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Abstract

In recent years, several projects have emerged with the aim of addressing the challenge of
providing solutions for the deployment, monitoring, adaptation, and management of clouds
belonging to different enterprises/organisations.
In addition, the concept of Green Computing and, more specifically, energy-aware solutions
have gained attention in the last few years in many fields of ICT: network management is
one of those.
Today’s power consumption is considered a fundamental parameter to take into account when
a new routing strategy is designed, just as with latency, bandwidth or error rate.
In such scenarios network connectivity is one of the key factors.
SDN technologies represent a good solution to face this challenge. By separating the control
plane from the data plane, they can give the cloud provider the opportunity to specify both
the network topologies and routing schemes on-the fly, guaranteeing, at same time, a specific
level of isolation.
My work produced an algorithm for traffic engineering on an SDN based on the Alienated
Ant Algorithm, a heuristic solution inspired by a non-natural behaviour of ants colonies.
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Chapter 1

Introduction

In recent years there has been a gradual and steady increase in the use of virtualization
techniques that has led to the emergence of the concept of Software Defined Infrastructure ,
namely an infrastructure in which all elements (servers, storage, networking) are virtualized
and made configurable and accessible via APIs.
Cloud Computing [22] and the concept of “as-a-service” solutions are the pillars of this new
IT trend.
The flexibility in the management of the resources (both hardware and software) provided
by the Clouds and, more recently, SDN [15] and virtual networking technologies [5] have
completely modified the way applications are designed and, more important, managed.
The opportunity to select and modify, on the fly, both the hardware configuration (in terms
of CPU/memory/disk size, IO disk throughput) and the number of machines hosting the
applications, along with the ability to configure the load balancer, floating IP (usually used to
reach the application/cloud instance from outside) and the integration of specific tools for
continuous monitoring, allows for significant flexibility in the management of different levels
of Quality of Service (QoS), i.e. different degrees of performance, safety, robustness and
availability.
Network management plays a fundamental role in this scenario.
The performance of internet-accessible, geographically-distributed applications are in fact
closely related to the performance of the underlying network as well as how they are related
to the hardware performance of the machines on which they are hosted: the better the network
performance, the better the overall performance of the applications.
Unlike in the management of hardware (whether virtualized or not), for which many solutions
that reach and maintain the desired degree of performance already exist, the management of
the network within the cloud environments still today poses considerable criticality.
Every network link is a "shared channel": it is subject to continuous interactions with entities
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(communicating machines) that are independent (not coordinated by the same organisation),
and parallel (simultaneous access to the network). If not properly managed, these interactions
often cause significant degradation of the overall system performance and thus need to adopt
complex management strategies.
Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) technolo-
gies provide a new ways to build, configure and manage networks, improving the network’s
performance and making them predictable.
However virtualized network management has yet to be explored in greater detail.
The SDN solutions currently proposed in the scientific literature cover only the case of single
cloud environments, where computing, storage and network resources are locally-distributed
and owned by a single organization.
This aim of this work is to extend the concept of an SDN to build robust, reliable and per-
formant networks across geographically-distributed resources owned by different providers,
that can be competitive or federated.
After a brief overview of the SDN terminology and a review of the underlying technology 2,
the framework that makes it possible to create, handle and monitor virtual networks spanning
across several heterogeneous environments will be introduced (Chapter 3). The proposed
framework, named ASSDN, offers an API to configure the routing and the performance-
related network parameters independently from both the specific SDN technology adopted
and from the peculiarities and heterogeneities of the network providers. It allows for the
planning activities to be written in a high-level language (Java in this discussion) and to
develop, maintain and easily change the routing algorithms.
It allows any cloud provider managing its own control plane functions to not only configure
its own network but also to offer capabilities to make them accessible as a configuration
service to the owner of the applications or even to other cloud providers, thus extending the
concept of large-scale Network-as-a-Service.
Chapter 4 describes the A4SDN, a distributed, adaptive, load-balancing algorithm for traffic
engineering on an SDN. A4SDN (A4 stands for Adaptive Alienated Ant Algorithm) is based
on the Alienated Ant Algorithm (AAA), a stochastic-based, heuristic approach used to solve
combinatorial and multi-constraint optimisation problems. Based on a non natural ants’
behaviour, the AAA forces the ants in search of food to distribute themselves over all the
available paths rather than converge to a single one.
A4SDN applies this strategy to the packets it routes, obtaining a load balancing solution
that supplies an autonomic dynamic routing and leads to a better exploitation of the network
bandwidth, enforcing best effort traffic and improving network performance.
The Chapter 6 proposes a comparison between A4SDN with two Dijkstra-based routing
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solutions is also provided in terms of throughput, delay and packet loss rate; the Chapter 7
shows the results of this comparisons in different scenarios.
The Chapter 8 copes with one of the major challenges in ICT, i.e. the design of energy
efficient solutions for network services. In the chapter eA4SDN (Chapter 8) is introduced, an
energy-aware extension of the A4SDN. As any other AAA-based solutions, eA4SDN makes
its decisions by minimising the value of the pheromone on the available paths, emulated in
this case by the energy needed to manage the routing operations.
In order to evaluate its performance, the proposed energy-aware approach is compared with
the standard A4SDN and with two deterministic solution based on Dijkstra’s Algorithm.
Through preprocessing the traffic, the energy-saving models achieve better energy efficiency
and reduce the energy consumption in SDN data centers while maintaining high levels of
throughput, low delay and packet loss.
Conclusion is given in Chapter 9.

The popularity of the cloud and the variety of infrastructures and platforms widespread
on the worldwide market has increased the need of networking resources and capabilities to
manage them flexibly.
Control and orchestration of network capabilities will be a key factor for success in taming
the complexity of an infrastructure executing millions of software transactions or service
chains.
The opportunity to select and modify both the hardware configuration on-the-fly (in terms of
CPU/memory/disk size, IO disk throughput) and the number of machines hosting the applica-
tions, along with the ability to configure the load balancer, floating IP and the integration of
specific tools for continuous monitoring, allows for significant flexibility in the management
of different levels of Quality of Service (QoS), i.e. different degrees of performance, safety,
robustness and availability.
The performance of the distributed applications, in fact, are closely related to the performance
of the underlying network and the hardware performance of the machines on which they are
hosted: the better the network performance, the better the overall performance of the cloud
application.
One of the most important requirements will be ensuring ultra-low application latency and
ultra-high application throughput.
Load balancing plays a key role in computer networks. In this work was introduced a bio
inspired mechanism, based on the well know ant colony optimization algorithm (ACO)
[9], a probabilistic technique for solving computational problems which can be reduced to
finding good paths through graphs. Assessments and feedback are described in more detail
in Chapter 4.
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Unlike in the management of hardware (whether virtualized or not), for which many solutions
that reach and maintain the desired performance already exist, currently the management of
the network within the cloud environments still presents considerable criticality. In such a
scenario, the network resources play a key role.
Providing new ways to build, configure and manage networks, Network Functions Virtual-
ization (NFV) [5] and Software-Defined Networking (SDN) [15] technologies allows for
the improvement of the performance and guarantee the QoS of specific flows and, as a
consequence, the ones of the specific distributed applications, making them predictable.
NFV and SDN are playing a key role in the rapid evolution of this wide-area. They are not
mutually dependent, but both certainly can benefit both from a combined use.
In particular SDN is recognized as one of the most important paradigm shift from traditional
networking towards the future of the Internet by providing new ways to build, configure and
manage networks.
However this field has yet to be explored. Actually, there are few solutions that cover only
the case of single cloud environments, where computing, storage and network resources are
owned by a single organization.
My work extends these concepts to multicloud environments: it takes into account the issue to
create, handle and monitor virtual networks that are able to span across several heterogeneous
cloud environments, that can be competitive or federated, so as to guarantee a specific level
of QoS.
My aim is to address this problem by creating a framework which offers an API to configure
the routing and the performance-related network parameters independently from both the
specific SDN technology adopted and from the peculiarities and heterogeneities of the net-
work providers. It allows to write in a high-level language (Java in this Thesis) the planning
activities and to develop, maintain and easily change the routing algorithms.
This allows any cloud provider managing its own control plane functions not only to configure
its own network but also to offer capabilities for making them accessible as a configuration
service to the owner of the applications or even to other cloud providers, thus extending the
concept of large-scale Network-as-a-Service.
These will be addressed in Chapter 3.
The use of ICT technologies can contribute to environmental sustainability in many areas,
for example through paper reduction and physical displacement of people. There are several
initiatives aimed at improving the energy efficiency of data centers, although interest remains
limited to large-scale organizations.
In Chapter 8 I will propose an energy-aware extension of the A4SDN. Through preprocessing
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the traffic, the energy-saving models achieve better energy efficiency and reduce energy in
SDN data centers while maintaining high levels of throughput, low delay and packet loss.

1.1 List of acronyms

A4SDN Alienated Ant Algorithm for Software Defined Networking
ASSDN Adaptive Strategies for Software Defined Networking
ACO Ant Colony Optimization
API Application Programming Interface
BFS Breadth First Search
eASDN Energy-Aware Routing in A4SDN
ICT Information and Communication Technologies
IP Internet Protocol
IT Information Technology
NFV Network Functions Virtualization
ONF Open Networking Foundation
QoS Quality of Service
SDN Software Defined Networking





Chapter 2

SDN: Background and Motivation

2.1 Software Defined Networking: challenges and oppor-
tunities for future networks

Fig. 2.1 SDN Paradigm
According to the Open Networking Foundation (ONF) [sdn] ,
software-defined networking (SDN) is a networking architec-
ture in which the control and forwarding (also know as data
plane), which is responsible for the traffic forwarding, are de-
coupled.
The goal of SDN is to allow network engineers and administra-
tors to respond quickly to changing business requirements.
In a software-defined network, a network administrator can
shape traffic from a centralized control console without hav-
ing to touch individual switches, and can deliver services to
wherever they are needed in the network, without regard to
what specific devices a server or other hardware components
are connected to.
The key technologies for SDN implementation are functional
separation, network virtualization and automation through programmability.
The SDN architecture is remarkably flexible; it can operate with different types of switches
and at different protocol layers.
The network intelligence is logically centralised in software-based SDN controllers, which
maintains a global view of the network, while the underlying network infrastructure is ab-
stracted from the applications. As a result, the network appears to the applications (and
policy engines, too) as a single, logical switch.
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When a packet arrives at a switch in the network, rules built into the switch’s proprietary
firmware tell the switch where to forward the packet. The switch sends every packet going to
the same destination along the same path, and treats all the packets the exact same way.
In a classic SDN scenario, the packet handling rules are sent to the switch from a controller,
an application running on a server somewhere, and the switches (also known as data plane
devices) query the controller for guidance as needed and provide it with information on the
traffic they are handling. SDN controllers and switches can be implemented for Ethernet
switches (Layer 2), Internet routers (Layer 3), transport (Layer 4) switching, or application
layer switching and routing. The result is an extremely dynamic, manageable, cost-effective,
and adaptable architecture that gives administrators unprecedented programmability, au-
tomation, and control. The communication, between the SDN Controller and the services
and the applications running over the network, is allowed through the northbound APIs.
The SDN controllers ( e.g., OpenDayLight [27], FloodLight [13], Ryu [30], Pox/Nox [28],
Beacon [3], Onos [25]) are able to apply suitable policies to map out the routing tables of the
physical switches. Northbound APIs enables the networked to be programmed with basic
network functions such as path computation, loop avoidance, routing, security and many
other tasks. The SDN’s northbound APIs are, currently, the most nebulous component in an
SDN environment, because many different sets of northbound APIs are emerging.
The switches query the controller for guidance as needed, and provide it with information
about traffic they are handling.
Controllers and switches communicate via a controller’s "south bound" interface, usually
OpenFlow [Specification], although other protocols exist.
OpenFlow is the first standard communication interface defined between the control and
forwarding layers of an SDN architecture. OpenFlow allows direct access to and the manipu-
lation of the forwarding plane of network devices such as switches and routers, both physical
and virtual (hypervisor-based). In a classical router or switch, the fast packet forwarding
(data path) and the high level routing decisions (control path) occur on the same device. An
OpenFlow Switch separates these two functions. The data path portion still resides on the
switch, while high-level routing decisions are moved to a separate controller, typically a
standard server. The data path of an OpenFlow Switch presents a flow table abstraction. A
flow table contains a list of flow entries. Each flow entry contains a set of packet fields to
match, and an action (such as send-out-port, modify-field, or drop). When a packet arrives
at an OpenFlow switch, the header fields are compared to flow table entries. If a match is
found, the packet is either forwarded to the specified port(s) or dropped, depending on one or
more actions stored in the flow table, otherwise it sends this packet to the controller. The
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controller then makes a decision on how to handle this packet. It can drop the packet, or it
can add a flow entry directing the switch on how to forward similar packets in the future.

OpenFlow-based SDN is currently being rolled out in a variety of networking devices
and software, delivering substantial benefits to both enterprises and carriers, including:

• Centralized control of multi-vendor environments: SDN control software can control
any OpenFlow-enabled network device from any vendor;

• Improved automation and management by using common APIs;

• Higher rate of innovation: SDN accelerates innovation through the ability to deliver
new network capabilities and services without the need to configure individual devices
or wait for vendor releases;

• Reduced complexity through automation: OpenFlow-based SDN offers a flexible
network automation and management framework

• Increased network reliability and security as a result of centralized and automated
management of network devices;

• More granular network control with the ability to apply comprehensive and wide-
ranging policies at the session, user, device, and application levels;

• Better end-user experience as applications exploit centralized network state information
to seamlessly adapt network behavior to user needs.





Chapter 3

ASSDN: Adaptive Strategies for
Software Defined Networking

3.1 The ASSDN Reference Architecture

The architecture of ASSDN is shown in Fig. 3.1. It is composed by three layers:

1. The bottom layer consists of an SDN-enabled network, typically a set of connected
OpenFlow switches;

2. In the middle layer the component jFlowLight [jflowlight] decouples the ASSDN’s
highest layer from the SDN Controller Northbound API, allowing us to support differ-
ent SDN controllers without substantial switching costs or inconvenience;

3. The top level, the ASSDN Orchestrator, implements the policies of the routing strate-
gies. It dynamically decides which flows to direct to the switches without downtime
and service disruption.

3.1.1 JFlowLight

The SDN Northbound API, provided by the SDN Controller, is currently the most nebulous
component in an SDN environment: many different sets of northbound APIs are emerging,
typically one set for each controller.
Programming the SDN through different environments can be a complex challenge.
jFlowLight decouples the control from the Northbound API provided by the SDN-Controllers
(see Fig. 3.1).
It offers a common high level view of differents SDN-Controllers in a multicloud environ-
ment.
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Fig. 3.1 ASSDN Architecture

jFlowLight allows for the creation of applications that are portable across the SDNs allowing
users to program the network transparently from the specific REST-like APIs provided by
each controller.

jFlowLight [jflowlight] is an open source library that helps users get started in an SDN.
The jFlowLight API gives the freedom to create applications that are portable across SDN
while giving full control to use SDN-specific features. It is an SDN-controller client that
allows for the provisioning and control of an SDN deployment. This includes support for
flows, statistics and topology. jFlowLight decouples the control from the northbound API
provided by SDN-Controllers. The SDN northbound APIs (provided by the SDN-Controller)
are, currently, the most nebulous component in an SDN environment, because many different
sets of northbound APIs are emerging. Programming within SDN environments can be
challenging. jFlowLight focuses on the mentioned issue so that users can get started without
dealing with REST-like APIs provided by each controller. Users are allowed to manage a
multitude of controllers without changing the APIs or their software.
jFlowLight gives full control of SDN specific features by providing a high level programming
language.
JFlowLight has been as an opensource library. The binding language considered here is Java,
but the same solution can be adopted for other languages.
The java language was chosen because it has a substantial community support, it is free, it is
platform independent, and has excellent documentation. However I’m considering whether
or not to release a REST-based API.
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jFlowLight supports OpenDayLight, Floodlight and Onos. The architecture is designed
to allow users to easily implement, modify, customize and enhance any SDN-Controller
proxy (SDNCP) by using the plugins features. Through the use of the APIs provided by the
SDN-Controller, generally REST-based, the SDNCP provides a single common API. Users
can manage multitude of controllers without changing the API or their software. We are
planning to extend the support to some community driven initiatives like OpenContrail [26],
Ryu, Beacon.
The jFlowLight controller proxy allows users to fetch topological and statistical data and
manage the flow entries. In substance it supports all the features provided by Openflow.
Here is the Java code for the controller creation:

C o n t r o l l e r c o n t r o l l e r = C o n t r o l l e r F a c t o r y . b u i l d e r ( ) .
s e t C o n t r o l l e r T y p e ( " o p e n d a y l i g h t " ) .
s e t A d d r e s s ( " 1 9 2 . 1 6 8 . 1 . 5 9 " ) .
s e t P o r t ( 8 1 8 1 ) .
s e t U s e r ( "USER " ) .
setPwd ( "STRONG_PWD " ) .
b u i l d ( ) ;

Below are some examples of the API usage to retrieve statistical values such as bytes
sent/received/drop, packets sent/received/drop, adding, deleting and retrieving flow entries.

• Topology operations

Getting all nodes (switches and hosts)

c o n t r o l l e r . ge tAl lNode ( )

Getting all hosts

c o n t r o l l e r . g e t H o s t s ( )

• Statistics operations

Getting statistics

c o n t r o l l e r . ge tNodeConnec t ion ( )

• Flow operations

Getting flow entries

c o n t r o l l e r . ge tF low (
swi tchID ,
t a b l e I D )
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Getting a flow entry

c o n t r o l l e r . ge tF low (
swi tchID ,
t a b l e I D ,
e n t r y I D )

Adding a flow entry

c o n t r o l l e r . addFlowEnt ry (
flowname ,
swi tchID ,
p r i o r i t y ,
t a b l e I D ,
en t ry ID ,
i p v 4 S r c s ,
i pv4Ds t s ,
i p B i t ,
macSrcs ,
macDsts ,
o u t p u t P o r t )

Deleting a flow entry

c o n t r o l l e r . d e l e t e F l o w E n t r y (
swi tchID ,
t a b l e I D ,
e n t r y I D )

The jFlowLight [jflowlight] wiki provides a better explanation about the architecture and
features offered.

3.1.2 The ASSDN Orchestrator

The ASSDN Orchestrator (see Fig. 3.1), is the key component. It dynamically implements
the routing strategy by optimizing the network traffic.
It consists of five multithreaded components:

• the Network Topology Mapper (NTM). It discovers and maps the network devices,
such as switches, hosts and links. It automatically detects new devices and changes
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in network topology. It maintains information about the entire graph representing the
network infrastructure.

• the Network Monitor (NM). It collects the real-time data about network perfor-
mance/statistics and stores them for future analysis, collecting the network monitoring
history.

• the Strategy Builder (SB). It is the main component of the framework since it allows
users to develop their own custom routing strategies.

• the Flow Builder (FB). It is responsible for computing and validating routes.

• the Flow Pusher (FP). It carries out the proactive OpenFlow flow-rule insertion.

3.1.3 The ASSDN Execution Phases

The ASSDN performs a cyclical execution of the dynamic workload balancing algorithm.
Each cycle, called round, consists of four stages:

• Snapshot. This stage includes: i) the fetching by the SDN controller of the statis-
tics about the traffic on all the links ( switch-to-switch and switch-to-leaf ); ii) the
aggregation of these statistics.

• Path Evaluation. It is the the algorithm, or pool of algorithms, defined by customers
in order to adapt the traffic according their own custom policies.

• Flow creation. This stage defines flows according to the result provided by the
previous stage.

• Flow push. It is the final stage. The forwarding instructions are based on the concept
of flow. The criteria for defining a flow includes the subnet source/destination IP
address and the output port.
Supposing a path from node A to node F were to be installed, where the full path is
(A - B - C - D - E - F). The definition of the flow from A to F requires the installation
of 5 flow entries as shown in table 3.1. The flow creation is done in reverse order: it
starts from the node closest to the destination, flowing towards the source node; for the
considered example the installation goes from E to A (E - D - C - B - A), excluding
loss of traffic.
Conversely, the removal of a previous old flow (generated by a previous run) will occur
starting from switch A to E (A - B - C -D - E) excluding any loops or loss of traffic.
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Table 3.1 Flow Push results

OPENFLOW SWITCH SRC IP DST IP OUTPUT PORT
A 10.0.1.1/24 10.0.4.1/24 1
B 10.0.1.1/24 10.0.4.1/24 3
C 10.0.1.1/24 10.0.4.1/24 2
D 10.0.1.1/24 10.0.4.1/24 3
E 10.0.1.1/24 10.0.4.1/24 3

The ASSDN framework can be easily extended by creating its own custom routing
strategy. Users can run it simply by putting the plugin into the framework by exploiting the
offered APIs.

3.1.4 The ASSDN APIs and Configuration

The ASSDN framework provides APIs to help users create their own strategy without taking
into account the underlying SDN technology and the network topology.

It expose some informations, about the underlying network, such as:

• network graph

• data link’s capacity and delay

• statistics for switches

• statistics for hosts

• statistics for links

• flow rules installed

Users have only to decide the routing strategy by implementing the high level function
that we call calculatepath through an interface which exploits our provided APIs.

f u n c t i o n c a l c u l a t e _ p a t h ( graph , s t a t s , s r c , d s t ) {
/ / CUSTOM CODE HERE
/ / Re tu r n t h e p a t h c o m p u t a t i o n

}

This component is the core of the Strategy Builder.
The output of calculate path is a list of hops to reach the dst from the src.
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The framework validates the output provided in order to avoid downtime and service disrup-
tion.
It accepts, at runtime and without downtime, some configuration parameters such as sampling
period and what strategy to use.
Chapter 6 gives a better understanding of how to use the APIs provided and the implementa-
tion of a custom strategy





Chapter 4

A4SDN: Alienated Ant Algorithm for
Software Defined Networking

4.1 A4SDN

The Alienated Ant Algorithm for Software Defined Networking (A4SDN) introduces a
dynamic routing approach to the ASSDN framework, already presented in Section 3.1.
Here we introduce our own algorithm exploiting an ACO-based approach. We implement the
Pheromone Evaluator (PE) by extending the Strategy Builder (SB). It is responsible for
the pheromone evaluation according to the AAA algorithm.
It evaluates the pheromone quantity of each OpenFlow switch based on the information
collected by the Network Monitor.
The architecture of A4SDN is shown in Fig. 4.1.
A4SDN aims to improve the end-to-end latency and throughput in the SDN-based cloud
infrastructure by extending the Alienated Ant Algorithm (AAA) [1, 7, 2].
The AAA is a heuristic approach based on a non-natural behaviour of ants, where the ants
spread out over all available paths rather than be forced to converge on a single one (as it
happens in traditional ACO)
The main characteristics of A4SDN that makes it different from the ACO-based routing
algorithms are two:

• the opposite interpretation of the pheromone trails;

• the sub-path pheromone evaluation.

The first characteristic guarantees the load-balancing capability. In fact, the alienated ants
smell the trails of pheromone and, instead of following the path where it is strongest and
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Fig. 4.1 A4SDN Framework

converging on it, they follow the path where the pheromone is weakest: the latter, due to the
release-evaporation process, changes over time
The second characteristic, instead, avoids the scalability and convergence issues of the ACO-
inspired algorithms. The ACO algorithms, in fact, could require a long time to converge to
a single path because they require multiple iterations over all the available paths from the
source to the destination [1].
A4SDN makes its decision based on the pheromone laid on the sub-paths (i.e the links
between each switch and the next ones): this makes it suitable for on-line decision problems
such as the routing (or scheduling) one. Moreover, A4SDN considers only a subset of
possible paths, speeding up the evaluation process.

4.1.1 Ant Colony Optimization algorithms

Starting from the late 90’s, many algorithms ( [9, 16, 12, 4, 31]) have been developed, in
different scenarios, in order to simulate the self-organization ability of ants so as to use
this form of shared intelligence in a multitude of ways. This led to the definition of a
well-structured class of stochastic, population-based meta-heuristics algorithms, known as
Ant Colony Optimization (ACO), mainly used to solve combinatorial and multi constraint
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optimization problems.
To do this, first the optimization problem is transformed into a problem of finding the best
path on a weighted graph; then a set of software agents, called artificial ants, incrementally
build solutions by moving on a graph imitating their biological counterpart in the natural
world, i.e. trying to maximize a given metric expressed in terms of pheromone quantity.
All ACO algorithms follows a simple three-steps pattern: Selection, Reinforcement and
Evaporation. The Selection step consists of the selection of a set of candidates among the
available paths which connect the nest to the food source, based on a probabilistic function.
This evaluates the pheromone on each node and assigns it a probability to be selected
proportional to the quantity of associated pheromone.
Once a path is identified, each ant marks it, thus reinforcing the current pheromone trail.
Through this reinforcement each ant increments the pheromone level only on one path,
increasing the probability of the same path being chosen again in the next iteration. This
simple mechanism guarantees the convergence of all ants on the paths that optimize the
distance between the nest and the food.
Finally, the Evaporation mechanism consists in the progressive decrease of the pheromone
over all the paths proportionally to the elapsed time. Forcing the reduction of the pheromone
level in all paths makes it possible to completely extinguish the less travelled ones. As a
consequence, the paths where the pheromone is stronger are highlighted. These are the best
paths and often it is a unique path.
Notice that ACO based algorithms are particularly suitable and easy-to-apply for all those
scenarios where the conditions over the paths (e.g. the cost, the weight) are fixed or, at
most, they change slowly. This is mainly due to its selection mechanism (that forces the
convergence to a unique path) and its off-line pheromone updating method (that needs to
know all results before choosing the best one).

4.1.2 The Alienated Ant Algorithm

As discussed, ACO works well in graphs where the topology and/or the load among the
nodes are fixed.
Conversely, in scenarios where these conditions change quickly and unpredictably, ACO
based solutions often require additional mechanisms that increase the complexity of the
algorithm. This is true especially for flow management in time-variant networks where,
in general, the path representing the solution changes over time with a high degree of
unpredictability. In these cases, an efficient load distribution and run-time adaptation is
needed.
AAA is an ACO derived algorithm introduced to tackle these issues, based on a different
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interpretation of pheromone trails. In ACO it is an aggregator while in AAA it is a repulsive
substance, something that decreases the probability that a path will be chosen in the future.
By means of this assumption, the authors obtained a behavior that was complementary to the
ACO approach.
AAA, in fact, takes into account the behavior of an ideal alienated ant. Such an ant prefers
the paths where it can find the fewest ants. In order to achieve this, it smells the pheromone
trails but, instead of following the path where the pheromone trail is stronger (as the other
normal ants), it takes the path where the trail is weakest. Therefore, marking the path with an
additional quantity of pheromone is meant to reduce the probability of it being selected by
other alienated ants.
At the same time, conversely to what classical ACO approaches do, the AAA approach uses
the evaporation to recreate the equilibrium among all the paths giving them a chance to be
selected again.
Such strategy allows the AAA:

• to rapidly explore all of the graph and perform dynamic load balancing among all its
edges;

• to provide a reasonable response time related to the routing among the edges;

• to be able to adjust itself as the edges, load and network conditions change.

In [2] the authors demonstrated that AAA has a strong distributive ability, especially within
highly dynamic environments. For this reason it is already successfully applied to grid and
cloud systems.
This is the first time it has been applied to SDN environments.

4.1.3 The A4SDN Algorithm

We also discuss the proposed Adaptive Alienated Ant Algorithm for Software-Defined Net-
working A4SDN [6], a distributed load balancing algorithm for traffic engineering on SDN,
based on the bio-inspired AAA.
The choice of a bio-inspired algorithm is not accidental: many approaches to problem solving
are inspired by the social behaviors of insects and other animals. In particular, ants have
inspired a number of methods and techniques among which the most studied and successful
are the general purpose optimization techniques based on ACO.
The ACO-based algorithms have been successfully applied in many real world scenarios like
internet and telecommunication traffic routing management techniques [34, 10, 11, 29].
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They are often used to find the minimum path between two nodes within a network; by utiliz-
ing them it is possible to optimize the routing performance of a network, especially in term
of communication delay. On the other hand, their strategies do not resolve the load balancing
issues. For this reason, the authors have switched to the Alienated Ant Algorithm solution.
It is a heuristic algorithm freely inspired by the Ant Colony Optimization (ACO) [9, 33]
strategy that exploits a non-natural behaviour of ants, by means of an inverse interpretation
of pheromone trails
Conversely to the ACO’s traditional routing schemes that route all traffic along a single path
the AAA routing strategy splits the traffic among several paths in order to ease congestion,
increase the network traffic and achieve network loading balance thus reducing the likelihood
of congestion.
Thanks to its features the AAA has been effectively implemented in the scheduling man-
agement in different distributed computing scenarios, by providing an online distributed
scheduling solution for a dynamic distributed system.
A4SDN is the first architecture that uses a bio-inspired approach on an SDN system. It
leverages the AAA to dynamically redirect the traffic on the paths, according to specific
policies of load balancing.
By considering the packets as ants and the load on network switches as pheromone, it is
possible to optimise the network performance in terms of throughput, communication delay
and packet loss rate redirecting the traffic flows to the appropriate path, i.e. the least loaded
one based on the current network state.

Classical Dijkstra based algorithms and their dynamic adaptations are not well suited
for networks with a high number of nodes and edges with such computational complexity.
Dijkstra’s original algorithm does not use a min-priority queue and runs in time: O(|V |2)
(where |V | is the number of nodes). If the input graph is represented using an adjacency
list, it can be reduced to O(|E|+ |V |log|V |) (where |V | is the number of nodes and |E| is
the number of edges) with the help of a binary heap. This implementation is based on a
min-priority queue implemented by a Fibonacci heap [14].
The intrinsic parallel nature of A4SDN drastically reduces the time complexity: for each
node, the algorithm has a time complexity equal to O(|E ′|), with |E ′|<< |E|, where E ′ is
the number of a sub-set of the node’s edges.
Accessibility is always guaranteed without the use of loops.

The A4SDN algorithm consists in the cyclical execution of the AAA. At every cycle,
called round, the four stages are executed to balance the workload among the switches/nodes.
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Here we replaced the Pheromone Evaluation with the Path Evaluation.
The Pheromone Evaluation is the main stage of the algorithm. It evaluates, for each switch,
the "the distribution of traffic forwarded on the output links for the next cycle", based on data
collected in the snapshot stage.
The node pheromones are given by the traffic volume (incoming plus outgoing).
The pheromone Pn is defined as:

Pn = (Rxn)− (T xn +Dxn) (4.1)

where n is the round number, Rxn , T xn and Dxn represent, respectively, the number of bytes
received, sent and dropped as evaluated and aggregated in the snapshot stage at time tn.
The difference between the two last sampling instants avoids the issues on the pheromone
estimation related with its time fluctuation (e.g. controller/network overload). The amount
of pheromone of each switch is affected by the OpenFlow protocol itself (e.g. Packet-IN,
Packet-OUT). In addition, all the traffic generated on the network is strongly dependent on
both the topology and degree of coupling.
Here is the pseudocode for the evaluation function:

f u n c t i o n e v a l u a t e _ p h e r o m o n e ( ) {
h t t p s : / / e l a s t i c b o x . com / e x p l o r e f o r e a c h s w i t c h i n s w i t c h e s {

t h r e a d ( e v a l u a t e _ p h e r o m o n e ( s w i t c h ) )
}

}

f u n c t i o n e v a l u a t e _ p h e r o m o n e ( s w i t c h ) {
$P_{ s w i t c h }$ = $Rx_{ s w i t c h }$ − ( $Tx_{ s w i t c h }$ + $Dx_{ s w i t c h }$ )
i f ( $P_{ s w i t c h }$ < 0)

$P_{ s w i t c h }$= 0

r e t u r n $P_{ s w i t c h }$
}

The Flow creation stage defines how traffic is distributed over the network and how the
traffic is re-routed in the event of load balancing. It is performed step by step by evaluating
the amount of pheromone on each switch node. Notice that we bind the resulting set of
computed paths with a bound the maximum length, discarding the paths that can be too
expensive and thus guaranteeing a specified delivery time limit.
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Table 4.1 Flow Creation results

SWITCH NODE PHEREMONE IP ADDRESS
A 5 10.0.1.1
B 1 10.0.2.1
C 8 10.0.3.1
D 9 10.0.4.1
E 4 10.0.5.1
F 7 10.0.6.1
G 10 10.0.7.1

Suppose we have the following pheromone information after n snapshots (Snapn). Table 4.1
shows the pheromone information for a certain snapshot t.

All the possible paths from A to F are listed here:

1 . A − B − C − D − E − F
2 . A − B − C − D − E − G − F
3 . A − B − C − D − F
4 . A − B − D − E − F
5 . A − B − D − E − G − F
6 . A − B − D − F
7 . A − C − B − D − E − F
8 . A − C − B − D − E − G − F
9 . A − C − B − D − F
1 0 . A − C − D − E − F
1 1 . A − C − D − E − G − F
1 2 . A − C − D − F

The AAA builds the routing path based on the pheromone evaluation and selects, at each
stage, the sub-path with the lowest pheromone value.
Starting from A, the next-hop candidates are B and C: since B’s pheromone level i less than
C’s, the sub-path toward B will be chosen: the first link selected is A - B and the number of
feasible paths are now reduced from the initial 12 to 6:

1 . B − C − D − E − F
2 . B − C − D − E − G − F
3 . B − C − D − F
4 . B − D − E − F
5 . B − D − E − G − F
6 . B − D − F
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At the next hop the selected link will be B-C, since C’s pheromone level is less than D’s. The
feasible paths are now reduced to these three:

1 . C − D − E − F
2 . C − D − E − G − F
3 . C − D − F

The sole candidate for the next hop is D and, after, between E and F, AAA selects E. At the
last hop, between the candidate F and G the choice is F.

1 . E − F
2 . E − G − F

The full path (A - B - C - D - E - F) is completed.
To avoid fluctuations was considered the opportunity to evaluate an alternate path, only
if the standard deviation of the switch’s traffic (in bytes) exceeded a minimum threshold
(configurable at run-time). When the routing path has to be modified, the algorithm applies
the Flow Push (stage 4) described in the following:

f u n c t i o n c a l c u l a t e _ p a t h ( sou rce , d e s t i n a t i o n , v i s i t e d ) {

i f ( s o u r c e == d e s t i n a t i o n )
r e t u r n v i s i t e d

/ / I n i t i a l i z e " h o p s e t " a s a s e t o f p o s s i b l e hops
/ / from s o u r c e t o d e s t i n a t i o n

f o r e a c h hop i n h o p s e t {
i f ( " hop " has a minor pheromone AND

" v i s i t e d " NOT c o n t a i n s t h e " hop " )

nex thop = hop
}

}

c a l c u l a t e _ p a t h ( nexthop , d e s t i n a t i o n , v i s i t e d )
}

At this point the ASSDN framework will regain control and execute the Flow Creation
and Flow Push phases (see Section 3.1).



Chapter 5

ASSDN: use cases

5.1 ASSDN: use cases

Below we show how to model some common routing algorithms by exploiting the ASSDN
framework. We start from some basic use cases, which do not use all the capabilities offered
by the ASSDN framework, and then we present some more complex routing algorithms.
After presenting a static BFS routing algorithm we model the classical Dijkstra algorithm
[8]. Finally we show how it is possible to build dynamic routing solutions by introducing the
A4SDN algorithm [6].

5.1.1 BFS

The Breadth First Search (BFS) [23] is a graph traversal strategy for search of the shortest
path, processing vertices in ascending order relative to their distance from the root vertex.
BFS is optimal and is guaranteed to find the best solution. It is a variation of a static routing
algorithm which is more practical than the one for the selection of the shortest path based on
of the number of hops.

f u n c t i o n c a l c u l a t e _ p a t h ( graph , s t a t s , s r c , d s t ) {
/ / c r e a t e empty queue Q

Q. enqueue ( s r c , [ s r c ] )

w h i l e Q i s n o t empty :
( v e r t e x , p a t h ) $ \ l e f t a r r o w {} $ Q. pop ( 0 )
f o r n e x t i n g raph [ v e r t e x ] − s e t ( p a t h ) :

i f n e x t = d s t :
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r e t u r n p a t h + [ n e x t ]
e l s e :

Q. append ( ( nex t , p a t h + [ n e x t ] ) )
}

5.1.2 Dijkstra

Here we show the implementation of the well-known Dijkstra algorithm, which finds the
shortest paths from a source vertex to all the other vertices in a graph when all edges have
non-negative weights. Using the Dijkstra algorithm, it is possible to determine the shortest
distance (or the least effort/lowest cost) between a starting node and any other node in a
graph excluding the longest distances. Here, we suppose that the link weights reflect the
bandwidth for each link, that all the link weights are positive and that a smaller link weight
means wider bandwidth.

f u n c t i o n c a l c u l a t e _ p a t h ( graph , s t a t s , s r c , d s t ) :

d i s t [ s r c ] $ \ l e f t a r r o w {} $ 0
prev [ s r c ] $ \ l e f t a r r o w {} $ u n d e f i n e d

/ / c r e a t e v e r t e x s e t Q
f o r each v e r t e x v i n g raph :

i f v $ \ neq {} $ s r c :
d i s t [ v ] $ \ l e f t a r r o w {} $ $ \ i n f t y $
p rev [ v ] $ \ l e f t a r r o w {} $ u n d e f i n e d

add v t o Q

w h i l e Q i s n o t empty :
u $ \ l e f t a r r o w {} $ c a l c u l a t e _ h o p ( graph , s t a t s , Q, u )
remove u from Q

u $ \ l e f t a r r o w {} $ t a r g e t

p a t h $ \ l e f t a r r o w {} $ empty s e q u e n c e

i f u = d s t :
r e t u r n p a t h
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w h i l e p rev [ u ] i s d e f i n e d :
i n s e r t u a t t h e b e g i n n i n g of p a t h
u $ \ l e f t a r r o w {} $ prev [ u ]
i n s e r t u a t t h e b e g i n n i n g of p a t h

}

f u n c t i o n c a l c u l a t e _ h o p ( graph , s t a t s , Q, u ) {
r e t u r n t h e v e r t e x i n Q wi th min d i s t [ u ]

}

5.1.3 A4SDN

The Adaptive Alienated Ant Algorithm for Software-Defined Networking (A4SDN) is a
distributed, adaptive, load-balancing algorithm for traffic engineering on Software-Defined
Networks.
Alienated Ant Algorithm belongs to the ACO (Ant Colony Optimisation, [9, 33]) algorithms
class and it leverages a non natural behaviour of an ant.
Unlike standard ant-based solutions where the ants searching for food converge to a single
path, it forces the ants searching for food to distribute themselves over all the available paths.
The alienated ant, as opposed to a natural one, chooses the path based on the pheromone
trails but, instead of covering the path where it is strongest, as a natural ant does, it explores
the path where the pheromone is the weakest (searching for food were the other do not go).

The algorithm was explained more in depth in chapter 4.
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Case Study

6.1 Case Study

To evaluate the effectiveness of our proposed adaptive solution, we compared it with two
Dijkstra-based algorithms. The tests that have been carried out show that ASSDN, and
A4SDN, is able to guarantee a higher throughput associated with a lower delay and packet
loss rate.

6.1.1 Reference Scenario

In this section we compare the performance of A4SDN with Dijkstra’s algorithm (Dijkstra’s
algorithm, DA) and an extended, dynamic, version of it (Extended Dijkstra’s algorithm,
EDA).
Both of these solutions base the creation of the routing tables on the research of the shortest
path among each couple of switches available in the network: the first one calculates the
shortest path based on the links’ bandwidth only when the network is established while the
second one calculates it cyclically, while also taking into consideration the actual load on the
links as the A4SDN does.

Fig. 6.1 Reference Scenario (image from [Internet 2 L3.])
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Fig. 6.2 Internet 2 Throughput

Fig. 6.3 Internet 2 Delay

Fig. 6.4 Internet 2 Packet Loss
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Fig. 6.5 Garr-X Topology

Fig. 6.6 GarrX Throughput

Fig. 6.7 GarrX Delay
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Fig. 6.8 GarrX Packet Loss

Table 6.1 Internet 2 testbed

Link Bandwidth 10 Mbps
Link Propagation Delay 10 ms
Number of servers 2
Number of switches 10
Number of edges 15
SDN Controller OpenDayLight 0.2.3 Helium-SR3
SDN enabled network Mininet 2.2.1
OpenFlow version 1.3.0
jFlowLight version 0.9.1
Iperf version 3.0.7
Ping -
Testing time 3600 sec

Table 6.2 GarrX testbed

Link Bandwidth 10 Mbps
Link Propagation Delay 10 ms
Number of servers 1
Number of switches 26
Number of edges 33
SDN Controller OpenDayLight 0.2.3 Helium-SR3
SDN enabled network Mininet 2.2.1
OpenFlow version 1.3.0
jFlowLight version 0.9.1
Iperf version 3.0.7
Ping -
Testing time 3600 sec
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The traffic used for the evaluation has been generated by using Iperf [18] and configured to
overload the network.
All the algorithms have been implemented using OpenDaylight as an SDN controller and
Mininet [21] to create a realistic network composed by hosts, links, and switches.
In particular, the A4SDN Orchestrator has been implemented atop OpenDaylight, interfacing
them through jFlowLight 0.9.0 [jflowlight] has already been introduced in section section
3.1.
In the comparison, were considered three parameters: throughput, delay and packet loss rate.
The network latency and the packet loss were measured by using ping to send packets from
the clients to the servers for 3600 seconds; the throughput was measured using the Iperf
bandwidth measurement tool.

6.1.2 Internet 2

The A4SDN and the Dijkstra-based algorithms are evaluated over the Internet2’s Advanced
Layer 3 Service topology [Internet 2 L3.] (Internet2’s IP Network) (see Fig. 8.1), i.e. an
SDN composed by 1 controller and 10 OpenFlow switches.
The Internet2 Network connects over 60,000 U.S. educational, research and governmental
institutions, ranging from primary and secondary schools to community colleges and univer-
sities, public libraries and museums to health care organizations.
It uses optical fiber that delivers network services for research and education purposes, and
provides a secure network testing and research environment.

Tab 8.1 shows the value of the parameters considered in the test environment.

6.1.3 GARR-X

The GARR-X is the project for a next-generation multi-service telecommunication network
for the Italian Academic and Research community. This network shall gradually replace the
existing infrastructure, GARR-G.
The backbone is based on high-bandwidth circuits. The meshed topology (see Fig. 6.5),
interconnecting 45 network Points of Presence (PoP), ensures a high level of resilience
and reliability of the network; additionally, thanks to its wide coverage of the country, it
interconnects more than 400 user organizations all over the national territory.

Tab 6.2 shows the value of the parameters considered in the test environment.
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6.1.4 Results

In both topologies we obtained similar results. In the case of Internet2, as shown in Fig. 8.4,
the throughput of A4SDN is more than 55% higher that the DA’s and about 16% higher than
the EDA’s. Instead, in the case of GARR-X (Fig. 6.6), A4SDN has a throughput 17% higher
than the DA’s and about 9% higher than the EDA’s.
This result is a consequence of the ability of A4SDN to exploit different network paths and
to provide more effective network bandwidth thanks to the adaptive load balancing.

Figs. 8.5 and 6.7 show the average delay for each transmitted packet: in this case the
performance of A4SDN and EDA is very close (A4SDN is 0.2% better than EDA in the
case of Internet2 and 1% in the case of GARR-X) and both are better than DA. The worst
performance of this last case can be explained with the fact that it is static and not able to
react to congestions: when a path tagged as "shortest" becomes congested, the DA is not able
to modify it, continuing to push packets onto it and feeding the congestions. EDA, instead, is
able to react to congestion by searching for a new shortest path while the approach adopted
by A4SDN tries to avoid, by using multiple paths, the creation of a congestion.
The last parameter evaluated is the packet loss rate. As shown in Figs. 6.4 and Fig. 6.8, the
number of packets lost measured using EDA is 11% and 47% higher than A4SDN’s, while
the one measured using DA is more than twice as high as the proposed approach.
As for delays, this result is mainly related to the ability of A4SDN to better manage conges-
tions, which represent, in this scenario, the only cause of packet loss.



Chapter 7

Performance Evaluations

7.1 Performance Evaluations

The performance of A4SDN are influenced by the underlying network graph.
In order to evaluate the degree of network-performance correlation, we created six networks
(see Fig. 7.1) that have the same number of nodes (16) but that differ by the number of links,
by the length of the longest path and by the average number of available shortest paths for
each couple of nodes in the network.
The characteristic of each network is summarised in the table 7.1.

The Fig. 7.2 shows the performance of A4SDN in terms of throughput (MB/s), packet
loss (%) and delay over the different networks subject to the same load.
The figure clearly shows that when the number of links in the network (i.e. the ratio links/n-
odes) increases, the throughput increases. This can be explained with the fact that the
increment of the number of links causes an increment of the number of neighbours for each
node: when this increases, the number of available paths for the ants increases making them
able to find more alternative paths from source to destination.
The increment of the links is also correlated with a decrement of the average delay, directly

Table 7.1 Networks’ parameters

links/nodes links Neighbours Longest path avg nb. of shortest paths
1.125 18 2.25 6 1.25
1.500 24 3 6 3.75
1.688 27 3.38 5 1.75
1.875 30 3.75 4 1.25
2.000 32 3.85 4 1.25
2.250 36 4.75 3 2.25
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Fig. 7.1 16 nodes topologies

Fig. 7.2 The performance of A4SDN on different networks
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Fig. 7.3 Throughput: Comparison between A4SDN and ED

related to the reduction of the longest path as it shown in the table 7.1.

The packet loss, instead, seems to be independent by the variation in networks parameters.
We also compared the performance of the A4SDN algorithm to the ones of the Extended
Dijkstra approach for each considered network (See the section 5.1.2).
The results of these comparisons is shown in the figures 7.3, 7.4,7.5.
Fig. 7.3 shows how the throughput varies when both the links/node ratio and the average
number of shortest paths per node increase. In particular, the throughput seems to be inde-
pendent by the first parameter (i.e. the links/nodes ratio) but it is correlated with the average
number of shortest paths per node: the greater the number of shortest paths, the bigger the
advantages in using the proposed approach instead of the Extended Dijkstra one.
This behaviour can be easily explained: even if the ants try to cover different paths, a big
number of available shortest paths increases the probability that a big number of ants uses
one of them. Simplifying, if only 1 out of 4 is a shortest path, probably only the 25% of the
ants will cover it. If, instead, 3 out of 4 are shortest paths, then the 75% of the ants will cover
one of them.

The A4SDN has better performance in term of packet loss in all the considered networks
except that in the last one (both links/nodes and average number of shortest paths equals to
2.25). Notice that also in this case, the best performance, i.e. a difference between A4SDN
and ED higher then the 50%, is measured in the network having the biggest value for the
average number of shortest paths per nodes.

The ED approach, as shown in Fig. 7.4 has instead better performance in terms of
delay in all the considered network except for the first one (links/nodes equals to 1.125 and
average number of shortest paths equals to 1.25). This difference on delay can be explained
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Fig. 7.4 Packet loss: Comparison between A4SDN and ED

Fig. 7.5 Delay: Comparison between A4SDN and ED
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considering that the path chosen using the ED approach is always the shortest one while the
A4SDN can use longer ones: the exception is due to the particular structure of the considered
network that forces both routing algorithms to adopt very similar solutions.
The simulations led show clearly that on the network controlled by A4SDN, when the num-
ber of links increases, the average bandwidth increases, while the average delay decreases.
Moreover, if the average number of available shortest paths for each couple of nodes rises,
the performance of A4SDN are the best.





Chapter 8

Energy-Aware Routing in A4SDN

The concept of Green Computing and, more specifically, energy-aware solutions have gained
more and more attention in the last years in many fields of ICT: network management is one
of those.
Today, power consumption is considered a fundamental parameter to take into account, as
well as latency, band-width or error rate, when a new routing strategy is designed.
In the last few years, the volume of data and the variety of internet applications have become
a rather serious problem.
In an article titled "Power, Pollution and the Internet" [24], the New York Times pointed
out that energy consumption of Data Centers is close to 30 billion watts worldwide, the
equivalent combined the equivalent output of 30 nuclear power plants.
There are many levels of communication, internally and externally, to and from the Data
Centers (DCs). Ensuring that this communication happens seamlessly, efficiently and in a
secure manner is a critical role of the network that ties all these components together.
The energy consumption of the networks cannot be ignored and how to save energy has
become a meaningful endeavor. As the provider of computing, storage and various other
services, DCs play vital roles in the networks. In order to guarantee the reliability of the DC,
there are often a lot of redundant switches and servers which waste huge amounts of power.
Through the preprocessing of the traffic, the energy-saving models achieve better energy
efficiency and reduce the energy consumption in SDN data centers while maintaining high
levels of throughput, low delay and packet loss.
Through these considerations we introduced an energy-aware extension of the A4SDN and,
in order to evaluate its performance, the proposed energy-aware approach is compared with
the standard A4SDN and with two deterministic solution based on Dijkstra’s Algorithm.
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8.1 Energy Model

The energy model considered was introduced by Kaup et al. in [20], where it is described in
details.
The authors provide a model for the power consumption of SDN-enabled networking devices,
with a specific focus on two devices, i.e. an OpenFlow-based hardware switch and a server
running Open vSwitch.
The model, which considering of all the operations related with the routing process (not
limited only to packet forwarding but including the ones for switches configuration and
management), is able to approssimate the consumed energy with an error of less than 8% for
the software switch and less than 1% for the hardware switch.
According to that model, the power consumption of a switch, here defined as Pswitch, is:

Pswitch = Pbase +Pcon f ig +Pcontrol +POF (8.1)

where:

• Pbase is the static power needed to keep the device active;

• Pcon f ig is the power used by the assigned configuration, i.e. related with the number of
active ports or with the configured line speed;

• Pcontrol is the power needed to control the network traffic, i.e. the packets involved in
the network management;

• POF is the power consumed by the traffic processed by OpenFlow.

Going into details, the Pcon f ig is:

Pcon f ig =
NactivePorts

∑
i

si ·Pport (8.2)

where:

• NactivePorts is the number of active ports;

• si is a value proportional to the configured speed of the port;

• Pport is the power consumption of the i port at full speed.

The Pcontrol is:

Pcontrol = rpacketIn ·EpacketIn + rFlowMod ·EFlowMod (8.3)
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where:

• rpacketIn is the rate of outgoing packetIn messages;

• EpacketIn is the energy needed to manage a packetIn message;

• rFlowMod is the rate of incoming FlowMod messages;

• EFlowMod is the energy needed to manage a FlowMod message.

Finally, POF is :

POF =
N f lows

∑
i

rpackets(i)[

Nmatches

∑
j

µmatch(i · j) · ematch( j))+

Nactions

∑
k

µaction(i · k) · eaction(k)]

(8.4)

where:

• N f lows is the number of active flows;

• rpackets(i) is the packet rate for the ith flow ;

• ematch( j)) is the energy consumed for each match (µmatch(i · j) ̸= 0 only if the match
happens);

• eaction( j)) is the energy consumed for each action undertaken if the match takes place
(µaction(i · j) ̸= 0 only if the action is performed).

As explained in [20], this last component can be removed due to its small impact on the
overall power consumption.
The power model we adopted, as a consequence, is:

PswitchHW = Pbase +Pcon f ig +Pcontrol (8.5)

8.2 eA4SDN

eA4SDN is an evolution of the Adaptive Alienated Ant Algorithm for Software-Defined
Networking (A4SDN) already presented in section 4.1.
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Fig. 8.1 Reference Scenario (image from [Internet 2 L3.])

In eA4SDN we focused our work on an energy aware traffic engineering algorithm for
SDN networks. Through the monitoring of the network performance parameters such as
throughput, delay and packet loss, we have conducted a study on the energy consumption of
an SDN and on how to reduce the cost per Megabyte and balance the utilization.

8.2.1 Algorithms, testbed and settings

In order to evaluate the effectiveness of the proposed solution, we compared the energy-aware
version of the A4SDN (eA4SDN) with the standard A4SDN solution and with two other
different solutions based on Dijkstra’s shortest path algorithm, named respectively DA (i.e.,
Dijkstra’s algorithm) and EDA (i.e., Extended Dijkstra’s algorithm, EDA).
A detailed list of the values of the parameters considered in the test environment are given in
table 8.1.
The load used for evaluating the behaviour of each algorithm has been generated by using
Iperf and configured to maintain network overload.
All the algorithms have been compared by taking into account 4 different aspects: Throughput,
Delay, Packet loss and Energy consumption. Throughput has been measured by using the
Iperf bandwidth measurement tool. Delay and Packet loss have been measured by using the
ping tool. Energy consumption has been measured by using the model in Section 8.1.

8.2.2 Performance Evaluations

Fig. 8.2 shows the average cost (in terms of energy, Joule) for delivering 1 MB of data.
The best result is obtained by the A4SDN solution that uses about 5.5% less energy than
eA4SDN and EDA (the difference between them is less than 1%) and about 21% than the
DA. This result is easy to explain: A4SDN is designed to balance and, as a conseguence,
to minimize the amount of packets crossing (IN/OUT) any switch, i.e. the Pcontrol , which
represents the biggest components in Eq. 8.5 when, as it happens in the considered testing
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Fig. 8.2 Internet 2 Energy consumption Average per MB

Fig. 8.3 Internet 2: Overall Energy Consumption Variance

Fig. 8.4 Internet 2 Throughput
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Fig. 8.5 Internet 2 Delay

Fig. 8.6 Internet 2 Packet Loss

Table 8.1 Internet 2 testbed

Link Bandwidth 10 Mbps
Link Propagation Delay 10 ms
Number of servers 2
Number of switches 10
Number of edges 15
SDN Controller OpenDayLight 0.2.3 Helium-SR3
SDN enabled network Mininet 2.2.1
OpenFlow version 1.3.0
jFlowLight version 0.9.1
Iperf version 3.0.7
Ping -
Testing time 300 s
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scenario, the network is active and loaded. eA4SDN, instead, is designed to balance the
energy consumption on each switch, i.e. the entire Eq. 8.5. Fig. 8.3 shows the variance
of energy consumption across all the switches of the considered network: as it is easy to
note, eA4SDN is able to arrange the routing in order to keep the level of energy consumption
well balanced across all of the network. In a homogenous environment (as the one taken
into account) characterised by a Pbase (i.e. static consumption) equal in each switch, the
difference in energy consumption is only due to the dynamic aspects of the routing: the
higher the consumption, the higher the rules and packets managed, the more important the
role of each switch in the routing schema. As a consequence, a high value of variance is
directly related with both a lower number of switches involved in the routing activities and an
asymmetric distribution of the workload: this explains the high value of EDA (47.2% higher
than eA4SDN) and DA (about 300% higher than eA4SDN) that, being based on Dijkstra’s
algorithm, tend to use a well defined path (or paths) for their routing solutions.
From the energy consumption perspective, however, the lower the number of involved
switches, the higher the amount of "passive" energy (i.e. the energy needed to keep those
portions of the network that are under-utilised, or not used at all) wasted. From this viewpoint,
the eA4SDN has the best performance in terms of energy consumption.
The A4SDN, instead, is the best solution for all of the other considered aspects. As expected,
the dynamic and adaptive load balancing capability of A4SDN makes it the best solution in
terms of throughput. In particular, as shown in Fig. 8.4, the throughput measured for A4SDN
is 23.4% better the the one measured for DA, 4.36% better than EDA and 5.59% better than
its Energy-aware version. eA4SDN and EDA have the same performance (EDA is about 1%
better).
Fig. 8.5 summarises the results on the performance of each algorithm in terms of the average
delay per transmitted packet. Also in this case, A4SDN performs better than the other
solutions. Its ability to prevent congestion, along with its load balancing capability, makes
A4SDN able to deliver packets, on average, 43.2% faster than DA, 13.6% than EDA and
21.2% than eA4SDN. The poor performance of DA is easily explained by the fact that it
uses static paths and that it is not able to react to traffic congestions: when a path tagged as
"shortest" becomes congested, the DA is not able to modify it, continuing to forward packets
onto it and thus feed the congestions. On the contrary, EDA is able to react to congestions
by searching for a new shortest path: this allows it to perform 26% better than its static
version. The ability to avoid congestions also strongly influences the probability of packet
loss during the routing activities. As shown in Fig. 8.6, both AAA-based solutions (A4SDN
and eA4SDN) perform better that the solutions based on Dijkstra’s algorithm. Although the
standard version of the A4SDN has again the best performance (8.4% better than eA4SDN,
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20.8% better than EDA and 33.3% than DA) also the eA4SDN also performs much better
than EDA (11.2%) and DA(23%), highlighting the importance of avoiding congestions,
which represent the only cause of packet loss in this scenario.

The results have demonstrated that eA4SDN is able to minimise the amount of "passive"
energy, i.e. the energy needed to keep portions of network that is under-utilised or not used
at all.



Chapter 9

Conclusions and Future Works

Software Defined Networking and, in general, all the virtual network technologies are com-
pletely transforming the way networks are managed.
By combining the ability to implement network services on top of general-purpose hardware
resources and the ability to coordinate all involved resources with a centralized approach,
these technologies provide simple and flexible way to build, configure and easily manage
complex network services.

However, the current implementation of SDN solutions takes into account only single
cloud environments, where computing, storage and network resources are locally-distributed
and owned by a single organization.
This work aims to extend the concept of an SDN to build robust, reliable and performant
networks across geographically-distributed resources owned by different providers, that can
be competitive or federated.

The first step in this direction has been the definition of the Adaptive Strategy for Software
Defined Networking (ASSDN), a framework that allows for the creation, monitoring and
control of heterogeneous SDN networks.
ASSDN represents a fundamental tools for the integration of networks belonging to different
providers and, as a consequence, for the development of QoS-controlled networks across
multicloud environments.
ASSDN offers an API for the configurazion of the routing and the performance-related
network parameters independently from both the specific SDN technology adopted and from
the peculiarities and heterogeneities of the network providers.
It allows the planning activities to be written in a high-level language (Java in this discussion)
and to develop, maintain and easily change the routing algorithms. This allows any cloud
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provider managing its own control plane functions not only to configure its own network but
also to offer capabilities for making them accessible as a configuration service to the owner
of the applications or even to other cloud providers, thus extending the concept of large-scale
Network-as-a-Service.
The main contribution of this work, however, is the definition and the development of the
Adaptive Alienated Ant Algorithm for SDN (A4SDN), a distributed, adaptive, load-balancing
algorithm for traffic engineering on an SDN. A4SDN is based on the Alienated Ant Algo-
rithm (AAA), a bio-inspired, stochastic-based, heuristic approach based on a non-natural
behaviour of an ant.
AAA forces the ants in search of food to distribute themselves over all the available paths
rather than to converge to a single one.

A4SDN uses this non natural behaviour to build an effective routing algorithm. Consid-
ering the packets as ants and the load on network switches as pheromone, it is possible to
optimise the network performance in terms of throughput, communication delay and packet
loss rate by redirecting the traffic flows to the appropriate path, i.e. the least loaded one based
on the current network state.
By means of this strategy, A4SDN is able to:

• reduce the network congestion;

• lead to high throughput and low delay;

• ensure a uniform distribution of the load across all the switches.

The results of comparisons have shown that A4SDN outperforms, in terms of load balance,
network end-to-end latency, throughput and packet loss, the other Dijkstra’s algorithms taken
into account.
The last contribution of this work is the definition of an energy-aware extension of the
A4SDN.
Unlike A4SDN that balances the packets across the links, eA4SDN is designed to balance the
energy consumption on each switch: the pheromone, in this case, is represented by the energy
consumed in the routing activities and, as a consequence, the path selection is executed by
minimising the energy used by each switch at every step.
The performance of A4SDN has been compared with two deterministic solution based on
Dijkstra’s Algorithm: the results have demonstrated that the proposed approach is able to
maximize the throughput and minimize the packet loss, while eA4SDN is able to minimise
the amount of ”passive” energy, i.e. the energy needed to keep active portions of network
underutilised or not used at all.
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This work has been mainly focused on the design and the development of the ASSDN
framework and on the evaluation of the several versions of the A4SDN.
The topics covered, even if deeply analysed, can be extended to evaluate additional function-
ality and different optimization strategy, or compared with other heuristic-based approach in
different scenarios.
The following interesting ideas could be explored:

• Evaluating the ASSDN approach to a real hybrid, multi-provider cloud scenario;

• Evaluating the capability of a NaaS controller on the network segments belonging to
several, independent SDN islands;

• Extending the sensitivity analysis of the A4SDN for understanding the best match
between its configuration parameters and the underlying scenario.
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Appendix A

How to install Mininet

The Mininet VM is meant to speed up Mininet installation, plus make it easy to run on
non-Linux platforms. The VM works on Windows, Mac, and Linux, through VMware,
VirtualBox, QEMU and KVM.
After downloading the VM, you’ll run a few steps to customize it for your setup. This won’t
take long.

A.0.1 VM Setup

Download the Mininet VM from https://github.com/mininet/mininet/wiki/Mininet-VM-
Images.
The VM comes out to 1GB compressed and 2GB uncompressed. It is an OVF (Open
Virtualization Format) virtual machine image which can be imported by most virtual machine
monitors.
Download and install a virtualization program such as: VMware Workstation for Windows
or Linux, VMware Fusion for Mac, VirtualBox ( free!, GPL) for any platform, or qemu (
free!, GPL) for Linux. If you already have VMware, we find that it runs Mininet somewhat
faster than VirtualBox. However, VirtualBox is free to download and distribute, which is a
definite advantage!

A.0.2 Boot VM

Add the VM and start it up, in the virtualization program of your choice:
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Virtualbox

Usually you can just double-click on the .ovf file and import it. If you get errors importing
the .ovf file, you can simply create a new VM of the appropriate type (e.g. Linux, Ubuntu
64-bit) and use the .vmdk file as the virtual hard disk for the new VM.
Select “settings,” and add an additional host-only network adapter that you can use log in to
the VM image. Start the VM.
For more information on setting up networking in VirtualBox, you may wish to check out
these VirtualBox specific instructions

VMware

Import the OVF file, then start the VM.
VMware may ask you to install VMware tools on the VM - if it asks, decline. Everything
graphical in the tutorial is done via X forwarding through SSH (in fact, the VM doesn’t have
a desktop manager installed), so the VMware tools are unnecessary unless you wish to install
an X11/Gnome/etc. environment in your VM.

Qemu/KVM

For Qemu, something like the following should work:

qemu-system-i386 -m 2048 mininet-vm-disk1.vmdk -net nic,model=virtio -net user,net=192.168.101.0/24,hostfwd=tcp::8022-:22

For KVM:

sudo qemu-system-i386 -machine accel=kvm -m 2048 mininet-vm-disk1.vmdk -net nic,model=virtio -net user,net=192.168.101.0/24,hostfwd=tcp::8022-:22

The above commands will set up ssh forwarding from the VM to host port 8022.
Parallels: Use Parallels Transporter to convert the .vmdk file to an .hdd image that Paral-
lels can use, and then create a new VM using that .hdd image as its virtual drive. Start the VM.
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A.0.3 Log in to VM

Log in to the VM, using the following name and password:

mininet-vm login: mininet

Password: mininet

(some older VM images may use openflow/openflow instead) The root account is not
enabled for login; you can use sudo to run a command with superuser privileges.

A.0.4 SSH into VM

First, find the VM’s IP address, which for VMware is probably in the range 192.168.x.y. In
the VM console:

ifconfig eth0

Note: VirtualBox users who have set up a host-only network on eth1 should use

sudo dhclient eth1 \# make sure that eth1 has an IP address

ifconfig eth1

You may want to add the address to your host PC’s /etc/hosts file to be able to SSH in by
name, if it’s Unix-like. For example, add a line like this for OS X:
192.168.x.y mininet-vm
where 192.168.x.y is replaced by the VM’s IP address.
SSH into the VM. We assume the VM is running locally, and that the additional precautions
of ssh -X are unnecessary. ssh -Y also has no authentication timeout by default.

ssh -Y mininet@mininet-vm

If you’re running the VM under QEMU/KVM with -net user and the hostfwd option as
recommended above, the VM IP address is irrelevant. Instead you tell SSH to connect to
port 8022 on the host:

ssh -Y -p 8022 mininet@localhost





Appendix B

Installing the OpenDaylight

You complete the following steps to install your networking environment, with specific
instructions provided in the subsections below.

Before detailing the instructions for these, we address the following: Java Runtime
Environment (JRE) and operating system information Target environment Known issues and
limitations

B.0.1 Downloading and installing OpenDaylight

The default distribution can be found on the “http://www.opendaylight.org/software/downloads”
page.

The Karaf distribution has no features enabled by default. However, all of the features
are available to be installed.

For compatibility reasons, you cannot enable all the features simultaneously. We try to
document known incompatibilities in the Install the Karaf features section below.

B.0.2 Running the karaf distribution

To run the Karaf distribution:

Unzip the zip file.

Navigate to the directory.

run ./bin/karaf.

For Example:
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$ ls distribution-karaf-0.6.x-Carbon.zip

distribution-karaf-0.6.x-Carbon.zip

$ unzip distribution-karaf-0.6.x-Carbon.zip

Archive: distribution-karaf-0.6.x-Carbon.zip

creating: distribution-karaf-0.6.x-Carbon/

creating: distribution-karaf-0.6.x-Carbon/configuration/

creating: distribution-karaf-0.6.x-Carbon/data/

creating: distribution-karaf-0.6.x-Carbon/data/tmp/

creating: distribution-karaf-0.6.x-Carbon/deploy/

creating: distribution-karaf-0.6.x-Carbon/etc/

creating: distribution-karaf-0.6.x-Carbon/externalapps/

...

inflating: distribution-karaf-0.6.x-Carbon/bin/start.bat

inflating: distribution-karaf-0.6.x-Carbon/bin/status.bat

inflating: distribution-karaf-0.6.x-Carbon/bin/stop.bat

$ cd distribution-karaf-0.6.x-Carbon

$ ./bin/karaf

________ ________ .__ .__ .__ __

\_____ \ ______ ____ ____ \______ \ _____ ___.__.\| \| \|__\| ____ \| \|___/ \|_

/ \| \\____ \_/ __ \ / \ \| \| \\__ \< \| \|\| \| \| \|/ ___\\| \| \ __\

/ \| \ \|_> > ___/\| \| \\| ` \/ __ \\___ \|\| \|_\| / /_/ > Y \ \|

\_______ / __/ \___ >___\| /_______ (____ / ____\|\|____/__\___ /\|___\| /__\|

\/\|__\| \/ \/ \/ \/\/ /_____/ \/

Press tab for a list of available commands Typing [cmd] –help will show help for a specific
command. Press ctrl-d or type system:shutdown or logout to shutdown OpenDaylight.

Please take a look at the Deployment Recommendations and following sections under
Security Considerations if you’re planning on running OpenDaylight outside of an isolated
test lab environment.

B.0.3 Install the Karaf features

To install a feature, use the following command, where feature1 is the feature name listed in
the table below:



65

feature:install <feature1>

You can install multiple features using the following command:

feature:install <feature1> <feature2> ... <featureN-name>

Note
For compatibility reasons, you cannot enable all Karaf features simultaneously. The

table below documents feature installation names and known incompatibilities.Compatibility
values indicate the following:

all - the feature can be run with other features. self+all - the feature can be installed with
other features with a value of all, but may interact badly with other features that have a value
of self+all. Not every combination has been tested.

Uninstalling features

To uninstall a feature, you must shut down OpenDaylight, delete the data directory, and start
OpenDaylight up again.

Important
Uninstalling a feature using the Karaf feature:uninstall command is not supported and

can cause unexpected and undesirable behavior.

B.0.4 Listing available features

To find the complete list of Karaf features, run the following command:

feature:list

To list the installed Karaf features, run the following command:

feature:list -i

Features to implement networking functionality provide release notes, which you can
find in the Project-specific Release Notes section.
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