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Abstract: Diabetes mellitus (DM) is a complex and multifactorial disease characterised by high blood
glucose. Type 2 Diabetes (T2D), the most frequent clinical condition accounting for about 90% of all
DM cases worldwide, is a chronic disease with slow development usually affecting middle-aged or
elderly individuals. T2D represents a significant problem of public health today because its incidence
is constantly growing among both children and adults. It is also estimated that underdiagnosis
prevalence would strongly further increase the real incidence of the disease, with about half of
T2D patients being undiagnosed. Therefore, it is important to increase diagnosis accuracy. The
current interest in RNA molecules (both protein- and non-protein-coding) as potential biomarkers
for diagnosis, prognosis, and treatment lies in the ease and low cost of isolation and quantification
with basic molecular biology techniques. In the present study, we analysed the transcriptome in
serum samples collected from T2D patients and unaffected individuals to identify potential RNA-
based biomarkers. Microarray-based profiling and subsequent validation using Real-Time PCR
identified an uncharacterised long non-coding RNA (lncRNA) transcribed from the ASAP1 locus as a
potential diagnostic biomarker. ROC curve analysis showed that a molecular signature including the
lncRNA and the clinicopathological parameters of T2D patients as well as unaffected individuals
showed a better diagnostic performance compared with the glycated haemoglobin test (HbA1c). This
result suggests that the application of this biomarker in clinical practice would help to improve the
diagnosis, and therefore the clinical management, of T2D patients. The proposed biomarker would
be useful in the context of predictive, preventive, and personalised medicine (3PM/PPPM).

Keywords: ncRNAs; diabetes; diagnosis; T2D; biomarkers; predictive preventive personalised
medicine (3PM/PPPM)

1. Introduction

Diabetes mellitus (DM) is a complex and multifactorial disease characterised by high
glucose levels in the blood. Hyperglycaemia may be caused by the loss of insulin secretion
by pancreatic β-cells or insulin resistance acquired by body tissues; it is also possible that
both processes coexist and contribute to disease onset [1]. Type 2 Diabetes (T2D) represents
the most frequent clinical condition, accounting for about 90% of all DM cases worldwide.
It is a chronic disease with slow development usually affecting middle-aged or elderly
individuals, typically deriving from insulin resistance or defects in insulin secretion. T2D
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develops slowly, frequently showing no symptoms and being undiagnosed in the early
phase; when manifest, symptoms include excessive thirst and hunger (polydipsia and
polyphagia), polyuria, and weight loss. Insulin secretion is progressively impaired and
often aggravates a pre-existent condition of insulin resistance occurring in the liver, skeletal
muscle, and adipose tissue [1,2].

T2D represents a significant problem of public health today because its incidence is
constantly growing among both children and adults. This increase is caused by several
factors, among which are the extension of life expectancy, the “epidemy of obesity” associ-
ated with a sedentary lifestyle and excessive or imbalanced nutrition. It is also estimated
that the prevalence of underdiagnosis would strongly further increase the real incidence of
the disease, with about half of T2D patients being undiagnosed [2,3]. The scenario is exac-
erbated by the serious clinical complications deriving from DM, traditionally associated
with the macro- and micro-vascular system, such as coronary heart disease, heart failure,
stroke, peripheral arterial disease, diabetic kidney disease, retinopathy, and peripheral
neuropathy. Clinical management of DM patients has recently been improved, leading to a
longer life expectancy associated with these complications; however, this has also revealed
the emergence of new pathological states associated with DM, including, among others,
cancer, liver disease, cognitive disability, and infections [4]. Predictive preventive person-
alised medicine (3PM/PPPM) would allow for the improvement of clinical management
and, consequently, induce benefits in the healthcare system and overall quality of life in
society [5–7]. The principles of 3PM would also improve the management of T2D com-
plications, such as diabetic retinopathy [8,9]. For these reasons, it is important to increase
diagnosis accuracy by identifying the disease in its early stages. Currently, DM diagnosis
is based on hyperglycaemia measured under different conditions: fasting plasma glucose
test (FPG) ≥ 126 mg/dL; 2 h oral glucose tolerance test (OGTT) ≥ 200 mg/dL; glycated
haemoglobin test (HbA1c) ≥ 6.5%; and random plasma glucose test ≥ 200 mg/dL [10].
Prediabetes is defined as a condition of risk for T2D development, characterised by in-
creased levels of glycaemia and HbA1c compared to normal values, but still lower than
T2D diagnosis reference values. Prediabetic patients are highly heterogeneous both in
pathophysiology and clinical manifestations [1,2].

In the last decades, research on diagnostic biomarkers has focused particularly on
non-coding RNAs (ncRNAs), which have been widely investigated in several biological
fluids of patients affected by many different diseases [11–14]. Reports have also shown
the application of ncRNAs as diagnostic biomarkers in DM and DM-associated complica-
tions [15–23]. The use of circulating nucleic acids as biomarkers agrees with the principles
of 3PM [24], because of the application of innovative techniques with a diagnostic or pre-
dictive purpose [25]. The importance of ncRNAs in physiology and diseases is widely
accepted. These molecules are able to regulate crucial processes within cells but are also
actively secreted as mediators of cell-to-cell communication participating in disease onset
and progression. Specifically, ncRNAs are a heterogeneous class of transcripts that do not
undergo translation that can be classified according to their length into long non-coding
RNAs (lncRNAs), from 200 nucleotides up to kilobases, and small ncRNAs, ranging from a
few to 200 nucleotides. LncRNAs also include circular RNAs (circRNAs), a particular class
of transcripts with extremities covalently bound creating a circular structure. LncRNAs
have a wide range of functions, including epigenetic regulation at different levels. Among
small ncRNAs, the most studied class is microRNAs (miRNAs), endogenous transcripts
with a size of 18–25 nucleotides acting as negative regulators of gene expression at the
post-transcriptional level [26]. The current interest in RNA molecules (both coding and
non-coding) as potential biomarkers for diagnosis, prognosis, and treatment lies in the
ease and low cost of isolation and quantification with basic molecular biology techniques.
Quantification is particularly easy and low cost according to the chosen biological fluid:
blood is among the best fluids to analyse because of its easy and low-cost collection, and
low impact on the patient in terms of invasiveness, pain, and side effects. The present
study aimed to analyse the transcriptome in serum samples collected from T2D patients
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and unaffected individuals to identify potential RNA-based biomarkers useful for T2D
diagnosis. Such analysis allowed us to select RNA molecules, including both protein- and
non-protein-coding RNA molecules, to be potentially applied in clinical practice.

2. Results
2.1. Profiling of Serum Samples from T2D Patients and CTRL Individuals

The microarray analysis performed with the Clariom D Pico assay compared the tran-
scriptome of 12 T2D patients and 12 CTRL individuals. Results were obtained by applying
two statistical approaches (TAC and MeV software, as described in Section 4 “Materials
and Methods”). Data were then filtered according to fluorescence intensity, selecting only
transcripts showing high-intensity values to ensure signal detection in validation analysis.
This profiling analysis showed 5876 DE transcripts, among which 2127 (36.2%) were upreg-
ulated and 3749 (63.8%) downregulated (p-value < 0.05, FC < −1.4 or FC > 1.4) (Figure 1).
Intensity values for all 24 samples are available in supplementary materials.
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Figure 1. Results of microarray analysis of serum samples from T2D patients and CTRL individuals.
(A) Scatter plot showing log2-transformed fluorescence intensity values of DE transcripts; (B) volcano
plot showing p-value vs. FC for each DE transcript. Coloured dots represent DE transcripts (p < 0.05),
where red is upregulation (FC > 1.4) and green is downregulation (FC < −1.4). (C) Hierarchical
clustering of T2D and CTRL samples according to the expression of DE transcripts reported as
fluorescence intensity (p-value < 0.005).

A subset of DE transcripts was selected for the following validation step. In particular,
profiling results were filtered to focus attention on the most promising potential biomarkers
for T2D diagnosis. Filtering was performed by selecting transcripts expressed in both DM
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and CTRL groups and showing the most significant p-values, the strongest FCs, and the
highest fluorescence intensities. We also removed from the list of potential biomarkers
those transcripts with short sequences (<100 nucleotides) or encoded by loci sited in low
complexity or repeated regions of the genome. Finally, we selected 17 DE transcripts for
validation analysis (Table 1).

Table 1. DE transcripts identified by Clariom D profiling. The TAC ID, the gene symbol (if available),
the mapping chromosome, and the fold change with the associated p-value are shown for each
transcript.

TAC ID Gene Symbol Chromosome FC p-Value

TC0100009744 neelybu chr1 −2.42 1.19 × 10−5

TC0800008985 chr8 −2.62 3.82 × 10−5

TC0100013004 RP4-680D5.2 chr1 1.62 4.25 × 10−5

TC1700010637 KRT26 chr17 1.87 6.92 × 10−5

TC1600006522 feyzu chr16 −1.82 8.84 × 10−5

TC1800006511 chr18 −1.54 9.72 × 10−5

TC0900008473 chr9 −2 0.0001
TC1600008350 chr16 −1.76 0.0001
TC0800011832 chr8 −1.59 0.0002
TC0900007337 chr9 −1.92 0.0002
TC0X00007972 chrX −1.95 0.0002
TC0500010990 CTC-498J12.1 chr5 −4.46 0.0003
TC1000007406 chr10 −4.06 0.0003
TC1700011697 CD300LB chr17 −1.42 0.0003
TC2100008031 chr21 −1.43 0.0003
TC1900008595 chr19 −1.25 0.0017

2.2. Validation of Profiling Results by Real-Time PCR Single Assays

Specific PCR primers were designed for each DE transcript. PCR primers were first
tested on a small group of samples to verify if a fluorescence signal was detectable in
Real-Time PCR. Four transcripts gave no amplification signal detectable in Real-Time
PCR and were consequently removed from the analysis. According to the results, the
expression of 13 transcripts was evaluated in an independent cohort of 72 individuals (35
T2D vs. 37 CTRL). Results confirmed the significant downregulation of TC0800011832
according to both endogenous controls (Table 2). All Ct and Tm values are available in the
supplementary materials.

Table 2. Results of Real-Time PCR validation. For each transcript, identified with the TAC ID and the
gene symbol (if available), the FC obtained in microarray analysis is shown, together with the median
fold change from validation and the associated p-value (between brackets) for each endogenous
control (GAPDH and RNU6). Significant values are highlighted in bold.

TAC ID Gene Symbol FC Profiling GAPDH RNU6

TC0100013004 RP4-680D5.2 1.62 1.02 (0.28) −1.11 (0.94)
TC0500010990 CTC-498J12.1 −4.46 1.1 (0.65) −1.04 (0.78)
TC0800008985 −2.62 1.02 (0.78) −1.10 (0.46)
TC0800011832 −1.59 −1.49 (0.034) −1.54 (0.006)
TC0900007337 −1.92 1.08 (0.46) −1.05 (0.72)
TC0900008473 −2 −1.33 (0.32) −1.21 (0.13)
TC1000007406 −4.06 −1.07 (0.35) −1.21 (0.62)
TC1600006522 feyzu −1.82 1.12 (0.21) −1.01 (0.65)
TC1600008350 −1.72 −1.08 (0.58) −1.22 (0.14)
TC1700011697 CD300LB −1.42 1 (0.65) −1.14 (0.61)
TC1800006511 −1.54 −1.07 (0.76) −1.21 (0.55)
TC1900008595 −1.25 1.00 (0.25) −1.18 (0.66)
TC2100008031 −1.43 −1.07 (0.39) −1.26 (0.13)



Int. J. Mol. Sci. 2023, 24, 13485 5 of 14

The association of all analysed transcripts with clinicopathological parameters was
evaluated by correlation analysis. No significant correlation was observed between the
transcripts (both deregulated and not) and the clinicopathological features of the study
participant after correcting p-values for multiple comparisons (Figure 2). On the other hand,
a highly significant positive correlation of expression was observed among not-deregulated
transcripts (Figure 2). Differences among pathological groups were evaluated to assess
the presence of confounding factors among clinicopathological parameters that would
have affected our analysis. The only significant difference was related to glycosylated
haemoglobin, which, as expected, was significantly higher in T2D patients compared to
CTRL individuals (p-value < 0.0001).
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2.3. ROC Curves

Aiming to identify potential diagnostic biomarkers for T2D, the diagnostic accuracy of
the validated DE transcript was evaluated by computing ROC curves. A univariable ROC
curve was computed for TC0800011832, the only significantly deregulated transcript, show-
ing an AUC inferior to 0.7 with both endogenous controls (GAPDH and RNU6) (Table 3,
Figure 3). This value suggests a poor diagnostic performance (about 70% accuracy) for
TC0800011832 as a diagnostic biomarker for T2D. In light of this result, we also computed
ROC curves for multiple combinations of biomarkers, as it is known that a signature of
biomarkers improves diagnostic accuracy compared to single biomarkers [27]. These mul-
tivariable ROC curves were computed considering: (i) all analysed transcripts (even if
not deregulated); (ii) all available clinicopathological data; (iii) the combination of the DE
transcript/all transcripts and clinicopathological data. All results are shown in Table 3 and



Int. J. Mol. Sci. 2023, 24, 13485 6 of 14

Figure 3. Clinicopathological data showed excellent diagnostic performance (AUC = 0936),
driven especially by HbA1c, which increased the AUC from 0.777 to 0.973 (Supplementary
Table S1). A very similar performance was observed for the combination of TC0800011832
and clinicopathological parameters with both endogenous controls. Interestingly, the diag-
nostic performance further increased when the signature included all analysed transcripts,
as well as the ones that were not DE. This result suggests that combining expression data
and clinicopathological parameters commonly used in clinical practice would improve
the diagnosis of T2D. All ROC curves computed considering several combinations of
transcripts and clinicopathological parameters are shown in Supplementary Table S1. The
multivariable ROC curves including all transcripts/clinicopathological parameters showed
a better performance than the ROC curves built considering only the DE transcript and
HbA1c, which are the only biomarkers showing significant differences among the two
pathological groups.

Table 3. Results of ROC curve analysis. Univariable and multivariable ROC curve data are reported:
the p-value, the AUC, its standard error (Std error), and 95% CIs are shown for each computed curve;
sensitivity, specificity, accuracy, PPV, and NPV are also shown. For univariable ROC curves, the ∆Ct
cut-off discriminating T2D and CTRL is shown.

Variables TC0800011832 Clinical
Data

TC0800011832 + Clinical
Data All Transcripts All Transcripts + Clinical

Data

Endogenous control GAPDH RNU6 / GAPDH RNU6 GAPDH RNU6 GAPDH RNU6
AUC 0.649 0.692 0.973 0.972 0.975 0.71 0.723 1 1

Std error 0.067 0.065 0.02 0.021 0.02 0.062 0.06 0 0
p-value 0.034 0.006 7.34 × 10−9 1.34 × 10−8 6.59 × 10−9 0.002 0.001 1.75 × 10−9 9.95 × 10−10

95% CI min 0.517 0.565 0.933 0.93 0.936 0.59 0.605 1 1
95% CI max 0.781 0.819 1 1 1 0.831 0.84 1 1

Cut-off 4.588 2.116 / / / / / / /
Accuracy 0.68 0.7 0.94 0.94 0.94 0.66 0.65 1 1

Sensitivity 47.06 73.53 0.94 0.94 0.94 0.60 0.6 1 1
Specificity 88.57 66.67 0.95 0.95 0.95 0.72 0.7 1 1

PPV 0.8 0.68 0.97 0.97 0.97 0.68 0.66 1 1
NPV 0.63 0.73 0.91 0.9 0.91 0.65 0.65 1 1
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3. Discussion

Biomarkers measured in blood (or derivative fluids) represent a very advantageous
instrument for the clinical management of patients. Biomarkers can be used to diagnose a
disease, evaluate the prognosis, or estimate treatment response. The great advantage of
blood biomarkers is the ease of collection of the blood sample, with no or very low pain or
side effects for the patient. Blood allows the analysis of biomarkers originating from all
regions of the human body and is a source of molecules with diverse chemical compositions
such as proteins, nucleic acids, and lipids. Among the available biomarkers, RNA molecules
are presently regarded as among the most favourable choices. This is due to their ease of
isolation from blood samples (serum or plasma) and the feasibility of analysis using simple
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molecular biology methods, all at a minimal cost. Concerning analysis, the gold standard
technique is PCR, with all its variants, which can evaluate expression levels of transcripts
with high sensitivity. Accordingly, we investigated the transcriptomic profiles of serum
samples from T2D patients and unaffected individuals aiming to identify new potential
diagnostic biomarkers for T2D. In this study, we applied a common experimental plan
consisting of a discovery phase, performed with a high-throughput microarray technique,
followed by a validation step on a larger independent cohort aiming at confirming the
results of the profiling analysis.

The Clariom D Pico assay evaluates transcriptomic profiles (including several classes
of RNA molecules, both coding and non-coding) in clinical samples. This platform rep-
resents a valuable approach for identifying RNA-based biomarkers useful as diagnostic
and prognostic tools. Moreover, the Pico assay is particularly suitable for the analysis
of biological fluids because it requires a very low input mass of total RNA, which is of-
ten isolated from fluidic samples in very low quantities. Indeed, some reports analysed
biofluids from humans for this purpose [28–33]. In this study, we performed transcrip-
tomic analysis through the Clariom D platform on 24 samples obtained from 12 T2D
patients and 12 unaffected individuals. According to our double approach for statistical
analysis, we identified a set of DE transcripts, which were further tested for their poten-
tial application as diagnostic biomarkers for T2D. Validation using Real-Time PCR was
performed on a larger cohort of 72 patients (35 T2D vs. 37 CTRL), confirming the signif-
icant downregulation of the transcript identified by the TAC ID TC0800011832. Aiming
to characterise this transcript, we used the Blat tool within the UCSC Genome Browser
(https://genome.ucsc.edu/cgi-bin/hgBlat?command=start, accessed on 28 June 2023) to
identify the locus of the human genome from which TC0800011832 is transcribed. The
results showed a 100% sequence identity with the locus encoding for ASAP1 (ArfGAP
with SH3 domain, ankyrin repeat and PH domain 1) on chromosome 8; specifically, the
TC0800011832 coding sequence overlapped the region including part of the fourth in-
tron, the entire fifth exon, and part of the fifth intron of the ASAP1 transcript variant 3
(NM_001362924.1) (Figure 4).
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and ncRNAs from the NONCODE database.

ASAP1 encodes an ADP-ribosylation factor (ARF) GTPase-activating protein involved
in cytoskeleton dynamics and remodelling by direct binding with actin [34]. Accordingly,
an oncogenic role in different cancer models was proposed for ASAP1, involved in tumour
motility, invasiveness, and adhesiveness, finally leading to metastasis [35]. The role of
ASAP1 in DM is not clear; however, some evidence showed a potential association with
the disease. Increased expression of ASAP1 mRNA was observed in the adipose tissue of
obese (ob/ob) and diabetic (db/db) mice compared with wild-type animals, suggesting
its involvement in adipogenesis [36]. Another study showed that loss of ASAP1 expres-
sion resulted in delayed growth, ossification, and adipocyte development, reducing fat
depot [37]. Decreased mRNA expression was also observed in the kidneys of diabetic mice
(KK/Ta) [38]. The SNP rs10956514 lying in the coding sequence of ASAP1 is associated
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with susceptibility to tuberculosis [39] and also moderately associated with T2D (but not
with Type 1 Diabetes) risk [40]. There is a link between DM and the cytoskeleton, as a
correct organisation of filamentous actin (F-actin) in pancreatic β cells is required for insulin
secretion [41]. Moreover, insulin mediates cytoskeleton remodelling in podocytes of obese
insulin-resistant rats [42], suggesting that this association is conserved in different cell types.
Among DM-induced complications, diabetic cardiomyopathy may derive from an aberrant
spatial organisation of F-actin in cardiomyocytes, inducing cell stiffness [43]. It was re-
ported that hyperglycaemia increased the expression of contractile smooth muscle markers
(at both mRNA and protein levels) in vascular smooth muscle cells in vitro; however, these
were also present in hyperglycaemic mice and in diabetic patients in vivo, and increased
glucose levels also induced actin polymerisation. This observation may contribute to the hy-
percontractile phenotype acquired by the vascular smooth muscle of diabetic patients and
animal models [44]. Looking at the discussed evidence, we may speculate an involvement
of ASAP1 in DM pathogenetic mechanisms. Further studies will be required to evaluate
the effective role of ASAP1 in disease-related processes. By querying the NONCODE
database (http://noncode.org/, accessed on 28 June 2023), we identified three uncharac-
terised ncRNAs (namely NONHSAT217652.1, NONHSAT217653.1, NONHSAT217654.1)
partially overlapping the sequence of TC0800011832 (Figure 4). According to NONCODE,
NONHSAT217653.1, and NONHSAT217654.1 are expressed as circulating RNAs in the exo-
somes from the blood of normal individuals; this evidence is congruent with the decreased
expression observed in T2D patients compared with unaffected individuals.

In the perspective of applying the transcript TC0800011832 as a diagnostic biomarker
for T2D, we evaluated its performance by computing ROC curves. The univariable ROC
curve showed poor diagnostic accuracy, thus we evaluated different signatures of multiple
biomarkers to assess if the diagnostic performance would have improved. First of all, we
considered a signature including all analysed transcripts. Despite 12 out of 13 transcripts
showing unchanged expression between T2D patients and CTRL individuals, the signature
including all of them together with TC0800011832 showed better diagnostic performance,
as shown by the AUC value. This is coherent with the observation that signatures of
multiple biomarkers perform better than single biomarkers. Similarly, multivariable ROC
curves based on the clinicopathological parameters collected from all study participants
showed a higher AUC value when compared with the univariable ROC curve built on
HbA1c (Supplementary Table S1). Accordingly, the best combination of biomarkers was the
one including all analysed transcripts and clinicopathological data, reaching the maximum
AUC value. This result suggests that combining a currently used biomarker such as Hb1Ac
may improve the accuracy of T2D diagnosis. Further studies are needed to investigate the
efficacy of such signatures in large and multicentric cohorts of patients, strengthening the
role of these signatures in 3PM.

4. Materials and Methods
4.1. Patient Recruitment

This study was conducted according to the Declaration of Helsinki and was approved
by the Institutional Review Board of the University of Catania. Written informed consent
was obtained from each study participant. A total of 96 individuals were recruited for
this study. Serum samples from 24 individuals represented the discovery set, while 72
were analysed as the validation set. The total cohort included 47 patients affected by T2D
and 49 unaffected individuals as controls (CTRL). All individuals were aged between
50 and 65, were not affected by systemic pathologies, including cancer, autoimmune
and neurodegenerative diseases, and had no history of myocardial infarction or stroke.
Inclusion criteria for T2D patients were: (I) diagnosis according to blood glucose levels
(random blood glucose ≥ 200 mg/dL and/or fasting blood glucose ≥ 126 mg/dL), and/or
HbA1c ≥ 6.5% (48 mmol/mol); (II) absence of diabetes-associated complications including
nephropathy, neuropathy, and retinopathy. The clinicopathological parameters of the study
participants are shown in Table 4. The statistical power of this study was evaluated by
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G*Power 3.1 (Universität Düsseldorf, Düsseldorf, Germany): a power of 0.6 and an effect
size of 0.8 were estimated for profiling analysis on 24 samples, while a power of 0.7 and an
effect size of 0.5 were calculated for validation on 72 samples.

Table 4. Clinicopathological parameters of the entire cohort of 96 individuals divided into patho-
logical groups (T2D and CTRL). Data are presented as average ± standard deviation. BMI: body
mass index; AST: aspartate transaminase; ALT: alanine transaminase; PLT: platelet count; HDL:
high-density lipoprotein; LDL: low-density lipoprotein; HbA1c: haemoglobin A1c; uACR: urine
albumin-creatinine ratio; WBC: white blood cells; HCT: haematocrit test.

Parameter T2D CTRL
Age 59.3 ± 8.3 55.8 ± 9.4

Sex (M:F) 31:16 27:22
BMI 28.1 ± 5.5 27.6 ± 5.1

Height (m) 1.66 ± 0.09 1.68 ± 0.09
Weight (kg) 77.5 ± 16.8 77.7 ± 17.9
Waist (cm) 99.3 ± 14.3 89 ± 21.7
AST (IU/L) 27.2 ± 11.5 28.4 ± 10.4
ALT (IU/L) 34 ± 25.2 30.4 ± 17.9

PLT/µL 227,131.9 ± 73,568 234,042.6 ± 52,032.4
Total cholesterol (mg/dL) 179.2 ± 34.5 197.5 ± 29.3

HDL (mg/dL) 52.8 ± 11.1 55.3 ± 14.1
LDL (mg/dL) 100.7 ± 29.9 116.3 ± 34.2

Triglycerides (mg/dL) 128.3 ± 68.8 123 ± 88
Uric acid (mg/dL) 5 ± 1.2 5.1 ± 1.8

HbA1c (%) 7.2 ± 1.1 5.6 ± 0.3
Creatinine (mg/dL) 0.7 ± 0.1 0.8 ± 0.1

Urinary albumin (mg/mL) 16.1 ± 18 15 ± 13.1
uACR 15.4 ± 18.3 17.1 ± 14.9

WBC/µL 7330 ± 2323.4 6522.9 ± 1931.5
HCT (%) 43.2 ± 6 43.5 ± 3.5

4.2. Serum Sample Processing

Peripheral blood was collected from study participants in the morning by venous sam-
pling into separator collection tubes containing a clot activator and gel for serum separation
as additives (BD Biosciences, Franklin Lakes, NJ, USA). Serum was separated from blood
according to the current procedures for clinical samples [45]. Samples were incubated at
room temperature and processed within a maximum of two hours from collection. Serum
was obtained by centrifugation at 2000× g at 4 ◦C for 15 min; the resulting supernatant was
centrifuged again under the same conditions to ensure the elimination of potential contam-
inant blood cells. The obtained serum samples were aliquoted in RNase- and DNase-free
tubes and stored at −80 ◦C until analysis. Serum samples were analysed with a Multiscan
Ascent microplate reader spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) at
λ = 414 nm, setting an absorbance value <0.2 as cut-off [46], to distinguish haemolysed
from non-haemolysed sera. Haemolysed samples were not included in the cohort.

4.3. Total RNA Isolation

Total RNA was isolated from serum using the miRNeasy Serum/Plasma mini kit
(Qiagen, Hilden, Germany). Briefly, 800 µL serum was lysed with 5 volumes of Qiazol and
processed according to the manufacturer’s instructions. Glycogen (Thermo Fisher Scientific,
Waltham, MA, USA), 10 µg, was added to each sample lysate to increase RNA yield. RNA
quantification was performed by Nanodrop 1000 (Thermo Fisher Scientific). Total RNA
was finally eluted in 30 µL RNase-free water and stored at −80 ◦C until analysis.

4.4. Microarray Analysis

Whole transcriptome analysis was performed on 24 serum samples including 12 T2D
patients and 12 unaffected CTRLs. Analysis was performed using the Clariom D Pico
Assay (Thermo Fisher Scientific), a technology that analyses the expression of more than
540,000 transcripts, both coding and non-coding, including mRNAs, circRNAs, lncRNAs,
and miRNA precursors, as well as other small RNAs. The Pico Assay is optimised for
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loading a very low input of total RNA, making this platform suitable for serum sam-
ples, where low yields of RNA are frequent. The same approach had been previously
applied to circulating RNA [28,29]. Specifically, 10 ng total RNA was retrotranscribed in
single-stranded cDNA containing the T7 promoter sequence at the 5′ end. We synthe-
sised 3′ double-stranded cDNA by adding an adaptor as a template; the pre-IVT (in vitro
transcription) amplification reaction was optimised with 12 cycles of amplification. The
double-stranded DNA was used as a template for antisense RNA synthesis and overnight
amplification (14 h) by IVT, using T7 RNA polymerase. Approximately 20 µg of purified
cRNA were used for sense single-strand cDNA (ss-cDNA) synthesis, followed by RNase
H digestion and ss-cDNA magnetic bead purification. Approximately 5.5 µg ss-cDNA
was fragmented using uracil DNA-glycosylase (10 U/µL) and apurinic/apyrimidinic en-
donuclease 1 (1000 U/µL) and then labelled with biotin using terminal deoxynucleotidyl
transferase (30 U/µL). From the hybridisation cocktail, 200 µL of the obtained mixture
were loaded into a single human Clariom D 49-format array and incubated for 16 h in the
Affymetrix GeneChip Hybridization Oven 645 at 45 ◦C, 60 rpm. Arrays were stained using
an Affymetrix GeneChip Fluidics Station 450, according to the specific fluidics protocol
(FS450_0001), and scanned with an Affymetrix GeneChip Scanner 3000 7G. Raw intensity
CEL files generated by GeneChipTM Command ConsoleTM were imported into the Tran-
scriptome Analysis Console (TAC) 4.0 (Applied Biosystems, Waltham, MA, USA) and CHP
files were generated for gene-level analysis. Differentially expressed (DE) transcripts were
identified as described in “Statistical analysis”.

4.5. Validation in Real-Time PCR

Validation analysis was performed in an independent cohort of 72 individuals (35 T2Ds
vs. 37 CTRLs) using Real-Time PCR. Specific PCR primers for the seventeen candidate
biomarkers were designed with PrimerBlast (https://www.ncbi.nlm.nih.gov/tools/primer-
blast/, accessed on 28 June 2023). Two different transcripts were used as endogenous con-
trols, namely GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and RNU6 (RNA,
U6 small nuclear 1); only those transcripts showing differential expression according to
both endogenous controls were considered significantly deregulated. All primer sequences
are reported in Table 5. PCR reactions were performed on a 7900HT Fast Real-Time
PCR System using a Power SYBR® Green RNA-to-CtTM 1-Step Kit (Thermo Fisher Scien-
tific) [47]. DE transcripts were identified using SDS RQ Manager 2.4 software by applying
the 2−∆∆Ct method, and differential expression was expressed as RQ (Relative Quantity);
RQ values < 1 were converted into fold change (FC) values by applying the formula−1/RQ.

Table 5. PCR primers used for validation of profiling results.

Transcript Forward Primer Reverse Primer

CD300LB CAACAGCAAGCTCACCTACCA GTAGGGGCAGGAGAAAGAACC
CTC-498J12.1 GCACTATTGATTCCTGCCCCA CCTGGCCCCAACAAACTACA

feyzu CCCGAGCTGGCTGAGACATA TCATCAACACGCACCTCTGC
GAPDH TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATGAG
KRT26 GCCAGAAATGAGCTGACCGAAT TCAGTCTCAGCCAAGGAGCATT

neelybu CAACCTAGTCCCGTTGAACACA ACACCAGAGGCTGGGTATTGA
RNU6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT

RP4-680D5.2 GCAAGAAAGTGGGGGCTGAG CTGCCCGGTAATGCTTCCTG
TC0800008985 CTGCATGGGGGCAGTAAGTG CTGTTCCACCCCTCCAGACT
TC0800011832 TCCACACTGCTGAAAAATCTGGT CCAAGGATTGAGGGGGAAGGA
TC0900007337 TGTAGCATCACCTGGGAGGG GGTGTGGTGTTTTGTGCAGC
TC0900008473 AAGCCTCCTACCCTGCCAAT TCCAGGTGAGGTGACTTGCT
TC0X00007972 TGTCCCCACATCACTCACTGG GGCAGGTCACAATGGGGTATTC
TC1000007406 ACGAATAGCCCCATCAGGGA AGAGCACATTGCACGCAGG
TC1100010184 AAAGGTGCCAAAGAAAAGGCAG TGAAAGCCAGAAAATAGCCACCT
TC1600008350 GTAAGGGCTTCAGGCTGCTTC GCAAACCCCAACTCCGCTT
TC1800006511 CACCCACATTCCATACAGCCTT GCAGGGCACCATGAGAAGTAA
TC1900008595 GCAGAAAGGCTTGTGGCTTCA TCTTCACACTGCTCTCCCTTACG
TC2100008031 TCCCTAACGCACCTCTTGCT TGAGGAAACTGAGGGCACCA

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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4.6. Evaluation of Diagnostic Accuracy

The diagnostic accuracy of DE transcripts was evaluated by ROC (receiver operating
characteristic) curve analysis [28,48]. Specifically, we computed univariable and multivari-
able ROC curves to investigate the diagnostic accuracy of each DE transcript considered as
a single biomarker or combinations of variables including expression data (∆Cts) and/or
clinicopathological parameters, aiming to find the best biomarker or signature for T2D
diagnosis. All curves were computed using SPSS 23 (IBM, Armonk, New York, NY, USA).
For each ROC curve, the area under the curve (AUC), 95% confidence intervals (CIs), and
p-value were calculated; the Youden method was applied to identify the optimal cut-off,
with the associated sensitivity, specificity, accuracy, positive predictive value (PPV), and
negative predictive value (NPV). For multivariable curves, binary logistic regression mod-
els were built and predicted values were used as input data for ROC curve computation;
sensitivity, specificity, accuracy, PPV, and NPV were calculated using confusion matrixes
and predicted grouping generated by the regression model. Statistical significance was
established at a p-value < 0.05 for all ROC curves.

4.7. Statistical Analysis

Statistical analysis of profiling data was performed as previously described [28]. DE
transcripts were identified with two different statistical approaches. First, the software
TAC 4.0.2.15 was used with the following settings: Analysis Type: Expression Gene; Sum-
marisation Method: Gene Level–RMA. Gene-Level p-Value < 0.05 ANOVA Method: ebayes.
Simultaneously, the software MeV (Multi Experiment Viewer) v4.9.0 was used by applying
Significance of Microarrays Analysis (SAM); unpaired tests were performed among ∆Cts
using a p-value based on 100 permutations; imputation engine: K-nearest neighbours
(10 neighbours); false discovery rate (FDR) < 0.05. Results from the two approaches were
compared, selecting common transcripts for the next validation step. PCR data were
analysed using GraphPad Prism 8 (Dotmatics, Boston, MA, USA). First, expression data
(∆Cts) were tested for normality of distributions (Anderson–Darling test, D’Agostino and
Pearson omnibus normality test, Shapiro–Wilk normality test, and Kolmogorov–Smirnov
test) and homogeneity of variance (F test); distributions were considered parametric only if
all the applied tests gave not significant p-values. According to the results, a parametric
(homoscedastic or Welch corrected unpaired t-test) or non-parametric (Mann–Whitney test)
test was applied to identify statistically significant DE transcripts. The same approach
was used to identify statistically significant differences in clinicopathological parameters
among the two pathological groups to identify potential confounding factors. To eval-
uate the potential relationship between transcripts and clinicopathological parameters,
correlation analysis was performed by calculating the Pearson or Spearman correlation coef-
ficient, according to the normality of distributions; the p-values associated with correlation
coefficients were corrected for multiple comparisons (Holm–Sidak method).

5. Conclusions

This study identified a new potential biomarker for T2D diagnosis in the transcript
TC0800011832 coded by the ASAP1 locus. Although HbA1c represents an optimal biomarker
for T2D diagnosis, our data show that the signature of biomarkers including both expres-
sion data and clinicopathological parameters may increase diagnostic accuracy, improving
the clinical management of patients. The patients enrolled in this study had recently
been diagnosed and therefore had not been treated for the disease. As discussed in the
Introduction, the need for early diagnosis of T2D is urgent. We propose TC0800011832
(in combination with clinicopathological parameters) as a potential biomarker for early
diagnosis of T2D. Prospective studies will determine if this biomarker may be used as a
prognostic risk factor for the onset of T2D and applied in the context of 3PM.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms241713485/s1.
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