
Bull. Malays. Math. Sci. Soc. (2022) 45:1141–1168
https://doi.org/10.1007/s40840-022-01249-5

Positive Solutions for Anisotropic Singular Dirichlet
Problems

Nikolaos S. Papageorgiou1 · Andrea Scapellato2

Received: 9 September 2021 / Revised: 31 October 2021 / Accepted: 17 January 2022 /
Published online: 25 February 2022
© The Author(s) 2022

Abstract
We consider a Dirichlet problem driven by a (p(z), q(z))-Laplacian and a reaction
involving the sum of a parametric singular term plus a superlinear perturbation. We
prove a bifurcation-type result describing the changes in the set of positive solutions
as the parameter λ > 0 varies. Also we show that for every admissible parameter the
problem has a smallest positive solution and obtain the monotonicity and continuity
properties of the minimal solution map.
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1 Introduction

In this paper, we study the following anisotropic singular Dirichlet problem

Communicated by Rosihan M. Ali.

B Andrea Scapellato
andrea.scapellato@unict.it

Nikolaos S. Papageorgiou
npapg@math.ntua.gr

1 Department of Mathematics, National Technical University, Zografou Campus, 15780 Athens,
Greece

2 Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale Andrea Doria 6,
95125 Catania, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-022-01249-5&domain=pdf
http://orcid.org/0000-0002-7271-9546


1142 N. S. Papageorgiou, A. Scapellato

{−�p(z)u(z) − �q(z)u(z) = λu(z)−η(z) + f (z, u(z)) in �

u
∣∣∣
∂�

= 0, u > 0, λ > 0
. (Pλ)

In this problem, � ⊆ R
N is a bounded domain with a C2-boundary ∂�. If E1 =

{r ∈ C(�) : 1 < min
�

r}, then for r ∈ E1, by�r(z) wedenote the anisotropic r -Laplace

differential operator defined by

�r(z) = div
(
|Du|r(z)−2Du

)
for all u ∈ W 1,r(z)

0 (�).

In contrast to the isotropic r -Laplacian (that is, r(·) is constant), the anisotropic
one is nonhomogeneous. In (Pλ) we have the sum of two such operators. So, even
in the isotropic case, the differential operator of (Pλ) is not homogeneous and this
makes the study of (Pλ) more difficult. In the reaction [right-hand side of (Pλ)],
we have the combined effects of two nonlinear terms of different nature. One is the
parametric singular term u �→ λu−η(z) with λ > 0 being the parameter, with η ∈
C(�) and 0 < η− = min

�

η ≤ max
�

η = η+ < 1. The other is a Carathéodory

perturbation f (z, x) (that is, for all x ∈ R, z �→ f (z, x) is measurable and for
a.a. z ∈ �, x �→ f (z, x) is continuous). We assume that for a.a. z ∈ �, f (z, ·) is
(p+ − 1)-superlinear (p+ = max

�

p), but need not satisfy the usual in such cases

Ambrosetti–Rabinowitz condition (the AR-condition for short). We search for the
existence of positive solutions, and our goal is to produce a precise description of the
changes in the set of positive solutions as the parameter λ varies in the open semiaxis
R̊+ = (0,+∞).

Anisotropic boundary value problems have been studied extensively in the last
decade. We refer to the books of Diening–Harjulehto–Hästo–Růžička [4] and
Rădulescu–Repovš [19] and the references therein. The study of singular anisotropic
problems is lagging behind. Very few works on the subject can be found in the liter-
ature. We mention two recent ones by Byun–Ko [2] and Saoudi–Ghanmi [22] which
are closely related to our work here. Both papers deal with equations driven by the
Dirichlet anisotropic p-Laplacian and their hypotheses on the data are more restrictive
(see hypothesis (pM ) in Byun–Ko [2] and hypotheses (H1)–(H4) in Saoudi–Ghanmi
[22]). In addition, our approach is different.

Amain difficulty that we encounter when we deal with singular problems is that the
corresponding energy (Euler) functional is not C1, and so we cannot use the results
of critical point theory directly on it. Therefore, we need to find a way to isolate the
singularity and deal with C1 functionals. For this reason, first we study an auxiliary
purely singular problem for which we prove an existence and uniqueness result. Using
this solutionwe are able to bypass the singularity and then, using variational tools from
the critical point theory together with truncation and comparison techniques, we prove
a bifurcation-type theorem describing the changes in the set of positive solutions of
(Pλ). According to our theorem, there exists a critical parameter λ∗ > 0 such that

• for all λ ∈ (0, λ∗) problem (Pλ) has at least two positive smooth solutions;
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Positive Solutions for Anisotropic Singular Dirichlet Problems 1143

• for λ = λ∗ problem (Pλ) has at least one positive smooth solution;
• for all λ > λ∗ problem (Pλ) has no positive solutions.

Moreover, we show that for every admissible parameter λ ∈ (0, λ∗], problem (Pλ)
has a smallest positive solution u∗

λ (minimal or barrier solution) and we establish the
monotonicity and continuity properties of the map λ �→ u∗

λ.
For further details on the study of singular equations, we refer the reader to the

papers [20, 21, 23].

2 Mathematical Background: Hypotheses

The study of problem (Pλ) requires the use of Lebesgue and Sobolev spaces with
variable exponents. A comprehensive presentation of the theory of these spaces can
be found in the book of Diening–Harjuletho–Hästö–Růžička [4].

Let M(�) be the vector space of all measurable functions from � into R. We
identify two such functions which differ only on a Lebesgue-null set. Given r ∈ E1,
the anisotropic Lebesgue space Lr(z)(�) is defined by

Lr(z)(�) =
{
u ∈ M(�) :

∫
�

|u|r(z) dz < ∞
}

.

We equip this space with the so-called Luxemburg norm defined by

‖u‖r(z) = inf

[
ϑ > 0 :

∫
�

( |u(z)|
ϑ

)r(z)

dz ≤ 1

]
.

Closely related to this norm is the modular function ρr (·) defined by

ρr (u) =
∫

�

|u|r(z) dz for all u ∈ Lr(z)(�).

Evidently ‖ · ‖r(z) is the Minkowski functional of the set

C = {u ∈ Lr(z)(�) : ρr (u) ≤ 1}.

Also, we have the following propositionwhich illustrates the close relation between
‖ · ‖r(z) and ρr (·). Recall that, if r ∈ E1, then r− = min

�

r , r+ = max
�

r .

Proposition 2.1 If r ∈ E1 and {un, u}n∈N ⊆ Lr(z)(�), then

(a) ‖u‖r(z) = ϑ ⇔ ρr
( u

ϑ

) = 1;
(b) ‖u‖r(z) < 1 (resp. = 1, > 1) ⇔ ρr (u) < 1 (resp. = 1, > 1);
(c) ‖u‖r(z) ≤ 1 ⇒ ‖u‖r+r(z) ≤ ρr (u) ≤ ‖u‖r−r(z);

‖u‖r(z) ≥ 1 ⇒ ‖u‖r−r(z) ≤ ρr (u) ≤ ‖u‖r+r(z);
(d) ‖un‖r(z) → 0 (resp. → ∞) ⇔ ρr (un) → 0 (resp. → ∞);
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1144 N. S. Papageorgiou, A. Scapellato

(e) ‖un − u‖r(z) → 0 ⇔ ρr (un − u) → 0.

The space Lr(z)(�) (r ∈ E1) is a Banach space which is separable, reflexive (in
fact uniformly convex). Also, if r ′ ∈ E1 is given by r ′(z) = r(z)

r(z)−1 for all z ∈ � (that

is, 1
r(z) + 1

r ′(z) = 1 for all z ∈ �), then

Lr(z)(�)∗ = Lr ′(z)(�).

Moreover, we have the following version of Hölder’s inequality

∫
�

|uv| dz ≤
(

1

r−
+ 1

r ′−

)
‖u‖r(z)‖v‖r ′(z) for all u ∈ Lr(z)(�), all v ∈ Lr ′(z)(�).

We know that, if q, r ∈ E1 and q(z) ≤ r(z) for all z ∈ �, then

Lr(z)(�) ↪→ Lq(z)(�) ↪→ L1(�) continuously.

Using the anisotropic Lebesgue spaces, we can define also anisotropic Sobolev
spaces.

Given r ∈ E1 we define

W 1,r(z)(�) =
{
u ∈ Lr(z)(�) : |Du| ∈ Lr(z)(�)

}
.

We equip this space with the following norm:

‖u‖1,r(z) = ‖u‖r(z) + ‖Du‖r(z).

Here ‖Du‖r(z) = ‖ |Du| ‖r(z). Suppose that r ∈ E1 ∩ C0,1(�) (that is, assume that
the variable exponent is Lipschitz continuous). We define

W 1,r(z)
0 (�) = C∞

c (�)
‖·‖1,r(z)

.

Both spacesW 1,r(z)(�) andW 1,r(z)
0 (�) are Banach spaces which are separable and

reflexive (in fact uniformly convex), Moreover, for the space W 1,r(z)
0 (�) the Poincaré

inequality holds, namely

‖u‖r(z) ≤ ĉ ‖Du‖r(z) for some ĉ > 0, all u ∈ W 1,r(z)
0 (�).

If r ∈ E1 ∩ C0,1(�), then we define

r∗(z) =
{

Nr(z)
N−r(z) if r(z) < N

+∞ if N ≤ r(z)
for all z ∈ �.
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Positive Solutions for Anisotropic Singular Dirichlet Problems 1145

This is the variable critical Sobolev exponent corresponding to r(·). Suppose q ∈
C(�) and assume that

1 ≤ q− ≤ q(z) ≤ r∗(z)
(
resp. 1 ≤ q− ≤ q(z) < r∗(z)

)
for all z ∈ �.

Let X = W 1,r(z)(�) or X = W 1,r(z)
0 (�). Then, we have that X ↪→ Lq(z)(�)

continuously (resp. X ↪→ Lq(z)(�) compactly). This is the so-called anisotropic
Sobolev embedding theorem. For r ∈ E1 ∩ C0,1(�), we have

W 1,r(z)
0 (�)∗ = W−1,r ′(z)(�).

Consider the nonlinear operator Ar(z) : W 1,r(z)
0 (�) → W−1,r ′(z)(�) defined by

〈Ar(z)(u), h〉 =
∫

�

|Du|r(z)−2(Du, Dh)RN dz for all u, h ∈ W 1,r(z)
0 (�).

This operator has the following properties (see Gasiński–Papageorgiou [8], Propo-
sition 2.5 and Rădulescu–Repovš [19], p. 40).

Proposition 2.2 The operator Ar(z)(·) is bounded (maps bounded sets to bounded
sets), continuous, strictly monotone (hence maximal monotone too) and of type (S)+,
that is, it has the following property

"If un
w−→ u in W 1,r(z)

0 (�) and lim sup
n→∞

〈Ar(z)(un), un − u〉 ≤ 0,

then un → u in W 1,r(z)
0 (�) as n → ∞".

Another space that we will use (as a result of the anisotropic regularity theory) is
the space C1

0(�) = {u ∈ C1(�) : u|∂� = 0}. This is an ordered Banach space with
positive (order) cone C+ = {u ∈ C1

0(�) : u(z) ≥ 0 for all z ∈ �}. This cone has a
nonempty interior given by

intC+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ �,

∂u

∂n

∣∣∣∣
∂�

< 0

}
,

with n(·) being the outward unit normal on ∂�.
Our hypotheses on the exponents involved in problem (Pλ) are the following:

H0: p, q ∈ C0,1(�), η ∈ C(�), q− ≤ q+ < p− ≤ p+ and 0 < η(z) < 1 for all
z ∈ �.

Consider h1, h2 ∈ M(�).Wewrite h1 � h2 if and only if for every K ⊆ � compact
we have 0 < cK ≤ h2(z) − h1(z) for a.a. z ∈ K . Note that if h1, h2 ∈ C(�) and
h1(z) < h2(z) for all z ∈ �, then h1 � h2. Using this ordering notion and following
the argument in the proof of Proposition 2.4 of Papageorgiou–Rădulescu–Repovš [17],
we obtain the following strong comparison theorem for singular problems.
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1146 N. S. Papageorgiou, A. Scapellato

Proposition 2.3 If hypothesesH0 hold, ξ̂ ∈ L∞(�), ξ̂ (z) ≥ 0 for a.a. z ∈ �, h1, h2 ∈
L∞(�), h1 � h2, u ∈ W 1,p(z)

0 (�), u ≥ 0, u �= 0 and v ∈ intC+ satisfy

− �p(z)u − �q(z)u + ξ̂ (z)u p(z)−1 − λu−η(z) = h1 in �,

− �p(z)v − �q(z)v + ξ̂ (z)v p(z)−1 − λv−η(z) = h2 in �,
∂v

∂n

∣∣∣∣
∂�

< 0,

then v − u ∈ intC+.

For every u ∈ M(�), we set u± = max{±u, 0}. If u ∈ W 1,p(z)
0 (�), then u± ∈

W 1,r(z)
0 (�), u = u+ − u−, |u| = u+ + u−. Also, if u, v ∈ M(�) with u(z) ≤ v(z)

for a.a. z ∈ �, then we introduce the following order intervals in W 1,p(z)
0 (�):

[u, v] =
{
h ∈ W 1,p(z)

0 (�) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ �
}

,

[u) =
{
h ∈ W 1,p(z)

0 (�) : u(z) ≤ h(z) for a.a. z ∈ �
}

,

intC1
0 (�)[u, v] = the interior in C1

0(�) of [u, v] ∩ C1
0(�).

Throughout this work, by ‖ · ‖ we denote the norm W 1,p(z)
0 (�). On account of the

Poincaré inequality, we have

‖u‖ = ‖Du‖p(z) for all u ∈ W 1,p(z)
0 (�).

Suppose X is a Banach space and ϕ ∈ C1(X , R). We set

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ).

We say that ϕ(·) satisfies the C-condition, if the following property holds:

"If {un}n∈N ⊆ X is such that {ϕ(un)}n∈N ⊆ R is bounded and (1 +
‖un‖X )ϕ′(un) → 0 in X∗ as n → ∞, then {un}n∈N has a strongly conver-
gent subsequence".

Now we will introduce our hypotheses on the perturbation f (z, x).

H1: f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ �

and

(i) f (z, x) ≤ a(z)[1 + |x |r(z)−1] for a.a. z ∈ �, all x ≥ 0, with a ∈ L∞(�),
a(z) ≥ 0 for a.a. z ∈ �, r ∈ C(�), p(z) < r(z) < p∗(z) for all z ∈ �;
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Positive Solutions for Anisotropic Singular Dirichlet Problems 1147

(ii) if F(z, x) = ∫ x
0 f (z, s) ds, then lim

x→+∞
F(z, x)

x p+ = +∞ uniformly for a.a.

z ∈ � and there exists τ ∈ C(�) such that

τ(z) ∈
(

(r+ − p−)max

{
N

p−
, 1

}
, p∗(z)

)
for all z ∈ �

0 < δ̂ ≤ lim inf
x→+∞

f (z, x)x − p+F(z, x)

xτ(z)
uniformly for a.a. z ∈ �;

(iii) lim
x→0+

f (z, x)

xq(z)−1
= 0 uniformly for a.a. z ∈ � and we have

0 ≤ f (z, x) for a.a. z ∈ �, all x ≥ 0;

(iv) for every ρ > 0, we can find ξ̂ρ > 0 such that for a.a. z ∈ �, the function

x �→ f (z, x) + ξ̂ρx
p(z)−1

is nondecreasing on [0, ρ].

Remarks Since our goal is to find positive solutions and all the above hypotheses
concern the positive semiaxis R+ = [0,+∞), without any loss of generality, we
may assume that f (z, x) = 0 for a.a. z ∈ �, all x ≤ 0. Hypothesis H1(ii) says that
for a.a. z ∈ �, f (z, ·) is (p+ − 1)-superlinear. We do not use the AR-condition,
which is common in the literature when dealing with superlinear problems (see, for
example, Chang [3], p. 147). Hypothesis H1(ii) is less restrictive and incorporates in
our framework also superlinear perturbations with "slower" growth as x → +∞. For
example, consider the following function

f (z, x) =
{

(x+)τ(z)−1 − (x+)s(z)−1 if x ≤ 1

x p+−1 ln x if 1 < x
,

where τ, s ∈ C(�) and q(z) < τ(z) ≤ s(z) for all z ∈ �. This function satisfies
hypotheses H1 but fails to satisfy the AR-condition. Our hypotheses also incorporate
the nonlinearity f (z, x) = (x+)r(z)−1 with r ∈ C(�) and p(z) < r(z) for all z ∈ �.
This is the perturbation used by Byun–Ko [2], where the equation is driven only by
the p(z)-Laplacian with p(·) satisfying stronger conditions (see hypothesis (pM ) in
[2]). Similarly, our hypotheses are more general than those used by Saoudi–Ghanmi
[22] (see hypotheses (H3), (H4) in [22]), who also deal with equations driven by the
p(z)-Laplacian only. The function f (z, x) given above lies outside the framework
provided by the hypotheses in [22].
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1148 N. S. Papageorgiou, A. Scapellato

3 A Purely Singular Problem

As we already indicated in the Introduction, in order to handle the singular term, we
will first consider a purely singular problem. The solution of this problem will allow
us to bypass the singularity and deal with C1-functionals.

So, in this section, we study the following purely singular problem

{−�p(z)u(z) − �q(z)u(z) = λu(z)−η(z) in �

u
∣∣∣
∂�

= 0, u > 0, λ > 0
. (Auλ)

For this problem, we have the following existence and uniqueness result.

Proposition 3.1 If hypotheses H0 hold, then for every λ > 0 problem (Auλ) has a
unique positive solution uλ ∈ intC+ and the map R̊+ � λ �→ uλ is nondecreasing
and ‖uλ‖C1

0 (�) → 0 as λ → 0+.

Proof Given δ ∈ (0, 1), first we solve the following approximation to problem (Auλ):{−�p(z)u(z) − �q(z)u(z) = λ[u(z) + δ]−η(z) in �

u
∣∣∣
∂�

= 0, u > 0, λ > 0
. (Auδ

λ)

To solve this problem, we employ a fixed point argument. So, let g ∈ C1
0(�) and

consider the following Dirichlet problem

− �p(z)u(z) − �q(z)u(z) = λ[|g(z)| + δ]−η(z) in �, u
∣∣∣
∂�

= 0. (3.1)

The operator V = Ap(z) + Aq(z) : W 1,p(z)
0 (�) → W−1,p′(z)(�) is maximal

monotone (see Proposition 2.2) and coercive. So V (·) is surjective (see [15], p. 137).
Since λ

[|g|+δ]η(·) ∈ L∞(�), we can find vλ
δ ∈ W 1,p(z)

0 (�) such that

V (vλ
δ ) = Ap(z)(v

λ
δ ) + Aq(z)(v

λ
δ ) = λ[|g| + δ]−η(·).

On account of the strict monotonicity of V (·) (see Proposition 2.2), this solution vλ
δ is

unique. We have

〈V (vλ
δ ),−(vλ

δ )−〉 =
∫

�

λ(−vλ
δ )−

[|g| + δ]η(z)
dz ≤ 0

⇒ ρp
(
D(vλ

δ )−
) ≤ 0

⇒ vλ
δ ≥ 0, vλ

δ �= 0 (see Proposition 2.1).

From Theorem 4.1 of Fan–Zhao [6], we have that vλ
δ ∈ L∞(�). Then Theorem 1.3

of Fan [5] implies that vλ
δ ∈ C+ \ {0}. Finally, Proposition 4 of Papageorgiou–Qin–

Rădulescu [14] says that vλ
δ ∈ intC+.
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Positive Solutions for Anisotropic Singular Dirichlet Problems 1149

We can define the solution map σλ
δ : C1

0(�) → C1
0(�) by setting

σλ
δ (g) = vλ

δ ∈ intC+.

We will show that this map is continuous. To this end, let gn → g in C1
0(�) and set

(vλ
δ )n = σλ

δ (gn), for all n ∈ N. We have

〈V (
(vλ

δ )n
)
, h〉 =

∫
�

λh

[|gn| + δ]η(z)
dz for all h ∈ W 1,p(z)

0 (�). (3.2)

In (3.2) we use the test function (vλ
δ )n ∈ W 1,p(z)

0 (�). We obtain

ρp
(
D(vλ

δ )n
) + ρq

(
D(vλ

δ )n
) ≤ c1‖(vλ

δ )n‖ for some c1 > 0, all n ∈ N,

⇒ {
(vλ

δ )n
}
n∈N ⊆ W 1,p(z)

0 (�) is bounded (see Proposition 2.1.).

This implies that we can find c2 > 0 such that

(vλ
δ )n ∈ L∞(�) and ‖(vλ

δ )n‖∞ ≤ c2 for all n ∈ N

(see [6] and [8], Proposition 3.1).

Then Lemma 3.3 of Fukagai–Narukawa [7] says that there exist α ∈ (0, 1) and
c3 > 0 such that

(vλ
δ )n ∈ C1,α

0 (�) = C1,α(�) ∩ C1
0(�), ‖(vλ

δ )n‖C1,α
0 (�)

≤ c3, for all n ∈ N.

Recall thatC1,α
0 (�) ↪→ C1

0(�) compactly. So, by passing to a suitable subsequence
if necessary, we may assume that

(vλ
δ )n → vλ

δ in C1
0(�) as n → ∞. (3.3)

Then, if we pass to the limit as n → ∞ in (3.2), we obtain

〈V (vλ
δ ), h〉 =

∫
�

λh

[|g| + δ]η(z)
dz for all h ∈ W 1,p(z)

0 (�),

⇒ vλ
δ = σλ

δ (g),

⇒ σλ
δ (·) is continuous.
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1150 N. S. Papageorgiou, A. Scapellato

Also for every g ∈ C1
0(�) and with vλ

δ = σλ
δ (g), we have

〈V (vλ
δ ), h〉 =

∫
�

λh

[|g| + δ]η(z)
dz for all h ∈ W 1,p(z)

0 (�),

⇒ ρp(Dvλ
δ ) + ρq(Dvλ

δ ) ≤ 1

δη+ ‖vλ
δ ‖,

⇒ σλ
δ (C1

0(�)) ⊆ W 1,p(z)
0 (�) is bounded

(see Proposition 2.1 and recall that 1 < p−). (3.4)

As above, using (3.4) and the anisotropic regularity theory, we infer that

σλ
δ (C1

0(�))
‖·‖

C1
0 (�) ⊆ C1

0(�) is compact.

Then, the Schauder–Tychonov fixed point theorem (see [15], p. 298) implies that
there exists uλ

δ ∈ C1
0(�) such that

σλ
δ (uλ

δ ) = uλ
δ ∈ intC+.

This uλ
δ ∈ intC+ is a solution of the approximate problem (Auδ

λ). We show that
this solution is unique. To this end, let yλ

δ be another solution of (Auδ
λ). We have

0 ≤ 〈V (uλ
δ ) − V (yλ

δ ), u
λ
δ − yλ

δ 〉

=
∫

�

λ

[
1

[uλ
δ + δ]η(z)

− 1

[yλ
δ + δ]η(z)

]
(uλ

δ − yλ
δ ) dz ≤ 0

⇒ uλ
δ = yλ

δ .

This proves the uniqueness of the solution uλ
δ ∈ intC+ of problem (Auδ

λ).

Claim: 0 < δ′ < δ ⇒ uλ
δ ≤ uλ

δ′ .
We have

− �p(z)u
λ
δ′ − �q(z)u

λ
δ′ = λ

[
uλ

δ′ + δ′]−η(z)

≥ λ
[
uλ

δ′ + δ
]−η(z)

in � (since δ′ < δ). (3.5)

We introduce the Carathéodory function eλ
δ : � × R → R defined by

eλ
δ (z, x) =

{
λ[x+ + δ]−η(z) if x ≤ uλ

δ′(z)

λ[uλ
δ′(z) + δ]−η(z) if uλ

δ′(z) < x
. (3.6)
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Positive Solutions for Anisotropic Singular Dirichlet Problems 1151

We set Eλ
δ (z, x) = ∫ x

0 eλ
δ (z, s) ds and consider the C1-functional γλ : W 1,p(z)

0 (�)

→ R defined by

γλ(u) =
∫

�

1

p(z)
|Du|p(z) dz +

∫
�

1

q(z)
|Du|q(z) dz −

∫
�

Eλ
δ (z, u) dz

for all u ∈ W 1,p(z)
0 (�).

We have

γλ(u) ≥ 1

p+
ρp(Du) − c4 for some c4 > 0, all u ∈ W 1,p(z)

0 (�) (see (3.6)),

⇒ γλ(·) is coercive (see Proposition 2.1 and recall the Poincaré’s inequality).

Also the anisotropic Sobolev embedding theorem implies that γλ(·) is sequentially
weakly lower semicontinuous. So, by the Weierstrass–Tonelli theorem, we can find
ũλ

δ ∈ W 1,p(z)
0 (�) such that

γλ(̃u
λ
δ ) = min

[
γλ(u) : u ∈ W 1,p(z)

0 (�)
]
,

⇒ 〈γ ′
λ(̃u

λ
δ ), h〉 = 0 for all h ∈ W 1,p(z)

0 (�),

⇒ 〈Ap(z)(̃u
λ
δ ), h〉 + 〈Aq(z)(̃u

λ
δ ), h〉 =

∫
�

eλ
δ (z, ũλ

δ )h dz for all h ∈ W 1,p(z)
0 (�)

(3.7)

In (3.7) we choose the test function h = −(̃uλ
δ )

− ∈ W 1,p(z)
0 (�). We obtain

ρp(D(̃uλ
δ )

−) + ρq(D(̃uλ
δ )

−) = 0,

⇒ ũλ
δ ≥ 0, ũλ

δ �= 0.

Next in (3.7) we choose h = [̃uλ
δ − uλ

δ′ ]+ ∈ W 1,p(z)
0 (�). We have

〈Ap(z)(̃u
λ
δ ), (̃u

λ
δ − uλ

δ′)+〉 + 〈Aq(z)(̃u
λ
δ ), (̃u

λ
δ − uλ

δ′)+〉
=

∫
�

λ
[
uλ

δ′ + δ
]−η(z)

(̃uλ
δ − uλ

δ′)+ dz (see (3.6))

≤ 〈Ap(z)(u
λ
δ′), (̃uλ

δ − uλ
δ′)+〉 + 〈Aq(z)(u

λ
δ′), (̃uλ

δ − uλ
δ′)+〉 (see (3.5)),

⇒ ũλ
δ ≤ uλ

δ′ .

So, we have proved that

ũλ
δ ∈ [0, uλ

δ′ ], ũλ
δ �= 0,

⇒ ũλ
δ = uλ

δ ∈ intC+ (see (3.8), (3.6), (3.7)),

⇒ uλ
δ ≤ uλ

δ′ . (3.8)
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1152 N. S. Papageorgiou, A. Scapellato

This proves the claim.
Next we let δ → 0+ to produce a solution of the auxiliary problem (Auλ). Let

δn → 0+ and set uλ
n = uλ

δn
∈ intC+, for all n ∈ N. We have

0 ≤ uλ
1 ≤ uλ

n for all n ∈ N (see the Claim), (3.9)

〈Ap(z)(u
λ
n), h〉 + 〈Aq(z)(u

λ
n), h〉 =

∫
�

λ
[
uλ
n + δn

]−η(z)
h dz

for all h ∈ W 1,p(z)
0 (�), all n ∈ N. (3.10)

In (3.10) we use the test function uλ
n ∈ W 1,p(z)

0 (�). We obtain

ρp(Duλ
n) + ρq(Duλ

n) ≤
∫

�

λuλ
n

(uλ
n)

η(z)
dz =

∫
�

λ(uλ
n)

1−η(z) dz

⇒ ρp(Duλ
n) ≤ λc5‖uλ

n‖ for some c5 > 0, all n ∈ N

⇒ {
uλ
n

}
n∈N ⊆ W 1,p(z)

0 (�) is bounded

(see Proposition 2.1 and recall that 1 < p−). (3.11)

On account of (3.11), we may assume that

uλ
n

w−→ uλ in W 1,p(z)
0 (�) and

|Duλ
n|p(z)−2Duλ

n + |Duλ
n|q(z)−2Duλ

n
w−→ ζ in L p′(z)(�, R

N ). (3.12)

From (3.9) we have

0 ≤ 1

[uλ
n + δn]η(z)

≤ 1

(uλ
1)

η(z)
.

Then, for every h ∈ C∞
c (�), we have that uλ

1(z) ≥ ch > 0 for all z ∈ supp h (recall
that uλ

1 ∈ intC+). Hence, for h ∈ C∞
c (�), we have

0 ≤ |h|
[uλ

n + δn]η(z)
≤ c6(h)|h| for some c6(h) > 0, all n ∈ N.

So, if in (3.10) we pass to the limit as n → ∞ and use the dominated convergence
theorem [see (3.12)], we obtain

〈−div ζ, h〉 =
∫

�

h

uη(z)
λ

dz for all h ∈ C∞
c (�). (3.13)

The density of C∞
c (�) in W 1,p(z)

0 (�) implies that (3.13) holds for all h ∈
W 1,p(z)

0 (�) and so −div ζ = 1
uη(·)

λ

.
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As above, we have∣∣∣∣∣〈 1

[uλ
n + δn]η(·) − 1

uη(·)
λ

, h〉
∣∣∣∣∣ ≤ λεn‖h‖ for all h ∈ C∞

c (�), with εn → 0+. (3.14)

Exploiting the density of C∞
c (�) in W 1,p(z)

0 (�), we infer that (3.14) holds for all

h ∈ W 1,p(z)
0 (�). It follows that

1

[uλ
n + δn]η(·) → 1

uη(·)
λ

in W−1,p′(z)(�) (3.15)

From (3.11), (3.15) and Theorem 2.1 of Boccardo–Murat [1], we have that Duλ
n(z) →

Duλ(z) for a.a. z ∈ �. It follows that

ζ = |Duλ|p(z)−2Duλ + |Duλ|q(z)−2Duλ

and then

〈Ap(z)(uλ), h〉 + 〈Aq(z)(uλ), h〉 =
∫

�

λh

uη(z)
λ

for all h ∈ W 1,p(z)
0 (�).

Since uλ
1 ≤ uλ (see (3.9), (3.12)), we infer that uλ is a positive solution of (Auλ).

Then, from Theorem B.1 of Saoudi–Ghanmi [22] (see also Giacomoni–Schindler–
Takáč [9], Theorem B.1), we have that uλ ∈ intC+. As before, we check that uλ ∈
intC+ is the unique positive solution of (Auλ).

Next we check that λ �→ uλ is nondecreasing from R̊+ = (0,∞) into intC+. So,
let 0 < λ < λ′. We have

−�p(z)uλ′ − �q(z)uλ′ = λ′u−η(z)
λ′ ≥ λu−η(z)

λ′ .

We consider the Carathéodory function ĝλ : � × R̊+ → R̊+ defined by

ĝλ(z, x) =
{

λx−η(z) if 0 < x ≤ uλ′(z)

λuλ′(z)−η(z) if uλ′(z) < x
. (3.16)

Note that from the proof of the Lemma of Lazer–McKenna [13], we have
uλ′(·)−η(·) ∈ L1(�) (recall that uλ′ ∈ intC+). We consider the following Dirich-
let problem

−�p(z)u(z) − �q(z)u(z) = ĝλ(z, u(z)) in �, u
∣∣∣
∂�

= 0, u > 0.

Reasoning as in the first part of the proof (using approximations of this problem),
we show that it has a unique solution ũλ ∈ intC+ and ũλ ≤ uλ′ . We conclude that
ũλ = uλ [see (3.16)] and so uλ ≤ uλ′ .
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1154 N. S. Papageorgiou, A. Scapellato

Finally let λn → 0+ and let un = uλn ∈ intC+, n ∈ N, be the unique solution of
(Pλn ) produced earlier. We have

〈Ap(z)(un), h〉 + 〈Aq(z)(un), h〉 =
∫

�

λnu
−η(z)
n h dz for all h ∈ W 1,p(z)

0 (�), all n ∈ N.

Using the test function h = un ∈ W 1,p(z)
0 (�) we obtain

ρp(Dun) + ρq(Dun) ≤ λnc7‖un‖ for some c7 > 0, all n ∈ N,

⇒ un → 0 in W 1,p(z)
0 (�) (see Proposition 2.1). (3.17)

Then, the anisotropic regularity theory (see [22]), implies that {un}n∈N ⊆ C1
0(�)

is relatively compact. Therefore un → 0 in C1
0(�) [see (3.17)]. ��

4 Positive Solutions

We introduce the following two sets

L = {λ > 0 : problem (Pλ) has a positive solution},
Sλ = set of positive solutions of problem(Pλ).

Proposition 4.1 If hypotheses H0, H1 hold, then L �= ∅ and for every λ > 0, Sλ ⊆
intC+.

Proof Hypotheses H1(i), (iii) imply that given ε > 0, we can find c8 = c8(ε) > 0
such that for r̂ ∈ C(�) with r̂ > r , r̂− > p+, we have

f (z, x) ≤ εxq(z)−1 + c8x
r̂(z)−1 for a.a. z ∈ �, all x ≥ 0,

⇒ F(z, x) ≤ ε

p(z)
xq(z) + c8

r(z)
xr̂(z) for a.a. z ∈ �, all x ≥ 0. (4.1)

Let uλ ∈ intC+ be the unique solution of the auxiliary problem (Auλ). Recall that
uλ(·)−η(·) ∈ L1(�). We introduce the Carathéodory function kλ : �×R → R defined
by

kλ(z, x) =
{

λuλ(z)−η(z) + f (z, x+) if x ≤ uλ(z)

λx−η(z) + f (z, x) if uλ(z) < x
(4.2)
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We set Kλ(z, x) = ∫ x
0 kλ(z, s) ds and consider the C1-functional ψλ : W 1,p(z)

0 (�)

→ R defined by

ψλ(u) =
∫

�

1

p(z)
|Du|p(z) dz +

∫
�

1

q(z)
|Du|q(z) dz

−
∫

�

Kλ(z, u) dz, for all u ∈ W 1,p(z)
0 (�)

Using (4.1) and (4.2), we have

ψλ(u) ≥ 1

p+
ρp(Du) −

∫
{0≤u≤uλ}

λuu−η(z)
λ dz −∫

{uλ<u}
λ

1 − η(z)

[
u1−η(z) − u1−η(z)

λ

]
dz − ε

q−
ρq(u) − c8

r̂−
ρ̂r (u). (4.3)

Let d̂(·) = d(·, ∂�). From Lemma 14.16, p. 355, of Gilbarg–Trudinger [10], we
know that we can find δ0 > 0 such that d̂ ∈ C2(�δ0) where �δ0 = {z ∈ � : d̂(z) <

δ0}. It follows that d̂ ∈ C+ \ {0}. Since uλ ∈ intC+, on account of Proposition 4.1.22,
p. 274, of Papageorgiou– Rădulescu–Repovš [15], we can find c9 > 0 such that

c9d̂ ≤ uλ. (4.4)

Then we have∫
�

|u|
uη(z)

λ

dz =
∫

�

u1−η(z)
λ

|u|
uλ

dz

≤ c10

∫
�

|u|
d̂

dz for some c10 > 0 (see (4.4))

≤ c11‖u‖ for some c11 > 0, (4.5)

where in the last inequality, we have used the anisotropic Hardy inequality due to
Harjuletho–Hästö–Koskenoja [11]. Returning to (4.3) and using (4.5), for all u ∈
W 1,p(z)

0 (�) with ‖u‖ = ρ < 1 we have

ψλ ≥ 1

p+
ρ p+ − c12ρ

r̂− − c13
[
λρ + ερq−]

for some c12, c13 > 0. (4.6)

Since p+ < r̂−, choosing ρ ∈ (0, 1) small, we have

1

p+
ρ p+ − c12ρ

r̂− > 0.

Then choosing λ > 0 and ε > 0 small, from (4.6) we see that

ψλ(u) ≥ mλ > 0 for all u ∈ W 1,p(z)
0 (�), ‖u‖ = ρ. (4.7)
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1156 N. S. Papageorgiou, A. Scapellato

Let v ∈ intC+. Since uλ ∈ intC+, we can find t ∈ (0, 1) small such that tv ≤ uλ

(see [15], p. 274). We have

ψλ(tv) ≤ tq−

q−
[
ρp(Dv) + ρq(Dv)

] − λt
∫

�

v

uη(z)
λ

dz

(see (4.2) and recall that F ≥ 0, q− < p−).

We have seen above that v

uη(·)
λ

∈ L1(�). Hence

ψλ(tv) ≤ c14t
q − c15t for some c14, c15 > 0.

Since q− > 1, choosing t ∈ (0, 1) even smaller if necessary, we have

ψλ(tv) < 0 and ‖tv‖ ≤ ρ. (4.8)

Consider the closed ball

Bρ = {u ∈ W 1,p(z)
0 (�) : ‖u‖ ≤ ρ}.

The reflexivity of W 1,p(z)
0 (�) and the Eberlein–Smulian theorem imply that Bρ is

sequentiallyweakly compact.Also, using the anisotropicSobolev embedding theorem,
we check thatψλ(·) is sequentially weakly compact. So, we can find uλ ∈ W 1,p(z)

0 (�)

such that

ψλ(uλ) =min
[
ψλ(u) : u ∈ Bρ

]
,

⇒ ψλ(uλ) < 0 = ψλ(0) (see (4.8)),

⇒ uλ �= 0. (4.9)

From (4.7), we see that

0 < ‖uλ‖ < ρ. (4.10)

Then, (4.9) and (4.10) imply that

ψ ′
λ(uλ) = 0,

⇒ 〈Ap(z)(uλ), h〉 + 〈Aq(z)(uλ), h〉 =
∫

�

kλ(z, uλ)h dz for all h ∈ W 1,p(z)
0 (�).

(4.11)
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In (4.11) we use the test function h = (uλ − uλ)
+ ∈ W 1,p(z)

0 (�). Then

〈Ap(z)(uλ), (uλ − uλ)
+〉 + 〈Aq(z)(uλ), (uλ − uλ)

+〉
=

∫
�

[
λu−η(z)

λ + f (z, u+
λ )

]
(uλ − uλ)

+ dz (see (4.2).)

≥
∫

�

λu−η(z)
λ (uλ − uλ)

+ dz (since f ≥ 0)

= 〈Ap(z)(uλ), (uλ − uλ)
+〉 + 〈Aq(z)(uλ), (uλ − uλ)

+〉 (see Proposition 3.1)

⇒ uλ ≤ uλ. (4.12)

Then (4.12), (4.2) and (4.11) imply that

uλ ∈ Sλ (λ > 0 small),

⇒ L �= ∅.

Moreover, the anisotropic regularity theory (see Theorem B.1 of [22]) and the
anisotropic maximum principle (see Proposition 4 of [14]) imply that Sλ ⊆ intC+ for
all λ ∈ L . ��

The next proposition shows that L is connected.

Proposition 4.2 If hypotheses H0, H1 hold, λ ∈ L and μ ∈ (0, λ), then μ ∈ L .

Proof Since λ ∈ L , we can find uλ ∈ Sλ ⊆ intC+ (see Proposition 4.1). Recall that
u−η(·)

λ ∈ L1(�). Also we have uμ ≤ uλ ≤ uλ (see Proposition 3.1 and use the fact
that f ≥ 0). We introduce the Carathéodory function ϑμ : � × R → R defined by

ϑμ(z, x) =

⎧⎪⎨
⎪⎩

μuμ(z)−η(z) + f (z, uμ(z)) if x < uμ(z)

μx−η(z) + f (z, x) if uμ(z) ≤ x ≤ uλ(z)

μuλ(z)−η(z) + f (z, uλ(z)) if uλ(z) < x

. (4.13)

We set �μ(z, x) = ∫ x
0 ϑμ(z, s) ds and consider the C1-functional wμ : W 1,p(z)

0
(�) → R defined by

wμ(u) =
∫

�

1

p(z)
|Du|p(z) dz +

∫
�

1

q(z)
|Du|q(z) dz −

∫
�

�μ(z, u) dz

for all u ∈ W 1,p(z)
0 (�).

From (4.13), it is clear that wμ(·) is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find uμ ∈ W 1,p(z)

0 (�) such that

wμ(uμ) = min
[
wμ(u) : u ∈ W 1,p(z)

0 (�)
]
. (4.14)
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From (4.14) we have

〈Ap(z)(uμ), h〉 + 〈Aq(z)(uμ), h〉 =
∫

�

ϑμ(z, uμ)h dz for all h ∈ W 1,p(z)
0 (�).

(4.15)

In (4.15) first we use the test function h = (uμ − uμ)+ ∈ W 1,p(z)
0 (�). Then

〈Ap(z)(uμ), (uμ − uμ)+〉 + 〈Aq(z)(uμ), (uμ − uμ)+〉
=

∫
�

[
μu−η(z)

μ + f (z, uμ)
]
(uμ − uμ)+ dz (see (4.13))

≥
∫

�

μu−η(z)
μ (uμ − uμ)+ dz (since f ≥ 0)

= 〈Ap(z)(uμ), (uμ − uμ)+〉 + 〈Aq(z)(uμ), (uμ − uμ)+〉
⇒ uμ ≤ uμ.

Next in (4.15) we choose h = (uμ − uλ)
+ ∈ W 1,p(z)

0 (�). We have

〈Ap(z)(uμ), (uμ − uλ)
+〉 + 〈Aq(z)(uμ), (uμ − uλ)

+〉
=

∫
�

[
μu−η(z)

λ + f (z, uλ)
]
(uμ − uλ)

+ dz (see (4.13))

≤
∫

�

[
λu−η(z)

λ + f (z, uλ)
]
(uμ − uλ)

+ dz (since μ < λ)

= 〈Ap(z)(uλ), (uμ − uλ)
+〉 + 〈Aq(z)(uλ), (uμ − uλ)

+〉 (since uλ ∈ Sλ)

⇒ uμ ≤ uλ.

So, we have proved that

uμ ∈ [uμ, uλ]. (4.16)

From (4.16), (4.13) and (4.15), we conclude that

uμ ∈ Sμ ⊆ intC+,

⇒ μ ∈ L .

��
A by-product of the above proof is the following weak monotonicity property for

the solution multifunction λ �→ Sλ.

Corollary 4.3 If hypotheses H0, H1 hold, λ ∈ L , uλ ∈ Sλ ⊆ intC+ and μ ∈ (0, λ),
then μ ∈ L and we can find uμ ∈ Sμ ⊆ intC+ such that uμ ≤ uλ.

Using Proposition 2.3, we can improve the assertion of this corollary.
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Proposition 4.4 If hypothesesH0,H1 hold, λ ∈ L , uλ ∈ Sλ ⊆ intC+ andμ ∈ (0, λ),
then μ ∈ L and we can find uμ ∈ Sμ ⊆ intC+ such that

uλ − uμ ∈ intC+.

Proof From Corollary 4.3, we already know that μ ∈ L and there exists uμ ∈ Sμ ⊆
intC+ such that

uμ ≤ uλ. (4.17)

Let ρ = ‖uλ‖∞ and let ξ̂ρ > 0 be as postulated by hypothesis H1(iv). We have

− �p(z)uμ − �q(z)uμ + ξ̂ρu
p(z)−1
μ − λu−η(z)

μ

= f (z, uμ) + ξ̂ρu
p(z)−1
μ − (λ − μ)u−η(z)

μ

≤ f (z, uλ) + ξ̂ρu
p(z)−1
λ (see (4.17), hypothesis H1(iv) and use that μ < λ)

= −�p(z)uλ − �q(z)uλ + ξ̂ρu
p(z)−1
λ − λu−η(z)

λ (since uλ ∈ Sλ). (4.18)

Since uμ ∈ intC+, we have

0 � (λ − μ)u−η(·)
μ .

So, from (4.18) and Proposition 2.3, it follows that

uλ − uμ ∈ intC+.

��

Let λ∗ = supL .

Proposition 4.5 If hypotheses H0, H1 hold, then λ∗ < ∞.

Proof On account of hypotheses H1(i), (ii), (iii), we can find λ0 > 0 such that

λ0x
−η(z) + f (z, x) ≥ x p(z)−1 for a.a. z ∈ �, all x ≥ 0. (4.19)

Let λ > λ0 and suppose that λ ∈ L . Then we can find uλ ∈ Sλ ⊆ intC+. Consider
an open set �0 ⊆ � with C2-boundary such that �0 ⊆ �. We set m0 = min

�0

uλ > 0
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(since uλ ∈ intC+). For δ > 0, set mδ
0 = m0 + δ, let ρ = ‖uλ‖∞ and let ξ̂ρ > 0 be

as postulated by hypothesis H1(iv). We have

− �p(z)m
δ
0 + ξ̂ρ(mδ

0)
p(z)−1 − λ(mδ

0)
−η(z)

≤ ξ̂ρm
p(z)−1
0 + χ(δ) − λ

mη(z)
0 + δη(z)

with χ(δ) → 0+ as δ → 0+ (recall that 0 < η(z) < 1 for all z ∈ �)

≤ [̂ξρ + 1]mp(z)−1
0 + χ(δ) + λδη(z)

m2η(z)
0

− λ

mη(z)
0

= mp(z)−1
0 − λ0m

−η(z)
0 + ξ̂ρm

p(z)−1
0 + χ̂ (δ) − λ − λ0

mη(z)
0

with χ̂(δ) → 0+ as δ → 0+

≤ f (z,m0) + ξ̂ρm
p(z)−1
0 for δ > 0 small (see (4.19) and recall that λ > λ0)

≤ f (z, uλ) + ξ̂ρu
p(z)−1
λ (see hypothesis H1(iv))

= −�p(z)uλ − �q(z)uλ + ξ̂ρu
p(z)−1
λ in �0.

Invoking Proposition 6 of Papageorgiou–Rădulescu–Repovš [18], we infer that

mδ
0 < uλ(z) for all z ∈ �0, all δ ∈ (0, 1) small,

a contradiction to the definition of m0.
Therefore λ /∈ L and so λ∗ ≤ λ0 < ∞. ��
Nextwe show thatλ ∈ (0, λ∗)wehavemultiplicity of positive solutions for problem

(Pλ).

Proposition 4.6 If hypotheses H0, H1 hold and λ ∈ (0, λ∗), then problem (Pλ) has at
least two positive solutions

u0, û ∈ intC+.

Proof Let 0 < μ < λ < δ < λ∗. We know that μ, δ ∈ L and on account of
Proposition 4.4, we can find uδ ∈ Sδ ⊆ intC+, u0 ∈ Sλ ⊆ intC+ and uμ ∈ Sμ ⊆
intC+ such that

uδ − u0 ∈ intC+ and u0 − uμ ∈ intC+
⇒ u0 ∈ intC1

0 (�)[uμ, uδ]. (4.20)

Recall that uμ(·)−η(·), uδ(·)−η(·) ∈ L1(�).We introduce the Carathéodory function
β̂λ : � × R → R defined by

β̂λ(z, x) =

⎧⎪⎨
⎪⎩

λuμ(z)−η(z) + f (z, uμ(z)) if x < uμ(z)

λx−η(z) + f (z, x) if uμ(z) ≤ x ≤ uδ(z)

λuδ(z)−η(z) + f (z, uδ(z)) if uδ(z) < x

. (4.21)
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We set B̂λ(z, x) = ∫ x
0 β̂λ(z, s) ds and consider the C1-functional ζ̂λ : W 1,p(z)

0 (�)

→ R defined by

ζ̂λ(u) =
∫

�

1

p(z)
|Du|p(z) dz +

∫
�

1

q(z)
|Du|q(z) dz −

∫
�

B̂λ(z, u) dz

for all u ∈ W 1,p(z)
0 (�).

We have

ζ̂λ(u) ≥ 1

p+
ρ(Du) − c16 for some c16 > 0, all u ∈ W 1,p(z)

0 (�) (see (4.21)),

⇒ ζ̂λ(·) is coercive (see Proposition 2.1).

Also ζ̂λ(·) is sequentially weakly lower semicontinuous. Therefore, we can find
û0 ∈ W 1,p(z)

0 (�) such that

ζ̂λ(̂u0) = min
[̂
ζλ(u) : u ∈ W 1,p(z)

0 (�)
]
. (4.22)

From (4.21) and the anisotropic regularity theory, we have

K ζ̂λ
⊆ [uμ, uδ] ∩ intC+. (4.23)

From (4.22), (4.21) and (4.20), we see that

u0, û0 ∈ K ζ̂λ
.

If u0 �= û0, then we already have two positive smooth solutions of (Pλ) and so we
are done. Thus we may assume that

u0 = û0. (4.24)

We consider the Carathéodory function βλ : � × R → R defined by

βλ(z, x) =
{

λuμ(z)−η(z) + f (z, uμ(z)) if x ≤ uμ(z)

λx−η(z) + f (z, x) if uμ(z) < x
. (4.25)

We set Bλ(z, x) = ∫ x
0 βλ(z, s) ds and consider the C1-functional ζλ : W 1,p(z)

0 (�)

→ R defined by

ζλ(u) =
∫

�

1

p(z)
|Du|p(z) dz +

∫
�

1

q(z)
|Du|q(z) dz −

∫
�

Bλ(z, u) dz

for all u ∈ W 1,p(z)
0 (�).
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From (4.21) and (4.25), we see that

ζλ

∣∣∣[0,uδ]
= ζ̂λ

∣∣∣[0,uδ]
. (4.26)

Combining (4.24), (4.22), (4.20) and (4.26), we see that

u0 is a local C
1
0(�)-minimizer of ζλ(·),

⇒ u0 is a local W
1,p(z)
0 (�)-minimizer of ζλ(·)

(see Gasiński-Papageorgiou [8], Proposition 3.3). (4.27)

From (4.25), it follows that Kζλ ⊆ [uμ) ∩ intC+. So, we may assume that Kζλ is
finite or otherwise we already have an infinity of positive smooth solutions of (Pλ)
and so we are done. Then, from (4.27) and using Theorem 5.7.6, p. 449, of [15], we
can find ρ ∈ (0, 1) small such that

ζλ(u0) < inf [ζλ(u) : ‖u − u0‖ = ρ] = mλ. (4.28)

If u ∈ intC+, then on account of hypothesis H1(ii), we have

ζλ(tv) → −∞ as t → +∞. (4.29)

Moreover, Proposition 4.1, of Gasiński–Papageorgiou [8], implies that

ζλ(·) satisfies the C-condition. (4.30)

Then (4.28), (4.29) and (4.30) permit the use of the mountain pass theorem. So, we
can find û ∈ W 1,p(z)

0 (�) such that

û ∈ Kζλ ⊆ [uμ) ∩ intC+, ζλ(u0) < mλ ≤ ζλ(̂u),

⇒ û ∈ intC+ is a positive solution of (Pλ), û �= u0.

��
Weproduce a lower bound for the elements of Sλ. This will be helpful in proving the

admissibility of the critical parameter λ∗ and also in producing the minimal positive
solution for every λ ∈ L (see Sect. 5).

Proposition 4.7 If hypotheses H0, H1 hold and λ ∈ L , then uλ ≤ u for all u ∈ Sλ.

Proof Letu ∈ Sλ ⊆ intC+ and consider theCarathéodory functionσ : �×R̊+ → R̊+
defined by

σ(z, x) =
{
x−η(z) if 0 < x ≤ u(z)

u(z)−η(z) if u(z) < x
. (4.31)
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We consider the following Dirichlet problem

{−�p(z)u(z) − �q(z)u(z) = λσ(z, u(z)) in �

u
∣∣∣
∂�

= 0, u > 0, λ > 0
. (Au′

λ)

As in the proof of Proposition 3.1, via approximations and fixed point theory, we
show that problem (Au′

λ) as a unique positive solution

ũλ ∈ [0, u] ∩ intC+ (see (4.31)).

From Proposition 3.1, it follows that

ũλ = uλ,

⇒ uλ ≤ u for all u ∈ Sλ.

��
Using this bound, we can prove the admissibility of λ∗.

Proposition 4.8 If hypotheses H0, H1 hold, then λ∗ ∈ L .

Proof Let {λn}n∈N ⊆ L such that λn ↑ λ∗. From Proposition 3.1, we know that uλ1 ≤
uλn for all n ∈ N. Also let ũn+1 ∈ Sλn+1 ⊆ intC+. On account of Proposition 4.7, we
have uλ1 ≤ ũn+1. Then we can introduce the Carathéodory function l̂n : � × R → R

defined by

l̂n(z, x) =

⎧⎪⎨
⎪⎩

λnuλ1(z)
−η(z) + f (z, x+) if x < uλ1(z)

λnx−η(z) + f (z, x) if uλ1(z) ≤ x ≤ ũn+1(z)

λnũn+1(z) + f (z, ũn+1(z)) if ũn+1(z) < x

. (4.32)

Weset L̂n(z, x) = ∫ x
0 l̂n(z, s) ds and consider theC1-functional χ̂n : W 1,p(z)

0 (�)→
R defined by

χ̂n(u) =
∫

�

1

p(z)
|Du|p(z) dz +

∫
�

1

q(z)
|Du|q(z) dz −

∫
�

L̂n(z, u) dz

for all u ∈ W 1,p(z)
0 (�).

From (4.32), we see that χ̂n(·) is coercive. Also it is sequentially weakly lower
semicontinuous. Hence we can find un ∈ W 1,p(z)

0 (�) such that

χ̂n(un) = min
[
χ̂n(u) : u ∈ W 1,p(z)

0 (�)
]
,

⇒ 〈χ̂ ′
n(un), h〉 = 0 for all h ∈ W 1,p(z)

0 (�). (4.33)
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If in (4.33) we use first the test function h = (uλ1 − un)+ ∈ W 1,p(z)
0 (�) and then

the test function h = (un − ũn+1)
+ ∈ W 1,p(z)

0 (�), then using (4.32) we obtain

un ∈ [uλ1 , ũn+1],
⇒ un ∈ Sλn ⊆ intC+ (see (4.32).).

Let ln : � × R → R be the Carathéodory function defined by

ln(z, x) =
{

λnuλ1(z)
−η(z) + f (z, x+) if x ≤ uλ1(z)

λnx−η(z) + f (z, x) if uλ1(z) < x
. (4.34)

Weset Ln(z, x) = ∫ x
0 ln(z, s) ds and consider theC1-functionalχn : W 1,p(z)

0 (�)→
R defined by

χn(u) =
∫

�

1

p(z)
|Du|p(z) dz +

∫
�

1

q(z)
|Du|q(z) dz −

∫
�

Ln(z, u) dz

for all u ∈ W 1,p(z)
0 (�).

From (4.32) and (4.34), we see that

χn

∣∣∣[0,̃un+1]
= χ̂n

∣∣∣[0,̃un+1]
, χ ′

n

∣∣∣[0,̃un+1]
= χ̂ ′

n

∣∣∣[0,̃un+1]
. (4.35)

Also we have

χ̂n(un) ≤ χ̂n(uλ1) ≤ 1

q−
[
ρp(Duλ1) + ρq(Duλ1)

] −
∫

�

λnu
1−η(z)
λ1

dz (since f ≥ 0)

≤ 1

q−
[
ρp(Duλ1) + ρq(Duλ1)

] −
∫

�

λ1u
1−η(z)
λ1

dz (since λ1 ≤ λn)

≤ 1

q−
[
ρp(Duλ1) + ρq(Duλ1)

] − [
ρp(Duλ1) + ρq(Duλ1)

]
(see Proposition 3.1)

< 0 (since 1 < q−).

Then, from (4.35) we have

χ ′
n(un) = 0 and χn(un) < 0 for all n ∈ N. (4.36)

As in Proposition 4.1 of Gasiński–Papageorgiou [8], from (4.36) we deduce that

un → u∗ in W 1,p(z)
0 (�),

⇒ 〈Ap(z)(u∗), h〉 + 〈Aq(z)(u∗), h〉 =
∫

�

[
λ∗u−η(z)∗ + f (z, u∗)

]
h dz

for all h ∈ W 1,p(z)
0 (�)
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and

uλ1 ≤ u∗.

Therefore u∗ ∈ Sλ∗ ⊆ intC+ and so λ∗ ∈ L . ��
So, we have proved that

L = (0, λ∗].

We can state the following bifurcation-type theorem about the positive solutions of
problem (Pλ).

Theorem 4.9 If hypotheses H0, H1 hold, then there exists λ∗ > 0 such that

(a) for all λ ∈ (0, λ∗) problem (Pλ) has at least two positive solutions u0, û ∈ intC+,
u0 �= û;

(b) for λ = λ∗ problem (Pλ) has at least one positive solution u∗ ∈ intC+;
(c) for all λ > λ∗ problem (Pλ) has no positive solutions.

5 Minimal Positive Solution

In this section, we show that for every λ ∈ L = (0, λ∗] problem (Pλ) has a smallest
positive solution u∗

λ ∈ intC+ (minimal - or barrier - positive solution) and we prove
the monotonicity and continuity properties of the map λ �→ u∗

λ.

Proposition 5.1 If hypotheses H0, H1 hold and λ ∈ L = (0, λ∗], then problem (Pλ)
has a smallest positive solution u∗

λ ∈ intC+ (that is, u∗
λ ≤ u for all u ∈ Sλ).

Proof From Papageorgiou–Rădulescu–Repovš [16] (see the proof of Proposition 7)
we have that Sλ is downward directed (that is, if u1, u2 ∈ Sλ, then we can find u ∈ Sλ

such that u ≤ u1, u ≤ u2). Invoking Lemma 3.10, p. 178, of Hu–Papageorgiou [12],
we can find a decreasing sequence {un}n∈N ⊆ Sλ ⊆ intC+ such that

inf Sλ = inf
n∈N un .

We have

uλ ≤ un ≤ u1 for all n ∈ N (see Proposition 4.7), (5.1)

〈Ap(z)(un), h〉 + 〈Aq(z)(un), h〉 =
∫

�

[
λu−η(z)

n + f (z, un)
]
h dz

for all h ∈ W 1,p(z)
0 (�), all n ∈ N. (5.2)

From (5.1) and (5.2), it follows that

{un}n∈N ⊆ W 1,p(z)
0 (�) is bounded. (5.3)
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From (5.3) and Proposition 2.2 (in particular the (S)+-property), we obtain

un → u∗
λ in W 1,p(z)

0 (�),

⇒ 〈Ap(z)(u
∗
λ), h〉 + 〈Aq(z)(u

∗
λ), h〉

=
∫

�

[
λ(u∗

λ)
−η(z) + f (z, u∗

λ)
]
h dz for all h ∈ W 1,p(z)

0 (�),

and

uλ ≤ u∗
λ.

Therefore we conclude that

u∗
λ ∈ Sλ ⊆ intC+ and u∗

λ = inf Sλ.

��
We consider the map λ �→ u∗

λ from L = (0, λ∗] into intC+. We will say that this
map is strictly increasing if 0 < λ < λ′ ≤ λ∗, then u∗

λ′ − u∗
λ ∈ intC+.

Proposition 5.2 If hypotheses H0, H1 hold, then minimal solution map λ �→ u∗
λ is

(a) strictly increasing;
(b) left continuous.

Proof (a) Let 0 < λ < λ′ ≤ λ∗. From Proposition 4.4, we know that we can find
uλ ∈ Sλ ⊆ intC+ such that u∗

λ′ − uλ ∈ intC+. Since u∗
λ ≤ uλ, it follows

that u∗
λ′ − u∗

λ ∈ intC+ and this proves that the minimal solution map is strictly
increasing.

(b) Let {λn}n∈N ⊆ L = (0, λ∗] such that λn → λ−. We have

u∗
λ1

≤ u∗
λn

≤ u∗
λ for all n ∈ N (see (a)), (5.4)

⇒ {u∗
λn

}n∈N ⊆ W 1,p(z)
0 (�). (5.5)

From (5.4) and the anisotropic regularity theory (see [22]), we have that
{u∗

λn
}n∈N ⊆ C1,α

0 (�) is bounded with α ∈ (0, 1) and C1,α
0 (�) = C1,α(�) ∩

C1
0(�). From the compact embedding of C1,α

0 (�) into C1
0(�), it follows that we

may assume that at least for a subsequence we have

u∗
λn

→ ũλ in C1
0(�).

Suppose ũλ �= u∗
λ. Then we can find z0 ∈ � such that

u∗
λ(z0) < ũλ(z0),

⇒ u∗
λ(z0) < u∗

λn
(z0) for all n ≥ n0,
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which contradicts (a). So, ũλ = u∗
λ and by Urysohn’s criterion for the convergence

of sequences, we infer that for the initial sequence we have

u∗
λn

→ u∗
λ in C1

0(�),

⇒ λ → u∗
λ is left continuous.

��
So,we can state the following theorem for theminimal positive solutions of problem

(Pλ).

Theorem 5.3 If hypotheses H0, H1 hold, then for every λ ∈ L = (0, λ∗] problem
(Pλ) has a smallest positive solution (minimal positive solution) u∗

λ ∈ intC+ and
the minimal solution map λ �→ u∗

λ from L into intC+ is strictly increasing and left
continuous.
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19. Rădulescu, V.D., Repovš, D.D.: Partial Differential Equations with Variable Exponents: Variational
Methods and Qualitative Analysis. CRC Press, Boca Raton (2015)

20. Repovš, D.D., Saoudi, K.: The Nehari manifold approach for singular equations involving the p(x)-
Laplace operator. Complex Var. Elliptic Equ. (2021). (in press)

21. Saoudi, K., Kratou,M., Alsadhan, S.:Multiplicity results for the p(x)-Laplacian equationwith singular
nonlinearities and nonlinear Neumann boundary condition. Int. J. Differ. Equ. 2016, 3149482 (2016)

22. Saoudi, K., Ghanmi, A.: A multiplicity result for a singular equation involving the p(x)-Laplace
operator. Complex Var. Elliptic. Equ. 62, 695–725 (2017)

23. Saoudi, K.: The fibering map approach to a p(x)-Laplacian equation with singular nonlinearities and
nonlinear Neumann boundary conditions. Rocky Mt. J. Math. 48(3), 927–946 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Positive Solutions for Anisotropic Singular Dirichlet Problems
	Abstract
	1 Introduction
	2 Mathematical Background: Hypotheses
	3 A Purely Singular Problem
	4 Positive Solutions
	5 Minimal Positive Solution
	References




