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Abstract 

The simulation of the nonlinear behaviour of masonry structures 

subjected to earthquake excitations or extreme loadings represents a 

complex computational issue for which many numerical strategies, 

characterised by different level of accuracy and efficiency, have been 

proposed so far. A great effort is made today in the link between the 

micro- and macro-modelling approaches using homogenization techniques 

which allow the use of continuum based approaches as the nonlinear FEM 

simulation and simplified strategies at macro-scale.  

Nonlinear FEM modelling approaches require the adoption of 

sophisticated constitutive laws, huge computational cost as well as 

advanced skills in the model implementation and in the interpretations of 

the numerical results. On the other hand, practitioners need simple and 

efficient numerical tools, whose complexity and computational demand 

should be appropriate for engineering practise. For these reasons, in the 

last decades, some research groups proposed alternative efficient 

numerical methodologies for predicting the nonlinear seismic behaviour of 

unreinforced masonry (URM) structures. A common limitation of the 

existing simplified numerical strategies for URM structures, currently 

used by practitioners, is the basic strong assumption of in-plane behaviour 

of masonry walls, making these approaches unsuitable for the historical 

masonry structures whose out-of-plane behaviour strongly influences the 

nonlinear seismic response. More recently new alternative macro-

modelling strategy for the simulation of the nonlinear behaviour of URM 

structures has been proposed in the context of finite or discrete element 

strategies.  
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The original research performed within this thesis is based on a 

Discrete Macro-Element Method (DMEM) approach recently proposed 

with the aim of capturing the nonlinear behaviour of an entire structure 

through an assemblage of discrete macro-elements characterized by 

different levels of complexity according to the role played in the global 

model. One of the advantages of the adopted macro-element strategy is 

related to the strongly reduced computational cost compared to a 

traditional nonlinear finite element modelling or DEM simulations. 

Another benefit relies on the adopted mechanical 

homogenization/calibration strategy that, being based on a 

straightforward fiber discretization, allows the use of simple uniaxial 

constitutive laws and leads to an easy interpretation of the numerical 

results although maintaining efficiency and good accuracy. Based on the 

above issues, the proposed discrete macro-element method has been 

applied not only as an efficient and reliable numerical tool for 

practitioners but also for academic research applications.  

This thesis represents a further nontrivial contribution in the 

context of the DMEM. Namely, a new solid discrete macro-element, able 

to exhibit large rotations and small deformations, is proposed. The 

element enriches the DMEM with the introduction of the following 

significant novelties:  

i) The previously introduced macro-elements were formulated under 

the assumption of linearized kinematics. The solid element here 

formulated can exhibit large rotations and large displacements assuming 

kinematics that allows small shear deformations within each element and 

small deformations at the interfaces between adjacent elements.  
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ii) The previously proposed spatial elements possess shear 

deformability only in one plane while the solid element here proposed is 

characterized by a uniform shear linearized strain tensor.  

iii) Differently from the previous spatial discrete macro-elements, 

the zero-thickness two-dimensional cohesive interfaces, inheriting the 

masonry properties, are continuously distributed.  

The large displacement capabilities are taken into account by 

considering an original co-rotational strategy, based on local reference 

systems accounting for the small deformations at the interfaces between 

adjacent macro-elements. This new solid macro-element will allow the 

investigation of structures both at macro or meso- scale accounting for 

geometric and constitutive nonlinearities. 

The kinematics is described according to a DMEM strategy that 

allows to consider the minimum required degrees of freedom with a 

significant computational advantage with respect to macro-modelling 

strategies based within a Finite Element context.  

The adopted co-rotational formulation is based on a two-node 

interface element whose degrees of freedom are directly related to the 

independent degrees of freedom of the corresponding adjacent elements.  

 

The proposed macro-element strategy has been validated 

considering some benchmarks already investigated in the literature. The 

results obtained so far seem to demonstrate the capability of the proposed 

approach to be used, as an efficient numerical strategy, for the nonlinear 

assessment of masonry structures accounting for constitutive and 

geometrical nonlinearities. 
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Introduction 

The numerical simulation of the nonlinear behaviour of masonry 

structures subjected to earthquake excitations, extreme loadings, or 

loading distributions that cause failure or instability conditions represents 

a very complex computational issue that is the subject of many researches. 

Several nonlinear numerical strategies characterised by different level of 

accuracy and efficiency and often based on specific purposes have been 

proposed so far. This research topic is of particular importance for many 

reasons.  

Masonry itself constitutes the most ancient construction material 

and nowadays represents a large part of existing and new structures and 

the greater part of historical monumental structures. 

With the term ‘masonry’ is intended a composite material obtained 

by the assemblage of individual units and mortars whose property is 

different by the property of its components [1]. According to this 

definition, the word 'masonry' itself refers to a great variability of 

masonry materials characterised by different constituents, different 

geometrical layouts and diverse construction techniques. This huge 

variability makes difficult to define reliable numerical models and general 

constitutive laws suitable for all the different masonry typologies [2], [3], 

[4].  

Many significant examples of applications of nonlinear finite element 

simulations to historical masonry buildings and monumental historical 

structures are reported in the scientific literature. Some of these studies 

consider the masonry walls as a homogenised continuum at the macro-

scale [5], [6], [7], [8], [9], [10], [11], other refined FE approaches are based 
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on detailed simulations of units and mortar according to a  micro-

modelling approach [12], [13], [14], [15], [16], [17]. A great effort is made 

today for realizing a link between the micro- and macro-modelling 

approaches using homogenization techniques in continuum based 

approaches generally based on nonlinear FEM simulation and discrete 

element methods [18]. On the other hand, nonlinear FEM modelling 

approaches require the adoption of sophisticated three-dimensional 

constitutive laws, huge computational cost as well as advanced skills in 

the model implementation and in the interpretations of the numerical 

results. For these reasons, in the last two decades, many researchers 

proposed alternative simplified numerical methodologies for predicting the 

nonlinear seismic behaviour of unreinforced masonry (URM) structures 

[19], [20], [21], [22], [23] [24] [25], [26]. In [24] the authors report a 

comparison between different simplified approaches, currently used in 

engineering practice for the seismic assessment of URM leading to the 

conclusion that for masonry buildings the analysed simplified methods 

lead to a satisfactory prediction of the global response. However, a 

common limitation of these simplified numerical strategies, for URM 

structures, is the assumption of in-plane behaviour of masonry walls, 

limiting their applicability to those cases for which the out-of-plane 

behaviour is prevented. An original alternative approach is represented 

by the ‘rigid-body spring model’, and some valuable applications of this 

strategy to historical masonry buildings are reported in the literature [27], 

[28], [29]. 

 Among the simplified methods, the equivalent frame modelling 

approach currently represents the most adopted strategy and has been 

implemented in many software largely used in engineering practise. 

Recently, an alternative macro-modelling approach for the simulation of 
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the nonlinear behaviour of URM structures has been proposed. The 

approach is based on the concept of macro-element discretization [30] and 

has been conceived with the aim of capturing the nonlinear behaviour of 

an entire structure through an assemblage of discrete macro-elements 

characterized by different levels of complexity according to the role played 

in the global model. The basic element has been firstly proposed in 2004 

[31], [22] specifically developed for the simulation of the in-plane response 

of masonry walls. The element can be regarded as an articulated 

quadrilateral interacting with other elements by nonlinear interface along 

its edges. This discrete macro-element approach received several 

numerical and experimental validations [24], [30], [32]. This novel 

approach has been also successfully applied for infilled frame structures 

[33], [34], [35], [36]. In this latter case, the infills are modelled by the 

macro-elements, while the reinforced concrete frames are modelled by 

inelastic beam columns. However, the 2D macro-element has been 

conceived for the simulation of the non-linear response of masonry walls 

in their own plane only. To overcome this significant restriction a third 

dimension and the relevant needed additional degrees of freedom have 

been introduced in a 3D macro-element [37], [38], [39] allowing an efficient 

simulation of both the in-plane and the out-of-plane response of masonry 

walls. However, many masonry monumental constructions are 

characterized by the presence of structural elements with curved geometry, 

such as arches, vaults, domes which require an efficient reliable simulation. 

For this reason, a further enrichment of the proposed 3D macro-element, 

towards a more general macro-shell-element, has been subsequently 

introduced [40], [41], [42], [43]. This shell macro-element was conceived as 

an extension of the spatial element and represented the first proposed 

macro-element for curved masonry structures. Its nucleus is still 
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constituted by an irregular articulated quadrilateral whose orientation 

and size are now related to the shape of the element and to the thickness 

of the modelled masonry portion. One of the advantages of the proposed 

DMEM is related to the strongly reduced computational cost if compared 

to the traditional nonlinear finite element modelling. However, another 

benefit relies on the adopted simplified mechanical calibration strategy 

that, being based on a straightforward fiber discretization, allows the use 

of simple uniaxial constitutive laws and leads to an easy interpretation of 

the numerical results.  

Based on the above issues, the proposed discrete macro-element 

method has been applied not only as an efficient and reliable numerical 

tool for practitioners but also for academic research applications.  

This thesis represents a further significant contribution to the 

DMEM. Namely a new solid discrete macro-element able to exhibit large 

rotations and small deformations is proposed. The element enriches the 

DMEM with the introduction of the following significant novelties:  

i) The previously introduced macro-elements were formulated under 

the assumption of linearized kinematics. The solid element here 

formulated can exhibit large rotations and large displacements assuming 

kinematics that allows small shear deformations within each element and 

small deformations at the interfaces between adjacent elements.  

ii) The previously proposed spatial elements possess shear 

deformability only in one plane while the solid element here proposed is 

characterised by a uniform shear linearized strain tensor. 

iii) Differently from the previous spatial discrete macro-elements, 

zero-thickness two-dimensional cohesive interfaces, inheriting the 

masonry properties, are continuously distributed.  
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The large displacement capabilities are taken into account by 

considering an original co-rotational strategy, based on local reference 

systems accounting for the small deformations at the interfaces between 

adjacent macro-elements. This new solid macro-element will allow the 

investigation of structures both at macro or meso scale accounting for 

geometric and constitutive nonlinearities 

The kinematics is described according to a DMEM that allows 

considering the minimum required degrees of freedom with a significant 

computational advantage with respect to macro-modelling strategy based 

within a Finite Element context.  

The adopted co-rotational formulation, detailed described in chapter 

3, is based on a two-node interface element whose degrees of freedom are 

related to the independent degrees of freedom of the corresponding 

adjacent elements.  

The mechanical calibration of the solid element, following a 

straightforward fiber discretization approach provides very accurate 

results. 

The thesis is divided into five main chapters. 

The first Chapter reports a review on numerical modelling of 

masonry structure with emphasis to the methods accounting for the in-

plane and out-of plane behaviour.  

The second Chapter is focused on the description of the DMEM 

approach focusing on the different macro-elements already introduced 

with some examples of applications and experimental and numerical 

validations. 

The third Chapter, that contains the original contribution of the 

present study, reports the theoretical formulation of the proposed solid 
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co-rotational macro-element within the framework of the DMEM and the 

two-node co-rotational interface. 

The fourth Chapter provides some numerical and experimental 

validation of the solid co-rotational macro-element with reference to some 

significant benchmarks.  

The last conclusive Chapter reports a summary of the present 

research highlighting the applicability of the proposed strategy and the 

possible future developments. 

Some theoretical details, related to the adopted co-rotational 

frameworks, are reported in Appendix. 
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1  NUMERICAL MODELLING 

STRATEGIES FOR MASONRY 

STRUCTURES 

1.1 Prominent modelling strategies for masonry structures 

The numerical modelling of the nonlinear behaviour of masonry 

structures represents a complex research topic in which many different 

strategies have been proposed. Simplified and highly accurate approach 

are the subject of several academic researches. Many simplified 

approaches are still used in the context of engineering practice and 

recommended by engineering code although their reliability is questioned 

by several scientific researches. On the other hand, more sophisticated 

numerical strategies, although allowing high fidelity simulations requires 

a huge computational cost and expert judgement. At the same time, it 

has to be considered that any numerical simulation is based on uncertain 

assumptions on the actual geometry, material characteristics of the 

structural elements, loading history (as for the case of earthquake actions) 

as well as the properties of the underlying soil. This latter consideration 

is particularly true for masonry monumental structural for which the 

actual structural geometry, the complex and not uniform properties of 

masonry material do not always justify the use of high-fidelity modelling 

strategy for a real structure that is not possible to accurately characterise.  

Masonry is a very complex material, exhibits a non-linear behaviour 

for very low level of loads particularly when subjected to earthquake 

loadings.  
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The anisotropic nature of masonry, strictly related to the masonry 

typology, represents a further problem in the definition of masonry 

constitutive laws. 

Masonry monumental structures are often characterised by 

uncertainties in the definition of the actual structural geometry being not 

clear the distinction between structures and decorations.  

 In view of the above considerations, different modelling strategies 

characterised by different capabilities, computational costs and accuracies 

have been proposed for their use in different contexts of engineering 

applications and academic researches.  

In the subsequent paragraphs a brief review of the main modelling 

strategies for masonry monumental structures is reported, only the 

approaches able to account for the in-plane and out-of-plane behaviour 

are considered.  

  

 

1.1.1 Finite element method – FEM 

The finite element method is the most adopted numerical method 

in structural analysis, and it is also widely used for modelling masonry 

structures. Two different modelling approaches are generally used in FEM 

applications for masonry structures. Detailed approaches at the micro or 

meso-scale [15] in which a discretization brick by brick is needed, and all 

the structural components are properly characterized. A macro-modelling 

strategy in which the structure is modelled as assemblage of  elements 

identifying macro-portions of the structure according to a homogenization 

approach. 

The following figure shows the classification of FEM approach. 
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Figure 1 - FEM classification  

Finite element methods incorporating generalised functions in the 

displacement field (X-FEM) allow to consider discontinuities simulating 

concentration of  damage and fracture phenomena without the need of 

introducing interface elements. Pietruszczak e Ushaksaraei [44] element’s 

embed a critical plane for each element that have a variable orientation. 

The correct orientation is obtained maximizing the collapse function. 

FEM Micro-Modelling is based on a detailed mesh reproducing the 

real texture of the masonry element and can be considered as the most 

advanced  method developed until now. For example, using this approach, 

in a masonry panel each brick and each mortar layer have to be modelled 

in explicit way using 3d solid elements. One of the most realistic model 

recently developed is that reported into the Macorini and Izzuddin paper 

[17]. In this paper, authors model bricks using a 3d solid element with 16 

nodes and three degrees of freedom for each node, and interfaces with a 

2d surface that is evaluated starting from the nodes of the adjacent 

elements. Interfaces connect the elements that don’t share any nodes. So, 

the kinematic compatibility is allowed by interfaces.  The particularity of 

this model is that a co-rotational reference system rigidly connected to 

Finite Elements

Finite Elements
without interfaces
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Also, dynamic analysis using a time stepping algorithm is allowed. 

A lot of studies were performed during the years, for example 

Papantonopoulos [49] tried to predict the displacement time history of an 

ancient Greek column. He found that this kind of phenomena is strictly 

dependent on the initial condition or trivial changes in the loading 

sequence, but all the essential characteristics of the earthquake response 

of the column model were very well captured. Dejong et al. [50] modelled 

the spire of St. Mary Magdalene church in Waltham-on-the-Wolds, in the 

UK, which was damaged in the 2008 Lincolnshire Earthquake. They 

evaluated the minimum possible acceleration as well as the minimum 

impulse which could cause collapse. They also created a scale model and 

compared numerical and experimental results. Malomo et al. [47] studied 

the damage propagation in a URM panel and compared the numerical 

result with an experimental in-plane cyclic shear compression test. Çaktı 

et al. [51] modelled “Mustafa Pasha Mosque” in Skopje using the DEM 

and they also realized a 1:10 scale model in order to study the earthquake 

response of the structure using the shake table. Based on the comparison 

of numerical and experimental results they calibrated the DEM model 

and they obtained good agreement between data.  

The main problem related to DEM model is that the calibration of 

springs is generally obtained with experimental data. This problem is 

overcome with the rigid body spring model described in the following 

paragraph. 

1.1.3 Rigid body spring model – RBSM 

The rigid body spring model RBSM was introduced by Kawai in 

1978 [52]. He started from the following idea: when a structure reaches 

his ultimate state of loading it crush into pieces. After that each part 
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The large displacement procedure is based on the following formula: 

𝑲∆𝑼 = ∆𝑭 + 𝑹𝒎 + 𝑹𝑮 (1.3) 

Where: 

• 𝑲 is the tangent stiffness matrix; 

• ∆𝑼  is the increment of the Lagrangian parameters; 

• ∆𝑭  is the incremental load vector; 

• 𝑹𝒎  is the residual force vector due to cracking or 

incompatibility between spring strains and stresses; 

• 𝑹𝑮 is the residual force vector due to geometrical changes in 

the structure during loading; 

In the [54] the application of AEM in large displacement is explained, 

in particular it follows the following steps: 

1. Assume that 𝑹𝒎 and 𝑹𝑮 are null and solve (1.3) to get ∆𝒖. 

2. Modify the structural geometry according to the calculated 

incremental displacements; 

3. Modify the direction of the spring force vectors according to 

the new element configuration. The geometrical changes 

generate incompatibility between the applied forces and 

internal stresses. 

4. Verify whether cracking occurred and calculate 𝑹𝒎 . In 

elastic analysis 𝑹𝒎 is zero. 

5. Calculate the element force vector, 𝑭𝒎 , by summing the 

forces of the springs around each element. 

6. Calculate the geometrical residuals around each element with 

the following formula: 

𝑹𝑮 = 𝒇 − 𝑭𝒎 (1.4) 
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7. Calculate the stiffness matrix for the structure with the new 

configuration considering stiffness changes due to cracking or 

yielding. 

8. Repeat the process. 

 

 A commercial software called “Extreme loadings for structures” is 

based on this method. Although its simplicity the method, if well 

calibrated, provides reasonable results. However, it needs a lot of elements 

to provide good solutions leading to a significant computational cost.  

 

1.1.5 Limit Analisys 

The limit analysis was one of the first methods used for the safety 

assessment of masonry structures. The father of modern limit analysis is 

Jacques Heyman, who used clear hypotheses for the evaluation of the 

ultimate load of arch structures. His work represented a decisive impulse 

towards modern limit analysis theories.  

The limit analysis consists in the evaluation of the ultimate load of 

a structure subjected to certain load and under certain boundary 

conditions. In its classical formulation, it is based on the assumption that 

the mechanical behaviour of the materials is rigid-plastic with no tensile 

resistance. As for the FEM modelling also for limit analysis methods 

distinction is made between a macroblocks method and the detailed limit 

analysis. The first approach consists in assuming a reasonable number of 

collapse mechanisms involving the entire structure or parts of it, and in 

deriving the relative kinematic multipliers in order to identify the 

minimum value corresponding to the collapse multiplier. Macroblock 

methods are currently very popular in professional practice. The study of 
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the crack patterns gives useful information on the collapse mechanisms 

that can occur. The detailed limit analysis consists in discretizing the 

structure through a mesh of elements using discrete elements or finite 

elements and evaluating the ultimate multiplier of the loads and the 

relative collapse mechanism solving a problem of mathematical 

optimization (linear programming). Using distinct elements, the structure 

is discretized into rigid blocks connected by interfaces in which the 

possibility of having a finite sliding resistance can be contemplated or not. 

The presence of a sliding resistance means that the normality rule of the 

classical theory of limit analysis is no longer satisfied (non-associated law). 

The consequence is that there is no longer a unique solution to the 

problem. Casapulla et al. [55], have shown that for some types of 

structures the uniqueness of the solution is guaranteed even in the case of 

the presence of an non-associated flow rule. The solution is however 

obtained through linear programming procedures.  

Limit analysis can be also conducted using finite elements connected 

by interfaces. At the macro-scale the elements are calibrated by 

homogenization techniques. The collapse mechanism is identified, even in 

this case, using linear programming techniques [56]. 

 

1.1.6 Discrete Macro element method – DMEM 

Since this thesis is focused on the DMEM, this method is properly 

discussed in the next chapter. 
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2  THE DISCRETE MACRO 

ELEMENT METHOD  

2.1 A discrete macro-element strategy 

Starting from a pioneering work in 2004 [31] a research team of the 

University of Catania proposed an original macro-element method defined 

in the context of the discrete element strategy. This approach is based on 

the subdivision of the structure in several macro-portions, each 

represented by corresponding macro-elements. After a homogenization of 

the mechanical properties of the components (mortar and units), each 

macro-portion is regarded as an equivalent continuum whose mechanical 

properties can be assumed as isotropic or orthotropic depending on the 

masonry texture. The next step is the discretization by means of a mesh 

of macro-elements chosen according to the macro-portion that has to be 

modelled. 

  

Figure 7 - Subdivision of a dome in macro-portion to be represented by macro-

elements 

Figure 7 reports a qualitatively subdivision of a dome by means of 

several macro-portions that, according to this macro-element strategy, 
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will be represented by shell macro-elements conceived for modelling 

curved masonry structures. 

In this Discrete Macro Element Method (DMEM) each macro-

element, that is not rigid (like in the classical formulation of DEM), 

interacts with the adjacent elements through nonlinear distributed zero-

thickness interfaces.  

The nonlinear behaviour of the structure is captured through an 

assemblage of macro-elements, characterized by different level of 

complexity according to the role played in the global model which 

incorporate both the in-plane and out-of-plane behaviour.  

The degrees of freedom needed to describe the macro-elements’ 

kinematics are those strictly related to the rigid body motion of each 

element plus a further degree of freedom governing the in-plane element 

deformability. This allows to obtain a very efficient model characterised 

by a low computational burden compared to those required by nonlinear 

FEM simulations. 

 In the following subsections a brief description of the different 

macro-elements introduced so far, in the context of the DMEM, is 

reported. 

2.2 The basic 2D macro-element 

The basic 2D macro-element is a plane quadrangular element 

endowed by four degrees of freedom only, Figure 8a 
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parameter has to be introduced to describe the relative motion at the 

interfaces.  

The adopted model has the advantage of interacting with the 

adjacent elements along the whole perimeter, thus allowing the possibility 

of using different mesh discretization as highlighted in the following 

paragraphs.  

The numerical approach has been validated by several researches 

[24] and it has been implemented in the software 3DMacro [58] currently 

used for research and practical applications.  

 

Figure 9 - Typical macro-element discretization of an infilled frame in presence of a 

central door opening. 

The geometric consistency of the elements also allows an efficient 

simulation of infilled frame structures, Figure 9 reports an example of 

infilled frame model by means of a hybrid approach in which the beams 

are modelled as inelastic frame elements and the infill is modelled by 

means of a mesh of plane macro-elements.  

2.3 The 3D macro-element 

The 2D macro-element allows the simulation of a masonry wall in 

its own plane but ignore the out-of-plane response, therefore its use is 

recommended only for buildings or structures exhibiting a box behaviour. 

To overcome this significant restriction a third dimension and the relevant 
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mechanical characterization strategy follows an intuitive  

phenomenological description of the mechanical behaviour of a masonry 

portion in which, the zero-thickness interfaces rule the membrane-flexural 

response and the shear-sliding behaviour of adjacent elements, while the 

in-plane shear element deformability is related to the angular distortion 

of the articulated rigid quadrilateral. The mechanical characterization of 

the zero-thickness interfaces is here performed following a straightforward 

fiber calibration procedure while the shear element deformability is 

calibrated through a mechanical equivalence with a reference geometric-

consistent continuous model.  

The interface nonlinear links can be distinguished as orthogonal 

Nlinks and shear-sliding Nlinks. In the following, the main steps needed 

for the calibration procedure are described with reference to each group 

of nonlinear links. 

2.5.1 Calibration of the nonlinear links orthogonal to the 

interfaces 

In the orthogonal nonlinear links the mechanical properties of the 

represented masonry macro-portion are incorporated considering the 

masonry as an orthotropic homogeneous medium. Each orthogonal link 

inherits the nonlinear behaviour of the corresponding masonry fiber, along 

a given material direction, Figure 10b. Making reference, for simplicity, 

to a regular three-dimensional macro-element, each Nlink is calibrated 

assuming that the masonry strip is a homogeneous inelastic material [61]. 

Aiming at providing an example, reference is made to a single orthotropic 

panel under monotonic loadings, Figure 13. In this case the flexural 

behaviour of the masonry panel is characterized by different mechanical 

properties along two directions. Eh and Ev are the Young’s moduli of the 
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homogenized orthotropic masonry medium; σch, σth and σcv, σtv are the 

corresponding compressive and tensile maximum stresses, Gch, Gth and Gcv, 

Gtv are the fracture energies in compression and tension. Coherently with 

the adopted fiber calibration approach, the flexural stiffness calibration 

of the panel is simply obtained by assigning to each link the axial stiffness 

of the corresponding masonry strip. Each masonry strip is identified by 

its influence area and the half-dimension of the panel in the direction 

perpendicular to the interface, Figure 10b.  

The initial stiffness K, the compressive and tensile yielding strengths, 

fc and ft, and the corresponding ultimate displacements, uc and ut (under 

the simplified hypothesis of rectangular shape of the panel and linear 

softening) of the links relative to the horizontal and vertical interfaces are 

reported in Table 1 as a function of the mechanical and geometrical 

properties of the masonry panel. 

 

DIRECTION 𝒌 𝒇
𝒄
 𝒇

𝒕
 𝒖

𝒄
 𝒖

𝒕
 

HORIZONTAL 
𝟐𝐄

𝒉
𝝀

𝒉
𝝀

𝒔

𝐁
 𝝈

𝒄𝒉
𝝀

𝒉
𝝀

𝒔
 𝝈

𝒕𝒉
𝝀

𝒉
𝝀

𝒔
 

𝟐𝑮
𝒄𝒉

𝝈
𝒄𝒉

 
𝟐𝑮

𝒕𝒉

𝝈
𝒕𝒉

 

VERTICAL 
𝟐𝐄

𝒗
𝝀

𝒗
𝝀

𝒔

𝐁
 𝝈

𝒄𝒗
𝝀

𝒗
𝝀

𝒔
 𝝈

𝒕𝒗
𝝀

𝒗
𝝀

𝒔
 

𝟐𝑮
𝒄𝒗

𝝈
𝒄𝒗

 
𝟐𝑮

𝒕𝒗

𝝈
𝒕𝒗

 

Table 1- Mechanical calibration of the orthogonal Nlinks for a rectangular panel 

B and H are the length and the height of the panel, λh and λv are 

the in-plane distances between the springs along the interfaces arranged 

according to the two fundamental directions, and λs is the out-of-plane 

distance between the rows of springs. 

2.5.2 Calibration of the non-linear links along the interface 

The nonlinear links, lying along the interface and identified as shear-

sliding springs, rule the torsional and shear-sliding behaviour along the 

interfaces. In the discretization here adopted, one single link is considered 
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for the in-plane model Figure 8 while three nonlinear links have been 

considered for the spatial models (Figure 10 and Figure 11)  [59].  

The shear-sliding behaviour is ruled by a single Nlink, governing the 

in-plane sliding of the element along the interface and is calibrated 

according to a Mohr–Coulomb law. The out-of-plane shear deformability 

is ruled by two parallel springs, which take care of the out-of-plane sliding 

behaviour and the torsional elastic and inelastic response of the connected 

adjacent panels. The two out-of-plane shear-sliding nonlinear links are 

required to control the out-of-plane sliding mechanisms as well as the 

torsion around the axis perpendicular to the plane of the interface.  

Aiming at maintaining a simple fiber calibration approach, the out-

of-plane shear deformability of each link, connecting two adjacent panels, 

is calibrated according to their influence volumes. Referring to two 

identical adjacent macro-elements, with thickness s, width B and height 

H, shear modulus G, cohesion c, and friction coefficient μs, the calibration 

procedure is summarized providing the main parameters that govern the 

mechanical behaviour of the sliding links. Table 2 

DIRECTION 𝑘𝑠 𝑑 𝑓𝑠𝑦 
HORIZONTAL ∞ − (c + µsN)A 

VERTICAL 
𝟏𝟐 𝐆𝐁𝐬𝐇  2s√1

3
− 0,21

s

B
(1 − s4

12B4) 
1

2
(c + µsN)A 

Table 2- Mechanical calibration of the shear sliding Nlinks for a rectangular panel 

Once the elastic shear out-of-plane stiffness has been assigned, 

according to the formulas reported in Table 2, the relative distance d 

between the two out-of-plane sliding links is assigned according to an 

equivalence with the corresponding elastic continuum in terms of torsional 

behaviour [59]. The yielding strength of each spring is associated with the 
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current contact area A of the interface and to the current axial force N 

associated with the orthogonal links of the interface. 

2.5.3 Calibration of the diagonal link 

The diagonal shear failure collapse of the panel is related to a single 

degree of freedom; this allows to associate the nonlinear response to a 

single diagonal nonlinear link. Several yielding criteria can be adopted to 

account for the shear capacity, which is strongly dependent on the vertical 

compression stresses in the wall. In the elastic range, the diagonal shear 

spring is calibrated by imposing an energy equivalence between the 

articulated quadrilateral, ruled by the diagonal spring and a continuous 

reference elastic model. The yielding forces are associated with the limits 

of tensile or compressive stresses in the reference continuous model, while 

the post-elastic behaviour is ruled by a suitable constitutive law. A Mohr–

Coulomb law or a Turnsek Cacovic law [57] can generally be adopted for 

the calibration of the diagonal link, although any constitutive law can 

also be considered. 
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3  A SOLID CO-ROTATIONAL 

DISCRETE MACRO-ELEMENT  

3.1  Introduction 

In this chapter a new solid discrete macro-element able to exhibit 

large rotations and small deformations is proposed. This element 

represents a further significant contribution in the context of the DMEM 

proposed by Caliò et al. [33]. The main novelties of the proposed solid co-

rotational element can be summarised as follows:   

- The previously introduced discrete macro-elements were 

formulated under the assumption of linearized kinematics. The solid 

element here proposed can exhibit large rotations and large displacements 

assuming a kinematics that allows small shear deformations, within each 

element, and small relative displacements at the interfaces between 

adjacent macro-elements. The large displacement capabilities are taken 

into account by considering an original co-rotational strategy, based on 

local reference systems accounting for the small deformations at the 

interfaces between the corresponding adjacent solid macro-elements. 

- Although other spatial elements have been already proposed, these 

are characterised by a shear deformability only in one plane related to a 

simple kinematics associated to a reference articulated quadrilateral [62]. 

The solid element here proposed is more general being characterised by a 

uniform infinitesimal spatial strain tensor corresponding to a pure shear 

deformation. 

- Differently from the previous spatial discrete macro-elements, the 

zero-thickness two-dimensional cohesive interfaces, inheriting the 
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masonry properties, are continuously distributed. This allows the use 

more general constitutive laws and the adoption of different integration 

strategies along the interfaces. 

As discussed the last chapter, the generality of the solid macro-

element formulation will allow the investigation of structures both at 

macro or at meso-scale accounting for complex geometrical layouts and 

different sources of constitutive nonlinearities. Its application it is not 

limited to masonry structures, as will be shown the next chapter in which 

more general benchmarks are considered. 

In the following the theoretical formulation of the proposed solid 

macro-element is reported. The kinematics is described according to 

DMEM, this allows to consider the minimum required degrees of freedom 

leading to a computational advantage with respect to macro-modelling 

strategy based on FEM strategies.  

Two different approaches are considered for the co-rotational 

framework based on different parametrization of rotations previously 

proposed in the literature by Battini [63] [64] and Izzuddin [65] [66] [67] 

[68]. For simplicity, the two approaches are identified as “Approach I and 

II ”. The last section of this chapter is devoted to the mechanical 

calibration of the solid element that follows a straightforward fiber 

discretization approach that, its simplicity, provides very accurate results, 

as demonstrated in the next chapter reporting some numerical 

applications and validation examples.      
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3.2  The co-rotational framework 

The co-rotational approach is currently one of the most adopted 

method for modelling geometrical nonlinearities in structures for which 

the deformation gradients can be considered small enough to be described 

by linearized strain tensors although large rigid motions of the elements 

can occur. The main assumption is that displacements and rotations are 

large, but deformations are small. The description of the deformation 

motion is possible using different Lagrangian parameter and local 

reference systems in order to describe the small deformation and the rigid 

body motion separately. The deformation of the body is described in the 

co-rotational reference system fixed to the body, while the large 

displacements and rotations are evaluated taking into account the rigid 

movement of the chosen local co-rotational reference systems. 

If the local degrees of freedom, related to the deformation, are 

properly defined, the main advantage of the co-rotational approach is the 

possibility to easily extend classical linear elements to large displacement 

using standard kinematic transformations and its variation (co-rotational 

framework).  

Many co-rotational frameworks were formulated using different 

approaches to manage large rotations. Crisfield  proposed a co-rotational 

strategy for beams and shells [69]. More recently, Battini [63] formulated 

a co-rotational approach for three-dimensional beams, using a classical 

Rodriguez representation of large rotations, for static and dynamic 

problems. Also Felippa and Haugen [70] proposed a unified co-rotational 

framework that generalized the problem using the Rodriguez 

parametrization of rotations. Of particular interest is the approach 

proposed by Izzuddin [65] based on an incremental formulation of rotation, 
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considering Euler angles, applied for solving constitutive and geometric 

non-linear problems for frame structures, shell elements [68] as well as 

interface models [17]. This framework has been implemented within the 

large purpose nonlinear FEM software Adaptic [71].  

The co-rotational framework is based on the assumption that the 

virtual work expressions, written in the local co-rotational system and in 

the global reference system, for different groups of parameters, must be 

the same. So, it is possible to consider the deformations in a local reference 

system using a particular group of kinematic parameters δ𝐩
𝐜
 and 

evaluate the entire motion in the global reference system using other 

groups of kinematic parameters δ𝐩𝐠 . This consideration leads to the 

following simple expression of the Internal Virtual Work: 

δ𝐩𝐠𝐓𝐪𝐠 = δ𝐩𝐜𝐓𝐪𝐜 (3.1) 

where: 

• δ𝐩𝐠  is a column vector that contains variational global 

kinematics Lagrangian parameters in the global reference 

system; 

• 𝐪𝐠 is a column vector that contains the conjugated forces of 

δ𝐩𝐠; 

• δ𝐩𝐜 is a column vector that contains variational co-rotational 

kinematics Lagrangian parameters in the local reference 

system; 

• 𝐪𝐜 is a column vector that contains the conjugated forces of 

δ𝐩𝐜; 
Considering that a certain relationship between 𝐩𝐜  and 𝐩𝐠 , that 

connects local and global parameters, must exist, this relation can be 

written in general form as: 
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𝐩𝐜 = 𝐩𝐜(𝐩𝐠) (3.2) 

the variation of the (3.2) can be expressed in the following form: 

δ𝐩𝐜 = 𝐁(𝐩𝐠)δ𝐩𝐠 (3.3) 

where the matrix 𝐁(𝐩𝐠)  is a compatibility kinematic matrix 

between global and co-rotational degrees of freedom. For a lighter 

notation in the following 𝐁(𝐩) will be written as 𝐁. 

In view of (3.1) equation (3.3) becomes: 

δ𝐩𝐓𝐪 = δ𝐩𝐓𝐁𝐓𝐪𝐜           ∀ δ𝐩𝐓 (3.4) 

The equation (3.4) is valid ∀ δ𝐩𝐓 leading to: 

𝐪 = 𝐁𝐓𝐪𝐜 (3.5) 

Considering the variation of the (3.5) the following expression is 

obtained: 

δ𝐪 = δ𝐁𝐓𝐪𝐜 + 𝐁𝐓δ𝐪𝐜 (3.6) 

In the co-rotational reference system is also possible to obtain the 

relation between co-rotational Lagrangian parameters and the conjugated 

forces: 

δ𝐪𝐜 = 𝐊𝐜δ𝐩𝐜 (3.7) 

In which, the matrix 𝐊𝐜 is the co-rotational stiffness matrix. The 

dependency between 𝐊𝐜 and 𝐩𝐜 is only related to the nonlinearity of the 

constitutive law of the material because in the co-rotational reference 

system deformations are considered small. 

Substituting the (3.7) and (3.3) into (3.6) the following expression 

is obtained: 

δ𝐪 = δ𝐁𝐓𝐪𝐜 + 𝐁𝐓𝐊𝐜𝐁δ𝐩 (3.8) 
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The first term of the (3.8) is related to the Geometric Stiffness 

Matrix, and the second term is related to the Material Stiffness Matrix. 

The quantity δ𝐁𝐓 is a third order matrix and it contains δ𝐩. 

The same equation can be obtained using the Stationarity of the 

Total stain energy. 

In this study the co-rotational strategy is adopted only for the 

description of the mechanical behaviour of the interfaces since the shear 

deformation of the solid elements is governed by internal degrees of 

freedoms independent on the rigid body motion. A co-rotational two-node 

interface element is formulated for each interface connecting two solid 

elements.  
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Due to the assumption of homogeneous linearized strain, the only 

allowed small deformation displacements of the element are related to the 

shear deformation and are given by: 

𝐮𝐪 = 𝐄 𝐱𝐪 (3.13) 

being: 

• 𝐱𝐪 = x 𝐞𝐪𝟏 + y 𝐞𝐪𝟐 + z 𝐞𝐪𝟑 the position of the generic point 

inside the dominium of the element in the local reference 

system; 

• 𝐮𝐪   the displacement of the point 𝐱 in the local reference 

system; 

Equation (3.13) can be written in the following form 

𝐮𝐪 =

⎣⎢
⎢⎢
⎡y

2

z

2
0

x

2
0

z

2

0
x

2

y

2⎦⎥
⎥⎥
⎤ [γ12γ13γ23

] = 𝐁
𝓵
𝚪𝐪𝐓 (3.14) 

 

It is worth noticing that the element shear deformability is not 

affected by the rigid body motion of the solid elements. However, the 

relative displacements of the generic interface are related to the shear 

deformations and the rigid body motions of the adjacent elements sharing 

the interface. The mechanical behaviour of each interface is described 

according to an original co-rotational strategy based on a Eulerian 

reference system connecting the two nodes of the adjacent elements. The 

adopted strategy is detailed described in the following sub-section 
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3.4  The two-node corotational interface element 

The two-node co-rotational interface element is formulated using 

two different co-rotational frameworks, proposed in the literature with 

reference to three-dimensional beam-columns. Namely the approaches 

proposed by Battini [63] and by Izzuddin [65] are considered. The main 

differences between these two approaches are related to the 

parametrization of rotation.  

Elements interact by means of nonlinear interfaces that, in the 

initial configuration, possess zero-thickness. Following the same strategy 

adopted in the DMEM, described in the previous Chapter 2, the interfaces 

rule the interaction between the macro-elements and embed the axial-

flexural, shear-sliding and torsional elements’ deformability as well as the 

shear sliding behaviour.  

In this formulation both the shear and interface deformabilities are 

assumed small while each solid element can be subjected to large rigid 

motions. 

The approach here adopted has been implemented in a Matlab code 

MEX (Macro_EXtreme), that has been entirely developed as part of the 

thesis work. The code can import the three-dimensional geometry of the 

structure from a cad drawing, furthermore an automatic procedure for 

the identification of nonconforming interfaces is implemented. This 

procedure allows to contain the computational burden associated to the 

numerical simulations by avoiding further subdivision of the elements 

sharing nonconforming interfaces.  
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The formulation of the corotational two-node interface element 

requires the definition of several configurations and reference systems, 

Figure 19, as specified in what follows:  

- the “initial configuration” identifying the initial (𝑡 = 0) geometry 

of the model.  

- the “current configuration” that identifies the state of the model 

at the pseudo-time 𝑡 > 0.  

- The global reference system defined by the triad of unit orthogonal 

vectors 𝐄𝑖 (i = 1, 2, 3). 

- Two local reference systems, for the adjacent elements p and q, 

that in the initial configurations are identified by triads 𝐞0𝑝𝑖 and (i = 

1,2,3) 𝐞0𝑞𝑖 (i = 1, 2, 3) while in the current configuration are given by the 

unit vectors 𝐞𝑝𝑖 and (i = 1,2,3) 𝐞𝑞𝑖 (i = 1, 2, 3).  

- a corotational local reference system, which continuously rotates 

and translates following the interface shared by the element p and q. In 

the initial and current configurations are identified by 𝐜0𝑝𝑞𝑖 (i = 1,2,3) 

and 𝐜𝑝𝑞𝑖 (i = 1,2,3) respectively.  

- Two further unit triads, 𝒕𝑝𝑖 and 𝒕𝑞𝑖 (i = 1, 2, 3), rigidly attached 

to the centroids of the elements p and q. These two triads embed the rigid 

part and the deformational part of the motion. 

- A plane local reference system that identifies the interface 

coordinates in the initial, 𝒊0𝑝𝑞1𝑖  (i=1,2,3), and current, 𝒊𝑝𝑞1𝑖  (i=1,2,3), 

configurations. 
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centroids from p to q. The other two units vector are chosen with the 

intersection of the plane, identified by the normal to 𝐜0𝑝𝑞1 , and the 

direction of edge of the solid parallelepiped 𝑝 orthogonal to the interface. 

The plane quadrilateral with the vertices 𝐕𝑖 (𝑖 = 1 … 4) is identified and 

the triad  𝐜0𝑝𝑞𝑖 (i = 1,2,3) can therefore be evaluated by considering the 

following expressions: 

𝐜0pq1 =
𝐗G0q − 𝐗G0p∣𝐗G0q − 𝐗G0p∣ 𝐜0pq2 = 

𝐜013 + 𝐜024
|𝐜013 + 𝐜024|

𝐜0pq3 = 𝐜0pq1
× 𝐜0pq2 

(3.15) 

With: 

𝐜0𝑖𝑗 =
𝐕𝑖 − 𝐕𝑗∣𝐕𝑖 − 𝐕𝑗∣ (3.16) 

alternatively, the co-rotational system can be identified by the 

rotational tensor: 

𝐑0C = [𝐜0qp1 𝐜0qp2 𝐜0qp3] (3.17) 

Figure 20, reports an example of a nonconforming interface. It is 

assumed that in the initial configuration the two adjacent faces of the 

elements share the same plane and the corresponding solid elements 

maintain the same orientation. Under these assumptions the initial 

geometry of the interface is given by the regular rectangular quadrilateral 

obtained by intersection of the two elements’ sides. 
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In order to describe the interface kinematics, it is convenient to 

collect the 18 the degrees of freedom of the adjacent elements as follows: 

𝐩gpq𝐓 = [𝐮𝐩𝐆𝐓 𝛝𝐪𝐆𝐓 𝐮𝐩𝐆𝐓 𝛝𝐪𝐆𝐓 𝚪𝐩𝐓 𝚪𝐪𝐓] (3.21) 

Considering that, each solid element, in its initial configuration, is 

represented by a regular parallelepiped and the internal deformation is 

described by a linearized homogenous shear deformation, the interface 

deformation displacements are associated to the motion of the two planes 

corresponding to each element face that will remain plane during the 

analysis. Each interface point is identified by its initial coordinates in the 

local reference system of the interface 𝐢𝟎𝒑𝒒𝒊 (i=1,2,3).  

Since the interface relative displacements are assumed to be small 

it can also be assumed that the points belonging to each element faces 

will not change their relative positions, within their own plane. 

The following two subsections report the theoretical formulation of 

the co-rotational two-node interface element according to the two adopted 

co-rotational frameworks based on the strategies adopted by Battini [63] 

and Izzuddin [65] with reference to three-dimensional beam-columns. 
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3.4.1  The co-rotational framework based on rotational vector 

and Rodriguez formula. Approach I 

A central issue in the development of a co-rotational approach is the 

treatment of finite [72] independent parameters. One alternative in this 

context, is based on the so-called “rotational vector” [72], [73], [74] [75], 

defined by: 

𝚿 = 𝜓 ∙ 𝐮 (3.22) 

Expression (3.22) states that any finite rotation can be represented 

by a unique rotation with an angle 𝜓 about an axis defined by the unit 

vector 𝐮.  

The magnitude 𝜓 is given by: 

𝜓 = √Ψ12 + Ψ22 + Ψ32 (3.23) 

where Ψi, (𝑖 =  1, 2, 3) are the components of 𝚿. In terms of Ψ, the 

orthogonal matrix 𝐑 admits the following representation 

𝐑 = 𝐈 +
sin 𝜓𝜓 �̃� +

1

2
[sin(𝜓2) 

𝜓2
]2 �̃�2 (3.24) 

For the sake of simplicity further details on the treatment of large 

rotations are reported in Appendix A. In the subsection A.2 the 

parametrization of the rotation based on the spatial rotational vector and 

Rodriguez formula is illustrated.  

In this subsection the co-rotational framework adopted by Battini 

[63] [64], based on the Rodriguez formula and the spatial rotational vector, 

is applied to the two-node interface element. Using this parametrization, 

the rotation is descripted by a vector 𝝑 of three components that indicate 

the rotation axis. Its modulus indicates the magnitude of the rotation.  

Equation (A.7), here reported again 
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𝐑 = exp[�̃�] = 𝐈 +
sin‖𝛚‖‖𝛚‖ �̃� +

1

2

sin2(12 ‖𝛚‖)
(12 ‖𝛚‖)2 �̃�2 (3.25) 

is the Rodriguez formula that allow to obtain the rotational matrix 

from the rotational pseudo-vector 𝝑.  

It is important to underling that different parametrization of 

rotations does not produce any difference in terms of final result, however 

it produces a different meaning in the vector 3x1 that contains rotation. 

So, for example the rotational pseudo-vector here defined is not additive 

because it indicates the rotation axis. It is possible to switch from a non-

additive to an additive formulation using the (A.22). This choice has 

impact to the way in which the analysis is conduct and how the result 

has to be interpreted. In this document the additive formulation is 

omitted, and results are obtained using an incremental formulation. 

According to the main idea of the co-rotational formulation, the 

motion of the element from the initial to the final deformed configuration 

is split into a rigid body component and a deformational part. The rigid 

body component consists of a rigid translation and rotation of the local 

element frame. 
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In order to obtain the current triad 𝒕𝑝𝑖  and 𝒕𝑞𝑖  in the global 

reference system it is possible to consider the column of the matrix 

𝐑iG𝐑0C. At the beginning of the analysis, 𝒕𝑝𝑖 and 𝒕𝑞𝑖 are coincident to 

𝐜0𝑝𝑞𝑖 and matrices 𝐑iG = 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦. 

The unit vector 𝐜𝑝𝑞2  and 𝐜𝑝𝑞3  are obtained using the following 

formula: 

𝐜𝑝𝑞3 =
𝐜𝑝𝑞1 ×  𝐪

∥𝐜𝑝𝑞1 ×  𝐪∥ 𝐜𝑝𝑞2 = 𝐜𝑝𝑞3 × 𝐜𝑝𝑞1 (3.30) 

The rigid motion is accompanied by local deformational 

displacements in the interfaces with respect to the local co-rotational 

reference system 𝐜𝑝𝑞i. In this context, due to the particular choice of the 

local system, the local translations at the centroid of the element p will 

be zero. Moreover, at the centroid of the element q, the only non-zero 

component is the translation along 𝐜𝑝𝑞1. This can be evaluated according 

to: 

𝑢̅ = ℓ𝑝𝑞 − ℓ0𝑝𝑞 (3.31) 

Being ℓ0𝑝𝑞 = ‖𝐗𝐆𝟎𝐪 − 𝐗𝐆𝟎𝐩‖ the distance between the nodes in the 

initial configuration. 

According to the Figure 22 it is also possible to evaluate the two 

rotational matrices that contain the deformational part of the motion, 

identified with an overbar and expressed in the current co-rotational 

reference system. 

These matrices are calculated from: 

�̅�𝑖 = 𝐑C𝑇 𝐑iG𝐑0C (3.32) 

In this approach the parametrization of rotation follows the 

Rodriguez Formula as reported in (3.24) where 𝛝 is the spatial pseudo 

vector that indicate the rotational axis. 
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The rotations in the co-rotational reference system are evaluated 

using: 

�̅�𝑖 = log �̅�𝑖 (3.33) 

Degrees of freedom, in the local reference system of the elements, 

related to the shear deformation of the elements are equal to:  

𝚪𝐩𝐓 = [γ12p γ13p γ23p]𝐓 

𝚪𝐪𝐓 = [γ12q γ13q γ23q]𝐓 
(3.34) 

Shear parameters are considered always as local degree of freedom. 

This simplification is allowed because of the small shear deformation of 

the elements. 

The degree of freedom considered in the co-rotational reference 

system are collected in the vector 𝐩C: 

𝐩C𝐓 = [u̅ �̅�pT �̅�qT 𝚪p𝐓 𝚪q𝐓]𝑇  (3.35) 

in which the 13 components are: 

• 𝑢 ̅is the displacement along unit vector 𝐜𝑝𝑞1; 
• �̅�p𝑇 = [ϑp̅1 ϑp̅2 ϑp̅3]  are the spatial rotational pseudo-

vector of the element 𝑝 in the co-rotational reference system 

that are related only to the deformation of the interface; 

• �̅�q𝑇 = [ϑq̅1 ϑq̅2 ϑq̅3]  are the spatial rotational pseudo-

vector of the element 𝑞  in the co-rotational reference system 

that are related only to the deformation of the interface; 

• 𝚪p𝐓 = [γ12p γ13p γ23p]𝐓are the shear deformations of the 

element 𝑝; 

• 𝚪q𝐓 = [γ12q γ13q γ23q]𝐓are the shear deformations of the 

element 𝑞; 

The angles �̅�p𝑇  and �̅�q𝑇  are referred to the centroid of the element p 

and q and their components are referred respectively to the co-rotational 
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1 − 2 − 3  axes using the right-hand rule. So, they are positive if 

counterclockwise. 

The corresponding nodal forces are: 

𝐟C𝐓
= [fc1 𝒎𝐓]𝐓 𝒎 = [fc2 fc3 fc4 fc5 fc6 fc7 𝐟𝚪𝐪 𝐟𝚪𝐩]𝐓 

(3.36) 

where fc1  denotes the axial force whereas fc2, fc3, fc4, fc5, fc6, fc7 
denote the moments at nodes 𝑝 and 𝑞, respectively. The two vector (3x1) 

𝐟𝚪𝐪, 𝐟𝚪𝐩 are forces related to the shear deformation.  

 

3.4.2 The co-rotational framework based on incremental 

application of rotation. Approach II  

In this section an alternative approach based on an incremental 

application of rotations in 3D space, as proposed by Izzuddin  [65] [66] 

[67] [68], is considered. The procedure has been originally proposed for 

modelling the effects of large displacements on the response of space 

frames subjected to conservative loading. In this case the displacements, 

referred to the co-rotational reference system, are obtained by means of 

element-based local vectors. These vectors follow the current 

configuration of the solid elements sharing the interface and are 

continuously updated to a position normal to the element chord (main 

axis of the co-rotational system).  

Following the same approach adopted by Izzuddin, the nonlinear 

solution procedure is formalized in terms of transformations between the 

co-rotational and the global systems and expressions for geometric 

stiffness and transformation matrices are explicitly expressed. 

The procedure is based on the hypothesis that the loading consists 

only of forces applied at the nodal positions, since the effect of finite 
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At the beginning of the analysis these two triad assume the same 

orientation of the co-rotational system: 

𝐭𝐩𝟑𝟎 = 𝐭𝐪𝟑𝟎 = 𝐜0pq2𝐭𝐩𝟐𝟎 = 𝐭𝐪𝟐𝟎 = 𝐜0pq3
  (3.37) 

𝐭𝐩𝟐, 𝐭𝐩𝟑, 𝐭𝐪𝟐, 𝐭𝐪𝟑 represent the elements orientation vectors in the 

current configuration and 𝐭𝐩𝐪 identifies the twist rotation between the 

two solid elements. 

The incremental global elements’ displacements of the solids 

elements sharing the interface are expressed by 18 degrees of freedom 

collected in the vector 

𝐩gpq𝐓 = [𝐮𝐩𝐆𝐓 𝛝𝐩𝐆𝐓 𝐮𝐪𝐆𝐓 𝛝𝐪𝐆𝐓 𝚪𝐩𝐓 𝚪𝐪𝐓]  (3.38) 

The global nodal displacements 𝐮𝐩𝐆𝐓  and 𝐮𝐪𝐆𝐓  identify the positions 

of the elements nodes defining the orientation of the co-rotational system 

in the current iterative configuration: 

𝐜pq1 =
𝐗Gq − 𝐗Gp∥𝐗Gq − 𝐗Gp∥ (3.39) 

with 

𝐗Gp = 𝐗G0p + 𝐮𝐩𝐆 (3.40) 

𝐗Gq = 𝐗G0q + 𝐮𝐪𝐆 (3.41) 

In order to obtain the rotated unit vectors 𝐭𝐩𝟐, 𝐭𝐩𝟑, 𝐭𝐪𝟐, 𝐭𝐪𝟑, 𝐭𝐩𝐪 it 

is possible to use different rotation matrix. 

Oran in  [76] was the first that used a first order rotation matrix to 

describe the transformation of vector due to an increment of global 

rotations about the three global axes (X, Y, Z) as follows: 

𝐓 = ⎣⎢
⎡ 1 −𝜗𝑧 𝜗𝑦𝜗𝑧 1 −𝜗𝑥−𝜗𝑦 𝜗𝑥 1 ⎦⎥

⎤ (3.42) 
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Where 𝜗𝑥, 𝜗𝑦, 𝜗𝑧 are incremental rotations about global axes; 

The rotated vector 𝐮′ is equal to: 

𝐭′ = 𝐓 𝐭 (3.43) 

However, this relationship can be applied to very small increments 

since the orthogonality property of transformed unit vectors is satisfied 

only to the first order in rotations. Izzuddin proposed an higher order 

transformation applied to the rotational increment. 

The incremental description is relative to the last known equilibrium 

configuration, the adopted definition for rotation is based on a resultant 

rotational vector, the effect of which is approximated by the following 

second order transformation matrix 𝐓𝐫, whose derivation is reported in 

appendix A, expression(A.25). 

𝐓𝐫 =

⎣⎢
⎢⎢
⎢⎢
⎡1 − (𝜗𝑦2 + 𝜗𝑧2)

2
−𝜗𝑧 +

𝜗𝑦𝜗𝑥
2

𝜗𝑦 +
𝜗𝑥𝜗𝑧

2

𝜗𝑧 +
𝜗𝑥𝜗𝑦

2
1 − (𝜗𝑥2 + 𝜗𝑧2)

2
−𝜗𝑥 +

𝜗𝑦𝜗𝑧
2

−𝜗𝑦 +
𝜗𝑥𝜗𝑧

2
𝜗𝑥 +

𝜗𝑦𝜗𝑧
2

1 − (𝜗𝑥2 + 𝜗𝑦2)
2 ⎦⎥

⎥⎥
⎥⎥
⎤

 (3.44) 

 

that provide the rotated vector 𝐭′ as a function of the vector 𝐭, 
relative to the last known equilibrium configuration. 

𝐭′ = 𝐓𝐫𝐭 (3.45) 

 

As highlighted by Izzuddin [66], the use of such second order 

transformation reduces the amount of spurious lengthening of vectors 

upon incremental rotation and preserves to a greater extent the 

orthogonality property of unit vectors. 
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As reported in the Appendix A it is also possible to remove any 

approximation from the evaluation of the rotated vector using a complete 

transformation 𝐓𝐫 based on Euler/Tait Brian parametrization (A.24).  

The global nodal rotations 𝛝𝐩𝐆𝐓  and 𝛝𝐪𝐆𝐓  allow to identify two vector 

transformation matrices at the two elements nodes, 𝐓𝐩(𝛝𝐩𝐆𝐓 )  and  

𝐓𝐪(𝛝𝐪𝐆𝐓 ), leading to the current orientation vectors for the two solid 

elements sharing the interface.  

𝐭𝐢𝐣 = 𝐓𝐢 𝐭𝐢𝐣𝟎  with i = p, q and j = 2,3 (3.46) 

Where the apex zero identifies the vectors at the last equilibrium 

configuration.  

As specified in Figure 23, the two vector set ( 𝐭𝐩𝟐𝟎 ,  𝐭𝐩𝟑𝟎 )  and 

(𝐭𝐪𝟐𝟎 , 𝐭𝐪𝟑𝟎 ) are not normal to 𝐜0pq1 and not identical because the solid 

elements can be subjected to a cumulative twisting rotation during the 

response. 

In the current configuration, the global nodal DOF, expressed by 

vector 𝐩gpq𝐓 , combined with 𝐭p2 , 𝐭p3 , 𝐭q2 , 𝐭q3  and 𝐭pq provide the local 

deformation in terms of 𝐩cpq leading to an implicit nonlinear relationship 

between local and global degrees of freedom as specified in the following 

sub-section. In this way, the deformation of the interface can be measures 

using the following parameters reported in Figure 24, Figure 25, Figure 

26: 
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δϑp̅2 = −𝐜pq1𝐓 𝐭𝐩𝟐 (3.47) 

δϑp̅3 = −𝐜pq1𝐓 𝐭𝐩𝟑 (3.48) 

δϑq̅2 = −𝐜pq1𝐓 𝐭𝐪𝟐 (3.49) 

δϑq̅3 = −𝐜pq1𝐓 𝐭𝐪𝟑 (3.50) 

δu̅ = ℓ𝑝𝑞 − ℓ0𝑝𝑞 (3.51) 

δϑT̅ = 𝐭𝐩𝟑𝐓 𝐭𝐩𝐪 (3.52) 

with 

ℓ𝑝𝑞 = ∥𝐗Gq − 𝐗Gp∥ (3.53) 

ℓ0𝑝𝑞 = ∥𝐗G0q − 𝐗G0p∥ (3.54) 

Figure 24, Figure 25 and Figure 26, qualitative report the increment 

in terms of rotations. Namely, the quantity δϑp̅2 is referred to the centroid 

of the element 𝑝 and it is the increment of rotation in the plane 1-2; δϑq̅2 
is referred to the centroid of the element 𝑞 and it is the increment of 

rotation in the same plane 1-2; δϑp̅3 and δϑq̅3 are referred to elements 𝑝 

and 𝑞 and are the increment of rotation in the plane 1-3. δϑT̅ is relative 

to the twisting increment of element 𝑞 with respect to element 𝑝. 

These deformative parameters are collected in the vector: 

δ𝐩𝒄𝒑𝒒 = [δϑp̅2 δϑp̅3 δϑq̅2 δϑq̅3 δu̅ δϑT̅ δ𝚪𝐩𝐓 δ𝚪𝐪𝐓]T (3.55) 

It is worth noticing that the six internal degrees of freedom collected 

in the vectors δ𝚪𝐩𝐓 and δ𝚪𝐪𝐓 are not affected by the rigid motion, however 

they contribute to the relative displacements of the interface shared by 

the elements 𝑝 and 𝑞. 

The corresponding nodal forces are collected in the following vector: 
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𝐟C𝐓 = [fc1 fc2 fc3 fc4 fc5 fc6 𝐟𝚪𝐩 𝐟𝚪𝐪]𝐓 (3.56) 

where fc5 denotes the axial force whereas fc1, fc2, fc3, fc4, fc6 denote 

the moments at nodes 𝑝 and 𝑞, respectively. The two vector (3x1) 𝐟𝚪𝐩, 

𝐟𝚪𝐪 collect the forces related to the shear deformability of the elements.  

In this and the previous paragraph two different approaches for the 

co-rotational framework with reference to the parametrization of rotations 

have been considered. In the adopted approaches, the co-rotational 

reference systems, the related degrees of freedom and the strategy adopted 

for the parametrization of large rotations have been defined. As better 

specified in the following, the two approaches provide different tangent 

matrices and are based on different incremental iterative procedures. 

 The transformations reported in the following, lead to evaluation 

of tangent stiffness matrices for both the considered strategies. 

3.4.3 Interface kinematics and virtual work 

In the formulation of the two-node interface it is needed to define 

the interface kinematics as a function of the degrees of freedom of the 

corresponding solid elements. 

Let us consider two adjacent elements p and q sharing the i-th 

interface, where the p-th element is located on the bottom whereas the q-

th element is located on the top, Figure 27. 

It is assumed that at time t=0 the elements share a zero-thickness 

plane interface corresponding to the rectangular common plane. The 

mechanical behaviour of the interface is related to the relative 

displacements of the interface points of the corresponding solid elements.  
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The interface displacements are expressed in the local reference 

systems of the interface 𝒊𝑝𝑞1𝑖  (i=1,2,3) as a function of their position 

identified by the coordinates 𝑥 and 𝑦 as follows: 

Δ�̂�𝐓(𝑥, 𝑦) = [∆û(𝑥, 𝑦) ∆v̂(𝑥, 𝑦) ∆ŵ(𝑥, 𝑦)] (3.57) 

being: 

• 𝑥, 𝑦 are the coordinates of the 2D planar interface in the local 

reference system 𝐢𝒑𝒒𝟏, 𝐢𝒑𝒒𝟐, 𝐢𝒑𝒒𝟑; 

• ∆û(𝑥, 𝑦) is the relative displacement in the in-plane 𝐢𝒑𝒒𝟏 

direction between initially adjacent points of the element 𝑝 

and element 𝑞; 

• ∆v̂(𝑥, 𝑦) is the relative displacement in the in-plane 𝐢𝒑𝒒𝟐 

direction between initially adjacent points of the element 𝑝 

and element 𝑞; 

• ∆ŵ(𝑥, 𝑦)is the relative displacement in the out-of-plane 𝐢𝒑𝒒𝟑 

direction between initially adjacent points of element 𝑝 and 

element 𝑞; 
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Δ�̂�ℓ𝐓 = [Δ�̂�1𝐓 Δ�̂�2𝐓 Δ�̂�3𝐓 Δ�̂�4𝐓] a 12x1 vector containing the 

relative displacement of the interface vertices and 𝛙 a matrix containing 

the linear shape functions expressed as follows  

 

𝛙T =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡ψ1 0 0

0 ψ1 0
0 0 ψ1ψ2 0 0
0 ψ2 0
0 0 ψ2ψ3 0 0
0 ψ3 0
0 0 ψ3ψ4 0 0
0 ψ4 0
0 0 ψ4⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 (3.60) 

 

ψ𝑛 =
1

4
(1 + 𝜉𝜉𝑛)(1 + 𝜂𝜂𝑛)      𝑛 = 1 … 4 

𝜉1 = −1; 𝜂1 = −1;𝜉2 = +1; 𝜂2 = −1;𝜉3 = +1; 𝜂3 = +1;𝜉4 = −1; 𝜂4 = +1;

 (3.61) 

As better specified in the following, the interfaces are assumed to be 

continuously distributed and their mechanical behaviour can be 

associated to general constitutive laws. In the present formulation a 

simplified constitutive model is considered according to the following 

stiffness matrix: 

𝐤int(𝑥, 𝑦) =

⎣⎢
⎡k//1(𝑥, 𝑦) 0 0

0 k//2(𝑥, 𝑦) 0

0 0 k_|_(𝑥, 𝑦)⎦⎥
⎤

 (3.62) 

• k//1(𝑥, 𝑦) is the stiffness of the generic point of the interface 

along the 𝑥 direction; 
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• k//2(𝑥, 𝑦) is the stiffness of the generic point of the interface 

along the 𝑦 direction; 

• k_|_(𝑥, 𝑦) is the stiffness of the generic point of the interface 

along the 𝑧 direction; 

 

These quantities will be evaluated in the next sub-section entitled 

'mechanical characterization of the interfaces'.  

 

The Internal Virtual Work of the interface in the local reference 

system can be written in the following form: 

𝐿𝑖 = ∬ δΔ�̂�𝐓𝐤intΔ�̂�
𝐴

𝑑𝐴 (3.63) 

Using the definition of total derivative, the following formula is 

obtained: 

dx =
∂x∂ξ dξ +

∂x∂η dη
dy =

∂y∂ξ dξ +
∂y∂η dη (3.64) 

In matrix form: 

[dx
dy

] =

⎣⎢
⎢⎡

∂x∂ξ ∂x∂η∂y∂ξ ∂y∂η⎦⎥
⎥⎤ [dξ

dη] 

[dx
dy

] = J [dξ
dη] 

(3.65) 

With J, Jacobian matrix of the transformation; 

Using the (3.65)  dA = dxdy is equal to: 

dxdy = det(J)dξdη (3.66) 

With (3.59)(3.66) the (3.63) is equal to: 



 3 A solid co-rotational discrete macro-element 

 

 

 

76 

 

𝐿𝑖 = ∬ 𝛿Δ�̂�ℓ𝐓𝛙𝐓𝐤int𝛙Δ�̂�ℓ
1

−1
det(J)dξdη (3.67) 

Using the Gauss – Legendre integration it is possible to transform 

the (3.67) as follow: 

𝐿𝑖 ≅ δΔ�̂�ℓ𝐓 ∑ ∑ ϖiϖj𝛙𝐓(ξi, ηi)𝐤int𝛙(ξi, ηi)det(J)Δ�̂�ℓ
M

j=1

N

i=1
 (3.68) 

With: 

• N number of Gauss point in the ξ direction; 

• M number of Gauss point in the η direction; 

• ξi and ηi Gaussian Point; 

• ϖi and ϖj Gaussian Weight; 

It’s important to note that the equation (3.68) can be rewritten in 

the following form: 

Δ𝒒ℓ̂ = ∑ ∑ ϖiϖj𝛙𝐓(ξi, ηi)𝐤int𝛙(ξi, ηi)det(J)Δ�̂�ℓ
M

j=1

N

i=1
 

𝐿𝑖 ≅ δΔ�̂�ℓ𝐓Δ𝒒ℓ̂ 
(3.69) 

The local stiffness matrix is equal to: 

δΔ𝒒ℓ̂ = ∑ ∑ ϖiϖj𝛙𝐓(ξi, ηi)𝐤int𝛙(ξi, ηi)det(J)δΔ�̂�ℓ
M

j=1

N

i=1
 

δΔ𝒒ℓ̂ = 𝐊𝑖𝑛𝑡δΔ�̂�ℓ 
(3.70) 

With: 

𝐊𝑖𝑛𝑡 = ∑ ∑ ϖiϖj𝛙𝐓(ξi, ηi)𝐤int𝛙(ξi, ηi)det(J)
M

j=1

N

i=1
 (3.71) 

 

3.4.4 From local to global forces and tangent stiffness matrix 

As reported in the paragraph 3.2, the matrices 𝐊𝐜 , 𝐁 and δ𝐁𝐓𝐪𝐜 
are needed in order to obtain stiffness matrices of the two-node interface. 

These matrices are different for the two considered approaches. 
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• 𝐊𝐜 represents the co-rotational stiffness matrix and is obtained 

considering the relative displacement of the interface (3.7) in terms 

of the co-rotational degrees of freedom 𝐩𝐜. A changing of variables 

from  δΔ�̂�ℓ → 𝛿𝐩𝐜  is needed, this implies a series of 

transformations, descripted in the following for the two considered 

approaches.  

• 𝐁 and δ𝐁𝐓𝐪𝐜 relate the co-rotational parameters 𝐩𝐜 to the global 

parameters 𝐩gpq.  

 

3.4.4.1 Expression of 𝛥𝒑ℓ in the co-rotational system. Transformation 

𝛿𝛥�̂�ℓ → 𝛿𝛥𝒑ℓ   

The vector expressing the relative displacement of the interface 

vertices in the local reference system of the interface Δ�̂�ℓ  has to be 

expressed in the co-rotational reference system 

Δ𝒑ℓ = [Δ𝐮1𝐓 Δ𝐮2𝐓 Δ𝐮3𝐓 Δ𝐮4𝐓] (3.72) 

system. This transformation can be written in the form 

Δ�̂�ℓ = 𝐀𝟏Δ𝒑ℓ (3.73) 

Being 

𝐀𝟏 =

⎣⎢
⎡𝐑Cor→Loc 0 0 0

0 𝐑Cor→Loc 0 0
0 0 𝐑Cor→Loc 0
0 0 0 𝐑Cor→Loc ⎦⎥

⎤
 (3.74) 

With: 

𝐑Cor→Loc = 𝐑0pqin𝐭𝐑𝐂𝟎𝐓  (3.75) 

It is worth to notice that, since the interface deformations are small, 

it can be assumed that the local reference system of the interface is 
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subjected to the same rigid motion of the co-rotational system at every 

step of the analysis 

𝐑𝟎𝐩𝐪𝐢𝐧𝐭𝐑𝐂𝟎𝐓 = 𝐑𝐩𝐪𝐢𝐧𝐭𝐑𝐂𝐓 (3.76) 

Where 𝐑𝐩𝐪𝐢𝐧𝐭  and 𝐑𝐂  are respectively matrices of the reference 

system of the interface and co-rotational reference system in current 

configurations. 

As a consequence, the variation of relationship (3.73) is simply 

expressed by 

δΔ�̂�ℓ = 𝐀𝟏δΔ𝒑ℓ (3.77) 

 

3.4.4.2 Expression of 𝛿𝛥𝒑ℓ as a function of the node displacement of 

the adjacent solid elements. Transformation 𝛿𝛥𝒑ℓ → 𝛿𝒑𝑝𝑞  

The components of vector Δ𝒑ℓ  are the relative displacement of 

vertices of the 𝑝𝑞 interface. This vector can be expressed as a function of 

the corresponding displacements of the solid elements. By collecting in a 

vector 𝒑pq the vertices' displacement of each element: 

𝒑pq𝐓 = [𝐮q1𝐓 𝐮q2𝐓 𝐮q3𝐓 𝐮q4𝐓 𝐮p1𝐓 𝐮p2𝐓 𝐮p3𝐓 𝐮p4𝐓 ] (3.78) 

expressed in the co-rotational reference system. The kinematic 

relationship between Δ𝒑ℓ  and 𝒑pq is given by: 

Δ𝒑ℓ = [−𝐈12x12 𝐈12x12]𝒑pq = 𝐀𝟐𝒑pq (3.79) 

With 𝐈12x12  identity matrix 12x12 and 𝐀𝟐 = [−𝐈12x12 𝐈12x12]. 
Therefore the following transformation holds: 

δΔ𝒑ℓ = 𝐀𝟐δ𝒑pq (3.80) 
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𝐮𝐩𝐢 = �̃̅�𝐩𝐱𝐩𝐢𝟎 + �̅̅̅̅̅�𝐜𝐩𝐱𝐩𝐢𝟎 (3.81) 

being: 

• �̃̅�𝐩 =

⎣
⎢⎢
⎡ 0 −ϑ̅̅̅̅p3 ϑ̅̅̅̅p2ϑ̅̅̅̅p3 0 −ϑ̅̅̅̅p1−ϑ̅̅̅̅p2 ϑ̅̅̅̅p1 0 ⎦

⎥⎥
⎤

 the skew-matrix related to the 

small incremental rotation of the element p; 

• 𝐄𝐜𝐩  the strain tensor that descript the pure shear 

deformation in local reference system of the element p whose 

counterpart in the co-rotational reference system is given by: 

�̅̅̅̅̅�𝐜𝐩 = 𝐑𝐂𝟎𝐓 𝐑𝐩𝟎 �̅̅̅̅̅�𝐑𝐩𝟎𝐓 𝐑𝐂𝟎 (3.82) 

• 𝐱𝐩𝐢  (i=1..4) identify the position vectors of the element 

vertices in the co-rotational reference system: 

𝐱𝐩𝐢𝟎 = 𝐑𝐂𝟎𝐓 (𝐗𝐩𝐢𝟎 − 𝐗𝐆𝐩𝟎) (3.83) 

In view of the expressions (3.82) and (3.83) the (3.81) becomes: 

𝐮𝐩𝐢 = �̃̅�𝐩𝐑𝐂𝟎𝐓 (𝐗𝐩𝐢𝟎 − 𝐗𝐆𝐩𝟎) + 𝐑𝐂𝟎𝐓 𝐑𝐩𝟎 �̅̅̅̅̅�𝐑𝐩𝟎𝐓 (𝐗𝐩𝐢𝟎 − 𝐗𝐆𝐩𝟎) (3.84) 

whose variation is given by: 

𝛿𝐮𝐩𝐢 = 𝛿�̃̅�𝐩𝐑𝐂𝟎𝐓 (𝐗𝐩𝐢𝟎 − 𝐗𝐆𝐩𝟎) + 𝐑𝐂𝟎𝐓 𝐑𝐩𝟎𝛿�̅̅̅̅̅�𝐑𝐩𝟎𝐓 (𝐗𝐩𝐢𝟎− 𝐗𝐆𝐩𝟎) 
(3.85) 

Using the following property of skew matrix: 

�̃�𝒃 = −�̃�𝒂 (3.86) 

the equation (3.85) can be written in the following form: 

𝛿𝐮𝐩𝐢 = − (𝐑𝐂𝟎𝐓 (𝐗𝐩ı𝟎 − 𝐗𝐆𝐩𝟎))̃ 𝛿�̅�𝐩 − 𝐑𝐂𝟎𝐓 𝐑𝐩𝟎𝛿�̅̅̅̅̅�𝐑𝐩𝟎𝐓 (𝐗𝐩𝐢𝟎− 𝐗𝐆𝐩𝟎) 
(3.87) 

After some manipulation the following equation is obtained 
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𝛿𝐮𝐩𝐢 = 𝐂𝐩𝐢𝛿𝐩𝐜 (3.88) 

- vertices interface displacements of the element 𝒒 

The vertices displacements of the interface belonging to the element 

q can be expressed as:  

𝐮𝐪𝐢 = 𝚫 + �̃̅�𝐪𝐱𝐪𝐢𝟎 + �̅̅̅̅̅�𝐜𝐪𝐱𝐪𝐢𝟎 (3.89) 

being: 

• 𝚫𝐓 = [u̅ 0 0]𝑻  the deformation in the direction 

𝐜𝑝𝑞1,with u̅ the variation of distance between the centroids 

of the two elements; 

• �̃̅�𝐪 = ⎣⎢
⎡ 0 −ϑq3 ϑq2ϑq3 0 −ϑq1−ϑq2 ϑq1 0 ⎦⎥

⎤ the skew-matrix related to the 

small incremental rotation of the element q; 

• 𝐄𝐜𝐪  the strain tensor that descript the pure shear 

deformation in local reference system of the element q whose 

counterpart in the co-rotational reference system is given by: 

𝐄𝐜𝐪 = 𝐑𝐂𝟎𝐓 𝐑𝐪𝟎 �̅̅̅̅̅�𝐑𝐪𝟎𝐓 𝐑𝐂𝟎 (3.90) 

• 𝐱𝐪𝐢  (i=1..4) identify the position vectors of the element 

vertices in the co-rotational reference system: 

𝐱𝐪𝐢𝟎 = 𝐑𝐂𝟎𝐓 (𝐗𝐪𝐢𝟎 − 𝐗𝐆𝐪𝟎) (3.91) 

Using the (3.90) and (3.91), the (3.89) becomes: 

𝐮𝐪𝐢 = 𝚫 + �̃̅�𝐪𝐑𝐂𝟎𝐓 (𝐗𝐪𝐢𝟎 − 𝐗𝐆𝐪𝟎) + 𝐑𝐂𝟎𝐓 𝐑𝐪𝟎 �̅̅̅̅̅�𝐑𝐪𝟎𝐓 (𝐗𝐪𝐢𝟎− 𝐗𝐆𝐪𝟎) 
(3.92) 

whose variation is equal to: 
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𝛿𝐮𝐪𝐢 = 𝛿𝚫 + 𝛿�̃̅�𝐪𝐑𝐂𝟎𝐓 (𝐗𝐪𝐢𝟎 − 𝐗𝐆𝐪𝟎) + 𝐑𝐂𝟎𝐓 𝐑𝐪𝟎𝛿�̅̅̅̅̅�𝐑𝐪𝟎𝐓 (𝐗𝐪𝐢𝟎− 𝐗𝐆𝐪𝟎) 
(3.93) 

In view of the (3.86) the (3.93) becomes: 

𝛿𝐮𝐪𝐢 = 𝛿𝚫 − (𝐑𝐂𝟎𝐓 (𝐗𝐪ı𝟎 − 𝐗𝐆𝐪𝟎)̃ ) 𝛿�̅�𝐪− 𝐑𝐂𝟎𝐓 𝐑𝐪𝟎𝛿�̅̅̅̅̅�𝐑𝐪𝟎𝐓 (𝐗𝐪𝐢𝟎 − 𝐗𝐆𝐪𝟎) 
(3.94) 

After some algebraic manipulations, the previous equation can be 

written in the following form: 

𝛿𝐮𝐪𝐢 = 𝐂𝐪𝐢𝛿𝐩𝐜 (3.95) 

Combining the equation (3.88) and (3.95) the following expression 

is obtained: 

𝛿𝐩𝐩𝐪 = 𝐀𝟑𝛿𝐩𝐜 (3.96) 

Being the interfaces subjected to small relative displacements, the 

matrix 𝐀𝟑 = [𝐂𝐩𝐢 𝐂𝐪𝐢], that relates the interface vertices displacements 

of the elements p and q to the co-rotational degrees of freedom, is 

calculated at the beginning of the analysis and maintained constant. 

 

3.4.4.1 Expression of 𝛿𝒑𝑝𝑞 as a function of the co-rotational degrees of 

freedom for the Approach II. Transformation 𝛿𝒑𝑝𝑞 → 𝛿𝒑𝒄 

Following the same algebraic manipulation considered in the 

previous paragraph the following expressions relative to the approach II 

are given  

 

- vertices interface displacements of the element 𝒑 
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The vertices displacements of the interface belonging to the element 

p can be expressed as: 

𝐮𝐩𝐢 = �̃̅�𝐩𝐱𝐩𝐢𝟎 + 𝐄𝐜𝐩𝐱𝐩𝐢𝟎 (3.97) 

being: 

• �̃̅�𝐩 =

⎣⎢
⎢⎡

0 −ϑp̅2 −ϑp̅3ϑp̅2 0 0

ϑp̅3 0 0 ⎦⎥
⎥⎤ the rotational matrix of element 

p; 

• 𝐄𝐜𝐩  the shear deformation strain tensor of the element p 

whose counterpart in the co-rotational reference system is 

given by: 

�̅̅̅̅̅�𝐜𝐩 = 𝐑𝐂𝟎𝐓 𝐑𝐩𝟎 �̅̅̅̅̅�𝐑𝐩𝟎𝐓 𝐑𝐂𝟎 (3.98) 

• 𝐱𝐪𝐢  (i=1..4) identify the position vectors of the element p 

vertices in the co-rotational reference system: 

𝐱𝐩𝐢𝟎 = 𝐑𝐂𝟎𝐓 (𝐗𝐩𝐢𝟎 − 𝐗𝐆𝐩𝟎) (3.99) 

Using the (3.98) and (3.99) the (3.97) becomes: 

𝐮𝐩𝐢 = �̃̅�𝐩𝐑𝐂𝟎𝐓 (𝐗𝐩𝐢𝟎 − 𝐗𝐆𝐩𝟎) + 𝐑𝐂𝟎𝐓 𝐑𝐩𝟎 �̅̅̅̅̅�𝐑𝐩𝟎𝐓 (𝐗𝐩𝐢𝟎 − 𝐗𝐆𝐩𝟎) (3.100) 

The variation of the (3.100) is given by: 

𝛿𝐮𝐩𝐢 = 𝛿�̃̅�𝐩𝐑𝐂𝟎𝐓 (𝐗𝐩𝐢𝟎 − 𝐗𝐆𝐩𝟎) + 𝐑𝐂𝟎𝐓 𝐑𝐩𝟎𝛿�̅̅̅̅̅�𝐑𝐩𝟎𝐓 (𝐗𝐩𝐢𝟎− 𝐗𝐆𝐩𝟎) 
(3.101) 

After some algebraic manipulations, equation (3.101) can be written 

in the following form: 

𝛿𝐮𝐩𝐢 = 𝐂𝐩𝐢𝛿𝐩𝐜 (3.102) 

- vertices interface displacements of the element 𝒒 
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The vertices displacements of the interface belonging to the element 

q can be expressed as: 

𝐮𝐪𝐢 = 𝚫 + �̃̅�𝐪𝐱𝐪𝐢𝟎 + �̅̅̅̅̅�𝐜𝐪𝐱𝐪𝐢𝟎 (3.103) 

With: 

• 𝚫𝐓 = [u̅ 0 0]𝑻  deformation in the direction 𝐜𝑝𝑞1 ,  u̅ 

represents the distance between the centroids of the two 

elements; 

• �̃̅�𝐪 =

⎣⎢
⎢⎡

0 −ϑq̅2 −ϑq̅3ϑq̅2 0 −ϑT̅ϑq̅3 ϑT̅ 0 ⎦⎥
⎥⎤ the rotational matrix of element 

p; 

• 𝐄𝐜𝐪  the shear deformation strain tensor of the element q 

whose counterpart in the co-rotational reference system is 

given by: 

𝐄𝐜𝐪 = 𝐑𝐂𝟎𝐓 𝐑𝐪𝟎 �̅̅̅̅̅�𝐑𝐪𝟎𝐓 𝐑𝐂𝟎 (3.104) 

• 𝐱𝐪𝐢  (i=1..4) identify the position vectors of the element p 

vertices in the co-rotational reference system: 

𝐱𝐪𝐢𝟎 = 𝐑𝐂𝟎𝐓 (𝐗𝐪𝐢𝟎 − 𝐗𝐆𝐪𝟎) (3.105) 

Using the (3.104) and (3.105), the (3.103) becomes: 

𝐮𝐪𝐢 = 𝚫 + �̃̅�𝐪𝐑𝐂𝟎𝐓 (𝐗𝐪𝐢𝟎 − 𝐗𝐆𝐪𝟎) + 𝐑𝐂𝟎𝐓 𝐑𝐪𝟎 �̅̅̅̅̅�𝐑𝐪𝟎𝐓 (𝐗𝐪𝐢𝟎− 𝐗𝐆𝐪𝟎) 
(3.106) 

The variation of the is provided by: 

𝛿𝐮𝐪𝐢 = 𝛿�̃̅�𝐩𝐑𝐂𝟎𝐓 (𝐗𝐪𝐢𝟎 − 𝐗𝐆𝐪𝟎) + 𝐑𝐂𝟎𝐓 𝐑𝐪𝟎𝛿�̅̅̅̅̅�𝐑𝐪𝟎𝐓 (𝐗𝐪𝐢𝟎− 𝐗𝐆𝐪𝟎) 
(3.107) 

After some algebraic manipulations, the equation (3.107) can be 

written in the following form: 
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𝛿𝐮𝐪𝐢 = 𝐂𝐪𝐢𝛿𝐩𝐜 (3.108) 

Combining the equation (3.102) and (3.106) the following expression 

is obtained: 

𝛿𝐩𝐩𝐪 = 𝐀𝟑𝛿𝐩𝐜 (3.109) 

The matrix 𝐀𝟑 = [𝐂𝐩𝐢 𝐂𝐪𝐢], having 24x12 elements, is considered 

constant during the entire analysis because being the interface subjected 

to small deformations.  

 

3.4.4.2 The co-rotational stiffness matrix 𝑲𝒄  

The transformations reported in the previous paragraphs allow to 

express the correspondence between the interface relative displacements 

expressed in the local reference system of the interface and the co-

rotational degrees of freedom, 𝛿𝛥�̂�ℓ → 𝛿𝒑c, as follows:   𝛿Δ�̂�ℓ → 𝛿Δ𝒑ℓ → 𝛿𝒑𝑝𝑞 → 𝛿𝒑c𝛿Δ�̂�ℓ = 𝐀𝟏𝐀𝟐𝐀𝟑𝛿𝒑c
 (3.110) 

The interface contribution to the internal virtual work in the co-

rotational reference system can be written as: 

𝛿𝒑c𝐓𝒒c = δΔ�̂�ℓ𝐓Δ𝒒ℓ̂ (3.111) 

substituting the (3.110) into (3.111): 

𝛿𝒑c𝐓𝒒c = 𝛿𝒑c𝐓𝐀𝟑𝐓𝐀𝟐𝐓𝐀𝟏𝐓Δ𝒒ℓ̂         ∀𝛿𝒑c𝐓𝒒c = 𝐀𝟑𝐓𝐀𝟐𝐓𝐀𝟏𝐓Δ𝒒ℓ̂𝛿𝒒c = 𝐀𝟑𝐓𝐀𝟐𝐓𝐀𝟏𝐓𝛿Δ𝒒ℓ̂
 (3.112) 

The stiffness matrix 𝐊𝐜   rule the correspondence between the 

displacements δ𝐩𝐜 and the corresponding conjugate forces δ𝐪𝐜 , according 

to the equation (3.7). In view of equations (3.110) and (3.112) the 

expression of 𝐊𝐜 is obtained: 
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𝐊𝐜 = 𝐀𝟑𝐓𝐀𝟐𝐓𝐀𝟏𝐓𝐊𝐢𝐧𝐭𝐀𝟏𝐀𝟐𝐀𝟑 (3.113) 

In the following paragraph the matrix 𝐁 and 𝜹𝐁 are evaluated. 

3.4.4.3 Transformation 𝛿𝒑𝒄 → 𝛿𝒑𝑔𝑝𝑞 and evaluation of 𝑩 matrix for 

the Approach I 

As reported in section 3.2, the 𝐁 matrix is a compatibility kinematic 

matrix between global and co-rotational displacements,  δ𝐩𝐜 =

𝐁(𝐩𝐠)δ𝐩𝐠𝐩𝐪.This transformation involves the large rotations that are 

attributed to the co-rotational reference system.  

In the following the transformations for the co-rotational degrees of 

freedom adopted in the approach I are evaluated. 

- variation of the displacement u̅ 

The variation of the co-rotational axial displacement u̅, eq. (3.51), 

is given by: 

𝛿u̅ = 𝛿ℓ𝑝𝑞 = 𝐜𝛅𝐩𝐠𝐩𝐪 (3.114) 

With: 

𝐜 = [−𝐜𝑝𝑞1𝐓 𝟎𝟏𝒙𝟑 𝐜𝑝𝑞1𝐓 𝟎𝟏𝒙𝟑 𝟎𝟏𝒙𝟑 𝟎𝟏𝒙𝟑] (3.115) 

- variation of the rotational degrees of freedom �̅�pT 𝑎𝑛𝑑 �̅�qT 

The variation of the rotational degrees of freedom is evaluated 

starting from the expression (3.32) that reports the rotational matrices 

containing the deformational part of the motion for the generic solid 

element i.   

𝛿�̅�𝑖 = 𝛿𝐑C𝑇 𝐑iG𝐑0C + 𝐑C𝑇 𝛿𝐑iG𝐑0C (3.116) 

The 𝛿𝐑C𝑇  and 𝛿𝐑iG  are computed using the spatial form of the 

equation (A.16) 
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𝛿𝐑iG = 𝛿�̃�𝐢𝐆𝐑iG          𝑤𝑖𝑡ℎ   i = p, q (3.117) 

And: 

𝛿𝐑𝐂 = δ�̃�𝐂𝐑𝐂 (3.118) 

𝛿�̅�𝑖 = δ�̃̅�𝐢�̅�𝑖 (3.119) 

𝛿𝐑𝐂 is calculated using the orthogonality condition 𝐑𝐂𝐑𝐂𝐓 = 𝐈: 
𝛿𝐑𝐂𝐑𝐂𝐓 + 𝐑𝐂𝛿𝐑𝐂𝐓 = 𝟎 (3.120) 

Substituting the (3.118) into (3.120): 

δ�̃�𝐂𝐑𝐂𝐑𝐂𝐓 + 𝐑𝐂𝛿𝐑𝐂𝐓 = 𝟎 (3.121) 

𝛿𝐑𝐂𝐓 = −𝐑𝐂𝐓δ�̃�𝐂 (3.122) 

Using the (3.117), (3.119), (3.122) equation (3.116) becomes: 

δ�̃̅�𝐢�̅�𝑖 = −𝐑𝐂𝐓δ�̃�𝐂𝐑iG𝐑0C + 𝐑C𝑇 𝛿�̃�𝐢𝐆𝐑iG𝐑0C (3.123) 

δ�̃̅�𝐢�̅�𝑖 = −𝐑𝐂𝐓δ�̃�𝐂𝐑𝐂𝐑𝐂𝐓𝐑iG𝐑0C + 𝐑C𝑇 𝛿�̃�𝐢𝐆𝐑𝐂𝐑𝐂𝐓𝐑iG𝐑0C (3.124) 

It is possible to define the following quantities: 

δ�̃�𝐂𝒆 = 𝐑𝐂𝐓δ�̃�𝐂𝐑𝐂 (3.125) 

δ�̃�𝐢𝐆𝒆 = 𝐑𝐂𝐓𝛿�̃�𝐢𝐆𝐑𝐂 (3.126) 

δ�̃�𝐂𝒆  and δ�̃�𝐢𝐆𝒆  are skew - matrices rotated in the co-rotational 

reference system.  

Substituting equations (3.125), (3.126) into (3.124), the following 

equation is obtained: 

δ�̃̅�𝐢 = (δ�̃�𝐢𝐆𝐞 − δ�̃�𝐂𝐞 ) (3.127) 
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The equation (3.127) involve skew-matrices. It is possible to change 

from this matrix notation to a vector notation without introducing error. 

Therefore equation (3.127) can be rewritten as: 

δ�̅�𝐢 = δ𝛝𝐢𝐆𝐞 − δ𝛝𝐂𝐞             with   i = p, q (3.128) 

It’s important to note that a vector 𝐱𝑮 and the skew-matrix �̂�𝑮 in 

the global reference system can be obtained in the local reference system 

using the following equations: 

𝐱𝑮𝐞 = 𝐑C𝐓𝐱𝑮 �̃�𝑮𝐞 = 𝐑C𝐓�̃�𝑮𝐑𝐂 (3.129) 

So, the following vectors are defined: 

𝐩gpq𝐞 T = [𝐮𝐩𝐆𝐞 𝐓 𝛝𝐩𝐆𝐞 𝐓 𝐮𝐪𝐆𝐞 𝐓 𝛝𝐪𝐆𝐞 𝐓 𝚪𝐩𝐓 𝚪𝐪𝐓] (3.130) 

• 𝐩𝐠𝐞  is the global degrees of freedom vector evaluated in the 

co-rotational reference system.  

δ𝐩𝐠𝐩𝐪𝐞 = 𝐋𝐓δ𝐩𝐠𝐩𝐪 (3.131) 

With:  

𝐋 =

⎣
⎢⎢
⎢⎢
⎡

𝐑𝐂 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝐑𝐂 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝐑𝐂 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝐑𝐂 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝐈 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝐈⎦

⎥⎥
⎥⎥
⎤
 (3.132) 

 

Quantities 𝚪𝐪𝐓  and 𝚪𝐩𝐓  are not transformed because are always 

considered as local parameters. 

Using the chain rule δ�̅�𝐢 is given by: 

δ�̅�𝐢 =
∂�̅�𝐢∂𝐩𝐠𝐩𝐪𝐞

∂𝐩𝐠𝐩𝐪𝐞
∂𝐩𝐠𝐩𝐪

δ𝐩𝐠𝐩𝐪 =
∂�̅�𝐢∂𝐩𝐠𝐩𝐪𝐞 𝐋𝐓δ𝐩𝐠𝐩𝐪     with i = p, q (3.133) 

Being: 
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𝐋𝐓 =
∂𝐩𝐠𝐩𝐪𝐞
∂𝐩𝐠𝐩𝐪

 (3.134) 

 

 

In view of (3.128) the following expression can be rewritten as: 

⎣⎢
⎢⎢
⎡δ�̅�𝐪δ�̅�𝐩δ𝚪𝐪δ𝚪𝐩⎦⎥

⎥⎥
⎤

=

⎝⎜
⎜⎛

⎣⎢
⎡𝟎 𝐈 𝟎 𝟎 𝟎 𝟎𝟎 𝟎 𝟎 𝐈 𝟎 𝟎𝟎 𝟎 𝟎 𝟎 𝐈 𝟎𝟎 𝟎 𝟎 𝟎 𝟎 𝐈⎦⎥

⎤ −
⎣⎢
⎡𝐆𝐓𝐆𝐓𝟎𝟎 ⎦⎥

⎤
⎠⎟
⎟⎞ 𝐋𝐓δ𝐩𝐠

= 𝐏𝐋𝐓δ𝐩𝐠 

(3.135) 

Being: 

𝐏 =

⎣⎢
⎡𝟎 𝐈 𝟎 𝟎 𝟎 𝟎𝟎 𝟎 𝟎 𝐈 𝟎 𝟎𝟎 𝟎 𝟎 𝟎 𝐈 𝟎𝟎 𝟎 𝟎 𝟎 𝟎 𝐈⎦⎥

⎤ −
⎣⎢
⎡𝐆𝐓𝐆𝐓𝟎𝟎 ⎦⎥

⎤
 (3.136) 

with: 

𝐆 =
∂𝛝𝐂𝐞∂𝐩𝐠𝐩𝐪e  (3.137) 

has to be evaluated. 

From the (3.118), the equation (3.126) can be written as: 

δ�̂�𝐂𝒆 = 𝐑𝐂𝐓𝛿𝐑𝐂 (3.138) 

Using the definition of 𝐑𝐂 the above equation becomes: 

⎣⎢
⎡ 0 −δϑC3e δϑC2e

δϑC3e 0 −δϑC1e
−δϑC2e δϑC1e 0 ⎦⎥

⎤ =

⎣⎢
⎡𝐜pq𝟏𝐓

𝐜pq𝟐𝐓
𝐜pq𝟑𝐓 ⎦⎥

⎤
[δ𝐜pq𝟏 δ𝐜pq𝟐 δ𝐜pq𝟑] =

=

⎣⎢
⎡𝐜pq𝟏𝐓 δ𝐜qp𝟏 𝐜pq𝟏𝐓 δ𝐜pq𝟐 𝐜pq𝟏𝐓 δ𝐜pq𝟑𝐜pq𝟐𝐓 δ𝐜qp𝟏 𝐜pq𝟐𝐓 δ𝐜pq𝟐 𝐜pq𝟐𝐓 δ𝐜pq𝟑𝐜pq𝟑𝐓 δ𝐜qp𝟏 𝐜pq𝟑𝐓 δ𝐜pq𝟐 𝐜pq𝟑𝐓 δ𝐜pq𝟑⎦⎥

⎤
 

(3.139) 

hence the equation (3.139) can be rewritten as: 
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δ𝛝𝐂𝐞 = ⎣⎢
⎡δϑC1e

δϑC2e
δϑC3e ⎦⎥

⎤ =

⎣⎢
⎡−𝐜pq𝟐𝐓 δ𝐜pq𝟑−𝐜pq𝟑𝐓 δ𝐜pq𝟏𝐜pq𝟐𝐓 δ𝐜pq𝟏 ⎦⎥

⎤
 (3.140) 

Differentiation of (3.27)gives: 

δ𝐜pq𝟏 =
1ℓ𝑝𝑞

[𝐈 − 𝐜pq𝟏𝐜pq𝟏𝐓 ] ⎣⎢
⎡ δuqG − δupGδvqG − δvpGδwqG − δwpG⎦⎥

⎤ (3.141) 

The equation (3.141) using the (3.129) becomes: 

δ𝐜pq𝟏𝐞 =
1ℓ𝑝𝑞 ⎣⎢

⎡ δuqGe − δupGe
δvqGe − δvpGe
δwqGe − δwpGe ⎦⎥

⎤ (3.142) 

The local expression of 𝐜pq𝟐𝐞  and 𝐜pq𝟑𝐞  are given by: 

𝐜pq𝟐𝐞 = [0 1 0]T 

𝐜pq𝟑𝐞 = [0 0 1]T 
(3.143) 

Therefore, from (3.142), (3.143) the equation (3.140) gives: 

[δϑC2e
δϑC3e ] =

1ℓ𝑝𝑞
 [−(δwpGe − δwqGe )(δvpGe − δvqGe ) ] (3.144) 

Evaluation of 𝛿𝜗𝐶1𝑒  

Differentiation (3.29) of gives: 

𝛿𝐪 =
1

2
(𝛿𝐑qG𝐑0C + 𝛿𝐑pG𝐑0C)[0 1 0]𝑇  (3.145) 

Substituting the (3.117) into (3.145), the following equation is 

obtained: 

𝛿𝐪 =
1

2
(𝛿�̂�𝐪𝐆𝐑qG𝐑0C + 𝛿�̂�𝐩𝐆𝐑pG𝐑0C)[0 1 0]𝑇

=
1

2
(𝛿�̂�𝐪𝐆𝐪𝐪 + 𝛿�̂�𝐩𝐆𝐪𝐩) 

(3.146) 

The local expressions of 𝐪𝐪 and 𝐪𝐩 are: 

𝐪𝐞 = 𝐑C𝐓𝐪 = [q1
q2
0

] 𝐪𝐪𝐞 = 𝐑C𝐓𝐪𝐪 = [qq1
qq2
qq3

] 𝐪𝐩𝐞 = 𝐑C𝐓𝐪𝐩 = [qp1
qp2
qp3

] (3.147) 
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Substituting the equation (3.129) and (3.147) into (3.146) the 

following equations is obtained: 

𝛿𝐪𝐞 =
1

2
(𝛿�̂�𝐪𝐆𝒆 [qq1

qq2
qq3

] + 𝛿�̂�𝐩𝐆𝒆 [qp1
qp2
qp3

]) (3.148) 

After some calculation the (3.148) is equal to: 

𝛿𝐪𝐞 =
1

2 ⎣⎢
⎡−qq2δϑqG3e + qq3δϑqG2e − qp2δϑpG3e + qp3δϑpG2e
+qq1δϑqG3e − qq3δϑqG1e + qp1δϑpG3e − qp3δϑpG1e
−qq1δϑqG2e + qq2δϑqG1e − qp1δϑpG2e + qp2δϑpG1e ⎦⎥

⎤ (3.149) 

Combining equation (3.30) with (3.140) and nothing that q2 =

∥𝐜𝑝𝑞1 ×  𝐪∥ the following equation is obtained: 

δϑC1e = − 𝐜qp𝟐𝐓
𝑞2

δ𝐜𝑝𝑞1 ×  𝐪 − 𝐜qp𝟐𝐓
𝑞2

𝐜𝑝𝑞1 ×  δ𝐪𝐞

− δ ( 1

q2
) 𝐜qp𝟐𝐓 (𝐜𝑝𝑞1 ×  𝐪) (3.150) 

The last term of the equation (3.156)is zero. 

The following notations are introduced: 

η̅ =
q1
q2

η̅q1 =
qq1
q2

η̅q2 =
qq2
q2

η̅p1 =
qp1
q2

η̅p2 =
qp2
q2

 (3.151) 

Substituting the (3.141), (3.149) and (3.151) into equation (3.150) 

the following equation is obtained: 

δϑC1e =
η̅ℓ𝑝𝑞

(δwqe − δwpe ) +
η̅q2
2

δϑqG1e − η̅q1
2

δϑqG2e +
η̅p2
2

δϑpG1e

− η̅p1
2

δϑpG2e  

(3.152) 

Once, δϑC1e , δϑC2e , δϑC3e  expressions are obtained, the 𝐆 matrix is 

determinates and it is equal to: 

𝐆𝐓
=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0
η̅̅̅̅̅̅ℓ𝑝𝑞

η̅̅̅̅̅̅q2

2
−η̅̅̅̅̅̅q1

2
0 0 0 −

η̅̅̅̅̅̅ℓ𝑝𝑞
η̅̅̅̅̅̅p2

2
−η̅̅̅̅̅̅p1

2
0 0 0 0 0 0 0

0 0
1ℓ𝑝𝑞 0 0 0 0 0 − 1ℓ𝑝𝑞 0 0 0 0 0 0 0 0 0

0 − 1ℓ𝑝𝑞 0 0 0 0 0
1ℓ𝑝𝑞 0 0 0 0 0 0 0 0 0 0

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.153) 
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Finally, the transformation between 𝛅𝐩𝐜 and 𝛅𝐩𝐠𝐩𝐪 is equal to: 

𝛅𝐩𝐜 = 𝐁𝛅𝐩𝐠𝐩𝐪;   with 𝐁 = [ 𝐜𝐏𝐋𝐓] (3.154) 

 

3.4.4.4 Evaluation of 𝜹𝑩 matrix - Approach I 

In order to obtain the geometric stiffness matrix, it is necessary to 

calculate the quantity 𝛅𝐁𝐓 . By considering equation (3.154), the 

following equation can be written: 

δ𝐁𝐓𝐪𝐜 = [𝛅𝐜𝐓 𝛅𝐋𝐏𝐓 + 𝐋𝛅𝐏𝐓]𝐪𝐜 (3.155) 

From the (3.120),(3.141) 𝛅𝐜𝐓 is equal to: 

𝛅𝐜𝐓 = 𝐃𝛅𝐩𝐠𝐩𝐪; 𝐃 =

⎣⎢
⎢⎢
⎡ 𝐃𝟑 𝟎 −𝐃𝟑 𝟎 𝟎 𝟎𝟎 𝟎 𝟎 𝟎 𝟎 𝟎−𝐃𝟑 𝟎 𝐃𝟑 𝟎 𝟎 𝟎𝟎 𝟎 𝟎 𝟎 𝟎 𝟎𝟎 𝟎 𝟎 𝟎 𝟎 𝟎𝟎 𝟎 𝟎 𝟎 𝟎 𝟎⎦⎥

⎥⎥
⎤

; 𝐃𝟑 =
1ℓ𝑝𝑞

(𝐈

− 𝐜𝐩𝐪𝟏𝐜𝐩𝐪𝟏𝐓 ); 
(3.156) 

By considering the expressions of internal forces: 𝐪c
= 𝐀𝟑𝐓𝐀𝟐𝐓𝐀𝟏𝐓Δ𝐪ℓ̂ = [fc1 𝒎𝐓]𝐓 𝒎 = [fc2 fc3 fc4 fc5 fc6 fc7

(3.157) 

The quantity 𝛅(𝐋𝐏𝐓)𝒎  can be written as: 

𝛅(𝐋𝐏𝐓)𝒎 = 𝛅𝐋𝐏𝐓𝒎 + 𝐋𝛅𝐏𝐓𝒎 (3.158) 

In order to evaluate the quantity 𝛅𝐋𝐏𝐓𝒎 it is convenient to define 

the following 18x1vector  

𝐏𝐓𝒎 =

⎣⎢
⎢⎡

𝒏𝟏𝒎𝟏𝒏𝟐𝒎𝟐𝟎𝟔𝒙𝟏⎦⎥
⎥⎤ (3.159) 

From the (3.132)(3.138), the first term of the (3.158) becomes: 
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𝛅𝐋𝐏𝐓𝒎

=

⎣⎢
⎢⎢
⎢⎢
⎡𝐑𝐜δ�̃�𝐂𝒆 𝟎 𝟎 𝟎 𝟎 𝟎𝟎 𝐑𝐜δ�̃�𝐂𝒆 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝐑𝐜δ�̃�𝐂𝒆 𝟎 𝟎 𝟎𝟎 𝟎 𝟎 𝐑𝐜δ�̃�𝐂𝒆 𝟎 𝟎𝟎 𝟎 𝟎 𝟎 𝟎 𝟎𝟎 𝟎 𝟎 𝟎 𝟎 𝟎⎦⎥
⎥⎥
⎥⎥
⎤

⎣⎢
⎢⎡

𝒏𝟏𝒎𝟏𝒏𝟐𝒎𝟐𝟎𝟔𝒙𝟏⎦⎥
⎥⎤

= 𝐋
⎣⎢
⎢⎢
⎢⎡

δ�̃�𝐂𝒆 𝒏𝟏δ�̃�𝐂𝒆 𝒎𝟏δ�̃�𝐂𝒆 𝒏𝟐δ�̃�𝐂𝒆 𝒎𝟐𝟎𝟔𝒙𝟏 ⎦⎥
⎥⎥
⎥⎤

 

(3.160) 

Using the relation �̃�𝐛 = −�̃�𝐚 the previous equation becomes: 

𝛅𝐋𝐏𝐓𝒎 = −𝐋𝐐δ𝛝𝐂𝒆 𝐐 =

⎣⎢
⎢⎢
⎡ �̃�𝟏�̃�𝟏�̃�𝟐�̃�𝟐�̃�𝟔𝒙𝟏⎦⎥

⎥⎥
⎤

 (3.161) 

Finally, using the (3.131) and (3.137) it becomes: 

𝛅𝐋𝐏𝐓𝒎 = −𝐋𝐐𝐆𝐓𝐋𝐓𝛅𝐩𝐠𝐩𝐪 (3.162) 

In order to evaluate the quantity 𝛅𝐏𝐓,

the following matrix in defined: 𝐀𝐆𝐓

= ⎣⎢
⎡0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −ℓ𝑝𝑞 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 ℓ𝑝𝑞 0 0 0 0 0 0 0 0 0

(3.163) 

It is possible to note that: 

𝐀𝐆𝐓 𝐆 = 𝐈 (3.164) 

Differentiation of the above equation gives: 

𝛅𝐀𝐆𝐓 𝐆 + 𝐀𝐆𝐓 𝛅𝐆 = 𝟎 →  𝛅𝐆 = −𝐀𝐆−𝐓𝛅𝐀𝐆𝐓 𝐆 = −𝐆𝛅𝐀𝐆𝐓 𝐆 (3.165) 
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From the definition of 𝐏 in(3.135), it is possible to obtain: 

𝛅𝐏 = −𝐂𝐆 𝛅𝐆𝐓 𝐂𝐆 =

⎣⎢
⎡𝐈𝐈𝟎𝟎⎦⎥

⎤
 (3.166) 

The transpose matrix of 𝛅𝐏 is equal to: 

𝛅𝐏𝐓 = −𝛅𝐆 𝐂𝐆𝐓 =  𝐆 𝛅𝐀𝐆𝐓  𝐆 𝐂𝐆𝐓  (3.167) 

therefore, the quantity 𝐋𝛅𝐏𝐓𝒎: becomes: 

𝐋𝛅𝐏𝐓𝒎 = 𝐋 𝐆 𝛅𝐀𝐆𝐓  𝐆 𝐂𝐆𝐓  𝒎 (3.168) 

After some manipulation the equation (3.168) can be written as: 

𝐋𝛅𝐏𝐓𝒎 = 𝐋 𝐆 𝐚𝐆𝛅𝓵𝐩𝐪 = 𝐋 𝐆 𝐚𝐆 𝐜 𝛅𝐩𝐠𝐩𝐪 (3.169) 

With: 

𝐚𝐆 =

⎣⎢
⎢⎢
⎡ 0η̅ℓ𝑝𝑞

(fc2 + fc5) − 1ℓ𝑝𝑞
(fc3 + fc6)

1ℓ𝑝𝑞
(fc4 + fc7) ⎦⎥

⎥⎥
⎤

 (3.170) 

Combining the (3.155),(3.156),(3.162),(3.172) it is possible to obtain the 

geometrical stiffness matrix expression 𝐊𝐠𝐩𝐪: 

δ𝐁𝐓𝐪𝐜 = (𝐃 − 𝐋𝐐𝐆𝐓𝐋𝐓 + 𝐋 𝐆 𝐚𝐆 𝐜) 𝛅𝐩𝐠𝐩𝐪 = 𝐊𝐠𝐩𝐪 𝛅𝐩𝐠𝐩𝐪 (3.171) 
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3.4.4.5 Transformation 𝛿𝒑𝒄 → 𝛿𝒑𝑔𝑝𝑞 and evaluation of 𝑩 matrix for 

the Approach II 

The transformation between 𝛅𝐩𝐜 and 𝛅𝐩𝐠𝐩𝐪 is given by: 

𝛅𝐩𝐜 = 𝐁𝛅𝐩𝐠𝐩𝐠 → 𝐁 =
𝛅𝐩𝐜𝛅𝐩𝐠𝐩𝐪

 (3.172) 

Where: 

𝜕δϑp̅2𝜕𝐩𝐠𝐩𝐪
= −𝐭𝐩𝟐𝐓 𝜕𝐜𝐩𝐪𝟏𝜕𝐩𝐠𝐩𝐪

− 𝐜pq1𝐓 𝜕𝐭𝐩𝟐𝜕𝐩𝐠𝐩𝐪
 (3.173) 

𝜕δϑp̅3𝜕𝐩𝐠𝐩𝐪
= −𝐭𝐩𝟑𝐓 𝜕𝐜𝐩𝐪𝟏𝜕𝐩𝐠𝐩𝐪

− 𝐜pq1𝐓 𝜕𝐭𝐩𝟑𝜕𝐩𝐠𝐩𝐪
 (3.174) 

𝜕δϑq̅2𝜕𝐩𝐠𝐩𝐪
= −𝐭𝐪𝟐𝐓 𝜕𝐜𝐩𝐪𝟏𝜕𝐩𝐠𝐩𝐪

− 𝐜pq1𝐓 𝜕𝐭𝐪𝟐𝜕𝐩𝐠𝐩𝐪
 (3.175) 

𝜕δϑq̅3𝜕𝐩𝐠𝐩𝐪
= −𝐭𝐪𝟑𝐓 𝜕𝐜𝐩𝐪𝟏𝜕𝐩𝐠𝐩𝐪

− 𝐜pq1𝐓 𝜕𝐭𝐪𝟑𝜕𝐩𝐠𝐩𝐪
 (3.176) 

𝜕δu̅𝜕𝐩𝐠𝐩𝐪
=

𝜕ℓ𝑝𝑞𝜕𝐩𝐠𝐩𝐪
 (3.177) 

𝜕δϑT̅𝜕𝐩𝐠𝐩𝐪
= 𝐭𝐩𝐪𝐓 𝜕𝐭𝐩𝟑𝜕𝐩𝐠𝐩𝐪

+ 𝐭𝐩𝟑𝐓 𝜕𝐭𝐩𝐪𝜕𝐩𝐠𝐩𝐪
 (3.178) 

with: 

∂𝐜𝐩𝐪𝟏∂𝐩𝐠𝐩𝐪
= [𝐜𝐩𝐪𝟏𝐜𝐩𝐪𝟏𝐓 − 𝐈ℓ𝑝𝑞

𝟎𝟑𝒙𝟑 − 𝐜𝐩𝐪𝟏𝐜𝐩𝐪𝟏𝐓 − 𝐈ℓ𝑝𝑞
𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟔]𝐓

 (3.179) 

 

∂𝐭𝐩𝟐∂𝐩𝐠𝐩𝐪

= [𝟎𝟑𝒙𝟑

∂𝐓𝐩∂ϑxp

𝐭𝐩𝟐
𝟎

∂𝐓𝐩∂ϑyp

𝐭𝐩𝟐
𝟎

∂𝐓𝐪∂ϑzp

𝐭𝐩𝟐
𝟎 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟔] (3.180) 

∂𝐭𝐩𝟑∂𝐩𝐠𝐩𝐪

= [𝟎𝟑𝒙𝟑

∂𝐓𝐩∂ϑxp

𝐭𝐩𝟑
𝟎

∂𝐓𝐩∂ϑyp

𝐭𝐩𝟑
𝟎

∂𝐓𝐩∂ϑzp

𝐭𝐩𝟑
𝟎 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟔] (3.181) 

∂𝐭𝐪𝟐∂𝐩𝐠𝐩𝐪

= [𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑

∂𝐓𝐪∂ϑxq

𝐭𝐪𝟐
𝟎

∂𝐓𝐪∂ϑyq

𝐭𝐪𝟐
𝟎

∂𝐓𝐪∂ϑzq

𝐭𝐪𝟐
𝟎 𝟎𝟑𝒙𝟔] (3.182) 

∂𝐭𝐪𝟑∂𝐩𝐠𝐩𝐪

= [𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑

∂𝐓𝐪∂ϑxq

𝐭𝐪𝟑
𝟎

∂𝐓𝐩∂ϑyq

𝐭𝐪𝟑
𝟎

∂𝐓𝐪∂ϑzq

𝐭𝐪𝟑
𝟎 𝟎𝟑𝒙𝟔] (3.183) 
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∂𝐭𝐩𝐪∂𝐩𝐠𝐩𝐪

= [𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑

∂𝐓𝐪∂ϑxq

𝐭𝐩𝟐
𝟎

∂𝐓𝐪∂ϑyq

𝐭𝐩𝟐
𝟎

∂𝐓𝐪∂ϑzq

𝐭𝐩𝟐
𝟎 𝟎𝟑𝒙𝟔] (3.184) 

𝜕ℓ𝑝𝑞𝜕𝐩𝐠𝐩𝐪
= [−𝐜𝐩𝐪𝟏𝐓 𝟎𝟏𝒙𝟑 −𝐜𝐩𝐪𝟏𝐓 𝟎𝟏𝒙𝟑 𝟎𝟏𝒙𝟔] (3.185) 

 

Differentiating the equation (A.25) the following equations are 

obtained. 

∂𝐓𝐧∂ϑxn
=

⎣⎢
⎢⎢⎢
⎡ 0

1

2
ϑyn

1

2
ϑzn

1

2
ϑyn −ϑxn −1

1

2
ϑzn 1 ϑxn ⎦⎥

⎥⎥⎥
⎤

(n = p, q) (3.186) 

∂𝐓𝐧∂ϑyn
=

⎣⎢
⎢⎢⎢
⎡−ϑyn

1

2
ϑxn 1

1

2
ϑxn 0

1

2
ϑzn

−1
1

2
ϑzn −ϑyn⎦⎥

⎥⎥⎥
⎤

(n = p, q) (3.187) 

∂𝐓𝐧∂ϑzn
=

⎣⎢
⎢⎢⎢
⎡−ϑzn −1

1

2
ϑxn

1 −ϑzn
1

2
ϑyn

1

2
ϑxn

1

2
ϑyn 0 ⎦⎥

⎥⎥⎥
⎤

(n = p, q) (3.188) 

In the same way it is possible to differentiate the equation (A.24) in 

order to obtain a more accurate transformation. 

After some manipulations the matrix 𝐁 is obtained 

𝐁 =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡−𝐭𝐩𝟐

𝐓 {∂𝐜𝐩𝐪𝟏∂𝐩𝐠

}
𝟏:𝟑,𝟏:𝟑

−𝐜𝐩𝐪𝟏
𝐓 {∂𝐭𝐩𝟐∂𝐩𝐠

}
𝟏:𝟑,𝟒:𝟔

−𝐭𝐪𝟐
𝐓 {∂𝐜𝐩𝐪𝟏∂𝐩𝐠

}
𝟏:𝟑,𝟕:𝟗

𝟎𝟏𝐱𝟑

−𝐭𝐩𝟑
𝐓 {∂𝐜𝐩𝐪𝟏∂𝐩𝐠

}
𝟏:𝟑,𝟏:𝟑

−𝐜𝐩𝐪𝟏
𝐓 {∂𝐭𝐩𝟑∂𝐩𝐠

}
𝟏:𝟑,𝟒:𝟔

−𝐭𝐩𝟑
𝐓 {∂𝐜𝐩𝐪𝟏∂𝐩𝐠

}
𝟏:𝟑,𝟕:𝟗

𝟎𝟏𝐱𝟑

−𝐭𝐪𝟐
𝐓 {∂𝐜𝐩𝐪𝟏∂𝐩𝐠

}
𝟏:𝟑,𝟏:𝟑

𝟎𝟏𝐱𝟑 −𝐭𝐪𝟐
𝐓 {∂𝐜𝐩𝐪𝟏∂𝐩𝐠

}
𝟏:𝟑,𝟕:𝟗

−𝐜𝐩𝐪𝟏
𝐓 {∂𝐭𝐪𝟐∂𝐩𝐠

}
𝟏:𝟑,𝟏𝟎:𝟏𝟐

−𝐭𝐪𝟑
𝐓 {∂𝐜𝐩𝐪𝟏∂𝐩𝐠

}
𝟏:𝟑,𝟏:𝟑

𝟎𝟏𝐱𝟑 −𝐭𝐪𝟑
𝐓 {∂𝐜𝐩𝐪𝟏∂𝐩𝐠

}
𝟏:𝟑,𝟕:𝟗

−𝐜𝐩𝐪𝟏
𝐓 {∂𝐭𝐪𝟑∂𝐩𝐠

}
𝟏:𝟑,𝟏𝟎:𝟏𝟐−𝐜𝐩𝐪𝟏

𝐓 𝟎𝟏𝐱𝟑 𝐜𝐩𝐪𝟏
𝐓 𝟎𝟏𝐱𝟑

𝟎𝟏𝐱𝟑 𝐭𝐩𝐪
𝐓 {∂𝐭𝐪𝟑∂𝐩𝐠

}
𝟏:𝟑,𝟒:𝟔

𝟎𝟏𝐱𝟑 𝐭𝐩𝟑
𝐓 {∂𝐭𝐩𝐪∂𝐩𝐠

}
𝟏:𝟑,𝟒:𝟔

𝟎𝟔𝐱𝟔

𝟎𝟔𝐱𝟔 𝐈𝟔𝐱𝟔 ⎦⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 (3.189) 
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The symbol {𝐗}j
0

:j
1

,i
0

:i
1
 indicate a partition of the matrix 𝐗 and 

j0, j1, i0, i1are respectively minimum and maximum index of the row and 

column of the matrix. 

3.4.4.6 Evaluation of 𝜹𝑩 matrix - Approach II 

The evaluation of 𝛅𝐁 follows the same derivation already provided 

by Izzuddin in [65]. For completeness, this derivation is reported again in 

the following.  

Differentiating twice the equation (A.25) the following equations are 

obtained. 

∂2𝐓𝐧∂ϑxn2 = [0 0 0
0 −1 0
0 0 −1

] (𝑛 = p, q) (3.190) 

∂2𝐓𝐧∂ϑyn2 = [−1 0 0
0 0 0
0 0 −1

] (𝑛 = p, q) (3.191) 

∂2𝐓𝐧∂ϑzn2 = [−1 0 0
0 −1 0
0 0 0

] (𝑛 = p, q) (3.192) 

 

∂2𝐓𝐧∂ϑxn ∂ϑyn
=

∂2𝐓𝐧∂ϑyn ∂ϑxn
= [ 0 1/2 0

1/2 0 0
0 0 0

] (𝑛 = p, q) (3.193) 

∂2𝐓𝐧∂ϑxn ∂ϑzn
=

∂2𝐓𝐧∂ϑzn ∂ϑxn
= [ 0 0 1/2

0 0 0
1/2 0 0

] (𝑛 = p, q) (3.194) 

∂2𝐓𝐧∂ϑyn ∂ϑzn
=

∂2𝐓𝐧∂ϑzn ∂ϑyn
= [0 0 0

0 0 1/2
0 1/2 0

] (𝑛 = p, q) (3.195) 

In the same way it is possible to differentiate twice the equation 

(A.24) in order to obtain a more accurate transformation. 

 

𝚲𝟏 =
3(𝐜𝐩𝐪𝟏𝐜𝐩𝐪𝟏

𝐓 )c𝑝𝑞11 − 𝐜𝐩𝐪𝟏{𝐈}𝟏,𝟏:𝟑 − (𝐜𝐩𝐪𝟏{𝐈}𝟏,𝟏:𝟑)𝐓 − c𝑝𝑞11𝐈
ℓ𝑝𝑞

2
 (3.196) 
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𝚲𝟐 =
3(𝐜𝐩𝐪𝟏𝐜𝐩𝐪𝟏

𝐓 )c𝑝𝑞12 − 𝐜𝐩𝐪𝟏{𝐈}𝟐,𝟏:𝟑 − (𝐜𝐩𝐪𝟏{𝐈}𝟐,𝟏:𝟑)𝐓 − c𝑝𝑞12𝐈
ℓ𝑝𝑞

2
 (3.197) 

𝚲𝟑 =
3(𝐜𝐩𝐪𝟏𝐜𝐩𝐪𝟏

𝐓 )c𝑝𝑞13 − 𝐜𝐩𝐪𝟏{𝐈}𝟑,𝟏:𝟑 − (𝐜𝐩𝐪𝟏{𝐈}𝟑,𝟏:𝟑)𝐓 − c𝑝𝑞13𝐈
ℓ𝑝𝑞

2
 (3.198) 

 

∂2c𝑝𝑞1𝑘∂2𝐩𝐠𝐩𝐪
=

⎣⎢
⎢⎢
⎡ 𝚲𝒌 𝟎𝟑𝒙𝟑 −𝚲𝒌 𝟎𝟑𝒙𝟑𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑𝚲𝒌 𝟎𝟑𝒙𝟑 −𝚲𝒌 𝟎𝟑𝒙𝟑𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑

𝟎𝟔𝒙𝟔

𝟎𝟔𝒙𝟔 𝐈𝟔𝒙𝟔 ⎦⎥
⎥⎥
⎤

 (3.199) 

∂2tpmk∂2𝐩𝐠𝐩𝐪

=

⎣
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡

𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟏 𝟎𝟑𝐱𝟏 𝟎𝟑𝐱𝟏 𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟑

𝟎𝟏𝐱𝟑 {∂2𝐓𝐩∂ϑxp
2

}
𝐤,𝟏:𝟑

𝐭𝐩𝐦
𝟎 { ∂2𝐓𝐩∂ϑxp ∂ϑyp

}
𝐤,𝟏:𝟑

𝐭𝐩𝐦
𝟎 { ∂2𝐓𝐩∂ϑxp ∂ϑzp

}
𝐤,𝟏:𝟑

𝐭𝐩𝐦
𝟎 𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟑

𝟎𝟏𝐱𝟑 { ∂2𝐓𝐩∂ϑyp ∂ϑxp

}
𝐤,𝟏:𝟑

𝐭𝐩𝐦
𝟎 {∂2𝐓𝐩∂ϑyp

2
}

𝐤,𝟏:𝟑

𝐭𝐩𝐦
𝟎 { ∂2𝐓𝐩∂ϑyp ∂ϑzp

}
𝐤,𝟏:𝟑

𝐭𝐩𝐦
𝟎 𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟑

𝟎𝟏𝐱𝟑 { ∂2𝐓𝐩∂ϑzp ∂ϑxp

}
𝐤,𝟏:𝟑

𝐭𝐩𝐦
𝟎 { ∂2𝐓𝐩∂ϑzp ∂ϑyp

}
𝐤,𝟏:𝟑

𝐭𝐩𝐦
𝟎 {∂2𝐓𝐩∂ϑzp

2
}

𝐤,𝟏:𝟑

𝐭𝐩𝐦
𝟎 𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟑

𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟏 𝟎𝟑𝐱𝟏 𝟎𝟑𝐱𝟏 𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟑𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟏 𝟎𝟑𝐱𝟏 𝟎𝟑𝐱𝟏 𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟑𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟏 𝟎𝟑𝐱𝟏 𝟎𝟑𝐱𝟏 𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟑

𝟎𝟔𝐱𝟔

𝟎𝟔𝐱𝟔 𝐈𝟔𝐱𝟔⎦
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤

 (3.200) 

∂2tqmk∂2𝐩𝐠𝐩𝐪

=

⎣
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡

𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟏 𝟎𝟑𝐱𝟏 𝟎𝟑𝐱𝟏𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟏 𝟎𝟑𝐱𝟏 𝟎𝟑𝐱𝟏𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟏 𝟎𝟑𝐱𝟏 𝟎𝟑𝐱𝟏𝟎𝟏𝐱𝟑 𝟎𝟏𝐱𝟑 𝟎𝟏𝐱𝟑 𝟎𝟑𝐱𝟏 𝟎𝟑𝐱𝟏 𝟎𝟑𝐱𝟏

𝟎𝟏𝐱𝟑 𝟎𝟏𝐱𝟑 𝟎𝟏𝐱𝟑 {∂2𝐓𝐪

∂ϑxq
2

}
𝐤,𝟏:𝟑

𝐭𝐪𝐦
𝟎 { ∂2𝐓𝐪

∂ϑxq ∂ϑyq

}
𝐤,𝟏:𝟑

𝐭𝐪𝐦
𝟎 { ∂2𝐓𝐪

∂ϑxq ∂ϑzq

}
𝐤,𝟏:𝟑

𝐭𝐪𝐦
𝟎

𝟎𝟏𝐱𝟑 𝟎𝟏𝐱𝟑 𝟎𝟏𝐱𝟑 { ∂2𝐓𝐪

∂ϑyq ∂ϑxq

}
𝐤,𝟏:𝟑

𝐭𝐪𝐦
𝟎 {∂2𝐓𝐪

∂ϑyq
2

}
𝐤,𝟏:𝟑

𝐭𝐪𝐦
𝟎 { ∂2𝐓𝐪

∂ϑyq ∂ϑzq

}
𝐤,𝟏:𝟑

𝐭𝐪𝐦
𝟎

𝟎𝟏𝐱𝟑 𝟎𝟏𝐱𝟑 𝟎𝟏𝐱𝟑 { ∂2𝐓𝐪

∂ϑzq ∂ϑxq

}
𝐤,𝟏:𝟑

𝐭𝐪𝐦
𝟎 { ∂2𝐓𝐪

∂ϑzq ∂ϑyq

}
𝐤,𝟏:𝟑

𝐭𝐪𝐦
𝟎 {∂2𝐓𝐪

∂ϑzq
2

}
𝐤,𝟏:𝟑

𝐭𝐪𝐦
𝟎

𝟎𝟔𝐱𝟔

𝟎𝟔𝐱𝟔 𝐈𝟔𝐱𝟔 ⎦
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤

 (3.201) 

∂2tqpk∂2𝐩𝐠𝐩𝐪

=

⎣
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡

𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟏 𝟎𝟑𝒙𝟏 𝟎𝟑𝒙𝟏𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟏 𝟎𝟑𝒙𝟏 𝟎𝟑𝒙𝟏𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟏 𝟎𝟑𝒙𝟏 𝟎𝟑𝒙𝟏𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟏 𝟎𝟑𝒙𝟏 𝟎𝟑𝒙𝟏

𝟎𝟏𝒙𝟑 𝟎𝟏𝒙𝟑 𝟎𝟏𝒙𝟑 {∂2𝐓𝐪

∂ϑxq
2

}
𝒌,𝟏:𝟑

𝐭𝐩𝟑
𝟎 { ∂2𝐓𝐪

∂ϑxq ∂ϑyq

}
𝒌,𝟏:𝟑

𝐭𝐩𝟑
𝟎 { ∂2𝐓𝐪

∂ϑxq ∂ϑzq

}
𝒌,𝟏:𝟑

𝐭𝐩𝟑
𝟎

𝟎𝟏𝒙𝟑 𝟎𝟏𝒙𝟑 𝟎𝟏𝒙𝟑 { ∂2𝐓𝐪

∂ϑyq ∂ϑxq

}
𝒌,𝟏:𝟑

𝐭𝐩𝟑
𝟎 {∂2𝐓𝐪

∂ϑyq
2

}
𝒌,𝟏:𝟑

𝐭𝐩𝟑
𝟎 { ∂2𝐓𝐪

∂ϑyq ∂ϑzq

}
𝒌,𝟏:𝟑

𝐭𝐩𝟑
𝟎

𝟎𝟏𝒙𝟑 𝟎𝟏𝒙𝟑 𝟎𝟏𝒙𝟑 { ∂2𝐓𝐪

∂ϑzq ∂ϑxq

}
𝒌,𝟏:𝟑

𝐭𝐩𝟑
𝟎 { ∂2𝐓𝐪

∂ϑzq ∂ϑyq

}
𝒌,𝟏:𝟑

𝐭𝐩𝟑
𝟎 {∂2𝐓𝐪

∂ϑzq
2

}
𝒌,𝟏:𝟑

𝐭𝐩𝟑
𝟎

𝟎𝟔𝒙𝟔

𝟎𝟔𝒙𝟔 𝐈𝟔𝒙𝟔 ⎦
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤

 

 

(3.202) 

With: 
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• m = 2,3 local axis direction; 

• k = 1,2,3  

 

𝛅𝐁𝟏 =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡ − ∑ ({∂2c𝑝𝑞1𝑘∂2𝐩𝐠𝐩𝐪

}
𝟏:𝟑,𝟏:𝟑

tp2k)𝟑

𝒌=𝟏

− {(∂𝐜𝒑𝒒𝟏∂𝐩𝐠𝐩𝐪

)𝐓 ( ∂𝐭𝒑𝟐∂𝐩𝐠𝐩𝐪

)}
𝟏:𝟑,𝟒,𝟔

− ∑ ({∂2c𝑝𝑞1𝑘∂2𝐩𝐠𝐩𝐪

}
𝟏:𝟑,𝟕:𝟗

tp2k)𝟑

𝒌=𝟏

𝟎𝟑𝒙𝟑

− {(∂𝐜𝒑𝒒𝟏∂𝐩𝐠𝐩𝐪

)𝐓 ( ∂𝐭𝒑𝟐∂𝐩𝐠𝐩𝐪

)}
4:𝟗,1,3

− ∑ ({ ∂2t𝑝2𝑘∂2𝐩𝐠𝐩𝐪

}
𝟒:𝟔,𝟒:𝟔

c𝑝𝑞1𝑘)𝟑

𝒌=𝟏

𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑

− ∑ ({∂2c𝑝𝑞1𝑘∂2𝐩𝐠𝐩𝐪

}
𝟕:𝟗,𝟏:𝟑

tp2k)𝟑

𝒌=𝟏

𝟎𝟑𝒙𝟑 − ∑ ({∂2c𝑝𝑞1𝑘∂2𝐩𝐠𝐩𝐪

}
𝟕:𝟗,𝟕:𝟗

tp2k)𝟑

𝒌=𝟏

𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑

𝟎𝟔𝒙𝟔

𝟎𝟔𝒙𝟔 𝟎𝟔𝒙𝟔⎦⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤

 (3.203) 

𝛅𝐁𝟐 =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡ − ∑ ({∂2c𝑝𝑞1𝑘∂2𝐩𝐠𝐩𝐪

}
𝟏:𝟑,𝟏:𝟑

tp3k)𝟑

𝒌=𝟏

− {(∂𝐜𝒑𝒒𝟏∂𝐩𝐠𝐩𝐪

)𝐓 ( ∂𝐭𝒑𝟑∂𝐩𝐠𝐩𝐪

)}
𝟏:𝟑,𝟒,𝟔

− ∑ ({∂2c𝑝𝑞11∂2𝐩𝐠𝐩𝐪

}
𝟏:𝟑,𝟕:𝟗

tp3k)𝟑

𝒌=𝟏

𝟎𝟑𝒙𝟑

− {(∂𝐜𝒑𝒒𝟏∂𝐩𝐠𝐩𝐪

)𝐓 ( ∂𝐭𝒑𝟑∂𝐩𝐠𝐩𝐪

)}
4:𝟗,1,3

− ∑ (c𝑝𝑞1𝑘 { ∂2t𝑝3𝑘∂2𝐩𝐠𝐩𝐪

}
𝟒:𝟔,𝟒:𝟔

)𝟑

𝒌=𝟏

𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑

− ∑ ({∂2c𝑝𝑞1𝑘∂2𝐩𝐠𝐩𝐪

}
𝟕:𝟗,𝟏:3

tp3k)𝟑

𝒌=𝟏

𝟎𝟑𝒙𝟑 − ∑ ({∂2c𝑝𝑞11∂2𝐩𝐠𝐩𝐪

}
𝟕:𝟗,𝟕:𝟗

tp3k)𝟑

𝒌=𝟏

𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑

𝟎𝟔𝒙𝟔

𝟎𝟔𝒙𝟔 𝟎𝟔𝒙𝟔⎦⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤

 (3.204) 

𝛅𝐁𝟑 =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡ − ∑ ({∂2c𝑝𝑞1𝑘∂2𝐩𝐠𝐩𝐪

}
𝟏:𝟑,𝟏:𝟑

tq2k)𝟑

𝒌=𝟏

𝟎𝟑𝒙𝟑 − ∑ ({∂2c𝑝𝑞11∂2𝐩𝐠𝐩𝐪

}
𝟏:𝟑,𝟕:𝟗

tq2k)𝟑

𝒌=𝟏

− {(∂𝐜𝒑𝒒𝟏∂𝐩𝐠𝐩𝐪

)𝐓 ( ∂𝐭𝒒𝟐∂𝐩𝐠𝐩𝐪

)}
𝟏:𝟑,𝟏𝟎,𝟏𝟐𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑

− ∑ ({∂2c𝑝𝑞1𝑘∂2𝐩𝐠𝐩𝐪

}
𝟕:𝟗,𝟏:𝟑

tq2k)𝟑

𝒌=𝟏

𝟎𝟑𝒙𝟑 − ∑ ({∂2c𝑝𝑞1𝑘∂2𝐩𝐠𝐩𝐪

}
𝟕:𝟗,𝟕:𝟗

tq2k)𝟑

𝒌=𝟏

𝟎𝟑𝒙𝟑

− {(∂𝐜𝒑𝒒𝟏∂𝐩𝐠𝐩𝐪

)𝐓 ( ∂𝐭𝒒𝟐∂𝐩𝐠𝐩𝐪

)}
𝟏𝟎:𝟏𝟐,𝟏,𝟑

𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 − ∑ (c𝑝𝑞1𝑘 { ∂2t𝑞2𝑘∂2𝐩𝐠𝐩𝐪

}
𝟏𝟎:𝟏𝟐,𝟏𝟎:𝟏𝟐

)𝟑

𝒌=𝟏

𝟎𝟔𝒙𝟔

𝟎𝟔𝒙𝟔 𝟎𝟔𝒙𝟔⎦⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤

 (3.205) 

𝛅𝐁𝟒 =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡ − ∑ ({∂2c𝑝𝑞1𝑘∂2𝐩𝐠𝐩𝐪

}
𝟏:𝟑,𝟏:𝟑

tq3k)𝟑

𝒌=𝟏

𝟎𝟑𝒙𝟑 − ∑ ({∂2c𝑝𝑞11∂2𝐩𝐠𝐩𝐪

}
𝟏:𝟑,𝟕:𝟗

tq3k)𝟑

𝒌=𝟏

− {(∂𝐜𝒑𝒒𝟏∂𝐩𝐠𝐩𝐪

)𝐓 ( ∂𝐭𝒒𝟑∂𝐩𝐠𝐩𝐪

)}
𝟏:𝟑,𝟏𝟎,𝟏𝟐𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑

− ∑ ({∂2c𝑝𝑞1𝑘∂2𝐩𝐠𝐩𝐪

}
𝟕:𝟗,𝟏:𝟑

tq3k)𝟑

𝒌=𝟏

𝟎𝟑𝒙𝟑 − ∑ ({∂2c𝑝𝑞1𝑘∂2𝐩𝐠𝐩𝐪

}
𝟕:𝟗,𝟕:𝟗

tq3k)𝟑

𝒌=𝟏

𝟎𝟑𝒙𝟑

− {(∂𝐜𝒑𝒒𝟏∂𝐩𝐠𝐩𝐪

)𝐓 ( ∂𝐭𝒒𝟑∂𝐩𝐠𝐩𝐪

)}
𝟏𝟎:𝟏𝟐,𝟏,𝟑

𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 − ∑ (c𝑝𝑞1𝑘 { ∂2t𝑞3𝑘∂2𝐩𝐠𝐩𝐪

}
𝟏𝟎:𝟏𝟐,𝟏𝟎:𝟏𝟐

)𝟑

𝒌=𝟏

𝟎𝟔𝒙𝟔

𝟎𝟔𝒙𝟔 𝟎𝟔𝒙𝟔⎦⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤

 (3.206) 

𝛅𝐁𝟓 =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎡− {𝜕𝐜𝒑𝒒𝟏𝜕𝐩𝐠𝐩𝐪

}
𝟏:𝟑,𝟏:𝟑

𝟎𝟑𝒙𝟑 − {𝜕𝐜𝒑𝒒𝟏𝜕𝐩𝐠𝐩𝐪

}
𝟏:𝟑,𝟕:9

𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑

− {𝜕𝐜𝒑𝒒𝟏𝜕𝐩𝐠𝐩𝐪

}
𝟕:9,𝟏:𝟑

𝟎𝟑𝒙𝟑 − {𝜕𝐜𝒑𝒒𝟏𝜕𝐩𝐠𝐩𝐪

}
𝟕:9,𝟕:9

𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑 𝟎𝟑𝒙𝟑

𝟎𝟔𝒙𝟔

𝟎𝟔𝒙𝟔 𝟎𝟔𝒙𝟔⎦⎥
⎥⎥
⎥⎥
⎥⎥
⎤

 (3.207) 

𝛅𝐁𝟔 =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡

𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟑

𝟎𝟑𝐱𝟑 ∑ ({ ∂2tp3k∂2𝐩𝐠𝐩𝐪

}
𝟒:𝟔,𝟒:𝟔

tpqk)𝟑

𝐤=𝟏

𝟎𝟑𝐱𝟑 {( ∂𝐭𝐩𝟑∂𝐩𝐠𝐩𝐪

)𝐓 ( ∂𝐭𝐩𝐪∂𝐩𝐠𝐩𝐪

)}
𝟒:𝟔,𝟏𝟎,𝟏𝟐𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟑 𝟎𝟑𝐱𝟑

𝟎𝟑𝐱𝟑 {( ∂𝐭𝐩𝟑∂𝐩𝐠𝐩𝐪

)𝐓 ( ∂𝐭𝐩𝐪∂𝐩𝐠𝐩𝐪

)}
𝟏𝟎:𝟏𝟐,𝟒,𝟔

𝟎𝟑𝐱𝟑 ∑ ({ ∂2𝐭pqk∂2𝐩𝐠𝐩𝐪

}
𝟏𝟎:𝟏𝟐,𝟏𝟎:𝟏𝟐

tp3k)𝟑

𝐤=𝟏

𝟎𝟔𝐱𝟔

𝟎𝟔𝐱𝟔 𝟎𝟔𝐱𝟔⎦⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤

 (3.208) 



 3 A solid co-rotational discrete macro-element 

 

 

 

100 

 

It is important to note that matrices 𝛅𝐁𝐧 are symmetric because of 

the way in which the co-rotational degrees of freedom were defined.   
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3.5  Comparison between Approach I and Approach II 

The two co-rotational framework adopted in this thesis do not 

produce differences in terms of results, both lead to accurate results as 

better specified in Chapter 4 reporting some numerical applications.  

The first approach is based on the Rodriguez formula and no 

kinematic approximation is adopted. The rotational degrees of freedom 

are the spatial form of the pseudo-rotational vector 𝝑. If the convergence 

is possible, each step of the analysis can be arbitrarily large (‖𝛿𝝑‖ < 2𝜋) 

without introducing errors, however the step has to be maintained small 

enough if constitutive nonlinearities have taken into account. It is also 

possible to transform the non-additive spatial pseudo rotational vector 𝝑 

to the additive pseudo vector 𝝍 using the connection 𝑇𝑠(𝜓) (A.22) and 

modifying the geometrical stiffness matrix. However, this possibility has 

not been investigated in this thesis because it is not needed to evaluate a 

unique transformation 𝐑 = exp (𝝍) that moves the body from the initial 

to the final point. Due to the nature of the rotations and the kinematic 

formulation without approximation, the geometric stiffness matrix is not 

symmetric.  

In the second approach an incremental strategy is used to model the 

effect of large rotations, an improved rotational transformation matrix is 

adopted in order to reduce spurious lengthening of vectors upon rotation. 

The calculation of rotations in the system is performed incrementally 

using element-based vectors. This approach leads to a symmetric stiffness 

matrix.  

Since the non-linearity of the material of the masonry structures 

imposes the use of an incremental numerical procedure this strategy 

appears particularly advantageous when both material and geometrical 
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nonlinearities have to be taken into account the second approach is 

computationally less demanding in a single step. 

 

3.6  Virtual Work Principle 

The internal Virtual Work under the assumption of small 

deformation can be written in the following form: 

 

𝐿𝑖𝑒𝑙𝑒𝑚𝑒𝑛𝑡 + 𝐿𝑖𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

= ∭ 𝛅𝐮T𝜌𝐛𝑑𝑉
𝑉

+ ∬ 𝛅𝐮T𝐭𝐧
Γ

𝑑Γ

− ∭ 𝛅𝐮T𝜌�̈�𝑑𝑉
𝑉

 

 (3.209) 

 

 

Where: 

• 𝛅 symbol means virtual. 

• 𝐛 is a field of mass forces; 

• �̈� is the acceleration field; 

𝐭𝐧 is a field of forces that are applied on the boundary;  

3.6.1 The internal virtual work and stiffness matrix of the 

element 

In this paragraph, the stiffness matrix of the macro-element is 

obtained. The main idea is that the element is treated as a continuum 

that can only perform pure shear deformations. Differently with the 

classical formulation of the DMEM discussed in Chapter 2, the proposed 
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formulation assumes that all the point of the element is subjected to a 

transformation that is a “pure” shear deformation (3.12): 

𝐿𝑖𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = ∭ 𝑡𝑟(𝐓 ∙ �̃�)𝑑𝑉
𝑉

= ∭ 𝜏12γ12̃ + 𝜏13γ13̃ + 𝜏23γ23̃𝑑𝑉
𝑉

 

(3.210) 

The constitutive law for the linear elastic isotropic material is: 

𝐓 = λ(𝑡𝑟𝐄)𝐈 + 2µ𝐄 (3.211) 

where: 

• λ = Eυ2(1+2𝜐)
 

• µ = G = E2(1+𝜐)
 

• υ is the Poisson ratio 

• E is the Young modulus 

• G is the shear modulus 

Using the (3.12) the equation (3.211) is equal to: 

𝐓 = 2G𝐄 = [ 0 Gγ12 Gγ13
Gγ12 0 Gγ23
Gγ13 Gγ23 0

] (3.212) 

Defining the following vectors: 

𝛕T = [𝜏12 𝜏13 𝜏23] (3.213) 

𝛄T = [γ12 γ13 γ23] (3.214) 

The equation (3.212) can be written as: 

𝛕 = G𝛄 (3.215) 

The internal virtual work with the hypothesis of homogeneous 

linearized strain is equal to: 
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𝐿𝑖𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = ∭ 𝛅𝛄𝐓𝛕 𝑑𝑉 =

𝑉
∭ 𝛅𝛄𝐓G𝛄𝑑𝑉
𝑉

= 𝛅𝛄𝐓G𝑉𝛄 (3.216) 

Using global degrees of freedom 𝛅𝐩𝐠 the internal virtual work is 

equal to: 

𝐿𝑖𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = 𝛅𝐩𝐠𝐓

⎣⎢
⎢⎡

𝟎6𝑥6 𝟎6𝑥1 𝟎6𝑥1 𝟎6𝑥1𝟎1𝑥6 G𝑉 0 0𝟎1𝑥6 0 G𝑉 0𝟎1𝑥6 0 0 G𝑉 ⎦⎥
⎥⎤  𝐩𝐠 = 𝛅𝐩𝐠𝐓𝐪𝐠 (3.217) 

𝛅𝐪𝐠 = 𝐊𝒆𝒍𝛅𝐩𝐠 𝐊𝒆𝒍 =

⎣⎢
⎢⎡

𝟎6𝑥6 𝟎6𝑥1 𝟎6𝑥1 𝟎6𝑥1𝟎1𝑥6 G𝑉 0 0𝟎1𝑥6 0 G𝑉 0𝟎1𝑥6 0 0 G𝑉 ⎦⎥
⎥⎤ (3.218) 

The quantity  𝐊𝒆𝒍 is related to the stiffness matrix contribution of 

the element related to its shear deformability. Note that the matrix here 

obtained is valid for the isotropic elastic material. Following the same 

approach, it is possible to obtain the stiffness matrix for the orthotropic 

elastic material. According to the DMEM the material non-linearity is 

managed using a variable G shear modulus. 

3.6.2 The internal virtual work contribution and stiffness 

matrix of the interface  

The internal virtual work is evaluated in the paragraph 3.2. The 

equation (3.6) and (3.8) reports respectively the internal virtual work and 

the stiffness matrices. 

Geometric stiffness matrix: δ𝐁𝐓𝐪𝐜 = 𝐊𝐠𝒊𝒏𝒕δ𝐩𝐠𝐩𝐪  (3.219) 

Material stiffness matrix: 𝐁𝐓𝐊𝐜𝐁δ𝐩𝐠𝐩𝐪 = 𝐊𝐦𝒊𝒏𝒕δ𝐩𝐠𝐩𝐪 (3.220) 
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3.6.3 External Virtual Work  

 

𝐿𝑣𝑒 = ∭ 𝛅𝐮T𝜌𝐛𝑑𝑉
𝑉

+ ∬ 𝛅𝐮T𝐭𝐧
Γ

𝑑Γ − ∭ 𝛅𝐮T𝜌�̈�𝑑𝑉
𝑉

+ ∑ 𝛅𝐮𝐣T(xj, y
j
, zj)𝐅𝐣(xj, y

j
, zj)

𝑚

𝑗=1
 

(3.221) 

The first integral is related to the volume forces, the second one is 

related to the boundary forces the third is related to the kinematic energy, 

last term is related to the concentrated forces directly applied to the 

element. As descripted before, the vector 𝛅𝐮T is a displacement field and 

it is dependent from the coordinates 𝛅𝐮T(x, y, z) . Using the intrisic 

reference system, the first integral is equal to: 

𝐿𝑣𝑒 = 𝛅𝐩
𝓵

T ∭ 𝚿𝐓𝜌𝐛 det(J)𝑑𝜉 𝑑𝜂 𝑑𝜁
1

−1
 (3.222) 

𝐩
𝓵
 is a vector that contains nodal displacement referred to the 

global reference system.  

Using the equation (3.14) the following equation is obtained: 

𝛿𝐩
𝓵

=

⎣⎢
⎢⎢
⎢⎢
⎢⎡

𝐁
𝓵𝟏𝐁
𝓵𝟐𝐁
𝓵𝟑𝐁
𝓵𝟒𝐁
𝓵𝟓𝐁
𝓵𝟔𝐁
𝓵𝟕𝐁
𝓵𝟖⎦⎥

⎥⎥
⎥⎥
⎥⎤

𝛿𝛄 = 𝐁
𝓵
𝛿𝛄 → 𝛿𝐩

𝓵
= 𝐃 𝛅𝐩𝐠 (3.223) 

Using the (3.223) and (3.222) the external virtual work in terms of 

global degrees of freedom is obtained: 

𝐿𝑣𝑒 = 𝛅𝐩𝐠𝐓𝐃𝐓 ∭ 𝚿𝐓𝜌𝐛 det(J)𝑑𝜉 𝑑𝜂 𝑑𝜁
1

−1
 (3.224) 
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In order to obtain the external virtual work related to concentrated 

forces it is important to apply the force 𝐅𝐣(xj, yj, zj) in the intrinsic 

reference system. So, the coordinates of points 𝐏𝐣 = {xj, yj, zj} in the 

intrinsic reference system are needed {𝜉𝑗, 𝜂𝑗, 𝜁𝑗}. 

𝐿𝑣𝑒 = 𝛅𝐩
𝓵

T ∑ 𝚿𝐓𝐅𝐣(𝜉𝑗, 𝜂𝑗, 𝜁𝑗)
𝑚

𝑗=1
 (3.225) 

with: 

xj = ∑ Ψi{𝜉𝑗, 𝜂𝑗, 𝜁𝑗}xi
8

i=1
yj = ∑ Ψi{𝜉𝑗, 𝜂𝑗, 𝜁𝑗}yi

8

i=1
zj = ∑ Ψi{𝜉𝑗, 𝜂𝑗, 𝜁𝑗}zi

8

i=1

 (3.226) 

In this case {𝜉𝑗, 𝜂𝑗, 𝜁𝑗} are the unknown quantities of the (3.226). 

Solving the previous equation, and, using the (3.223),(3.225) the external 

virtual work in terms of global degrees of freedom is obtained: 

𝐿𝑣𝑒 = 𝛅𝐩𝐠𝐓𝐃𝐓 ∑ 𝚿𝐓𝐅𝐣(𝜉𝑗, 𝜂𝑗, 𝜁𝑗)
𝑚

𝑗=1
 (3.227) 
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3.7 Mechanical characterization of the model 

This subsection describes the mechanical characterised of the that 

follows the same strategy described in paragraph 2.5 with reference to the 

discrete macro-elements already proposed in the context of the DMEM.  

3.7.1 Linear Elastic Calibration 

The proposed model solid element has a lot of capabilities and the 

mechanical calibration procedures differ according to the particular 

problem under investigation. Differently from the spatial macro-elements 

already introduced, the solid element here proposed has been formulated 

considered continuous distributed interfaces which inherit and 

concentrate the mechanical properties of the related structure macro-

portion. As better specified in the following, the solid element can be also 

successfully used for model different structural typologies such as steel 

and concrete structures.  

The homogenization technique is based on a straightforward fiber 

approach. Each interface is a 2D continuous surface having a three-

dimensional stiffness matrix (3.62) that synthetize the mechanical 

behaviour of the adjacent elements that connects. The properties of the 

zero-thickness interface are directly related to the adjacent element 

material characteristics and their integration follows a Gauss quadrature 

strategy.   
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using Mohr-Coulomb failure mechanisms and the shear element 

deformability is modelled using three Turnsek-Cacovic constitutive laws.  

 

Flexural mechanism (Fracture 

Energy constitutive law) 

Sliding mechanism (Mohr-

Coulomb yieldning criterion) 

3 Shear diagonal mechanism 

(Turnsek-Cacovic 

constitutive law) 

𝑬, Young’s modulus 𝐺, Shear modulus; 𝐺, Shear modulus; 

𝒇𝒄, Compression Strength; 𝑐, cohesion; 𝜏0, tangential strength; 

𝑮𝒇,𝑪  Compression fracture 

Energy 
𝑡𝑎𝑛𝜙, friction coefficient;  

𝒇𝒕, Tensile Strength; 
𝐺𝑓,𝐼𝐼  shear fracturalas 

Energy (MODE II) 
 

𝑮𝒇,𝑰  Tensile fracture 

Energy (MODE I) 
  

Table 3 – Mechanical parameters 

These parameters are needed for each macro element. 
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assumed to make reference to the fracture related to the minimum value 

of strength. This assumption is justified by the consideration that if a 

fiber reaches his limit first, it starts to flow plastically and the other fiber 

cannot reach the softening branch. It is clear that this assumption is a 

simplification of more complex behaviour however it allows to contains 

the degrees of freedom to be considered and provides sufficiently accurate 

results as shown in the next chapter. 

 

It is worth to notice that more complex constitutive laws can 

attributed to the nonlinear two-dimensional zero-thickness interfaces and 

to the shear element deformability. 
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3.8  Updated Lagrangian Formulation and Newton Raphson 

Method 

In the previous paragraphs the global tangent stiffness matrices of 

elements and interfaces have been evaluated. Standard procedures have 

been used for assembling the global stiffness matrix of the entire structure. 

The geometrical and constitutive non-linearity imposes the use of an 

iterative method to solve the problem. Standard Newton Rapson based 

iterative methods have been implemented for validating the model, as 

briefly summarized in what follows.  

The equation to solve is: 

𝐊𝒏 𝐆𝐥𝐨𝐛𝐚𝐥(𝒖) 𝚫𝒖𝒏 = 𝚫𝑭𝒏  (3.229) 

where: 

• 𝐊𝒏 𝐆𝐥𝐨𝐛𝐚𝐥is the global tangent stiffness matrix of the entire 

structure; 

• 𝚫𝒖𝒏  is the unknown increment of the displacement vector; 

• 𝚫𝑭𝒏  is the increment of the force vector; 

All these quantities are evaluated at the step 𝒏 of the analysis; 

The iterative procedure used in this thesis is the Newton Raphson 

Method. In particular Newton Raphson Classical/Modified Force Control, 

Displacement Control and Arc Length were used[28,40] following the 

basic scheme reported in Figure 34.  
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Figure 34 - Solution procedure 

3.8.1 Main functions 

3.8.1.1 Initialize Model 

This function initializes the model, in particular using the nodal 

coordinates, each element is instantiated. Also, the three mono 

dimensional non-linear constitutive laws related to the element are 

instantiated. Furthermore, the program automatically calculates a series 

of parameters necessary for the analysis such as: 

• Initial Reference system; 

• Centroid; 

• Initial reference system of each interface; 

• Initial Stiffness Matrix of the element; 

After the creation of each element, an automatically procedure 

check the coincidence the faces of each element and it identifies interfaces. 

Even for the interfaces a lot of parameters are automatically evaluated. 

For example: 

• Local and co-rotational reference system; 
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• Geometrically local matrices discussed in previous 

paragraphs; 

• Initial Stiffness Matrix of the interface; 

• Constitutive laws related to the Gauss Points are also 

instantiated. 

• After the creation of each element and each interface of the 

model, degrees of freedom, with a proper numeration, are 

saved inside a matrix. It is needed to assemble properly each 

degree of freedom to obtain global matrices. 

3.8.1.2 Evaluate global stiffness matrix and solve the static problem 

Assembling each stiffness matrices of each computational object of 

the model, the global stiffness matrix of the model 𝐊𝒏 𝑮𝒍𝒐𝒃𝒂𝒍 is obtained. 

In this way it is possible to do the linear prediction in order to obtain 

global displacements: 

𝚫𝒖𝒏 = 𝐊𝒏 𝑮𝒍𝒐𝒃𝒂𝒍−𝟏 𝚫𝑭𝒏  (3.230) 

3.8.1.3 Obtain local displacements 

𝚫𝒖𝒏  is a vector that contains all displacements, rotation angles and 

deformations of the model. So, it is possible to divide this vector and 

assign the correct parameters to each element.  

For each element the following vector that is the trial solution is 

obtained: 

𝐩gqT𝐭𝐫𝐢𝐚𝐥 = [𝐮𝐠𝐪𝐓 𝛝𝐠𝐪𝐓 𝚪𝐪𝐓] (3.231) 

𝛝𝐠𝐪𝐓  is a vector that contains three rotation parameters. This vector 

is different for the Battini and Izzuddin parametrization: 
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• approach I: 𝛝𝐠𝐪𝐓  it is a rotational vector obtained from the 

linear prediction  (3.230) so 𝛝𝐠𝐪𝐓 ∈ 𝑠𝑜(3) , To obtain the 

correct rotational matrix in 𝑆𝑂(3) an exponential mapping 

is needed so it is possible to use the Rodriguez Formula (A.8). 

𝐑𝐫𝐨𝐭𝐪 = 𝐞𝐱𝐩[ 𝛝𝐠𝐪𝐓𝐭𝐫𝐢𝐚𝐥 ] (3.232) 

 

• approach II: 𝛝𝐠𝐪𝐓  contains component of rotation in the Euler 

parametrization, using this formulation as previously 

discussed the rotational matrix is obtained from the (A.24) 

or (A.25). 

𝐑𝐫𝐨𝐭𝐪 = 𝐓𝐫( 𝛝𝐠𝐪𝐓𝐭𝐫𝐢𝐚𝐥 ) (3.233) 

 Once the correct transformational matrix 𝑹𝒓𝒐𝒕 is obtained it is 

possible to obtain the vertex displacements of the element: 

𝐮𝐯𝐪𝐓 = 𝐮𝐠𝐪𝐓 + (𝐑𝐫𝐨𝐭𝐪 − 𝐈)(𝐗𝐯𝐪 − 𝐗𝐠𝐪) + 𝐑𝐪𝐄𝐑𝐪𝐓(𝐗𝐯𝐪 − 𝐗𝐠𝐪) (3.234) 

Where:  

 

• 𝐄 = 𝑓(𝚪𝐪𝐓) is reported in (3.12); 

• 𝐑𝐪  is the rotational matrix that contains the current 

reference system of the element; 

As previously discussed only small deformations of the elements are 

allowed, in this way is possible to add the rigid and the deformational 

part of the motion. 
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3.8.1.4 Update model 

Ones each vertex displacement of each element is evaluated it is 

possible to update quantities. In particular the following parameter are 

update starting from the previously committed configuration: 

 

• Centroid; 

• Nodal Coordinates; 

• Local reference system; 

• Cumulative deformations: for each gauss point the current 

increment of displacement is added to the committed stored 

value. In this way, the constitutive law is questioned, and the 

current stiffness and load level is obtained. 

• Internal forces;  

Note that those quantities are trial, and they are saved only when 

convergence is achieved. 

3.8.1.5 Force Unbalance 

In this function the internal forces are evaluated, assembled and 

compared with external ones. In particular for each element the internal 

forces are evaluated as follows:  
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The displacement of each gauss point is evaluated using the 

following formula: 

𝛅𝚫�̂�𝐢(𝛏𝐢, 𝛈𝐢) = 𝐍(𝛏𝐢, 𝛈𝐢)𝐀𝟏𝐀𝟐𝐀𝟑𝐁 𝜹𝒑𝒈𝑻  (3.235) 

With 𝛅𝚫�̂�𝐢(𝛏𝐢, 𝛈𝐢) and the cumulative value of displacement it is 

possible to obtain from each fiber a value of stiffness and force. 

Δ𝐪ℓ̂ = ∑ Δ𝐪ℓ̂i(𝛏𝐢, 𝛈𝐢) (3.236) 

𝐪g = 𝐁𝐓𝐀𝟑𝐓𝐀𝟐𝐓𝐀𝟏𝐓Δ𝐪ℓ̂ (3.237) 

From the (3.237) is possible to obtain the global vector 𝒇𝑖𝑛𝑡 that 

contains internal forces. 

 𝑡𝑜𝑙𝑙𝑒𝑟𝑎𝑛𝑐𝑒 <  𝑛𝑜𝑟𝑚(𝑓𝑖𝑛𝑡 − 𝑓𝑒𝑥𝑡) → 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑖𝑠 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 (3.238) 

If the comparison between internal forces and external forces is more 

than the tolerance the iteration continues alternatively the convergence 

is achieved and it is possibly going to the next step. 
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4  NUMERICAL APPLICATIONS  

4.1 Buckling and post-buckling analysis 

In this section the proposed approach is validated against well-

known theoretical solutions of simple structures, which undergo buckling 

phenomena. Both the buckling load and the post-buckling behaviour are 

investigated. 

The reported applications, which are conducted considering in all 

cases constitutive linear field, aim at validating and discussing the 

capability of the proposed approach to follow the structural response 

when large displacements are involved. 

Specifically, in Section 4.1.1 a cantilever beam subjected to an axial 

load is considered and in Section 4.1.2 a simple L-frame subjected to a 

concentrated load is studied. 

4.1.1 Cantilever beam 

The first benchmark buckling and post-buckling analysis of a 

cantilever beam. The beam has a rectangular cross section 3 m x 4 m and 

its length is equal to 43,5 m. A vertical compression load is applied to the 

free end. 
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Figure 35 – Homogeneous Beam fixed at bottom, different meshes 

Four models with different mesh size were arranged. The four 

models adopt different mesh refinements non only along the length of the 

beam, but also within its cross section; details on the adopted 

discretization are reported in Table 4. 

Mesh Cross-section 

mesh 

Discretization 

along the beam  

Number of 

elements 

Degrees of 

freedom 

1 1x1 8 8 72 

2 1x1 15 15 135 

3 2x1 15 30 270 

4 2x2 15 60 540 

Table 4 - Cantilever beam discretization 

Each interface between elements has 5x5 Gaussian points. The 

material is elastic linear with Young’s modulus and Poisson ratio are equal 

to 𝐸 = 21 GPa and 0,3, respectively. 
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4.2 Non-linear material behaviour 

Aiming to further validated the proposed approach, in this section 

several applications are reported, considering nonlinear constitutive 

behaviour as well as geometry nonlinearities. The reported applications 

are of increasing complexity and gradually uncover the features of the 

proposed approach. 

Precisely, in subsections 4.2.1 and 4.2.2 two applications relative the 

beams are considered, validating the numerical results with other well-

known numerical solutions. In subsections 4.2.3 and 4.2.4 applications 

relative to masonry walls subjected to in-plane and out-of-plane loadings, 

respectively, are presented, comparing the results both with theoretical 

and experimental data available in the literature. Finally, in subsection 

4.2.5, a masonry wall, subjected to out-of-plane loading and exhibiting a 

complex response, is investigated comparing the obtained results both 

with the experimental ones and those obtained with other numerical 

models. 

 

4.2.1 Cantilever Beam 

The following benchmark is an elastoplastic cantilever beam. Two 

different mesh size are adopted, namely considering 17 and 49 elements, 

respectively, Figure 40 and Figure 41. Correspondingly, the degrees of 

freedom associated to the two models are equal to 153 and 441, 

respectively. The distance between the centroids of the first and the last 

element is 4 m. The cross section is rectangular with width and height 

equal to 0,3 m and 0,4 m, respectively. The first element is fixed and the 

last has a vertical incremental force applied in his centroid. Each interface 
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has 8 x 8 Gauss points and the adopted constitutive law is elastic perfectly 

plastic with 𝜎0 = 300 𝑀𝑝𝑎, Young’s modulus equal to 𝐸 = 210000 𝑀𝑝𝑎 

and Poison ratio equal to 𝜈 = 0,3. In this example internal shear degrees 

of freedom of the elements are inhibited and the constitutive laws of 

sliding fibers are considered elastic. 

 

Figure 40 – Cantilever non linear beam Mesh 1 

 

Figure 41 – Cantilever non linear beam Mesh 2 

 

Figure 40 and Figure 41 reports the damage configuration at 

collapse of the beams. The red and green dots represent the Gauss points 

which are subjected to compressive and tensile plasticity, respectively. It 

possible to note that in the first section almost all the Gauss points 

reached their elastic limits, and that the plasticity diffusion decreases 

along the beam. 

The Figure 42 reports the vertical force versus the displacement of 

the centroid of the last element. The dot line is the theoretical resisting 
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Figure 46 and Figure 47 reports the different spread of the plasticity 

in the two cases, in particular red dots describe plastic compression 

behaviour and with green dots describe plastic traction behaviour. 

 

 

Figure 46 – case 1 𝜓 = 0,127 – spread of the plasticity 

 

 

Figure 47 - 𝑐𝑎𝑠𝑒 2 𝜓 = 0,225 spread of the plasticity 
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𝑀𝑢 = (𝑙2𝑡𝜎
2

) (1 − 𝜎
0,85 𝑓) (4.2) 

 

where: 

• 𝑀𝑢 is the ultimate bending moment; 

• 𝑙 is the length of the wall; 

• ℎ is the height of the wall; 

• 𝑡 is the thickness of the wall 

• 𝜎 = 𝑁𝑙𝑡  is the average compression stress with 𝑁  axial 

compression force; 

• 𝑓 is the compressive resisting strength of the masonry; 

The relationship between ultimate bending moment at the base of 

the panel and applied horizontal force is 𝑀𝑢 = 𝑉𝑢ℎ. 

 

The shear résistance of a masonry panel is provided by the following 

formula consistent with the Turnsek and Cacovic [57] yielding criterion: 

𝑉𝑢 = 𝑙 𝑡 1,5 𝜏𝑏 √1 +
𝜎

1,5 𝜏  (4.3) 

where: 

• 𝑉𝑢 is the shear resistance associated to the diagonal shear 

collapse failure mode; 

• 𝑙 is the length of the wall; 

• 𝑡 is the thickness of the wall; 

• ℎ is the height of the wall; 

• 𝑏 = ℎ/𝑙; 
• 𝜎 = 𝑁𝑙𝑡  is the everage compression stress, with 𝑁  axial 

compression force; 

• 𝜏  is the masonry shear strength; 
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Figure 49 reports the results in terms of ultimate load for different 

levels of compression acting on the panel. The two domains, which are 

associated to the two different mechanisms, are reconstructed 

alternatively keeping the shear and the flexural behaviours elastic. The 

black and the dot lines, are obtained by means of equations (4.2) and 

(4.3), respectively. On the other hand the markers refer to the ultimate 

loads obtained with the proposed approach.  
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is important to consider that the elasticity modulus, suggested by 

Sandoval et al. and experimentally obtained, is defined as ‘secant’. 

However, is a progressive loss of stiffness can be accounted for, it is 

reasonable to adopt higher values of the Young’s modulus. By adopting 

a Young’s modulus equal to 4500 𝑀𝑝𝑎 the obtained results are very close 

to the experimental curve.  

 

 

Figure 56 – Collapse mechanisms for different mehes. 

Figure 56 reports the collapse mechanism for different mesh size 

which is characterized by the opening of three cylindrical horizontal 

hinges, in accordance to the experimental outcome. 
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brick is divided into two elements, thus guaranteeing the coincidence of 

the nodes between adjacent elements consistently with a FE approach. 

With respect to such approaches the mentioned feature represents an 

undeniable advantage. 

  



 5 Conclusions 
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5  CONCLUSIONS  

In the present thesis an original solid discrete element, for the study 

of masonry structures, is developed. It is based on DMEM and introduces 

some important innovations: a solid element, three different shears local 

degree of freedom inside the element, the possibility to create a continuum 

interface in all his faces and the capability to study second-order 

phenomena. This is possible using the co-rotational approach that 

uncouples the small deformations with the large rigid motions. Two 

different approaches were developed which differ in the way in which the 

rotations are parametrized. The DME model is based on the use of solid 

element characterised by only 9 degrees of freedom for each element and 

it can be used at the macro-scale or at the micro scale. A software, called 

Macro_Ex has been implemented in MatLab code environment. It 

embeds a lot of numerical procedures that allow studying elastic and 

plastic non-linear static problems.  

Several benchmarks have been considered for the model validation. 

Some benchmarks have been chosen with the purpose to study post-

buckling problems and others with the purpose to compare the proposed 

model with an experimental test on masonry walls. Results fit very well 

with other methods present in literature as well as with the experimental 

results. The introduction of a solid element accounting for large 

displacement formulation within the context of the DMEM open to a 

large number of applications in different engineering fields. Second-order 

phenomena in tall or slender structures (towers, facades), multi-leaf 

masonry walls and geotechnical problems are only three possible 
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interesting applications that can be investigated using this model 

particular model. The element kinematics together with appropriate 

calibration procedure suggest the use of this model in several different 

context from progressive collapse of structure to  nonlinear soil-structure 

interaction problems.  The research is ongoing and a series of future 

improvements could be performed. The element geometrical irregularity, 

the adoption of more sophisticated constitutive laws and the extension to 

the dynamic context will allow the nonlinear modelling of complex 

structure subjected to seismic or extreme loadings in presence of 

geometrical and material nonlinearities. 
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• the determinant is equal to +1 

The tangent space to 𝑆𝑂(3) at the initial configuration is called 

𝑠𝑜(3) or 𝑇𝐼𝑆𝑂(3) and it is defined as: 

𝑠𝑜(3): = {�̃�: ℝ3 → ℝ3|�̃� + �̃�𝑻 = 𝟎} (A.2) 

In this case, the transformation �̃� has the following properties: 

• It is defined in ℝ3 and convert element in ℝ3; 
• It is a skew-symmetric tensor so �̃� + �̃�𝑻 = 𝟎 

• It has an eigenvector ω ∈ ℝ3such that �̃� 𝛚 = 𝟎 

The matrix representation of this kind of transformation is: 

�̃� = [ 0 −ω3 ω2ω3 0 −ω1−ω2 ω1 0
]          𝛚 = [ω1ω2ω3

] (A.3) 

It represents an infinitesimal transformation around the fixed axis 

𝛚. 

The tangent space at any 𝜦 ∈ 𝑆𝑂(3) is defined as: 

𝑇𝜦𝑆𝑂(3): = {𝜦�̃� ≡ 𝝑�̃�  |  �̃� ∈ 𝑠𝑜(3) & 𝝑̃ = 𝜦�̃�𝜦𝑻 ∈ 𝑠𝑜(3)} (A.4) 

So 𝝑�̃� ∈  𝑇𝑆𝑂(3) and 𝜦�̃� ∈  𝑇𝑆𝑂(3) are the right (spatial) and 

the left (material) representation of the same tangent space 𝑇𝑆𝑂(3) at 𝜦. 

The 𝝑�̃� ∈  𝑇𝑆𝑂(3)  can be thought as an infinitesimal rotation 

𝝑 ̃superposed to the finite rotation 𝜦 and 𝜦�̃� ∈  𝑇𝑆𝑂(3) can be thought 

as a finite rotation 𝜦 superposed to the infinitesimal rotation 𝝑.̃ 

The equation (A.4) means that two different transformation 𝝑̃ ∈
𝑠𝑜(3) and �̃� ∈ 𝑠𝑜(3) applied to 𝜦 depending belong to the same tangent 

space 𝑇𝜦𝑆𝑂(3) 

This topic is crucial in the three-dimensional mechanical analysis 

because the variation of a rotational matrix ∈  𝑇𝛬𝑆𝑂(3).  

It is possible to transform infinitesimal rotation 𝑠𝑜(3)  to finite 

rotations 𝑆𝑂(3) using the exponential map: 
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A.2.1 Compound rotation 

Considering a rotation operator 𝐑𝟎 ∈ SO(3)  which maps the 

orthogonal cartesian reference system 𝐞𝒊 into the triad 𝐭𝒊′  

 

Figure 62 Compound rotation  

𝐭𝒊′ = 𝐑𝟎𝐞𝐢 
(A.10

) 

Likewise, in the (A.4) an incremental finite rotation 𝐑𝐬 ∈ 𝑆𝑂(3)  is 

applied to the triad 𝐭𝒊′ . The final triad 𝐭𝒊 is obtained.  

𝐭𝐢 = 𝐑𝐬𝐑𝟎𝐞𝐢 (A.11) 

The same result is obtained applying the incremental finite rotation 

𝐑𝐦 to the initial triad: 

𝐭𝒊" = 𝐑𝐦𝐞𝐢 (A.12) 

And later applying the rotation 𝐑𝟎 to the obtained triad 𝐭𝒊" 

𝐭𝐢 = 𝐑𝟎𝐑𝐦𝐞𝐢 (A.13) 

The composed final rotation is equal to: 

𝐑 = 𝐑𝟎𝐑𝐦 = 𝐑𝐬𝐑𝟎 (A.14) 

With: 
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• Rotation about x of 𝛼; 

• Rotation about 𝑦 of 𝛽; 

• Rotation about 𝑧 of 𝛾; 

𝐓𝐫 = 𝐑𝛄𝐳 𝐑𝛃𝐲𝐑𝛂𝐱 = [cγcβ −sγcα + cγsβsα sγsα + cγsβcα
sγcβ cγcα + sγsβsα −cγsα + sγsβcα−sβ cβsα cβcα

] (A.24) 

In which: 

• ca = cos 𝑎 

• 𝑠a = sin 𝑎  

 

Using the formula reported in the equation (A.24) or similar one’s, 

no error is performed  [67]. In general, in order to perform a complete 

non-linear structural analysis an incremental approach is used, so, in this 

case it is possible to approximate the rotational matrix as follow:  

𝐓𝐫 =

⎣⎢
⎢⎢
⎢⎡1 − (β2 + γ2)

2
−γ +

βα
2

β +
αγ
2

γ +
αβ
2

1 − (α2 + γ2)
2

−α +
βγ
2

−β +
αγ
2

α +
βγ
2

1 − (α2 + β2)
2 ⎦⎥

⎥⎥
⎥⎤

 (A.25) 

This is a second order approximation of the matrix (A.24)  [65]. 

The variation on the matrix δ𝐓𝐫 is obtained as follow: 

δ𝐓𝐫δα =

⎣⎢
⎢⎢⎢
⎡0

β
2

γ
2β

2
−α −1γ

2
1 −α⎦⎥

⎥⎥⎥
⎤ δ𝐓𝐫δβ =

⎣⎢
⎢⎢
⎡−β α

2
1α

2
0

γ
2−1

γ
2

−β⎦⎥
⎥⎥
⎤ δ𝐓𝐫δγ =

⎣⎢
⎢⎢⎢
⎡−γ −1

α
2

1 −γ β
2α

2

β
2

0⎦⎥
⎥⎥⎥
⎤
 (5.26) 

The second variation of 𝑑the matrix 𝐓𝐫 is equal to: 
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δ𝐓𝐫2δα2 = [0 0 0

0 −1 0

0 0 −1

] δ𝐓𝐫2δβδα =

⎣⎢
⎢⎡0

1

2
0

1

2
0 0

0 0 0⎦⎥
⎥⎤ δ𝐓𝐫2δγδα =

⎣⎢
⎢⎡0 0

1

2

0 0 0

1

2
0 0⎦⎥

⎥⎤

δ𝐓𝐫δαδβ =

⎣⎢
⎢⎡0

1

2
0

1

2
0 0

0 0 0⎦⎥
⎥⎤ δ𝐓𝐫2δβ2 = [−1 0 0

0 0 0

0 0 −1

] δ𝐓𝐫2δγδβ =

⎣⎢
⎢⎡

0 0 0

0 0
1

2

0
1

2
0⎦⎥
⎥⎤

δ𝐓𝐫2δαδγ =

⎣⎢
⎢⎡0 0

1

2

0 0 0

1

2
0 0⎦⎥

⎥⎤ δ𝐓𝐫2δβδγ =

⎣⎢
⎢⎡

0 0 0

0 0
1

2

0
1

2
0⎦⎥
⎥⎤ δ𝐓𝐫2δγ2 = [−1 0 0

0 −1 0

0 0 0

]

 (A.27) 

The same matrices can be easily calculated in relation to the Tiat – 

Brian transformation (A.24). In this thesis, the Approach 2 (descripted 

in the Chapter 3) used to define the interface kinematic, is formulated 

using the extrinsic Tait-Bryan rotations or the approximated 

transformation matrix. 
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