

should fit in each of the directions around the data, on the basis of one class only.

One-Class Classification has been also referred in literature as Outlier Detec-

tion, Novelty Detection or Concept Learning. These terms are related to different

application of OCC. In this Chapter is described the first use of OCC for food Vs

non-food classification.

Specifically, I have chosen OSVM algorithm since it has been successfully em-

ployed in task like: Handwritten Digit Recognition, Information Retrieval, Face

Recognition Applications, Medical Analysis, Bioinformatics, Spam Detection, Anomaly

Detection and Machine Fault Detection [102]. Differently from other methods, it is

able to find an hypersphere that encompasses all the positive samples which belong
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to the training set (i.e., the food images); then, the new samples geometrically in-

side the hypersphere are classified as positive, while the outside ones are classified

as negatives. Moreover, since it is an SVM-based method, it can exploits kernel

trick to efficiently find non-linear boundaries to separate data. Finally, as reported

in Chapter 1, SVM-based approaches have shown good performance in many Com-

puter Vision tasks related to the food domain. These facts have motivated my

choice.

2.1.2 Bag of SIFT

SIFT algorithm allows to detect visual interest points and describes them such that

the final descriptor results invariant to scale, rotation, illumination changes and

partially invariant to affine distortion [33, 104]. SIFT are usually extracted sparsely

or densely [57, 106] from gray-scale or color images. After SIFT extraction the set of

descriptors can be used for matching purposes or to build an image representation

based on the Bag of Words paradigm (BoW). I tested both representation approaches

in the experimental phase.

To build the BoW SIFT representation we use a dense regular grid to compute

the SIFT descriptor of a patch. At this point, a clustering algorithm is used to

quantise descriptors space extracted on training images to create a visual words

vocabulary. To represent image, each point of the regular grid is associated to

nearest visual word. When the visual vocabulary is computed, each image in the

training and test set can be represented as a distribution of visual words. A grid

with spacing of 8 pixel and a patch of 16× 16 is used during dense sampling on the

three RGB channels. K-means clustering is exploited to compute the visual words

vocabulary with different sizes. The SIFT descriptors are computed independently

for each colour channel. A Bag of SIFT is obtained for each color channel and the

three visual word distributions are concatenated in a unique descriptor. The final

descriptor is an histogram of the SIFT-based visual words, i.e. clustered keypoints.

The use of this descriptor is motivated by the fact that I SIFT keypoints are able

to describe local patch, and I expect that food images a higher number of certain

patches. In my experiments VLFeat [107] library has been used to extract SIFT

keypoints.
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2.1.3 Pairwise Rotation Invariant Co-occurrence Local Bi-

nary Pattern

Pairwise Rotation Invariant Co-occurrence LBP descriptor (PRICoLBP) focuses on

encoding spatial co-occurrences and pairwise orientations of the well-known Local

Binary Pattern (LBP) features [108]. It preserves the relative orientations of LBP

features pairs in order to obtain rotational invariance. To compute the PRICoLBP

descriptor, I employed the original implementation provided by the authors which

is available online1. I exploited PRICoLBP on both gray and color domain. In the

experiments I set the radius 2, neighbour points equal to 8 and the template equals to

2. This results in two kinds of PRICoLBP descriptors of 1180 and 3540 components

to represent grey and colour images respectively. This descriptor has been chosen

because of the best performance achieved in [96] among several descriptors.

2.1.4 Bag of Textons

Textons have been introduced by Julesz as the putative unit for the visual perception

during pre-attention processing [109]. A computational model for Textons can be

obtained trough the responses of the grey or colour image to a bank of filters [110].

Filter responses of the training images are quantised through clustering procedure.

Hence, each cluster centroid can be considered a Texton and a set of them compose

a visual codebook [95]. To represent images each filtered pixel is associated with one

of the Texton in the codebook considering a similarity metric (I use L2 distance).

Finally, the histogram of the distribution over the different Textons of an image

is built. I considered different configurations involved in the Textons extraction

pipeline: grey and Lab colour domain; MR8 (Minimum Response 8) and Schmid

filter banks. As similarity measure between two Texton distributions, I used the χ2

distance. A comprehensive discussion about Textons and filter banks is reported in

Chapter 3. Because of the good performance achieved in [92] on the UNICT-FD889

dataset, I have been led to employ it in food vs non-food classification.

1http://qixianbiao.github.io/
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2.2 Experimental Settings

As preprocessing step the images have been resized to 320× 240 pixels. Moreover,

the vocabulary size for both, Bag of SIFT and Bag of Texton has been fixed to 2200.

To test this approach two different kind of experiment have been performed. In the

first experiment. I have employed two different sub-set of UNICT-FD889 dataset for

training and testing purpose. Moreover, for a proper evaluation of different descrip-

tors, the experiments have been repeated three times and the average performance

have been reported. To built the test set, a single image for each class with more

than 2 elements has been chosen. This results in a set of 728 food images. The entire

test set consists of 728 food images plus all the 8005 non-food images downloaded

by Flickr. The rest of 2855 food images are used to train the OSVM classifier.

In the second experiment I used the whole UNICT-FD889 dataset to perform

training (3583 images). For testing purpose I have used the same dataset of non-food

images employed for the first experiment (8005 images) and one more food dataset

(4805 images) obtained from Flickr by downloading (and visually reviewing) images

with the tag “food”. This experiment is more challenging than the first one since

the food images used in the training and the once used in the testing phases look

very different. Despite the Flickr images with “food” tag are related to images

containing food, these can contain also other objects not belonging to the food class

(e.g., sometime the percentage of the pixels related to food are much less than the

once of the background and other objects). There is also a huge variability in the

scale of the food plates, as well as photometric variability, and there are examples of

dishes which never appear into the training dataset. In this experiment I considered

only Textons and SIFT descriptors on color domain since they obtained the best

performances in the first experiments.

Finally, a coarse grid strategy to find the best parametrization for SVM classifier

has been employed. Relying on coarse grid result, I select a Sigmoid kernel with

γ = 10−5 and an OSVM tolerance ν = 0.35 . Parameter ν is a value which is used

to tune the tolerance towards outliers for OSVM algorithm.



Chapter 2. Food VS No-Food Via One Class Classification 37

LABMR8 GrayMR8 Color PLBP Gray PLBP BoS BoS+LMr8 GraySch LABSch LABSch+BoS LABSch+BoS+PLBP LABMR8 BoS BoS+LABMR8 LABSch. BoS+LABSch
Food Positive Rate 66,16% 64,93% 63,83% 64,15% 63,28% 63,60% 64,15% 63,32% 65,43% 63,78% 25,49% 37,75% 28,95% 43,20% 28,57%
Non-Food Positive Rate 82,44% 79,75% 26,29% 27,06% 91,24% 93,21% 79,30% 86,74% 94,44% 30,58% 92,04% 85,03% 93,20% 85,00% 95,07%
Accuracy 81,08% 78,51% 29,42% 30,15% 88,91% 90,74% 78,04% 84,79% 92,02% 33,34% 67,08% 67,30% 69,10% 69,32% 70,12%
Per Class accuracy 74,30% 72,34% 45,06% 45,61% 77,26% 78,40% 71,73% 75,03% 79,93% 47,18% 58,77% 61,39% 61,08% 64,10% 61,82%
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Figure 2.4: The results of food vs non-food classification for the first experimental setting.

2.3 Results and Discussion

The results obtained in this first experiment are shown in Fig. 2.4. Food classi-

fication rate is similar for all representations, while non-food classification rate is

strongly dependent from the descriptor, and varies between 26.21% and 94.44%.

As in [92], Textons outperform PRICoLBP (PLBP). Moreover, the Schmid bank

of filters (LABSch) seems to outperform MR8 filters. The best performances are

obtained when the Bag of SIFT representation (BoS) is employed. Colour domain

helps all the descriptors except PRICoLBP. Since SIFT and Textons capture differ-

ent image’s aspects (i.e., SIFT summarises spatial histograms of gradients, whereas

Textons encode textures) I have tested a simple concatenation of Bag of SIFT and

Bag of Textons. This test shows an improvement in the discrimination capability

(94.44% for non-food and 65.43% for food). The achieved results encourage the

usage of multiple descriptors to have a low false positive rate (i.e., very few images

of non-food class misclassified as food). Some example of misclassified images are

shown in Fig. 2.5.
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(a)

(b)

Figure 2.5: Misclassification examples for (a) food class and (b) non-food class related to
the first experiment.

As last test I have concatenated Bag of Schmid Textons, Bag of SIFT and PRI-

CoLBP (all obtained considering color domain). The results confirm that PRI-

CoLBP do not add useful information for food vs non-food classification (Fig. 2.4).

The results obtained in this second experiment are shown in Fig. 2.6). Also

in this case seems that combination of the descriptors can help for the task under

consideration. Some examples of misclassified images is reported in Fig. 2.7. It is

important highlight once more that in the performed experiments images of non-food

class have not been used for training the classifier. Considering the results of the

two experiments, it is clear that by learning from the food class only it is possible to

achieve low false positive rate for food vs non-food classification already with simple

image representations. This means that in a possible wearable systems for food

monitoring which have to automatically collect food images there will be few outlier

to be manually removed by nutrition experts. Note that the trade-off between good

true positive rate and low false positive rate can be tuned by the parameters used

in one class classification. On the other hand, the classification accuracy of the

food class is still to low to be considered useful to monitor the food intake and the

behaviour of a person. By considering the two experiments the main observation

with respect to this last aspect is that, when the food class to be recognized is
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Non-Food Positive Rate 82,44% 79,75% 26,29% 27,06% 91,24% 93,21% 79,30% 86,74% 94,44% 30,58% 92,04% 85,03% 93,20% 85,00% 95,07%
Accuracy 81,08% 78,51% 29,42% 30,15% 88,91% 90,74% 78,04% 84,79% 92,02% 33,34% 67,08% 67,30% 69,10% 69,32% 70,12%
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Figure 2.6: The results of food vs non-food classification for the second experimental
setting.

represented in the training, the food classification performance is higher (i.e., when

images of food used for testing are visually similar to the once in the training,

despite high geometric and photometric variabilities). Also, the combination of

different features can contribute to have a better discrimination. My conjecture for

food vs non-food classification is that by considering a big representative food image

dataset, where the food dishes appear in a appropriate scale (i.e., the food plate is

the main or the only object, as usually occurs when a user snap a food during

meals), and by considering appropriate image representation, the food vs non-food

classification become a feasible task.

One more consideration made from the outcome of the experiments is related to

the description level to consider the task about of food vs non food classification.

Sometime in literature this problem has been called food detection [102]. As demon-

strated by the second experiment, when images contain food but also background

and other objects, the food vs non-food classification become more difficult. This

is mainly because the whole image is considered during food vs non-food classifica-

tion. On the other hand, a food detector have to be able to localize where the food

appears rather than classify the whole image (i.e., draw a bounding box in the part
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(a)

(b)

Figure 2.7: Misclassification examples for (a) food class and (b) non-food class related to
the second experiment.

of the image in which the food appear discarding the other parts).
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Chapter 3

Retrieval and Classification of

Food Images

Food has a high variability in appearance and it is intrinsically deformable. This

makes classification and retrieval of food and hence an interesting challenge for

Computer Vision researchers. The image representation used to automatically un-

derstand food images plays the most important role. Despite many approaches

have been published (see Section 1.4.4), it is difficult to find works where different

techniques are compared on the same dataset. This makes difficult to figure out

peculiarities of the different representations, as well as to understand which is the

best representation method for food retrieval and classification.

To find a suitable representation of food images it is important to have repre-

sentative datasets with a high variety of dishes. Although different retrieval and

classification methods have been proposed in literature, most of the datasets used

so far have not been designed having in mind the study of a proper image repre-

sentation for food images. Many food datasets are composed by images collected

through the Internet (e.g., downloaded from Social Networks), where a specific plate

is present just once; there is no way to understand if a specific type of image repre-

sentation is useful for the classification and retrieval of a specific dish acquired under

different points of view, scales or rotation angles. Also the food images collected

through the Internet have usually a low resolution and have been processed by the

users with artistic or enhancement filters.

In this chapter I address the problem of food image representation for retrieval

and classification purposes. Additionally, a new dataset designed for the study of
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the representation of images is introduced. The proposed dataset, called UNICT-

FD1200, is composed by 1200 different food plates acquired by users during real

meals. Each food plate has been acquired multiple times and in different light

conditions to guarantee both high geometric and photometric variability. Building

on top of the work in [92] I employ a bag of words like representation based on

Textons features [95] to represent the images of food. Then I present in-depth

analysis of the main properties of bag of Textons representation pipeline to point-

out which colour domain, bank of filters and vocabulary size are more suitable to

tackle the retrieval and classification in this specific domain. I also propose a new

image representation building on the perceptual concept of Anti-Textons discussed

in [111] by Williams and Julesz. The proposed Anti-Textons features extend Textons

by encoding spatial information during feature extraction.

3.1 Proposed Dataset

The research in the field of Computer Vision needs a large amount of organized data

in order to test the algorithms for task such as detection, recognition and so on. Un-

fortunately it is not always easy to collect meaningful data for the different tasks. In

particular, in the case of food classification and retrieval for food intake monitoring,

can be very difficult build a representative dataset. Actually food comes in many

forms and it is naturally deformable, so a representative dataset should contain dif-

ferent variabilities. Moreover it is important whether the data are acquired in real

meal scenario rather than collected from the web, where images of food are usually

posted to show the best aspect of a dish and, some time, are post processed for this

scope. As discussed in previous Chapter 1, different datasets have been proposed in

literature. However, most of them are build by collecting images downloaded from

internet [53, 58, 88, 89], contain food images acquired with constrained laboratory

settings [67, 100] (e.g., variabilities related to light conditions and background are

not considered), consider very simple food plates [99], or include only food from one

nationality [85].

Considering the aforementioned limitations of the datasets currently available for

testing purposes, in one of my previous work I have introduced the UNICT-FD889

dataset [92], which is a collection of food images acquired during real meals, useful
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for the study of the image representation to be used for food image retrieval pur-

poses. This dataset is available online at the URL http://iplab.dmi.unict.it/UNICT-

FD889/.

In this Chapter I presents an extension of UNICT-FD889. Specifically, I included

more dishes as well as the labels related to the following 8 categories: Appetizer,

Main Course, Second Course, Single Course, Side Dish, Dessert, Breakfast, Fruit.

Images depicting mixed food (e.g., fish with salad), are labelled with multiple la-

bels (e.g., Second Course and Side Dish). The new dataset is composed by 4754

images related to 1200 distinct dishes of food of different nationalities (e.g., English,

Japanese, Indian, Italian, Thai, etc.). Each plate has been acquired multiple times

(four in the average) to guarantee the presence of geometric and photometric vari-

abilities. All the food photos have been taken in the last five years during real meals

by using a mobile camera in unconstrained settings, such as different backgrounds

and light conditions. This is a significant characteristic which is mandatory to test

food understanding algorithms on real scenario data. At the best of my knowledge,

all the other state-of-art datasets, except UNICT-FD889, include photos retrieved

by web in semi-automatic way or acquired under laboratory settings. The mobile

cameras used for the acquisition are iPhone 3GS, iPhone 4 and iPhone 5 with a

max resolution (e.g., equals to 2448× 3264 for the iPhone 5). The UNICT-FD1200

dataset is thought to help research in the field of food-understanding with the aim

to study the best representation to use for food images. It can be used to test

food image retrieval as well as food classification by considering the aforementioned

classes. Fig. 3.1 shows image samples randomly selected from the UNICT-FD1200

dataset, whereas Fig. 3.2 can be useful to assess the multi-view acquisition as well

as geometric and photometric variabilities.The UNICT-FD1200 dataset is available

for research purposes at the URL http://iplab.dmi.unict.it/UNICT-FD1200/.

3.2 Image Representation

To benchmark the proposed dataset I used the three features employed in Chapter 2:

SIFT, PRICoLBP and Textons. I exploited SIFT to represent the food images as

set of features to be used together with a matching scheme during classification and

retrieval, as well as to build a representation based on the bag of words paradigm.

http://iplab.dmi.unict.it/UNICT-FD889/
http://iplab.dmi.unict.it/UNICT-FD889/
http://iplab.dmi.unict.it/UNICT-FD1200/
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Figure 3.1: A sample of 72 images belonging to UNICT-FD1200

The PRICoLBP features have been included into the comparison since they have

been recently proposed and tested on food dataset [96]. I considered Bag of Texton

representation because its capability to describe texture information. Despite the

simplicity of the Bag of Textons representation, it has obtained good results in the

context of food classification and retrieval [92, 75]. Finally, I propose a new image

representation based on the perceptual concept of Anti-Textons [111, 112, 113] to

encode spaces between Textons. The proposed image representation outperforms all

the others approaches. It is important to note that all the aforementioned represen-

tation methods are invariant or partially invariant to the illumination. Texton-based
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Figure 3.2: A sample of 24 dishes belonging to UNICT-FD1200. For each of them, three
instances are reported.

representations perform two normalization steps to strongly reduce the illumination

effect (pre-processing normalization at mean 0 and variance 1 and post-processing

normalization according with the Weber’s law [95]). PRICoLBP is a variation of

LBP, which is invariant to global illumination changes [108]. Concerning SIFT, in

the extraction process, the last normalization step employed to build the descriptor

guarantees linear and non-linear illumination invariance [104]. Consider descrip-

tors with illumination invariance property is mandatory because images into the

proposed dataset have been acquired under different light conditions.
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3.2.1 SIFT and PRICoLBP Representation

SIFT and PRICoLBP have been you employed with the same modality described

in Chapter 2. Additionally, in this study, SIFT has been also tested for matching

purposes. In this case the SIFT of a query image are matched to the keypoints of

all the images in the training set. The query image is associated to the image of the

training dataset with the highest number of matchings. Since the SIFT matching

algorithm assigns a score to each matched point based on the quality of the match,

I also consider to inversely weight each matched keypoints by taking into account

the similarity between the SIFT descriptors of the matched keypoints. I consider

both grey and color domain. In the RGB domain the SIFT features are extracted

and matched independently on each color channel, then the sum of the matching

for the three channels is considered to compute the similarity index.

3.2.2 Bag of Textons

Differently from the work reported in Chapter 2 I considered more different con-

figurations involved in the Textons extraction pipeline to highlight which bank of

filters, color domain, normalization procedure and size of the vocabulary are the

most appropriate in the application context discussed in this chapter. In the follow-

ing I details the different 49× 49 filter banks tested in this work (LM, MR8, MR4,

Schmid) and LINC normalization strategy.

Leung-Malik

The Leung-Malik (LM) filters bank [110] consists of 48 filters (Fig. 3.3), among

which smoothing filters, edge detectors and bar detectors. There are 4 Gaussian

filters, first and second derivatives of Gaussian at 6 orientations and 3 scales, 8

Laplacian of Gaussian filters. The scale σ of the Gaussian functions is between 1

and 10.

Maximum Response Filter Banks 8

The Maximum Response 8 (MR8) filters are derived by the Root Filter Set (RFS)

which consists of 38 filters similar to the LM filters [110]. After the convolution

with the 38 filters only 8 response are selected. As in LM filter bank, MR8 contains
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Figure 3.3: The 48 filters of Leung-Malik filter bank.

filters with different scales and orientations. However, only the maximum response

is selected across orientations of a specific filter (e.g., edge filter) in order to achieve

rotation invariance. The 38 filters consists of a Gaussian filter and a Laplacian of

Gaussian filter with scale σ = 10, first derivative of Gaussian filters at 3 scales

and 6 orientations, second derivative of Gaussian filters with the same scales and

orientations of the first derivative of Gaussian filters. In Fig. 3.4 is given an example

of the extraction of the MR8 responses from the 38 RFS filters.

Maximum Response Filter Banks 4

The Maximum Response 4 (MR4) is a subset of the MR8 filters which is built

considering a single scale for the edge filters and bar filters [110]. Hence the filter

bank to be applied contains 14 filters but 4 responses only are selected to get rotation

invariance (In Fig. 3.4).

Schmid Filters

The Schmid filter bank [114] consists of 13 isotropic filters defined by the equation:

F (r, σ, τ) = F0(σ, τ) + cos
(πτr

σ

)
e−

r2

2σ2 (3.1)

where σ is the filter scale in pixel and τ a value which is proportional to the number

of concentric rings in the kernel. F0(σ, τ) is added to obtain a zero DC component
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Figure 3.4: An example where a 49×49 patch from which the MR8 responses are computed.
For each orientation of a specific type of filter, only the maximum response is chosen.

for the filter with (σ, τ) pair taking values (2,1), (4,1), (4,2), (6,1), (6,2), (6,3), (8,1),

(8,2), (8,3),(10,1), (10,2), (10,3) and (10,4). Those filters are shown in Fig. 3.6.
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Un ulteriore semplificazione prevede di fissare la scala dei filtri. 

Figure 3.5: The filter responses are collapsed to guarantee the rotational invariance ob-
taining MR4 responses.

Figure 3.6: The 13 Schmid isotropic filters.

Local Intensity-normalized Colors (LINC) Filters

To achieve invariance to local intensity changes the Local Intensity-normalized Color

procedure has been proposed in [115]. The authors proposed to use opponent color

space and a normalization of the filter responses. Specifically, for each filter response

the Gaussian filter response for first channel at the same scale σ is exploited in

order to obtain local intensity normalization. Despite LINC normalization has been
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proposed for MR8 filter bank, I have employed the procedure considering both MR8

and Schmid bank of filters.

3.2.3 Anti-Textons descriptor

Bag of Textons representation has shown good performances in the context of food

classification and retrieval [92]. However, this representation does not take into

account the spatial relation between the visual words. This is because, in the bag

of words paradigm, only the first order statistics of the visual words are used as

image descriptor. I propose to exploit the spatial information around each Texton

to build a more discriminative representation of food images. This idea is supported

by the study presented in [113] where the authors defined the concept of anti-textons

as the space between two Textons. Anti-Textons concept have been introduced in

literature by Williams and Julesz in [111, 112] for the purpose of texture segregation

(i.e., segmentation).

At the best of my knowledge there is only a single attempt to find a suitable

computational procedure to compute Anti-Textons for texture segmentation [113].

Differently from previous works I introduce a computational approach to compute

Anti-Textons distribution for the purpose of image representation. The proposed

method assumes that a textons vocabulary with N codewords has been obtained

from the set of training images. Once the visual vocabulary is obtained, the Anti-

Textons computation pipeline shown in Fig. 3.7 is applied to represent an image.

The Anti-Textons representation is computed considering the following steps:

• The Textons map for an image I is computed. For each pixel the Textons map

store the corresponding Texton ID.

• For each Texton with ID i (i = 1, ..., N) a binary map is produced. The binary

map Bi for the Texton i, contains 1 in the position where the Texton i occurs

and 0 in all the other positions. At this stage, N binary maps are computed.

• The Distance Transform [116, 117] for each map Bi is computed. This results

in a “saliency” map where the points close to the Texton i are less salient than

the further ones. I use this saliency map to establish how much each Textons

into the Textons map can be considered Anti-Textons with respect the Texton
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Figure 3.7: Anti-Textons representation pipeline (see text for details).

i. Each saliency map is normalized by dividing by its max value. I refer to the

normalized map for Texton i with the symbol Di. The maps Di are inverted

by computing Ei = 1 −Di. This is the way I encode the space between two

Textons of the same class i.

• As next step each map Ei is used to weight the original Texton map to obtain

the final Anti-Textons distribution for Texton i. In particular, I compute the

histogram Hi as follows: Hi(k) =
∑

x Ei(x)Bk(x), where x is the coordinate

in the Texton Map. The normalized histogram H̃i (at sum 1) represents the

Anti-Textons distribution for the Texton i.

• Finally, average all the N computed histograms H̃i in order to produce the

Anti-Textons representation for the image I.

The experiments confirm that the proposed Anti-Textons representation outper-

forms the other representation.
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3.3 Experimental Settings and Results

This Section focuses on the settings and the quality measures used to compare the

image representations presented in the previous Section and tested on the dataset

proposed in Section 3.1. I performed both, retrieval and classification tests. For

retrieval purpose, all the 4754 images of the UNICT-FD1200 dataset have been re-

sized to 320× 240 pixels. For a proper evaluation of the representation methods, I

performed the experiments three times with different training sets and test sets. All

results are obtained by averaging among the three different tests. All the representa-

tion approaches are compared by using the same training set and test sets. To build

a training set I selected a single image for each of the 1200 dishes. Hence, a training

set is composed by 1200 different images. The intersection between the three train-

ing sets is empty. For each test set, I used the rest of the images. The dataset, as

well as details useful to proper replicate the experiments with the considered train-

ing and test sets are available at URL http://iplab.dmi.unict.it/UNICT-FD1200/.

For each image representation, the results are obtained by averaging over the three

runs. In the case of the retrieval a run consists in a group of queries composed by

the test images for which we need to find the corresponding image in the training

set. The retrieval performances are measured using the quality metric P (n) which

is based on the top-n criterion:

P (n) =
Qn

Q
(3.2)

where Q is the number of queries (test images) and Qn the number of correct queries

among the first n retrieved images. In this case P (1) results in the classification

accuracy measure of the system. As index to describe the whole retrieval result I

decided to use the Mean Average Precision (MAP) described in [118].

For classification purposes, I consider the same three training and test sets em-

ployed for retrieval purpose and a 1−NN classifier with χ2 distance. Because of the

images can have multiple labels (up to 2 labels), two performance metrics have been

considered: as first measure, the intersection between the labels of the query image

and the labels of the nearest retrieved images (according to the 1−NN criteria). If

the intersection is not empty, we count a positive match. Only the overall accuracy

http://iplab.dmi.unict.it/UNICT-FD1200/
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is computed in this case. For the second classification test, all the multi-labeled

images are removed. In this way, the training set is reduced from 1200 to about 965

images and the test set from 3479 to 2799. With a single label, it is possible to build

a standard confusion matrix for evaluation purpose. In the following subsections I

detail both the performed experiments and the obtained results.

To prove the validity of the proposed descriptors I have done some experiments

on the UNICT-FD889 and I compared the results with the one reported in [92] and

[119]. Finally, a comparison on a different dataset (i.e., Menu-Match [120]) and a

test with CNN features have been performed.

3.3.1 Global Textons Vs Class-Based Textons

Bag of Textons representation obtained in two modalities has been tested: class-

based and global. For the class-based representation I consider each image in the

training set as a class because it is related to a specific plate. Then, 10 Textons per

image have been extracted by using K-Means algorithm to quantise the space related

to the considered categories. Hence, the vocabulary can be build by collecting all

the extracted Textons. Since the training set is composed by 1200 images, the vo-

cabulary contains 12000 visual words. In the global approach all the filter responses

of the training set are considered to build the final vocabulary through K-Means

clustering with K=12000. I have performed several test by using MR4 filter banks

in gray domain and different vocabulary size for the global approach. The results

(Table 3.1) show that there is no meaningful difference between the class-based ap-

proach and the global one. Since the construction with the global approach allows

to perform tests at varying of the final vocabulary in a simple way, I have chosen

this modality to build the visual codebook for the all other experiments presented.

3.3.2 Gray Textons Vs Color Textons

As next experiment, I decided to compare Textons representation in gray domain

with respect to the one obtained considering RGB domain. To this aim, I choose

to apply the MR4 filter bank to each color channel and then concatenate the re-

sponses obtained for the difference channels. Hence, considering the MR4 filters

we obtained features in 4-dimensional space for the gray domain and features in a
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Table 3.1: Accuracy and Mean Average Precision for Global Textons VS Class-based
Textons by using MR4 filters in gray domain.

Representation Accuracy mAP

12000 Textons (MR4) - Gray - Class Based 29,16% 36,93%
12000 Textons (MR4) - Gray - Global 28,94% 36,56%
6000 Textons (MR4) - Gray - Global 28,56% 36,39%
3000 Textons (MR4) - Gray - Global 28,30% 36,06%
1500 Textons (MR4) - Gray - Global 28,41% 36,33%
750 Textons (MR4) - Gray - Global 28,16% 35,99%
375 Textons (MR4) - Gray - Global 27,73% 35,58%

12-dimensional space for the color domain. The P(n) graph in Fig. 3.8 shows that a

great improvement has been achieved by using color information. For this reason, I

guess that the color information is critical for a good representation of food images.

Considering P(1), which correspond to the recognition accuracy of the system, the

gray representation obtains 28.94% whereas considering color domain an accuracy

of 68.14% is obtained.

3.3.3 SIFT based representation

I test SIFT descriptor in both, gray and RGB color domain. To retrieve images, I

have used two similarity measures. The first one is based on the number of matched

points, while in the second one each matching is weighted by taking into account

the matching quality score. The approach with weighted measure outperforms the

one where only the number of matched points are considered. Also in this case,

the plots in Figs. 3.9 and the Table 3.2, show that the descriptors in color domain

outperform the gray ones for both the SIFT measures employed. Considering the

weighted measure in color domain, I obtained the best accuracy for SIFT based

representation, that is 63.52%. Nevertheless, this result does not outperform the

previous results obtained with MR4 filter bank in color domain.
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Figure 3.8: P(n) curves related to Gray Textons and RGB Color Textons.

Table 3.2: Accuracy (P(1)) and Mean Average Precision for SIFT matching approach and
SIFT matching with weighted scheme approach.

Representation Accuracy mAP

SIFT - RGB - Score 63,52% 67,30%
SIFT - RGB - Match 61,15% 64,46%
SIFT - Gray - Score 54,26% 57,73%
SIFT - Gray - Match 51,67% 54,78%

3.3.4 PRICoLBP based representation

This descriptors can be described as a histogram of CoLBP pattern to encode tex-

tures in a rotational invariant way. Since, PRICoLBP has been used for food classi-

fication with promising results [96], I take into account it in the comparison. Result

are presented in Fig. 3.9. PRICoLBP in color domain is better than PRICoLBP

in gray domain. However once again the best results are still obtained using Bag

of Textons approach with MR4 filter bank and 12000 visual word in RGB color
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Figure 3.9: P(n) curves for SIFT matching approaches, SIFT matching with weighted
scheme approach and PRICoLBP features in gray and RGB color domains.

domain. Hence, I decide to to focus on Bag of Textons representation for the next

experiments.

3.3.5 Dimension of the visual vocabulary

The vocabulary size is one of the parameters of the retrieval system to consider to

better understand the retrieval performances when the number of visual words used

to represent the food images is reduced. For this purpose, I performed tests by using

MR4 filter bank in RGB color domain with different numbers of visual words: 12000,

6000, 3000, 1500, 750, 375. In Table 3.3 are reported the performances of the tests

where the number of visual words is reduced. Despite the retrieval accuracy decrease,

no high drops are observed. This is reasonable because when the vocabulary is

reduced, some discriminative visual words could be lost. Nevertheless a smaller

vocabulary results in a better use of the resources (e.g., memory, CPU). However
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Table 3.3: Accuracy (P(1)) and Mean Average Precisionfor different vocabulary size for
the Bag of Textons representation considering MR4 filters and colour domain.

Representation Accuracy mAP

12000 Textons (MR4) - RGB - Global 68,14% 73,99%
6000 Textons (MR4) - RGB - Global 66,60% 72,65%
3000 Textons (MR4) - RGB - Global 65,48% 71,62%
1500 Textons (MR4) - RGB - Global 63,03% 69,69%
750 Textons (MR4) - RGB - Global 60,53% 67,50%
375 Textons (MR4) - RGB - Global 56,58% 63,91%

Table 3.4: First P(n) values (n = 1 . . . 10) related to Bag of Textons representation ob-
tained with different filter banks in RGB domain.

Representation P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) P(10)

12000 Textons (MR4) - Color - Global 68,14% 74,16% 77,17% 79,30% 80,70% 81,80% 82,79% 83,41% 84,02% 84,70%
12000 Textons (MR8) - Color - Global 71,55% 77,41% 80,20% 81,81% 83,11% 84,21% 85,07% 85,77% 86,33% 86,84%
12000 Textons (Schmidt) - Color - Global 75,74% 80,79% 83,16% 84,43% 85,68% 86,68% 87,49% 88,10% 88,68% 89,20%
12000 Textons (LM) - Color - Global 61,69% 68,24% 71,59% 73,69% 75,35% 76,63% 77,79% 78,93% 79,73% 80,56%

for the next comparisons, I decided to use the vocabulary size that guarantee the

best performance (12000 words).

3.3.6 Filter banks

In the performed test I considered Bag of Textons representation in RGB domain by

using three more filters banks: MR8, LM and Schmid (see Section 3.2 for details).

Tables 3.4, 3.5 and Fig. 3.10 report an improvement for MR8 and Schmid filters

banks with respect to MR4. On the other hand the LM filter bank has shown

the worst performances. I guess this is because Leung-Malik set is not rotationally

invariant. This idea is coherent with the best performance obtained with the Schmid

set, which consists of 13 symmetric filters. The retrieval system employing Schmid

bank of filters in RGB color domain obtained an accuracy of 75.74% and a MAP of

80.43%

3.3.7 Bag of SIFT Vs Bag of Textons

For a proper comparison between Textons features and SIFT features I decided to

test the Bag of Words paradigm using SIFT descriptors with a vocabulary size of
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Figure 3.10: P(n) curves related to Bag of Textons representation obtained with different
filter banks in RGB domain.

Table 3.5: Accuracy and Mean Average Precision related to Bag of Textons representation
obtained with different filter banks in RGB domain.

Representation Accuracy mAP

12000 Textons (MR4) - RGB - Global 68,14% 73,99%
12000 Textons (MR8) - RGB - Global 71,55% 77,00%
12000 Textons (Schmidt) - RGB - Global 75,74% 80,43%
12000 Textons (LM) - RGB - Global 61,69% 68,22%

12000. Considering the work [105] where Bag of SIFT have been used for food

classification purpose I used a dense sampling on a grid with spacing of 8 pixels. A

16 × 16 patch is extracted and SIFT descriptor is computed considering the three

RGB channels as described [105]. To make more fair the comparison with respect

to the Bag of Textons representation I repeated the Bag of Textons tests by using

MR8 bank of filters, color domain, 12000 visual word but considering the same 8×8
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Figure 3.11: P(n) curves for Bag of Textons and Bag of SIFT representations in RGB
domain.

Table 3.6: Accuracy and Mean Average Precision for Bag of Textons and Bag of SIFT
representations in RGB domain.

Representation Accuracy mAP

12000 Textons (MR8) - RGB - Global 71,55% 77,00%
12000 Bag of SIFT 21,81% 29,14%
12000 Textons (MR8) - RGB - Global - 8×8 47,45% 57,00%

sampling used for SIFT descriptors. The results in Fig. 3.11 and Table 3.6, show

that Bag of Textons approach without spatial sampling Bag of SIFT representation.

It is interesting to notice that bag of Textons approach outperforms with a large

margin Bag of SIFT also when spatial sampling is used.
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Table 3.7: Accuracy and Mean Average Precision of Bag of Textons representation with
different color spaces.

Representation Accuracy mAP

12000 Textons (MR8) - Lab - Global 85,04% 88,39%
12000 Textons (MR8) - LINC - Global 83,10% 86,93%
12000 Textons (MR8) - RGB - Global 71,55% 77,00%
12000 Textons (Schmidt) - Lab - Global 87,44% 90,06%
12000 Textons (Schmidt) - LINC - Global 84,32% 87,84%
12000 Textons (Schmidt) - RGB - Global 75,74% 80,43%

3.3.8 Color Space

Finally, I consider to change the color space used into the Bag of Textons repre-

sentation to achieve further improvements in the retrieval performances. To this

aim, I exploited the L*a*b* color space and the opponent color space. In the first

case, we simply transform the pixel value of an image from the RGB color space to

the L*a*b* one. The Textons are computed in the standard way, as described in

3.3.2. In the second case, we use the opponent color space and the normalization

procedure described in [115]. In particular, it has been considered the procedure

called Local Intensity-normalized Colors (LINC). The normalization is made by di-

viding each filter response by the Gaussian filter response (with the same σ value).

I tested the MR8-LINC method proposed in [115]. Moreover I have adapted the

algorithm has been adapted to extract the LINC version of the Schmid filter banks

(Schmid-LINC). As shown in Table 3.7, the best performance are achieved using

Schmid filter banks computed in the L*a*b* color space with an accuracy of 87.44%

and a MAP equal to 90.06%.

3.3.9 Visual Analysis

In order to understand the different discriminative capabilities among the employed

representations, I performed a visual analysis of the results. For this purpose, we

have included 5 representations in the analysis: Bag of Textons computed with

Schmid filters in L*a*b* color space and 12000 visual words, MR8 filters in L*a*b*

with 12000 visual words, MR8 in RGB space with 12000 visual words and sparse

sampling with step 8, Bag of SIFT, and SIFT based representation with matching
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Figure 3.12: A visual comparison where all the considered representations have a positive
match.

Figure 3.13: A visual comparison where all the considered representations fail.

scheme. Here some interesting result of one of the three test for all the 5 represen-

tation have been reported The complete visual comparison,is available at the URL

http://iplab.dmi.unict.it/UNICT-FD1200/. In Fig. 3.12 are shown two queries

where all the representations have a positive match. On the contrary, in Fig. 3.13,

are shown queries where all the representations fail. Since I find out that the Schmid

based representation outperforms all the other ones, we selected some queries where

this representation had a positive match but all the other ones fail (Fig. 3.14). In

Fig. 3.15 are shown, the only 2 queries where the Schmid based representation fails

whereas all the other ones have a correct match.
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Figure 3.14: A visual comparison where only the Schmid L*a*b* representation gives a
correct match.

Figure 3.15: The only 2 queries where the Schmid L*a*b* representation fails.

3.3.10 Experiments on the UNICT-FD889

To compare the results reported in [92] with the ones of this chapter, I perform

an experiment on the UNICT-FD889 dataset using the representation which has

obtained the best results on the UNICT-FD1200 (i.e., Bag of Textons with Schmid

filter bank in L*a*b* color space and codebook of 12000 words). The results in

[92] are outperformed with an improvement of at least 26% for the accuracy and

more than 20% for the MAP score as reported in Table 3.8. Recently in [119], the

authors propose a Random Forest classification algorithm on the UNICT-FD889.

The proposed representation outperform also the results reported in [119].
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Table 3.8: Accuracy and Mean Average Precision of the representation used in [92] and
the Bag of Textons representation with Schmid filters.

Representation Accuracy mAP

8890 Textons - Gray - Global 27,70% 35,98%
1100 Textons - RGB - Global 60,17% 67,46%

SIFT - RGB - Score 58,12% 62,74%
PriCoLBP - RGB 56,33% 63,52%

12000 Textons (Schmidt) - Lab - Global 86,17% 89,21%

3.3.11 Anti-Textons Results

So far I have presented different experiments which have pointed out that Bag of

Textons representation, obtained considering Schmid filters on L*a*b* domain, ob-

tains the best performances on the UNICT-FD1200 dataset. One contribution of

this work, is the introduction of a novel representation based on the concept of

Anti-Textons, in order to encode spatial information in the classic Bag of Textons

representation. To demonstrate the performances of Anti-Textons representation,

I have compared the different filter banks to compute the Bag of Textons repre-

sentation on L*a*b* space with a very small number of visual words equal to 375.

As confirmed by the results reported in Table 3.9, Anti-Textons representation in-

volved the best results in all of the configurations. Moreover it is interesting to

note that the results obtained considering only 375 visual words with Anti-Textons

representation and Schmid filters (85.01%) is close to the one obtained when 12000

visual words are employed (87.44% - see Table 3.7) which has a higher cost in terms

of representation storage and similarity computational time during retrieval. On

the other hand, the computation of Anti-Textons representation is more expensive

with respect to the original Textons based representation since it has to encode the

spatial information among textons.

3.3.12 Classification experiments

In previous sections I have presented different tests to assess the performances of

a retrieval system at varying of features and parameters. As point out by the

experiments, an accuracy of 87.44% and a MAP of 90.06% can be achieved on the

UNICT-FD1200 dataset by exploiting Schmid Textons computed on the L*a*b*
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Table 3.9: Accuracy and Mean Average Precision of the Bag of Texton and Anti-Textons
representations with 375 visual words in L*a*b domain.

Representation Accuracy mAP

375 Textons - LM Lab 74,75% 80,15%
375 Anti-Textons - LM Lab 76,23% 81,39%
375 Textons - MR4 Lab 77,18% 82,11%
375 Anti-Textons - MR4 Lab 78,40% 83,05%
375 Textons - MR8 Lab 80,83% 85,12%
375 Anti-Textons - MR8 Lab 82,21% 86,17%
375 Textons - Schmid Lab 83,77% 87,30%
375 Anti-Textons - Schmid Lab 85,01% 88,22%

domain with a large vocabulary of 12000 visual words. Moreover tests pointed out

that the Anti-Textons representation improve the results in every configuration used.

Another task we can consider in the UNICT-FD1200 dataset is classification. As

detailed in Section 3.1 each image of the UNICT-FD1200 is labelled with one or two

of the following classes: Appetizer, Main Course, Second Course, Single Course, Side

Dish, Dessert, Breakfast, Fruit. To perform the classification test I have considered

the best Bag of Textons representation mentioned above. For a proper evaluation, I

have performed two kind of experiments by using 1−NN classifier and χ2 distance.

First, to consider the fact that images can have multiple labels (e.g., Second Course

and Side Dish) as evaluation criteria we count a positive match for the query i when

Ti∩Pi is not empty. Let be Ti the set of the true labels for the query image i, and Pi is

the set of the predicted labels. The average classification accuracy obtained by using

Bag of Textons was 93.04%. Despite this strategy could produce too much positive

match, I want remark that the multi-labelled images of UNICT-FD1200 have no

more than 2 labels. As second evaluation, the training sets and test sets have been

reduced by removing the images with multiple labels. Classification results for this

test are reported in the confusion matrix in Fig. 3.16. In this case, the accuracy

was 92.60%.

I have also performed classification tests by using the proposed Anti-Textons rep-

resentation (Schimd filters, L*a*b* color space) with a codebook of 375 elements. In

order to compare properly the standard Bag of Textons approach, with the respect
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Ac

tu
al 

Cl
as

s 

Predicted Class 

Appetizer 

Main Course 

Second Course 

Single Course 

Side Dish 

Dessert 

Breakfast 

Fruit 

95,29% 0,56% 0,94% 2,07% 0,19% 0,56% 0,19% 0,19% 

0,71% 91,96% 3,12% 2,03% 1,62% 0,30% 0,19% 0,08% 

0,57% 3,38% 92,20% 1,56% 1,77% 0,16% 0,10% 0,26% 

0,44% 2,62% 3,67% 91,43% 1,14% 0,35% 0,17% 0,17% 

0,19% 1,52% 1,52% 0,57% 95,92% 0,00% 0,09% 0,19% 

1,37% 3,82% 3,21% 0,61% 0,31% 90,08% 0,61% 0,00% 

0,00% 2,08% 2,78% 2,78% 2,08% 3,47% 86,81% 0,00% 

0,00% 1,05% 1,05% 0,00% 0,35% 0,00% 0,00% 97,54% 

Figure 3.16: The confusion matrix for the classification tests related to food. The image
representation used is the Bag of Textons with Schmid filter bank in L*a*b* color space
and codebook of 12000 words.

to Anti-Textons representation, the same test using Bag of Textons have been re-

peated by using a vocabulary of 375 visual words. The accuracy obtained with Bag

of Textons was 90.42% whereas Anti-Textons representation has got an accuracy of

91.21% confirming its effectiveness. In 3.17 and 3.18) note that the Anti-Textons

representation, with only 375 visual words, is able to reach an accuracy very close

to the Bag of Textons with a vocabulary of 12000 Textons (91.21% Vs 93.04%).
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Appetizer 

Main Course 

Second Course 

Single Course 

Side Dish 

Dessert 

Breakfast 

Fruit 

93,97% 0,56% 1,88% 1,51% 0,94% 0,75% 0,19% 0,19% 

1,05% 90,60% 3,80% 1,54% 2,07% 0,49% 0,34% 0,11% 

1,92% 4,32% 89,29% 1,72% 1,92% 0,36% 0,21% 0,26% 

0,79% 3,50% 3,59% 89,06% 1,66% 0,70% 0,44% 0,26% 

0,28% 1,90% 2,28% 1,33% 93,93% 0,09% 0,09% 0,09% 

1,22% 3,97% 6,56% 1,83% 1,22% 84,89% 0,31% 0,00% 

2,08% 1,39% 6,25% 4,17% 0,69% 0,69% 84,72% 0,00% 

0,00% 0,70% 2,11% 1,40% 1,05% 0,00% 0,35% 94,39% 

Ac
tu
al 

Cl
as

s 

Predicted Class 

Figure 3.17: The confusion matrices for the classification tests related to food. The
employed image representations is Bag of Textons with Schmid filter bank in L*a*b* color
space and a codebook of 375 visual words.

3.3.13 GoogLeNet classification

For a proper evaluation of the proposed representations I have performed the clas-

sification experiments by employing a CNN-based method. Specifically, to perform

tests I fine tuned GoogleNet [121]. Results show an accuracy for the CNN method

of 51.41% which is much lower than the accuracy obtained with the representations

proposed in this chapter. This is not a surprise, because the CNN-based methods
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Ac
tu
al 

Cl
as

s 

Predicted Class 

Appetizer 

Main Course 

Second Course 

Single Course 

Side Dish 

Dessert 

Breakfast 

Fruit 

94,92% 0,19% 1,69% 1,69% 0,75% 0,38% 0,19% 0,19% 

0,79% 91,20% 3,68% 1,39% 2,14% 0,30% 0,34% 0,15% 

1,35% 4,32% 89,81% 1,66% 1,92% 0,47% 0,16% 0,31% 

0,79% 2,97% 3,15% 90,55% 1,40% 0,61% 0,35% 0,17% 

0,28% 1,42% 1,99% 1,23% 94,78% 0,09% 0,09% 0,09% 

0,92% 3,05% 5,80% 1,83% 1,38% 86,57% 0,46% 0,00% 

2,08% 0,69% 5,56% 2,78% 0,69% 0,69% 87,50% 0,00% 

0,00% 1,05% 1,05% 0,70% 0,70% 0,00% 0,70% 95,79% 

Figure 3.18: The confusion matrices for the classification tests related to food. The
employed image representations is the proposed Anti-Textons method with Schmid filter
bank in L*a*b* color space and a codebook of 375 visual words.

usually need a huge amount of data for a proper training. It is important to note

the there are real possible cases where a dataset like the one proposed, should be

acquired for retrieval task purpose. We can imagine the task of retrieving the food

images during the meal in a canteen (e.g., images of food offered by a company).

Since building a ground-truth dataset has a high cost, the company should be able

to acquire just few images of the plates offered considering the diet of the week
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(which is usually known in advance) to set the classification system. The recog-

nition/retrieval system can work exactly in the way I presented in this chapter.

Moreover, it is important to note that for training purpose is not possible crawl

huge amount of images from the web. Indeed, the diet of the canteen is fixed and

the company has to learn on the plates of their menu. The proposed solution allows

to build a quite robust retrieval system that not only recognize the food, but also can

give information on ingredients and calories of the plates (because this information

are known by the company and are already present in their databases of the diets

per portion. The system has to be able only to associate pictures to the different

records of the receipts). In such cases the proposed approach for food classification

can be suitable since CNN cannot be successfully applied.

3.3.14 Experiments on the Menu-Match Dataset

To properly assess the proposed method I performed experiments by employing

another food dataset. Specifically, I have considered the Menu-Match dataset in-

troduced in [120] and compared the proposed approach with respect the approach

described in [120]. The authors of [120] proposed a system which provides auto-

matic classification by using priors about the provenance of food plate depicted in

the acquired images. Specifically, the system is able to recognize food plates which

are served in a predetermined set of restaurants. Thanks to GPS coordinates stored

in the query image metadata, most of the restaurants can be discarded. The Menu-

Match dataset contains 646 multi-labelled food images across 41 food categories,

which have been acquired with six different mobile devices by five photographers in

three different restaurants, in order to guarantee a considerable photometric vari-

ability. I evaluated the proposed approaches on the Menu-Match dataset (GPS

coordinates have not been used) to compare the performances with respect to the

one obtained in [120]. In the original work, the acquired image was represented

by employing Bag of Words paradigm and six different kinds of features, among

which: color features, Histogram of Oriented Gradients (HOG), Scale-Invariant Fea-

tures Transform (SIFT), Local Binary Pattern (LBP) and Textons with MR8 filters

bank. All the aforementioned features were encoded through locally-constrained

linear encoding method (LLC) and finally joint in a unique feature vectors. Since,

Menu-Match dataset contains multi-labelled images, the top-5 average recall has
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been proposed by the authors as evaluation metric, while a one-vs-all SVM has been

employed for training and classification. The experiments in [120], report a top-5

average recall of 83.00% with a 30720 dimensional feature vector. I performed tests

employing the same Training-Testing protocol proposed by the authors, using the

proposed Bag of Textons and Anti-Textons with a vocabulary of 1024 visual words.

The experiments pointed out that the proposed Bag of Textons representation in

L*a*b* domain and Schmid filters bank, outperforms the representation suggested

in [120] obtaining a top-5 recall of 84.05%. A further boost in the performances has

been obtained with the proposed Anti-Textons representation (85.82%).

3.4 Discussion

In this chapter the problem of Food Image Analysis has been taken into account.

I have focused on the problem of food image retrieval and classification. The new

dataset UNICT-FD1200 has been introduced for the study of food image represen-

tation and different tests have been done to compare state of the art representation

approach. Another contribution is the introduction of a computational approach to

encode the perceptual concept of Anti-Texton in order to consider spatial informa-

tion into the Bag of Textons approach. Experiments have pointed out that Textons

based representation computed in a L*a*b* domain considering the Schmid filter

banks achieve good performances on both retrieval and classification tests. Finally,

I have demonstrated that the proposed Anti-Textons representation is able to im-

prove the results based on the Bag of Textons paradigm. Future works can consider

the exploitation of more complex representation as well as a different level of classi-

fication (e.g., ingredients) to better describe a food plate. Moreover, considering the

achieved results, systems based on retrieval mechanisms can be also built to deal

with the problem of food intake monitoring and calories estimation.

Food understanding has become more and more of interest for both research

community and society. There is a general consensus that multimedia assisted di-

etary management systems can be useful to improve the quality of life. To this aim

will be important to build systems able to automatic answer different questions from

food images:

1. which kind of food is in the image?
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2. what are the ingredients of the detected food?

3. does it contain allergic ingredients (e.g. nuts)?

4. which is the volume of the food?

5. how many calories I will assume with this plate?

The above questions pose many challenges. As first, it will be important to build

and share benchmark labelled datasets in order to test and compare the different

solutions. Common evaluation methods on the benchmark datasets should be pro-

posed to better assess the performances of the systems with respect to the different

tasks (e.g., is a classification score of 99% acceptable in case of detection of allergic

ingredient classification?). Studies on pixel-wise semantic segmentation of the food

images are still needed to better deal with ingredients identification. An in-depth

analysis of the volume estimation methods from single food images, as well as from

multiple images is still missing in literature. In the next Chapter a new food dataset

will be introduced to face the aforementioned problems.
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Chapter 4

A 3D food dataset for volume

estimation1

Over the last years there have been a number of systems that use visual meal infor-

mation to output nutrient content, mainly calories and carbohydrates [122, 123, 124,

125, 126], with only few of them being validated by end-users [127, 128]. Typically,

once the visual information is available, a number of computer vision steps are exe-

cuted: food detection, semantic segmentation and volume estimation. By knowing

the food type and its volume and by using food composition databases the contained

nutrients are estimated. A key element in the development and technical validation

of the computer vision steps is the data availability. However, the currently available

food image datasets addresses only needs related to the food recognition step. In

this chapter, I introduce a database that contains annotated and labelled RGB and

RGB-D images from 80 different central-European meals served on a round dish ac-

companied by accelerometer data. Each meal consists of two to four different food

items (e.g. vegetables, meat) of know weight, volume and nutrient composition.

The newly introduced database offers resources to improve the current methods,

compare among different approaches and hopefully progress the field of automatic

diet assessment.

1The work presented in this chapter has been done while I was a visiting Scholar at the ARTORG
Center - University of Bern, under the supervision of PD Dr. Stavroula Mougiakakou.
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Figure 4.1: A sample of 3D model in the proposed dataset.

4.1 Proposed Dataset

Each of the 80 meals was placed on a table with a fully visible reference card next

to it for color and geometric calibration. The acquisition procedure was conducted

in the environment of a laboratory following two setups: i) constrained and ii) un-

constrained. For each setup, the following systems were used: Intel R⃝ RealSenseTM

Camera SR300 and GoCARB App [128] installed on a Samsung Galaxy S4. Fi-

nally, the LG Nexus 5X was used to get a 3D multiview reconstruction used as

ground truth for computing the food items’ volume. An example of dish 3D model

is reported in Fig. 4.1.

4.1.1 Constrained Setup

The dish was placed in a small table with a rotating bracket mount with limited

degrees of freedom, in order to control distance and angle. The acquisition device

was attached at the top of the bracket. Data were acquired at two different distances
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(40cm and 60cm) and four angles (0◦, 30◦, 60◦, 90◦). Thus, for each dish a total of

eight captures have been acquired.

• Intel R⃝ RealSense
TM

Camera SR300: From the depth sensor, we got four

different types of images per capture:

1. A 24-bit RGB image at 1920× 1080;

2. A 16-bit depth 640 × 480 image, where the pixel values is the distance

from the sensor in tenth of millimetres;

3. A depth image aligned with the RGB one;

4. An RGB image masked with the related aligned depth map.

• GoCARB App installed in a Samsung Galaxy S4: From the GoCARB system

for each capture I get a 4128 × 3096 RGB image and the information about

calibration, as well as the gravity vector.

4.1.2 Unconstrained Setup

In the unconstrained setup, the device was placed freely in front of the dish and

data have been acquired at a randomly chosen distance and angle in the range of

40cm to 60cm and 45◦ to 90◦ respectively.

• Intel R⃝ RealSense
TM

Camera SR300: From the depth sensor, 200 consecutive

RGBD frames at 10 fps have been captured.

• GoCARB App installed in a Samsung Galaxy S4: Three image pairs have been

captured, each of them with the characteristics mentioned in the constrained

setup.

Finally, approximately 50 images with resolution 4032 × 3024 were captured from

all possible angles above the table (360◦ view) using the LG Nexus 5X. These im-

ages were used to build the ground truth 3D model of each meal. The acquisition

information is summarized in Fig. 4.2.
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Table 1: A summary of the acquired RGB and RGB-D data, along with the provided maps. For 
each meal served on a round dish the weight and volume of each food items is available, as 

well as information from smartphone’s accelerometer.   

Sensors Setup Images 
Distance 

(cm) 
Angle 

Maps 
Recognition Segmentation 

Intel® Re-
alSense™ 
Camera SR300 

Constrained 8 RGB-D 

40 

0° -  
30° -  
60° × 1 
90° × 1 

60 

0° -  
30° -  
60° × 1 
90° × 1 

Unconstrained 200 RGB-D [40-60] [45°-90°] × 2 

Samsung Gal-
axy S4 (using 
GoCARB) 

Constrained 8 RGB 

40 

0° -  
30° -  
60° × 1 
90° × 1 

60 

0° -  
30° -  
60° × 1 
90° × 1 

Unconstrained 6 RGB [40-60] [45° -90°] × 1 
LG Nexus Unconstrained ~50 RGB [40-60] 360° view × 1 
Total/ dish ~272 (208 RGB-D; ~64 RGB) × 12 
Total for the 80 dishes 21807 (16640 RGB-D; 5167 RGB) × 960 

4 Baseline Methods 

The images of the proposed database were used to benchmark some state of the art 
methods for food segmentation, depth and volume estimation. 

4.1 Segmentation 

Food segmentation is a challenging task due to the great variability in food types, shapes 
and colors. Here, we investigate whether the use of depth-map information could im-
prove the segmentation result. To this end, we applied a method similar to [19] and 
compared the results with and without considering the depth as input. The method con-
sists of two main steps: border maps extraction by a convolutional neural network 
(CNN) and region growing segmentation. In our experiments, we altered the first step 
by utilizing different CNN architectures (SegNet [20] and U-Net [21]) and using the  
 

Figure 4.2: A summary of the acquired RGB and RGB-D data, along with the provided
maps. For each meal served on a round dish the weight and volume of each food items is
available, as well as information from smartphone’s accelerometer.

4.1.3 Data Processing

Image labelling and annotation: For a subset of the acquired RGB and RGB-D

images, segmentation and recognition maps are provided after manual manipulation.

Details are presented in Fig. 4.2, while a sample of the proposed database in given

in Fig. 4.3.

Ground truth estimation: The set of photos obtained with the LG Nexus 5X

has been used to create a 3D reconstruction of the dish, through the online Autodesk

Recap 360 service. The resulting 3D models were manually cleaned, rotated to
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(a) (b)

(c) (d)

Figure 4.3: (a) the RGB acquisition performed with Intel R⃝ RealSense
TM

at 40cm and
90◦; (b) the depth map to the picture in (a); (c) the segmentation map for the image in (a);
(d) the plate map for the image in (a). Intensities have been adjusted for visualization.

a horizontal alignment, and rescaled by using the real size as obtained from the

calibration card. In this clean model, I manually separated the food items. Hence, I

have computed the individual volumes, in order to use it as ground truth for volume

estimation algorithms.

4.2 Baseline

The images of the proposed database were used to benchmark some state of the art

methods for food segmentation, depth and volume estimation.
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4.2.1 Segmentation

Food segmentation is a challenging task due to the great variability in food types,

shapes and colours. Here, I investigate whether the use of depth-map information

could improve the segmentation result. To this end, I applied a method similar to

[129] and compared the results with and without considering the depth as input.

The method consists of two main steps: border maps extraction by a convolutional

neural network (CNN) and region growing segmentation. In these experiments, I

altered the first step by utilizing different CNN architectures (SegNet [130] and U-

Net [131]) and using the depth map as additional input. Specifically, the top view

(40cm and 90◦) acquisition performed with Intel R⃝ RealSense
TM

Camera SR300 was

used, after being inverted to represent the distance from the table. Finally, all the

data have been normalized and automatically cropped to 256 × 256 by employing

the plate map. I used 60 images for training, 10 for validation and 10 for testing.

To increase the image variability,I augmented the dataset by considering two flips

and four rotations.

The results, confirm that depth-map information can reduce the error for borders

extraction step and consequently for segmentation. Online augmentation (column

AUG RGB-D in Table 4.1, has been performed by randomly modifying for each

image at each iteration of the training data. Specifically, we add a random number

from a normal distribution with mean 0 and standard deviation 0.01, to the colour

channels, while we multiply the depth map with a random number with mean 1 and

standard deviation 0.1. The metrics used to assess the performance are the same

used in [129]. I tested different architectures (SegNet, Unet), loss functions (mean

square error - MSE and mean absolute error - MAE) and batch normalization strat-

egy (per feature-map, mode 0; per batch, mode 2). Best results have been achieved

with Unet, with no batch normalization e by training the CNN with online aug-

mentation. As expected the best result has been obtained with depth information,

moreover data augmentation with the smallest standard deviation has increased the

training generalization.
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Table 4.1: Segmentation results (MSE: Mean square error; MAE: Mean absolute error)

CNN Loss AUG RGB-D
RGB RGB-D

Min Fscore Total Fscore Min Fscore Total Fscore

Segnet MSE No 0.7329 0.9326 0.7059 0.9288
Unet MAE No 0.6889 0.9268 0.7351 0.9342
Unet MSE No 0.6875 0.9247 0.7332 0.9328
Unet MAE Yes 0.6893 0.9281 0.7426 0.9369

4.2.2 Depth Estimation

Calculating the depth of a food image is a significant component in understanding

the 3D geometry of a meal, which is essential for food volume estimation. However,

depth prediction is usually performed by stereo images or motion as in [132]. Here,

I present a method that performs depth estimation by using just one RGB image, as

input to a CNN. The method is inspired by [133], although some modifications have

been made to adapt it to the problem. The considered task focuses on the estimation

of the depth of near distance objects (within 1 meter), whereas the scenarios in

[133] range within several meters. The dataset is composed by two images per

dish acquired by the Intel R⃝ RealSense
TM

Camera SR300 in unconstrained setup:

60 dishes used for training, 10 for validation and 10 for testing, resulting in 120,

20 and 20 images, respectively. The training data were augmented by flipping the

images left-to-right. The chosen network architecture is similar to Segnet-Basic

[130], which consists of four encoding and four decoding convolutional layers. Each

convolutional layer has 64 kernels and is followed by batch normalization and a

ReLU activation, while the last layer uses the sigmoid activation function as a loss

function, we use the mean absolute difference (MAD) between the estimated depth

map and the ground truth from the depth sensor. For optimization, we use Adam

with learning rate of 0.0005. Table 4.2 reports the quantitative comparison of the

depth prediction on the proposed dataset, where only the pixels inside the plate

are evaluated. Apart from MAD value, the absolute relative difference (ARD) with

respect to ground truth is also provided for the sake of clarity. As expected, in food

depth prediction scenario, the result obtained using standard algorithm of [133]

shows relatively poor performance. However, by using the proposed method, the

performance is significantly improved. For further demonstration, the prediction

result performed by the proposed method is shown in Fig. 4.4(b), revealing a good
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Table 4.2: Comparison on the proposed dataset (MAD: Mean absolute difference; ARD:
Absolute relative difference).

Method MAD (mm) ARD (%)

NYU [133] 37.09 7.53
Proposed 8.64 1.76

(a) (b) (c)

Figure 4.4: (a) depth map captured by the Intel R⃝ RealSense
TM

Camera SR300; (b):
depth map predicted by the proposed network; (c) Colour bar is in meter.

agreement with the ground truth depicted in Fig. 4.4(a).

4.2.3 Volume Estimation

Knowing the food volume is critical to estimate its nutritional value. In this experi-

ment, I compare the performance of the GoCARB system in two different scenarios.

As first I estimate the volume of each food item by reconstructing a 3D model as

in [132]. The second experiment is aimed to assess the importance of depth map in

volume estimation. I replace the depth estimation step as calculated in [132] with

the depth obtained from the RGB-D images captured by depth sensor. In this case,

I have to estimate the vertical direction and the table plane from the depth map to

calculate the volume. To do so, I modify the table plane estimation method of [132].

First, I detect the plate through RGB channels, then sample the depth map at its
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border, and fit a plane to the selected points to find the ellipse plane. To find the

table plane, I select all the points outside of the plate, and shift the ellipse plane to

their modal height. To measure the performance the mean absolute percentage er-

ror, as defined in [132], was used. In these conditions, the average error using stereo

reconstruction was 13.8%, and 14% using RGB-D images. The two methods provide

comparable results, however it has to be noted that the RGB-D sensor baseline (dis-

tance between the two elements of the stereo reconstruction module) is quite small,

reducing its accuracy, while already developed algorithms were employed without

any prior optimization the specific problem. However, these results indicate that

a monocular RGB-D image can replace stereo pairs for volume estimation without

performances drop.

4.2.4 Discussion

In this chapter I have introduced a new multimedia food database that contains im-

ages, depth maps, weight/volume measurements of served meals, nutrient content

together with the corresponding annotations, labels and accelerometer data. To

benchmark this dataset the results of some baseline methods on food segmentation

and depth/volume estimation have been presented. As expected, the segmenta-

tion’s results confirm that depth-map information can decrease the error for borders

extraction step and consequently for the regions identification. In food depth predic-

tion task, the result achieved using state-of-art algorithm of [133] have shown poor

performance. However, by using the proposed method, the error has been signifi-

cantly reduced. Finally, for volume estimation problem, the results indicated that

a RGB-D image could replace a stereo pairs of RGB ones without error increasing.

The proposed dataset, will be publicly available for the researcher in the field, to

test new food understanding algorithms about semantic segmentation, depth and

volume estimation.
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Chapter 5

Conclusion

The core of this thesis is the investigation of food understanding by using Computer

Vision and Machine Learning approaches. The three main problems addressed are:

food vs non-food discrimination; food images retrieval and classification; segmenta-

tion and volume estimation. The aforementioned three vision tasks are mentioned

in order with respect to the complexity of the related challenges.

Chapter 2, addresses the discrimination between food and non-food images. It

can be considered the first step to be employed in a food understanding engine:

before to classify the food it is essential understand if an image depicts food. The

proposed approach exploits the One-Class Classification paradigm. According to

this paradigm a classifier is trained by using samples from a single class (usually the

positive one).

The results pointed out two main facts:

• The best performance are achieved by combining Bag of Textons representa-

tion and SIFT one. As shown in [92], texture information are highly discrim-

inant for food images;

• Achieved True negative rate (non-food images correctly classified) is 94.44%

while true positive rate food (food images correctly classified) and 65.43%.

This suggests that, although the proposed method provide encouraging results,

the employed classifier (One-Class SVM) tends to penalize food images. This

depends on the tolerance parameters of OSVM, that can be tuned. However,

the employed tolerance is the one that maximize the accuracy with respect to

the considered food dataset.
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Moreover, when images contain food but also background and other objects, the

classification become more difficult. This is because the whole image is considered

during food vs non-food classification.

The second problem addressed in the thesis is the food retrieval and classification,

described in Chapter 3. A new dataset, named UNICT-FD1200, has been introduced

for the study of food image representation and different tests have been done to

compare state of the art representation approach.

The main contribution is the introduction of a new computational strategy to

encode Anti-Texton. The proposed algorithm, allows to exploit spatial information

of standard Bag of Textons representaiton. It have proved that the proposed Anti-

Textons representation outperform the results based on the standard Bag of Textons

paradigm.

The last food understanding problem considered in this thesis is segmentation

and volume estimation. It is discussed in Chapter 4. Food volume estimation is

probably the last step of a food understanding engine. In fact, if one knows the

kind of food item and its volume, will be able to compute the nutritional values (i.e.

proteins, carbohydrates, etc.).

Because of the absence of a publicly available dataset to face the problem in a

proper way, we introduced a new one that contains images, depth maps, weight/volume

measurements of served meals, nutrient content together with the corresponding

annotations, labels and accelerometer data. Three baseline methods on food seg-

mentation and depth/volume estimation have been described.

The segmentation’s results confirm that depth-map information can decrease the

error. For volume estimation problem, the results indicated that a RGB-D image

can replace a stereo pairs of RGB ones without error increasing.

5.1 Future directions

Food understanding is a challenging problem because of food variability in appear-

ance and its intrinsic deformability. One of the main issues is the availability of

proper labelled datasets to test methods, baseline algorithms and common evalua-

tion procedure. At moment, there are several public dataset of food. Nonetheless,

most of these datasets are suitable for retrieval and classification task and contains
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RGB images only. In future works we consider to extend the dataset described in

Chapter 4. The use of depth map for food understanding tasks have to be further

investigated, since the provided benchmarks shown positive results. Currently most

of the consumer mobile system don’t mount a depth sensor; despite this, the cost re-

ductions and the recent quality stereo vision method, are allowing to perform depth

estimation with most of the smartphones. Finally, we are considering to develop a

food understanding engine that is able to work in real-time on a video stream. Tem-

poral dimension could surely improve volume estimation task; nevertheless, problem

like blurring, shaking, etc. have to be properly handled.



83

Appendix A

Cultural Heritage Preservation

and Exploitation

In this appendix, I report a set of works where computer science and modern tech-

nologies are employed for Cultural Heritage preservation and exploitation.

Firstly, the problem of virtual unrolling of ancient papyrus is described. The

term “Virtual unrolling” refers to the method and strategy to digitally unroll a

papyrus scroll. The aim is read the ancient document by avoiding to damage it.

The proposed approach is based on the use of X-ray computer tomography to get a

sliced version of the papyrus scroll. Then, the slices “stack” is processed by using

morphological operator to perform the digital unrolling.

Among the new technologies currently proposed for the application to Cultural

Heritage, the potentialities of the 3D scanning technique represent a significant

example of how originally far apart fields, such as the one of conservation, that of

research and that of advanced industry, can find a common interest ground. Non-

invasive experimental use of methodologies and innovative tools have been developed

for analysis procedures of geometric dimensional data, restoration and monitoring.

3D scan is the core of the next works presented in this Appendix.

The study of Morgantina Silver Treasure is addressed in Section A.2. The main

contribution of this work is the creation of a semantic segmentation platform. It is

intended to present the results of chemical and physical analysis conducted on the

Morgantina Treasure.

The next work focus on the low-cost hand-held 3D scanners. The aim, is to

understand the weakness and the advantage of these kind of scanners. Hence, I con-

ducted a study on a XVIII century doorway placed in the monastery of Benedettini
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in Catania, by performing a comparison between a low-cost hand-held 3D scanner

and a Time of Flight one.

Finally, it is presented a digital anastylosis of a Greek Archaic statue from an-

cient Sicily and the development of a new public outreach protocol for those with

visual impairment or cognitive disabilities through the application of 3D printing

and haptic technology. Specifically, it is presented an analysis two assess if two

archaeological pieces (a head and a torso) are parts of the same kouros.

A.1 Virtual Unrolling

Papyrus is a thin material made from the pith of the papyrus plant Cyperus Papirus,

an aquatic plant that was once abundant in southern Egypt and in southern Sudan.

It is currently cultivated in the Nile Delta. Examples of typical use are related to the

classical period of Egyptian civilization, where they were used to record historical

events, business transactions or even trivial events (Fig. A.1).

During the excavation of archaeological sites are often found many ancient ar-

tifacts of this type, however it is not always possible to physically open the scrolls

and read their contents (Fig. A.3(b)). This happens for various reasons, such as

the parchment may be too fragile and opening it would risk to introduce tears or

creases, it could be now totally stuck or even afflicted by parasites and worms that

have destroyed the material. The common practice is to manually carefully remove

one by one each layer of papyrus and recompose this kind of puzzle over a flat plane.

This is an invasive practice and it is not more allowed by the recent trend of the

restoration theory.

Therefore, it is necessary to investigate new techniques for analysing the content

of parchments and papyri scrolls without the need to physically unroll them: this

technique is called Virtual Unrolling. In this study I performed a virtual enrolling

of a papyrus scroll using a X-ray computed tomography scanner (GE Optima 660).

Papyrus has been sectioned in several thin axial slices, in each of which it appears

as a spiral (Fig. A.2); interestingly, in correspondence of the Egyptian inscriptions,

I detected some areas characterized by a higher density than the remaining part of

the sheet.
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Figure A.1: The papyrus sample used to test the proposed virtual unrolling procedure.

In order to make this study-case realistic, it has been realized a papyrus substrate

made by the original method described by Plinius the Elder. It has been painted with

hieroglyph inscription of Thutmosis III using pigments and binders compatible with

the Egyptian use (ochres with natural glue). In particular, the papyrus substrate

was made by carefully cutting a papyrus (Cyperus Papyrus) into pieces of desired

sheet length (about 40 cm), peeling the rind off these, and slicing the pith into

thin layers from the narrowest of the three angles of the triangular stem to the

middle of the opposite side. The strips were leached in water until translucent,

and pounded. Then, while still moist, they were laid horizontally on a board, one

above the other overlapping by 1-2 mm. A second layer was then laid at right

angles vertically covering the first layer, and both were subsequently pressed together

until dry. The strips were used without any glue to steak the layers each other,
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Figure A.2: CT image showing a thin axial section of the papyrus.

being the adherence due to both physical and chemical reasons because the natural

polysaccharides contained in the fibres The inks were prepared by mixing different

ochres and carbon powder with Arabic gum dissolved in water. Red ochre mainly

contained Fe2O3 and the brown one Fe2O3+MnO2+carbon. The black was obtained

with carbon powder. If metal oxides shows very different X ray radio-densities

with respect to the organic substrate, the carbon based ink of course are not so

different. In case of a pure carbon inks, the use of 13C Nuclear Magnetic Resonance

Tomography (NMRCT) would be used instead of XCT: from the software point of

view the origin of the images stack is absolutely not a problem.

Subsequently, after CT acquisition of the papyrus, I have developed an algorithm

to process the slices acquired. Main aim of this semi-automated procedure is to
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identify the path that should be followed to completely unroll papyrus. Moreover, I

have also treated particular difficult cases, such as interrupted path or multiple path.

Finally, once paths have been computed for (almost) all slices, then it is possible to

properly exploit 3D volumetric data acquired using CT for virtual unrolling.

A.1.1 Related Works

Physically unrolling could be problematic, in particular when scrolls are very fragile.

For instance, in the 1980s “Oslo method” was applied in an attempt to unroll two

Herculaneum scrolls, but it results in partial destruction of them, and definitely in

an irreversible loss for cultural heritage [134, 135]. For this reason, starting from

that event all further attempts to physically unrolling papyri or parchments had

been abandoned in favor of digital techniques that could analyse scrolls without the

need of physically open them.

Some works stressed the possibility to use X-ray computed tomography (CT )

to inner analysis of rolled parchments and papyri [136, 137, 138]. In particular,

archaeological site of Hercolanum is rich of carbonized parchments impossible to

unscroll, so many groups have focused their efforts in analysis of artifacts coming

from this site [137].

More recent works, that can use better CT devices with respect on works of

some decades ago, continue to afford the issue of virtually unrolling [139, 140].

Furthermore, in all of them the acquired CT slices could even present spirals almost

well-spaced, where layers are quite distinguishable between each others, or totally

ill-spaced. In the first case, the problem of overlapping sheet could be solved in

practical way; for instance, in [139] authors applied an algorithm of Graph Cut for

this purpose and used a 3D scanned version of papyrus. Besides, in the second one,

the problem of entire parchment virtually unscrolling could be too complex, but

some small parts of the sheet can be restored anyway; for example, in [138] authors

shown how problematic could be an ill-spaced spiral when ink has low contrast; they

had selected some regions of the spiral and manually made them well-spaced; finally,

they performed virtual unrolling just on it.

In this Appendix, a novel semi-automated method to solve virtual unrolling issue

is presented. Despite the aforementioned approaches, the proposed algorithm does

not use 3D scans, but images only. Moreover, the path is automatically detected, in
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spite of manual approaches cited. The unique user-guided step is to select the start

point and the final point position for a single papyrus slice. The proposed solution

exploits morphological operator to detect slice path and to solve interrupted path

issue.

A.1.2 Computed Tomography

Computed Tomography (CT) is one of the most accurate diagnostic techniques in

Medicine, because it allows obtaining images of singular layers of patient’s body us-

ing X-rays. The structures contained in each layer are represented in the CT images

according to their density, detected through the measurement of the attenuation

that every single element of the X-ray beam undergoes through the different tissues.

The attenuation value of each pixel of the matrix is then converted into a specific

grey level in accordance with the Hounsfield scale. So, radiologists can distinguish

several anatomic components of the human organs (blood, fat, air, soft tissue, bone,

etc.).

In this study I applied the principles of CT to a sheet model of papyrus with some

Egyptian inscriptions, with the aim to obtain its correspondent digital image. It has

been used a 64-multi-detector “Optima CT660” scan (GE Healthcare). Firstly, I

performed a scan proof with the papyrus rolled out; then the rolled papyrus sheet

was lying on the patient bed (Fig. A.3(a)), put inside the gantry and centred with

laser lights (Fig. A.3(b)).

Then images acquisition was programmed in the axial plane adopting the fol-

lowing parameters:

• Scan type: helical;

• FOV: 50;

• Slice thickness: 0.625mm (the least possible X-ray collimation);

• Rotation time: 0.8s;

• Pitch: 0.98

• Tilt: 0.0
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• Matrix 512× 512

• kV: 80

• mA: 50

Images were transferred to the GE Advantage Window 4.6 console for post-

processing with both Multiplanar Projection Reconstructions (MRP) and Maximum

Intensity Projection (MIP) in the coronal oblique plane. In particular, the images

obtained with the “curve” mode, selecting the layers of the papyrus manually point-

by-point, allowed the detection of certain symbols on papyrus (Fig. A.4). The

examinations confirmed that, although the papyrus sheet has a very small thick-

ness (about 1mm), CT allows a satisfactory digital acquisition. Moreover, CT can

discriminate the different density of the material with which the symbols were plot-

ted than the paper of the papyrus, allowing the identification of the areas with the

Egyptian inscriptions as points of higher density in both native and, above all, re-

constructed images. However, virtual unrolling by CT presented some limits due to

the overlapping of the layers of the sheet that caused an incomplete reconstruction

with missing parts of the papyrus.

A.1.3 Proposed Method

The images we get from XCT represent the papyrus section, so these look like as

spirals. For each papyrus section, the start and final point of the spiral should be

identify in order to build an array of ordered pixel. Unfortunately, it is not easy

to sort the points which compose the slice, because of the low resolution and some

papyrus overlapping sheet. For this reason, I decided to use a single section profile

and follow it for all the slices, assuming that there are few differences between a

couple of different sections.

The first step of the proposed algorithm is the selection of a good slice using the

following criteria:

• Low number of overlapping sheets into the slice. In the best case there is no

overlaps;

• The spiral path should be almost entirely detected through a raw segmenta-

tion.
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(a) (b)

Figure A.3: GE Optima 660 scanner: papyrus was lying on the patient bed inside the
gantry (a) and centred with laser lights (b).

Step 1: Slice selection

To satisfy first criteria the skeleton branch-points are detected using morphological

operator [141]. Specifically, the following image segmentation is performed:

• Gamma transformation with γ = 2 and contrast stretching in order to high-

lighted the papyrus section;

• Otsu thresholding to get a raw segmentation;

• Morphological skeletonization to detect a first raw path;

• Morphological branch-points detection to identify overlaps;

If a sheet overlap exists, then it produces a branch-point into the skeleton. Of

course, not all the branch-points indicate a sheet overlap, since they could be image
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Figure A.4: Utility function of application software provided with GE Optima 660. On
the left the papyrus section is manually drawing. On the right the result shows missing
parts.

artifacts or papyrus creases. However we choose the slices with the lowest number

of branch-points in order to minimize the probability that an overlap occurs.

To satisfy the second criteria the number of skeleton points is counted for each

papyrus slice, then the average number is computed. Finally, a slice with a number

of skeleton points nearest to the average value is chosen. Skeletons with too few

points describe slices poorly definite, while skeletons with too many points could be

affected by noise.

Step 2: Slice reconstruction

Once a good slice is detected, the spiral must be rebuilt. Firstly, we apply the pre-

processing described above. Then the branch-points and their 3× 3 neighbourhood

are removed from the skeleton in order to disconnect the ramifications. Now the

end-points are detected using the proper morphological operator. The end-points

are pixels which locate a break on the skeleton.

So the user chooses the start point and the final point of the spiral. This is

the unique user interaction of the algorithm. Starting from the initial point, the
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3× 3 neighbourhood is taken into account for each pixel and the following steps are

performed:

• If into 3× 3 neighbourhood there is a not visited skeleton point, which is not

an end-point, then it is added to an array of visited point. You move on this

new point and the algorithm continues.

• If into 3 × 3 neighbourhood there is a not visited skeleton point, which is an

end-point, then a break has been reached. To rebuild the missing path, the

intensity grey value of the contrast stretched image is used. Specifically, the

pixel of maximum value is taken. However the 3×3 neighbourhood is weighted

through a probability mask. There is a mask for each possible direction in 3×3

neighbourhood, so there are eight masks. These eight masks has built using a

sampled derivative of gaussian filters and weighs more the pixel along the last

direction of movement. When a new end-points is reached two skeleton parts

are reconnected.

The algorithm ends when the final point is reached.

Step 3: Virtual Unrolling

The last step is the papyrus virtual unrolling. For each slice we select the sequence of

pixel whose coordinates are stored in the vector of visited points. For each coordinate

the pixels of maximum intensity along the direction of the gradient is chosen. Indeed

sheet and text or image have an higher intensity than background. In this way we

obtain a string of pixels for each slice (e.g., in Fig. A.5). By stacking all this string

we get the image of the papyrus rolled out.

A.1.4 Experimental results

To test the proposed approach a set of 259 slices of a single rolled papyrus has been

used. The original size of the slice image is 512×512, but a crop to 175×175 has been

performed in order to focus on the papyrus spiral profile. Using the aforementioned

criteria, a good slice has been automatically selected: a section with 0 branch-points

and a number of skeleton points near to average number. In Fig. A.6 the processing

step for the chosen slice is shown.
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Figure A.5: A representation of the process pipeline.

Figure A.6: An example of good slice processed. First the original cropped image is
enhanced, then a morphological skeletonization is performed. Finally it can be seen the
branch-points map is empty, that is no overlaps occur.

However, to show the overlap problem a bad slice example has been reported in

Fig. A.7, where the branch-points pixel locate on the overlapping area can be seen.

Of course, the image final image in Fig. A.6 is totally black because no branch-points

have been detected.

In Fig. A.8 the reconstructed path after the step 2 is shown. Finally, using the

array of visited points each of 259 spirals is unrolled. For each coordinate in the

array, we take into account 25 pixel (according to resolution) along the gradient
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Figure A.7: An example of good slice processed. First the original cropped image is
enhanced, then a morphological skeletonization is performed. Finally it can be seen the
branch-points detected for the processed slice.

direction and choose the maximum value. This strategy is motivated by the fact

that there is some slight difference between the prototype path and every other

spiral path.

By merging all the processed slice the image of unrolled papyrus is built. This

result can be seen in Figs. A.9(a) and A.9(b). In Fig. A.10 a comparison between

the original version and the virtual unrolled one is shown and the common symbols

are boxed.

A.1.5 Discussion

This study has been motivated by the criticality of a physical papyrus unrolling,

because of the high risk to damage the cultural heritage materials. To this aim I

proposed a method based on the use of a X-Ray CT scanner in order to obtain

digital cross-section images of the papyrus. The input of the proposed algorithm

is a set of slices from a single CT acquisition. Through mathematical morphology

the spiral path of a good slice is rebuilt, in order to be used as prototype path for

every other slices. The experimental results show that this approach is valid, since

many symbols of the original papyrus become visible after the virtual unrolling. In

the future works I consider to solve the overlapping sheets issue for each slice, so to

use more than a single path. In this way a better and more accurate result could
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Figure A.8: The processed good slice after the reconstruction step..

be obtained. I am also considering to use an high-resolution device to reduce the

probability of the overlays and the interruption in the spiral path.

A.2 Integrated 3D models of the Morgantina sil-

ver Treasure

The silver Treasure of Morgantina is one of the most valuable collections of the

Museum of Aidone (Sicily). It consists of sixteen pieces of worked silver that were

returned to Italy in 2010 following an agreement between the Ministero dei Beni e

le Attività Culturali, the Regione Siciliana, and the Metropolitan Museum of Art

of New York (Fig. A.11). Through police inquiry and data derived from direct
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(a)

(b)

Figure A.9: (a) A virtual unrolled version of the papyrus through the proposed algorithm;
(b) A false color version of the image (a).

archaeological excavation in a specific area of the ancient city of Morgantina, the

origin of the finds was determined to be the so-called House of Eupòlemos, where

the valuables were hidden probably during the Second Punic War [142].

Since the agreement signed in 2006 provides for the alternating temporary ex-

hibition of the silver treasure for four years at the Museum of Aidone and then for

four years at the Metropolitan Museum, a careful campaign of non-invasive analysis

was prepared to document the conservation status and previous treatments of finds.

With the aim to realize a new tool to increase the existing archaeological knowl-

edge and to obtain referenced information of the conservation state, 3D models

and diagnostic data have been for the first time acquired and organized within a

web-oriented platform.
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(a) (b)

Figure A.10: A comparison between the original unrolled study-case papyrus (a) and the
image of virtual unrolled papyrus (b). Common symbols are highlighted.

The non-invasive methods have provided complementary results, for a more com-

prehensive evaluation of the state of conservation and executive technique. The

diagnostic study was directed to:

• distinguishing the original material from degradation and/or restoration ma-

terials;

• obtaining a deeper knowledge of the production technique;

• assessing the current state of conservation and acquiring useful data for sched-

uled monitoring.

One of the main purposes of this study is to produce significant scientific material

for an innovative and interactive fruition to offer to visitors even during the period
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Figure A.11: The silver set from the Eupolemos’s House - Archaeological Museum of
Aidone (Sicily)

of absence of the silvers thank to virtual model available in the museum or in a

dedicated website, for customized levels of visit of the Morgantina treasure.

A.2.1 Materials and Methods

In our case study, the innovative applied technologies had the purpose of creating

a 3D collection data to assist the restoration and conservation of the Morgantina

Treasure. Now, after the transfer of the collection, the 3D digitalization is bringing

to restorers and archaeologists in documenting the process of investigations and

presenting it to the public. The geometric survey helps us to evaluate the state of

material preservation of the external and internal portions of the object and permits,

each time the collection is moved to a new location, the registration of anomalies

and stresses to which the object has been subjected through a systematic program

of monitoring (Fig. A.12).

The process started on physical models is defined Reverse Modeling and the dig-

ital resolution up to 0.1 millimeters for each object was realized using a 3D portable
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Figure A.12: Acquisition phases via 3D scanning of one piece of the collection.

scanning system with a structured light flash bulb (Artec 3D Scanner Spider), per-

mitting highly detailed digital models to be produced. The choice of this technology

was greatly determined by the physical characteristics of the 16 objects of collection

to be scanned, including the size of pieces, the complexity of its outer surface, the

light-reflecting properties of the surface of the metal object and the constraints on

access/manipulation. The process with a high surface detail can be managed also

to ensure enjoyment to various categories of users: cataloguing, restoration work,

promotion, consumption and diffusion.

For each object in the collection the greatest difficulties were encountered in the

alignment and registration phases of the front side and the back one, since their

thickness were really tiny. It was necessary to set up some processing strategies to

cope with specific problems of the objects. During the acquisition phase it has been
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necessary to employ specific markers and small coloured pellets modelling paste ap-

plied to the surface, after a careful evaluation with restorers. It has been acquired

from a minimum of 5 to a maximum of 20 scans for each piece of collection. Ac-

cording to the complexity of the scanning object and the surface detail, the number

of scans varies; a total of 180 scans were shot and 12GB of raw data were collected.

For each of the 3D models made the points or areas affected by the analyses have

been referenced and linked to on the conservation status considerations as well as to

diagnostic information obtained from spectrometric and imaging investigations. In

this context, UV fluorescence data, X-Ray Fluorescence analysis (XRF) and digital

X radiography, of all the silver objects were carried out directly in situ using portable

equipment [143, 144].

UV-IF imaging can be used for localising and delimiting the specific areas, i.e.

residuals of materials damaged and not visible to the naked eyes, where to per-

form further deepening spectroscopic and structural analyses. Energy Dispersive

X-Ray Fluorescence (ED-XRF, or in short XRF) analysis is a non-invasive chemical

technique, which allows, through the identification of chemical elements, to identify

the constituting materials employed for the realization of the different investigated

layers/surface (or different typology of works of art). The information coming from

the X-radiography depend by absorption and scattering of the X-rays by the crossed

volume and material type. They can vary from point to point, in relation to the com-

position and inhomogeneity thickness. The X-ray is used for the analysis of many

types of artworks, to generally identify the structural features of the whole volume of

the specimen. The method is completely non-destructive, both of the material that

the information contained in it. Table A.1 summarize the main devices features and

the acquisition parameters employed for each non-invasive techniques, optimized for

the typology of analysed object and for diagnostic information to achieve.

A.2.2 Analysis

The high-quality 3D digital models are responsive to the complexity of the geometric-

formal of the analyzed objects and the digital collection reproduces really well the

decorations in organic form (Figs. A.13, A.14).

The diagnostic acquisitions carried out on the sixteen silver objects have pro-

duced 110 XRF spectra for the analysis of silver and gilded surfaces, and of the
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Table A.1: Devices and acquisition parameters used for non-invasive diagnostic investiga-
tions.

Non-invasive tech-
nique

Device characteristics Acquisition parameters

UV induced Visible Flu-
orescence (UV-IF)

Photo-camera CHROMA C4-DSP (C250ME –
DTA srl); 6 Mpx CCD air cooling; KAF8300ME
sensor; 8 interferential filter. Wood’s lamps (UV,
365 nm) -160 W Sylvania, air fluxed- filtered by
HeBO HU 01

450 nm; 540 nm; 600 nm inter-
ferential filter; 15 minutes expo-
sition time (for each filter):

Digital X radiography X-ray tube (Poskom X +, mod. PXP-100 CA,
maximum voltage 110 kV)

70 kV voltage; 50 mA current

Energy Dispersive X-
Ray Fluorescence (ED-
XRF)

X-Ray tube (max voltage of 40 kV, max current of
0.2 mA, target Rh, collimator 1 or 2 mm); Silicon
Drift Detector (SDD) with a 125-140 eV FWHM
@ 5.9 keV Resolution; 1 keV to 40 keV Detection
range of energy.

35 kV voltage; 80 microA cur-
rent; 70 seconds acquisition time;
0.8 cm working distance.

Figure A.13: 3D digital models: the Émblema with Scylla shown (on the left) and one of
the two pyxides (on the right)

area affected by corrosion phenomena, that is, the formation of silver and or copper

degradation products; 40 hours of UV fluorescence (450nm, 540nm, 600nm) acqui-

sition for the identification of materials present on the surface, that is, integration,

adhesives, protective materials; and 27 X-Ray exposures (2 projections for each ob-

ject obtained placing more finds in the same plate in order optimize the number of

acquisition) for structural analysis. The X-Ray imaging has allowed to document
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(a)

(b)

Figure A.14: Orthogonal and perspective projections of the arula (a) and the kyathos (b).

details related to the execution of embossing (Fig. A.15) and the technology of

assembly (Fig. A.16).

The radiographic data, which analyses the internal structure of the object by

comparing the varied absorption of X-rays, has provided information on the pres-

ence of fractures, which for the most part were subject to previous restoration (Fig.

A.17), also highlighted by observations under Wood’s light. Simultaneous observa-

tion of UV fluorescence image shows along the discontinuities the presence of organic

material (adhesive) applied during prior restoration work carried out to solve frac-

tures visible on X-ray. This deformation allows to suppose that the fractures are



Appendix A. Cultural Heritage Preservation and Exploitation 103

(a) (b)

Figure A.15: X-Ray acquisition on Mastòs (a) and its upper-lower projection (b).

(a) (b) (c)

Figure A.16: X-Ray acquisition on Bomiskos (a), its lateral projection (b) and its upper-
lower projection (c).

due at the time of the clandestine excavation.

For most of the analysed finds, UV fluorescence in the visible range acquisition

has allowed us to map materials present on the surface, which were used for protec-

tion or integration during the past restorations. This technique highlights the use of

different types of adhesives present in fractures already evident in the X-ray images.

In the case of the Eirene and Ploutos pyxide, the RX acquired in the lateral
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(a) (b)

Figure A.17: X-Ray (a) and UV fluorescence (b) acquisition on find NI 16a

Figure A.18: X-Ray acquisition on pyxis

projection, showed the presence of a fracture along the external edge (Fig. A.18.

The representation appears in radiography characterized by very variable thickness,

up to thinning gradually further affecting the more relief surfaces (note the drapery

of the female figure). These minimum thickness make the surface very resistant to

mechanical stress. In some areas of junction between the surfaces in relief and those

flat, mostly stressed in the execution process, real lacunae are evident.

For the study silver medallion with Scylla hurling a rock were acquired two
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(a) (b)

Figure A.19: Medallion with Scylla (a) and related X-Ray acquisition (b).

radiographic views (superior-inferior, and lateral projections), which showed the

presence of fractures due to minimum thickness of silver foil, in the border between

the flat and the relief surfaces (Fig. A.19).

Such mapping has not always been done in documenting previous conservation

efforts. Finally, the analysis of the X Ray Fluorescence has enabled us to identify

chemical elements, which provide information on both the silver alloy and the ap-

plication of gold leaf decoration, as well restoration material localized by X- Ray

(Figs. A.20 and A.21) and UV fluorescence imaging.

Among the constituent materials of precious finds, in addition to gold and silver

in the silver matrix it was also found copper, but in variable ratio with respect

to silver content. Starting from this analytical evidence, the ratios between the

intensities of the characteristic XRF signals of copper and silver were calculated.

These characteristic values, occurred constant within the metal matrix analysed

for each of the findings, have allowed to obtain a significant distribution of the

whole chemical data set. Indeed, on the basis of Cu/Ag ratio, three split clusters

corresponding to the proposal by archaeologists based on stylistic criteria, were

obtained (Fig. A.22).
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Figure A.20: X-Ray image on Mastòs inverted grey levels of the upper-lower projection.

The copper content was probably added voluntarily into alloy to modify prop-

erties rheological and mechanical properties of the melt, since the copper (above

3%) allow to increase the resistance of the silver and lowers the melting point. In

correspondence with the gilded surfaces it has not been found the presence of mer-

cury (attributable to the technique of gilding with amalgam) and consequently it is

likely that the gold leaf has been applied to the silver surface by thermal treatment.

Microscopic examinations have revealed in the centre of the cup NI 3 a small, con-

vex protuberance in the middle (Fig. A.23). This feature has the same size as the

garnets present in the other two similar cups, and it probably indicates that at the

centre of the Inv. 3 cup once was a stone, presumably another garnet.

Each of these objects has a different technical history, as showed by the diagnostic

results of analyses, consequently its behaviour with the environment can change in

function of the chemical composition or technological processing [145]. The black

tarnish of the silver, like in the Scylla medallion (Fig. A.24), can be caused by the

presence of sulphide in the air, especially in unfavourable environmental conditions

in which the relative humidity is over the 40%

It is more important to monitoring the environment and to recognize the causes

of this decay as the pollution or the materials that constituted the showcase. The

presence of the chloride salts in some silver items evinces a corrosion process that it
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 Figure A.21: XRF spectra acquired on the original surface (P2, grey) and on the integra-
tion (P3, red) shown in RX.

could be dangerous for the conservation of Morgantina Treasure.

A.2.3 Web Oriented and Android platform

In order to make the 3D models and the archaeometric data effectively available

in a user friendly and integrated way, a web-oriented interface framework has been

developed. Its main functionalities are the cataloguing of new 3D scans and the

management of additional metadata, that can be implemented during the monitoring

activities.

Through 3D scanning technologies the Morgantina silver gilt Treasure collection

has been acquired to get 3D digital models, as described in the previous sections. In

this work, the intent is also provide a user-friendly digital system to allow fruition

and scientific analysis of the treasure pieces. In addition, I would make available
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Figure A.22: Bi-plot of the whole set of Silver based on the XRF data relating to charac-
teristic emission lines of copper (Kα) and Silver (Kα and Kβ). Different colour highlights
the three groups obtained on the basis of the Cu/Ag ratio.

results of aforementioned spectral analyses for research purpose. To this aim, I

have developed a software for two kinds of platforms: Web application developed

by Unity 5.0 and mobile Java application for Android. Although several 3D viewers

already exist [146, 147], the aim is to realize a customized software which include

functionalities specifically designed for cultural heritage scholars. Currently, the

platforms described in this section implement elementary functionalities since they

are prototypes thought to test the feasibility of a more long term project. Its main

specs are the cataloguing of already existing or totally new 3D scans and the man-

agement of additional metadata. The digital version of the artifacts are augmented

with semantic annotations about the history, measurements data, expert comments

and so on. The meaning of term “semantic annotation” is the action and results
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(a) (b)

Figure A.23: Observation to the digital optical microscope (50×) of the central area of
the emblem cup (NI 3), acquired both in the (a) visible and in (b) ultraviolet light

(a) (b)

Figure A.24: Optical microscope visible observation (50×): details of black tarnish of the
gilt silver on Scylla medallion.

of describing (part of) an electronic resource through metadata [148]. Firstly, a

comprehensive description of software specification is given. Please note that this

description focuses on the system functionalities, which are independent from the

platforms employed (Web or Android).
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Secondarily, a brief discussion about the technical details and the exclusive prop-

erties of the two platforms is reported. Opening graphical user interface gives a list

of the available 3D models which are selectable for the investigation. Each of the 3D

models is placed in a different 3D environment which offers conventional navigation

functionalities, such as rotating and zooming. Hence, the surface and the finest

details of each treasure artifact, can be examined from any point of view. Users are

able to navigate around the 3D meshes through mouse, touchscreen or using the

proper buttons on the GUI (it depends on the available input peripheral device).

To properly analyse mesh surface, two visualization modalities are offered by the

system: shaded mode and textured mode. Shaded mode is designed to permit an

accurate geometric examination, because general shape and surface particulars look

well marked with no texture data. This kind of surface analysis allows to visually

detect alteration in the original form of the artifacts (e.g., deformation, missing

parts). Instead, Texture mode shows material and colour information of the 3D

models, which are very valuable to check the conservation state of the external sur-

face. Chemical reaction (e.g., oxidation) or pigments scratches easily emerge if a

texture analysis can be performed. Figs. A.25 and A.26 show Shade and Texture for

Android platform respectively, while Figs. A.27 and A.28 show Shade and Texture

modes for Unity platform.

The main feature of the proposed system is the semantic annotation which en-

riches the original 3D model with textual and visual data. Textual information gives

a detailed description about some significant area of the artifact, while visual data

(e.g., images and graphs) are useful to report analysis results and also for the com-

parison with the same artifacts in different time. Interactive parts of the meshes,

are highlighted with well-noticeable markers, and when users select them, a tool-tip

appears or a sided info-box shows the related info.

The proposed Unity Web system is mainly intended to assist experts to explore

3D models and consult analysis reports. The system is able to work by using a

simple internet browser with no other specific client application. Moreover, the

system can be accessible through internet to make available the 3D artifacts to

researcher from all over the world. The prototype, has been developed by using Unity

engine, version 5.0. It is an environment with an integrated game engine provided

by Unity Technologies, which is typically employed to produce digital games for
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Figure A.25: Shaded version of a 3D model in Android platform. Red spheres are used as
markers.

different platform, such as PC, consoles, mobile devices and websites. It allows

to handle 3D model and other kinds of assets, such as material, light, image, and

video. Unity 5.0 allows to encode the own algorithms in two different program

languages: C# and JavaScript. In this work I employed C# and the Unity IDE

called Mono Develop to implement the entire system. Although Unity is often used

for digital game development, it is could be employed for generic purpose application

related to 3D modelling. The main advantage of Unity is the simple way to manage

multimedia resources and the user-friendly development GUI, as well as the multi-

platform builder.

To give the possibility to test the proposed system, it is provided a demo version

available at the following URL: http://iplab.dmi.unict.it/morgantinaJournal/.

The main aim of a mobile application (Android platform) is to follow user mobil-

ity. This lead us to develop a fruition system of Morgantina Treasure to enrich users

experience during museum visits, which results especially useful when the original

artifacts are lent to other institutions. Nevertheless, it has been decided to keep

the semantic annotation feature in order to give the users historical information, as
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Figure A.26: Textured version of a 3D model in Android platform. Red spheres are used
as markers.

Figure A.27: Shaded version of a 3D model in Unity platform. Red spheres are used as
markers.
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Figure A.28: Textured version of a 3D model in Unity platform. Red spheres are used as
markers.

well as, a further platform for research purpose. The app has been developed by

using Android Studio IDE and the build system Gradle, a plugin to assist project

generation and maintenance. Java and the eXtensible Markup Language (XML)

have been employed to encode the algorithms and the GUI of the proposed sys-

tem. Specifically, Java was used to develop the function for handling 3D models,

the user input and the interactions. On the other hand, XML provides a natty

and standard tag scheme to define data structure e GUI. The 3D scene is drawn

exploiting OpenGL ES (Open GL Embedded System), a subset of the standard

OpenGL functions intended for embedded system, like smartphones, tablets and

so on. Java interface for Open GL rendering calls is provided by Rajawali, a free

library available under Apache License 2.0. Finally, to manage semantic annotation

and related marker, it has been employed SQLite, the free Database Management

System (DBMS) adopted by Android. The developed application can be found as

demo version at the following link: http://iplab.dmi.unict.it/morgantinaJournal/.

Tests have been performed on low-mid end device which mounts a CPU Intel Atom

Z2520 Dual-core 1.2 GHz, a memory of 1GB, a GPU PowerVR SGX544 and the OS

Android 5.0. Currently, despite the good application portability, it is not possible
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to ensure the correct functioning of all the devices and Android OS Version; a main

requirement is an OS Android version 5.0 or higher.

A.2.4 Discussion

In this section I presented the results of a campaign of non-invasive diagnostic anal-

ysis (X-Ray, UV, XRF) and a 3D survey on the Morgantina Silver Treasure, in order

to collect useful data for a twofold aim: monitoring the conservation state over time

(to check after four years) and guaranteeing the virtual visit of the item during their

absence.

The acquired 3D models and diagnostic data have been for the first time orga-

nized, in an integrated way, within a web-oriented platform and an Android appli-

cation to increase the existing archaeological knowledge and to obtain referenced

information of the conservation state. They were also used for the development of

holograms now on display at the Museum of Aidone.

The ongoing web-oriented platform and the Android app consist of an active tool

to management of metadata, which will gradually be implemented through knowl-

edge acquired by specialists and at the same time contribute to the valorisation of

these archaeological findings to the wide public. All the findings of the archaeometric

analyses have been included in these digital platforms.

As future works, I am planning to conduct further analysis on the piece of Mor-

gantina Treasure and to improve the functionalities of both the described platforms.

A.3 Low Cost Handheld 3D Scanning for Archi-

tectural Elements Acquisition

In the last years some new low cost emerging technologies have been released on the

market delivering a long term dream of the practitioner of cultural heritage: fast,

accurate, low cost 3D scanning with a handheld device. Envisioning the massive

use of these cheap and easy to use devices in the next years, it is crucial to explore

the possible fields of application thus testing their effectiveness in terms of easiness

of 3D data collection, processing, mesh resolution and metric accuracy against the

size and features of the objects. In this study I focus the attention on one emerging
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technology, the Structure Sensor device [149], in order to verify a 3D pipeline acqui-

sition on an architectural element and its details. As case study we choose the XVIII

century doorway placed in the monastery of Benedettini in Catania, in UNESCO’s

world heritage list. The doorway presents both planar, complex (mouldings) and

sculpted surfaces and allow us to carry out several tests on different geometries. The

goal is to outline a 3D pipeline following as much as possible, a low cost and open

source workflow from 3D data collecting to the digital replica.

The methodological approach foresees the assessment of the 3D acquisition pro-

cedure in comparison with data obtained by a Time of Flight device in order to point

out weaknesses and advantages of the hand held scanning approach in relation to

other well assessed technology. Then 3D modeling issues are explored and discussed

to obtain a digital replica in an open source environment suitable for architectural

representation and communication purposes.

A.3.1 Handheld 3D scanning

The 3D scanners are devices which are able to collect geometry information about a

real-world object or environment. Then these information are processed in order to

build a digital 3D models of the scanned elements. Nowadays, 3D scanning devices

play a key role in many research field and applications such as industrial, prosthetics

and medicine prototyping, cultural heritage preservation and documentation, etc.

[150, 151, 152, 153]. Since these devices works by employing many different tech-

nologies and their cost change in a wide price range, it is important to select the

best solution for your own applications.

The most common technologies employed for 3D scanning are triangulation (e.g.,

laser triangulation or structured light) and Time of Flight (ToF). The first technol-

ogy consists in a laser emitter and a sensor which receives the reflected beam with a

certain angle. Distance between the surface point and the scanner, can be computed

by starting from the emission and reception angles plus the distance between sensor

and emitter. The Time of Flight scanner finds the surface distance by measuring

the round-trip time of a pulse of light. A electromagnetic wave is emitted by the

scanner, and the time before the reflected wave is received by a sensor is measured.

Since the speed of light is known, the round-trip time allows to compute the travel

distance of the wave. Finally, the structured light technologies are based on the
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emission of a light pattern (e.g., a grid, a set of strip), that is altered when it hits a

surface. Hence, the geometry data of the hit surface is inferred by the extent of the

alteration.

Sensors that exploit these technologies belong to the class of the so-called ac-

tive sensors. Indeed, these devices “emit” electromagnetic waves on the objects to

estimates their geometrical properties. On the other hand, sensors which do not

introduce waves in the environment are called passive sensors. In this latter case,

the 3D acquisition could be achieved for instance by stereo vision or structure from

motion [154].

From another perspective the 3D scanning devices can be categorized in respect

to their portability. In recent years, thanks to the miniaturization and integration of

the electronic and optical sensors, has been possible to produce small and compact

high performance 3D scanners [155, 156]. Hence, we may further distinguish two

kinds of devices: handheld scanners and not portable ones. Today, the emerging

handheld scanners are a remarkable resource for affordable price and good perfor-

mance and the convenience ensured by the portability. For the relative low-cost and

usability, most of these devices became consumer electronics product, while other

are still used in professional context. However, they represent a great resource in the

field of Cultural heritage. Below, I report a list of the main handheld 3D scanners

and their knows specs in Table A.2:

Microsoft Kinect is mainly used in home videogames entertainment. How-

ever, some examples of applications of these devices to cultural heritage could be

found in the works of Cappelletto [157] and Remondino [153]. Scanify Fuel 3D

is a handheld device, which exploits combination of photometric and stereography

techniques to acquire depth information, so it can reach a high accuracy. Google

Project Tango is a Google device with exploits motion tracking to understand

position and orientation of the device user. It is particularly suitable for augmented

reality application. Artec Eva and Artec Spider are two semi-professional ac-

tive scanners produced by Artec 3D company. The first one has a high resolution

and it is suitable for small and detailed object, while Artec Eva is though for ar-

chitectural elements such as doors, statue etc. Structure Sensor is a small active

scanner produced by Occipital. It exploits structured light technology to guarantee

a good quality scan with a low expense. This device has been employed in the study
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Table A.2: Specs of the described handheld scanners

Sensor Accuracy Resolution Acquisition Speed Texture

Kinect V1 n.a. n.a. 30 fps Yes
Kinect V2 n.a. n.a. 30 fps Yes

Asus Xtion PRO Live n.a. n.a. n.a. Yes
Scanify Fuel 3D 0.35 mm n.a. 10 fps Yes

Google Project Tango n.a. n.a. n.a. Yes
Artec Eva 0.1 mm 0.1 mm 2,000,000 per second Yes (standard ver.)

Artec Spider 0.05 mm 0.1 mm 1,000,000 per second Yes
Structure Sensor 0.5 mm 1.0 mm 30/60 fps Yes (with iPad)

conducted on this section, hence more details are provided in the following sections.

A.3.2 Structure sensor scanning for architectural elements

In most cases the use of handheld scanners is limited to small objects (approximately

a volume of 1m3), if there is the need to acquire bigger objects, then it is necessary

to carry out several scans and then align them in an unique model. Thus, in archi-

tectural heritage field the use of this kind of scanner should be recommended only

for architectural details (basis, capitals, pedestals). Nevertheless, in this study I ex-

plore the possibility of using Structure Sensor also for bigger architectural element

such us a doorway. The goal is to provide a full low cost and open source 3D pipeline

highlighting potentialities and weakness. The study, is conducted on an eighteen

century doorway in Benedettini monumental complex in Catania (UNESCO her-

itage) located in the gallery at the first floor of the monastery and it provides access

to one of the cells of the friars, nowadays used as offices for the Department of Hu-

manities of Catania University. This doorway, realized with limestone, is made by

the plane surfaces of the jambs and architrave, the complex surfaces of the moldings

(bed cornice, cymatium and tympanum), the sculpted decorations of the frieze and

the capital. So I tested the performances of this sensor both on the details and on

the overall shape of the doorway. The study is completed by a metric accuracy test

that uses as ground truth a ToF scan [158].

Employed device

In this case study I employed the Structure Sensor (Fig. A.29). Similarly to Mi-

crosoft Kinect, this device has an operative range capability from 0.4m to 12m.
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Indeed, in the closer range from the sensor the device reaches a declared 3D point

accuracy of 0.5mm. The accuracy become smaller if the scanned object is placed

over 3.5m or if the scanning volume is increased. Structure sensor is an infrared

structured light 3D device, hence several issues are related to it: it does not work

well in outdoor environment, since sunlight is a too strong source of infrared inter-

ference. However, the case study is located in an indoor environment not affected

by direct sunlight interferences. Another critical issue is related to the material of

the surface of the scanned objects. Infrared waves can be reflected, absorbed or dis-

torted respectively by not opaque, black, or transparent surfaces, as glassy, plastic

or polished objects. The case study is composed in the majority by opaque materials

such as the limestone in the door jamb and decorations. The handle and the label

of the door are in a polish metal but they have been still acquired with just some

light distortion (Figure A.30). A possible third issue related to the Structure Sensor

could be related to object with “poor geometry”: in the acquisition phase the sensor

needs a minimum amount of geometrical details of the object to be scanned. This is

required for an optimal frame-by-frame mesh reconstruction. If not enough geome-

try is provided then the sensor will prompt an error message and the acquisition will

fail. This problem occurs in case of particularly flat object. The case study present

a geometry complex enough to enable a good acquisition with the employed device.

Structure sensor can only acquire depth information by itself. In order to add

some texture information an external RGB camera is needed. Structure sensor also

needs an external computation unity to process acquired data. Usually Structure is

attached or connected to an Apple iPad exploiting a wired connection and in this

way textures can be acquired exploiting the standard RGB camera of the tablet.

Although this is the most common way to use the sensor due to its practical aspects,

this acquisition method is discarded, since the final model is decimated before the

exportation from the tablet resulting in a too low quality mesh. Exploiting proper

software like Skanect [159], it is also possible to connect the Structure and the tablet

to a computer through a wireless network, or just the Structure with a wired one.

In the latter case we do not acquire any color information reaching a real-time

acquisition of the case study. Note that texture is not really needed to estimate

the mesh (e.g. the geometry) of the scanned object. Latency during acquisition

is an issue that must be taken into account: sensor could lose or estimate a wrong
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Figure A.29: Structure Sensor onto an iPad

Figure A.30: View of the Structure Sensor behaviour on three different materials (from
left to right): wood, metal, limestone.

alignment through consecutive acquisition instants, introducing noise or, in the worst
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case, requiring to restart the whole acquisition.

Acquisition

As said, the resolution of the final mesh is strictly related to the scanning volume.

The case study is a door with an height of almost 3m and a width of almost 2.5m

resulting in a scanning volume too large in order to obtain a quality sufficiently

good. For this reason, it has been decided to set a scanning volume of 1m3 and to

subdivide the acquisition of the door into several single acquisitions. I acquired a

total of 23 parts, starting from the bottom left position until the top right. Note

that the acquisition range depends also on the sensor, so the scanning volume could

be set larger than the reported 1m3, but with limited precision. The 23 parts have

been carefully acquired with at least the 30% of overlapping between each other.

This redundant information is required to correctly perform the alignment process

of the subparts into the full model. The meshes are processed and aligned by

exploiting the software Meshlab [160]. We acquired highly detailed meshes, with an

average number of 600K vertices and 1M faces. We perform a preprocess phase to

reduce the noise, as some isolated face or vertex, using the Quadric Edge Collapse

Decimation of Meshlab. We discard the 80% of the points in each mesh without

any visual-perceptible loss of details. Then, using the Point Glue tool of Meshlab

we perform all the required alignment and saved the final model of the case study

in the common OBJ format.

Comparison with Time of Flight 3D scanning

In this subsection are reported the results obtained during the visual and metric

accuracy tests. As ground truth I use a ToF mesh model. The pipeline followed is

by the time used in literature [153, 161] and foresees the alignment of the different

models in the same reference system and the calculation of the distance between

the meshes by means of Hausdorff distance algorithm application [162]. Considering

the performances of the handheld scanner and the purposes of this work I consider

both two details (a capital and frames and mouldings of the jams and entablature)

and the overall doorway.

During ToF laser scanner acquisition (using a HDS 3000 by Leica Geosystem) it

has been decided to carry out three scans: one frontal and two lateral and I choose
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Table A.3: Experimental results. All values are expressed in mm.

Model Hausdorff Range Mean RMS

Capital 0− 30 4.344 6.879
Entablature 0− 30 4.775 6.797

Overall Model 0− 50 9.619 14.104

a scan step very dense (about 2mm) to have a very detailed point cloud. In these

cases, as reported in previous literature works [163], the size of the noise exceeds

the sampling rate so that it hides most of the details: in the following meshing

phase it is mandatory to apply a specific combination of surface reconstruction and

smoothing algorithms in order to avoid spikes meshes. In Meshlab I carry out the

merging of the scans into a unique model, then I apply the pipeline employed in

Ref. [163] by testing and choosing the parameters that better smoothed the surfaces

without losing details.

A first consideration that can be done, in terms of visual accuracy of the 3D

reconstructions, is that the Structure Sensor single scan models are more detailed

and less noisy with respect to ToF reconstructions. This is in line with the kind

of used sensor. The comparison between the three models (two details and the

overall doorway) and their corresponding ToF scans was carried out in Meshlab.

As for the two details, the alignment between Sensor Structure model/ToF model

involved an alignment error of 3mm. The range calculation interval for Hausdorff

distance is 0 − 30mm. The second test involves the overall model of the doorway.

A detailed visual analysis of the Structure Sensor model reveals some mismatches

in the overlapping areas. These alignment errors could be interpreted as fallacies

of the alignment step probably due to boundary geometric inconsistencies of the

single scans. In order to take into account these mismatches, I calculate Hausdorff

distance with the following range values 0− 50mm.

The experimental results are shown in Table A.3. Furthermore, it is very in-

teresting to read the trend of the histogram and observe the distribution of the

distances between the two meshes directly on the 3D model (Figures A.31 - A.32),

where the red color means the minimum distance between the two meshes and the

blue means the maximum one.
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Figure A.31: Hausdorff distance and subsequent quality histogram between TOF model
and Structure Sensor model of two chosen details.

Figure A.32: Hausdorff distance and subsequent quality histogram between TOF and
Structure Sensor models.
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A.3.3 Discussion

In this section it was defined a low cost indoor procedure facing the criticalities of

the handheld 3D scanner Structure Sensor for architectural elements acquisition.

Furthermore, the metric accuracy test highlighted the reliability of this sensor for

the details acquisition. Indeed, as shown in Table A.3, the Mean distance computed

on details is lower than 5mm, comparable with the usual ToF accuracy. On the

other hand, the Mean distance computed on the whole model is 9.6mm, due to the

severe amount of noise introduced by alignment process. These results demonstrate

that this sensor can obtain high quality 3D models of architectural details, useful to

integrate ToF scannings and make the digitalization of the cultural heritage easier

and faster with affordable economical efforts.

A.4 Virtual anastylosis of Greek sculpture

This section deals with a virtual anastylosis of a Greek Archaic statue from ancient

Sicily and the development of a new public outreach protocol for those with vi-

sual impairment or cognitive disabilities through the application of 3D printing and

haptic technology. The case study consists of the marble head from Leontinoi in

southeastern Sicily, acquired in the XV III century and later kept in the collection

of the Museum of Castello Ursino in Catania, and a marble torso, retrieved in 1904

and since then displayed in the Archaeological Museum of Siracusa. Due to similar

stylistic features, the two pieces can be dated to the end of the V I century BC.

Their association has been an open problem, largely debated by scholars, who have

based their hypotheses on comparisons between pictures, but the reassembly of the

two artefacts was never attempted. As a result the importance of such an artefact,

which could be the only intact Archaic statue of a kouros ever found in Greek Sicily,

has not fully been grasped by the public. Consequently, the curatorial dissemina-

tion of the knowledge related with such artefacts is purely based on photographic

material. As a response to this scenario, the two objects have been 3D scanned and

virtually reassembled. The result has been shared digitally with the public via a web

platform and, in order to include increase accessibility for the public with physical

or cognitive disabilities, copies of the reassembled statue have been 3D printed and

an interactive test with the 3D model has been carried out with a haptic device.
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A.4.1 The case study: an Archaic kouros from Leontinoi?

The problematic case study is represented by two matching pieces of a statue kept

in two different museums, the reputation of which can be restored via an exercise of

virtual anastylosis. The research is developed through five main steps:

• 3D scanning of the two objects;

• virtual anastylosis;

• use of a web platform for public sharing;

• 3d printing of the reassembled statue;

• learning experience via haptic devices.

Greek Archaic sculpture is dominated by the production of statues of young

naked boys, known as kouroi (plural of kouros meaning ‘boy’ in Greek), and young

girls with long dresses, named korai (plural of kore meaning ‘girl’ in Greek), which

have religious or funerary significance and for this reason are generally offered as ex-

voto in sanctuaries or placed above or by tombs in cemeteries [164]. The statues were

the symbolic representation of the worshippers consecrating their lives to t deities

or idealized portraits of the dead. In Greek Sicily, there are several remarkable

examples of kouroi and korai imported from Greece or locally produced, and some

of them can certainly be considered as masterpieces of Greek statuary [165].

However, very few life-size statues were found intact. After the Classical period

it became customary to detach the heads of Greek statues in order to create head-

portraits. In fact, with a few exceptions of smaller scale statues found intact, this

class of Greek statues in Sicily is represented just by heads without matching bodies

and headless bodies. A unique case is the one of the “Biscari head” kept at the

Museo Civico “Castello Ursino” di Catania and of the torso from Leontini in display

at the Regional Archaeological Museum “Paolo Orsi” of Siracusa, both made of

marble, dated between the end of V I - beginning of V century BC and almost

unanimously believed to be part of the same life-size kouros.

The head (Fig. A.33), also known as the ‘Biscari head’, recovered in the site of

the Greek city of Leontinoi, was exhibited for a long time in the Hall of Marbles of

the Museum of Palazzo Biscari alla Marina before being incorporated in the main



Appendix A. Cultural Heritage Preservation and Exploitation 125

Figure A.33: The Biscari head (ca. 1938).

collection of the Museo Civico “Castello Ursino” of Catania [166, 167]. The torso

(Fig. A.34) was accidentally found in the country right outside the area of the

ancient colony of Leontinoi and purchased in 1904 for 1000 liras by Paolo Orsi from

the Marquis of Castelluccio, who was another famous collector of antiquities. As

separated artefacts, the two pieces were subject of several studies aimed to define

their style, chronology and eventually, their provenance.

The first scholar who suggested a possible association between the head and the

torso was Guido Libertini in the 30’s. He produced a gypsum cast of the head in

order to compare it with the torso to verify his hypothesis. Although a missing

part of the neck did not allow for a perfect match, the volumetric correspondence

together with the stylistic analogies were enough to support the idea that the two

pieces were once a life-size kouros from Leontini. Unfortunately, no documentation

has been recovered regarding this experiment. Many decades after, Gino Vinicio

Gentili reappraised the problem of the association of the two pieces using a photofit
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Figure A.34: The torso from Leontinoi.

(Fig. A.35), in which he matched the photographs of the head and the torso [168].

This further confirmation of Libertini’s hypothesis was published in a scientific paper

with a very limited distribution. Again, the general public missed the remarkable

discovery of the first intact Sicilian kouros.

In order to go beyond the exercises of Libertini and Gentile and to provide

the final proof of the compatibility of the two pieces as part of the same statue,

a reconstructive study has been carried out based on the 3D scanning and virtual

anastylosis of the kouros of Leontinoi.

A.4.2 Acquisition and Data Processing

The acquisition was carried out with extreme care in order to properly capture the

many anatomical details of the two pieces (Fig. A.36). The scanning was performed

using the Structure Sensor (see Section:A.3) connected through Wi-Fi to Skanect.

The scan volume was set to 0.6m3 for the head and to 1.2m3 for the torso.

Both artefacts were placed on a pedestal; in particular the head was placed

steadily on a metal support. After the 3D capturing, 3D models were manipulated
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Figure A.35: Possible photofit of the head and the torso.

with two popular software among archaeologists: Meshlab and Blender. Mesh-

lab [160] was employed in order to refine the models in a pre-processing phase: after

digital acquisition the vertices extraneous to the artefacts were deleted (Fig. A.37).

In Meshlab, it was possible to take digital measures of the head and the neck is

order to verify an eventual dimensional compatibility. As shown in Fig.A.38, dimen-

sions of the lower part of the neck of the head are 12.67×13.67cm, while those of the

upper part of the neck of the torso are 16.50× 13.27cm. Such dimensions, consider-

ing the possibility of physical decay of the edges, makes dimensional compatibility

between the two pieces likely.

Furthermore, when comparing the height of the head with that of the preserved

torso (A.39) it is clear that they are proportional to one another.

Subsequently the models were imported into Blender [169]; in that virtual en-

vironment, the head and torso of the kouros were manually aligned. Technical and

archaeological analysis have shown that the statue is missing part of the neck, which
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(a) (b)

Figure A.36: (a) Details of anatomical features of the head and torso; (b) Views of anatom-
ical features of the torso.

can be reflected in the model, obtaining the results shown in Fig. A.40.

A.4.3 Sharing the virtual kouros of Leontini with the public

The research presented in this section has clearly demonstrated that the hypothesis

suggested in the first place by Libertini was correct. The two pieces are certainly

part of the same statue, as they did not just share the same stylistic features, but

they are also compatible in terms of geometry. The virtual anastylosis has, in fact,

added a further level of information not present previously (A.41). The statue seems

very proportionate and the head, even in absence of a perfect match due to the lack

of a segment of the neck, perfectly fits to the body.

A simple exercise of virtual anastylosis has given back to the community of

scholars the first realistic representation of the kouros of Leontinoi, the first life-size

statue of an Archaic kouros from Greek Sicily. How would it be possible then to

share with the public this remarkable discovery? How will the reputation of the

two artefacts be improved by such a discovery? Due to strict management policies,

none of the two museums will surrender one of the pieces to the other in order to
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(a) (b)

Figure A.37: (a) Textured 3D model of the head; (b) Textured 3D model of the torso.

(a) (b)

Figure A.38: (a) Phases of digital measuring with Meshlab, diameters of head and torso;
(b) Phases of digital measuring with Meshlab, other diameters of head and torso.

recombine the pieces and allow just one of the two institutions have it in display.

This suggests that the general public will never know about the kouros of Leontinoi

and will never have the chance to see it in full.

In response to this scenario, the web platform developed for Morgantina Silver
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Figure A.39: Phases of digital measuring with Meshlab, heights of the pieces.

Figure A.40: Manual alignment of the 3D models of the head and the torso in Blender.

Treasure (see Section A.2) has been employed in order to share in a simple and

effective way the results of this research (http://iplab.dmi.unict.it/kouros/).

A.4.4 3D printing

The next step of this research effort was to create a physical copy of the statue in

scale 1:10 through 3D printing (Fig. A.42).

After final processing and digital corrections, the 3D model was converted to

.STL format and sent to the printer after slicing. The model of the statue was fab-

ricated on a highly customized Delta robot-type FDM (Fused Deposition Modeling)

3D printer at the University of South Florida labs. For enhanced part accuracy, the

http://iplab.dmi.unict.it/kouros/
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Figure A.41: Comparison between the photfit and the virtual anastylosis of the kouros of
Leontinoi.

effector of this machine is held in place using a low friction magnetic suspension

system. The positioning accuracy of this delta robot is better than 50µm in the x,

y, and z directions. A low-force optically triggered z-probe was used to calibrate

the build plate surface prior to printing to enhance print reliability and adhesion.

The printing material selected was white PLA (polylactic acid) which was extruded

at a temperature of 205◦C. This particular polymer was selected due to its ability

to resist warpage and shrinkage which might cause layer delamination on an ob-

ject of this size. To further minimize warpage, the build plate, made of glass with

water-based acrylic glue adhesion promotor, was heated to 55◦C. Ambient condi-

tions during printing were 26◦C, humidity 52− 60%. Slicing layer height was set to

0.15mm (150µm) with a relatively low 12% part fill density. An extrusion nozzle of

0.4mm in diameter was used. Mechanical supports were enabled to ensure printing

of overhanging and highly sloped geometry would be successful. Total print time

was ∼ 24 hours and consumed ∼ 170g of polymer. Post print work-up was kept to



Appendix A. Cultural Heritage Preservation and Exploitation 132

(a) (b)

Figure A.42: (a) Phases of digital measuring with Meshlab, diameters of head and torso;
(b) Phases of digital measuring with Meshlab, other diameters of head and torso.

a minimum and included the mechanical removal of the support structures and spot

smoothing with a hot air rework tool. The physical model is not hollow, but fully

solid in order to increase its weight for a more accurate and realistic final result.

A.4.5 Haptic technology

The choice to 3D print in scale and physically reassembly the statue would certainly

be a good way for the curators of both the museums of Catania and Siracusa to

showcase how this unique example of Greek sculpture looked like. Furthermore in

the case of the archaeological museum of Siracusa, where there is already a tactile

collection of artefacts ranging from Prehistory to the Greek period, the replica of the

kouros of Leontinoi will represent another example of enhanced realization for the

public with visual impairments. However, the process of 3D printing is still rather
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Figure A.43: 3D Systems Touch 3D Stylus.

time consuming and expensive, especially for models of medium to larger sizes and

with other materials than simple polymers. In this respect, at this stage it cannot

be the only solution to make archaeological objects immediately more accessible and

to let visitors with or without cognitive deficits to learn from touching the subject

of their interest.

In order to validate the sensorial experience of interacting with the 3D model

of the reassembled statue and to compare it with the direct touch interaction with

3D print of the statue in 1 : 10 scale, an experimental test has been undertaken

at the Center for Virtualization and Applied Spatial Technologies – CVAST of the

University of South Florida. Using the haptic device 3D Systems Touch 3D Stylus

(Fig. A.43) paired up with the proprietary software Geomagic Sculpt, a group of

students were asked to interact with the digital model (Fig. A.44), and then to

interact with the 3D print, and finally describe the feedback in a questionnaire.

The results achieved with a preliminary test employing a very limited sample

of students clearly highlight the importance of any kind of touch interaction as a

crucial step towards a more in-depth learning process. The other significant outcome

is how the haptic device makes the interaction with the digital models more genuine
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Figure A.44: Touch interaction with the digital model of the statue through haptic tech-
nology.

and intense. Unfortunately, at this stage of the research it has not been possible to

extend the experiment to a larger sample including students with visual impairments

and cognitive disabilities, leaving room for a further step in future works.
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Appendix B

Other Publications

In this Appendix it is reported a list of works published during my Ph.D. but not

directly related to this thesis.

International Conferences:

• F. L. M. Milotta, D. Allegra, F. Stanco, G. M. Farinella, “An Electronic

Travel Aid to Assist Blind and Visually Impaired People to Avoid Obstacles”.

Lecture Notes in Computer Science, 2015, Vol. 9257, pp. 604-615. DOI:

10.1007/978-3-319-23117-4 52.

• D. Allegra, F. Stanco, G. Valenti. “A Semi-automatic Algorithm for Applying

the Ken Burns Effect”. Smart Tools and Apps in computer Graphics, 2015.

DOI: 10.2312/stag.20151296.

• G. Gallo, D. Allegra, Y. G. Atani, F. L. M. Milotta, F. Stanco, G. Catanuto.

“Breast Shape Parametrization through Planar Projections”. Lecture Notes

in Computer Science, 2016, Vol. 10016, pp. 135-146. DOI: 10.1007/978-3-

319-48680-2 13.

• D. Allegra, F. L. M. Milotta, D. Sinitò, F. Stanco, G. Gallo, Wafa Taher,

G. Catanuto. “Description of Breast Morphology through Bag of Normals

Representation”. Lecture Notes in Computer Science, 2017, Vol. 10485, pp.

511-521. DOI: 10.1007/978-3-319-68548-9 47

https://doi.org/10.1007/978-3-319-23117-4_52
http://dx.doi.org/10.2312/stag.20151296
http://dx.doi.org/10.1007/978-3-319-48680-2_13
http://dx.doi.org/10.1007/978-3-319-48680-2_13
https://doi.org/10.1007/978-3-319-68548-9_47
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papyri calcinés d’Herculanum déroulés par le Centre international des Papyri

de Naples”. In: Comptes rendus des séances de l’Académie des Inscriptions et

Belles-Lettres 146 (3 2002), pp. 841–843. doi: 10.3406/crai.2002.22480.

[135] D. Delattre. “Le point sur les travaux relatifs au P. Herc.Paris.2”. In: Comptes
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