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Abstract

Summary: The discovery of differential gene–gene correlations across phenotypical groups can help identify the ac-
tivation/deactivation of critical biological processes underlying specific conditions. The presented R package, pro-
vided with a count and design matrix, extract networks of group-specific interactions that can be interactively
explored through a shiny user-friendly interface. For each gene–gene link, differential statistical significance is pro-
vided through robust linear regression with an interaction term.

Availability and implementation: DEGGs is implemented in R and available on GitHub at https://github.com/elisabet
tasciacca/DEGGs. The package is also under submission on Bioconductor.

1 Introduction

Unveiling differences between groups of patients is pivotal to health-
care customization. To this aim, modern clinical trials frequently
use RNA-sequencing in blood samples or tissue biopsies, enabling
comprehensive transcriptomic analyses between different groups.

In this context, identifying differentially expressed genes (DEGs)
is one of the most common initial analyses, usually performed via
well-known R Bioconductor packages such as DESeq2, edgeR, or
limma-voom.

Although the resulting DEGs can suggest possible active proc-
esses, it is often difficult to derive complex biological mechanisms
from single gene expressions. For this reason, biological pathways
are used to visualize and explain how genes/proteins influence each
other and lead to specific processes. However, most pathway-based
tools return a list of perturbed predefined, standard pathways
in which linked genes/proteins are supposed to be co-expressed.
Here we introduce a novel R package that statistically validates such

a co-expression within the user’s dataset. Starting from 10 537 inter-
actions collected from publicly available pathway repositories
(Kanehisa & Goto, 2000; Da Hsu et al., 2011; Xiao et al., 2009;
Tong et al. 2019), the DEGGs package extract those edges that are
reasonably active within the provided cohort and allows to unveil
differential interactions between different phenotypical groups
defined by the user. In comparison to a pathway enrichment ana-
lysis, this allows to focus on a much lower number of interactions
with greater relevance for the studied cohort. A more detailed in-
spection of the data is provided thanks to the creation of bespoke,
group-dependant molecular sub-networks.

Links shown in each sub-network are modelled via robust linear
regression. To understand whether the gene–gene relationship is
group dependent in the provided cohort of samples, the model for-
mula incorporates an interaction term that enables the discovery of
gene–gene correlations that are statistically different among user-
defined groups.
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Other packages have been designed to discover differential gene-
gene correlations in omics data (Fukushima 2013; McKenzie et al.
2016). However, these packages are not designed for next-generation
sequencing (NGS) transcriptomic data where large numbers of
expressed genes are detectable (20 000–50 000). In this context, the
analysis of all possible gene-gene combinations (of the order of 109)
would be necessarily confounded by large numbers of false positive
gene pairs biologically unrelated. Using a curated interaction network
addresses this issue by reducing the number of possible gene-gene inter-
actions to those which are functionally relevant. Additionally, none of
the existing packages provide a user-friendly, interactive interface.

2 Implementation

The required data for a differential gene–gene expression analysis is a
matrix of normalized read counts where genes are organized in rows
and samples in columns. Each matrix entry represents the number of
sequencing reads mapped to a gene in a sample. Data must be scaled
to account for sequencing depth and heteroscedasticity. Along with
expression values, a design matrix is also needed to map samples with
the subgroups used for differential comparison (Fig. 1, i).

This data are used on an extensive network, called meta-pathway,
of 10537 molecular interactions obtained from KEGG (Kanehisa &
Goto, 2000), mirTARbase (Da Hsu et al., 2011), miRecords (Xiao et
al., 2009), and transmiR (Tong et al., 2019) (Fig. 1, ii). The meta-
pathway has been obtained via the exportgraph function in
MITHrIL (Alaimo et al., 2016) and included in the package. First, the
molecular interaction network is replicated and annotated for each
user-defined group, assigning average gene expression to node
weights. Then, two filtering steps are performed to extract group-
specific subnetworks. The first step removes nodes with average ex-
pression levels below a cut-off set through percolation analysis.
Commonly used in statistical physics and mathematics, percolation
describes the behaviour of network properties at increasing percen-
tages of removed nodes or links (Sahini & Sahimi, 1994). This imple-
mentation optimized the percolation threshold to maximize the
number of statistically significant differential interactions (Fig. 1, iii
and iv). A second filtering step removes common interactions across
groups (Fig. 1, v). Lastly, the statistical significance of the remaining
links is evaluated by building a robust linear regression model or a
one-way ANOVA when more than two groups must be compared.
The model formula explores the relationship between each gene–gene
pair incorporating the group variable as an interaction term:

GeneAi ¼ b0 þ b1GeneBi þ b2Groupi þ b3GeneBi � Groupi þ ei;

where i¼1, . . ., n, is the number of samples and ei are random
variables.

P-values of the F-test on the Gene*Group term assess the statis-
tical differential significance of the link across the examined groups
(Fig. 1, vi).

3 Case study

To show the package’s functionalities, we use breast cancer expres-
sion profiles collected from The Cancer Genome Atlas program
(TCGA) (Weinstein et al., 2013). As an example, we compare the
HER2-positive and luminal-A breast tumour subtypes.

The raw RNA-seq count data have been normalized via limma-
voom and provided in the package:

data("BRCA_metadata")

data("BRCA_normCounts")

To generate the HER2-positive and luminal-A specific networks,
the generate_subnetworks function is used. Entrez formatted
gene IDs and gene symbols are permitted and controlled via
the entrezIDs parameter. When entrezIDs¼TRUE, the user
can choose whether to show gene symbol IDs in the output. The
convert_to_gene_symbols option controls this behaviour.

subnetworks_object <-generate_subnetworks

(normalised_counts ¼ BRCA_normCounts,

metadata¼ BRCA_metadata,

subgroup_variable¼ "SUBTYPE",

subgroups ¼ c("BRCA_Her2", BRCA_LumA"),

entrezIDs ¼ TRUE,

convert_to_gene_symbols ¼ TRUE)

The generate_subnetworks function returns an object of
class DEGGs, which contains a list of specific network tables, the
total number of statistically significant links, and the input data.

The output of this function can be used to visualize subtype-
specific networks and single gene-gene correlations. The
View_interactive_subnetwork function can be called to navi-
gate the networks interactively:

View_interactive_subnetwork(subnetworks_object)

This function allows users to select the generated networks
(Fig. 2, i), filter by gene–gene link significance (Fig. 2, ii), and search
for specific genes of interest (Fig. 2, iii). When selecting a node, a
boxplot comparing gene expression levels between subgroups is
shown (Fig. 2, iv), along with a table listing all the gene’s neigh-
bours. When clicking on a link, the differential gene–gene regression
model is plotted (Fig. 2, v).

This type of result allows a much greater granularity when com-
pared to pathway enrichment. For example, in the sample data the
Ras signaling pathway would have been detected as upregulated for
the HER2-positive group without any further information on the
links that can be considered as active within it. DEGGs, instead,
identifies the links between KDR and FGF17, SHC3 and PDGFC as
active and specific for the HER2-positive group.

Figure 1. Steps of the analytical pipeline that is internally implemented by the

DEGGs package.

Figure 2. Screenshot of the interactive shiny interface showing (i) the subgroup drop-

down menu, (ii) a slider for the visualization of links below a P value threshold, (iii)

the node search box, (iv) an individual node boxplot, and (v) a link regression plot.
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Furthermore, the use of gene–gene pairs that show significant
differential correlation has been shown to improve predictive mod-
els of treatment response in rheumatoid arthritis (Sciacca et al.,
2022). The list of significant gene pairs found across networks can
be obtained through the extract_sig_deggs function:

extract_sig_deggs(subnetworks_object)

The listed genes can then be used as features of machine learning
models.

4 Conclusions

Detecting differential gene-gene correlations can shed light on molecu-
lar mechanisms that differentiate phenotypical groups. However, due
to the large number (20000–50000) of expressed genes detectable
with NGS techniques, the analysis of all the possible gene-gene corre-
lations (up to 2.5 � 109) is computationally expensive. As a further
shortcoming, the false positive rate of gene-gene pairs, which are bio-
logically and functionally unrelated, is high.

The presented package enables the interactive exploration of
group-specific networks and finds gene-gene correlations which are
statistically different among groups. DEGGs makes use of linear
regressions with interaction term to evaluate the differential co-
expression between gene expressions, therefore non-linear relations
cannot be detected, and this is a limitation of the package.

For linear regressions, the list of identified differential gene–gene pairs
can be used as feature selection method in machine learning models.
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