
Università degli studi di Catania

Dipartimento di Matematica e

Informatica

XXXV Ph.D in computer science

Doctoral Thesis

Data Mining Techniques for

Software Effort Estimation

Author:

Leonardo Pelonero

Supervisor:

Prof. Emiliano Tramontana

Academic Year 2022/2023

iii

Abstract

It is paramount to properly integrate effort estimation with good development

practices. Effort estimation is an open challenges, and it is performed to pre-

vent software defects and delays during the development. In agile projects, at

the very beginning stage of the software development life cycle, correct effort

estimation helps to determine the order of the tasks to perform. However, esti-

mation can be complex and there is the risk of making erroneous estimations.

Predicting the effort is important to validate the results obtained or monitor

the progressive trend. While analogy and expert judgment based are popular

effort estimation approaches, no tools exist to assist managers in verifying and

supervising the progressive effort during project development, except for size

measures such as Line Of Code (LOC) and Function Point (FP). Modern soft-

ware repositories are a valuable support for large teams working together on a

project. Besides the code, a repository includes useful data related to develop-

ment practices as well as features that better identify the project’s developers.

This thesis presents novel approaches and metrics based on data extracted from

repositories and related to the software life cycle to profile developer activities.

By acquiring employees log data, project management can be provided with

useful information such as how much more effort it will take to complete, and

how long that will take; however in open source repository such records do not

usually exist. The value of the proposed metrics is to reveal the effort spent by

developers, to estimate the additional effort required to complete the task, to

highlight strengths and weaknesses, then suggest improvements. Furthermore,

the proposed metrics can be easily integrated in the usual development environ-

ment, without affecting other practices. The above analysis can be performed

both during the development process of new software components and features,

or afterwards, when the application’s development has been completed.

v

Contents

Abstract iii

1 Introduction 1

1.1 The necessity of estimating effort 3

1.2 Effort drivers: what affects effort estimation 5

1.3 Selecting Best Practices for Effort Estimation 8

1.4 The proposed approach . 15

1.5 Thesis structure . 18

1.6 Published Papers . 19

2 Background information and theory 21

2.1 Agile software development model 21

2.1.1 Principles and Objective 23

2.1.2 Practices and Methodologies 24

2.2 Mining software repositories to assist developers and support

managers . 26

2.2.1 Data extraction . 29

2.3 GitHub . 31

2.3.1 Why to use GIT . 33

2.3.2 Terminology . 33

2.4 PyDriller . 35

2.5 Open Source Software . 37

2.6 Conclusion . 40

3 Code History Metrics to classify Software Repositories at scale 41

3.1 A suite of Process Metrics to Capture the Effort of Developers . 41

vi

3.2 Related Work . 44

3.3 Approach . 45

3.4 Design and Implementation . 46

3.5 Metrics Experiments . 47

3.5.1 Commits per Day of the Week 47

3.5.2 Commits per Hour of the Day 49

3.5.3 Average Commit Distribution 50

3.5.4 Commits per Week in the last Year 52

3.5.5 Changes per Week Trend 53

3.5.6 Lines Of Code in Time 54

3.6 Conclusions . 56

4 Discover Scrum Model for Agile Methodology 59

4.1 Improving Effort estimation on ASD 59

4.2 Scrum framework structure . 62

4.3 Related Work . 67

4.4 Relate Sprint trend in Scrum models 69

4.5 Approach and Implementation 70

4.6 Metrics Experiments . 72

4.6.1 Sprint week commit trend 73

4.6.2 Average Sprint Window 77

4.6.3 Sprint commit message 79

4.7 Conclusions . 80

5 Skill profiling in Software systems environments 83

5.1 Uncovering API usability . 83

5.2 The individual developer contribution 86

5.3 APIs should be easy to use and hard to misuse 88

5.3.1 Inappropriate use of APIs factors 89

5.4 Related Work . 90

5.5 Approach . 95

5.6 Metrics . 96

5.6.1 Hard API Effort . 98

vii

5.6.2 Near . 102

5.6.3 Git Skill Analysis . 103

5.7 Conclusions . 107

6 Conclusions 109

A Listings 113

A.1 Average Sprint Window code implementation 113

A.2 Bag-of-Words model application on Sprint commit message . . . 116

Bibliography 119

ix

List of Tables

2.1 Home ground for agile and plan-driven methods (Boehm 2002),

augmented with open source software column. 39

4.1 Projects descriptions . 72

5.1 List of top stars rating Java projects on GitHub 97

5.2 Extract from data frame Tokens of ‘besu’ project: input 99

5.3 Extract from data frame Tokens of ‘besu’ project: output 100

5.4 Extract from data frame Variables of ‘besu’ project 100

5.5 Extract from data frame Methods of ‘besu’ project 101

5.6 Extract from data frame HAE count of ‘besu’ project 101

5.7 Extract from data frame Near of ‘besu’ project 102

5.8 Skill Analysis csv output structure 107

1

Chapter 1

Introduction

Software processes are constantly evolving as new and different technologies

and applications are developed and used. However, while changes in software

industry are arbitrary, the approaches to administer the software development

remain almost unchanged. Thus, engineers and researchers in this sector at-

tempt to provide useful and performing tools to support the maintenance of

software systems, to improve the design and to promote software quality.

Software quality is driven by many aspects in software development. A pri-

mary goal of software development organisations is to initiate a project and

finish it within acceptable schedule and budget [BTB07]. The competitiveness

of software organisations depends on their ability to accurately predict the ef-

fort required and risks involved in developing software systems to avoid project

abortion or restarts [SPH16; TJ14]. These setbacks can be caused by mar-

ket changes, customer orders, company restructuring or similar unpredictable

reasons.

Software developing companies are often faced with problems when estimating

the effort needed to complete a software project; this is known as a major chal-

lenge for many software project managers. Due to the intangible nature of soft-

ware, effort estimation is a crucial and critical activity in Software Engineering

for planning and monitoring software project development. Under-estimation

2 Chapter 1. Introduction

can cause schedule and budget overruns as well as project cancellation. Over-

estimation delays funding to other promising ideas and organisational compet-

itiveness. Consequently, both over- and under-estimating would result in unfa-

vorable impacts to the business competitiveness and project resource planning

that can negatively affect the outcome of software projects [Men+17; Dej+11].

Having tools to track the project progress and the actual working hours would

overcome these over time challenges and make timely and relevant decision-

making.

Before going into the details of how an effort estimate is performed, it is useful

to first define what effort estimation is. Some reviews provide evidence that

the term ‘effort estimate’ is frequently used without sufficient clarification of its

meaning [GJM06]. Launched by Brooks (1975) in his work “The Mythical Man

Month”; its definition has undergone several connotations, but all are bound

by the intent to search for the necessary resources needed to achieve project

goals. Project Management Institute (2013) defines the estimation objective as

providing an approximation (estimate) of the amount of the resources necessary

to complete project activities and to deliver outputs (products or services) of

specified functional and non-functional characteristics [TJ14].

Software effort estimation (SEE) is the process of predicting and measuring the

most realistic amount of workforce and effort required to develop or maintain a

software project, based on information collected in the early stage of a software

project. Effort is usually expressed in units such as man-day, man-month and

man-year; it defines the total time that members of a development team need

to perform a given task or software product [Dej+11; Živ+11]. Precisely for

this reason, SEE is an integral part of software project management. Even

nowadays, research is focused on improving the effort estimation in software

engineering.

1.1. The necessity of estimating effort 3

1.1 The necessity of estimating effort

One might think that problems related to effort decision-making can be avoided

simply by spending time and effort on a good initial design. There are different

type of development processes, each having a different perspective on planning

and estimation. During the past years the most widely adopted are the agile

approaches [CH01], such as Scrum [SB02], leading to the formal use of the

term Agile Software Development (ASD). Under an ASD process, software is

developed incrementally in small iterations with fast and frequent changes to

incorporate. These changes are influenced by customers’ feedback, which servers

as important input for subsequent iterations. This also implies that estimations

and plans need to be done progressively. A tool capable of measuring these

trends, as an independent activity, would provide more resources for future

planning and help to understand whether the agile properties are respected or

not. De facto also ASD is not exempt from the SEE process from which an

active research area exists [Usm+14].

Software organisations do not regard estimation as a separate activity, but as

an integrated part of project planning, project pricing and project budgeting.

The reason is to prevent that software organisations propose unrealistic software

costs, working within tight schedules and budget. It is a key factor to under-

stand the cost involved in the realisation of a product, as well as a progressive

study of software development process. It identifies the necessary project activ-

ities and how they are to be accomplished [Ker+22]. The benefits come from

both sides: it helps teams to ensure a product is developed and delivered on

time and it enables product owners to manage resources.

As aptly concluded by Barry Boehm (1981), “Poor management can increase

software costs more rapidly than any other factor, particularly on large projects”.

Project managers should anticipate possible risks, evaluate their impact on ef-

fort, and adjust project plans appropriately. During estimation, project man-

agers should consider the uncertainty of estimated values or the impact that

known environmental factors may have on effort. The objective of risk response

is to reduce its impact on project effort and thus to ensure that the project will

4 Chapter 1. Introduction

be finished within acceptable effort.

There are three major aspects to the project and its environment, which con-

tribute to effort deficiencies: random changes, limited cognition, and limited

granularity character. These three constraints lead us to the major types of

effort estimation uncertainty: probabilistic, possibilistic, and granulation, re-

spectively [TJ14].

This results in the evaluation of a new aspect of effort estimation. One should

not expect effort estimation to ever be an exact science [Živ+11]. “In the end,

an estimate is just an estimate, it is not exact. After all, the process is called

estimation, not exactimation” - Phillip G. Armour. Accurate estimation is a

complex process established in the preliminary phase between the client and the

business enterprise. It can also be built upon the inspiration and generalisation

from a small number of historical projects. So then it can be visualised as

software effort prediction [BP10].

Depending on the weighed outcome of the effort study there is a different im-

pact in the development steps. SEE manages the fate of the project approval,

especially in the early stage of the project. A negative effort would lead to non-

approval by the project manager who is responsible for planning and managing

of the project [TJ14]. In order to perform efficiently, also the development team

members must be aware of the outcome effort report from which they under-

stand their individual roles as well as the overall activities of the team as a

whole. Being able to measure the contribution of an individual developer is not

an easy task. A good solution would be to combine the effort estimate employed

by developers with an in-depth analysis of the tools and libraries used by them.

This would also allow for more accurate profiling of the developer and his role

in the team.

SEE is crucial at the early stage of project control activities. The staff resources

or effort required for a software project are notoriously difficult to estimate in

advance due to the minimal amount of information available. The later in

the project runtime, the more we know about the project and the lower the

likelihood of potential project changes. An obvious consequence is that the

1.2. Effort drivers: what affects effort estimation 5

earlier we estimate in the project, the larger the uncertainty we have to take

into account due to less correct information on the actual project. Risks happen

as result of insufficient information, which we can not know in advance. For this

purpose, project managers and software development organisations have a great

need for estimates at a very early stage in a project in order to appropriately

tender for business and to properly manage resources [SSK96]. SEE purpose is

to reduce uncertainty within the effort estimation process.

1.2 Effort drivers: what affects effort estima-

tion

In principle, there are an almost unlimited number of largely unknown factors

potentially influencing software development productivity and project effort.

These may vary from the usage of tools, methods and technologies for sup-

porting software project activities (development and management tool usage

on project performance)1 to the quality of information on which the estimate

is based2.

Among all existing effort drivers, it is not necessary to select a minimal set

of factors in order to study the effort of a project. Indeed, the fewer factors

we consider, the less overhead needs to be spent on collecting, analysing, and

maintaining corresponding project data. On the other hand, the more relevant

factors we consider, the better we are able to explain and estimate project

effort [TJ14]. Usually a minimalist set of factors is typically dictated by limited

resources for effort estimation.

Since software development is still a human-based activity, the main driver

affecting the budget of project development, and therefore it is important on

the effort study, are the number of employees, the capacity of employees and the

1Characteristics of software development processes are traditionally an important factor
influencing development productivity and project effort. Knowing the impact of most relevant
process characteristics on productivity provides the basis for reliable effort estimates and
importantly also indicates potential process improvement opportunities.

2The goodness of estimates is directly dependent on input data analysed. Some input data
are difficult to obtain, especially early in a program, and there is a risk of incomplete, unclear,
inconsistent, ambiguous or even contradictory information. The data must be sorted.

6 Chapter 1. Introduction

time taken (schedule pressure). A shorter project duration requires more work

to be done in parallel, which increases the chance that some products are based

on incomplete or erroneous components (thus increasing the amount of rework).

In light of this observation, proper planning of personnel effort is a key aspect

for companies [Dej+11; BTB07]. If the performance of the assigned human

resources differs from that assumed initially, or the resulting task duration is

not acceptable, then the initial effort estimate needs to be revised, and the

planning cycle must be repeated.

Simply putting a group of individuals to work together does not automatically

guarantee organisational success. It’s always wrong to believe that everything

can be solved simply by increasing the number of employees working alongside a

project. Even Brooks (1975), looking for the optimum number of people work-

ing on a project, rightly pointed out that time dependence, required for the

completion of the system, upon personnel number is not linear [Živ+11]. The

success or failure of a software project depends much on how good or bad are

the team interaction, coordination, and communication. The number of com-

munication increases exponentially with the number of involved team members.

Larger teams require more overhead for work coordination and management but

also increase the chance of miscommunication. For this reason, estimating effort

is crucial because hiring more people than needed, in the hope of speeding up

the development process, leads to a loss of income and hiring fewer people than

needed leads to an extension of the schedule [BTB07].

The negative effect of increasing a team in order to shorten the project schedule

is even more severe if we add people during the project runtime, especially

when the project is already late. Such attempts to rescue late projects may in

practice have an opposite effect. When introducing new staff into the project

the performances suffer in two ways [TJ14]:

1. team members need to put in a certain effort to introduce new staff into

project activities;

2. team members who are introducing new staff cannot work on the project

activities during that time.

1.2. Effort drivers: what affects effort estimation 7

That is why the size and structure of the development team is a key success

factors as project grows in size and complexity. The size of software is typically

approximated in terms of the amount of functionality or structural size of arti-

facts delivered by the software engineering processes. As project scale increases

in size and importance, it also grows in complexity as a result. The greater the

system the greater the number of development team members as well as the

greater the team, the greater the time required for mutual coordination of de-

cisions [Živ+11]; having side effects in their cost, time-to-market, functionality,

and quality requirements.

The number and complexity of project management activities, in addition to

the unstable and poorly documented development process, are factors that in-

fluence the effort of a project. The more complex the software, the more mental

effort it requires to analyse, understand and implement it. The best recom-

mended strategy to overcome this problem is the classic “divide and conquer”

approach [TJ14].

Other factors which impact on project performance and SEE process are the

different types of existing project development environments. The human-

intensive character of software development and rapid changes in software tech-

nologies make the software project a highly unstable environment. It is thus

particularly important that a potential effort estimation approach not only pro-

vides information on relevant effort drivers but also explicitly considers critical

characteristics of a project context [TJ14].

Software is required to support a wide variety of domains; it must always be

faster, more intelligent, more dependable; it must require fewer hardware re-

sources and be ever easier to maintain. Depending on the project context,

several different factors entail software development productivity: the program-

ming language used to implement software code, the application domain, the

development type (new development, maintenance) and applied development

life cycle.

The aforementioned context implications are categorical factors which have as-

signed labels instead of numerical values. Since their quantitative impact on

8 Chapter 1. Introduction

effort is difficult to determine, context factors typically represent categorical

characteristics of a project environment. These aspects uniquely distinguish

the development of a project and prevent the possibility of replicating the study

effort used for one project on another not equivalent. The reasons are obvious

as software development companies and their employees evolve with time: ex-

perienced employee could leave the company (bringing productivity back to the

level it was before this employee was hired), new employees can be hired or

lost, employees can become more experienced, new type of software projects

can be accepted, the management strategy can be changed, new programming

languages can be introduced, etc.

Monitoring some of these activities and aspects by means of suitable tools and

metrics allows to have a more total control and management of the develop-

ment team. In this thesis, new measures are provided to project managers to

better weigh the capabilities of the development team, the time spent on the

accomplishment of tasks and the consequent effort applied to achieve the aim.

1.3 Selecting Best Practices for Effort Estima-

tion

The presence of so many effort driver influencing SEE was the main cause that

dampened the starting idea to produce a unique, robust, accurate, predictive

cost model. The complex nature of software development has been recognised

since the earliest efforts to characterise and predict software costs, improve the

planning of personnel and evaluate risk factors. Nowadays, it is a challenging

objective to provide consistently the most accurate estimate model. Unfortu-

nately, the diversity of software project, the non-stationary characteristics of

the software development environment and dataset dependency mean no sin-

gle model will likely produce the best results for all project types [WOM15;

KKM13].

This led to a rapid change of views and plans by researchers. Over the last

decades, a growing trend has been observed in using a variety of software effort

1.3. Selecting Best Practices for Effort Estimation 9

estimation models in diversified software development processes. This allows

researchers to the ongoing publication of new, often complex, modelling ap-

proaches for effort estimation. The focus is always on estimating the software

development costs, the required effort to develop a new project based on histor-

ical previous project data and preparing the schedules more quickly and easily

in the anticipated environments. Being able to compare and determine the best

effort predictor for different scenarios is critically important. Despite decades

of research, there is still no consensus on which effort predictors are better or

worse than others [KKM13]. What is certain is that large number of different

techniques have been applied to the field of SEE, of fundamental importance

became the possibility to choose the most appropriate software development

effort predictor for the reference software projects. In this thesis, new metrics

tools are provided to allow the study of the development team’s contribution

and support effort estimation, regardless the approach adopted by software

managers.

Although it takes up to a decade and systematic literature reviews before a

SEE become widely popular and accepted by the community, a great number

of different effort estimations in the form of models, techniques, methods and

tools have been developed. The proposed estimation models can be categorised,

based on their basic formulation scheme, into model-based and expertise-based

methods, but of no less importance are approaches based on analogy, size meth-

ods and combination of two or more of these models.

In order to determine how best to characterise the local environment, size met-

rics examine various artifacts produced by software project. Example project

outputs include: software code, software executables, documentation, test cases,

etc. The most common measure of software size is the program length quantified

in terms of the lines of source code (LOC or SLOC) [TJ14]. A simple example of

productivity deductible from the size metric is defined as effort in man-months

divided by the number of code lines. Effort estimation models based on the

number of code lines have one considerable shortcoming: the number of code

lines is known only after the coding and testing, quite late in the lifecycle of

10 Chapter 1. Introduction

software development [Živ+11]. Notoriously LOC is a deprecated size metric to

take snapshot of software complexity. However, it becomes useful when applied

in the analysis of code evolution throughout the development of the software.

An ad hoc metric was created in the following chapters.

Even so, there also exist other metrics of software size which can be calculated

in the earlier phases of a project. The best-known and most widely used metrics

among them is Function Points Analysis. Function points measure software size

based on the functionality requested by and provided to the end user. FPA is

applicable from early requirements specification phases and is independent of

any particular programming language or technology used for implementation.

The effectiveness of size method comes in support of algorithmic and parametric

models as input estimation variables. Examples of these models include CO-

COMO II (Constructive Cost Model) [CDB98] and schedule compression models

such as SLIM [GS20]. Although the precise formulation of each model varies,

they may all be considered as derivatives of the following form: effort= α∗sizeβ

where α and β are two factors that can be set depending on the developing com-

pany, productivity and economy of scale coefficient respectively.

All the effort models treated are commonly built and evaluated using a set of

historical data. The usual approach involves separating the data into a training

set (from which a model is built) and a testing set (from which the model’s

accuracy is assessed). Typically they exploit training data about past projects

to build an estimation model which is then used to predict the effort for a

new project. Such a model takes as input a set of predictors (e.g. manager

experience or team experience) and returns a scalar value that represents the

effort estimated to develop a new software system [SPH16]. Depending on the

type of data collected, it is possible to construct a learning system that makes

use of several machine learning methods on software effort estimation. There are

many proposals in the literature including various kinds of regression (simple,

partial least square, stepwise, regression trees), back-propagation and neural

networks. The main reason for using such a learning system for this problem

is to keep the estimation process up-to-date by incorporating latest project

1.3. Selecting Best Practices for Effort Estimation 11

data. If the effort estimation process evolves with a new project, the estimation

model is kept up-to-date [BTB07]. The histograms obtained as results from the

analysis metrics of this thesis could be normalised and used as vector values

input data for new machine learning models.

Even parametric models are not free of drawbacks. These can suffer from the

necessity of calibrating the model for each individual measurement before ap-

plication in the concrete environment. Basha et al. [BP10] distinguish these

technology factors that influence calibration in two macro sectors – technical

and environmental. The technical aspects include those dealing with the basic

development capability: organisation capabilities, experience of the developers,

development practices and tools etc. The environmental aspects address the

specific software target environment: CPU time constraints, system reliability,

real-time operation, etc. The parametric downside models do not end here. The

available models are: environments specific, subjective of input values and in-

troduce rather complex weight coefficients (like with function points) [Živ+11].

When applying empirical parametric models, attention should be paid to make

them as least complex as possible. The complexity increases with the level of

detail of the model. A common modification among most of the models is to in-

crease the number of input parameters and to assign appropriate values to them.

Though some models have been inundated with more number of inputs and out-

put features and thereby the complexity of the estimation schemes is increased,

but also the accuracy of these models has shown little improvement [BP10]. E.g.

COCOMO II used 31 parameters to predict effort and time [Boe+09] and this

larger number of parameters resulted in having strong co-linearity and highly

variable prediction accuracy, compared to other estimation schemes. Even if

the underlying concepts and ideas are not publicly defined and the model has

been provided as a black box to the users.

Several studies have assessed the applicability of data mining techniques to

software effort estimation. The majority of models are based on automation

techniques for data creation and gathering. However automating the process

12 Chapter 1. Introduction

necessarily involved making some assumptions, and the validity of results de-

pends on those assumptions being reasonable. The data source is a meaningful

case.

The accuracy of an estimate depends on the dataset characteristics. However,

many studies evaluate modeling techniques on a particular, sometimes propri-

etary, data set which naturally constrains the interpretability of the observed

results [Dej+11; KM09]. “No one can be sure that the specific data sets were

not selected because they are the ones that favor the new technique” - Kitchen-

hamand Mendes. It is not always clear if the projects data studied are rep-

resentative of the software industry, or even of the organisation from which

they come. This is corroborated by the nature of the dataset: use of datasets

difficult to obtain or are proprietary datasets and therefore not publically avail-

able [WOM15]. Because of this it remains possible that results cannot generalise

beyond their data set. Our intent instead was to make available all the out-

comes dataset collected in order to share the results and encourage study and

research in this area. Researchers can take advantage of the effort data collected

for their experiments, as well as replicate the same experiments. All estimation

methods and their outputs can be reused partially or entirely in estimation con-

texts other than those for which it has been developed, because they are not

bound by any case or limitation.

What is expected is that a similar positive behavior should be observed when

applying real heterogeneous datasets from public domain or random sample

of projects. Note that data sets from public domains come from different

sources with various differences in project characteristic and evaluation cri-

teria [KKM13]. Even though productivity varies significantly across projects

and estimations can only be performed considering previously existing projects,

Minku et al. [MY12] have investigated if cross-company data could help to in-

crease performance and under what conditions. One of the reasons is that the

number of projects available from a single-company is typically small, causing

SEE models to perform poorly. If possible, it would be desirable to use cross-

company data to improve the performance attained by models trained solely on

1.3. Selecting Best Practices for Effort Estimation 13

single-company data.

Traditionally, baseline productivity is typically determined based on experience

gathered in projects successfully completed in a similar context. With compa-

rable accuracy to algorithmic methods in some studies and potentially easier to

understand and apply, an alternative popular approach to algorithmic models

is the studying of effort estimation using analogy. The basis for estimation by

analogy is to describe (in terms of variables or product value measure that acts

as an effort driver) the project for which the estimate is to be made and then

to use this description to find other similar finished projects. The productivity

of similar already completed projects is employed as a basis for predicting the

effort required to complete a new target project.

ANGEL [SSK96] is an example of automated analogy environment that sup-

port the collection, storage and identification of the most analogous projects

in order to estimate the effort for a new one. Once the project reference data

have been collected the analogies are found by measuring Euclidean distance

in n-dimensional space where each dimension corresponds to a variable. It cal-

culates the Euclidean distance between the target project and potential closest

analogues.

Among the well-known factors that promote the use effort for analogy we can

mention [WJ99]: it is easy to understand, it is useful where the domain is

difficult to model, it can be used with partial knowledge of the target project, it

has the potential to mitigate problems with calibration and outliers, it offers the

chance to learn from past experience. A disadvantage of estimation by analogy

is that it requires a considerable amount of computation. It requires the creation

of an environment that supports the collection, storage and identification of the

most analogous past projects [SSK96]. However it is also necessary to consider

that an analogue may be selected and used regardless of its appropriateness.

An old project could be selected as an analogue-one because it appears similar

to the target project, although factors affecting effort have changed over time.

While effort estimation often requires generalising from a small number of his-

torical projects, a factor to pay attention to is project age. Generalisation from

14 Chapter 1. Introduction

such limited experience is an inherently under constrained problem. Lokan and

Mendes [LM09] have approached the dilemma: whether it is preferable use the

entire historical data of past projects, or if it is more appropriate, in a rapidly

process improvement and technological advances, to use a window of recent

project. Particularly relevant is the chronological projects sequence, not ca-

sually. Specifically, if one assumes that recent projects better reflect current

development tasks and practice, while past projects become less relevant over

time, it might make sense to discard older projects.

Finding out which past projects can inspire a new one’s effort is completely

omitted from the expert judgment-base estimation model. Based on human

expertise (possibly augmented with process guide-line, checklists, and data) to

generate predictions, estimates are usually produced by domain experts based

on their very own prior experience in software development. Due to its flexibility

it can be applied in a variety of circumstances where other estimation techniques

do not work (e.g. when there is a lack of historical data) [KKM13]. A number

of different variations exist, e.g. Delphi expert estimation [Kit+02; RW01] in

which several experienced developers formulate an independent estimate and

the median of these estimates is used as the final effort estimation.

While still widely used in companies as domain strategy for effort estima-

tion [MJ03], an expert-driven approach has the disadvantage of inherits all

the weaknesses of methods based on human judgment [Dej+11; Uus+15], such

as lacking an objective underpinning, subjectivity and dependency on the in-

dividual capabilities and preferences of involved human experts. No doubt the

expert opinion is a non-algorithmic method. In fact the outcome of the estimate

is not explicit and therefore not repeatable.

Each estimation method has its specific strength and limitations, depending on

the particular environment and context in which they are to be applied. To go

back to the original point, there is no single model suitable for every situation

and environment. That is why, it is not wrong to adopt hybrid or multiple

estimation methods approach. In these approaches, elements of different esti-

mation paradigms, for example, expert-based and data-driven estimation, are

1.4. The proposed approach 15

integrated within a hybrid estimation method.

The most important consequence of different combination estimation approaches

is the potential to substantially improve the reliability of estimates [TJ14]. By

using more than one technique it is possible to assess the degree of risk associ-

ated with widely divergent predictions, the possibility of validating alternative

estimates against each other and investigate sources of potential discrepancies.

While hybrid should preferably represent different estimation paradigms and

be based on alternative, yet complementary, information sources. When using

multiple estimation methods, we must face the issue of applying multiple inde-

pendent effort estimates to evaluate the same work. Their outcome estimates

are combined to provide into a single final prediction. The key challenge is to

reach consensus between multiple estimates.

A simple and most common way of handling estimation uncertainty is to provide

a range of values, instead of a crisp estimate. A typical way of considering

multiple estimates is to compute multiple uncertainty values, for each estimate

individually and combine them either as an uncertainty distribution or as a

single value synthesised using one of the common statistics over this distribution,

for example, variance ranges, mean or median.

Trendowicz and Jeffery [TJ14] recommend using multiple estimation methods

and combining alternative estimates only when: it is very important to avoid

large estimation errors, the situation in which the estimation method is to

be applied is uncertain (for example, the project environment has not been

precisely specified yet, and estimation inputs and constraints are not clear),

when there is more than one reasonable estimation method available to use

different sources of information, or otherwise it is unclear which forecasting

method is more accurate.

1.4 The proposed approach

This thesis presents several methods to detect and study new parameters use-

ful to assist and validate effort and cost estimation in a software development

16 Chapter 1. Introduction

project. The results achieved have the purpose to improve development produc-

tivity, to justify project effort, to better understand the projects, the community

behind them, and the behavior of employees; identifying, cataloging and creat-

ing comparison models between repository software to pave the way for future

research in software engineering.

For this purpose, data analysis is of fundamental importance. Expression used

to indicate a process of inspection, cleaning, transformation and modelling with

the aim of discovering useful information, informing conclusions, and supporting

decision-making [Bro14]. More specifically applied to the analysis of software

repositories. The steps and processes that bring to this can be divided into

various fields and selective environments. Online, not by chance, there are

various specialised tools in this domain capable of operating independently and

separately, offering for the most only visual tools and not methods or metrics

for studying and analysing data to take part in possible future decision-making

process and new software engineer applications. The metrics presented in this

thesis succeed in this aim.

Mining Software Repositories (MSR) is a research field in which large amounts

of data taken or available from a software repository are analysed in order

to discover interesting and applicable information usable on software systems,

projects and software engineering. It analyses the evolution of software systems

in an automatic way, by applying data mining techniques in the history of

the development data [Sun+16]. Studies in this area give the possibility to

reveal important aspects of the development process for a project, or models

in the evolution of the software, which could be generalised to other software

systems [Bav16; JLW12].

While researchers increasingly recognise the potential benefit of extracting var-

ious types of information to support the maintenance of software systems and

to improve the design, on the other side the presence of these large quantities

of data in the repositories does not facilitate their direct and immediate anal-

ysis. Data may not be suitable for all types of research and data-misuse may

lead to distorted results. They must be properly represented and processed to

1.4. The proposed approach 17

obtain useful information through subsequent analysis for different scopes and

purposes (MSR) [GS17].

A “software repository” is equipped with a source code control system and in-

cludes various information generated during the development of a software, such

as: stored communications between project staff, bug reports and other aspects

that surround a source code to help manage the progress of software projects.

Up to now GitHub reports approximately more than 330 million repositories,

supported by a community of about 83 million developers who learn, share and

work together to develop largely high-quality software3. Certainly this implies

a great possibility: detect and define design patterns that recur throughout the

source code of the various projects. Actually it becomes increasingly likely that

in these models are present knowledge of good development practices [McI+16].

The present work aims to make the reader know and understand the concept of

software metrics and related aspects, analysing the possibility of applying these

metrics in agile software development processes, in order to verify the presence

of the various phases that make up the evolution of an Agile development.

These metrics can represent a standard of measure, quantification and evalua-

tion of different aspects of software development. The advantages they offer are

numerous; they can monitor the progress of the project (or product) software

and ensure its quality. Indeed, it should be noted that the use of metrics in Ag-

ile processes are considered essential, as they allow to improve the predictions

and management of software products.

The analysis of the relations between the metrics studied and implemented has

been of fundamental importance in order to characterise the possible develop-

ment processes and jobs used in the examined repository. This was done to find

an effective correlation between the metrics used and the results obtained, and

to validate the predetermined metrics.

Due to unformed view on how to assess estimation accuracy measurement and

the lack of resources to the in-depth analysis of estimation accuracy data across

project, Grimstad notes how most software organisations typically do not collect

3GitHub https://github.com/about

18 Chapter 1. Introduction

the data necessary to validate and adjust the actual effort to make it comparable

with the estimated effort [GJM06]. For this reasons, this thesis aims to identify

the characteristics and differences between various repositories in order to create

patterns and structures to be used for the effort detect, diversified according to

the repository application domain. These aspects are further deepened in the

development and creation of individual repositories, also in relation to expose

each different weight contribution in the project implementation.

This leads us to consider the possibility of using effort estimation progres-

sively throughout the development process. As the project work progresses,

the project manager should so compare estimates against actual project values

and clarifies potential sources of deviations. Based on the revised information

regarding the actual project environment and scope, re-estimation takes place

in order to account for potential discrepancies from the plans and changes to

the project environment and scope.

With regards to the different aspects of the data analysis and extraction from

repositories, which will be treated in detail later, from my work contribution it

is possible to distinguish between: monitor team performance, individual contri-

bution effort versus team, the presence of regular steps in the code development

that must be respected and a vision of the learning skills of their employees.

1.5 Thesis structure

In Chapter 2 all the required fundamentals for the works described in further

chapters will be discussed. The chapter is composed of different sections, start-

ing from the theory of agile practices. In the context of this description, the

fundamental principles and objectives of this system have been examined, in-

cluding the practical implications for experimentation. In this context, it is

useful to describe the data mining as a field of analysis of the development of

repositories, which allows to discover useful information related to large data

repositories. Moreover, concept related to git hosting service gives the funda-

mentals which were of great importance for the works presented in this thesis.

1.6. Published Papers 19

In Chapter 3 a suite of process metrics related to the development process will

be proposed, which reveal the effort of developers and their practices analysing

data extracted from repositories. The metrics are able to determine the level of

workload constancy of developers but at the same time can act as a repository

classifier: Open Source, Side Project and Full Time Project.

In Chapter 4 the agile Scrum framework will be deepened and with it will be

formulated and implemented a couple of metrics to offer companies the opportu-

nity to extract workflow behaviours from the development progress undertaken

by Scrum team. The main purpose will be based on automatism Sprint reveal,

trying to differentiate the phases of testing and development among all branches

that make up the project repository.

Chapter 5 focuses on the study of estimation measurement systems on API

misuse effort. In finding what concerns the effective contribution of members

on a development team, a series of metrics have been implemented to measure

effort by different degrees levels of APIs use. Through a detailed analysis of all

APIs used in the history of the project and how correctly they have been applied,

it’s possible to profile actual roles and contributors of repository depending on

the efforts that have been applied to the repository.

Finally, Chapter 6 gives the conclusion for this thesis, while Appendix A gives

two code listings that are referred by Chapter 4 to show the application of the

PyDriller framework and its combination with a Bag of Words model on commit

message.

1.6 Published Papers

Part of the work presented in this thesis is based on these co-authored papers:

• L. Pelonero A. Fornaia, E. Tramontana, “From Smart City to Smart Citi-

zen: rewarding waste recycle by designing a data-centric IoT based garbage

collection service”, in: Proceedings of IEEE International Conference on

Smart Computing, SMARTCOMP, Bologna, Italy, 2020.

20 Chapter 1. Introduction

• L. Pelonero A. Fornaia, E. Tramontana, “A Blockchain handling Data in

a Waste Recycling Scenario and Fostering Participation”, in: The IEEE

Second International Conference on Blockchain Computing and Applica-

tions, BCCA, ANTALYA, TURKEY, 2020.

• Camuto Enzo, Fornaia Andrea, Pelonero Leonardo, Tramontana Emiliano

A Suite of Process Metrics to Capture the Effort of Developers, in: ACM

10th International Conference on Software and Computer Applications,

ICSCA, Malaysia, 2021.

• Pelonero Leonardo, Tramontana Emiliano Comparative analysis of soft-

ware repository metrics to estimate developer contribution (draft)

• Pelonero Leonardo, Tramontana Emiliano Discover Scrum Practices form

Repositories to Suggest Improvements (draft)

• Pelonero Leonardo, Tramontana Emiliano How to measure effort misuse

on APIs call (draft)

21

Chapter 2

Background information and

theory

In this chapter all the required fundamentals for the works described in further

chapters will be discussed. This section describes what it means to be Agile,

provide a definition of the agile model, the principles and methodologies for

adopting agile software development. While Agile techniques vary in practices

and emphasis, they share common characteristics, including iterative develop-

ment and a focus on interaction, communication, and the reduction of resource

intensive intermediate artifacts. The importance and usefulness of Mining Soft-

ware Repository field and the processes that characterise it analysing the rich

data available in software repositories. The role of one of the most used tools

by software developers Git, the terminologies that concern it and the commit

structure.

2.1 Agile software development model

The field of software development is not shy of introducing new methodologies.

Indeed, in the last 25 years, a large number of different approaches to software

development have been introduced, of which only few have survived to be used

today. Agile development refers to a set of software development methods that

have emerged since the early 2000s and are based on a set of common principles,

22 Chapter 2. Background information and theory

derived directly or indirectly from the principles of “Manifesto for Agile Software

Development”1.

The notoriety of agile methods, it has generated a lot of interest among practi-

tioners, derives from the fact that they are opposed to traditional models. They

propose a less structured approach but focused on the goal of delivering to the

customer working and quality software in early and frequent delivery.

The practices promoted by agile methods allow the formation of small, poly-

functional and self-organised development teams, as well as iterative enhance-

ment and incremental development, adaptive planning and direct and continu-

ous customer involvement in the development process.

Most agile methods are aimed at reducing the risk of failure or encountering

development issues. To prevent such possibilities, it has been decided to de-

velop software in limited time windows, called iterations that usually last a few

weeks. Each iteration is a small project in its own and must contain everything

that is needed to release a small increase in software functionality: planning,

requirements analysis, design, implementation, testing and documentation.

Developing in iterations allows the development team to adapt quickly to chang-

ing requirements. Even under the hypothesis that the outcome of each iteration

does not have enough functionality to be considered complete, it must be pub-

lished and, in the next iterations, the established demands of the customer

must be remedied and satisfied. At the end of each iteration, regardless style

of development, the team must re-evaluate project priorities.

Agile methods are mainly based on real-time communication, preferably face-

to-face. The agile team, in fact, consists of all the people who know the goal and

the customer’s request. Reducing intermediate artifacts that do not add value

to the final deliverable means more resources can be devoted to the development

of the product itself and it can be completed sooner.

The developer team and their customers can also debate during the software

development phase, this aspect is certainly positive from developers’ point of

1Beck, K., et al. (2001) The Agile Manifesto. Agile Alliance. http://agilemanifesto.org/

2.1. Agile software development model 23

view in order to allow them to better understand customers’ requirements,

negative for unexpected last minute requests [BA04].

It is interesting to note that there is a lack of literature describing projects

where Agile Methods failed to produce good results. Instead, there are many

studies reporting poor projects due to a negligent implementation of an Agile

method [CLC03]. This leads to the concept of analysing for which situations

agile methods are more suitable than others; there is no one-size-fits-all software

development model that suits all imaginable purposes. As stated by Hawrysh

and Ruprecht (2000) it is up to project management identify the specific nature

of the project and accordingly select the best applicable development method-

ology [Abr+17].

2.1.1 Principles and Objective

The aim of agile development is not only the fulfilment of the contract, but also

the complete customer satisfaction. The correct use of these methodologies,

moreover, can reduce the costs and the time of development of the software,

increasing its quality.

The principles and focal values on which an agile methodology is based following

Agile Alliance are [Amb12; BA04]:

• Individuals and interaction over process and tools: people interactions and

close team relationships are more important than processes and develop-

ment tools. The agile movement emphasises the relationship of software

developers and the human role reflected in the contracts (i.e. the relation-

ships and communication between the actors of a software project are the

best resource of the project);

• Working software over comprehensive documentation: new releases are

produced at frequent intervals, and the code must be kept simple and

technically advanced as possible, thus reducing to minimum documenta-

tion;

24 Chapter 2. Background information and theory

• Customer collaboration over contract negotiation: collaborate with cus-

tomers as well as respect the contract (direct collaboration offers better re-

sults than contractual relationships). The negotiation process itself should

be seen as a means of achieving and maintaining a viable relationship;

• Responding to change over following a plan: be ready to respond to

changes emerging during the development process life-cycle (therefore

project stakeholders should be ready, at all times, to change the prior-

ities of work in compliance with the final goal).

As mentioned, agile methodologies allow continuous review specifications, adapt-

ing software development progresses, through an iterative and incremental frame-

work and a strong exchange of information and opinions between the developers

and client.

2.1.2 Practices and Methodologies

The individual practices applicable within an agile methodology are numerous

and depend essentially on the needs of the company and the approach of the

project manager. What must take into account are the characteristics of each

practice, the benefits it brings and the consequences it entails. For example, in

Extreme Programming, the absolute lack of any form of design and documenta-

tion is compensated by the strict involvement of the customer in development

and pairs programming.

The most widely available practices are similar and can be grouped into the

following categories [BA04]:

Automation - Agile methodologies focus on programming without engaging in

side activities, these latter can be eliminated or automated. For example, delete

documentation by increasing testing, but you can’t delete both; so you have to

choose the path you want to take and make sure to use tools to automate as

many side tasks as possible;

Customer involvement - There are different degrees of possible involvement; for

example in Extreme Programming the involvement is total, the customer even

2.1. Agile software development model 25

participates in weekly meetings of programmers; in other cases, the customer is

involved only at the first design step; in others the customer still participates

indirectly and is used as a tester of the released version;

Close communication - This practice is perhaps the only true nodal aspect that

makes a methodology agile. Close communication, in fact, means interpersonal

communication, between all the actors of the project, including the customer.

This serves to obtain a good analysis of the requirements and a profitable col-

laboration between programmers even in an area of almost total absence of

documentation;

Frequent deliveries - Making frequent intermediate versions releases of the soft-

ware give multiple advantages at once: can start the iteration already having

a block of working code; offers the customer something to work with and dis-

tracts him from any delivery delays of complete project; the customer attends

as tester, note that he will use the software and will detect any anomalies; more

precise information is obtained from the customer requirements that he would

probably not have been able to express before;

Hierarchy - The choice to create a hierarchical structure within the develop-

ment team depends greatly on the project manager’s approach. Indeed, this

choice comes with compromises: with a hierarchical tree structure you get the

opportunity to manage a very high number of programmers and work on dif-

ferent aspects of the project in parallel; if you decide for a total absence of

hierarchy you will have a very compact and motivated development team, but

it necessarily small in terms of number of programmers;

Iterative development - an important practice through which a starting “idea”

(a concept, a proposal, a set of needs) evolves to become a product of value for

customer. Iterative enhancement works through cycles of activities that do not

change, but that repeating periodically lead to the ‘raw’ solution, that refine to

become the final product;

Pair programming - development is done by pairs of programmers;

26 Chapter 2. Background information and theory

Refactoring - the restructuring of parts of the code that keeps its appearance

and external behavior unchanged;

Reverse engineering - automatic generation of documentation from the code al-

ready implemented. Popular practice but not very exploited. It is a time saving

practice but often the produced documentation is unusable, or is produced only

for a bureaucratic request of the customer and will never be used really;

Test Driven Development - testing to be performed during the project. Only

after the actual tests have been passed, it is possible to continue in the following

implementation steps.

Versioning - as consequence of iteration in production a tool to control the

versions of the software produced and released is introduced. One of the most

widely used and suggested tools is CVS.

2.2 Mining software repositories to assist de-

velopers and support managers

The amount and data size present in software projects is constantly increasing.

As a result, this complicates the work of developers and maintainers. In recent

years, researchers analyse software repositories to better understand their ongo-

ing structural change due to the increasingly established presence of long-term

projects.

Thomas Zimmermann, describing one of the main goals of MSR (Mining Soft-

ware Repository) states that “Learning from past successes and failures helps to

create better software” [Zim06; WH05b]. However, learning from history is not

an easy process as the software evolves over time. Understanding the software

evolution process is a difficult task. Major systems are used to have a long

development history, with numerous different developers working on different

parts of the system. It is natural that no developer knows the entire source

code of the project. For this reason, the idea of a manual analysis on all types

of software is impractical.

2.2. Mining software repositories to assist developers and support managers27

Most of software projects cost is related to the reuse of components or the main-

tenance of legacy systems software (outdated or obsolete software). It follows

that the study and knowledge of past projects patterns are very useful to under-

stand. The MSR field becomes a key to support maintenance, improve software

process quality, and empirically validate various research ideas or techniques.

MSR is described as “A field that analyses the rich data available in software

repositories to uncover interesting and actionable information about software

systems and projects”2.

The definition of MSR is similar to Data Mining, which is defined as the pro-

cess by which automatically discover useful information in large data reposito-

ries [TS05]. In fact, Data Mining is a more general field of MSR. Data mining

consists in discovering interesting and possibly unexpected patterns in a data

system. Most data mining analysis is based on discrete data, nominal or textual

associated to business concepts. These informations can be used to infer new

knowledge, as a decision support tool or as a basis for other operations (e.g.

user profiling). There are two secondary tasks associated with this primary

task: data cleaning, pre-processing detection and cleaning of artifacts data;

data display, to show the results of the data mining conducted.

Error and effort predictions are important tasks to reduce costs in a software

project. The research activity and effort identification on a software project

aims to understand the necessary path to complete the started project. Pre-

dicting an error fault, however, helps the detection of modules subject usually

to bugs and errors, so that we can avoid them and draw the necessary and

useful considerations. Such forecasting and monitoring models should not only

be accurate but also understandable to the end user, who can then exploit the

benefits on later business decisions [Moe+15].

Among the most common areas in MSR we can cite [WH05b]: software evolu-

tion, models for the software development process, characterisation of develop-

ers, forecasting software quality, detecting software bugs, analysis of changes in

work patterns and detection of duplicate code.

2International Conference on Mining Software Repositories http://www.msrconf.org/

28 Chapter 2. Background information and theory

The reason behind the growing need of MSR is due to the increased amount

of unstructured data available, the use of Issue tracking system, as well as the

relevant communications and interactions that developers undertake in the im-

plementation of the project. The extraction of such data represents an unprece-

dented opportunity for researchers who want to investigate, ask new research

questions and build possible maintenance systems that support the various de-

velopment activities. Such applications thus enrich software engineering beyond

the difficulties of unstructured data study [Bav16].

MSR supports researchers in this field, who try to achieve the criteria to acquire

features related to the evolution and changes of the software, following the

relevant steps, such as: the calculation of metrics, the extraction of data and the

recording of statistical developments. It analyses the evolution of the software

automatically, through the application of Data Mining techniques in the history

of data development.

Primarily MSR begins with the extraction of interesting data from various large

repositories such as: source code control systems, bug tracking systems or com-

munications archives and so on. After data extraction, starts a filtering and

conversion phase, the data is converted in appropriate data structures [JLW12].

• Data extraction: where the raw data were extracted from;

• Processing: what type of data were managed;

• Analysis: which algorithms are used to analyse data;

• Evaluation: how MSR outcomes were evaluated.

An important aspect of mining software repository is the analysis of the source

code itself. There are several billion Open Source lines of code online, and

a large part of them have professional quality. In practice, it entails a great

possibility: finding and defining models that recur throughout the source code

of various projects. Studies in this area can reveal important aspects of the

development process for a project [McI+16].

2.2. Mining software repositories to assist developers and support managers29

Mining could enable a wide variety of software engineering tools, e.g. to recom-

mend which classes are most reusable [Era+19; RI19; GRF17], to understand

how to reach and obtain highly configurable systems according to the needs

that can be encountered in time [DDP18], or for identifying potential bugs, etc.

according to statistical analysis results [Rad+13; DLR10].

Analyses are usually refined during several iterations through a cyclic data

selection, pre-processing, and the construction of appropriate models and their

validation. These study of software evolution activities are time consuming and

errors prone. Best results are usually achieved by combining models of different

techniques, which require a wide variety of tools integrated within the system.

There is no doubt that MSR studies benefit from automation as data is too

large to be analysed manually, especially if you need to access data from many

sources and combine them to get more comprehensive results and analysis. As

a result of this, the choice falls on the use of MSR framework that supports the

following advantages: (i) the researcher can focus on the objectives and not on

the infrastructures, moving all the interest only to the possible results to obtain;

(ii) the encoding of a framework improves standardisation and reproducibility

of the experiments on the repositories (the possibility of make the raw data and

the research code available so that others can achieve the same results as shown

on conclusions of the research work).

Researchers continue to demonstrate the benefits of the Mining Software Repos-

itory on software development activities. However, because the mining process

takes a lot of time and resources, they often rely on distributed platforms and

parallel programming optimisations to accelerate and expand their analysis.

These adopted platforms are specific to the framework and the type of analysis

to be performed, difficult to reuse in other contexts and further research, and

offer minimal support for debugging and deployment [Sha+09].

2.2.1 Data extraction

Data is one of several important aspects of software-based systems. Most, if not

all, applications are based on moving, utilising, or otherwise manipulating some

30 Chapter 2. Background information and theory

kind of data, after all. The major difficulty in collecting the data is the scarcity

of data due to the unwillingness or lack of data collection at the companies’

side. For this reason we have used data from public data repositories and we

also collected data from open source software foundation (CNCF).

The software is flexible and can deal with various data sets, drawn from a range

of different environments, both in terms of the number of observations (projects)

and in the variables collected. There are several data sets made available by

research entities in the field, each particular for its properties and context of

use. But a data sets typically contain a unique set of attributes that can be

categorised as follows:

• Size attributes are attributes that contain information concerning the size

of the software project. This information can be provided as Lines Of Code

(LOC), Function Points, or some other measure. Size related variables are

often considered to be important attributes to estimate effort.

• Environment information contains background information regarding the

development team, the company, the project itself (e.g., the number of

developers involved and their experience), and the sector of the developing

company.

• Project data consist of attributes that relate to the specific purpose of the

project and the project type. Also attributes concerning specific project

requirements are placed in this category.

• Development related variables contain information about managerial as-

pects and/or technical aspects of the developed software projects, such

as the programming language or type of database system that was used

during development.

Data sets can range from larger and more heterogeneous to data sets that are

smaller and more homogeneous, working in progress project or involve fewer

completed projects per year.

In-depth studies and triangulation may be needed to ensure that all the data are

based on the same project conducting surveys or logging estimation information.

2.3. GitHub 31

To develop a study in this field, it seems necessary, in a first phase, to collect

large amounts of data, often even from different projects, and store them on

appropriate servers or workstations.

2.3 GitHub

GitHub is a hosting service for software projects and version control, in order to

meet project and organisational needs to work and share the code development

for all those who work on it. It commonly provides free services to Open Source

developers, including project hosting, version control, bug and issue tracking,

project management, backups and archives, along with communication and col-

laboration resources.

It is nothing more than an evolution of local and centralised Version Control

System (VCS), which allowed programmers to maintain a database of versions

and changes made on one or more files in the machine itself. What was done

in the machine was the check-out, a synchronisation copy between the version

currently working on (in Git work directory) with a specific version within the

local database. It was thus possible to keep everything in an orderly manner.

The only problem was that it was a purely local system; it was not possible to

collaborate on a team on the same project [Spi17].

Figure 2.1: Comparison: Local VCS and Centralised VCS

32 Chapter 2. Background information and theory

Unlike local VCS and centralised VCS (figure 2.1), Github is a distributed VCS

(figure 2.2). A fully mirror system that allows you to retrieve the entire code

history from every single actor that have worked there (even in the unfortu-

nate case of server malfunction). Giving great strengths and robustness to the

system.

Figure 2.2: Distributed VCS

The local and the remote approach are combined, allowing to manage a large

number of workflows, different ways to coordinate the developers participating

in the common project.

If on one hand it becomes more difficult have general point of view of the

project, on the other hand distributed VCS avoids problems of scaling for very

large projects as well as problems of Single point of failure, on which if that

single reference database on the remote server falls you lose the whole project

and code history [Spi17].

2.3. GitHub 33

2.3.1 Why to use GIT

This system is used primarily for its simple design that revolves around the

commit graph and also because it is nothing but cumbersome or tedious.

It has strong support for non-linear development, which is one of the biggest

differences from SVN where everyone planned the same development line to

follow and respect. This allowed a single evolution version of the code over

time. It is not like that in Git, since there is the possibility of creating branches

on branches of code versions.

This drastic change development from linear to non-linear development is due

to the fact that any branching operation has become an economic operation

and simple to manage. Git becomes fully distributed and efficiently for both in

terms of speed and for managing large projects3.

Among other benefits, Git allows to do offline operations. Every developer has

a local database and this allows to work remotely, without the need to be as-

siduously connected to create a saved code just modified. Indirectly this makes

it possible to secure a possible change that has been done in strait schedule or

that has not yet been fully review, avoiding saving it as the only solution for

the whole team of work from which they will then take reference to go forward.

These local changes will be considered only when you are aware that you can

publish them at all, and not before.

2.3.2 Terminology

Commits are the core building block units of a Git project timeline. A Commit

is nothing more than a snapshot of the state of a project, including files of

various extensions which it was decided to have Git monitoring.

The copy of the project of each user is a snapshot and around it there are a

series of additional information, as shown in figure 2.3, that are:

• commit author: who made that specific commit, who saved that code

state;

3GitHub https://github.com/about

34 Chapter 2. Background information and theory

Figure 2.3: Commit sequences

• committer: who pushed the commit to the repository, which in some cases

may also be different from its author;

• hash: hash that uniquely identifies the commit;

• message: a textual information put by developer to describe the changes

made in the commit;

• list of modified files in the commit;

• list of commit parents: represent a reference to previous commits from

which the current commit derives: 0) initial commit of project, 1) a single

previous commit, or 2) if commit comes from the merge of two previous

commits.

There are three types of pointers within the Commit Graph 2.4: Branch, Tag

and Head. Head is a pointer that refers to the currently commit that is on the

working directory, keeping a reference to the project version currently working

on. Branch represents an independent line of development, it offers a way to

work on a new feature without affecting the main codebase. Once the feature

development is done, the branch will merge to the main commit to integrate

officially the new feature. As well as, the utility of a branch can be to solve

a specific problem that may require more commits but still refers to a specific

problem (Hotfix). While Branches are pointers that can be moved, Tags are

pointers that never move. They associate a label to a specific commit, used to

annotate versions of the code.

2.4. PyDriller 35

Figure 2.4: An example of Commit Graph

2.4 PyDriller

PyDriller [SAB18] is a Python framework that helps developers on mining soft-

ware repositories. It is capable of simplifying tasks, analysing a Git repository,

allowing researchers and professionals to focus on their research and not on the

manipulation details of Git itself.

It can easily extract information from any Git repository, such as commits,

developers, modifications, diffs, branches and source codes, and quickly export

csv files. It is a flexible MSR tool, the framework has the ability to perform

arbitrarily analyses according to objective requirements.

Compared to many other tools that require specific structures and studies for

their usage, PyDriller stands out for its minimalist structure and required APIs.

It only requires storage and computational capabilities when necessary; there

is no significant pre-processing phase or requests for large data bases. In this

way, users and researchers are offered only the features to perform the required

MSR tasks, hiding the structural complexity to end user.

The PyDriller architecture simply requires the repository path to be analysed

or the Git url repository which will be directly downloaded; so that once, based

on that path, the framework will return the repository commit list.

While MSR plays an important role in software engineering research, few tools

36 Chapter 2. Background information and theory

have been created and made public to support developers in extracting informa-

tion from Git repository. However, the operation of extracting from repositories

is not trivial. There are different types of frameworks and libraries in various

languages that use the REST API calls (e.g. Github). These tools, however,

are often difficult to use. One of the main reasons for this difficulty is that

they incorporate all the features of API query, so developers are forced to write

long and complex implementations even to extract a single data from a Git

repository.

Depending on the level of authorisation, an API request allows application to

request high level data or services such as creating repositories, modify or delete

personal existing repositories. This can be achieved by using private credentials

or by enabling access restrictions with special tokens created for the application

(OAuth 2.0)4.

By means of access tokens it is possible to take advantage of two great feature:

revocable access, on which users can revoke permissions to third-party appli-

cation and limited access, users can verify the access and permissions provided

by a token, before authorising a third-party application, as well as control the

traffic rate limits API requests. The number of possible calls requests is low

that it requires desired delay time to avoid the total rate consumption offered

and to keep the session running until the end of data extraction and and its

consequent analysis. This system is used to prevent any abuse of services or

principle of denial-of-service attack.

Normally tokens are created through web interaction. The application sends

users to access on GitHub. GitHub thus presents a dialog indicating the name

of the app, as well as the authorisation levels that the app will have once it

is authorised by the user. At the end, GitHub redirects the user back to the

application.

PyDriller does not manage or require any credential or access password, thus

avoiding all the processing required by OAuth 2 and preventing from forgetting

pendants and working tokens. The framework takes as input the repository,

4GitHub Docs https://docs.github.com/en

2.5. Open Source Software 37

it will make a clone on a temporary folder, so that once finished the analysis

phase will be deleted.

2.5 Open Source Software

Open Source Software (OSS) paradigm, can also be discussed from a philosoph-

ical perspective. It suggests the source code to be freely available for modi-

fications and redistribution without any charges, in order to empower future

innovation. This development process inspires a novel software development

paradigm and offer an innovative way to produce applications taking advantage

of global developer collaboration [Dem+02].

Feller and Fitzgerald [FF00] present the following motivations and drivers for

OSS development:

1. Technological; the need for robust code, faster development cycles, higher

standards of quality, reliability and stability, and more open standards

and platforms

2. Economical; the corporate need for shared cost and shared risk

3. Socio-political; scratching a developer’s “personal itch”, peer reputation,

desire for “meaningful” work, and community oriented idealism.

Most known OSS development projects are focused on development tools or

other platforms that are used by professionals who have often participated in

the development effort themselves, thus having the role of the customer and

that of the developer at the same time.

Unlike ASD, OSS is not a suite of well defined and published software devel-

opment methodologies and practices. Instead, it is better described in terms of

different licenses for software distribution. However, it must have some struc-

ture, or else it would never have been able to achieve such remarkable results

as it has in the past years.

Even though Cockburn (2002a) notes that OSS development differs for its own

peculiarities from the agile development mode in philosophical, economical, and

38 Chapter 2. Background information and theory

team structural aspects, OSS does in many ways follow the same lines of thought

and practices as other agile methods.

For example, the OSS development process starts with early and frequent re-

leases, and it lacks many of the traditional mechanisms used for coordinating

software development with plans, system level designs, schedules and defined

processes.

Table 2.1 shows how the Open Source Software (OSS) paradigm places itself

between the agile and plan-driven methods. The OSS is still fairly new in

business environment and a number of interesting research questions remain to

be analysed and answered. Thus the OSS approach can be seen as one variant

of the multifaceted agile methods [Abr+17].

Even though it is possible to depict the OSS software development methods

with the above iteration stages, the interest lies in how this process is managed,

as can be seen how the OSS development method is characterised by Mockus

et al. (2000) with the following statements:

1. The systems are built by potentially large numbers of volunteers

2. Work is not assigned; people themselves choose the task they are inter-

ested in

3. There exists no explicit system level design, or even detailed design

4. There is no project plan, schedule or list of deliverables

5. The system is augmented with small increments

6. Programs are tested frequently

Sharma et al. (2002) state that OSS development projects are usually divided by

the main architects or designers into smaller and more easily manageable tasks,

which are further handled by individuals or groups. Volunteer developers are

divided in individual or small groups. They select freely the tasks they wish to

accomplish. Thus the rational modular division of the overall project is essential

to enable a successful outcome of the development process. Furthermore, these

sub-tasks must be interesting to attract developers. Even though hundreds of

2.5. Open Source Software 39

volunteers may be participating in the OSS development projects, usually there

is only a small group of developers performing the main part of the work.

To work successfully, the geographically dispersed individuals as well as small

groups of developers must have well functioning and open communication chan-

nels between each other, especially as the developers do not usually meet face-

to-face.

To start or to acquire an ownership of an OSS project can be done in several

ways: to find a new one, to have it handed over by the former owner, or to

voluntarily take over an ongoing dying project (Bergquist and Ljungberg 2001).

The OSS development process can be seen as a massive parallel development

and debugging effort.

Table 2.1: Home ground for agile and plan-driven methods
(Boehm 2002), augmented with open source software column.

Home-ground
area

Agile methods Open source software Plan-driven methods

Developers

Agile,
knowledgeable,
collocated, and
collaborative

Geographically
distributed,
collaborative,
knowledgeable
and agile teams

Plan-oriented; adequate
skills; access to external
knowledge

Customers

Dedicated,
knowledgeable,
collocated,
collaborative,
representative, and
empowered

Dedicated,
knowledgeable,
collaborative, and
empowered

Access to knowledgeable,
collaborative,
representative, and
empowered customers

Requirements
Largely emergent;
rapid change

Largely emergent;
rapid change,
commonly owned,
continually evolving –
“never” finalised

Knowable early;
largely stable

Architecture
Designed for current
requirements

Open, designed for
current requirements

Designed for current and
foreseeable requirements

Refactoring Inexpensive Inexpensive Expensive

Size
Smaller teams and
products

Larger dispersed
teams and smaller
products

Larger teams and
products

Primary objective Rapid value Challenging problem High assurance

40 Chapter 2. Background information and theory

2.6 Conclusion

In this chapter all the fundamentals and background, to understand and eval-

uate the contributions presented in further chapters, have been presented. A

great importance has been given to concepts related to data mining, theoretical

description of the foundations of modern software development, identifying the

characteristics of the Agile software development model to introduce the agile

framework Scrum since needed to support the work presented in the following

Chapters.

41

Chapter 3

Code History Metrics to classify

Software Repositories at scale

Software repositories are a valuable support for large teams working together

on a project. Besides the code, a repository includes useful data related to de-

velopment practices. Being able to extrapolate these information would allow

to understand and realise the typology of working procedures adopted by the

team. In this chapter, a calibrated analysis approach will be proposed; a suite

of process metrics is applied to data extracted from repositories and related to

the development process. Complete automation has been achieved for extract-

ing data from repositories and for computing metrics, as well as representing

them. Only by having an overall view of the development method used and

the productivity employed you can have total control of the project progres-

sion. The value of the proposed metrics is to reveal the effort of developers and

their practices, in order to highlight strengths and weaknesses, then suggest

improvements.

3.1 A suite of Process Metrics to Capture the

Effort of Developers

Over the years, interest has increased how software developers approach their

jobs and in the same way emulate its positive characteristics. However, it is

not enough. We need to understand and be sure if developers benefit from

42 Chapter 3. Code History Metrics to classify Software Repositories at scale

these techniques, tailor them, and apply them appropriately within specific

environment. The aim of this thesis is the study and identification of metrics

that define the work behind software project and describe what techniques the

developers benefit from.

An important source of study are software repositories. It contains historical

and valuable information about the overall development of software systems.

Mining software repositories (MSR) is nowadays considered one of the most

interesting growing fields within software engineering. MSR focuses on extract-

ing and analysing data available in software repositories to uncover interesting,

useful, and actionable information about the system.

One of the bases to foster collaboration and work in large development teams

is the use of appropriate tools to converge ideas and communications. Hence,

the need to avoid losing the main goal of a project. Software repository is one

of the well known tools. For this reason, beside the code, a repository includes

useful data related to development practices.

The term software repository includes all the aspects created during the software

development such as: source code’s control systems, archived communications

between the project team, bug reports and other aspects that surround a source

code to manage the progress status of software projects (Git repositories hosted

by GitHub, Bitbucket, GitLab).

During development, dictated by schedule and time consuming tasks, new fea-

tures and other code changes are implemented by developers. Software de-

velopers publish their source code in order to foster continued innovation in

computing. Such code changes (or commits) must submit to rigorous activities

of continuous integration tests and code review prior to merge into the main

branch [GPD14].

In fact, it is increasingly likely that knowledge of good software engineering

practice is hidden in these models. The software engineering practices must be

an integral part throughout the life cycle (from planning, development stage,

3.1. A suite of Process Metrics to Capture the Effort of Developers 43

to release preparation), so that teams can follow the best practices to prevent

software defects and become more and more expert programmers [Rol+18].

Professionals and researchers are recognising the benefits of extracting these

valuable historical information: to support software system maintenance, to

improve software design and eventual reuse of it, to validate new ideas and

techniques.

The use of process metrics on the development history is increasingly taking

hold parallel to code metrics. For a long time, researchers have been interested

in which classes of metrics (process or code) are better for defect prediction.

According to Foyzur Rahman et al., researchers mostly focus on two classes

of metrics: code metrics, which measure properties of the code (e.g. size and

complexity), and process metrics (e.g. number of changes, number of develop-

ers) [RD13; MJ15], suggesting the use of process metrics as most effective for

defect prediction.

Development practices have been at the center of previous studies and inves-

tigations. Catolino et al.’s survey [Cat+19] emphasises how many researchers

found significant correlations between developers’ experience and testing effec-

tiveness, related to software maintenance and testing [BR08]. Evidence of this

is provided by Pham et al. [Pha+14] who come to the conclusion that junior

developers do not see the need to write test cases, as they have likely not expe-

rienced the consequences of inadequate testing.

In this chapter we propose to extract knowledge from a software repository by

devising a set of metrics for a project. The proposed metrics are: Commits per

Day of the Week (CDW), Commits per Hour of the Day (CHD), Average Com-

mit Distribution (ACD), Commits per Week in the last Year (CWY), Changes

per Week Trend (CWT), Lines Of Code in Time (LOCT).

Such metrics allow us to identify characteristics and differences in software

projects, have an appropriate recognition profiling of the repositories, and con-

sequently the developers behind them. Further outcomes are: the study of

commits and trends of a developer, defining the correlation between developers’

44 Chapter 3. Code History Metrics to classify Software Repositories at scale

experience and the effectiveness of activities and effort. Establishing the devel-

oper’s workflow and his resulting skills is one of the qualities sought within a

company in order to understand and determine the contribution of each indi-

vidual.

The rest of the chapter is organised as follows. Section 3.2 describes the related

work. Section 3.3 introduces our approach. Section 3.4 describes the implemen-

tation adopted. Section 3.5 presents the proposed metrics. Finally, Section 3.6

contains the conclusion.

3.2 Related Work

One of the advantages of MSR is the ability to use process mining techniques

to extract knowledge from a variety of information sources. The study that

leads to the knowledge of programmer behaviour try to find resources from all

sides. Exactly as we did, in [CA16] authors tried to find ideas outside the mere

source code management system and issue tracking tools. Due to the absence

of a study on the direct developing process itself and in parallel to increasingly

establishing of cloud-based IDE (last one GitHub’s Codespaces1) they build up

a plugin for Eclipse IDE to collect data in JSON to understand the developer

process pattern and characterise developer roles along several machine learning

approaches.

MSR is not only a dedicated practice by experts and researchers in the field,

even companies invest a lot in this area. The organisations are looking forward

to improve their software development processes to employ agile best practices.

These practice are difficult for organisations to validate (e.g. customer collabo-

ration could not be detected in the event logs).

Due to the increasing importance of open source software, modern software

development processes involve multiple developers and development teams re-

siding across different continents and time-zones [PSV11]. Such projects are

1GitHub Codespaces https://github.com/features/codespaces

3.3. Approach 45

usually managed by small number of developers, frequently working as volun-

teers, for these reasons there is often the risk to became unmaintained projects.

In [Coe+18] authors proposed an approach to identify GitHub projects that

are not actively maintained. Ten trained machine learning models were tested

to identify the project status, based on a set of features about project activ-

ity (number of commits, forks, issues, and pull requests). The status includes:

finished projects, deprecated projects and stalled projects. Despite the results

obtained we prefer to rely on literature to remark the unmaintained project,

Khondhu et al. [KCS13] use a one-year inactivity threshold to classify dormant

projects. A threshold not empirically validated, but large enough to establish

the progress of the projects and arrive at a final conclusion (maintained or not).

3.3 Approach

The aim of the work is to collect data from different repositories and analyse

data collected to determine labels for commits, e.g. determine the frequency

of the commits made, in which time frame they are performed, in which time

interval the work is mostly involved.

Previous works and tools mainly focus on establishing links from commits to

issues, the number of issues or files per project, and which commits caused that

bug fix. For each project, they give the possibility to browse the commit history

and the issues and to inspect the links that were established [WH05a].

In such a context, we have designed and implemented an extension of such

systems enabling the development of advanced data pipelines, facilitating their

property and scalability, to identify and understand the level of work that the

development team exhibited during the creation of a project. We relied on

PyDriller, a Python framework for MSR [SAB18] capable of mining arbitrary

Git repositories, to extract all core Git data, such as commits, developers, diffs,

etc.

In order to compare and validate the data obtained, we needed to simultaneously

analyse different repositories and to combine the information obtained. These

46 Chapter 3. Code History Metrics to classify Software Repositories at scale

experiments aim to measure the ability to detect changes or similarities between

the histograms of the analysed commits repository, taking as a model projects

known for the use of agile software development. Similarity dictated by the

evident presence of regular trends.

3.4 Design and Implementation

The tool has been developed in Python to offer multiple ways to interface with

the rich Python ecosystem and with big data solutions. PyDriller framework

allowed us to implement different type of python script that supports replicable

and reproducible research based on software repository mining. The collection

and analysis of detailed data can be challenging, especially if data shall be

shared to enable replicable research and open science practices.

Given a list of git repository to be analysed, the work of the implemented tool is

to collect data such as: authors, collaborators, date and time commits, commit

messages and other information related to it, through the use of Git (GitHub)

repository. Whenever the tool is invoked will always ensure the historical data

analysis to the actual state of art of the repository that changes over the time.

Once provided the list of remote repositories URL to analyse, the tool will

temporarily clone all the repositories one at a time, after completing the analysis

of the previous one. It navigates each commit starting from the oldest one. In

this way, not only the historical evolution of the code is taken into account, but

also all the background such as for e.g. documents, files and possible references,

analysing the entire project.

The aim of the tool is to research and identify possible common periodic events

such that there is a possible correlation between the projects analysed by navi-

gating the Git history, or even correlation with agile development methods and

process (whether they are respected or not). This allows us to identify and cat-

egorise the repositories examined and to measure the effort employed in their

implementation.

3.5. Metrics Experiments 47

The experiments ran in a cloud setting, where the tool was deployed using

Docker. The implemented tool performs all the work that goes from extracting

data from Git repositories to their final analysis in single-thread. A multi-

thread solution can be implemented by splitting the workload to be extracted

and analysed e.g. by date, week or month and process them in parallel.

3.5 Metrics Experiments

The repositories subject of my tests and analysis have been found among the

trending ones in GitHub. Six metrics have been implemented. The comparison

between the different metrics serves to describe the main development phases

of a repository, based on the time data progression (analysing the evolution ac-

cording to daily, weekly and annual steps). This section describes the proposed

metrics and the experiments performed on two open source repositories, Repo-

Driller (Java framework) and RxJava (Java library), for computing the metrics

and showing their usefulness.

The repositories were chosen in such a way that they were developed by separate

teams, and have different characteristics and application domains, especially in

terms of number of developers and number of classes. The aim was to cover

repositories using different technologies, and explore both traditional and newly

emerging projects.

3.5.1 Commits per Day of the Week

The metric Commits per Day of the Week (CDW) aims at evaluating the num-

ber of commits per day of the week (Mon-Sun). Therefore, it allows us to

determine which are the most labour-intensive days. You might notice the

workload distribution throughout the week, if there are more challenging days

than others, if the histogram curve draws more slopes towards the end or the

beginning of the week.

48 Chapter 3. Code History Metrics to classify Software Repositories at scale

Figure 3.1: The number of Commits per Day of the Week
(CDW) for RepoDriller (left) and RxJava (right).

Therefore, some characteristics can stand out and be further analysed to take

countermeasures, such as e.g. distinguish the days with more or less workload,

check why the distribution of commits could not be uniform, etc.

Figure 3.1 shows CDW for two repositories: RepoDriller and RxJava. Firstly,

we can see that the number of commits for RxJava is much higher than for

RepoDriller (15 times higher), and while the first presents a high variability of

number of commits for each day, the second is more uniform for the working

days of the week. Secondly, for RepoDriller the average commits per weekdays

is 51.2 and for weekends is 53.5 (almost the same average); whereas for RxJava

the average commits per weekdays is 1239.4 and for weekends is 510 (three

times on weekdays than weekends). Therefore, for RxJava there is a greater

difference than RepoDriller between the number of commits in working days

and weekends. Such a result shows that for RxJava not overworking during

weekends is more likely than RepoDriller, hence a better time management is

performed for the former.

In general, when there are weekend commits in a number similar to working

days commits, the project could be classified as a personal project, or non-work-

related project, that is assumed to be exclusively in an intra-weekly period, but

it’s more in the private sector and then it is perhaps a side project. Still, for

some exceptional weeks if the difference is not as marked it could be that the

team is running late and it is catching up for a release.

3.5. Metrics Experiments 49

Figure 3.2: The number of Commits per Hour of the Day
(CHD) for RepoDriller (left) and RxJava (right).

3.5.2 Commits per Hour of the Day

The metric Commits per Hour of the Day (CHD) consists in determining the

commit times during the day (0-23). The possible outcomes would be to deter-

mine the usual working hours of the development team, which could be on day

time if it is a Full-Time project, or even in the evening and at night if it is a

totally personal project.

Figure 3.2 shows CHD for the two repositories: RepoDriller and RxJava, re-

spectively. It can be seen that RxJava presents a higher difference between the

number of commits during the day than in the night, compared to RepoDriller.

For RepoDriller the average commits during the day (from 8am to 11pm) is

20.1 and during the night (from 12am to 8am) is 5; whereas for RxJava the

average commits during the day is 394.3 and during the night is 54, therefore

for RxJava there is a greater difference than RepoDriller between the number of

commits during the day than the night. For RepoDriller, during the day there

are 4 times the commits than the night. For RxJava, during the day there are

7 times the commits than the night.

Moreover, in a mainly open source project it would be possible to find commits

in the early morning due to the time-zone of those who are participating in

the collective project. Still, it is possible to determine the hours when there

are almost no commit. In the end, the aim is to recognise whether there is a

uniform effort during the day or the hours of greater tension or work.

50 Chapter 3. Code History Metrics to classify Software Repositories at scale

Figure 3.3: The use of Average Commit Distribution (ACD)
to highlight (in yellow) the commits with an average activity
score for RepoDriller (plot has been cut to an activity score of

1200 to ease data visualisation).

3.5.3 Average Commit Distribution

The metric Average Commit Distribution (ACD) consists in evaluating the “av-

erage” commits of the whole project. A commit is considered average if its ac-

tivity score (sum of the added and eliminated lines) is between -25% and +25%

of the average activity score. The average value is calculated by excluding 10%

of samples from both extremities (the smallest and the highest activity score

values that could negatively influence, and then invalidate, the calculation of

the average), thus the mean is calculated on the 80% of samples, which is more

accurate.

Figures 3.3 and 3.4 represent the activity scores of commits along the y-axis,

while on the x-axis there are commits arranged by activity score (the blue

histogram) respectively for RepoDriller and RxJava. Figure 3.5 highlights only

the days where the average activity appears.

It is important to note that what really matter is the frequency of the similar

commits spread in the project, when we find very frequent occurrences, let us

3.5. Metrics Experiments 51

Figure 3.4: The use of Average Commit Distribution (ACD)
to highlight (in yellow) the commits with an average activity
score for RxJava (plot has been cut to an activity score of 3500

to ease data visualisation).

say daily basis, we can state that this project’s activity is stable.

The vision of this analysis is on the whole evolution of the development project

in order to verify if the study behind the repository has been constant over time

and not taken up again and worked in an irregular manner.

The analysis concerns the evaluation of whether the project over time has a

uniform commit distribution. This makes us understand whether developers

Figure 3.5: Distribution of commits having an average Activity
Score, respectively for RepoDriller (left) and RxJava (right).

52 Chapter 3. Code History Metrics to classify Software Repositories at scale

Figure 3.6: Commits per Week in the last Year (CWY) of
activity: 2018 for RepoDriller (left) and 2020 for RxJava (right).

contribute in a continuous and regular way to the project, which is completely

different in a project taking place only on weekends.

For instance, when preparing a newer release, intensive activities are typically

performed, ensuring that the software product exhibits high quality. The files

updated during development need to be verified and consolidated to ensure that

changes will not negatively impact the quality of the software system [Tei17].

The aim is to understand the related information to the progress and correlation

of these commits over time, to check how stable the development is: if it has a

constant trend of commits or behaves like a weekend Side project.

3.5.4 Commits per Week in the last Year

The metric Commits per Week in the last Year (CWY) consists of a weekly

vision of the progress of the last year of the project. According to the area in

which the project is taking place, the last year could be an intense period for

its completion. In fact, unlike a project of a very small development team, in

very large and complex projects there starts to be, in this period, possibly a

whole series of tests and verification of its correctness, safety and robustness,

even though there could be possible unexpected changes last minute due to the

outcome of the tests or due to company and customer’s end decisions.

The analysis is performed from January 1st of last year when the last commit

was made, from that day the progress of the commits performed is evaluated

in the following 52 weeks. Observing the number of commits in the last year,

3.5. Metrics Experiments 53

Figure 3.7: Changes per Week Trend (CWT) for RepoDriller
(left) and RxJava (right).

it is possible to gain value for the metric both when the project is in progress

or when it has ended.

Figure 3.6 shows CWY for RepoDriller and RxJava. As we can see, RepoDriller

has less commits and less uniform effort during development time. RxJava

presents a more sustained commitment in the initial five weeks and then an

pretty uniform effort for all the other weeks of the year.

3.5.5 Changes per Week Trend

The metric Changes per Week Trend (CWT) determines the trend of the overall

source lines of code from the beginning of the project, it is a weekly analysis of

the entire developing of the project but starting from the first commit, in order

to always evaluate the effort trend throughout the program creation phase.

This analysis provides the possibility to monitor the progress of the project

by filtering the repository on specific file extensions, these files will be opened

and the number of rows added or removed counted from time to time in each

commit.

The aim of this metric is to show how development work has been distributed

over the year. It would be possible to recognise the weeks exhibiting intense

work, due to deadlines (e.g. close to release dates) or commits on holiday weeks.

A Full Project would likely not be under active development during holidays,

whereas on the contrary, holiday time could be dedicated to the development

of a Side Project.

54 Chapter 3. Code History Metrics to classify Software Repositories at scale

Figure 3.7 shows CWT for RepoDriller and RxJava, for each of the weeks in

a year. For RepoDriller there are bursts of changes in a few weeks, than very

little or no commits in other weeks, hence the workload is not fairly distributed

over time. RxJava presents a much more sustained development (much higher

number of commits) and an almost uniform distribution of workload over time.

3.5.6 Lines Of Code in Time

The metric Lines Of Code in Time (LOCT) determines the trend of the overall

source lines of code from the beginning of the project; it analyses the progression

course of LOC in the repository in order to evaluate the important phases in

the development of a project.

This size metric gives the possibility to monitor the program length from time to

time in each commit. The number of lines in the commit files reaches very high

values, especially in reference to a corporate project that had code refactoring

in the long run (a technique for modifying the internal structure of portions of

code without changing its external behaviour), applied to improve some non-

functional features of the software.

The aim of this metric is to show the rate of change of the project size. It can

reveal if this has been done regularly and in conjunction with what particular

events: code refactoring, integration and adoption of new packages and library,

new development tool that has radically changed the initial project structure, or

the continuous integration of new feature requests increasing work and effort to

be devoted to project development. Identify the periodic trend of these factors

best characterises the historic development of the project as the commitment

of the team that worked on it.

Figures 3.8 and 3.9 represent the lines of code trend in each commit of the

project along the y-axis, while on the x-axis there are the commit date made

respectively for RepoDriller and RxJava. On RepoDriller, projection lines were

drawn to show periods of more intense work activity. Both projects, show an

increase of lines of code, with some particularities that mark each of them.

3.5. Metrics Experiments 55

Figure 3.8: The use of Lines Of Code in Time (LOCT) to
highlight the line of code trend for RepoDriller.

Figure 3.9: The use of Lines Of Code in Time (LOCT) to
highlight the line of code trend for RxJava.

56 Chapter 3. Code History Metrics to classify Software Repositories at scale

RepoDriller has a much shorter development time than RxJava. It shows slow

steady growth in the first two years of development until the end of 2016 with

an evident drop of 80% of LOC due to an evident code refactoring. After this

specific period, LOC increases week by week in a regular way, but less rapidly

than RxJava.

In RxJava, after a quite constant growth, we can see in the second half of 2014 a

reduction of about 44000 LOC such as a much more drastic reduction of about

105000 LOC in the same period one year later (2015) with a subsequent very

fast LOC increase in the following days until it stabilises completely nowadays.

As reported by RxJava documentation the reason for this change is due to a

change of version of the tool (2.x). The purpose for 2.x was: leverage Java 8+

features, Reactive Streams compatibility and gain performance through design

changes.

Excluding some particular events, in the projects we examined there is an ex-

pected growth, in terms of lines of code.

3.6 Conclusions

We have proposed to analyse software repositories by means of metrics that

capture the effort of developers and their practices. Such elaboration has al-

lowed us to highlight and to distinguish times of intense and less intense job, to

determine the level of work constancy of developers and finally to characterise

if the project is still in development phase (maintained) or not.

Six metrics, i.e. Commits per Day of the Week (CDW), Commits per Hour of

the Day (CHD), Average Commit Distribution (ACD), Commits per Week in

the last Year (CWY), Changes per Week Trend (CWT), Lines Of Code in Time

(LOCT), have been used to analyse two repositories and have shown that the

practices adopted are different.

For the first, RepoDriller, a small project, there is no significant difference

between the workload during weekdays and weekends. Moreover, the workload

is performed in bursts rather than continuously during the year. The other

3.6. Conclusions 57

project analysed, RxJava, is a much bigger project, and the work is mainly

performed during weekdays and continuously during the year. The proposed

metrics swiftly capture some of the development practices under investigation.

By using the above process metrics, projects could be grouped in three cate-

gories: Open Source, Side Project and Full Time Project. We evaluate and find

the differences that characterise them, such as: how many people are working

on it, how long the project is kept going, whether the project is large or not

based on the number of releases, etc.

It has been shown how with PyDriller it is possible to extract information from

any Git repository such as commits, development teams, modifications, diffs

and source code, allowing to help researchers, scholars and professionals who

perform MRS.

The tool that was created with PyDriller can, given the definition of a theoretical

metric deduced by the developers of mining software repository, validate it with

appropriate tests. Each of these metrics has its own meaning and precise course.

PyDriller allows you to validate this type of analysis and to draw the appropriate

considerations on various projects, including large-scale ones. Each metric used

on this tool determines results that can be used to provide evidence for relevant

conclusions.

With these analyses, researchers can empirically investigate, understand and

discover useful information for effort on software engineering. With these pieces

of information, the development teams will be able to take actions and decisions

to improve their code and development process.

59

Chapter 4

Discover Scrum Model for Agile

Methodology

The coordination and teamwork are fundamental aspects in a software devel-

opment team. The collection of principles and good practices has made Ag-

ile Software Development Methodologies increasingly popular among software

companies. With its adaptive nature and high flexibility, Scrum is an agile

framework able to manage and control the software and product development

process. Achieving an objective performance measurement in ASD addresses

certain challenges due to different team performances and project complexity.

It becomes important to know how to properly integrate effort estimation with

good agile development practices. In this chapter, novel metrics will be pro-

posed to reveal the adopted development practices by analysing data extracted

from repositories. The utility of the proposed metrics is to reveal the categories

of activities performed during the development of the project, the effort trend

of developers, to detect Sprint week and possibly suggest improvements in the

adopted Scrum practices.

4.1 Improving Effort estimation on ASD

Effort estimation is one of the critical and open challenges software engineer-

ing activities performed during the development process. It is defined as the

method by which effort is evaluated. The estimation is known as the amount of

60 Chapter 4. Discover Scrum Model for Agile Methodology

resources required to complete a project activity in order to deliver a product

or service that meets the given functional and non-functional requirements to

a customer [Fer+20b].

Accurate effort estimation is an essential factor for planning software projects

and with different types of development processes, there are different perspec-

tives on planning and estimation. Various software metrics have been proposed

in previous study, which focuses on measuring the development performance

with some of the common techniques for deriving an estimation in ASD: expert

opinion (estimate provided by expert intuition), analogy (task size comparison),

disaggregation (splitting task into smaller), planning poker (consensus-based es-

timation technique that’s the combination of previous approach) [Coh05].

For more than 20 years since its official publication, due to its peculiar properties

and consolidation in IT companies, the Agile Software Development Manifesto

inspired the introduction of new methodologies in software development field.

A large number of different approaches to software development have been sub-

mitted, of which only a few have survived to be used today [Abr+17].

Each method has its own principles, life cycle, roles, advantages and disadvan-

tages. All of these agile software development methods build the software in

iterations and incremental processes. The estimation needs to be done progres-

sively especially because most of Agile methods involve short-term planning for

every little step of changes made, just like release planning, iteration planning

and the current day planning [AGH17; MKK09].

Effort estimation is a complex operation. Despite the vast number of ap-

proaches, the accuracy of software effort estimation models for agile develop-

ment still remains inconsistent [PMR17; Fer+20b]. R. Popli et al. identify

which issues affect the effort in an agile system [PC14].

• Effort estimation. The estimations are done incorrectly in units of time

regardless of the breaks that employees take in those time units (meetings,

lunch breaks, checking email, phone calls etc). It is more important to

estimate how much each member can spend for Sprint related work.

4.1. Improving Effort estimation on ASD 61

• Release Date estimation. The release date of the final product is often set

without considering various factors such as velocity and cost benefit.

• Release Risk tracking and estimation. Risk estimation is not done in

Agile Estimation. It is necessary to track total risk values of a project,

especially when an estimate risk of deviation is high.

Researchers have the burden to gather, investigate, validate evidence from exist-

ing studies and discover useful information by analysing various undertaken de-

velopment process to build a corpus of knowledge and improving the quality and

productivity of the team. Mainly because if the effort estimations are accurate,

they can contribute to the success of software development projects, while incor-

rect estimations can negatively affect companies’ marketing and sales [AG18].

That is the reason why development effort estimation is central to cost es-

timation in software development and the most difficult parameter to esti-

mate [ARG06]. It is becoming increasingly important to integrate effort es-

timation with good agile development practices. Research in this area has

found wide application and helps companies teams and organisations to evolve

and perform more efficiently. Due to the invisibility of software development

activities it is not easy to check if members of a development team are actually

performing the efficiency of agile approaches [CA16]. A possible solution can

unlock potential to make better company choice and invest time and money

appropriately.

To facilitate project planning and for the eventual successful implementation of

the project, software developers require effective effort estimation models [Unt+11].

Software metrics play an important role to measure aspects, features and differ-

ences that characterise the projects. The status and productivity of the team,

how large is the project based on the number of releases and Sprint, how many

people per team are needed to do the tasks, are just some of the aspects that

allow companies to understand and change the behavior of their team and con-

sequently define new rules [KFW18]. Project Manager and the development

team can use the proposed metrics to monitor the progress and improve the

accuracy of programmer effort estimation during the project lifecycle. Such

62 Chapter 4. Discover Scrum Model for Agile Methodology

metrics allow us to identify characteristics and the effort in software projects

and consequently the developers behind them.

The rest of the chapter is organised as follows. Section 4.2 presents some princi-

ples and structures of Scrum framework. Section 4.3 describes the related work.

Section 4.4 discuss the importance of estimation process on Sprint. Section 4.5

introduces our approach and implementation. Section 4.6 presents the proposed

metrics. Finally, Section 4.7 contains the conclusion.

4.2 Scrum framework structure

Scrum is one of the most commonly used agile methods that provides steps to

manage and control the software and product development process. It is an

empirical approach that applies the ideas of industrial process control theory

to systems development [SB02]. Scrum concentrates on how the team members

should function in order to produce the system flexibly in a constantly changing

environment.

The Scrum main idea is that systems development involves several environ-

mental and technical variables (e.g. requirements, time frame, resources, and

technology) that are likely to change during the process. This makes the devel-

opment process unpredictable and complex, requiring flexibility of the systems

development process and to be able to respond to the changes [Abr+17].

First described by Ken Schwaber in 1996, Scrum was designed: to better split

large task items into manageable smaller works, to boost development speed, to

coordinate and improve individual improvement, to increase performance and

work rhythms, to provide continuous support to stakeholders and to have good

communication of performance at all levels. It promotes adaptive planning,

progressive development and delivery. Scrum defines an iterative approach and

encourages very rapid response to change [SBS17]. Aspects and properties that

helped to make Scrum a framework that achieves greater flexibility, higher-

quality products and customer satisfaction.

4.2. Scrum framework structure 63

Sprint

Product
Backlog

Sprint
Backlog

Product

2/3 weeks

1 week

Figure 4.1: Single Sprint process: from the selection of tasks
to be implemented (Backlog) to a potential product delivery

(Product)

The main core of Scrum is Sprint. Sprint is a regular iterative time period (cy-

cle/iteration), usually lasting two to four weeks, in which a small team works

on assigned and unchangeable tasks to create a potentially releasable product.

Figure 4.1 depicts the sequential process of a single Sprint. A new Sprint only

begins once a previous Sprint has been concluded. Team members choose the

tasks they want to work on and begin development. Each Sprint includes the

traditional phases of software development: requirements, analysis, design, evo-

lution and delivery phases. The architecture and the design of the system evolve

during the Sprint development.

Sprints are conducted by a cross functional and self-managing Scrum Team.

Three different roles make up the team: the Product Owner, the Scrum Master

and the Developers. Each member of the Scrum team is an expert in vari-

ous fields and has different responsibilities to achieve the final Product Goal.

The Scrum Team, consisting of developers, quality assurance engineer and a

documenter, is responsible for all product-related activities from stakeholder

collaboration, verification, maintenance, experimentation, research and devel-

opment.

Team members consist of developers and testers who create and adapt plan

for the current Sprint Goal (reminding developers why the tasks are being per-

formed and at which level of detail to implement them). The Product Owner

64 Chapter 4. Discover Scrum Model for Agile Methodology

Figure 4.2: Scrum framework process overview

is the owner of the project contract, he also manages the software specification

and the Product Backlog. In order to achieve set goals, the Product Owner

ensures that the Product Backlog is transparent, visible and understood by the

Team. The Scrum Master is a team leader. He is an essential link between

Product Owner and project Team for the management of the Product Backlog

and definition of Product Goal. The Scrum Master aim is to remove any im-

pediments on the Scrum Team’s progress (create an appropriate and inspiring

work environment for the team and provide team members with the informa-

tion they need to perform their tasks), keep the team working as productively

as possible to respect the prefixed time schedule and verify the implementation

of principles and rules of the framework, intervening if they are not respected.

The task for a Sprint is decided by the Sprint Backlog. Sprint Backlog is a set of

requests, originating from the customer and understandable to Developers, usu-

ally called User Stories, to be achieved in a single Sprint. The requirements are

prioritised and the effort needed for their implementation is estimated. Backlog

items can include, for example, features, functions, bug fixes, defects, requested

enhancements and technology upgrades.

During the pre-sprint planning, as shown in figure 4.2, features and functionality

are selected from the release Backlog and placed into the Sprint Backlog. The

Sprint Backlog is nothing more than the further breakdown of the elements of

4.2. Scrum framework structure 65

Sprint
retrospective

Product
Increment
released

Sprint
Planning

Sprint
review

Daily
Scrum

meeting

Figure 4.3: Figure depicts the Scrum lifecycle

the Product Backlog. It is a list of all requirements, determined by the product

owner, that the end product must meet. All items on the Product Backlog are

detailed by a description, order, and size. It is possible to keep track of how

much has been completed in order to indicate progression and monitor the total

work remaining. The Product Backlog list is constantly updated with new and

more detailed items, as well as with more accurate estimations and new priority

orders. At every Sprint iteration, the updated Backlog is reviewed by the Scrum

Team to gain their commitment for the next iteration.

Once the requirements are completed, no more items and issues can be added

nor can any new ones be created. The system is ready for the release including

the tasks such as the integration, system testing and documentation.

Following “The Scrum Guide” by Sutherland and Schwaber, there are four

events in Sprint which constitute the Scrum framework (figure 4.3). Sprint

meeting organised by the Scrum Master to create a cyclic succession on the

software development process.

• Sprint Planning Starting point of a Sprint. It’s a team meeting discussion

66 Chapter 4. Discover Scrum Model for Agile Methodology

where an effort estimation poll establishes the product backlog items to

be undertaken into the Sprint (Sprint Backlog). The poll shall be carried

out taking into account the priority and the content of tasks to perform.

• Daily Scrum Meeting In this brief meeting, the team member inspect the

progression work applying changes to the plan if necessary and also serve

as planning meetings: what has been done since the last meeting and what

is to be done before the next one. Daily Scrums improve communications,

identify impediments, managers on the status of the project, promote

quick decision-making, keep the entire team focused on a common goal

and consequently eliminate the need for further meetings.

• Sprint Review On the last day of the Sprint, the Scrum Team demon-

strates the result obtained in the Sprint in presence of all stakeholders.

The customer can provide feedback on the progress of the project and

make decisions about the following activities.

• Sprint Retrospective The Sprint Retrospective concludes the Sprint. This

meeting aims to introspect the ongoing Sprint. The purpose is to identify

and understand the source of the problems encountered with the aim of

increase quality and effectiveness.

• To deliver a potentially releasable product, at the end of each Sprint

the Team demonstrates the progressive feature increments to the product

owner. A meeting is held to analyse project progress and demonstrate the

current system.

Each Scrum step guarantees certain properties that are essential to achieve

results1.

A low level of Transparency can lead to decisions that reduce value and increase

risk. Instead in Scrum a transparent working process facilitates the inspection

of every step.

Frequent and diligent Inspection of the agreed targets’ progress allows for the

detection of undesirable deviations or problems.

1Sutherland and Schwaber https://scrumguides.org/scrum-guide.html

4.3. Related Work 67

Inspection enables Adaptation. If the result product is unacceptable it shall be

adjusted in accordance with the requisite requirements.

Making the whole development team aware of the problems and changes made

significantly lowers the management costs. Constant communication with stake-

holders increases the quality of the final product. Small working teams maximise

communication and minimise overhead. Constant testing and documentation

of a product as it is built.

The attention and rigor of the aforementioned Scrum steps try to avoid wrongs

dynamics or results such as: code quality issues due to time limitations, missing

integration testing not performed properly, no bug free code under working

pressure, input of customer requests in an already begun Sprint, not respect

Sprint timing, disparity in the development team, absence of a scrum training

and more [RM12].

4.3 Related Work

There are many studies about ASD estimation models in literature. Some of

the well-known studies in literature are briefly summarised below.

Alostad J. M. et al., build a fuzzy based model that can improve the effort

estimation in Scrum framework. The model simulates the role of Scrum Master

and development team in effort estimation during the sprint planning phase.

For each task, the researcher uses Scrum Story Points as a measure of effort

estimation in Scrum projects. A final Estimation Accuracy (Over Estimate,

Well Estimate, Under Estimate) determines when it has deviated from the

initial assessment [AAA17].

A prediction model that uses developers’ features to estimate story points to

issue reports in open source projects was build by Scott et al [DLR10]. A

supervised approach has been applied with a publicly available dataset used in

several studies, it consists of issue reports of eight open source projects. For

a final validation, they compare the results of several models that are trained

with a different set of features.

68 Chapter 4. Discover Scrum Model for Agile Methodology

Fernández-Diego M. et al., present a systematic literature review to characterise

estimation activities in agile projects. The paper collected and review the effort

measure, estimates and predictions of 73 papers from 2014 to 2020. These

studies have been analysed with the purpose of comparing the models used in

terms of accuracy. The effort estimation methods have been used in six different

agile methods (Scrum included). What is clear from the studies is that the most

used estimation technique is Planning Poker with a frequency of 25% followed

by estimation methods that rely on Expert Judgement at 11% and Wideband

Delphi at 5%. The most applied models in the data analysis are Machine

Learning at 20%, Neural Network at 17%, Functional Size Measurement at 16%

and Regression model at 8%. The contribution of this paper is to report the

state of the art in the field of effort estimation in ASD by means of a systematic

literature review [Fer+20b].

Built on existing work, Alhazmi A. et al., implemented a project decision sup-

port and planning system in Scrum methodology called Sprint Planning dEci-

sion Support System (SPESS) tool [AH18]. SPESS takes into consideration the

adoption of consolidated planning poker with the integration of more features:

developer competency (knowledge and skills that the developers have to work

on a specific task), developer seniority (different skill level implies a different

timing in the problem solving on the same task) and task dependency (relation-

ship between two tasks, where one task cannot start implementation until the

other task is completed). The main task of SPESS is to guarantee that each

team members contribute to the fullest of their potentials assigning the tasks of

each Sprint to developers adequately and to optimise project planning for the

shortest possible time.

As shown in the aforementioned literature review, most of the existing works

in the domain of effort estimation are based on planning models. However,

at least for open software projects, these models can be improved with the

use of several additional data sources. Mining Software Repositories has the

ability to use process mining techniques to extract knowledge from a variety

of information sources. A promising line of research is the use of this field to

4.4. Relate Sprint trend in Scrum models 69

analyse the rich data available in software development repositories in order to

search and define metrics that capture Sprint and developer activity, which can

in turn be used to better estimate effort in a project.

4.4 Relate Sprint trend in Scrum models

Over the years, Scrum has gained the reputation of being the approach that ac-

celerates software development and better addresses customer feedback through

continuous iterations. The method is characterised by a short iterative devel-

opment life cycle, testing, frequent deliveries and meetings that provides steps

to manage and control the software and product development process. Not for

nothing Sprint is the core of Scrum process.

Sprint lasts from 1 to 3 weeks or more. While Schwaber originally suggested

sprint lengths from 1 to 6 weeks (Schwaber, 2002), duration is commonly held at

4 weeks. In this time frame, a small team works on assigned task through a full

software development cycle including planning, requirements analysis, design,

coding, and unit testing. The last Sprint is dedicated to testing, on which any

reporting bugs must be promptly fixed by the end of the week. This periodicity

of events lets the project adapt to possible changes quickly. Because the aim of

each Sprint is to deliver a potentially shippable product [SBS17].

In the Scrum process, there are several events performed on each Sprint that

have a significant influence on the effort estimation in order to monitor team

performance. As mentioned before for most agile models, these factors are: De-

velopment Team Experience, Task Complexity, Task Size and Estimation Accu-

racy [AAA17; Usm+14]. Having an inefficient development team who doesn’t

have the required experience for some tasks would reduce the developers’ com-

petences to manage deadlines and lower the quality of the final product [AH18].

This would slow down the work schedule to be completed.

This is a good starting point to study the behavior of the teams involved. Aspect

that has more and more impact when it addresses to open source developers.

Company records and logs typify proprietary software from which research can

70 Chapter 4. Discover Scrum Model for Agile Methodology

be established and made. Instead, the effort can not be easily tracked on open

source repository for the reason that such records do not usually exist [ARG06].

After all, the estimation of well consolidated agile software methods depends

on an expert opinion and the presence of project’s historical data. In absence

of data to be analysed and expert judgement, the previous method like analogy

and planning poker are not useful [PC14]. A perfect example are the open

source repositories. During the latest years, free and open source software has

gained a lot of attention from the industry. Following this interest, the research

community is also studying it. This chapter intent is to investigate this case

study: to detect the presence of Scrum framework use on any type of repository

(open source included).

A few metrics have been implemented to identify a possible thresholds to dis-

cover Scrum presence, which varies from one project to another. A metric tries

to better identify the time windows from which it can be inferred and better

characterise the performance of each Sprint. A BoW metric has been imple-

mented to better categorise the type of Sprint analysed. At the same time, it is

also possible to highlight new aspects and considerations: to determine which

branches that compose the repository have most characterised the Scrum and

why, the number of actual developers who contributed to the creation of Sprints,

an automatic graphical detection and distinction of Sprint development weeks

from those of testing/debugging, what are the most labor-intensive Sprints or

determine whether the deadlines have been unable to comply.

This estimation process is worth to be studied. Therefore, our automatic ap-

proaches, that aim to support developers in the estimation process, are imple-

mented to support these analysis.

4.5 Approach and Implementation

The aim of the work is to provide companies in the sector, and not only, a

tool to validate the application and use of the well established agile approach

Scrum. We offer the possibility to analyse local and remote repositories by

4.5. Approach and Implementation 71

collecting data to categorise relevant git commits, e.g. determining the frequency

effort of commits weeks, if the commits’ timeframes are constant over time

(without excluding weeks), or in which time interval a different gap of commits

is highlighted, to discover possible regular trend of Sprint in the project history.

A literature review by Kurnia et al., grouped and discussed 34 Scrum software

metrics. From that classification, previous work focuses mainly on the study of

metrics to be applied during the meeting phase: sprint planning, sprint review

and sprint retrospective [KFW18]. As well as, the most popular native effort

estimation method in Scrum, Story Points comparison [AAA17; DLR10]. Story

Points represent an estimate of the overall effort required to fully implement a

task. It’s a combination of time needed for each task to be analysed, developed,

tested and implemented in the final product.

With this in mind, to diversify the field of research, we have elaborated and

implemented a couple of metrics to expand tools and knowledge in this area.

The benefit consists of integrating these techniques with the already consoli-

dated tools for detecting Scrum Sprints without incompatibility issues and to

understand if the development team follows the dictates of a Scrum framework.

We relied on PyDriller, a Python framework for MSR [SAB18], capable of min-

ing arbitrary Git repositories, to extract all core Git data, such as commits,

developers, timestamp, etc.

In order to verify if development teams of open source projects typically use

a Scrum Agile software development process, for our experiment we rely on

open source projects with at least 10-16 developers per team. The number of

developers associated with a project can increase dramatically if it is maintained

over time. This is due to a possible generational change, new collaborators

(especially in open projects), or the integration of new members into the team.

The repository will keep all the history of changes made and therefore all the

developers who participated in it.

To find out which open source project adopt Scrum methodology approaches,

particular attention was given to the repositories of research institutions and

open organisations. Among these projects, we analysed 113 repositories made

72 Chapter 4. Discover Scrum Model for Agile Methodology

Table 4.1: Projects descriptions

Name/System Start-End Dates #Devs. #Commits

foundation 17 Aug 2016-15 Mar 2022 130 429
landscape 4 Nov 2016-18 Mar 2022 435 3,801
tag-security 13 Mar 2018-17 Mar 2022 151 1,398
devstats 30 Jul 2017-18 Mar 2022 21 6,888
gitdm 19 Apr 2017-18 Mar 2022 692 5,245
tag-contributor-strategy 28 Feb 2020-15 Mar 2022 18 221

available by Cloud Native Computing Foundation (CNCF). CNCF is an open

source software foundation that promotes the adoption of cloud-native comput-

ing. Many of the technologies that the CNCF researches and creates are hosted

on GitHub2, a restricted list of projects and their characteristics are shown in

Table 4.1.

To meet the demands to understand if the same development team is performing

well over time, we offer companies the opportunity to analyse the development

progress undertaken by the team. We give the possibility to examine several

repositories simultaneously and to combine the detected changes or similarities

between the histograms of the analysed commit repositories. Positive results

dictated by the evident presence of regular Sprint trends. Scrum Master and the

development team can use the proposed metrics to monitor the improvement

in effort estimation accuracy during the project life.

4.6 Metrics Experiments

In order to report the computed results and their degree of usefulness, this sec-

tion describes the proposed metrics and the experiments performed on CNCF

repositories. The metrics are aimed to identify whether the software develop-

ment team has adopted a Scrum Sprint methodology. A data plot visualisation

was made for each data analysis workflow. The charts show how much effort

was applied for each distinct type of Sprint.

2GitHub Cloud Native Computing Foundation https://github.com/cncf

4.6. Metrics Experiments 73

Figure 4.4: Sprint week commit trend (SWCT) on ‘tag-
security’ (CNCF)

4.6.1 Sprint week commit trend

The metric Sprint week commit trend (SWCT) aims at evaluating the effort

of developers. The method counts the commits per week and reports the re-

sults over time. The development of a project is divided into weeks of project

progression and weeks of testing, experiments and verification. The possible

metric outcomes want to identify the periods of increased traffic effort against

the periods of lower. The core of the metric is to establish the different latency,

and a possible effort gap during development time, that demonstrates the use of

Scrum Sprint Agile software development processes. The analysis can be per-

formed both on the total repository history or on the individual remote branches

that compose the project.

Figure 4.4 shows SWCT applied to a CNCF project repository: ‘tag-security’.

On the x-axis is represented the Sprint week time of the project and on y-axis

the number of changes the project committed per week. What can be noted is

that next to the development Sprint period the activities decrease drastically

or even stop as the testing activity starts. During the testing week there are

numerically few commits compared to the development phase. After this, the

cycle of Sprint starts again. As we expect, the outcome reports continuous

periods of time where the effort of the developers is high average spaced out by

single weeks of low effort. It is possible to delineate a possible cycle window

74 Chapter 4. Discover Scrum Model for Agile Methodology

Figure 4.5: Number of committer in each Sprint week on ‘tag-
security’ (CNCF)

that characterises the Scrum sprints.

To meet the requirements of Scrum Master (as shown in figure 4.5), there is

the opportunity to view the actual number of authors who participated to the

development of each weekly Sprint. Scrum Master can monitor the actual par-

ticipation of the team and then divide the effort present in the single Sprint

week, as well as he could pay attention to borderline cases e.g. an alarming

fact that the management of entire Sprint is entrusted to a single developer.

Figure 4.6 represents the percentage distribution of commits per author. The

metric gives an extra vision to guarantee that each team member contributes

to their full potential.

To better organise the project structure, developers can use the branches of the

repositories to divide and schematize their work. Due to different fields and

approaches, it is not uncommon to discern branches dedicated to the testing

phase and branches dedicated to the implementation of features. As shown in

figure 4.7, a combined analysis of all branches that characterise the repository

gives a better and global view on how the project is developing. Each branch is

plotted with different colour and size (main branch in blue), based on how much

effort was put into it weekly. From the result obtained it is possible to detect:

which branches are most present and better distinguish the repository history,

if and which branches are recurrent over time and make a clear distinction of

4.6. Metrics Experiments 75

Figure 4.6: Percentage distribution of commits per author on
‘tag-security’ (CNCF)

Figure 4.7: Sprint week commit branches trend on ‘tag-
security’ (CNCF)

76 Chapter 4. Discover Scrum Model for Agile Methodology

Figure 4.8: Percentage of effort employed in the first develop-
ment weeks in all branches of the ‘tag-security’ project. Note
cases of work done in the same period but in different branches

Figure 4.9: Percentage of effort employed in all weeks of main
branch of ‘tag-security’ project. Extra: 75% is the sum of com-

mits percentage with less than 10 commits per week

what category of work these branches belong to.

To have a clear vision of the contribution and effort employed in the individual

branches in a weekly Sprint cycle on ‘tag-security’ repository, the figure 4.8

depicts the percentage of commits present in individual branches in the first

consecutive weeks of sprint in comparison with sprint commits percentage in

the main branch in figure 4.8. In the main branch Sprint report, it is possible

to prominence note the last Sprint tagged extra in dark orange, it encloses the

set of Sprints with an effort of commit not enough significant and high values.

4.6. Metrics Experiments 77

It is possible to set the weeks (3+1) to display in all branches.

From this point of view, it is possible to understand which branches have mostly

characterised the project, how much is the effort difference between the devel-

opment branches compared to possible testing and debugging branches, having

a visual demonstration of what kind of branches have been more laborious than

the others.

4.6.2 Average Sprint Window

The metric Average Sprint Window (ASW) consists in evaluating any possible

Sprint Weeks in the project history within a consecutive time range defined

by a sliding window. An automated process has been established in order to

ensure and achieve the success of the results obtained from data mining. Once

the size of the “time window” is set, the data undergoes a first filtering process

to satisfy the actual weekly continuity in the time frame (the search is carried

out only for consecutive weeks).

A succession of Sprints is considered valid if the average effort performed by

the developers (number of commits made during this period) is greater than the

effort of the next week, which is assumed to be a week of testing. The window

is interpreted as follows: the first n-1 weeks as development Sprint, the last

Sprint (week n) as a testing and verification week. The complete method for

calculating the Average Sprint Window metric is shown in Appendix A.1.

Once the window is defined, auto-filters are applied to the collected data mining

to satisfy the following criteria:

• the Sprints contained in the time window must be temporally consecutive

weeks

• the Scrum must satisfy the threshold such that the average of the commits

of the first n-1st weeks must be greater than the following week n: avg(n−

1)◦ > n◦

• avoid Sprint overlap

78 Chapter 4. Discover Scrum Model for Agile Methodology

Figure 4.10: Average Sprint Window (ASW) on ‘tag-security’
(CNCF)

Figure 4.10 represents the result obtained on ‘tag-security’ project. It shows

the activity score of weekly commits along the y-axis, while on the x-axis it

shows the effort of each week when the project was under work. The bar chart

highlights in light grey labour week that do not satisfy the filter criteria, in blue

the consecutive weeks of development and in orange the testing one that suits

the sliding windows set (4 in this use case).

What must be taken into greater consideration is how much frequently the

window fits in the evolution of the repository. The more occurrences spread in

the data, the more reliable will be the results obtained from the metric used.

We can state that this project’s activity is stable under the principles of Scrum

framework.

The analysis carried out here is on the whole evolution of the development

project with the purpose of checking and verifying the regularity of Sprints

behind the repository to see if it has been constant over time and not reveal

instead irregular manner. This makes us understand whether developers ef-

fort contributes in a continuous and regular way to the project, if the Sprint

recurrence is respected or not and to identify possible faults.

4.6. Metrics Experiments 79

Figure 4.11: Bag-of-Words Sprint commit message (SCM) on
‘devstats-docker-images’ (CNCF)

4.6.3 Sprint commit message

The metric Bag-of-Words Sprint commit message (SCM) consists of identify-

ing the possible presence of a Scrum Agile approach based on the study of a

Bag-of-Word model on commit message. The measure is based on the recogni-

tion of Sprint time frame by studying the content of weekly commit messages.

The BoW technique application, achieved through Natural Language Process-

ing techniques to word normalisation (stemming), determines the presence of

keywords such as FIX-BUG-DEBUG-DOC-REF-TEST to distinguish commits

made during the testing phase from the development of the repository. Based

on the presence of these keywords the Sprint week is tagged as developer or

testing Sprint.

The script performs all the preprocessing steps of BoW. It consists of the stop

word removal from the text of the messages, converting words to a common base

domain with the operation of stemming and finally searching for matches with

the words that concern us (FIX-BUG-DEBUG-TEST-REF-DOC). Depending

on the keywords occurrences in the commit messages over the weeks, they asso-

ciate a tag to the Sprint to which they belong. A collection process of stemming,

stop word removal, tokenization, keyword matching is shown in Appendix A.2.

Figure 4.11 shows SCM for ‘devstats-docker-images’ CNCF repository. As we

80 Chapter 4. Discover Scrum Model for Agile Methodology

can see, the data represent the Sprints tagged as testing weeks (in green) and

tagged as development (in blue). The aim of this metric is to reveal the presence

of testing Sprint, how much the fixing and debugging phases are distributed over

the evolution of the project. It would be possible to recognise the testing weeks,

how much effort the developers put in these Sprint, which Sprint test are most

labours and if it was planned.

One more optional aspect that emerges from the representation is the possible

presence of consecutive test Sprint. This came out when a single Sprint is not

enough to manage all the old and new testing created for the occasion. Due

to poorly performed testing results, fixing and debugging the next Sprint is

extended by a week, giving enough time to solve any problems.

Considering that different developers teams use different ways to communicate

and report a commit change, it could be possible to miss important and appro-

priate keywords. To better perform the BoW model, a legend shows the most

commonly used words on commit messages. From this, it is possible to con-

sider what type of keywords best characterise the testing phase. The keyword

set (FIX-BUG-DEBUG-TEST-REF-DOC) can be edited accordingly to get a

custom result.

4.7 Conclusions

Scrum is a team oriented agile framework that provides steps to manage and

control the software and product development process. In this chapter, we for-

mulated and implemented a couple of metrics to offer companies the opportunity

to extract workflow behaviours from the development progress undertaken by

Scrum team. We give the possibility to examine historic trends of repositories

to evaluate the effort of developers. The metric outcomes identify the periods

of increased traffic effort against the periods of lower, in order to distinguish

and categorise the types of Sprints and delineate possible Sprint cycle windows.

Sprint week commit trend (SWCT), Average Sprint Window (ASW) and Sprint

commit message (SCM) have been used to process mining to more than 113

4.7. Conclusions 81

CNCF repositories to detect the presence of Scrums framework on Open Source

repositories (area difficult to analyse given the limited resources available).

The analysis can be performed both on the total repository history or on the

individual remote branches that compose the project, to find possible branches

dedicated to the testing phase and branches dedicated to the implementation

of features, as well as to find which branches are most present and better char-

acterise the repository history. It also included the opportunity to view the

actual number of authors who participated to the software development to get

an efforts overview of each individual team developer.

A method has been developed to detect time windows for sprints that report the

average effort used in software implementation weeks, which are usually more

labor-intensive than sprint testing weeks. A more in-depth analysis was con-

ducted to determine which commits best characterised the development sprints

to clearly distinguish development weeks from testing weeks.

To meet the demand to understand if the same development team is performing

well over time, we focus on trying to identify which Scrum practices can be

discovered using process mining techniques. We offer companies the opportunity

to analyse the development progress undertaken by the team, to detect the

improvement in effort estimation accuracy during the project life. Positive

results are dictated by the evident presence of regular Sprint trends. With

these pieces of information, the development teams will be able to take actions

and decisions to improve their code and development process.

83

Chapter 5

Skill profiling in Software

systems environments

The element that most affects the cost and management of a software project

is the human factor. Understanding the elements that make up the team, their

skills, and gaps would allow for the discovering of useful information, informing

conclusions, and supporting decision-making. Being in a better position to

understand what professional experiences are most relevant to developers would

allow for the decision of the role best suited to developers, to understand the

developer behavior in front of difficulty and, certainly better management of

staff in software companies. One way to get this information is to study the

tools used by developers and how they are used. Recent software advances have

led to an expansion of the development and usage of application programming

interfaces (APIs). Learning how to correctly and effectively use existing APIs is

a common task and a key challenge in software development. Understanding the

constraints and effort employed to use and apply APIs would allow for better

profiling of developer skills.

5.1 Uncovering API usability

With the advent of new and more fields applied to IT, engineers and researchers

try to provide useful and performing tools to reduce developers’ programming

effort and promote software quality. This is supported through Application

84 Chapter 5. Skill profiling in Software systems environments

Programming Interfaces (APIs). Frameworks and libraries that provide access

to implemented and well consolidated functionality, to the point of becoming

indispensable for developers.

In a definition of an API pioneered by Martin Fowler, API is a “set of rules

and specifications that a software program can follow to access and make use

of the services and resources provided by one or more of its modules” [Red11].

An API is identified by a name and it consists of modules. Each module can

have one or more source code packages of pre-made functionality [UKR21].

APIs have become an integral part of software development thanks to the in-

creasing presence of standard and official APIs, ranging from the Java Software

Development Kit, which comes with thousands of components that develop-

ers can reuse in their projects, to millions of open-source packages available in

Maven, PyPI, and npm [LGS21; Rob09]. In response to shifting programmer

needs and interests, libraries and APIs are increasing in number and complexity.

The numerous open source APIs that are available for any given task are mas-

sive and constantly changing. Once an API is chosen from among the numerous

APIs available, the developer must learn how to properly use it [UKR21].

An API usage is a piece of code that uses a given API to accomplish some task.

It is a combination of basic program elements, such as method calls, exception

handling, or arithmetic operations. The combination of such elements in an

API usage is subject to constraints, which depend on the nature of the API.

For example, two methods may need to be called in a specific order, division

may not be used with a divisor of zero, and a file resource needs to be released

along all execution paths. If a usage violates one or more such constraints, it is

called a misuse [Ama+18].

Learning how to correctly and effectively use existing APIs is a common task

and a key challenge in software development. It spans all expertise levels, from

novices to professional software engineers, and all project types, from prototypes

to production code. The importance of APIs is such that joining a company

can require learning a whole new set of proprietary APIs before a developer

becomes an effective contributor to the company [Gla+18].

5.1. Uncovering API usability 85

Due to the constantly changing requirements of its users, the design and update

of APIs are complex tasks. Some design decisions can influence the behavior of

the API in subtle ways that confuse developers: useless information embedded,

the information related to an API scattered in different parts, absence of ex-

ample code or code examples without explanation, lack of focus in long text of

features and requirements, ambiguous, vague or even incomplete explanations.

The success and maintenance over time of an API is in the hands of API design-

ers who have the difficult responsibility to make their APIs useful, accessible

to its satisfied users and competitive with other pieces of software (highlighting

the differences and qualities that characterise the API compared to the com-

petition). Towards this goal, API designers need to provide development tools,

documentation, and tutorials to use APIs. Final users must adapt to these API

changes and new future releases [Aha+18; LGS21].

A code example only demonstrates API usage in one specific scenario. To

adapt the API into programming context, programmers must traverse across

API documents for needed information. To improve their API knowledge, often

developers have no choice but to look for alternative documents and information

sharing resources, increasing the time spent on consulting tutorials. Question

answering sites, such as Stack Overflow1 (SO), have become a popular place

for discussing API issues. SO is a large online community where millions of

developers ask and answer questions about their programming needs. Devel-

opers post questions in SO about their different technical topics, such as how

to use APIs correctly under specific usage scenarios, selection, code reviews,

conceptual questions and troubleshooting of APIs. These peculiarities make

SO particularly effective for novices. Issues API posts are invaluable to API

designers themselves, not only because they can help to learn more about the

problem but also because they can facilitate learning the requirements of API

users [Aha+18; UKR21; Aca+16].

Despite the vast amount of work on API-misuse detection, API misuses still

exist in practice, as recent studies show. To our knowledge, in the current state

1Stack Overflow https://stackoverflow.com/

86 Chapter 5. Skill profiling in Software systems environments

of art does not exist any estimation measurement systems of API misuse effort.

We are the first to investigate this area by implementing a series of metrics to

measure by degrees different levels of APIs issues use.

In this chapter we design a set of metrics to detect systematic user effort ex-

perience based on Java language. A scalable mining software frameworks was

implemented to examine the code evolution between commits and releases in

software repository. This would allow researchers to improve improper API use

detectors by treating new fields and broadening the vision of research.

We propose approaches to extract the effort of API use made by developers from

a software repository with a set of data mining metrics. The proposed metrics

are: Hard API Effort, Near and Git Skill Analysis. Such metrics allow us to

identify the contribution in software projects and consequently the developers

expertise.

The remainder of our chapter is organised as follows. Section 5.2 presents the

role of developers. Section 5.3 presents the concept and principles that lead

to improper use of APIs. Related work is shown in Section 5.4. Section 5.5

introduces the methodology of our work. Section 5.6 presents the proposed

metrics and the experiments performed with GitHub code snippets. Finally, in

Section 5.7 we draw our conclusions.

5.2 The individual developer contribution

A focal point in the development of software projects, independent of the kind

of project under consideration, is what concerns the effective contribution of

members on a development team [GKS08].

We usually define a development team as the set of developers who have added,

modified, or removed lines of code to a certain class of projects. In [Cat+19],

it is aware that such a definition might lead to the approximation of the real

composition of the development teams. In fact, a team member might not

necessarily contribute to the development of the test code.

5.2. The individual developer contribution 87

Certain useful metrics allow you to identify the contribution of the individual

in the development of a project. In the past, the metric evaluation for assessing

the individual’s contribution was one mainly focused on counting the number of

lines that the developer had put in the project(LOC); today a software developer

is not just required to write a code, but also to co-operate with other colleagues

and making development decisions. A developer, for example, is able to make

a substantial number of code changes through the simple use of multiple tools

specifically arranged in his favour [GKS08].

This change has become more evident with the emergence of Open Source Soft-

ware through which anyone can collaborate and take part in a project already

started, joining in for a long or short duration, without any restriction [MPR19;

BBW13].

The main activity of a software developer is to write code, but his activity also

involves constructive debate, exchange of ideas and anomalies resolution (bug

fixing). As a result, the repository source code, any remote collaboration plat-

form and issue tracking software are widely used as a data source to analyse and

evaluate the level of participation and activities in a software project. First of

all, it is useful to identify the resources of a project that can give a contribution

and then to analyse their effectiveness. Not all actions, indeed, have a positive

effect in the realisation of a project. For example, a commit on a repository

can lead to a bug or a decrease in project quality, and therefore it should be

measured by reference metrics and assigned with a negative weight [GKS08;

Rob+14].

Unlike working on a team in a company project, where all team members well

known their peculiar influence on project implementation, in an Open Source

project this analysis is de facto complicated.

The opportunity to easily contribute to the implementation of a open source

code without the need for an ad hoc procedure (simple code review on a merg-

ing request), on one hand they are positive factors of elasticity, but on the

other hand they do not allow to evaluate the weight and effectiveness of the

contribution of the individual to the realisation of the whole. It is possible for

88 Chapter 5. Skill profiling in Software systems environments

a developer to push a single commit throughout the project and be considered

equal with those who supported it for a long time [Rob+14; SMS16].

5.3 APIs should be easy to use and hard to

misuse

Despite the efforts of its designers, APIs may suffer from a number of issues

that can negatively impact the software developers’ productivity by using APIs

incorrectly. API errors are usually caused by stressful environment conditions,

which may occur in forms such as high computation load, memory exhaustion,

process related failures, network failures, file system failures, and slow system

response [AX09]. Problems are often related to incomplete or erroneous official

documentation, poor performance, system crashes and backward incompatibil-

ity of APIs [Nie+21; Wen+19].

As a result, developers often spend a long time trying to make existing APIs

work for them (often imposing usage constraints, such as restrictions on call

order or preconditions), and might end up writing code from scratch rather

than using a difficult-to-use API [Sty+08].

All these may lead to introduce software bugs, crashes, data-loss, and security

vulnerabilities. Software security is one aspect of programming where API util-

ity makes a clear difference, but other domains like reliability and performance

may also suffer from poor API usability [Mur+18; Gor+18].

Researchers have created several labor-intensive methods of uncovering API us-

ability issues. Among the known techniques Murphy-Hill et al. report the fol-

lowing: user-centered design, heuristic evaluation, peer review, lab experiments,

and interviews. However, only four are distinguished by researchers for their

peculiar properties: an upscale approach that easily targets a large number of

developers conducting surveys; examine API usability challenges by summaris-

ing them on expertise discussion forums and Q&A site (e.g. Stack Overflow);

testing web API platforms to find any possible 404 errors that indicate which

5.3. APIs should be easy to use and hard to misuse 89

APIs developers have problems with; and mining software repositories technique

to look for instances of API on snippet code [Mur+18; Nie+21].

Existing API detectors commonly mine usage patterns (i.e., equivalent API

usages that occur most frequently), and report any deviant code respect to

these patterns, taken as the optimal model, as potential improper use. Our

intent is not to rely on predetermined API patterns, but to study and have an

even higher-level approach to detect possible mismatches in the use of an API

over time.

5.3.1 Inappropriate use of APIs factors

The API can hide several issues it suffers from. Before a developer correctly

uses an API, they may struggle by various learning barriers. This reveals the

nature of the API usability problem [Mur+18].

The first key resource to learn APIs by the average developer is to study the

corresponding official documentation. Programmers must manually traverse all

API documents; a time-consuming and error-prone process to confirm the API

usability [Gla+18]. However, it could not be exempt from mistakes. Official

documentation is typically dominated by textual descriptions and explanations

and and when it is no longer maintained, it can become incomplete, ambigu-

ous, incorrect, outdated and even obsolete [UKR21; UR15]. Finding descriptive,

non-ambiguous names for API features is problematic. Understand what each

feature of the API represents and how it should be invoked, such as discover-

ing relations between API elements require significant effort by developers. It

should be guarantee that programmers can proficiently use the API without

knowing (or assuming) implementation details and using the API it should be

know how much positive impact on performance [Rob09].

Developers complain about the lacking concrete code examples that illustrate

API usage. A lot of API reference documentation lacks code samples with usage

scenarios. Otherwise a simplified code example often excludes the possibility of

alternative API uses. Aspects that programmers frequently desire when learning

unfamiliar APIs [Gla+18]. According to J. Zhang et al.’s statistics, only 11 and

90 Chapter 5. Skill profiling in Software systems environments

6 percent of API types are illustrated by code samples but with vague usage

scenarios in the Java Standard Edition (SE) (version 7, 2019) and Android API

documentation (version 4.4, 2018), respectively [Zha+19].

Possible further gaps are not exclusive to documentation error. By mining bug

repositories, it is possible to detect mainly the presence of human error issues.

Papers reveal API usability challenges including simple typos, conceptual API

misalignments, and conflation of similar APIs. Change call mainly due to a sim-

ilarity of the API invocations or dubious knowledge of what different outcome

these methods may have [Mur+18].

An underlying problem of API usability issues can be related to an initial mis-

management design. The task of designers is to avoid these cases that lead

to incorrect behaviour in applications. Faults due to poor memory handling,

breaking changes that lead to backward incompatibility, conflict of the APIs

with underlying operating systems or inconsistency interaction to other exter-

nal libraries [Aha+18].

Not least important aspect to consider is the developer API experience. De-

velopers who have not used API before are more likely to reflect actual API

usability problems, compared to developers who are already familiar with the

libraries [Mur+18].

5.4 Related Work

In prior research have been proposed several API detectors and various repre-

sentations of API usage patterns and a multitude of automated bug-detection

approaches. These detectors analyse code snippets that use a given API. The

detectors commonly mine usage patterns from source code and find rare vio-

lations of those. They report deviations from frequent patterns as potential

wrong use, assuming that they often correspond to bugs.

The approaches differ in how they encode usages, as well as in the techniques

they apply to identify patterns and violations. In general, the procedure of

mining usage patterns covers the following five steps [Nie+21]:

5.4. Related Work 91

• Collect a representative set of source code for mining.

• Transform code set into an intermediate representation, e.g., execution

traces, syntax trees, API usage graphs and so on.

• Conduct a frequent pattern mining approach on this representation.

• Filter generated patterns based on suitable ranking metrics.

• Compare and report violations as misuses.

An example is made by Amann S. et al. who make use of the term API misuse as

violation of constraints of the API. To mitigate weaknesses of existing detectors

they design MUDETECT, a graph-based representation of API usages. Nodes

represent data entities (variables and method calls) and edges represent data

flow and actions amid nodes. The graph captures many properties that can

distinguish misuses from correct usages. A detection algorithm uses domain

knowledge to efficiently identify pattern violations and, to improve precision, a

ranking system to avoid false positive results [Sve+19].

The challenge to determine and understand if an API misuse is real (erroneous

call and not unwanted but functional one) are usually overcome by using three

independent approaches, as explained below.

Analysing, exploit, explore and expanding existing bug datasets. A manual or

heuristically approach to filtering instances of arbitrary software bugs, start-

ing from data made available by the contribution of previous research. Sev-

eral datasets of software bugs have been created in the past [Ama+18; JJE14;

Fer+20a]. Many researchers created bug datasets to evaluate their approaches

and make them available to contribute to the benchmark detectors comparabil-

ity. Also such datasets are useful as input for classification models and forms a

good base to support replications and comparisons by other researchers.

The second approach is understanding the nature of the bugs and bug-fixing

processes associated with open-source projects. Projects on desktop, server

applications and smartphone platform are some of the most popular types of

projects software mined among the more established open platforms such as

92 Chapter 5. Skill profiling in Software systems environments

SourceForge and GitHub [Bha+13; Tan+14; HE22]. Repositories vary by type,

programming language and context. Today large open source developments are

burdened by the rate at which new bug reports appear in bug repository. This

is a great starting point to get more information about it. Actually different

techniques are applied on Machine Learning-based Techniques to the open bug

repository to learn the kinds of reports each developer resolves and detect bug

severity (a different levels of attribute degree based on the bug impact on the

system) [AHM06; CS12; Thu+12].

A further common approach is to conduct literature reviews, surveys and inter-

views asking developers about the obstacles they faced learning APIs. It is well

known that during development and through testing many hitches are already

ruled out from the repository. Thus, developers might face many misuses that

we cannot find by reviewing repository [Ama+16]. The surveys aims are un-

cover many challenges to the development, usage, discover learning strategies,

and evolution of APIs. The questions often cover the critical aspects of API

usability with a view to get a detailed picture of important obstacles developers

faced when learning new APIs. While the purpose of the literature reviews is

to study the progress and trend over time of research and paper in the field

of usability and maintenance of APIs and understand in which direction it is

evolving [LGS21; Won+16; Rob09; PFM13].

Nielebock et. al. also faced the same problem. They focus on API usage pat-

terns that are inferred from existing source code through data mining. An API

change analysis phase is performed with each API call change. To avoid in-

adequate collection of source code samples from which to infer patterns which

leads to false positive results, they rely on a search and filter process of source

code files with similar but correct API usages using different strategies. Tak-

ing advantage of data representation under structure like graphs or trees the

miner conducts a frequent pattern mining approach to generate a list of ranked

API usage patterns. From these results is possible to generate patches and

validation controls under the API misuse detection for possible end fixing com-

mits [Nie+21].

5.4. Related Work 93

Jadeite is the prototype made by Stylos et. al. A tool system that gives the

possibility to mine API from Google, code repositories, or explicitly annotations

by programmers to improve existing API documentation. Their main property

is adding useful information in a controlled way. The motivation for this feature

comes from observing programmers become frustrated with APIs that did not

contain the expected classes and methods. The system provides the possibility

to programmers to add placeholders for operations that the original designers

never thought about or show code explaining on how to accomplish the desired

functionality with the available APIs. So that programmers do not need to

re-learn the API when returning to it in the future because they get a spot on

which find these informations [Sty+09].

There have been many attempts for improving the usability of existing APIs

an example is changing the integrated development environment (IDE). Ideally,

IDE should assist developers in implementing correct usages and in finding and

fixing existing misuses. And that’s what Wu et al. implemented; an Eclipse

plugin CoDocent to help programmers confirm the semantics of the API calls

by various code search engines. CoDocent summarises all API classes traversed

and organises these classes according to the package structure in diagrams.

CoDocent can be effectively used in selecting and investigating relevant code

examples for programming with APIs [WMJ10].

The popularity and growing influence of SO has motivated a number of re-

cent research efforts to produce API documentation automatically from SO

contents, such as adding code examples and interesting textual material by

summarising API reviews (with positive and negative sentiments to assist API

selection) [UKR21]. While a lot of research has focused on finding code exam-

ples for APIs, Treude et al. present an approach to improving or augmenting

the descriptions contained in API documentation with “insight sentences” from

SO. Their techniques assign a numeric value to each sentence and return the

top-ranked sentences of SO posts (question, answer, authors, etc.). A developed

machine learning approach called SISE (Supervised Insight Sentence Extractor)

94 Chapter 5. Skill profiling in Software systems environments

import the insight sentences which uses as features to understand possible dif-

ferences present or missing important aspect in the documentation to explore

further [TR16].

Customised code search engines are becoming increasingly popular. They are

designed to index all information of software projects e.g., help documentation

and textual descriptions of applications. Moreover, general purpose search en-

gines are not designed to receive snippets as queries. Typically the reason is

that these engines do not work well with large queries. Campos et al. try to

mitigate this problem. They propose an approach to find fixes for API-usage

related bugs, which is based on matching code snippets of SO written in Java

and JavaScript programming languages. The aim is to recommend posts of

SO whose code match developers’ snippets. To achieve this they define some

preprocessing functions for code snippets: removing all punctuation charac-

ters, generating an abstract syntax tree for the code and extracting their API

method calls. Only once collected these data they perform experiments on a

relational database which represents a release of SO public data containing also

all answers to each question, if any [MCM16].

Wen et al. propose the first automatic approach to discover API misuse pat-

terns via mutation analysis. While mutation analysis has several application

domains on testing, fault localisation and security; the authors’ observation was

born from the fact that API misuse can be viewed as the mutants of API’s cor-

rect usages. Therefore, API misuses can be created via applying specifically de-

signed mutation operators on correct API usages. To progress in their analysis,

they design eight mutation operators that mimic different kinds of program-

ming mistakes. A benefit of this approach is that it does not require pattern

mining from a large number of correct API usages. Instead, it actively creates

substantial mutants mimicking API misuses of different patterns [Wen+19].

5.5. Approach 95

5.5 Approach

Finding and initially studying an API is the first and one of the most common

steps in using APIs. APIs are so large that people often need to learn to use

various aspects. It would be a misfortune if the difficulty of using APIs would

nullify the productivity gains they offer.

Since it is difficult to obtain sufficient correct API usage examples in practice,

especially for newly released third-party libraries. To improve precision, upcom-

ing detectors need to go beyond the oversimplified assumption that a deviation

from frequent usage patterns is a misuse. An uncommon usage of an API is not

necessarily an incorrect usage [Ama+18].

Software fault localisation is widely recognised as one of the most tedious, time

consuming, and expensive activities in program debugging. Due to the in-

creasing scale and complexity of software today, manually locating faults when

failures occur is rapidly becoming infeasible, and consequently, there is a strong

demand for techniques that can guide software developers to the locations of

faults in a program with minimal human intervention [Won+16].

For this reason, while most previous research has focused on studying the us-

ability of specific APIs. Unlike proper error and exception handlers support

for managing API errors, our research seek to obtain more generic results by

studying APIs misuses patterns that occur in the most varied possible APIs.

We aim to exploit the common characteristic of misuses that occur repeatedly

in different contexts, independent of the application domain.

We focus on those points and aspects that make APIs difficult for programmers

to use. We define several metrics to highlight the quality of misuses and analyse

the developer involvement in the bug-fix process and how they structure their

code accordingly. The purpose of our research is to provide additional data that

can aid in the evaluation of API effort estimation.

We have implemented an analyser to determine how efficiently APIs are used

by providing a targeted usability evaluation. All metrics are deployed on Py-

Driller, a Python framework for MSR [SAB18] capable of mining arbitrary Git

96 Chapter 5. Skill profiling in Software systems environments

repositories, to extract all core Git data, such as commits, source code modifica-

tions, timestamps, etc. We offer a tool that can be integrated with the analysis

system already established to expand the study and monitoring of developers’

API efforts.

To study the feasibility of the metrics we identified the most forks and rating

stars Java open source projects hosted on GitHub. We randomly selected 34

popular projects on which to perform analysis of the associated metrics tests.

The list of projects and their characteristics are shown in Table 5.1. It shows

the name of the repositories, the number of commits present, the number of

contributors, the associated star rating and the percentage of .java files present.

We do not know the identity of the organisation that developed these projects;

however we are aware that the projects were developed for a variety of industry

sectors. All data thus collected is made available in a dataset to anyone who

wants to extend the research.

To meet the demand to understand if the development team is performing

well over time, we offer companies the opportunity to analyse the development

effort undertaken by the team. We provide the possibility to examine with a

single global view the detected and trending changes of API call usage in the

repository. Project Manager and the development team can use the proposed

metrics to monitor the progress and improve the accuracy of programmer effort

estimation during the project life cycle.

5.6 Metrics

To advance the state of the art of API-misuse detection, this section describes

the proposed metrics and the experiments performed on open source reposito-

ries.

We defined a few processing functions for code snippets to detect API calls and

their progressive use change, without requiring any further user input (such

as: setting a target API to study, programmer observations, the maximum

number of API calls to analyse, etc.). In this manner analysis is done on all

5.6. Metrics 97

Projects Commits Contributors Stars Java

Android-Universal-Image-Loader 1.038 38 16.800 100%
gson 1.727 132 21.400 100%
fresco 3.335 217 16.868 78.4%
APIJSON 2.801 47 13.828 100%
elasticsearch-analysis-ik 259 35 14.352 100%
AndroidUtilCode 1.417 38 31.422 88.3%
HikariCP 2.822 124 17.340 98.4%
zxing 3.674 114 30.181 96.2%
Apktool 1.893 87 14.915 98.5%
incubator-streampark 914 74 2.507 34.1%
termux-app 1.411 61 16.232 98.2%
xManager-Spotify 589 14 2.759 100%
jsoup 1.710 100 9.758 81.6%
doris 6.684 393 18.356 46.4%
PhotoView 462 40 6.212 100%
besu 3.772 138 997 99.6%
ysoserial 167 29 5.764 99.8%
Infinity-For-Reddit 1.868 36 2.307 100%
BaseRecyclerViewAdapterHelper 1.231 37 23.149 55.7%
canal 1.533 174 24.244 94.3%
arthas 1.809 164 30.739 65.5%
sentinel 764 170 20.005 89.9%
CircleImageView 159 14 14.317 100%
easyexcel 874 44 25.396 100%
Material-Animations 76 9 13.565 100%
logger 146 11 13.431 62.5%
JustAuth 692 29 13.853 99.6%
butterknife 1.016 97 25.674 94.0%
ARouter 301 22 13.972 90.0%
seata 1.537 250 22.910 97.0%
nacos 4.266 259 24.262 98.8%
SmartTubeNext 6.258 54 7.460 98.3%
NewPipe 10.254 740 21.418 83.7%
Mindustry 15.694 488 16.232 99.3%

Table 5.1: List of top stars rating Java projects on GitHub

98 Chapter 5. Skill profiling in Software systems environments

API calls present in the repository. Similarly, knowing which APIs and libraries

are imported, it is also possible to generate a developer profiling system.

Given a URL of a Java GitHub project, the framework analyses the modified

.java files in each commit of the repository. A dataset was made for each data

analysis in order to report the computed results and their degree of usefulness.

Each entry will contain specific information such as: API type, instance name,

method invoked, line code and more. By analysing these data, API application

and effort involved can be estimated, allowing to report a pattern of the behavior

and actions of the development team.

5.6.1 Hard API Effort

The implemented metric Hard API Effort (HAE) attempts to detect how com-

plex it is to use Java libraries. To define the effort of API use, for each modified

source lines of code the implemented script focus on:

• the number of changes related to objects instantiated from classes con-

structor;

• the number of changes of method invocations from class or API library;

• what kinds of methods are most frequently cited;

• which APIs have given more trouble to use.

The first step consists in sorting the URLs repositories links to be processed, by

filtering out inappropriate URLs and removing possible duplicates. An in-depth

analysis is conducted on each specified repository. In each project commit only

the modified Java files are analysed. A file is considered to be modified if it has

undergone a change (MOD), a code line addition (ADD) or a code line removal

(DEL).

To investigate the use of APIs over time throughout the evolution of repository

development, in each commit a research is conducted to detect the presence

and type of classes and APIs used. In this way, it is possible to see which APIs

have been used for the most part and which ones have been disused by the

5.6. Metrics 99

Filename Line Change type Code

AbstractBigQueueTest.java 65 [‘ADD’] [List < BytesValue > dequeued = new ArrayList <> ()]
AbstractBigQueueTest.java 75 [‘ADD’] [dequeueingFinished.countDown()]
Account.java 25 [‘ADD’] [return new Account(name, KeyPair.generate()]
Account.java 34 [‘ADD’] [keyPair.getPrivateKey().toString()]
Account.java 42 [‘ADD’] [return BigInteger.valueOf(nonce++)]
...

Table 5.2: Extract from data frame Tokens of ‘besu’ project:
input

development team, possibly due to a difficulty to use factor or because of lack

of aimed developers requests and expectations.

For each edited code line the script filters out any single and multiple-line

comments. A function processes the Java code snippet and extracts their API

method calls and instantiations using regular expressions. A regex processes

the code snippet and identifies all object declarations and all API method calls

occurring in the code. The main desired effect is to remove any extra code lines

that are not of our interest.

Once this is complete, the tool parses the Java code by splitting the line in

pairs of values: tokens and corresponding category value (Identifier, Operator,

Separator, Method, Function, Class, Variable, etc.). An example of HAE ap-

plication is reported in the following tables on ‘besu’ repository, an Ethereum

client written in Java by Hyperledger Foundation organisation. The intent is to

detect the effort employed by the team in using the applied APIs and to detect

which APIs were more difficult to manage.

Table 5.2 shows the first input values of the first lines of code of the initial

commit of the project. You can see how each entry is characterised by the

name of the current java class, the change type, index of line of code and the

code snippet. Through this table it is possible to monitor any possible changes

to the API calls present in the project, how many times they have been modified

and what type of modification has been made. Table 5.3 shows the data frame

outcome of code so divided into tokens values. By breaking down the code

into tokens, it is possible to trace back to the variables and their API calls as

reported in the following tables.

100 Chapter 5. Skill profiling in Software systems environments

Tokens

[(List, Class), (<, Operator), (BytesValue, Class), (>, Operator), (dequeued, Variable), (=, Operator), (new, Keyword)...
[(dequeueingFinished, Variable), (., Separator), (countDown, Method), ((, Separator), (), Separator), (;, Separator)
[(return, Keyword), (new, Keyword), (Account, Function), ((, Separator), (name, Variable), (,, Separator), (KeyPair, Class)...
[(keyPair, Variable), (., Separator), (getPrivateKey, Method), ((, Separator), (), Separator), (., Separator), (toString, Method)...
[(return, Keyword), (BigInteger, Class), (., Separator), (valueOf, Method), ((, Separator), (nonce, Variable)...
...

Table 5.3: Extract from data frame Tokens of ‘besu’ project:
output

Filename Var-name Var-type

AbstractAltBnPrecompiledContract.java errorString String
AbstractBLS12PrecompiledContract.java errorMessage String
AbstractBigQueueTest.java dequeued List
AbstractBigQueueTest.java dequeueingFinished CountDownLatch
AbstractBigQueueTest.java queuingFinished CountDownLatch
AbstractBlockCreator.java isCancelled AtomicBoolean
AbstractBlockProcessor.java blockHashLookup BlockHashLookup
...

Table 5.4: Extract from data frame Variables of ‘besu’ project

The importance of these data frame is given by the support they can provide.

Table 5.4 represents the data frame Variables, which keeps track of the instances

present in the project and the associated Class. Several checks are carried out

on object instances to monitor the used methods and to answer the question

to which Classes they belong to. The intention is to detect which are the

main instances and related Classes that are mainly used in the project and

consequently, to have an overview of which are the main libraries and APIs

used in the project.

Instead Table 5.5 shows data frame Methods, which represents the methods

detected by the metric. The data frame catalogs the methods invoked, their

Class of affiliation, and the respective line and class in which they have been

invoked.

Once the mining and parsing operation is complete, the script counts the num-

ber of times each method appears in the changed lines set. The count of mod-

ifications and the list of classes where the invocation is made are information

extrapolated from previous support data frames. The result is shown in Ta-

ble 5.6 below. Each entry reports, sorted by most widely used methods, the

method name, the class which it belong, the number of times the method was

5.6. Metrics 101

Filename MethodName Class CallingClass Line

JsonRpc.java waitFor WaitUtils JsonRpc 17
WaitUtils.java await Awaitility WaitUtils 10
Account.java generate KeyPair Account 25
Account.java create KeyPair Account 29
Account.java create PrivateKey Account 29
Account.java fromHexString Bytes32 Account 29
Account.java extract Address Account 38
Account.java hash Hash Account 38
Account.java valueOf BigInteger Account 42
...

Table 5.5: Extract from data frame Methods of ‘besu’ project

MethodName Class Count CallingClasses

of Optional 4883 [‘PantheonNode’, ‘LoadedBlockHeader’, ‘CliqueVoteTallyUpdaterTest’...
add List 2255 [‘Accounts’, ‘Cluster’, ‘ProcessPantheonNodeRunner’, ‘WebSocketConnection’...
of BytesValue 1526 [‘PantheonNode’, ‘LoadedBlockHeader’, ‘CliqueVoteTallyUpdaterTest’,...
put Map 1469 [‘Cluster’, ‘ProcessPantheonNodeRunner’, ‘ThreadPantheonNodeRunner’,...
getLogger LogManager 1450 [‘Cluster’, ‘ProcessPantheonNodeRunner’, ‘ThreadPantheonNodeRunner’...
newArrayList Lists 1338 [‘CliqueExtraData’, ‘CliqueDifficultyCalculatorTest’, ‘CliqueBlockCreatorTest’...
info LOG 1240 [‘PantheonNode’, ‘ProcessPantheonNodeRunner’, ‘ThreadPantheonNodeRunner’...
toList Collectors 1218 [‘PantheonNode’, ‘ProcessPantheonNodeRunner’, ‘IbftBlockHashing’...
emptyList Collections 1216 [‘VoteTallyCacheTest’, ‘IbftBlockImporterTest’, ‘BlockAddedEvent’...
fromHexString Address 1146 [‘Account’, ‘LoadedBlockHeader’, ‘CliqueExtraDataTest’...
fromHexString BytesValue 1079 [‘Account’, ‘LoadedBlockHeader’, ‘CliqueExtraDataTest’...
...

Table 5.6: Extract from data frame HAE count of ‘besu’
project

modified, invoked and deleted throughout the project history and list of classes

it was called. Through this it is possible to derive which API libraries have been

more difficult for developers based on the changes that have been applied in the

development of the project and which consequently required greater effort from

developers.

Possible methods and instances not included are listed in the generated log

files. This happens when the statements of these instances are not available;

for example object passed as parameters, casting conversion or invocation of

imported library methods (e.g. System.out.print).

102 Chapter 5. Skill profiling in Software systems environments

APICall ConsecutiveModifyLine APIModify CorrelationModify

[final int inputSize = Math.min(inputLen, input.size());] 0 False 7
[messageFrame.setRevertReason(Bytes.wrap(error, 0, err len.getValue()));] 3 True 8
[LOG.info(“Native alt bn128 not available”);] 0 False 1
[return Bytes.wrap(result, 0, o len.getValue());] 5 True 2
[int inputSize = Math.min(inputLen, input.size());] 0 False 0
...

Table 5.7: Extract from data frame Near of ‘besu’ project

5.6.2 Near

Most of the fixing commits resolve multiple misuses. Commits contain more

changes than the fix itself, such as refactoring or reformatting, which makes

monitoring the actual misuse fix more difficult to detect. To address this chal-

lenge, the metric Near is designed to provide evidence for misuse APIs based

on the presence of what surrounds a method call.

The metric tries to detect how the difficulty of using API calls is possibly related

to different factors. On the basis of several experiments, it was concluded to

divide the metric into three different assets in order to provide three levels

of granularity dictated by their distinct combinations. The measurement is a

combination of balanced assets to distinguish and approximate different API

use context in order to achieve a classification of API misuses.

The metric consists of: identify lines changed before an API call, detecting

changes to the parameters used by the API call and report any modification

on the API call itself. Based on the presence of these, it is possible to weigh

differently the result of the metric and therefore the amount of effort which was

required for its appropriate use.

Similarly to Hard API Effort metric, the metric Near has the same initial ex-

amination phase. Once the range of lines to be analysed before an API call is

established, the data mining script leads to obtaining data frames containing

the expected results. An outcome of ‘besu’ project is shown in Table 5.7. The

Table gives an extract of the outcome of Near on the AbstractAltBnPrecom-

piledContract.java file. The file name, the commit hash and the commit date

have been omitted to render the Table easier to read.

For each method invocation the following values are considered:

5.6. Metrics 103

• ConsecutiveModifyLine represents the lines consecutively changed before

the API call. If the lines just before an API invocation were changed,

it could be a change that will affect the next API call. Once the size of

the sliding window row is set (five by default) what is calculated is the

consecutive count of lines modified before each invocation of API method

present in the code.

• APIModify signals the modified API call event. Whether present or not,

it implies an important role in evaluating the effort of using the API.

• CorrelationModify represents how many mentions to the API call there

are among the changes made before an API call in the same commit. Near

detects any reference and occurrences related to the object variable name

and parameters used, as input, by the API method that is present in the

changes commits history.

In conclusion, it should be noted that the mining of first commits can report

false positive outcomes. Each line of the new files inserted in the repository

is interpreted in git as a change. For this reason CorrelationModify reports as

many changes as the size of the established window. The solution approach

consists of skipping these first commits and analysing the next ones directly

(starting from the presence of the file in the project and its subsequent changes).

5.6.3 Git Skill Analysis

Software project estimation involves the judgment of different aspects that have

a significant influence on the creation of the final software product. Team

skills, prior experience, and task size are cited as the three important cost

drivers for effort estimation in ASD [AAA17; Usm+14]. It is deduced that the

greater part of cost management is attributed to human resources. Therefore,

estimating development effort is central costs in software development and the

most difficult parameter to estimate [ARG06].

Due to the increasing importance of Open Source software, modern software

104 Chapter 5. Skill profiling in Software systems environments

development processes involve multiple developers and development teams re-

siding on different continents and in different time-zones [PSV11]. Looking for

Open Source projects is better because it shows that there is a community scat-

tered around the world and therefore we can approach certain contributions’

profiles (from the most experienced person to the least).

We may know from the very beginning of the project that low capabilities of

the development team will surely have a significant negative impact on project

effort. The project manager identified potentially insufficient domain experience

of the development team as a risk to project success. Team’s domain experience

is a relevant effort driver in the effort estimation process. After quantifying

actual domain experience of team members and estimating development effort,

it occurs that effort exceeds the customer’s acceptable level.

The aim of the metric is to classify the committers on a given GitHub repository.

The need derives from the disparity in team roles present in a project, including

supporters and repository maintainers.

The developers’ skills are highlighted by categorising the work into three macro

categories: backend, frontend and writer. The programming language, libraries

and file extensions used in the repository are taken as reference to analyse

the project: e.g. Writer : pdf, txt, md, etc.; Frontend : css, php, html, etc.;

Backend : sh, c, py, etc. There is an additional undefined category that stands

for extensions supposed to be present in the repository but that you want to

exclude from the analysis.

The program distinguishes which category to associate and tag with the re-

spective libraries and APIs. In addition to these macro categories, there is the

possibility to include additional extra categories by specifying their scope and

associable libraries that you expect to find: e.g. android, facebook, etc. The

final results can be saved in a csv or html format. All these repository infor-

mation are contained in the support file Config.properties 5.1. All form fields

can be customised as required for further analysis. Some fields are mandatory

and necessary for the execution of the script (such as the HTTP address of

5.6. Metrics 105

Figure 5.1: Sample of Config.properties format

the repository to be analysed or the global path of the cloned repo, export file

format), while others allow a more accurate analysis.

As the first step, the metric searches for all repository commit authors. The

developer list serves to filter possible duplicate accounts. Since there can be

commits made by the same user (user.email) with different aliases (user.name).

Once the different authors who have contributed to the project are obtained,

the metric determines a trend effort among all developers.

To define the effort of developers, each committer is assigned scores for each

category. The scores are then converted into a percentage of the total work

done into the repository. The score corresponds to the number of modifications

made in the commit history that satisfy the requests specified in the config file.

Specifically, once the commit author is established, the number of changes made

to the code lines is counted.

The count is made by verifying the typology of modified files and increasing the

number of lines that have been altered in the file in the appropriate category

(backend, frontend, writer, undefined). According to the imported and used

API libraries, you can measure the capability and skills of developers.

For the management of Java and JavaScript packages, we rely on npm2 site

package manager which, by specifying the name of the package, will give all

the useful information. To read the site and get information on the different

2npm https://www.npmjs.com/package/

106 Chapter 5. Skill profiling in Software systems environments

packages we rely on an html parser. By reading the “readme” site section, if

it contains the word node.js, the package in question is treated as a backend;

otherwise, it is treated as a frontend.

Developers’ bio information is obtained through common REST API web ser-

vices requests. Most Git repository hosting service support it. The script con-

structs an HTTP request, which goes to the web server and a response comes

back. There are different replies formats, but JSON is pretty common use.

The developers’ information thus collected is saved, the Table 5.8 shows the

types of achievable entries in the csv format. Not all information is visible at

a REST API request from a user outside the project: the information must be

made available by developer profiles and only authenticated users can access

the REST API query. However, the owners of the repositories can still carry

out and obtain the sought information.

The result in html format is shown in Figure 5.2. It shows some of the commiters

who collaborated on the ‘cncf-testbed’ project (Cloud-native Network Function

Testbed, a set of reference code and test cases for running networking code on

Kubernetes and OpenStack to evaluate CNF architectures). The intention is

to recognise the expertise and profile the developers who have contributed and

participated in the project, to provide the possibility of detecting and collecting

the skills present in the team and finally to detect how and how much each

developer has contributed to the project.

In the html version, everything is saved in a zip file containing a JSON file (with

the same information obtainable in the csv format) and other elements for a

web representation of the results obtained. For each developer, the following

information is also retrieved: name, profile image, a star rating to indicate their

contribution to the repository based on the total number of commits made,

the percentage of effort per specified category and field of contribution, email,

personal web site or blog and nationality. This can help companies organise

the development team more efficiently by assigning tasks based on the skills of

each team member. In this way, companies can maximise the efficiency and

5.7. Conclusions 107

Name Name and surname of the developer
Email Email
SocialID Unique developer code on the git host
SocialUsername Developer username on git host
AvatarURL URL avatar set on git host
WebSite Personal website or blog
Location Nationality
Bio Bio info
CreatedAt Account date created on the git host
Commits Number of commits processed
Backend% Backend category percentage
Writer% Writer category percentage
Frontend% Frontend category percentage
CatExtra% Percentage of extra category

Table 5.8: Skill Analysis csv output structure

productivity of the development team and improve the quality of the software

project.

5.7 Conclusions

APIs are becoming indispensable for developers. Learning how to correctly

and effectively use existing APIs is a common task. However, APIs may suffer

from a number of problems that can negatively impact the software developers’

productivity. On one hand, APIs reduce programming effort and promote soft-

ware quality, but on the other hand, their increasing complexity makes it more

difficult for end users to learn and use them.

In this chapter, we presented an approach to uncover effort API usability. Our

metric helps to understand how much effort is needed to learn and master an

API. The metrics measure different levels degree of API misuse. The aim of

the metrics is to discover the developers API expertise, as well as the amount

of effort employed in their daily use especially with unfamiliar APIs.

It is also possible given a GitHub username, to research the skills that charac-

terise it. The result is obtained through a detailed analysis of all the APIs used

in the project’s history. This allows for the identification of actual roles and

contributors based on the efforts that have been applied to the repository.

108 Chapter 5. Skill profiling in Software systems environments

Figure 5.2: Skill Analysis html on ‘cncf-testbed’ (CNCF)

As current research focuses on the creation and perfection of automated misuse-

detection tools, such as error and exception handling support, we hope that

managers and researchers will use these observations to better profile members

of development teams. We also hope that our series of studies will inspire others

to study even more aspects of the usability of APIs, determining whether or

not an API is used further, so that usability can be an important consideration

for all future designs.

109

Chapter 6

Conclusions

This thesis has presented a support to assist effort estimation on software de-

velopment, showing how data mining on descriptive information and metadata

contained in the repositories can give useful insights to measure the commit-

ment of the developers behind the creation of the progress. These results also

indicate that data mining techniques can make a valuable contribution to the

set of software effort estimation techniques.

Software effort estimation is one of the base activities of software project plan-

ning and accurate estimations are essential for successful project management.

Many factors have an impact on the software development process as many

are the risks brought by insufficient information, which can not be known in

advance. In the literature, there are several known techniques and functional

approaches, but no less important are the principles metrics at the heart of

all models. Appropriate metrics can show their usefulness and importance to

better draw and validate the results obtained by software effort estimation prac-

tices, as well as to monitor and refine the way to outline the progressive software

development process. The aim of this thesis is to identify metrics, and accord-

ing to such metrics evaluate the similarities among projects, to understand the

relationship between the number of developers on a team project and the effort

contribution of each developer.

A data mining tool has been implemented in the study of software repositories

with the use of PyDriller, a python framework to analyse Git projects. PyDriller

is a tool that take a definition of a theoretical metric deduced by the experts

110 Chapter 6. Conclusions

in the area of mining software repository, and computes it according to the

developer’s effort found in the analysed project repository. Each of these metrics

has its own precise meaning and purpose. PyDriller allows you to perform an

analysis and draw the necessary considerations and gender statistics on various

projects even large scale ones. Each metric used on this tool determines results

that can be used to draw relevant conclusions.

The results and outcomes obtained in this thesis derive from an experimental

stage and analysis carried out on a hundred projects found on GitHub. This

work created a sample of projects chosen appropriately and different from each

other, in order to better characterise the various results collected, based on large

Open Source projects. Open Source shows that there is a community behind it

spread around the world and that, as a result, different profiles of contributions

are present.

The study of commits was the central focus of the thesis. Metrics on the study

of commits made it possible to understand the progress of the releases made and

stages trend of the development project. It was demonstrated how to determine

the frequency of the commits and in which time frame they were performed; it

is possible to highlight: the periods of increased activity, in which time interval

the work is mostly involved, or the periods of regular average activity trend,

and how long the overall development lasts (Average Commit Distribution).

The analysis was conducted for: separate weekly day (Commits per Day of the

Week) in order to highlight the different working days and compare weekly

days from weekend days, separate hour of the day (Commits per Hour of the

Day) to determine the usual working hours of the development team, separate

commit per week to give a global project vision to highlight which periods of

the year with slight developer activity (Commits per Week in last Year and

Changes per Week Trend). As a side effect, by means of the collected metrics

outcomes, trying to evaluate and find the differences that characterise them,

it was possible to index three categories of projects such as Open Source, Side

Project and Full Time Project.

To frame the work on specific characteristics of each project, an analysis was also

Chapter 6. Conclusions 111

performed on good practices of agile development methods and processes. Spe-

cial attention was given to the effort estimation that characterise the developer

activity in Scrum agile framework, one of the most common agile methodolo-

gies. The utility of the proposed metrics was to reveal the activities performed

during the developing of the project, the effort trend of developers, to detect

Sprint week and possibly suggest improvements in the adopted Scrum practices.

An automatism has been laid down to give the possibility to examine historic

commit trends to evaluate the effort of developers. A sliding window method

was implemented to meet fixed asset values to detect consecutive development

and testing sprints (Average Sprint Window). Positive results were dictated by

the evident presence of regular Sprint trends.

Another important property addressed in this thesis was Bag-of-Word model

application on commit message. The measure was based on the recognition of

type of Sprint by studying the content of weekly commit messages. This Nat-

ural Language Processing technique allowed us to distinguish commit created

during the fixing, testing, refactoring and documentation phase (Sprint Commit

Message).

Measuring the effort of a developer is also related to measuring his skill and

approach in using common available tools. Metrics have been proposed to reveal

effort of developers and their practices on API misuse (Hard API Effort). If on

the one hand, APIs reduce programming effort and promote software quality,

on the other hand they could have an increasing complexity. Metrics have been

presented to uncover effort API usability, measure effort with different levels of

capability and profile the developer skills based on the types of API libraries

usually used (Git Skill Analysis).

In conclusion, different aspects related to software development effort have been

addressed by proposing metrics and analysing different metric applications.

With such analysis researchers can empirically investigate, understand and dis-

cover useful information for software engineering. Project managers can benefit

greatly from the metrics adopted as they can monitor the effort of development

teams and support future project decision-making.

113

Appendix A

Listings

A.1 Average Sprint Window code implemen-

tation
1 from pydriller import Repository

2 from pydriller import Git

3 from git import Repo

4 [...]

5

6 logger = logging.getLogger(__name__)

7

8 def log(verbos):

9 logger.setLevel(logging.INFO)

10 formatter = logging.Formatter(’%(asctime)s:%(levelname)s:%(name)s:%(message)s’, datefmt=’%d/%m/%Y %H

:%M:%S’)

11 if verbos:

12 stream_handler = logging.StreamHandler ()

13 stream_handler.setFormatter(formatter)

14 logger.addHandler(stream_handler)

15 file_handler = logging.FileHandler(’./log/SprintLog.log’)

16 file_handler.setFormatter(formatter)

17 logger.addHandler(file_handler)

18

19 [...]

20

21 def sprint_commit(urls , verbose):

22 log(verbose)

23 csv_headers = ["Day", "Sprint_week", "Week", "Authors"]

24 csv_headers_branches = ["Day", "Sprint_week", "Week", "Authors", "Commits"]

25 repo_index = 0

26 for url in urls:

27 repo = Repository(path_to_repo=url).traverse_commits ()

28 commit = next(repo)

29 logger.info(f’Project: {commit.project_name}’)

30 print(f’(sprint_week_all_commit) Project: {commit.project_name}’)

31 git = Git(commit.project_path)

32 logger.debug(f’Project: {commit.project_name} #Commits: {git.total_commits ()}’)

33 if verbose:

34 log_view(url , commit.project_name , csv_headers)

35 else:

36 bar_view(url , commit.project_name , git.total_commits (), csv_headers)

37 r = Repo(commit.project_path)

38 remote_refs = r.remote ().refs

39 index = 1

114 Appendix A. Listings

40 for refs in remote_refs:

41 branch_name = refs.name.split(’/’)

42 if branch_name[len(branch_name) - 1] == ’HEAD’:

43 continue

44 print(f’(sprint_week_branch_commit) Project: {commit.project_name} Branch: {refs.name} ’

45 f’#: {index }/{len(remote_refs) -1}’)

46 len_branch = len(list(Repository(path_to_repo=url , only_in_branch=refs.name).traverse_commits

()))

47 branch_view(url , refs.name , commit.project_name , len_branch , csv_headers_branches)

48 index += 1

49 repo_index += 1

50

51 [...]

52

53 def log_view(repo , repo_name , csv_headers):

54 author = []

55 with open("./data -results/sprint_week_" + repo_name + ".csv", ’w’) as f:

56 writer = csv.DictWriter(f, fieldnames=csv_headers)

57 writer.writeheader ()

58 week_commit = 0

59 prec_commit = None

60 for commit in Repository(path_to_repo=repo).traverse_commits ():

61

62 logger.info(f’Hash: {commit.hash}, ’

63 f’Week: {commit.committer_date.isocalendar ()[1]}, ’

64 f’Time: {commit.committer_date}, ’

65 f’Author: {commit.author.email}’)

66

67 if prec_commit == None:

68 prec_commit = commit

69 week_commit = week_commit + 1

70 author.append(commit.author.email)

71 continue

72

73 if prec_commit.committer_date.year == commit.committer_date.year and \

74 prec_commit.committer_date.isocalendar ()[1] == commit.committer_date.isocalendar ()

[1]:

75 week_commit = week_commit + 1

76 if commit.author.email not in author:

77 author.append(commit.author.email)

78 else:

79 writer.writerow ({ csv_headers [0]: prec_commit.committer_date ,

80 csv_headers [1]: week_commit ,

81 csv_headers [2]: prec_commit.committer_date.isocalendar ()[1],

82 csv_headers [3]: len(author)})

83 week_commit = 1

84 author = []

85 author.append(commit.author.email)

86 prec_commit = commit

87 writer.writerow ({ csv_headers [0]: prec_commit.committer_date ,

88 csv_headers [1]: week_commit ,

89 csv_headers [2]: prec_commit.committer_date.isocalendar ()[1],

90 csv_headers [3]: len(author)})

91 logger.info(f’Sprint Week: {repo_name}’)

92

93 [...]

94

95 SLIDING_WINDOW = 4

96 SCRUM_SEQUENCE = 1

97

98 partial_path = input("Enter CSV Repositories: data -results/sprint_week_")

99 path = "data -results/sprint_week_" + partial_path

100

101 path_split = path.split(’/’)

102

A.1. Average Sprint Window code implementation 115

103 data = pd.read_csv(path)

104 year_week_x = [x[:4] + "-" + str(y) for x, y in zip(data[’Day’], data[’Week’])]

105

106 valid_sprint = []

107 if len(year_week_x) >= SLIDING_WINDOW and len(

108 year_week_x) - SLIDING_WINDOW + 1 > 0:

109 for i in range(len(year_week_x) - SLIDING_WINDOW + 1):

110 if statistics.mean(data[’Sprint_week ’][i:i + SLIDING_WINDOW - 1]) > data[’Sprint_week ’][i +

SLIDING_WINDOW - 1]:

111 valid_sprint.append(year_week_x[i:i + SLIDING_WINDOW])

112 else:

113 print("Unable to obtain sprints: SLIDING_WINDOW > data to be analyzed.")

114 exit (0)

115

116 not_consecutive_sprint = []

117 for entry in valid_sprint:

118 year = 0

119 day = 0

120 for sprint in entry:

121 if year == 0 and day == 0:

122 year = int(sprint [0:4])

123 day = int(sprint [4:]. replace(’-’, ’’))

124 else:

125 if (year == int(sprint [0:4]) and day + 1 == int(sprint [4:]. replace(’-’, ’’)) or

126 year + 1 == int(sprint [0:4]) and day == 52 and int(sprint [4:]. replace(’-’, ’’)) == 1)

:

127 a = 1

128 else:

129 not_consecutive_sprint.append(entry)

130 break

131 day = int(sprint [4:]. replace(’-’, ’’))

132 year = int(sprint [0:4])

133 legit_sprint = [x for x in valid_sprint if x not in not_consecutive_sprint]

134

135 def sprint_sequence(lista , ind):

136 if ind - 1 < 0:

137 return []

138 list_return = []

139 sprint_overlap = lista[ind - 1]

140 list_return.append(sprint_overlap)

141 for sprint in lista:

142 if len(intersection(sprint_overlap , sprint)) == 0:

143 list_return.append(sprint)

144 sprint_overlap = sprint

145 return list_return

146

147 if len(legit_sprint) < SLIDING_WINDOW:

148 exit("Unable to obtain sprints: SLIDING_WINDOW > legitimate data")

149 good_sprint_sequence = sprint_sequence(legit_sprint , SCRUM_SEQUENCE)

150 if len(good_sprint_sequence) < 0:

151 exit("Not enough data for a Sprint window (len(good_sprint_sequence) < 0)")

152

153 sprint_develop = np.zeros(len(year_week_x), dtype=int)

154 sprint_test = np.zeros(len(year_week_x), dtype=int)

155 sprint_else = data[’Sprint_week ’].copy()

156

157 for id, year_week in enumerate(year_week_x):

158 for sprint in good_sprint_sequence:

159 if [True for s in sprint [0: SLIDING_WINDOW - 1] if s == year_week]:

160 sprint_develop[id] = data[’Sprint_week ’][id]

161 sprint_else[id] = 0

162 break

163 if year_week == sprint[SLIDING_WINDOW - 1]:

164 sprint_test[id] = data[’Sprint_week ’][id]

165 sprint_else[id] = 0

116 Appendix A. Listings

A.2 Bag-of-Words model application on Sprint

commit message

1 import logging

2 from src import ProgressionBar

3 from pydriller import Repository

4 from pydriller import Git

5 from spacy.matcher import Matcher

6 from nltk.stem.porter import *

7 import re

8 from nltk import ngrams

9 from nltk.corpus import stopwords

10 [...]

11

12 def log_view(repo , repo_name , csv_headers):

13 """ Sprint Weeks: log console """

14 with open("./data -results/bow_sprint_week_" + repo_name + ".csv", ’w’) as f:

15 writer = csv.DictWriter(f, fieldnames=csv_headers)

16 writer.writeheader ()

17 msg_commit = ""

18 prec_commit = None

19 for commit in Repository(path_to_repo=repo).traverse_commits ():

20

21 logger.info(f’Hash: {commit.hash}, ’

22 f’Week: {commit.committer_date.isocalendar ()[1]}, ’

23 f’Time: {commit.committer_date}, ’

24 f’Messaggio: {commit.msg}’)

25

26 if prec_commit == None:

27 prec_commit = commit

28 msg_commit = commit.msg # add msg commit

29 continue

30

31 if prec_commit.committer_date.year == commit.committer_date.year and \

32 prec_commit.committer_date.isocalendar ()[1] == commit.committer_date.isocalendar ()

[1]:

33 msg_commit = msg_commit +" "+ commit.msg

34 else:

35 writer.writerow ({ csv_headers [0]: prec_commit.committer_date , # Day

36 csv_headers [1]: prec_commit.committer_date.isocalendar ()[1], # Week

37 csv_headers [2]: msg_commit }) # Msg_data

38 msg_commit = commit.msg #reset

39 prec_commit = commit

40 writer.writerow ({ csv_headers [0]: prec_commit.committer_date , # Day

41 csv_headers [1]: prec_commit.committer_date.isocalendar ()[1], # Week

42 csv_headers [2]: msg_commit }) # Msg_data

43 logger.info(f’BoW Sprint Week: {repo_name}’)

44

45 REPLACE_BY_SPACE_RE = re.compile(’[/() {}\[\]\|@,;]’)

46 BAD_SYMBOLS_RE = re.compile(’[^0-9a-z #+_]’)

47 STOPWORDS = set(stopwords.words(’english ’))

48

49 partial_path = input("Enter CSV Repositories: data -results/bow_sprint_week_")

50 path = "data -results/bow_sprint_week_" + partial_path

51 path_split = path.split(’/’)

52

53 data_sprint = pd.read_csv(path)

54 data_sprint = data_sprint[pd.notnull(data_sprint[’Msg_data ’])] # checking not missing msg

55

56 def clean_text(text):

57 text = BeautifulSoup(text , "lxml").text

58 text = text.lower()

59 text = REPLACE_BY_SPACE_RE.sub(’ ’, text)

A.2. Bag-of-Words model application on Sprint commit message 117

60 text = BAD_SYMBOLS_RE.sub(’ ’, text)

61 text = ’ ’.join(word for word in text.split() if word not in STOPWORDS)

62 return text

63

64 data_sprint[’Msg_data ’] = data_sprint[’Msg_data ’].apply(clean_text)

65

66 # STEMMING

67 stemmer = PorterStemmer ()

68 csv_headers = ["Day", "Week", "Msg_data"]

69

70 [...]

71

72 # Most common word

73 data_sprint = pd.read_csv("stemmingbowset.csv")

74 msg_occurrences = []

75

76 for msg in data_sprint[’Msg_data ’]:

77 for word in msg.split ():

78 msg_occurrences.append(word)

79 occurrences = Counter(msg_occurrences)

80

81 # Top 10 BoW Frequency:

82 text_box = ’#Top BoW Frequency ’

83 conteggio = 0

84 for most_word in occurrences.most_common (20):

85 if not most_word [0]. isdigit () and conteggio < 11:

86 text_box += ’\n’ + most_word [0] + ’: ’ + str(most_word [1])

87 conteggio += 1

88

89 # Top n-grams token:

90 tokenstr = ’’

91 for token in msg_occurrences:

92 if not token.isdigit ():

93 tokenstr += token + ’ ’

94 most_coulpe_token = Counter(list(ngrams(tokenstr.split (), 2)))

95

96 # Top 10 n-grams token:

97 text_box_pair = ’#Top BoW Pair Token’

98 conteggio = 0

99 for most_word in most_coulpe_token.most_common (10):

100 text_box_pair += ’\n’ + str(most_word [0]) + ’: ’ + str(most_word [1])

101 conteggio += 1

102

103 data_sprint = pd.read_csv("stemmingbowset.csv")

104 nlp = spacy.load(’en_core_web_sm ’)

105

106 m_tool = Matcher(nlp.vocab)

107 fix = [[{"LOWER": "fix"}],

108 [{"TEXT": {"REGEX": "^fix"}}]]

109 test = [[{"LOWER": "test"}],

110 [{"TEXT": {"REGEX": "^test"}}]]

111 bug = [[{"LOWER": "bug"}],

112 [{"TEXT": {"REGEX": "^bug"}}]]

113 debug = [[{"LOWER": "debug"}],

114 [{"TEXT": {"REGEX": "^debug"}}]]

115 refactoring = [[{"LOWER": "refact"}],

116 [{"TEXT": {"REGEX": "^refact"}}]]

117 feature = [[{"LOWER": "feature"}],

118 [{"TEXT": {"REGEX": "^feature"}}]]

119 documentation = [[{"LOWER": "documentation"}],

120 [{"TEXT": {"REGEX": "^documentation"}}]]

121

122 m_tool.add(’FIX’, fix , on_match=None)

123 m_tool.add(’TEST’, test , on_match=None)

124 m_tool.add(’BUG’, bug , on_match=None)

118 Appendix A. Listings

125 m_tool.add(’DEBUG’, debug , on_match=None)

126 m_tool.add(’REF’, refactoring , on_match=None)

127 m_tool.add(’FEAT’, feature , on_match=None)

128 m_tool.add(’DOC’, documentation , on_match=None)

129

130 fieldnam = [’Day’, ’Week’, ’Tag’]

131 [...]

132

133 for index , row in data_sprint.iterrows ():

134 sentence = nlp(row[’Msg_data ’])

135 phrase_matches = m_tool(sentence)

136 for match_id , start , end in phrase_matches:

137 string_id = nlp.vocab.strings[match_id]

138 span = sentence[start:end] # The matched span

139 if span.text:

140 with open("finale.csv", ’a’) as f:

141 writer = csv.DictWriter(f, fieldnames=fieldnam)

142 writer.writerow ({’Day’: row[’Day’], ’Week’: row[’Week’], ’Tag’: string_id })

143 f.close()

144

145 # -----------------------

146 # bow + tag count

147 data_count = pd.read_csv(’finale.csv’)

148 data_count_head = ["Day", "Week", "Tag", "#Tag"]

149 week_grouped = data_count.groupby (["Day", "Week"])["Tag"]. value_counts ()

150 with open("bow_tag.csv", ’w’) as f:

151 writer = csv.DictWriter(f, fieldnames=data_count_head)

152 writer.writeheader ()

153 f.close()

154

155 bow = pd.DataFrame(week_grouped)

156 bow.to_csv("bow_tag.csv", header=False , mode="a")

157

158 # -----------------------

159 # bow tag filter multiple tag sprint to a single tag

160 data_count_filter = pd.read_csv(’bow_tag.csv’)

161

162 with open("bow_tag_filter.csv", ’w’) as f:

163 writer = csv.DictWriter(f, fieldnames=data_count_head)

164 writer.writeheader ()

165 for i, line in enumerate(data_count_filter[’Day’]):

166 if i == 0:

167 prec = line

168 max_index = i

169 continue

170 if prec == line:

171 if data_count_filter[’#Tag’][i - 1] < data_count_filter[’#Tag’][i]:

172 prec = line

173 max_index = i

174 else:

175 writer.writerow ({’Day’: data_count_filter[’Day’][max_index], ’Week’: data_count_filter[’Week’

][max_index],

176 ’Tag’: data_count_filter[’Tag’][max_index], ’#Tag’: data_count_filter[’#Tag’

][max_index]})

177 prec = line

178 max_index = i

179 if i == len(data_count_filter[’Day’]) - 1:

180 writer.writerow ({’Day’: data_count_filter[’Day’][max_index], ’Week’: data_count_filter[’Week’

][max_index],

181 ’Tag’: data_count_filter[’Tag’][max_index], ’#Tag’: data_count_filter[’#Tag’

][max_index]})

182 f.close()

119

Bibliography

[AAA17] Jasem M. Alostad, Laila R. A. Abdullah, and Lamya Sulaiman

Aali. “A Fuzzy based Model for Effort Estimation in Scrum Projects”.

In: International Journal of Advanced Computer Science and Ap-

plications 8.9 (2017). doi: 10.14569/IJACSA.2017.080939. url:

http://dx.doi.org/10.14569/IJACSA.2017.080939.

[Abr+17] Pekka Abrahamsson et al. “Agile software development methods:

Review and analysis”. In: arXiv preprint arXiv:1709.08439 (2017).

[Aca+16] Yasemin Acar et al. “You get where you’re looking for: The impact

of information sources on code security”. In: 2016 IEEE Symposium

on Security and Privacy (SP). IEEE. 2016, pp. 289–305.

[AG18] Abdullah Altaleb and Andrew Gravell. “Effort Estimation across

Mobile App Platforms using Agile Processes: A Systematic Litera-

ture Review”. In: July 2018. doi: 10.17706/jsw.13.4.242-259.

[AGH17] Abdullah Aldahmash, Andy M Gravell, and Yvonne Howard. “A

review on the critical success factors of agile software development”.

In: European conference on software process improvement. Springer.

2017, pp. 504–512.

[AH18] Alhejab Alhazmi and Shihong Huang. “A Decision Support System

for Sprint Planning in Scrum Practice”. In: SoutheastCon 2018.

2018, pp. 1–9. doi: 10.1109/SECON.2018.8479063.

[Aha+18] Md Ahasanuzzaman et al. “Classifying stack overflow posts on

API issues”. In: 2018 IEEE 25th international conference on soft-

ware analysis, evolution and reengineering (SANER). IEEE. 2018,

pp. 244–254.

https://doi.org/10.14569/IJACSA.2017.080939
http://dx.doi.org/10.14569/IJACSA.2017.080939
https://doi.org/10.17706/jsw.13.4.242-259
https://doi.org/10.1109/SECON.2018.8479063

120 Bibliography

[AHM06] John Anvik, Lyndon Hiew, and Gail C Murphy. “Who should fix

this bug?” In: Proceedings of the 28th international conference on

Software engineering. 2006, pp. 361–370.

[Ama+16] Sven Amann et al. “MUBench: A benchmark for API-misuse de-

tectors”. In: Proceedings of the 13th international conference on

mining software repositories. 2016, pp. 464–467.

[Ama+18] Sven Amann et al. “A systematic evaluation of static api-misuse

detectors”. In: IEEE Transactions on Software Engineering 45.12

(2018), pp. 1170–1188.

[Amb12] Scott Ambler. Agile database techniques: Effective strategies for the

agile software developer. John Wiley & Sons, 2012.

[ARG06] Juan Jose Amor, Gregorio Robles, and Jesus M. Gonzalez-Barahona.

“Effort Estimation by Characterizing Developer Activity”. In: Pro-

ceedings of the 2006 International Workshop on Economics Driven

Software Engineering Research. EDSER ’06. Shanghai, China: As-

sociation for Computing Machinery, 2006, pp. 3–6. isbn: 1595933964.

doi: 10.1145/1139113.1139116. url: https://doi.org/10.

1145/1139113.1139116.

[AX09] Mithun Acharya and Tao Xie. “Mining API error-handling speci-

fications from source code”. In: International Conference on Funda-

mental Approaches to Software Engineering. Springer. 2009, pp. 370–

384.

[BA04] Kent Beck and Cynthia Andres. Extreme Programming Explained:

Embrace Change (2Nd Edition). Addison-Wesley Professional, 2004.

isbn: 0321278658.

[Bav16] Gabriele Bavota. “Mining unstructured data in software reposi-

tories: Current and future trends”. In: 2016 IEEE 23rd Interna-

tional Conference on Software Analysis, Evolution, and Reengineer-

ing (SANER). Vol. 5. IEEE. 2016, pp. 1–12.

[BBW13] Xu Ben, Shen Beijun, and Yang Weicheng. “Mining developer con-

tribution in open source software using visualization techniques”.

https://doi.org/10.1145/1139113.1139116
https://doi.org/10.1145/1139113.1139116
https://doi.org/10.1145/1139113.1139116

Bibliography 121

In: 2013 Third International Conference on Intelligent System De-

sign and Engineering Applications. IEEE. 2013, pp. 934–937.

[Bha+13] Pamela Bhattacharya et al. “An empirical analysis of bug reports

and bug fixing in open source android apps”. In: 2013 17th Eu-

ropean Conference on Software Maintenance and Reengineering.

IEEE. 2013, pp. 133–143.

[Boe+09] Barry W Boehm et al. Software cost estimation with COCOMO II.

Prentice Hall Press, 2009.

[BP10] Saleem Basha and Dhavachelvan Ponnurangam. “Analysis of em-

pirical software effort estimation models”. In: arXiv preprint arXiv:1004.1239

(2010).

[BR08] Armin Beer and Rudolf Ramler. “The role of experience in software

testing practice”. In: 2008 34th Euromicro Conference Software En-

gineering and Advanced Applications. IEEE. 2008, pp. 258–265.

[Bro14] Meta S Brown. “Transforming unstructured data into useful infor-

mation”. In: Big Data, Mining, and Analytics. Auerbach Publica-

tions, 2014, pp. 227–246.

[BTB07] Bilge Baskeles, Burak Turhan, and Ayse Bener. “Software effort

estimation using machine learning methods”. In: 2007 22nd inter-

national symposium on computer and information sciences. IEEE.

2007, pp. 1–6.

[CA16] João Caldeira and Fernando Brito e Abreu. “Software development

process mining: Discovery, conformance checking and enhancement”.

In: 2016 10th International Conference on the Quality of Infor-

mation and Communications Technology (QUATIC). IEEE. 2016,

pp. 254–259.

[Cat+19] Gemma Catolino et al. “How the Experience of Development Teams

Relates to Assertion Density of Test Classes”. In: 2019 IEEE Inter-

national Conference on Software Maintenance and Evolution (IC-

SME). IEEE. 2019, pp. 223–234.

[CDB98] Bradford Clark, Sunita Devnani-Chulani, and Barry Boehm. “Cali-

brating the COCOMO II post-architecture model”. In: Proceedings

122 Bibliography

of the 20th international conference on Software engineering. IEEE.

1998, pp. 477–480.

[CH01] Alistair Cockburn and Jim Highsmith. “Agile software develop-

ment, the people factor”. In: Computer 34.11 (2001), pp. 131–133.

[CLC03] David Cohen, Mikael Lindvall, and Patricia Costa. “Agile software

development: A dacs state-of-the-art report”. In: Fraunhofer Center

for Experimental Software Engineering Maryland and The Univer-

sity of Maryland (2003).

[Coe+18] Jailton Coelho et al. “Identifying unmaintained projects in github”.

In: Proceedings of the 12th ACM/IEEE International Symposium

on Empirical Software Engineering and Measurement. ACM. 2018,

p. 15.

[Coh05] Mike Cohn. Agile estimating and planning. Pearson Education,

2005.

[CS12] Krishna Kumar Chaturvedi and VB Singh. “Determining bug sever-

ity using machine learning techniques”. In: 2012 CSI sixth interna-

tional conference on software engineering (CONSEG). IEEE. 2012,

pp. 1–6.

[DDP18] Nicolas Dintzner, Arie van Deursen, and Martin Pinzger. “FEVER:

An approach to analyze feature-oriented changes and artefact co-

evolution in highly configurable systems”. In: Empirical Software

Engineering 23.2 (2018), pp. 905–952.

[Dej+11] Karel Dejaeger et al. “Data mining techniques for software effort es-

timation: a comparative study”. In: IEEE transactions on software

engineering 38.2 (2011), pp. 375–397.

[Dem+02] Bert J Dempsey et al. “Who is an open source software developer?”

In: Communications of the ACM 45.2 (2002), pp. 67–72.

[DLR10] Marco D’Ambros, Michele Lanza, and Romain Robbes. “An ex-

tensive comparison of bug prediction approaches”. In: May 2010,

pp. 31–41. doi: 10.1109/MSR.2010.5463279.

[Era+19] Haggai Eran et al. “Design Patterns for Code Reuse in HLS Packet

Processing Pipelines”. In: 2019 IEEE 27th Annual International

https://doi.org/10.1109/MSR.2010.5463279

Bibliography 123

Symposium on Field-Programmable Custom Computing Machines

(FCCM). IEEE. 2019, pp. 208–217.

[Fer+20a] Rudolf Ferenc et al. “A public unified bug dataset for java and

its assessment regarding metrics and bug prediction”. In: Software

Quality Journal 28.4 (2020), pp. 1447–1506.

[Fer+20b] Marta Fernández-Diego et al. “An Update on Effort Estimation in

Agile Software Development: A Systematic Literature Review”. In:

IEEE Access 8 (2020), pp. 166768–166800. doi: 10.1109/ACCESS.

2020.3021664.

[FF00] Joseph Feller and Brian Fitzgerald. “A framework analysis of the

open source software development paradigm”. In: ICIS 2000 pro-

ceedings of the twenty first international conference on information

systems. Association for Information Systems (AIS). 2000, pp. 58–

69.

[GJM06] Stein Grimstad, Magne Jørgensen, and Kjetil Moløkken-Østvold.

“Software effort estimation terminology: The tower of Babel”. In:

Information and Software Technology 48.4 (2006), pp. 302–310.

[GKS08] Georgios Gousios, Eirini Kalliamvakou, and Diomidis Spinellis. “Mea-

suring developer contribution from software repository data”. In:

Proceedings of the 2008 international working conference on Mining

software repositories. 2008, pp. 129–132.

[Gla+18] Elena L Glassman et al. “Visualizing API usage examples at scale”.

In: Proceedings of the 2018 CHI Conference on Human Factors in

Computing Systems. 2018, pp. 1–12.

[Gor+18] Peter Leo Gorski et al. “Developers deserve security warnings, too:

On the effect of integrated security advice on cryptographic {API}

misuse”. In: Fourteenth Symposium on Usable Privacy and Security

(SOUPS 2018). 2018, pp. 265–281.

[GPD14] Georgios Gousios, Martin Pinzger, and Arie van Deursen. “An ex-

ploratory study of the pull-based software development model”.

In: Proceedings of the 36th International Conference on Software

Engineering. 2014, pp. 345–355.

https://doi.org/10.1109/ACCESS.2020.3021664
https://doi.org/10.1109/ACCESS.2020.3021664

124 Bibliography

[GRF17] Mohammad Gharehyazie, Baishakhi Ray, and Vladimir Filkov. “Some

from here, some from there: Cross-project code reuse in github”. In:

2017 IEEE/ACM 14th International Conference on Mining Soft-

ware Repositories (MSR). IEEE. 2017, pp. 291–301.

[GS17] Georgios Gousios and Diomidis Spinellis. “Mining software engi-

neering data from GitHub”. In: 2017 IEEE/ACM 39th Interna-

tional Conference on Software Engineering Companion (ICSE-C).

IEEE. 2017, pp. 501–502.

[GS20] Hamayoon Ghafory and Faqeed Ahmad Sahnosh. “The review of

software cost estimation model: SLIM”. In: J. Adv. Academic Res.

2.4 (2020), pp. 511–515.

[HE22] Abeer Hamdy and Gloria Ezzat. “Deep mining of open source soft-

ware bug repositories”. In: International Journal of Computers and

Applications 44.7 (2022), pp. 614–622.

[JJE14] René Just, Darioush Jalali, and Michael D Ernst. “Defects4J: A

database of existing faults to enable controlled testing studies for

Java programs”. In: Proceedings of the 2014 International Sympo-

sium on Software Testing and Analysis. 2014, pp. 437–440.

[JLW12] Woosung Jung, Eunjoo Lee, and Chisu Wu. “A survey on mining

software repositories”. In: IEICE TRANSACTIONS on Informa-

tion and Systems 95.5 (2012), pp. 1384–1406.

[KCS13] Jymit Khondhu, Andrea Capiluppi, and Klaas-Jan Stol. “Is it all

lost? A study of inactive open source projects”. In: IFIP interna-

tional conference on open source systems. Springer. 2013, pp. 61–

79.

[Ker+22] Harold Kerzner et al. “Project Management: A Systems Approach

to Planning, Scheduling, and Controlling”. In: (2022).

[KFW18] Reni Kurnia, Ridi Ferdiana, and Sunu Wibirama. “Software Met-

rics Classification for Agile Scrum Process: A Literature Review”.

In: 2018 International Seminar on Research of Information Tech-

nology and Intelligent Systems (ISRITI). 2018, pp. 174–179. doi:

10.1109/ISRITI.2018.8864244.

https://doi.org/10.1109/ISRITI.2018.8864244

Bibliography 125

[Kit+02] Barbara Kitchenham et al. “An empirical study of maintenance

and development estimation accuracy”. In: Journal of systems and

software 64.1 (2002), pp. 57–77.

[KKM13] Jacky Keung, Ekrem Kocaguneli, and Tim Menzies. “Finding con-

clusion stability for selecting the best effort predictor in software

effort estimation”. In: Automated Software Engineering 20.4 (2013),

pp. 543–567.

[KM09] Barbara Kitchenham and Emilia Mendes. “Why comparative effort

prediction studies may be invalid”. In: Proceedings of the 5th inter-

national Conference on Predictor Models in Software Engineering.

2009, pp. 1–5.

[LGS21] Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang. “A

systematic review of API evolution literature”. In: ACM Computing

Surveys (CSUR) 54.8 (2021), pp. 1–36.

[LM09] Chris Lokan and Emilia Mendes. “Applying moving windows to

software effort estimation”. In: 2009 3rd International Symposium

on Empirical Software Engineering and Measurement. IEEE. 2009,

pp. 111–122.

[McI+16] Shane McIntosh et al. “An empirical study of the impact of modern

code review practices on software quality”. In: Empirical Software

Engineering 21.5 (2016), pp. 2146–2189.

[MCM16] Martin Monperrus, Eduardo Campos, and Marcelo Maia. “Search-

ing stack overflow for API-usage-related bug fixes using snippet-

based queries”. In: 26th Annual International Conference on Com-

puter Science and Software Engineering. 2016.

[Men+17] Tim Menzies et al. “Negative results for software effort estimation”.

In: Empirical Software Engineering 22.5 (2017), pp. 2658–2683.

[MJ03] Kjetil Moløkken-Østvold and Magne Jørgensen. “A review of sur-

veys on software effort estimation”. In: (2003).

[MJ15] Lech Madeyski and Marian Jureczko. “Which process metrics can

significantly improve defect prediction models? An empirical study”.

In: Software Quality Journal 23.3 (2015), pp. 393–422.

126 Bibliography

[MKK09] Subhas Chandra Misra, Vinod Kumar, and Uma Kumar. “Iden-

tifying some important success factors in adopting agile software

development practices”. In: Journal of systems and software 82.11

(2009), pp. 1869–1890.

[Moe+15] Julie Moeyersoms et al. “Comprehensible software fault and effort

prediction: A data mining approach”. In: Journal of Systems and

Software 100 (2015), pp. 80–90.

[MPR19] Reed Milewicz, Gustavo Pinto, and Paige Rodeghero. “Character-

izing the roles of contributors in open-source scientific software

projects”. In: 2019 IEEE/ACM 16th International Conference on

Mining Software Repositories (MSR). IEEE. 2019, pp. 421–432.

[Mur+18] Emerson Murphy-Hill et al. “Discovering API usability problems at

scale”. In: Proceedings of the 2nd International Workshop on API

Usage and Evolution. 2018, pp. 14–17.

[MY12] Leandro L Minku and Xin Yao. “Can cross-company data improve

performance in software effort estimation?” In: Proceedings of the

8th International Conference on Predictive Models in Software En-

gineering. 2012, pp. 69–78.

[Nie+21] Sebastian Nielebock et al. “Guided pattern mining for API misuse

detection by change-based code analysis”. In: Automated Software

Engineering 28.2 (2021), pp. 1–48.

[PC14] Rashmi Popli and Naresh Chauhan. “Cost and effort estimation

in agile software development”. In: 2014 International Conference

on Reliability Optimization and Information Technology (ICROIT).

2014, pp. 57–61. doi: 10.1109/ICROIT.2014.6798284.

[PFM13] Marco Piccioni, Carlo A Furia, and Bertrand Meyer. “An empir-

ical study of API usability”. In: 2013 ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement.

IEEE. 2013, pp. 5–14.

[Pha+14] Raphael Pham et al. “Enablers, inhibitors, and perceptions of test-

ing in novice software teams”. In: Proceedings of the 22nd ACM

https://doi.org/10.1109/ICROIT.2014.6798284

Bibliography 127

SIGSOFT International Symposium on Foundations of Software

Engineering. 2014, pp. 30–40.

[PMR17] S. Muthu Perumal Pillai, S.D. Madhukumar, and T. Radhara-

manan. “Consolidating evidence based studies in software cost/-

effort estimation — A tertiary study”. In: TENCON 2017 - 2017

IEEE Region 10 Conference (2017), pp. 833–838.

[PSV11] Wouter Poncin, Alexander Serebrenik, and Mark Van Den Brand.

“Process mining software repositories”. In: 2011 15th European

Conference on Software Maintenance and Reengineering. IEEE.

2011, pp. 5–14.

[Rad+13] Danijel Radjenović et al. “Software fault prediction metrics: A sys-

tematic literature review”. In: Information and software technology

55.8 (2013), pp. 1397–1418.

[RD13] Foyzur Rahman and Premkumar Devanbu. “How, and why, pro-

cess metrics are better”. In: 2013 35th International Conference on

Software Engineering (ICSE). IEEE. 2013, pp. 432–441.

[Red11] Martin Reddy. API Design for C++. Elsevier, 2011.

[RI19] Derek Reimanis and Clemente Izurieta. “Behavioral Evolution of

Design Patterns: Understanding Software Reuse Through the Evo-

lution of Pattern Behavior”. In: International Conference on Soft-

ware and Systems Reuse. Springer. 2019, pp. 77–93.

[RM12] Akif Raza and Hammad Majeed. “Issues and Challenges In Scrum

Implementation”. In: International Journal of Scientific and Engi-

neering Research 3 (Aug. 2012).

[Rob+14] Gregorio Robles et al. “Estimating development effort in free/open

source software projects by mining software repositories: a case

study of openstack”. In: Proceedings of the 11th Working Confer-

ence on Mining Software Repositories. 2014, pp. 222–231.

[Rob09] Martin P Robillard. “What makes APIs hard to learn? Answers

from developers”. In: IEEE software 26.6 (2009), pp. 27–34.

128 Bibliography

[Rol+18] Thomas Rolfsnes et al. “Aggregating association rules to improve

change recommendation”. In: Empirical Software Engineering 23.2

(2018), pp. 987–1035.

[RW01] Gene Rowe and George Wright. “Expert opinions in forecasting: the

role of the Delphi technique”. In: Principles of forecasting. Springer,

2001, pp. 125–144.

[SAB18] Davide Spadini, Mauŕıcio Aniche, and Alberto Bacchelli. “PyDriller:

Python framework for mining software repositories”. In: Proceed-

ings of the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Soft-

ware Engineering - ESEC/FSE 2018. New York, New York, USA:

ACM Press, 2018, pp. 908–911. isbn: 9781450355735. doi: 10 .

1145/3236024.3264598. url: http://dl.acm.org/citation.

cfm?doid=3236024.3264598.

[SB02] Ken Schwaber and Mike Beedle. Agile software development with

scrum. Series in agile software development. Vol. 1. Prentice Hall

Upper Saddle River, 2002.

[SBS17] Apoorva Srivastava, Sukriti Bhardwaj, and Shipra Saraswat. “SCRUM

model for agile methodology”. In: 2017 International Conference

on Computing, Communication and Automation (ICCCA). IEEE.

2017, pp. 864–869.

[Sha+09] Weiyi Shang et al. “Mapreduce as a general framework to support

research in mining software repositories (MSR)”. In: 2009 6th IEEE

International Working Conference on Mining Software Reposito-

ries. IEEE. 2009, pp. 21–30.

[SMS16] Ingo Scholtes, Pavlin Mavrodiev, and Frank Schweitzer. “From

Aristotle to Ringelmann: a large-scale analysis of team productivity

and coordination in Open Source Software projects”. In: Empirical

Software Engineering 21.2 (2016), pp. 642–683.

[SPH16] Federica Sarro, Alessio Petrozziello, and Mark Harman. “Multi-

objective software effort estimation”. In: 2016 IEEE/ACM 38th

https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1145/3236024.3264598
http://dl.acm.org/citation.cfm?doid=3236024.3264598
http://dl.acm.org/citation.cfm?doid=3236024.3264598

Bibliography 129

International Conference on Software Engineering (ICSE). IEEE.

2016, pp. 619–630.

[Spi17] Diomidis Spinellis. “A repository of Unix history and evolution”.

In: Empirical Software Engineering 22.3 (2017), pp. 1372–1404.

[SSK96] Martin Shepperd, Chris Schofield, and Barbara Kitchenham. “Ef-

fort estimation using analogy”. In: Proceedings of IEEE 18th Inter-

national Conference on Software Engineering. IEEE. 1996, pp. 170–

178.

[Sty+08] Jeffrey Stylos et al. “A case study of API redesign for improved

usability”. In: 2008 IEEE Symposium on Visual Languages and

Human-Centric Computing. IEEE. 2008, pp. 189–192.

[Sty+09] Jeffrey Stylos et al. “Improving API documentation using API us-

age information”. In: 2009 IEEE Symposium on Visual Languages

and Human-Centric Computing (VL/HCC). IEEE. 2009, pp. 119–

126.

[Sun+16] Xiaobing Sun et al. “Mining software repositories for automatic in-

terface recommendation”. In: Scientific Programming 2016 (2016).

[Sve+19] Amann Sven et al. “Investigating next steps in static API-misuse

detection”. In: 2019 IEEE/ACM 16th International Conference on

Mining Software Repositories (MSR). IEEE. 2019, pp. 265–275.

[Tan+14] Lin Tan et al. “Bug characteristics in open source software”. In:

Empirical software engineering 19.6 (2014), pp. 1665–1705.

[Tei17] Jose Teixeira. “Release early, release often and release on time. an

empirical case study of release management”. In: IFIP Interna-

tional Conference on Open Source Systems. Springer, Cham. 2017,

pp. 167–181.

[Thu+12] Ferdian Thung et al. “An empirical study of bugs in machine learn-

ing systems”. In: 2012 IEEE 23rd International Symposium on

Software Reliability Engineering. IEEE. 2012, pp. 271–280.

[TJ14] Adam Trendowicz and Ross Jeffery. “Software project effort esti-

mation”. In: Foundations and Best Practice Guidelines for Success,

Constructive Cost Model–COCOMO pags 12 (2014), pp. 277–293.

130 Bibliography

[TR16] Christoph Treude and Martin P Robillard. “Augmenting API docu-

mentation with insights from stack overflow”. In: 2016 IEEE/ACM

38th International Conference on Software Engineering (ICSE).

IEEE. 2016, pp. 392–403.

[TS05] Pang-Ning Tan and Michael Steinbach. e Kumar, V.(2005) Intro-

duction to Data Mining. 2005.

[UKR21] Gias Uddin, Foutse Khomh, and Chanchal K Roy. “Automatic api

usage scenario documentation from technical q&a sites”. In: ACM

Transactions on Software Engineering and Methodology (TOSEM)

30.3 (2021), pp. 1–45.

[Unt+11] Michael Unterkalmsteiner et al. “Evaluation and measurement of

software process improvement—a systematic literature review”. In:

IEEE Transactions on Software Engineering 38.2 (2011), pp. 398–

424.

[UR15] Gias Uddin and Martin P Robillard. “How API documentation

fails”. In: Ieee software 32.4 (2015), pp. 68–75.

[Usm+14] Muhammad Usman et al. “Effort estimation in agile software de-

velopment: a systematic literature review”. In: Proceedings of the

10th international conference on predictive models in software en-

gineering. 2014, pp. 82–91.

[Uus+15] Laura Uusitalo et al. “An overview of methods to evaluate uncer-

tainty of deterministic models in decision support”. In: Environ-

mental Modelling & Software 63 (2015), pp. 24–31.

[Wen+19] Ming Wen et al. “Exposing library API misuses via mutation anal-

ysis”. In: 2019 IEEE/ACM 41st International Conference on Soft-

ware Engineering (ICSE). IEEE. 2019, pp. 866–877.

[WH05a] C. C. Williams and J. K. Hollingsworth. “Automatic mining of

source code repositories to improve bug finding techniques”. In:

IEEE Transactions on Software Engineering 31.6 (2005), pp. 466–

480. doi: 10.1109/TSE.2005.63.

[WH05b] Chadd C Williams and Jeffrey K Hollingsworth. “Automatic min-

ing of source code repositories to improve bug finding techniques”.

https://doi.org/10.1109/TSE.2005.63

Bibliography 131

In: IEEE Transactions on Software Engineering 31.6 (2005), pp. 466–

480.

[WJ99] Fiona Walkerden and Ross Jeffery. “An empirical study of analogy-

based software effort estimation”. In: Empirical software engineer-

ing 4.2 (1999), pp. 135–158.

[WMJ10] Ye-Chi Wu, Lee Wei Mar, and Hewijin Christine Jiau. “CoDocent:

Support API usage with code example and API documentation”.

In: 2010 Fifth International Conference on Software Engineering

Advances. IEEE. 2010, pp. 135–140.

[WOM15] Peter A Whigham, Caitlin A Owen, and Stephen G Macdonell.

“A baseline model for software effort estimation”. In: ACM Trans-

actions on Software Engineering and Methodology (TOSEM) 24.3

(2015), pp. 1–11.

[Won+16] W Eric Wong et al. “A survey on software fault localization”. In:

IEEE Transactions on Software Engineering 42.8 (2016), pp. 707–

740.

[Zha+19] Jingxuan Zhang et al. “Enriching API documentation with code

samples and usage scenarios from crowd knowledge”. In: IEEE

Transactions on Software Engineering 47.6 (2019), pp. 1299–1314.

[Zim06] Thomas Zimmermann. “Taking Lessons from History”. In: Pro-

ceedings of the 28th International Conference on Software Engi-

neering. ICSE ’06. Shanghai, China: ACM, 2006, pp. 1001–1005.

isbn: 1-59593-375-1. doi: 10.1145/1134285.1134474. url: http:

//doi.acm.org/10.1145/1134285.1134474.

[Živ+11] Jovan Živadinović et al. “Methods of effort estimation in software

engineering”. In: Proc. Int. Symposium Engineering Management

and Competitiveness (EMC). 2011, pp. 417–422.

https://doi.org/10.1145/1134285.1134474
http://doi.acm.org/10.1145/1134285.1134474
http://doi.acm.org/10.1145/1134285.1134474

	Abstract
	Introduction
	The necessity of estimating effort
	Effort drivers: what affects effort estimation
	Selecting Best Practices for Effort Estimation
	The proposed approach
	Thesis structure
	Published Papers

	Background information and theory
	Agile software development model
	Principles and Objective
	Practices and Methodologies

	Mining software repositories to assist developers and support managers
	Data extraction

	GitHub
	Why to use GIT
	Terminology

	PyDriller
	Open Source Software
	Conclusion

	Code History Metrics to classify Software Repositories at scale
	A suite of Process Metrics to Capture the Effort of Developers
	Related Work
	Approach
	Design and Implementation
	Metrics Experiments
	Commits per Day of the Week
	Commits per Hour of the Day
	Average Commit Distribution
	Commits per Week in the last Year
	Changes per Week Trend
	Lines Of Code in Time

	Conclusions

	Discover Scrum Model for Agile Methodology
	Improving Effort estimation on ASD
	Scrum framework structure
	Related Work
	Relate Sprint trend in Scrum models
	Approach and Implementation
	Metrics Experiments
	Sprint week commit trend
	Average Sprint Window
	Sprint commit message

	Conclusions

	Skill profiling in Software systems environments
	Uncovering API usability
	The individual developer contribution
	APIs should be easy to use and hard to misuse
	Inappropriate use of APIs factors

	Related Work
	Approach
	Metrics
	Hard API Effort
	Near
	Git Skill Analysis

	Conclusions

	Conclusions
	Listings
	Average Sprint Window code implementation
	Bag-of-Words model application on Sprint commit message

	Bibliography

