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Abstract. We study the influence of the baryon chemical potential µB on the properties
of the Quark–Gluon–Plasma (QGP) in and out-of equilibrium. The description of the
QGP in equilibrium is based on the effective propagators and couplings from the Dynamical
QuasiParticle Model (DQPM) that is matched to reproduce the equation-of-state of the partonic
system above the deconfinement temperature Tc from lattice Quantum Chromodynamics
(QCD). We calculate the transport coefficients such as the ratio of shear viscosity η and bulk
viscosity ζ over entropy density s, i.e., η/s and ζ/s in the (T, µB) plane and compare to other
model results available at µB = 0. The out-of equilibrium study of the QGP is performed within
the Parton–Hadron–String Dynamics (PHSD) transport approach extended in the partonic
sector by explicitly calculating the total and differential partonic scattering cross sections (based
on the DQPM propagators and couplings) evaluated at the actual temperature T and baryon
chemical potential µB in each individual space-time cell of the partonic scattering. The traces of
their µB dependences are investigated in different observables for relativistic heavy-ion collisions
with a focus on the directed and elliptic flow coefficients v1, v2 in the energy range 7.7 GeV
≤ √sNN ≤ 200 GeV.

1. Introduction
The phase diagram of matter is one of the most fascinating subjects in physics, which also has
important implications on chemistry and biology. Its phase boundaries and (possibly) critical
points have been the focus of physics research for centuries. Apart from the traditional phase
diagram in the plane of temperature T and pressure P , its transport properties like the shear
and bulk viscosities, the electric conductivity, etc., are also of fundamental interest. These
transport coefficients emerge from the stationary limit of correlators and provide additional
information on the systems in thermal and chemical equilibrium apart from the equation of
state (EoS). In particular the phase diagram (PD) of strongly interacting matter has been the
topic of interest for the last decades and substantial experimental and theoretical efforts have
been invested to shed light on this issue. The PD contains the information about the properties
of our universe from the early beginning—directly after the Big Bang—when the matter was in
the quark-gluon plasma (QGP) phase at very high temperature T and practically zero baryon
chemical potential µB, to the later stages of the universe, where in the expansion phase stars
and Galaxies have been formed. Here, the matter is at low temperature, however, large baryon
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chemical potential. Relativistic and ultra-relativistic heavy-ion collisions (HICs) nowadays offer
the unique possibility to study some of these phases, in particular a QGP phase and its phase
boundary to the hadronic one. We point out that the phase diagram of strongly interacting
matter in the (T, µB) plane can also be explored in the astrophysical context at moderate
temperatures and high µB [1], i.e. in the dynamics of supernovae or—more recently—in the
dynamics of neutron-star merges.

In case of relativistic heavy-ion collisions one generates hot and dense matter in the laboratory
although within small space-time regions. Whereas in low energy collisions one produces dense
nuclear matter with moderate temperature T and large baryon chemical potential µB, ultra-
relativistic collisions at Relativistic Heavy Ion Collider (RHIC) or Large Hadron Collider (LHC)
energies produce extremely hot matter at small baryon chemical potential. In order to explore
the phase diagram of strongly interacting matter as a function of T and µB both type of collisions
are mandatory. According to lattice calculations of quantum chromodynamics (lQCD) [2, 3, 4, 5],
the phase transition from hadronic to partonic degrees of freedom (at vanishing baryon chemical
potential µB=0) is a crossover. This transition is expected to turn into a first order transition
at some critical point (Tr, µcr) in the phase diagram with increasing baryon chemical potential
µB. Since this critical point cannot be determined theoretically in a reliable way the beam
energy scan (BES) program at RHIC aims to find the critical point and the phase boundary
by gradually decreasing the collision energy [6, 7]. Furthermore, new facilities such as FAIR
(Facility for Antiproton and Ion Research) and NICA (Nuclotron-based Ion Collider fAcility)
are under construction to explore in particular the intermediate energy regime where one might
study also the competition between chiral symmetry restoration and deconfinement as suggested
in Refs. [8, 9].

Current methods to explore QCD in Minkowski space for non-vanishing quark (or baryon)
densities (or chemical potential) are effective approaches. Using effective models, one can study
the properties of QCD in equilibrium, i.e., thermodynamic quantities as well as transport
coefficients. To this aim, the dynamical quasiparticle model (DQPM) has been introduced
[10, 11, 12, 13, 14], which is based on partonic propagators with sizeable imaginary parts of
the self-energies incorporated. Whereas the real part of the self-energies can be attributed to a
dynamically generated mass (squared), the imaginary parts contain the information about the
interaction rates of the degrees-of-freedom. Furthermore, the imaginary parts of the propagators
define the spectral functions of the ’particles’ which might show narrow (or broad) quasiparticle
peaks. A further advantage of a propagator based approach is that one can formulate a consistent
thermodynamics [15] as well as a causal theory for non-equilibrium configurations on the basis
of Kadanoff–Baym equations [16].

Since relativistic heavy-ion collisions start with impinging nuclei in their groundstates, a
proper non-equilibrium description of the entire dynamics through possibly different phases up
to the final asymptotic hadronic states—eventually showing some degree of equilibration—is
mandatory. To this aim, the Parton–Hadron–String Dynamics (PHSD) transport approach
[13, 17, 18, 19, 20] has been formulated more then a decade ago (on the basis of the Hadron-
String-Dynamics (HSD) approach [21]), and it was found to well describe observables from
p+A and A+A collisions from SPS to LHC energies including electromagnetic probes such as
photons and dileptons as well as open cham hadrons [13, 22, 23]. In order to explore the partonic
systems at higher µB, the PHSD approach has been recently extended to incorporate partonic
quasiparticles and their differential cross sections that depend not only on temperature T as
in the previous PHSD studies, but also on chemical potential µB explicitly [24]. Within this
extended approach we have previously studied the ‘bulk’ observables in HICs from AGS to RHIC
energies for symmetric and asymmetric systems. However, we have found only a small influence
of µB dependences of parton properties (masses and widths) and their interaction cross sections
in the bulk observables [24].
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In this contribution we extend our study with respect to the collective flow (v1, v2) coefficients
for different identified hadrons and their sensitivity to the µB dependences of partonic cross
sections.

2. The PHSD Approach
We start with recalling the basic ideas of the PHSD transport approach and the dynamical
quasiparticle model (DQPM). The Parton–Hadron–String Dynamics (PHSD) transport
approach [13, 17, 18, 19, 20] is a microscopic off-shell transport approach for the description
of strongly interacting hadronic and partonic matter in and out-of equilibrium. It is based
on the solution of Kadanoff–Baym equations in first-order gradient expansion [18] employing
‘resummed’ propagators from the DQPM [10, 11, 12] for the partonic phase. The DQPM,
furthermore, has been introduced in Refs. [10, 11, 12] for the effective description of the QGP
in terms of strongly interacting quarks and gluons with properties and interactions which are
adjusted to reproduce lQCD results for the equilibrated QGP at finite temperature T and
baryon (or quark) chemical potential µB. In the DQPM, the quasiparticles are characterized by
single-particle Green’s functions (in propagator representation) with complex self-energies. The
real part of the self-energies is related to the dynamically generated parton masses (squared),
whereas the imaginary part provides information about the lifetime and/or reaction rates of the
degrees-of-freedom.

In PHSD, the partons (quarks and gluons) are characterized by broad spectral functions
ρj (j = q, q̄, g) and thus are off-shell contrary to the conventional cascade or transport
models dealing with on-shell particles, i.e., the δ-functions in the invariant mass squared. The
quasiparticle spectral functions are assumed to have a Lorentzian form [13], which are specified
by the parton masses and width parameters:

ρj(ω,p) =
γj
Ej

(
1

(ω − Ej)2 + γ2
j

− 1

(ω + Ej)2 + γ2
j

)
(1)

separately for quarks/antiquarks and gluons (j = q, q̄, g). With the convention E2(p2) =
p2 +M2

j − γ2
j , the parameters M2

j and γj are directly related to the real and imaginary parts of

the retarded self-energy, e.g., Πj = M2
j − 2iγjω.

The actual parameters in Eq. (1), i.e. the gluon mass Mg and width γg—employed as input
in the present PHSD calculations—as well as the quark mass Mq and width γq, are depicted in
Fig. 1 as a function of the temperature T and baryon chemical potential µB (from Ref. [25]).
These values for the masses and widths have been fixed by fitting the lattice QCD results from
Ref. [26, 27] in thermodynamic equilibrium. One can see that the masses of quarks and gluons
decrease with increasing µB, and a similar trend holds for the widths of these partons.

A scalar mean-field Us(ρs) for quarks and antiquarks can be defined by the derivative of the
potential energy density with respect to the scalar density ρs(T, µB),

Us(ρs) =
dVp(ρs)

dρs
, (2)

which is evaluated numerically within the DQPM. Here, the potential energy density is defined
by

Vp(T, µB) = T 00
g−(T, µB) + T 00

q−(T, µB) + T 00
q̄−(T, µB), (3)

where the different contributions T 00
j− correspond to the space-like part of the energy-momentum

tensor component T 00
j of parton j = g, q, q̄ (cf. Section 3 in Ref. [11]). The scalar mean-field

Us(ρs) for quarks and antiquarks is repulsive as a function of the parton scalar density ρs and
shows that the scalar mean-field potential is in the order of a few GeV for ρs > 10 fm−3. The
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Figure 1. The effective quark (left) and gluon (right) masses M (upper row) and widths γ
(lower row) from the actual DQPM as a function of the temperature T and baryon chemical
potential µB [25].

mean-field potential (2) is employed in the PHSD transport calculations and determines the
force on a partonic quasiparticle j, i.e., ∼ Mj/Ej∇Us(x) = Mj/Ej dUs/dρs ∇ρs(x), where the
scalar density ρs(x) is determined numerically on a space-time grid in PHSD.

Furthermore, a two-body interaction strength can be extracted from the DQPM as well from
the quasiparticle widths in line with Ref. [10]. On the partonic side, the following elastic and
inelastic interactions are included in the latest version of PHSD (v. 5.0) qq ↔ qq, q̄q̄ ↔ q̄q̄,
gg ↔ gg, gg ↔ g, qq̄ ↔ g, qg ↔ qg, gq̄ ↔ gq̄ exploiting ’detailed-balance’ with cross sections
calculated from the leading order Feynman diagrams employing the effective propagators and
couplings g2(T/Tc) from the DQPM [24]. In Ref. [24], the differential and total off-shell cross
sections have been evaluated as a function of the invariant energy of colliding off-shell partons

√
s

for each T , µB. We recall that in the previous PHSD studies (using version 4.0 and below) the
cross sections depend only on T (cf. the detailed evaluation in Ref. [28]). When implementing
the differential cross sections and parton masses into the PHSD5.0 approach, one has to specify
the ’Lagrange parameters’ T and µB in each computational cell in space-time. This has been
done by employing the lattice equation of state and a diagonalization of the energy-momentum
tensor from PHSD as described in Ref. [24].

The transition from partonic to hadronic degrees-of-freedom (and vice versa) is described by
covariant transition rates for the fusion of quark–antiquark pairs or three quarks (antiquarks),
respectively, obeying flavor current–conservation, color neutrality as well as energy–momentum
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conservation [19]. Since the dynamical quarks and antiquarks become very massive close to the
phase transition, the formed resonant ’prehadronic’ color-dipole states (qq̄ or qqq) are of high
invariant mass, too, and sequentially decay to the groundstate meson and baryon octets, thus
increasing the total entropy during hadronization.

On the hadronic side, PHSD includes explicitly the baryon octet and decouplet, the 0−- and
1−-meson nonets as well as selected higher resonances as in the Hadron–String–Dynamics (HSD)
approach [21]. Note that PHSD and HSD (without explicit partonic degrees-of-freedom) merge
at low energy density, in particular below the local critical energy density εc ≈ 0.5 GeV/fm3 as
extracted from the lQCD results in Ref. [26, 27].

3. Transport Coefficients
The transport properties of the QGP close to equilibrium can be characterized by various
transport coefficients. The shear viscosity η and bulk viscosity ζ describe the fluid’s dissipative
corrections at leading order. Both coefficients are generally expected to depend on the
temperature T and baryon chemical potential µB. In the hydrodynamic equations, the viscosities
appear as dimensionless ratios, η/s and ζ/s, where s is the fluid entropy density. Such specific
viscosities are more meaningful than the unscaled η and ζ values because they describe the
magnitude of stresses inside the medium relative to its natural scale.

In our recent studies [24, 29, 30], we have investigated the transport properties of the QGP in
the (T, µB) plane based on the DQPM. One way to evaluate the viscosity coefficients of partonic
matter is the Kubo formalism [31, 32, 33, 34], which was used to calculate the viscosities for
a previous version of the DQPM within the PHSD transport approach in a box with periodic
boundary conditions in Ref. [35] as well as in the more recent study with the DQPM model in
Refs. [24, 29]. Another way to calculate transport coefficients (explored also in [24, 29]) is to
use the relaxation–time approximation (RTA) as incorporated in Refs. [36, 37, 38, 39].

The shear viscosity based on the RTA (cf. [40]) reads as:

ηRTA(T, µq) =
1

15T

∑
i=q,q̄,g

∫
d3p

(2π)3

p4

E2
i

τi(p, T, µ) di(1± fi)fi, (4)

where dq = 2Nc = 6 and dg = 2(N2
c − 1) = 16 are degeneracy factors for spin and color in case

of quarks and gluons , whereas τi are relaxation times for particles i. Equation (4) includes the
Bose enhancement and Pauli-blocking factors, respectively, which are taken into account in the
actual calculations. The pole energy is E2

i = p2 + M2
i , where Mi is the pole mass from the

DQPM. The notation
∑

j=q,q̄,g includes the contribution from all possible partons which in our
case are the gluons and the (anti-)quarks of three different flavors (u, d, s).

We consider two cases for the relaxation time for quarks and gluons: (1) τi(p, T, µ) =
1/Γi(p, T, µ) and (2) τi(T, µ) = 1/2γi(T, µ), where Γi(p, T, µ) is the parton interaction rate,
calculated microscopically from the collision integral using the differential cross sections for
parton scattering from Ref. [24], while γi(T, µ) are the width parameters in the parton
propagators (1).

In the left part of Fig. 2 we show the ratio of the shear viscosity to entropy density as a
function of the scaled temperature T/Tc for µB = 0 calculated within the Kubo formalism (green
solid line) and RTA approach with the interaction rate Γon (red solid line) and the DQPM width
2γ (dashed green line). The RTA approximation (4) of the shear viscosity with the DQPM width
2γ and with the interaction rate Γon are quite close to each other at µB = 0 and also very close
to the result from the Kubo formalism [24] indicating that the quasiparticle limit (γ �M) holds
in the DQPM.

The ratio η/s increases with the scaled temperature. The actual values for the ratio η/s are
in a good agreement with the gluodynamic lattice QCD calculations at µB = 0 from Ref. [42].
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Figure 2. (lhs): the ratio of shear viscosity to entropy density η/s as a function of the
scaled temperature T/Tc for µB = 0 calculated within the Kubo formalism (green solid line)
and the RTA approach with the interaction rate Γon (red solid line) and the DQPM width 2γ
(dashed green line). The dashed gray line demonstrates the Kovtun–Son–Starinets bound [41]
(η/s)KSS = 1/(4π), and the symbols show lQCD data for pure SU(3) gauge theory taken
from Ref. [42] (pentagons). The solid blue line shows the results from a Bayesian analysis
of experimental heavy-ion data from Ref. [44]. (rhs): the ratio of the bulk viscosity to entropy
density ζ/s as a function of the scaled temperature T/Tc for µB = 0 calculated using the RTA
approach with the on-shell interaction rate Γon (red solid line) and the DQPM width 2γ (dashed
green line). The symbols correspond to the lQCD data for pure SU(3) gauge theory taken
from Refs. [43] (pentagons) and [45] (circles). The solid blue line shows the results from a
Bayesian analysis of experimental heavy-ion data from Ref. [44]. The dot-dashed and dashed
lines correspond to the results from the non-conformal holographic model for φM = 2 and 3,
correspondingly, from Ref. [47].

Moreover, our DQPM results are in qualitative agreement with the results from a Bayesian
analysis of experimental heavy-ion data from Ref. [44]. We mention that the DQPM result
differs from the recent calculations for the shear viscosity at µB = 0 in the quasiparticle model
in Ref. [46] where the width of quasiparticles is not considered, which leads to a higher value for
the η/s ratio. This shows the sensitivity of this ratio to the modelling of partonic interactions
and the properties of partons in the hot QGP medium. We recall also that in Refs. [24, 29, 30] we
have found that the ratio η/s shows a very weak dependence on µB and has a similar behavior
as a function of temperature for all µB ≤ 400 MeV.

The expression for the bulk viscosity in the partonic phase - derived within the RTA - reads
(following Ref. [38])

ζRTA(T, µ) =
1

9T

∑
i=q,q̄,g

∫
d3p

(2π)3
τi(p, T, µ)

di(1± fi)fi
E2

i

(
p2 − 3c2

s

(
E2

i − T 2dm
2
i

dT 2

))2

, (5)

where c2
s is the speed of sound squared, and

dm2
i

dT 2 is the DQPM parton mass derivative which
becomes large close to the critical temperature Tc.

On the right side of Fig. 2 we show the ratio of the bulk viscosity to entropy density ζ/s as
a function of the scaled temperature T/Tc for µB = 0 calculated by the RTA approach with the
interaction rate Γon (red solid line) and the DQPM width 2γ (dashed green line). The symbols
correspond to the lQCD data for pure SU(3) gauge theory taken from Refs. [43] (pentagons)
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and [45] (circles). The solid blue line shows the results from a Bayesian analysis of experimental
heavy-ion data from Ref. [44]. The dot-dashed and dashed lines correspond to the results from
the non-conformal holographic model [47] for φM = 2 and 3, correspondingly, where φM is the
model parameter which characterizes the non-conformal features of the model. We find that the
DQPM result for ζ/s is in good agreement with the lattice QCD results and shows a rise closer to
Tc contrary to the holographic results, which show practically a constant behavior independent
of model parameters. This rise is attributed to the increase of the partonic mass closer to TC
as shown in Figure 1, thus the mass derivative term in Eq. (5) also grows. The Bayesian result
also shows a peak near TC ; however, the ratio drops to zero while lQCD data indicate a positive
ζ/s as found also in the DQPM. The explicit µB dependence of ζ/s has been investigated within
the DQPM in Refs. [24, 29, 30], where it has been shown that it is rather weak for µB ≤ 400
MeV.

As follows from hydrodynamical calculations, the results for the flow harmonics vn are
sensitive to the transport coefficients [44, 48, 49, 50]. Thus, there are hopes to observe a µB
sensitivity of v1, v2. We will study this sensitivity in the following Section.

4. Heavy-Ion Collisions
In our recent study [24] we have investigated the sensitivity of ’bulk’ observables such as rapidity
and transverse momentum distributions of different hadrons produced in heavy-ion collisions
from AGS to top RHIC energies on the details of the QGP interactions and the properties of
the partonic degrees-of-freedom. For that, we have considered the following three cases:

(1) ‘PHSD4.0’: the masses and widths of quarks and gluons depend only on T . The cross
sections for partonic interactions depend only on T as evaluated by the ‘box’ calculations in
Ref. [28] in order to merge the QGP interaction rates from all possible partonic channels to the
total temperature dependent widths 2γi of the DQPM propagator. This has been used in the
PHSD code (version 4.0 or below) for extended studies of many hadronic observables in p+A
and A+A collisions at different energies [13, 17, 18, 19, 20, 51] with good success.

(2) ‘PHSD5.0 - µB = 0’: the masses and widths of quarks and gluons depend only on T ;
however, the differential and total partonic cross sections are obtained by calculations of the
leading order Feynman diagrams employing the effective propagators and couplings g2(T/Tc)
from the DQPM at µB = 0 [24]. Thus, the cross sections depend explicitly on the invariant
energy of the colliding partons

√
s and on T . This is realized in the PHSD5.0 by setting µB = 0

(cf. [24]).
(3) ‘PHSD5.0 - µB’: the masses and widths of quarks and gluons depend on T and µB

explicitly; the differential and total partonic cross sections are obtained by calculations of the
leading order Feynman diagrams from the DQPM and explicitly depend on invariant energy

√
s,

temperature T and baryon chemical potential µB. This is realized in the full version of PHSD5.0
(cf. [24]).

The comparison of the ’bulk’ observables for A+A collisions within the three cases of PHSD
in Ref. [24] has illuminated that they show a very low sensitivity to the µB dependences of
parton properties (masses and widths) and their interaction cross sections such that the results
from PHSD5.0 with and without µB were very close to each other. Only in the case of kaons,
antiprotons p̄ and antihyperons Λ̄ + Σ̄0, a small difference between PHSD4.0 and PHSD5.0
could be seen at top SPS and top RHIC energies. A similar trend has been found for very
asymmetric collisions of C+Au: a small sensitivity to the partonic scatterings was found in the
kaon and antibaryon rapidity distributions, too. This can be understood as following: at high
energies such as top RHIC where the QGP volume is very large in central collisions, the µB
is very low, while, when decreasing the bombarding energy (or increasing µB) the fraction of
the QGP is decreasing such that the final observables are dominated by the hadronic phase,
i.e., the probability for the hadrons created at the QGP hadronization to rescatter, decay, or be
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Figure 3. Directed flow of identified hadrons as a function of rapidity for Au+Au collisions at√
sNN = 27 GeV for PHSD4.0 (green lines), PHSD5.0 with partonic cross sections and parton

masses calculated for µB = 0 (blue dashed lines) and with cross sections and parton masses
evaluated at the actual chemical potential µB in each individual space-time cell (red lines) in
comparison to the experimental data of the STAR Collaboration [52].

absorbed in hadronic matter increases strongly; as a result the sensitivity to the properties of
the QGP is washed out.

4.1. Directed Flow
We here test the traces of µB dependences of the QGP interaction cross sections in collective
observables such as the directed flow v1 considering again the three cases for the PHSD as
discussed above. We directly report about the actual PHSD results. Fig. 3 depicts the directed
flow v1 of identified hadrons (K±, p, p̄,Λ + Σ0, Λ̄ + Σ̄0) versus rapidity for Au+Au collisions
at
√
sNN = 27 GeV. One can see a good agreement between PHSD results and experimental

data from the STAR collaboration [52]. However, the different versions of PHSD for the v1

coefficients show a quite similar behavior; only antihyperons indicate a slightly different flow.
This supports again the finding that strangeness, and in particular anti-strange hyperons, are
the most sensitive probes for the QGP properties. Surprizingly, PHSD4.0 performs better for
the directed flows of hadrons than PHSD5.0 with the microscopic differential partonic cross
sections.
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4.2. Elliptic Flow
Hydrodynamic simulations [49, 50] and the Bayesian analysis [44] indicate that the elliptic flow
v2 is sensitive to the transport properties of the QGP as characterized by transport coefficients
such as shear η and bulk ζ viscosities. In this subsection we present the results for the elliptic
flow of charged hadrons from HICs within the PHSD5.0 with and without µB dependence and
compare the results with those from PHSD4.0 as before.

In Fig. 4 we display the elliptic flow v2 of identified hadrons (K±, p, p̄,Λ + Σ0, Λ̄ + Σ̄0) as
a function of pT at

√
sNN = 27 GeV for PHSD4.0 (green lines), PHSD5.0 with partonic cross

sections and parton masses calculated for µB = 0 (blue dashed lines) and with cross sections
and parton masses evaluated at the actual chemical potential µB in each individual space-
time cell (red lines) in comparison to the experimental data of the STAR Collaboration [53].
Similar to the directed flow shown in Figure 3, the elliptic flow from all three cases for PHSD
shows a rather similar behavior; the differences are very small (within the statistics achieved
here). Only antiprotons and antihyperons show a small decrease of v2 at larger pT for PHSD5.0
compared to PHSD4.0, which can be attributed to the explicit

√
s-dependence and different

angular distribution of partonic cross sections in the PHSD5.0. We note that the underestimation
of v2 for protons and Λ’s might be attributed to the details of the hadronic vector potentials
involved in this calculations which seem to underestimate the baryon repulsion.
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Figure 4. Elliptic flow of identified hadrons (K±, p, p̄,Λ + Σ0, Λ̄ + Σ̄0) as a function of pT for
Au+Au collisions at

√
sNN = 27 GeV for PHSD4.0 (green lines), PHSD5.0 with partonic cross

sections and parton masses calculated for µB = 0 (blue dashed lines) and with cross sections
and parton masses evaluated at the actual chemical potential µB in each individual space-time
cell (red lines) in comparison to the experimental data of the STAR Collaboration [53].
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5. Conclusions
In this contribution we have reported on the influence of the baryon chemical potential µB on the
properties of the QGP in equilibrium as well as the QGP created in heavy-ion collisions initially
also far from equilibrium. For the description of the QGP we have employed the extended
Dynamical QuasiParticle Model (DQPM) that is matched to reproduce the lQCD equation-of-
state (versus temperature T ) at zero and finite baryon chemical potential µB. The DQPM results
for transport coefficients, such as shear viscosity η and bulk viscosity ζ, have been compared
to available lQCD data, the non-conformal holographic model at µB = 0 and with results from
a Bayesian analysis of experimental heavy-ion data. We find that the ratios η/s and ζ/s from
the DQPM agree very well with the lQCD results from Ref. [43] and show a similar behavior as
the ratio obtained from a Bayesian fit [44]. As found previously in Refs. [24, 29] the transport
coefficients show only a mild dependence on µB.

Our study of the non-equilibrium QGP—as created in relativistic heavy-ion collisions—
has been performed within the extended Parton–Hadron–String Dynamics (PHSD) transport
approach [24] in which i) the masses and widths of quarks and gluons depend on T and µB
explicitly; ii) the partonic interaction cross sections are obtained by the leading order Feynman
diagrams from the DQPM effective propagators and couplings and explicitly depend on the
invariant energy

√
s, temperature T and baryon chemical potential µB. This extension is realized

in the version PHSD5.0 [24]. In order to investigate the traces of the µB dependence of the QGP
in observables, the results of PHSD5.0 (with µB dependences) have been compared to the results
of PHSD5.0 for µB = 0 as well as with PHSD4.0, where the masses/widths of quarks and gluons
as well as their interaction cross sections depend only on T (as specified in Ref. [28]).

Since the sensitivity (w.r.t. the µB-dependence) of hadronic rapidity and pT distributions
of identified hadrons for symmetric and asymmetric heavy-ion collisions from AGS to RHIC
energies was found to be very low [24, 29] we have focused on the related sensitivity of the
collective flow of hadrons. As a characteristic example we have shown (i) the directed flow v1 of
identified hadrons and (ii) the elliptic flow v2 of identified hadrons for Au+Au collisions at the
invariant energy

√
sNN = 27 GeV. We find only very small differences between the results from

PHSD4.0 and from PHSD5.0 on the hadronic flow observables at high as well as at intermediate
energies. This is related to the fact that at high energies, where the matter is dominated by
the QGP, one probes only a small baryon chemical potential in central collisions at midrapidity,
while with decreasing energy (and larger µB) the fraction of the QGP drops rapidly, such that in
total the final observables are dominated by the hadronic interactions and thus the information
about the partonic properties and scatterings is washed out. We have shown that the mild µB
dependence of QGP interactions is more pronounced in observables for strange hadrons (kaons
and especially anti-strange hyperons) which provides an experimental hint for the search of µB
traces of the QGP for experiments at the future FAIR/NICA facilities and the BESII program
at RHIC.
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