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Abstract
Given a vector optimization problem over spaces endowed with a topological linear 
structure, existence results for optima (efficient points) are known. Relying only on 
the linear structure, the set of properly efficient points from a convex set is proved to 
be nonempty and the sets of Proper efficient points and Pareto efficient points coin‑
cide, provided that the set of internal points picked from the corresponding cone is 
nonempty. This result is appealing since the scalarization of the vector optimization 
problem is valid without topological requirements. A As an important consequence, 
we provide the Second Welfare Theorem in vector lattices and especially in Leb‑
esgue spaces holds without topology.

Keywords Pareto efficient points · Proper efficienct points · Supporting 
hyperplanes · Welfare theorems

1  Motivation of the paper

In vector optimization problems dealing with the existence of efficient points x0 , one 
can consider a partially ordered vector space. We assume throughout the paper that 
any vector space is defined over the real numbers. Henceforth, we consider a vector 
space L, an ordering cone K ⊆ L and a constraint set A ⊆ L such that x ∈ (x0 − K) 
and x ∈ A would imply x = x0 , provided that the cone K is pointed. These are mini-
mal points of A, also called Pareto efficient points. A similar definition holds for 
maximal points, it suffices to consider minimal points with respect to the ordering 
cone −K . The general problem in vector optimization is to determine properties for 
the set of minimal points �(A,K) of A, with respect to the cone K. The scalarization 
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of such a problem is nothing but finding a linear functional f such that f (x) ⩾ f (x0) , 
for some x0 ∈ �(A,K) . Thus x0 is a solution to the linear programming problem 
given by minimizing f(x) subject to x ∈ A . When x0 ∈ �(A,K) is such that x0 solves 
the linear programming problem over A and f is a strictly positive linear functional, 
with respect to K, then x0 is a proper efficient point. The linear functional for which 
scalarization is provided relies on x0 itself. The definition of a strictly positive linear 
functional with respect to the cone K is given in the Appendix.

In most of the research devoted to Pareto efficient points, authors use topological 
properties either of the cone being used for real‑valued or vector minimization prob‑
lems, or topological properties of the vector space itself. Indeed the latter is either a 
locally convex topological vector space or some normed linear space. Thus, vector 
optimization problems involve questions about the (topological) interior points of 
the ordering cone. In this paper we show that algebraic interior points may replace 
topological interior points in studying vector optimization problems. This approach 
yields results similar or ‘stronger’ than ‘density results’ of the vector optimization 
problems. Density arguments generalize the Arrow‑Barankin‑Blackwell Theorem 
originally developed in finite dimensional spaces and prescribe how the set of Pareto 
efficient points or proper efficient points may be approximated by a suitable sub‑
set using the topological structure of the space being considered, see for example 
Gong [11]. or Ng and Zheng [15] and the references therein. Instead, our algebraic 
approach tied to convexity enables us to use The Eidelheit’s separation theorem 
as stated in [8] and to show equality between the set of Pareto efficient points and 
the set of proper efficient points. We apply our results to the special case of Leb‑
esgue spaces. Eventually we consider applications to optimal allocation in exchange 
economies.

2  Pareto efficient and proper efficient points

Here and throughout the paper we let L be a nonempty vector space. In the following 
we recall the definition of Pareto efficient and proper efficient points whenever L is 
endowed with some topology and A, K are its subsets.

Definition 2.1 A Pareto efficient point of a non‑empty set A, with respect to the 
cone K, is any x0 ∈ A such that (x0 − K) ∩ A = {x0} . The set of these points in A is 
denoted by �(A,K).

Definition 2.2 A proper efficient point of some A, with respect to the cone K, is 
any x0 ∈ A such that f (x) ⩾ f (x0), for every x ∈ A and f is a strictly positive func‑
tional, with respect to K. Namely, f (k) > 0 for any k ∈ K ⧵ {0} . The set of these 
points is denoted by ���(A,K).

The above definition of proper efficient points is due to Gong  [11]. A general 
version of the Arrow–Barankin–Blackwell Theorem for normed linear spaces is the 
following:
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Theorem 2.3 If K ⊆ L is a closed cone and A ⊆ L is non-empty convex and closed 
set, then �(A,K) ⊆ ���(A,K).

The finite dimensional version of the above theorem appears initially in Arrow 
et al. [6]. A seminal reference to the above result in normed linear spaces is con‑
tained in Borwein [7]. The notion of proper efficient points can be found in Geof‑
frion [10] as applied to the study of multi-criteria optimization problems. Positive 
’components’ akin to nonnegative Lagrange multipliers means that every con‑
straint condition cannot be omitted, otherwise they are binding and then may be 
discarded.

In the rest of the paper we relax the topological requirement for L and use 
its linear structure. The constrain set A ⊂ L is nonempty and K ⊆ L is a cone. 
We additionally need A to be convex. Further, for a vector optimization problem 
the determination of the optima in �(A,K) is understood, while its scalarization 
is achieved if for some x0 ∈ �(A,K) there exists some linear functional fx0 ∈ L� 
such that x0 ∈ ���(A,K) , where L′ is the algebraic dual of L. A systematic study 
of vector optimization problems in infinite dimensional spaces began with Bor‑
wein [7] as an attempt to determine the solution set �(A,K) . The motivation for 
using infinite dimensional spaces is the modeling of uncertainty, either for the 
values of the objective functional or for the constraint set. Other seminal works 
on the validity of the Arrow–Barankin–Blackwell Theorem are Fu [9], Jahn [12] 
and Petschke [16]. The assumptions of these papers are almost the same, and rely 
on the properties of a base for the cone K, which induces the partial ordering 
on K. We remind that a base for the cone K is some convex set B of the cone K, 
such that for any k ∈ K ⧵ {0} there exists a unique real number tk > 0 , such that 
tk ⋅ k ∈ B . t ⋅ x denotes the product between any vector x of L and some real num‑
ber t. In [11] the existence of a norm bounded base of the ordering cone implies 
the definition of a sequence of expansion cones, which are useful for the study 
of the efficient points of normed spaces. In [1] a similar approach is provided 
for characterizing proper efficiency by replacing the topological setting by the 
algebraic one. However, a solid cone should be defined in a suitable way. Since 
usually a cone K is called solid if the norm‑interior of the dual wedge K0 of K 
is nonempty, the algebraic analogue requires the existence of algebraic interior 
points in K0 . Indeed, in [17] algebraic notions replace the topological ones in the 
study of Pareto efficient points with respect to expansion cones.

3  Internal and interior points of a cone

In this section we prove that there exist classes of normed vector lattices in which 
a set of norm‑interior points of the ordering cone (inducing the lattice structure) 
is empty. On the other hand, the set of (algebraic) internal points of the cone is 
nonempty. If this is the case, internal points of vector lattices allow the use of 
the Eidelheit’s separation theorem. Henceforth, we specialize to Lebesgue spaces 
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Lp , namely Lp(Ω,F, �) , where 1 ⩽ p < +∞ and (Ω,F, �) is an atomless complete 
probability space. In particular, it supports distributions of random variables 
whose possible cardinal number is equal to that of the set of real numbers. We 
make use of the following sets (see Appendix 6):

• Ix = ∪∞
n=1

[−nx, nx] , the solid subspace generated by x ∈ L1 ⧵ {0} 
which is L1‑dense then yielding x as a quasi‑interior point, where 
[−nx, nx] = {y ∈ L1 ∣ nx ⩾ y ⩾ −nx} is an order interval for n ∈ ℕ;

• the principal ideal generated by x, Ex = {y ∈ L1 ∣ |y| ⩽ tx for some t > 0}.

The former definition relies on the norm topology, while the latter is purely alge‑
braic and depends on the lattice structure of L1.

Proposition 3.1 The set of norm-interior points of L1
+
 is empty.

Proof L1 is an infinite dimensional vector lattice, with respect to the pointwise par‑
tial ordering, then the conclusion arises from Jameson [13, Th.4.4.4].   ◻

Proposition 3.2 The set of quasi-interior points of L1
+
 is nonempty.

Proof Any x ∈ L1
+
 such that f (x) > 0 , for any f ∈ L∞

+
⧵ {0} , is a quasi‑interior point. 

This arises from Aliprantis and Border [2, Th.8.54], since the closure of a subspace 
of L1 under the weak topology and the norm‑closure of the same subspace do coin‑
cide. Now, it suffices to prove that Ix = Ex , where x ∈ L1

+
⧵ {0} . We notice that 

Ix ⊆ Ex . For the opposite inclusion, if y ∈ Ex , and n = [t] + 1 , then y ∈ [−nx, nx] , 
where [t] denotes the integer part of t.   ◻

Theorem 3.3 Any quasi-interior point x of L1
+
 is an internal point of L1

+
.

Proof If x ∈ L1
+
⧵ {0} is a quasi‑interior point of L1

+
 , then for any x0 ∈ L1 , there 

exists some sequence (xn)n∈ℕ lying in Ix , which is norm‑convergent to x0 . Hence, for 
some 𝜖 > 0 , there exists some n0(�) , such that ‖x0 − xn‖1 < 𝜖 , for any n ⩾ n0 = n0(�) , 
which also depends on x0 . Thus, −xn0 ∈ Ix and −xn0 ∈ [−kn0x, kn0x] for some kn0 ∈ ℕ . 
Now, we get x0 − xn0 ∈ x0 + [−kn0x, kn0x] . Henceforth, x0 + kn0x ∈ L1

+
 and 

X +
1

kn0

x0 ∈ L1
+
 . Since the order interval [−kn0x, kn0x] may be enlarged enough, just 

pick 𝛿(x0) =
1

kn0

> 0 such that x + tx0 ∈ L1
+
 , for any t ∈ ℝ , where |t| ⩽ 1

kn0

 and the 

proof is complete.   ◻

4  Vector optimization using internal points

In this section, we show how internal points of a cone affect scalarization of vec‑
tor optimization problems. First, we characterize proper efficient points of a convex 
constraint set A through internal points of the ordering cone K.
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Theorem 4.1 Given a vector space L and a convex subset A, let K ⊆ L be a cone 
whose algebraic interior is nonempty. If x0 ∈ A is such that A ∩ (x0 − K0) = ∅ , then 
x0 ∈ ���(A,K).

Proof Since (x0 − K0) = (x0 − K)0 ∩ A = ∅ , where K0 and (x0 − K)0 denote the 
internal points of K and x0 − K , respectively By Eidelheit’s separation theorem there 
exists some linear functional f ≠ 0 , lying in the algebraic dual L′ of L such that

where the supremum is not equal to −∞ , since A is nonempty. From the above 
separation inequality, we obtain that f (x0) − f (k) ⩾ f (x0) , for any k ∈ K . Hence, 
g = −f ∈ K0 . If we suppose that there exists some k0 ∈ K ⧵ {0} such that g(k0) > 0 
then nk0 ∈ K for any n ∈ ℕ , but this is a contradiction since the separation inequality 
is violated as far as n → +∞ . Hence, g is a strictly positive functional with respect 
to K. The separation inequality now implies that g(a) ⩾ g(x0) for any a ∈ A , namely 
x0 ∈ ���(A,K) .   ◻

Next, we state our main result in this section: using again convexity and internal 
points, optima are both properly efficient and Pareto efficient.

Theorem 4.2 Let L be a vector space and K ⊆ L be a cone whose algebraic inte-
rior is nonempty. For a convex constraint set A ⊆ L , ���(A,K) = �(A,K).

Proof Let us suppose that there exists some x1 ∈ �(A,K) , such that x1 is not 
an element of the nonempty set ���(A,K) . Therefore, A ∩ (x1 − K) = {x1} and 
(x1 − K)0 = (x1 − K0) , so we obtain that A ∩ (x1 − K0) = ∅ . Thus, we repeat the sep‑
aration argument in Theorem 4.1, which implies that x1 ∈ ���(A,K) ⊆ �(A,K) . This 
contradicts x1 ∉ ���(A,K) , hence x1 ∈ �(A,K) and this yields ���(A,K) = �(A,K) .  
 ◻

Finally, we apply our previous results to Lebesgue spaces.

Proposition 4.3 If L = Lp , where 1 ⩽ p < +∞ , then for any convex subset A of L, it 
holds ���(A,K) = �(A,K).

Proof Any quasi‑interior point is an algebraic interior point, if K = L
p

+ . The result is 
straightforward.   ◻

5  Implications in mathematical economics

In mathematical economics, a prominent topic is the study of Exchange Econ‑
omies, having a finite number of consumers i = 1,… , I . Infinite dimensional 
spaces are applied to accommodate uncertainty in economic phenomena. In par‑
ticular, infinite dimensional vector lattices have a widespread application, because 

inf{f (x0) − f (k) ∣ k ∈ K} ⩾ sup{f (a) ∣ a ∈ A},
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properties of vector lattices may replace the topological requirements used in the 
proof of existence results in welfare economics. These results rely on the order 
structure of vector lattices or other partially ordered linear spaces, without using 
the locally convex topological setting. The result presented in this paragraph is 
a part of this direction of study. The most important contributions in the same 
fashion are Aliprantis and Brown [4] and Aliprantis et al.  [5]. The last paper is 
devoted to partially ordered vector spaces, which possess the Riesz Decomposi‑
tion Property. A previous work, which is important since it is devoted to partially 
ordered spaces the prices of which lie in the topological dual of some vector lat‑
tice is [14].

Each consumer’s consumption set is L+ , which denotes the positive 
cone of some vector lattice having quasi‑interior points, such as Lp spaces. 
For this purpose 1 ⩽ p < +∞ . The endowment of consumers are denoted 
by �i ∈ L+ , for any i = 1,… , I . The utility function of any consumer is 
denoted by ui ∶ L+ → ℝ , for any i = 1,… , I . The set of allocations is the set 
A� = {x = (x1,… xI) ∈ (L+)

I�
∑I

i=1
xi =

∑I

i=1
�i = �} . The sets of utility improve‑

ment with respect to the allocation x are actually Ai = {x ∈ L+|ui(x) ⩾ ui(xi)} , 
for any i = 1,… , I . We suppose that Ai is convex for any x ∈ A� and for any 
i = 1,… , I.

Remark 5.1 We do not require additional topological structure of any Ai.

Now we show that every consumer’s bundle is indeed a proper efficient point 
with respect to the problem of maximizing utility in a Pareto optimal way.

Proposition 5.2 xi ∈ ���(Ai, L+) , for any i = 1,… , I.

Proof Since the set of quasi‑interior points of L+ is non‑empty, application of Theo‑
rem 4.1, Proposition 4 and Theorem 4.2 of the previous section provides the desired 
result.   ◻

Finally, we arrive to the following welfare allocation result.

Theorem 5.3 Every allocation is supported by a strictly positive price p.

Proof For any i = 1,… , I , the Proposition 5.2 implies that pi ⋅ yi ⩾ pi ⋅ xi , for any 
yi ∈ Ai and any i = 1,… , I . By letting p = ∨I

i=1
pi the conclusion arises.

Remark 5.4 Theorem 5.3 is a ‘version’ of the second fundamental theorem of welfare 
economics in infinite dimensional spaces. The standard form for finite dimensional 
spaces is for example in Aliprantis et al. [3, Th.1.6.10]. We assume that (Ω,F, �) is 
a complete atomless probability space supporting the commodity space Lp(Ω,F, �) , 
where 1 ⩽ p < ∞ , which is also partially ordered in the usual pointwise sense and 
this in turn induces its lattice structure, namely x ⩾ y if and only if x(�) ⩾ y(�) , 
for �‑almost every � . The lattice structure of L′ is given in the following way: If 
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h, g ∈ L� , then (h ∨ g)(x) = max{h(x), g(x)} and (h ∧ g)(x) = min{h(x), g(x)} , for any 
x ∈ L+.

6 Appendix: Partially ordered vector spaces

Let L be a vector space and let K ⊆ L be nonempty with K ≠ {0} . We call K a wedge 
of L if 

 (i) K + K ⊆ K,
 (ii) 𝜆K = {𝜆k ∣ k ∈ K} ⊆ K  , for any � ∈ ℝ+ , where �k denotes the product 

between the scalar � and the vector k.

If in addition K ∩ (−K) = {0} , where 0 is the zero vector of L, then K is a cone of L. 
We write −K = {x ∈ L ∣ −x ∈ K} for the negative of K. Sometimes a cone is men‑
tioned as pointed cone and a wedge is termed as cone. Any cone K induces a partial 
ordering on L as follows:

This can be written x ⩽K y . In the case K ≠ {0} , the partial ordering is reflexive, 
antisymmetric, transitive and compatible with the linear structure of L: 

(i) x ⩾ x for any x ∈ L;
(ii) If x ⩾ y and y ⩾ x , then x = y;
(iii) If x ⩾ y and y ⩾ z , then x ⩾ z;
(iv) If x ⩾ y , then �x ⩾ �y for any � ∈ ℝ+;
(v) If x ⩾ y , then x + z ⩾ y + z , for any z ∈ L.

If L′ is the algebraic dual of L, that is the vector space of all linear functionals of L, then

is called the polar wedge of K. For A ⊆ L a vector a ∈ A is an internal point of A 
if given some x ∈ L , there exists a real number 𝛿 > 0 such that a + �x ∈ A , for any 
� ∈ ℝ , with |�| ⩽ � . An internal point is often called algebraic interior point. Any 
f ∈ K0 is called a positive functional with respect to K. If K is a cone, then any 
f ∈ K0 , such that f (k) > 0 , if k ∈ K ⧵ {0} is called strictly positive, with respect to 
K. The set of all internal points of A is denoted by A0 . We recall the Eidelheit’s 
separation theorem: Suppose that C, D are convex subsets of L such that C0 ≠ ∅ and 
C0 ∩ D = ∅ . Then there is a non-zero functional f of L′ , such that

An order interval of the linear space L with respect to the partial ordering implied 
by the cone K is the set [a, b] = {x ∈ L ∣ b ⩾ x ⩾ a} = (a + K) ∩ (b − K) . If (L,⩾) 
is a partially ordered vector space where for each pair of vectors there exists a 

y ⩾ x if and only if y − x ∈ K.

K0 = {f ∈ L� ∣ f (x) ⩾ 0, x ∈ L}

inf
x∈C

f (x) ⩾ inf
z∈D

f (z).
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supremum in L, we call it a vector lattice. A subset S of the vector lattice L is solid 
if for any x ∈ S , such that y ∈ L and |y| ⩽ |x| , then y ∈ S . The solid subspace gener‑
ated by x ∈ L ⧵ {0} is defined as Ix = ∪∞

n=1
[−nx, nx] , where n ∈ ℕ . If L is a normed 

linear space and Ix is dense in L, then x is called quasi-interior point.
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