
Università degli Studi di Catania

Dottorato di ricerca in Ingegneria dei Sistemi

Energetica, Informatica e delle Telecomunicazioni

Angelo Marchese

Orchestrating applications

on the Cloud-to-Edge continuum

Supervisor: Prof. Orazio Tomarchio

XXXVI Cycle

Contents

1 The Cloud-to-Edge continuum 9

1.1 Cloud computing . 10

1.2 Edge computing . 15

1.3 Orchestration of Cloud-Edge architectures 17

2 Kubernetes 21

2.1 Design principles . 21

2.2 Kubernetes architecture . 22

2.3 Kubernetes objects . 25

2.4 Kubernetes scheduler . 28

2.5 Kubernetes descheduler . 32

2.6 Kubernetes controllers and operators 34

2.7 Kubernetes in the Edge . 36

3 Motivation and state of the art 39

3.1 Kubernetes infrastructure and application models 39

3.2 Kubernetes limitations . 44

3.3 Kubernetes extension proposals 47

3

4 Sophos framework 51

4.1 Overall design . 51

4.2 Cluster monitoring operator 56

4.3 Application topology modeling 59

4.4 Application monitoring operator 62

4.5 Custom scheduler . 66

4.6 Custom descheduler . 72

5 Evaluation 74

5.1 Application and test bed environment 74

5.2 Experiments and results . 80

4

List of Figures

1.1 Cloud computing architecture 10

1.2 Map of Microsoft Azure data centers 12

1.3 Edge computing architecture 14

2.1 Kubernetes architecture . 23

2.2 Kubernetes scheduler . 29

2.3 Kubernetes operator . 35

3.1 Kubernetes infrastructure model 40

3.2 Kubernetes application model 42

4.1 Overall architecture . 55

4.2 Cluster monitoring operator 57

4.3 Relationship types hierarchy 61

4.4 Application monitoring operator 63

5.1 Sock Shop application . 75

5.2 Sock Shop application TOSCA service template 76

5.3 Test bed environment . 78

5.4 Experiments results (Scenario 1) 80

5

5.5 Experiments results (Scenario 2) 81

5.6 Experiments results (Scenario 3) 81

5.7 Experiments results (Scenario 4) 82

5.8 Experiments results (Scenario 5) 82

6

Abstract

Orchestrating modern distributed microservices applications presents chal-

lenges due to the increasing complexity of these applications and their time-

sensitive requirements. The combination of Cloud and Edge Computing

paradigms attempts to avoid their pitfalls while taking the best of both

worlds: cloud scalability and compute closer to the edge where data is typ-

ically generated. However, placing microservices in such heterogeneous en-

vironments while meeting QoS constraints is a challenging task due to the

geo-distribution of nodes and varying computational resources. In particular,

Edge infrastructure is more dynamic and unstable than that of Cloud data

centers and is characterized by higher network latencies and more frequent

node failures and network partitions. Kubernetes is today the de-facto stan-

dard for container orchestration on Cloud data centers. However, its static

container scheduling strategy is not suitable for the placement of complex and

distributed microservices-based applications on Edge environments. Current

infrastructure network conditions and resource availability neither run time

application state are taken into account when scheduling microservices. To

deal with these limitations in this work the Sophos framework is proposed, as

an extension of the Kubernetes platform in order to implement an effective

7

application and infrastructure-aware container scheduling and orchestration

strategy. In particular, an extension of the default Kubernetes scheduler is

proposed that considers application and infrastructure telemetry data when

taking scheduling decisions. Furthermore, a descheduler component is also

proposed that continuously tunes the application placement based on the

ever changing application and infrastructure states. An evaluation of the

proposed approach is presented by comparing it with the default Kubernetes

orchestration and scheduling strategy.

8

Chapter 1

The Cloud-to-Edge continuum

The Cloud computing paradigm has been as of now the way to go for the exe-

cution and management of complex distributed applications. However, Cloud

data centers are far away from the network edge and then from end users

and devices. This can have a negative impact on the application response

time and throughput, critical quality-of-service (QoS) requirements for mod-

ern applications. Edge Computing paradigm has emerged as a promising

technology for mitigating this problem by moving computation towards the

network edge. In this context, both Cloud and Edge infrastructure are com-

bined together to form the Cloud-to-Edge continuum, an environment for

executing distributed applications. In this chapter both paradigms are first

described. Then some insights on the problem of orchestrating applications

on the Cloud-to-Edge continuum are given.

9

Figure 1.1: Cloud computing architecture

1.1 Cloud computing

Cloud computing offers services from large data centers to end users. It

adopts a so-called pay-as-you-go model in which customers acquire services

or resources based on their demand and are only charged for their actual

usage, which realizes the long-held dream of making computing the fifth

utility [1]. Due to economies of scale and multiplexing, since its birth, Cloud

computing has been creating substantial monetary values for both Cloud

providers and Cloud customers. From the users’ perspective, it not only

gives them an option to avoid investing in costly proprietary data center

infrastructures and their maintenance to reduce the IT expenditure, but also

allows them to fully focus on their main business.

Based on the services provided, NIST classified Cloud computing into

three categories [2]:

• Infrastructure as a Service (IaaS), which leases computing resources,

such as processing, storage, and network.

• Platform as a Service (PaaS), that offers services to host and manage

10

applications.

• Software as a Service (SaaS), which directly provides applications to

the end customers.

As a general purpose computing platform, Clouds can host a broad spec-

trum of applications, such as scientific simulations, data analytics, and web

applications. In the past web applications were mainly hosted in either pro-

prietary infrastructures or rented server rooms. In addition to the high up-

front investment cost, these approaches were difficult to scale, leaving appli-

cations either over-provisioned or under-provisioned under a dynamic work-

load. The elasticity feature of Clouds that allows users to acquire/release a

virtually unlimited amount of resources dynamically makes Cloud the ideal

platform to host web applications whose workload are fluctuant in nature.

Due to its advantages compared to traditional solutions, many organizations

providing web applications have shifted or been moving their applications to

Cloud. In 2019, Flexera surveyed 786 technical professionals across a broad

cross-section of organizations and found that 94% of respondents use the

Cloud one way or another [3].

As Cloud providers are building more data centers around the world in-

creasingly, it opens the opportunity for web application providers to uti-

lize this globally available Cloud infrastructure to boost the performance of

their applications. Deploying web applications in multiple geographically

distributed data centers brings the following significant benefits:

• it improves availability of applications even under unexpected data cen-

ter outages.

11

Figure 1.2: Map of Microsoft Azure data centers

• it provides balanced and satisfactory QoS to geographically dispersed

customers.

• it helps to comply with data regulations.

• it avoids vendor lock-in.

• it enables cost optimization among different vendors.

Cloud servers are typically powerful nodes co-located in huge data centers

that are based in different locations across the globe. As an example Figure

1.2 shows a map of the Microsoft Azure global network made up of more

than 200 data centers distributed over more than 60 regions[4].

The location and the size of the data centers follows an economical model

that decreases the cost of operation by concentrating a big number of nodes,

and by targeting locations with lower electricity price. The nodes inside the

12

data centers are connected via low-latency and high-bandwidth links that

handle the ever-rising internal traffic. Nowadays fiber optics technology is

making its way to data centers to meet this demand. Thus, the inter-node

latency within data centers can be considered negligible.

However, this centralized architecture constrains end users to communi-

cate with the application services over long-distance Internet links. For a

wide range of applications, communicating over the core network does not

affect the user-perceived quality-of-experience (QoE). For example, storage

and web hosting applications can offer decent performance when deployed

on a Cloud platform since they can tolerate relatively long network laten-

cies. In contrast, modern latency-sensitive applications require the response

time to be lower than a strict threshold, and will perform poorly under such

conditions.

The upsurge in the fields of Artificial Intelligence (AI), autonomous vehi-

cles, and most prominently IoT have changed the nature of end users. Rather

than having people behind devices transmitting requests to the Cloud, it is

estimated that by 2025 55% of all the data will be generated by 21.5 billion

IoT devices [5] (approximately 63% of all the connected devices [6]). The

shift of end users’ nature was combined with an emergence of new set of

IoT applications and other applications like stream processing and Virtual

Reality (VR). Such applications are demanding in terms of latency and band-

width. This growth in the number of connected devices and the introduction

of new requirements have created new challenges for the Cloud architecture:

• Network round trip time: the round-trip time needed for an end user to

access a Cloud application is estimated as 40 ms for a wired connection

13

Figure 1.3: Edge computing architecture

and as high as 150 ms for a 4G connection [7]. Meanwhile, applications

like VR and gaming can only tolerate end-to-end response times (in-

cluding network and computation delays) of 20 ms maximum [8]. Such

low latency cannot be supported even by 5G where the user-to-Internet

latency is reported as 30-40 ms.

• Bandwidth: The majority of IoT devices use very little bandwidth,

however the massive number of IoT connected devices can easily con-

gest network links, specifically those of the Wide Area Network (WAN)

[9]. Since the number of devices is ever increasing, and the technolo-

gies that use them is advancing it is evident that the WAN bandwidth

should increase to accommodate them. Yet, the improvements in the

field of network technology are slow compared to the growth of Internet

traffic produced by the IoT devices.

14

1.2 Edge computing

Edge computing adds an additional layer to the Cloud by placing compu-

tational resources close to data generating devices, like sensors, actuators,

or other entities. This new placement strategy aims to reduce latency and

improve bandwidth capabilities [10, 11]. In contrast to the Cloud, where all

data is transmitted to and stored in a centralized way, Edge computing pro-

vides additional resources to take the load from the Cloud [12]. Especially

low-latency application fields, like real-time analytics or video surveillance,

can benefit from the increased bandwidth and reduced latency realized by

Edge computing [13]. Also, the geographically distributed nature of large IoT

networks is prone to unstable network connections [14]. The core require-

ment of Edge computing, minimizing the latency and increasing bandwidth

for real-time services, might be violated by long distances between client and

servers. The length of the physical distance between clients and servers has a

coherence with latency. Edge computing as general technology has different

types, also called Edge technologies [15]. Common types are Mobile Edge

Computing (MEC), Cloudlet, Micro Data Center (mDC), and Fog. All of

these offer different provision models.

MEC was introduced by Nokia and placed computational resources (e.g.,

computing, network, and storage) mainly next to mobile Radio Access Net-

work (RAN) stations. This type of Edge computing aims to provide low

latency network access to low-power devices, often to process time-critical

tasks, like real-time analytics. The placement next to mobile RAN stations

enables fast and dynamic provisioning of applications, which offer real time

services. Accordingly, the provision of applications near the data-generating

15

devices reduces the traffic sent to the Cloud and reduces network congestion.

There is no common understanding if MEC is a substitute for the Cloud. It

is unclear whether data must or must not be forwarded to the Cloud in any

case.

Cloudlets form virtualized clusters with a set of decentralized devices for

running low-latency applications. They are self-managing, fast and easy to

deploy by local administrators and aim to provide computational resources

close to data-generating devices. Workloads and applications are supposed

to be transmitted as VM overlays. The overlays are executed on top of a

base image that is already available on the target device. It is necessary to

shift these VM overlays rapidly, for example, if the service-requesting de-

vices change their position continuously, for example, in smart traffic control

systems. Therefore, it is inevitable that cloudlets have a reliable network

connection with a high bandwidth available [16].

Similar to cloudlets, mDCs want to reduce response times by collaborat-

ing with the Cloud as an additional layer. mDCs support multi-tenancy and

need, therefore, a strong hardware- and software-based protection against

unauthorized access. They run in an isolated and secured unit in terms of

physical and virtual access. For data exchange with the Cloud, they usually

have a reliable, fast, and durable connection.

Fog computing, often also called Edge computing follows similar princi-

ples. Although there is a high similarity between Fog computing and the

formerly presented Edge technologies, Fog computing can be interpreted as

one step closer to data-generating devices and is explicitly designed in a de-

centralized way. In Fog computing, large-scale networks of heterogeneous

16

devices cooperate and communicate to realize low latency for the lower lay-

ers. It is still an unanswered question if there is a substantial discrimination

between Edge and Fog computing. Since Edge and Fog computing share

common goals for many devices and act as an additional layer to the Cloud,

one can assume both terms can be treated equally.

1.3 Orchestration of Cloud-Edge architectures

The combination of both the Cloud and Edge infrastructures offers a dis-

tributed environment for the execution of complex microservices applications.

The process of executing and managing the lifecycle of these applications on

this environment is called orchestration. Also for Cloud-only environments

the problem of application and resource orchestration is a challenging one

[17]. Cloud resource orchestration regards complex operations such as selec-

tion, deployment, monitoring, and run-time control of resources. The overall

goal of orchestration is to guarantee full and seamless delivery of applica-

tions by meeting QoS goals of both cloud application owners and Cloud

resource providers. Resource orchestration is considered to be a challenging

activity because of the scale dimension that resources have reached, and the

proliferation of heterogeneous cloud providers offering resources at different

levels of the cloud stack. Utilizing the full architecture of Cloud-Edge en-

vironments, also called the Cloud-to-Edge continuum, different techniques

on how to deploy applications have emerged over time. The most common,

so-called provision or orchestration models, are scaling, offloading and Edge-

only deployments, even if the Edge layer is not supposed to replace the Cloud

17

completely. Scaling to the Edge, also called distributed offloading, keeps the

application running in the Cloud and Edge layer simultaneously. This pro-

vision model applies especially if the Cloud and Edge layers need to work

together because both are running out of resources. For example, the Edge

node may reach the available amount of storage and the Cloud may violate

the latency requirement [18]. Offloading from Cloud to Edge and vice versa

is the most frequently discussed and used approach. Applications and tasks

are moved to the Edge layer to achieve better response times, e.g., due to

periodic high load. Equally, applications may be shifted to the Cloud when

the load decreases [19]. Edge-only deployments are also possible, where the

applications are placed only on the Edge layer and moved across different

Edge nodes, to fulfill the needed latency. Offloading is not necessarily des-

tined for this way of placement. However, many solutions perform a mixed

approach even if they focus on Edge placement in specific [20].

Using Cloud-Edge architectures for running a large set of different services

comes along with new complexities. These complexities arise because of

the additional Edge layer, different Edge technologies, and provision models.

Cloud-Edge orchestration is responsible for assigning workloads to the Cloud,

Edge, and IoT layer based on a particular set of objectives.

The most important aspect that must be covered is an efficient place-

ment of applications dependent on the origin of potential requests. Also, the

required real-time latency and bandwidth of devices must be considered to

achieve the claimed application response times. For this, complex decision

and orchestration models are required that consider demand and supply of re-

sources like CPU, memory, disk, and network utilization [12]. Fault-tolerance

18

and resilience is a further core requirement of Cloud-Edge architectures [21].

As already mentioned in the former section, Cloud-Edge systems are used in

critical areas, like smart traffic control systems. Outages because of broken

nodes in the architecture should not happen. The complexity of managing

those architectures is further intensified due to the decentralized, distributed,

and large-scale nature of the Edge layer. In addition, a heterogeneous set of

devices, often low-power devices, needs to be managed appropriately [22, 19].

Dynamically scaling down and up the number and types of nodes in Cloud-

Edge architectures must be supported to realize large-scale deployments in

the right way [23]. Also noteworthy are security considerations like support-

ing multi-tenancy for Edge technologies like cloudlets and mDCs, which are

offering a shared model. Security mechanisms like authentication and au-

thorization are strongly required to operate Cloud-Edge systems, especially

if they are publicly accessible [22, 21].

The aforementioned provision models present several challenges that must

be met. Workloads should be fast and easy to deploy and moved across

the layers in the architecture. Meanwhile, container technology is the de

facto standard running workloads in Cloud-Edge architectures. Containers

follow the principle of lightweight virtualization and contain the application,

libraries, and the runtime environment. They are executed in an isolated

way by a so-called container engine which restricts the amount and type of

resources a particular container can use (i.e., CPU, memory, and storage).

The container engine itself runs on an operating system and shares the kernel

with the container instances. Container technology has been widely accepted

for this area because containers are small in size, have a fast startup time

19

compared to traditional VMs [24] and can be easily ported to other physical

nodes [25, 26]. Today, different container technologies are available, each

with its own container runtime implementation, like Docker 1, containerd 2

and Podman 3.

However, the usage of container solutions alone for the execution of com-

plex applications on distributed Cloud-Edge environments can result diffi-

cult to be adopted; this justifies the introduction of a higher containerization

layer known as container orchestration. Container orchestrator engines (or

container orchestrators) automate container provisioning and management

including resource scheduling, coordination, and communication across con-

tainers, and resource booking and accounting [27, 28]. Currently, different

container orchestrators are available like Docker Swarm 4, Apache Mesos 5

and Kubernetes 6, with the last one being the most adopted solution today

and that will be described in detail in chapter 2.

1https://www.docker.com
2https://containerd.io
3https://podman.io
4https://docs.docker.com/engine/swarm
5https://mesos.apache.org
6https://kubernetes.io

20

Chapter 2

Kubernetes

Kubernetes is today the de-facto standard container orchestration platform

used for the execution and lifecycle management of Cloud-native applications.

Kubernetes was initially thought to be used on Cloud environments, but

today its adoption also has been extended for Edge environments also. In

this chapter the Kubernetes platform and its components are first described.

Then examples of Edge-oriented Kubernetes distributions are provided.

2.1 Design principles

Kubernetes is a container orchestration platform that was initially developed

by Google from lessons learned in a decade of running the Borg job manager

[13]. It is primarily designed as a distributed and a scalable system to auto-

mate the life cycle of container-based applications on a cluster of machines.

It provides a set of high-level abstractions to help DevOps easily deploy their

applications, automatically scale in/out a particular service based on its load,

21

perform rolling updates without inducing offline times, do DNS based service

discovery, manage application configuration and perform a plethora of other

services. Kubernetes is a growing ecosystem with rich functionality thanks

to its design principles and its inherent extensibility.

Kubernetes is built around a set of principles that leads to its design

and architecture. At the heart are declarative configuration, immutable in-

frastructure and online self-healing. The central idea behind the declarative

configuration is to let the system act on behalf of the user intent: the DevOps

describes the desired state of the cluster and Kubernetes sits in an endless

loop (reconciliation loop) trying to drive the system to the desired state con-

tinually. This involves fetching container images from central repositories,

allocating and mounting storage spaces, configuring networks, configuring,

starting, scaling and deleting containers, etc. In Kubernetes, system changes

are not performed incrementally. Although technically possible, it is con-

sidered as an anti-pattern to imperatively mutate the state of a container.

Instead, container immutability is preferred by encouraging the operators to

rebuild their images and restart their containers.

2.2 Kubernetes architecture

The Kubernetes platform is deployed on top of a cluster. A Kubernetes clus-

ter consists of a set of worker machines, called nodes, that run containerized

applications. Every cluster has at least one worker node. The worker node(s)

host the Pods that are the components of the application workload. The

control plane manages the worker nodes and the Pods in the cluster. In pro-

22

Figure 2.1: Kubernetes architecture

duction environments, the control plane usually runs across multiple nodes

and a cluster usually runs multiple worker nodes, providing fault-tolerance

and high availability.

The control plane’s components make global decisions about the clus-

ter (for example, scheduling), as well as detecting and responding to cluster

events (for example, starting up a new Pod in case of failure of another Pod).

Control plane components can be run on any machine in the cluster. How-

ever, for simplicity, set up scripts typically start all control plane components

on the same machine, and do not run user containers on this machine. The

components that make up the control plane of a Kubernetes cluster are the

following:

• kube-apiserver: a server that exposes the Kubernetes API. The API

server is the front end for the Kubernetes control plane and it is de-

signed to scale horizontally.

23

• etcd: a consistent and highly-available key value store used as the

Kubernetes backing store for all cluster data.

• kube-scheduler: a component that watches for newly created Pods with

no assigned node, and selects a node for them to run on.

• kube-controller-manager: a component that runs controller processes.

Logically, each controller is a separate process, but to reduce com-

plexity, they are all compiled into a single binary and run in a single

process.

• cloud-controller-manager: a component that embeds cloud-specific con-

trol logic. The cloud controller manager allows to link the cluster into

the Cloud provider’s API, and separates out the components that inter-

act with that cloud platform from components that only interact with

the cluster. The cloud-controller-manager only runs controllers that

are specific to the Cloud provider. If Kubernetes is run on premises

the cluster does not have a cloud controller manager.

Node components run on every node, maintaining running Pods and pro-

viding the Kubernetes runtime environment. The node components of a

Kubernetes cluster are the following:

• kubelet: an agent that runs on each node in the cluster. It makes sure

that containers are running in a Pod.

• kube-proxy: a component that maintains network rules on nodes. These

network rules allow network communication to Pods from network ses-

sions inside or outside the cluster. Kube-proxy uses the operating sys-

24

tem packet filtering layer if there is one and it’s available. Otherwise,

kube-proxy forwards the traffic itself.

• container runtime: the software that is responsible for running contain-

ers on a node. Kubernetes supports container runtimes such as Docker,

containerd, CRI-O, and any other implementation of the Kubernetes

CRI (Container Runtime Interface).

2.3 Kubernetes objects

Kubernetes provides abstractions and high level concepts to manage deployed

microservices as generic as possible in order to perform various operations

(discovery, scaling, load-balancing, rolling updates, etc.). The following are

the main Kubernetes objects:

• Pods: a Pod is the basic element of operations in Kubernetes. Techni-

cally speaking, a Pod is a collection of containers that share the same

process and network address spaces (virtual network interfaces, ports,

IP addresses and shared memory). Processes inside a Pod can commu-

nicate with each other using sockets listening on the loop-back inter-

face or with inter-process communication facilities such SysV shared-

memory.

• Labels and selectors: labels are key-value pairs used to keep track of

objects inside a Kubernetes cluster. All objects in Kubernetes can be

labeled. A DevOps can query to find all the objects with a particular

label or issue a command that will affect all of those objects in a single

25

shot. Selectors are the complementary concept that select objects based

on a set of given labels.

• Services: a service provides load-balancing and DNS-based naming to

applications running on the cluster. There are many types of services.

In a ClusterIP service, a static virtual IP address is used as an ipt-

ables target. All requests to this target are forwarded to one of the

corresponding Pods. The load-balancing is a feature of the netfilter

subsystem of the Linux kernel. On the other hand, a NodePort service

uses the host IP instead. The service IP and port are provided as en-

vironment variables once the container is started and the service name

is resolvable using the DNS server provided by Kubernetes (kube-dns).

• ReplicaSets: a ReplicaSet is responsible of maintaining the desired

number of replicas of a particular Pod. ReplicaSets are the best exam-

ple of a reconciliation loop, they keep watching the cluster’s state and

schedule new Pods or remove existing ones in response to scalability

demands or cluster failures.

• ConfigMaps and Secrets: they are key-value objects stored in Kuber-

netes. ConfigMaps provide configuration information to the workloads.

They are an essential part to make Pods reusable components. They

can be mounted as a file (keys map to files and values map to files con-

tents) or provided as environment variables. For example, an Apache

or a Nginx Pod can be contextualized by providing the server’s con-

figuration as a ConfigMap mounted as a file. Secrets are a mean to

provide sensitive information to the container like database credentials

26

at container creation time instead of being stored on the container’s

file-system image.

• Deployments: Deployment is a higher level abstraction and it is the

preferred API object to deploy a micro-service on Kubernetes. Besides

managing a ReplicaSet, it also provides features to effectively perform

application upgrades. More specifically RollingUpdates that ensures

the application Pods are smoothly replaced without inducing an offline

time.

• StatefulSets: StatefulSet is the workload API object used to manage

stateful applications. Like a Deployment, a StatefulSet manages Pods

that are based on an identical container spec. Unlike a Deployment, a

StatefulSet maintains a sticky identity for each of its Pods. These Pods

are created from the same spec, but are not interchangeable: each has

a persistent identifier that it maintains across any rescheduling.

• DaemonSets: A DaemonSet ensures that all (or some) nodes run a

copy of a Pod. As nodes are added to the cluster, Pods are added to

them. As nodes are removed from the cluster, those Pods are garbage

collected. Deleting a DaemonSet will clean up the Pods it created.

• Namespaces: a Namespace is an abstraction that defines a logical scope

for resources. They can be used to implement multi-tenancy and re-

source isolation between development teams or to create multiple vir-

tual clusters on top of a single infrastructure.

27

2.4 Kubernetes scheduler

The Kubernetes scheduler, also called kube-scheduler 1, is in charge of select-

ing an optimal cluster node for each Pod to run them on, taking into account

different constraints related to Pod requirements and node resources avail-

ability. Pods are taken from a scheduling queue and each Pod scheduling

attempt is split into two phases: the scheduling cycle and the binding cycle.

During the scheduling cycle a node for the Pod to schedule is selected, while

during the binding cycle the scheduling decision is applied to the cluster

by reserving the necessary resources and deploying the Pod to the selected

node. Together, a scheduling cycle and a binding cycle are referred to as a

”scheduling context”. Scheduling cycles are run serially, while binding cycles

may run concurrently. A scheduling or binding cycle can be aborted if the

Pod is determined to be unschedulable or if there is an internal error. In this

case the Pod will be returned back to the queue and retried.

Both the scheduling cycle and the binding cycle are divided into different

phases, also called extension points. Each phase of both cycles is imple-

mented by one or more plugins, which in turn can implement one or more

phases to perform more complex or stateful tasks. Some plugins can influence

the scheduling decisions while other are informational only.

Figure 2.2 shows the scheduling context of a Pod and the extension points

that the scheduling framework exposes. The plugins of the PreEnqueue phase

are called prior to adding Pods to the scheduling queue, where Pods are

marked as ready for scheduling. Only when all PreEnqueue plugins return

”Success”, the Pod is allowed to enter the active queue. Otherwise, it’s placed

1https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler

28

Figure 2.2: Kubernetes scheduler

in the internal unschedulable Pods list, and doesn’t get an ”Unschedulable”

condition. The plugins of the QueueSort phase are used to sort Pods in

the scheduling queue. A queue sort plugin essentially provides a Less(Pod1,

Pod2) function. Only one queue sort plugin may be enabled at a time.

The plugins of the PreFilter phase pre-process info about the Pod, or

check certain conditions that the cluster or the Pod must meet. If a PreFilter

plugin returns an error, the scheduling cycle is aborted. These plugins are

used to filter out nodes that cannot run the Pod. For each node, the scheduler

will call filter plugins in their configured order. If any filter plugin marks the

node as infeasible, the remaining plugins will not be called for that node.

Nodes may be evaluated concurrently. The plugins of the Filter phase filter

out nodes that cannot run the Pod. For each node, the scheduler will call

filter plugins in their configured order. If any filter plugin marks the node as

infeasible, the remaining plugins will not be called for that node. Nodes may

be evaluated concurrently. The plugins of the PostFilter phase are called

after Filter phase, but only when no feasible nodes were found for the Pod.

29

Plugins are called in their configured order. If any plugin marks the node as

”Schedulable”, the remaining plugins will not be called. A typical PostFilter

implementation is preemption, which tries to make the Pod schedulable by

preempting other Pods.

The plugins of the PreScore phase are used to perform ”pre-scoring” work,

which generates a sharable state used by the plugins of the Score phase. If

a PreScore plugin returns an error, the scheduling cycle is aborted. The

plugins of the Score phase rank nodes that have passed the filtering phase.

The scheduler will call each scoring plugin for each node. There will be a well

defined range of integers representing the minimum and maximum scores.

After the NormalizeScore phase, the scheduler will combine node scores from

all plugins according to the configured plugin weights. Among the default

scoring plugins, the NodeResourcesFit plugin checks if a node has sufficient

CPU and memory resources to satisfy Pod resource requirements, while the

InterPodAffinity plugin evaluates inter-Pod affinity rules. Each affinity rule

reflects a communication relationship between two Pods and states that those

Pods should be placed on the same topology domain. A topology domain

consists of a single node or a set of nodes that share the same label, specified

by the topologyKey parameter of the affinity rule, and that are typically

located on the same Cloud provider region or availability zone. The weight

parameter of an affinity rule represents the priority of that rule. The greater

this value, the greater the need to schedule the two microservices near to

each other. The plugins of the NormalizeScore phase are used to modify

scores before the scheduler computes a final ranking of Nodes. A plugin that

registers for this extension point will be called with the score results from

30

the same plugin. This is called once per plugin per scheduling cycle. If any

NormalizeScore plugin returns an error, the scheduling cycle is aborted.

The plugins that implement the Reserve extension have two methods,

namely Reserve and Unreserve, that back two informational scheduling phases

called Reserve and Unreserve, respectively. Plugins which maintain runtime

state should use these phases to be notified by the scheduler when resources

on a node are being reserved and unreserved for a given Pod. The Reserve

phase happens before the scheduler actually binds a Pod to its designated

node. It exists to prevent race conditions while the scheduler waits for the

bind to succeed. The Reserve method of each Reserve plugin may succeed

or fail. If one Reserve method call fails, subsequent plugins are not executed

and the Reserve phase is considered to have failed. If the Reserve method

of all plugins succeed, the Reserve phase is considered to be successful and

the rest of the scheduling cycle and the binding cycle are executed. The Un-

reserve phase is triggered if the Reserve phase or a later phase fails. When

this happens, the Unreserve method of all Reserve plugins will be executed

in the reverse order of Reserve method calls. This phase exists to clean up

the state associated with the reserved Pod.

The plugins of the Permit phase are invoked at the end of the scheduling

cycle for each Pod, to prevent or delay the binding to the candidate node. A

permit plugin can do one of the three things:

• approve: once all Permit plugins approve a Pod, it is sent for binding.

• deny: if any Permit plugin denies a Pod, it is returned to the scheduling

queue. This will trigger the Unreserve phase in Reserve plugins.

31

• wait: if a Permit plugin returns ”wait”, then the Pod is kept in an

internal ”waiting” Pods list, and the binding cycle of this Pod starts but

directly blocks until it gets approved. If a timeout occurs, wait becomes

deny and the Pod is returned to the scheduling queue, triggering the

Unreserve phase in Reserve plugins.

The plugins of the PreBind phase perform any work required before a Pod

is bound. For example, a pre-bind plugin may provision a network volume

and mount it on the target node before allowing the Pod to run there. If

any PreBind plugin returns an error, the Pod is rejected and returned to

the scheduling queue. The Pods of Bind phase the are used to bind a Pod

to a node. Bind plugins will not be called until all PreBind plugins have

completed. Each bind plugin is called in the configured order. A bind plugin

may choose whether or not to handle the given Pod. If a bind plugin chooses

to handle a Pod, the remaining bind plugins are skipped. Finally, the plugins

of the PostBind phase are called after a Pod is successfully bound. This is

the end of a binding cycle, and can be used to clean up associated resources.

2.5 Kubernetes descheduler

The scheduler’s decisions are influenced by its view of a Kubernetes cluster

at that point of time when a new Pod appears for scheduling. As Kubernetes

clusters are very dynamic and their state changes over time, there may be

desire to move already running Pods to some other nodes for various reasons:

• some nodes are under or over utilized.

32

• the original scheduling decision does not hold true any more, as some

requirements are not satisfied any more.

• some nodes failed and their Pods are moved to other nodes.

• new nodes are added to clusters.

Consequently, there might be several Pods scheduled on less desired nodes

in a cluster. The Kubernetes descheduler2 finds Pods that can be moved and

evicts them based on a set of criteria configurable through a policy. The

descheduler policy includes default strategy plugins that can be enabled or

disabled. It includes a common eviction configuration at the top level, as

well as configuration from the Evictor plugin (Default Evictor, if not speci-

fied otherwise). Top-level configuration and Evictor plugin configuration are

applied to all evictions. The Default Evictor Plugin is used by default for

validating, filtering, grouping or sorting Pods before processing them in a

strategy plugin, or for applying a PreEvictionFilter of Pods before eviction.

Strategy plugins are grouped in Deschedule and Balance plugins. The De-

schedule plugins process Pods one by one, and evict them in a sequential

manner. The Balance plugins process all Pods, or groups of Pods, and de-

termine which Pods to evict based on how the group was intended to be

spread.

2https://github.com/kubernetes-sigs/descheduler

33

2.6 Kubernetes controllers and operators

Kubernetes controllers are control loops that watch the state of the cluster,

then make or request changes where needed. Each controller tries to move the

current cluster state closer to the desired state. A controller tracks at least

one Kubernetes resource type. These objects have a spec field that represents

the desired state. The controller(s) for that resource are responsible for

making the current state come closer to that desired state. The controller

might carry the action out itself; more commonly, in Kubernetes, a controller

will send messages to the API server that have useful side effects.

The Job controller is an example of a Kubernetes built-in controller.

Built-in controllers manage state by interacting with the cluster API server.

Job is a Kubernetes resource that runs a Pod, or perhaps several Pods, to

carry out a task and then stop. Once scheduled, Pod objects become part of

the desired state for a kubelet. When the Job controller sees a new task it

makes sure that, somewhere in the cluster, the kubelets on a set of nodes are

running the right number of Pods to get the work done. The Job controller

does not run any Pods or containers itself. Instead, the Job controller tells

the API server to create or remove Pods. Other components in the control

plane act on the new information (there are new Pods to schedule and run),

and eventually the work is done. After a new Job is created, the desired state

is for that Job to be completed. The Job controller makes the current state

for that Job be nearer to the desired state: creating Pods that do the work

desired for that Job, so that the Job is closer to completion. Controllers also

update the objects that configure them. For example once the work is done

for a Job, the Job controller updates that Job object to mark it Finished.

34

Figure 2.3: Kubernetes operator

In contrast with Job, some controllers need to make changes to things

outside of the cluster. This is the case of controllers that make sure there are

enough nodes in the cluster, then these controllers need something outside

the current cluster to set up new nodes when needed. The controllers that

interact with external state find their desired state from the API server, then

communicate directly with an external system to bring the current state

closer in line.

The control plane of Kubernetes is meant to be extensible and new custom

controllers can be executed as operators. Operators are software extensions

to Kubernetes that make use of custom resources to manage applications

and their components. The operator pattern aims to capture the key aim

of a human operator who is managing a service or set of services. Human

operators who look after specific applications and services have deep knowl-

edge of how the system ought to behave, how to deploy it, and how to react

if there are problems. People who run workloads on Kubernetes often like

to use automation to take care of repeatable tasks. The operator pattern

35

captures how code can be written to automate a task beyond what Kuber-

netes itself provides. Kubernetes’ operator pattern concept allows to extend

the cluster’s behaviour without modifying the code of Kubernetes itself by

linking controllers to one or more custom resources. Operators are clients of

the Kubernetes API that act as controllers for a custom resource.

2.7 Kubernetes in the Edge

As mentioned before, Kubernetes is meant to be extensible and this property

has been exploited to adapt the platform also for Edge computing scenar-

ios. Different Edge-oriented Kubernetes distributions have been recently pro-

posed, with KubeEdge, MicroK8s and K3s being the most important ones.

KubeEdge3 is an open source system extending native containerized ap-

plication orchestration and device management to hosts at the Edge. It is

built upon Kubernetes and provides core infrastructure support for network-

ing, application deployment and metadata synchronization between Cloud

and Edge. It also supports MQTT and allows developers to author custom

logic and enable resource constrained device communication at the Edge.

KubeEdge consists of a Cloud part and an Edge part, which consist of Cloud

Core and Edge Core structures, unlike the Kubernetes master node and

worker node structures.

MicroK8s4, maintained by Canonical5, aims to simplify the usage of Ku-

bernetes on public and private Clouds by providing a lightweight and fully

3https://kubeedge.io
4https://microk8s.io
5https://canonical.com

36

compliant Kubernetes distribution, especially for low–end application areas

like IoT. By default, microK8s enables all basic components of Kubernetes

(like api–server, scheduler, or controller-manager) to make the cluster avail-

able. Further add-ons (e.g., DNS, ingress, or the metrics–server) can be

enabled with one single command. The realization of high-availability where

multiple nodes carry the control plane and the datastore, can be achieved

with a few commands.

Rancher6 offers K3s7 a lightweight Kubernetes distribution, also with

focus on low–end application areas. It is also fully compliant to Kubernetes,

contains all basic components by default, and targets a fast, simple, and

efficient way to provide a highly available and fault-tolerant cluster to a set of

nodes. The deployment takes place via one single and small binary including

dependencies. Similar to microK8s, etcd is replaced by another datastore,

here sqlite38. Also, in–tree storage drivers and Cloud provider components

are removed to keep the size small. K3s tries to lower the memory footprint

by a reorganization of the control plane components in the cluster. The

K3s master and worker nodes, also called server and agents, encapsulate all

the components in one single process. K3s is installed via a shell script that

allows it to be run as a server or agent node. To achieve high-availability, new

worker nodes can be easily added to the cluster by running a few commands.

The minimum hardware requirements are at least 1 vCPU and 512 MB of

memory.

K0s9, maintained by Mirantis, is another free and open-source lightweight

6https://www.rancher.com
7https://k3s.io
8https://www.sqlite.org
9https://k0sproject.io

37

Kubernetes distribution. Similar to k3s, it is provided with core Kubernetes

components as a single binary without host operating system dependencies

and aims at bare metal, Edge, IoT, and Cloud scenarios. K0s is easy to install

with only a few commands. By default, it isolates the control plane and only

deploys application workloads to worker nodes. k0s uses etcd as control

plane storage for multi-node clusters and SQLite for single-node clusters,

but supports custom storages via kine10. K0s has a memory footprint of 510

MB RAM. Mirantis recommends controller nodes with at least 1 GB RAM

and worker nodes with at least 512 MB RAM.

Although Kubernetes started to be extended also for Edge computing

scenarios, still it is not yet ready to be fully adopted in the Cloud-to-Edge

continuum, due to some limitations on its default orchestration and schedul-

ing strategy that will be discussed in chapter 3.

10https://github.com/k3s-io/kine

38

Chapter 3

Motivation and state of the art

In this chapter the drawbacks of the Kubernetes platform that limit its adop-

tion in the Cloud-to-Edge continuum and that motivate this work are first

described. Then examples in the literature of Kubernetes extensions that

aim to overcome these limitations are presented.

3.1 Kubernetes infrastructure and application

models

To better understand the reason why Kubernetes is not yet ready to be fully

adopted in the Cloud-to-Edge continuum, an explanation of how both the

infrastructure and the application are modeled by the Kubernetes control

plane needs to be done.

Figure 3.1 shows an example of a Kubernetes cluster. Each node Ni

provides a set of allocatable CPU and memory resources, indicated as cpui

and memi. The information about allocatable resources on each node is used

39

R1

N2N1 N3

AZ1,1 AZ1,2

cpu1
mem1

cpu2
mem2

cpu3
mem3

AZ1,3

R2

N5N4 N6

AZ2,1 AZ2,2

cpu4
mem4

cpu5
mem5

cpu6
mem6

AZ2,3

R3

N8N7 N9

AZ3,1 AZ3,2

cpu7
mem7

cpu8
mem8

cpu9
mem9

AZ3,3

Figure 3.1: Kubernetes infrastructure model

40

by the Kubernetes scheduler to establish if a Pod can be scheduled on that

node, based on the Pod resource requirements and the resources available on

the node. Available resources on a node are evaluated by the scheduler as the

difference between the total allocatable resources of the node and the sum of

resources requested by each Pod executed on that node. Nodes are grouped

in topology domains, in particular availability zones AZi,j and regions Ri.

The concept of topology domain is used by the Kubernetes scheduler as

an indicator about the network distance among nodes. Nodes on the same

topology domain are considered by the scheduler to be near to each other

in terms of network distance. Both allocatable resources on each node and

topology domains are static cluster metadata that are defined by cluster

administrators by assigning labels to nodes.

Figure 3.2 shows an example of application as intended by Kubernetes.

An application is made up of different microservices µi, each represented by a

Deployment Di, which in turn contains a Pod template Pti. A Pod template

of a Deployment is a template for the Pods managed by that Deployment,

each representing a replica of the corresponding microservice.

Listing 1 shows an example of Pod template. A Pod template Pti contains

a specific set of resource requirements, respectively cpui and memi for the

amount of CPU and memory resources that have to be reserved to that

Pod and a set of inter-Pod affinity rules. Each affinity rule affi,j reflects

a communication relationship between microservices µi and µj and states

that Pods of the two microservices should be placed on the same topology

domain. The topology domain (eg. region or availability zone) is specified

by the topologyKey parameter of the affinity rule. The weight parameter of

41

cpu1
mem1

cpu3
mem3

cpu4
mem4

D2

D3

D4D1

aff1,2

aff1,4

aff2,4

aff3,4aff1,3

cpu2
mem2

Figure 3.2: Kubernetes application model

42

spec:

containers:

- name: m1

image: nginx

resources:

requests:

memory: 300Mi

cpu: 500m

affinity:

podAffinity:

preferredDuringSchedulingIgnoredDuringExecution:

- weight: 50

podAffinityTerm:

labelSelector:

matchExpressions:

- key: app

operator: In

values:

- m2

topologyKey: topology.kubernetes.io/region

Listing 1: Example of a Pod template spec section

an affinity rule represents the priority of that rule. The greater this value,

the greater the need to schedule the two microservices near to each other.

An affinity rule can be used to give information to the Kubernetes scheduler

about the need to place microservices with a high communication degree near

to each other. As in the case of the infrastructure, the application graph, with

the set of microservices with their resource requirements and affinity rules,

needs to be specified before the run time phase by application developers.

The submitted application graph is then used by the Kubernetes scheduler

to find an optimal placement for each Pod.

43

3.2 Kubernetes limitations

The Kubernetes infrastructure and application models and the scheduler and

descheduler policies based on these models are the main limitations in the

adoption of Kubernetes in the Cloud-to-Edge continuum.

Regarding the infrastructure, the main limitation is related to the fact

that Kubernetes does not consider the run time state of the infrastructure

when scheduling and evicting Pods for rescheduling. Cloud-only environ-

ments are characterized by homogeneous nodes with high computational re-

sources and with high speed network connectivity. On the other hand the

Cloud-to-Edge continuum is an heterogeneous evironment, with the Edge

infrastructure being more dynamic and unstable than that of Cloud data

centers and characterized by more frequent node failures, limited computa-

tional resources, network partitions and variations in the network latencies.

Considering the run time cluster state and network conditions during Pod

scheduling and rescheduling decisions is critical in dynamic environments like

the Cloud-to-Edge continuum, where node resource availability and network

latencies are unpredictable and highly variable factors.

However Kubernetes does not monitor the current CPU and memory uti-

lization on each node. To evaluate the utilization level of a node resource,

Kubernetes considers the sum of the values required for that resource by each

Pod running on that node. This means that the estimated resource usage may

not match its run time value. If resource usage on a node is underestimated,

more Pods end up being scheduled on that same node, causing an increase in

the shared resource interference between Pods and consequently a decrease

in the overall application performances. Furthermore, the current network

44

latencies between cluster nodes are not considered when evaluating inter-Pod

affinities. This means that although an inter-Pod affinity rule is satisfied by

placing the respective Pods on the same topology domain, the two Pods are

not guaranteed to communicate with low network latencies. This because

a topology domain does not always corresponds to a latency-constrained

domain, especially in the case of Edge environments. In a distributed ap-

plication, high communication latencies between microservices lead to high

end-to-end application response times.

Regarding the application, two main limitations characterize the Ku-

bernetes orchestration strategy. The first one is that Kubernetes is not

application-aware, in the sense that no application topology information is

used during the scheduling of the application itself. Kubernetes implements

a declarative language that allows to model each microservice as an indepen-

dent component, but does not offer a mechanism to model at a high level

the microservice-to-microservice communication relationships, in particular

the communication patterns and protocols. Neither this information is used

during the scheduling of Pods to minimize the network distance between

those microservices that interact through communication channels that can

represent a bottleneck for the application performances. This is the case, for

example, of HTTP and gRPC synchronous communication channels whose

response times contribute to the end-to-end application response time. The

second limitation is related to the fact that Kubernetes does not evaluate

the current application state, in terms of resource usage of each microser-

vice and communication intensity between microservices, when taking its

scheduling and rescheduling decisions. Only statically defined Pod resource

45

requirements and inter-Pod affinity rules are considered. Application devel-

opers need to predict ahead of time how many resources are required by each

microservice and what are the most involved microservices communication

channels, in order to determine the CPU and memory requirements of each

Pod and the inter-Pod affinity rules and their weights.

However, this is a complex task, considering that microservices resource

requirements and communication affinities are dynamic parameters that strongly

depend on the run time load and distribution of user requests. Defining

all Pod resource requirements and inter-Pod affinities before the run time

phase can lead to inefficient scheduling decisions and then reduced applica-

tion performances. Overestimating resource requirements for Pods reduces

the probability that these are scheduled on constrained Edge nodes near to

end users, while underestimating resource requirements increase Pod density

on cluster nodes and then their interference. Errors in estimating inter-Pod

affinities can lead to situations where microservices that communicate more

are not placed near to each other. Thus, considering run time resource us-

age of each microservice and the communication intensity between them and

not only statically defined Pod resource requirements and inter-Pod affinity

rules is a critical requirement to define an effective scheduling strategy able

to minimize QoS violations for complex distributed applications.

Furthermore, Kubernetes does not implement scheduling policies that

consider the end user location for the placement of microservices, neither the

interaction between microservices and other external services like. This is

a critical aspect considering that users are typically geo-distributed and the

network distance between microservices, especially the frontend ones, and

46

the end user can affect the application response time.

Finally, another important limitation is related to the fact that Kuber-

netes does not evaluate the interaction between microservices and other ex-

ternal services like database servers. Considering also these interactions and

scheduling microservices based on the position of the external services is

critical to avoid bottleneck in the application response time.

3.3 Kubernetes extension proposals

In the literature, there is a variety of works that propose to extend the

Kubernetes platform in order to adapt its usage to Cloud-Edge environments

[29, 30].

A network-aware scheduler is proposed in [31], implemented as an exten-

sion of the filtering phase of the default Kubernetes scheduler. The proposed

approach makes use of round-trip time labels, statically assigned to clus-

ter nodes, in order to minimize the network distance of a specific Pod with

respect to a target location specified on its configuration file.

The authors of [32] present an orchestration tool that extends Kubernetes

with adaptive autoscaling and network-aware placement capabilities. The

authors propose a two-step control loop, in which a reinforcement learning

approach dynamically scales container replicas on the basis of the application

response time, and a network-aware scheduling policy allocates containers

on geo-distributed computing environment. The scheduling strategy uses a

greedy heuristic that takes into account node-to-node latencies to optimize

the placement of latency-sensitive applications.

47

In [33], the authors propose a solution for resource allocation in a Kuber-

netes infrastructure hosting network service. Te proposed solution aims to

avoid resource shortages and protect the most critical functions. Te authors

use a statistical approach to model and solve the problem, given the random

nature of the treated information.

In [34] an extension to the Kubernetes default scheduler is proposed that

uses information about the status of the network, like bandwidth and round

trip time, to optimize batch job scheduling decisions. The scheduler pre-

dicts whether an application can be executed within its deadline and rejects

applications if their deadlines cannot be met.

The authors of [35] propose to leverage application-level telemetry in-

formation during the lifetime of a distributed application to create service

communication graphs that represent the internal communication patterns

of all components. The graph-based representations are then used to gen-

erate colocation policies of the application workload in such a way that the

cross-server internal communication is minimized.

In [36] Pogonip, an Edge-aware scheduler for Kubernetes, designed for

asynchronous microservices is presented. Authors formulate the placement

problem as an Integer Linear Programming optimization problem and define

a heuristic to quickly find an approximate solution for real-world execution

scenarios. The heuristic is implemented as a set of Kubernetes scheduler

plugins.

In [37] a Kubernetes scheduler extender is proposed that uses application

traffic historical information collected by Service Mesh to ensure efficient

placement of Service Function Chains (SFCs). During each Pod scheduling,

48

nodes are scored by adding together traffic amounts, averaged over a time

period, between the Pod’s microservice and its neighbors in the chain of

services executed on those nodes.

In [38] a scheduling framework is proposed which enables Edge sensitive

and Service-Level Objectives (SLO) aware scheduling in the Cloud-Edge-IoT

Continuum. The proposed scheduler extends the base Kubernetes scheduler

and makes scheduling decisions based on a service graph, which models ap-

plication components and their interactions, and a cluster topology graph,

which maintains current cluster and infrastructure-specific states.

In [39] Nautilus is presented, a run-time system that includes, among its

modules, a resource contention aware resource manager and a communication-

aware microservice mapper. The first, by using a RL algorithm to capture the

relationship between microservices resource contention and the overall per-

formance, make optimal resource allocation decisions to lower the resource

usage. The latter divides the microservice graph into multiple partitions

based on the communication overhead between microservices and maps the

partitions to the cluster nodes in order to make frequent data interaction

complete in memory.

The authors of [40] propose an improved design for Kubernetes schedul-

ing that takes into account physical, operational, and network parameters

in addition to software states in order to enable better orchestration and

management of Edge computing applications. They compare the proposed

design to the default Kubernetes scheduler and show that it offers improved

fault tolerance and dynamic orchestration capabilities.

In [41] a custom Kubernetes scheduler is proposed that takes into account

49

delay constraints and Edge reliability when making scheduling decisions. The

authors argue that this type of scheduler is necessary for Edge infrastructure,

where applications are often delay-sensitive, and the infrastructure is prone

to failures. The authors demonstrate their Kubernetes extension and release

the solution as open source.

Finally, [42] presents a Kubernetes Edge-scheduler that considers inter-

node network latencies and services communication requirements in order to

optimize, using an heuristic algorithm, the placement of containerized appli-

cations in geographically distributed clusters. A re-scheduler is also proposed

that is responsible for container migration in order to improve resource uti-

lization in the cluster.

50

Chapter 4

Sophos framework

In this chapter, the Sophos framework is presented as an extension of the

Kubernetes platform in order to adapt its usage to dynamic Cloud-to-Edge

continuum environments. The Sophos framework has been designed and

implemented in several steps, each one presented on a separate published

work like [43, 44, 45]. First, an overview of the framework is given. Then

each framework component is described in detail.

4.1 Overall design

Considering the limitations described in chapter 3, the Sophos framework

aims to extend the Kubernetes platform with a dynamic application and

infrastructure-aware orchestration and scheduling strategy, in order to adapt

its usage to dynamic Cloud-to-Edge continuum environments. The main goal

of the Sophos framework is to reduce the impact of the instability of the Edge

infrastructure on the end-to-end application response time.

51

To do this, the orchestration and scheduling strategy of Sophos is guided

by three basic policies. The first one is based on the idea of reducing the

shared resource interference between the microservices of an application. The

responsiveness of a microservice is strongly related to the amount of avail-

able computational resources on the node where it is executed. The higher

the request load on a microservice, the higher the amount of computational

resources it requires for performing a computation with fast response times.

This means that the shared resource interference between microservices can

have a negative impact on their response times and this requires a schedul-

ing strategy that places microservices on nodes based on the microservices

resource requirements and the nodes resource availability. The second one is

based on the idea of reducing the network distance between the microservices

that communicate through critical communication channels. In a microser-

vices application a generic user request consists of a chain of sub-requests and

its end-to-end latency is affected by the latencies of each service call in the

chain. This means that in order to obtain lower end-to-end application re-

sponse times it is necessary to consider the whole application topology graph

and try to schedule each microservice on the basis of the other microservices

placement. In particular, critical communication channels are those that rep-

resent bottlenecks in a chain of requests. Critical communication channels

are those channels that use synchronous and blocking communication proto-

cols or those through which a high amount of traffic is exchanged. Scheduling

microservices that communicate through critical channels on the same node

or in nodes with a limited network latency allows to reduce the end-to-end

application response time. Finally, the third one is based on the idea of

52

scheduling the application considering also the position of end users and the

external services with which the microservices interact. In a Cloud-to-Edge

continuum scenario, external services, like database servers, are typically lo-

cated on Cloud data centers, while end users are geographically distributed

on the Edge layer. Though scheduling the application microservices near to

each other, the application response time cannot be improved if the overall

application is executed far away from the locations where the highest amount

of user requests originate or the most requested external services are located.

In general, the main idea of the Sophos framework is that the orches-

tration and scheduling of complex microservices applications should consider

the application topology and the dynamic states of both the application and

the infrastructure where the application is executed. These are critical in-

formation to consider in order to reduce the impact of the instability of the

Edge infrastructure on the end-to-end application response time.

To this aim, in Sophos, a way for application architects to model the

application topology is provided and at the same time current node resource

availability, node-to-node network latencies, resource usage of microservices

and communication intensity between microservices and between the appli-

cation and the end users and external services are continuously monitored

and taken into account during application scheduling. This reduces the effort

for application architects to predict ahead-of-time resource usage of each mi-

croservice and the run time communication relationships between microser-

vices, in order to define Pod resource requirements and inter-Pod affinity

rules. Furthermore, a key point in the Sophos framework is the require-

ment to continuously tune the placement of the application based on the

53

ever changing infrastructure state of Cloud-Edge environments, run time re-

source usage of microservices and their communication interactions.

Figure 4.1 shows a general model of the proposed framework. The current

infrastructure and application states are monitored and all the telemetry data

are collected by a metrics server. For the infrastructure, node resource avail-

ability and node-to-node latencies are monitored, while for the application,

CPU and memory usage of microservices and the traffic amount exchanged

between them are monitored. Based on the infrastructure telemetry data

the cluster monitoring operator determines a cluster graph with the set of

available resources on each cluster node and the network latencies between

them. Application architects model the static application group graph with

the set of microservices and external services and their static communication

relationships, in terms of the communication patterns and protocols. On the

other hand the application monitoring operator uses application telemetry

data to determine the dynamic application group graph whose nodes repre-

sent microservices with their current resource usage and the edges their dy-

namic communication relationships, in terms of the respective traffic amount

exchanged between them.

The dynamic application group graph also includes a set of nodes each

representing an input or an output proxy. An input proxy consists of a Pod

managed by a DaemonSet that intercepts all the user requests sent to the

node where it is executed and forwards them to a frontend application mi-

croservice, like for example an API gateway microservice. An edge in the dy-

namic application group graph that connects an input proxy to a microservice

represents the traffic flow to that microservice coming from the node where

54

Application
monitoring
operator

Custom
Scheduler

Dynamic AppGroup Graph

Cluster
monitoring
operator

Cluster Graph

Metrics Server

inf
ra

str
uc

tur
e t

ele
metr

y application telemetry

N1

P1

N2

P2

N3

P3

Custom
Descheduler

Static AppGroup Graph

Application architect

Kubernetes control plane

Kubernetes data plane

telemetry data

Figure 4.1: Overall architecture

55

the proxy service is executed. An output proxy consists of a Pod managed

by a Deployment that intercepts all the requests sent by microservices to a

specific external service. An edge in the dynamic application group graph

that connects a microservice to an output proxy represents the traffic flow

between that microservice and the external service. Different output proxies

are associated with different external services and each output proxy is lo-

cated on a node with limited network distance to the corresponding external

service.

The cluster and application group graphs are then used by the custom

scheduler to determine a placement for each Pod in the application, and

the custom descheduler to take Pod rescheduling actions if better scheduling

decisions can be done. A prototype implementation of the Sophos framework

publicly available1. Further details on the components of the framework are

provided in the following sections.

4.2 Cluster monitoring operator

The cluster monitoring operator periodically determines the cluster graph

with the currently available CPU and memory resources on each cluster node

and the node-to-node network latencies. Figure 4.2 shows how it works. This

component is a Kubernetes operator written in the Java language by using

the Quarkus Operator SDK2. As a Kubernetes operator it is activated by a

Kubernetes custom resource, in particular the Cluster custom resource. A

1https://github.com/unict-cclab/sophos
2https://quarkus.io/extensions/io.quarkiverse.operatorsdk/

quarkus-operator-sdk

56

Cluster
monitoring
operator

Worker node

Prometheus
server

Network
probe

Node
exporter

resource metricsnetwork metrics

Cluster CR

N2

N3

N4N1

l1,2

l1,4

l2,4

l3,4l1,3

cpu1
mem1

cpu2
mem2

cpu4
mem4

cpu3
mem3

ICMP traffic

Worker node

Network
probe

Node
exporter

Figure 4.2: Cluster monitoring operator

57

Cluster resource contains a spec property with two sub-properties: runPeriod

and nodeSelector.

apiVersion: unict.it/v1alpha1

kind: Cluster

metadata:

name: sample-cluster

spec:

runPeriod: 30

nodeSelector: {}

Listing 2: Example of a Cluster custom resource

Listing 2 shows an example of a Cluster custom resource. The runPeriod

property determines the interval between two consecutive executions of the

operator logic. The nodeSelector property represents a filter that selects the

list of nodes in the cluster that should be monitored by the operator.

During each execution the list of Node resources that satisfy the condi-

tion specified by the nodeSelector property is fetched from the Kubernetes

API server. First, for each node Ni the CPU and memory values currently

available on it, cpui and memi respectively, are determined. These values are

fetched by the operator from a Prometheus3 metrics server, which in turn

collects them from node exporters executed on each cluster node. The cpui

and memi parameters are then assigned as values for the available-cpu and

available-memory annotations of the node Ni.

Then, for each pair of nodes Ni and Nj their network latency li,j is de-

termined. The li,j parameter is proportional to the network latency between

nodes Ni and Nj. Network latency metrics are fetched by the operator from

the Prometheus metrics server, which in turn collects them from network

3https://prometheus.io

58

probe agents executed on each cluster node as Pods managed by a Daemon-

Set. These agents are configured to periodically send ICMP traffic to all

the other cluster nodes in order to measure the round trip time value. For

each node Ni the operator assigns to it a set of annotations l-nj, with values

equal to those of the corresponding li,j parameters. Finally, the cluster graph

with the updated CPU and memory available resources and the network cost

values for each node is then submitted to the Kubernetes API server.

4.3 Application topology modeling

The first step necessary for the implementation of an effective application-

aware orchestration and placement strategy consists on the modeling of the

application topology graph, namely the microservices that compose an appli-

cation, the external services requested by the application and their communi-

cation channels. What is known before the run time phase by application ar-

chitects about the application composition and the communication patterns

between its microservices and the external services represents an important

information that can be used for the initial placement of Pods, when no in-

formation about the dynamic communication interactions between Pods is

given.

Unlike the base Kubernetes scheduler implementation that mainly con-

siders low level resource requirements, Sophos allows to specify higher level

requirements that relate with the application composition and its microser-

vices communication patterns. The basic idea is that a scheduling strategy

based on application architecture and topology information can improve the

59

quality and effectiveness of microservice deployments and allows to realize

scheduling strategies customized for the specific application needs. High-

level requirements can also relate to the resiliency, availability and reliability

of an application. However, Sophos considers those related with the com-

munication aspects, because they are the most critical when dealing with

communication-intensive and latency sensitive applications.

A fundamental requirement in the application modeling task is to give ap-

plication architects a tool that allows them to model the application topology

in a high level and qualitative manner, following an intent modeling approach

[46]. This way application architects have not to deal with quantitative pa-

rameters and low level details, but they only need to know the microservices

that compose an application, the requested external services and the proto-

cols they use to communicate between them. For this purpose Sophos uses

the TOSCA standard [47] for modeling the application topology graph. The

application topology graph is modeled as a TOSCA service template where

node templates represent microservices and external services and the rela-

tionship templates the communication channels between them. The TOSCA

service template is then compiled into a set of Kubernetes deployment arti-

facts by using the Puccini compiler4 and its TOSCA profile for Kubernetes.

In particular, this profile defines the Service node type that we use to

model a generic microservice or external service. This node type exposes the

capabilities metadata, service and deployment, whose types are Metadata,

Service and Deployment respectively. Furthermore, a route requirement is

defined, whose instances can be associated with Service capabilities of other

4https://puccini.cloud

60

SynchronousRoute

 priority: 25.0

PriorityRoute

 priority: 0.0

HTTPRoute

 priority: 100.0

gRPCRoute

 priority: 50.0

AsynchronousRoute

 priority: 1.0

HTTPServerPushRoute

 priority: 10.0

AMQPRoute

 priority: 5.0

Route

Figure 4.3: Relationship types hierarchy

Service node templates. The association between route requirement instances

and Service capabilities can be done through relationship templates of the

Route type.

To model the various types of communication channels that characterize

typical microservice applications, a custom hierarchy of relationship types is

defined, shown in Figure 4.3, as an extension of the Route relationship type.

The relationship type PriorityRoute is the base type for which the property

priority is defined. This property represents the priority level associated with

the corresponding communication channel and for each type in the hierarchy

a default value is assigned. The higher this value, more critical the com-

munication channel is. The relationship types hierarchy is defined in such

a way that a higher priority value is associated with the synchronous and

heavyweight communication protocols. The relationship types Synchronous-

Route and AsynchronousRoute extend the type PriorityRoute and represent

synchronous and asynchronous communication channels respectively. The re-

61

lationship types HTTPRoute and gRPCRoute extend the type Synchronous-

Route and represent HTTP and gRPC communication channels respectively.

The relationship types HTTPServerPushRoute and AMQPRoute extend the

type AsynchronousRoute and represent HTTP Server Push and AMQP com-

munication channels respectively. The proposed relationship types hierarchy

is only a sample hierarchy that models typical communication patterns in a

microservices application. It can be extended with new custom types and

the default priority values can be overridden in each relationship template

inside a service template.

The Puccini compiler takes as input the application service template and

maps each Service node template nti with a Kubernetes Deployment Di.

The node template nti associated to an external service is mapped by the

compiler with a Deployment Di of the corresponding output proxy. In the

Pod template section of a Deployment Di an annotation named saff-Dj is set

for each Route relationship between node templates nti and ntj. The value

associated with this annotation is equal to the priority attribute value of

the relationship and represents the static contribution of the communication

affinity between microservices µi and µj or between a microservice µi and an

external service esj.

4.4 Application monitoring operator

The application monitoring operator periodically determines the dynamic

application group graph with the current CPU and memory usage for each

microservice and the traffic amounts exchanged between microservices, be-

62

Application
monitoring
operator

cpu1
mem1

cpu2
mem2

cpu3
mem3

cpu4
mem4

Worker node

Prometheus
server

CAdvisor

D2

D3

D4D1

traff1,2

traff1,4

traff2,4

traff3,4traff1,3

C

Pod

Istio Envoy
proxy

resource metricstraffic metrics

AppGroup CR

Ip1

Ip2

traff1,1

traff1,2

Op1
traff4,1

Figure 4.4: Application monitoring operator

63

apiVersion: unict.it/v1alpha1

kind: AppGroup

metadata:

name: sample-app-group

spec:

runPeriod: 30

name: sample-app-group

namespace: default

Listing 3: Example of an AppGroup custom resource

tween the frontend microservices and the input proxies executed on each

cluster node and between the backend microservices and the output proxies.

Figure 4.4 shows how it works. As in the case of the cluster monitoring

operator, this component is a Kubernetes operator written in the Java lan-

guage by using the Quarkus Operator SDK. This operator is activated by an

instance of the AppGroup Kubernetes custom resource. An AppGroup re-

source contains a spec property with three sub-properties: runPeriod, name

and namespace. Listing 3 shows an example of an AppGroup custom re-

source.

The runPeriod property determines the interval between two consecutive

executions of the operator logic. The name and namespace properties are

used to select the set of Deployment resources that compose a specific mi-

croservices application. The Deployments selected by the AppGroup custom

resource are those created in the namespace specified by the namespace prop-

erty of the custom resource and with a label app-group whose value is equal

to the value of the name property in the custom resource.

During each execution the list of Deployment resources selected by the

name and namespace properties are fetched from the Kubernetes API server.

64

First, for each Deployment Di its CPU and memory usage, cpui and memi

respectively, are determined. These values are equal to the average CPU

and memory consumption of all the Pods managed by the Deployment Di

and are fetched by the operator from the Prometheus metrics server, that

in turn collects them from CAdvisor5 agents. These agents are executed on

each cluster node and monitor current CPU and memory usage for the Pods

executed on that node. The cpui and memi parameters are then assigned as

values for the cpu-usage and memory-usage annotations of the Deployment

Di.

Then for each Deployment Di, the traffic amounts traffi,j with all the

other DeploymentsDj of the application are determined. The traffi,j param-

eter is proportional to the traffic amount exchanged between microservices

µi and µj. If a Deployment Di is associated with a frontend microservice,

then the set of traffic amounts traffi,j with all the input proxy Pods Ipj are

determined also. While, if a Deployment Di is associated with a backend mi-

croservice and this microservice interacts with some external services, then

the set of traffic amounts traffi,j with the corresponding output proxy Pods

Opj are determined also. Traffic metrics are fetched by the operator from

the Prometheus metrics server, which in turn collects them from the Istio6

platform. Istio is a service mesh implementation, whose control plane is in-

stalled in the Kubernetes cluster. The Istio control plane injects a sidecar

container running an Envoy proxy on each Pod when they are created. All

the traffic between Pods is intercepted by their corresponding Envoy proxies

that in turn expose traffic statistics through metrics exporters that can be

5https://github.com/google/cadvisor
6https://istio.io

65

queried by the Prometheus server. By injecting Envoy proxies also on the in-

put proxy Pods the source of user requests and the distribution of user traffic

among the different sources can be traced. While, in the case of the output

proxy Pods, the traffic between microservices and the external services can

be traced.

Each traffi,j parameter is assigned by the operator as the value for the

annotation daff-Dj (daff-Ipj in the case traffi,j corresponds to the traffic

amount exchanged with the input proxy Pod Ipj or traff-Opj in the case

traffi,j corresponds to the traffic amount exchanged with the output proxy

Pod Opj) of the Deployment Di. The value associated with this annotation

represents the dynamic contribution of the communication affinity between

microservices µi and µj. The application group graph with the set of CPU

and memory usage and the traffic amounts for each Deployment is then

submitted to the Kubernetes API server.

4.5 Custom scheduler

The proposed custom scheduler extends the default Kubernetes scheduler

by implementing three additional plugins. The custom scheduler is a pro-

gram written in the Go language and is based on the Kubernetes scheduling

framework. In particular, the ResourceAware and NetworkAware plugins

that extend the node scoring phase of the default Kubernetes scheduler and

the QueueSort plugin that extends the Pod queue sorting phase are proposed.

The QueueSort plugin is executed when a new Pod arrives to the scheduling

queue and it establishes an ordering for that Pod. For each Pod to be sched-

66

uled, each of the two plugins assigns a partial score to each candidate node

of the cluster that has passed the filtering phase. The ResourceAware plugin

takes into account the values of the cpu-usage and memory-usage annota-

tions of the Deployment associated with the Pod to be scheduled and the

values of the available-cpu and available-memory annotations of the node to

be scored. The NetworkAware plugin takes into account the values of the

saff and daff annotations of the Deployment associated with the Pod to be

scheduled and the values of the l annotations of the node to be scored. The

node scores calculated by the ResourceAware and NetworkAware plugins are

added to the scores of the other scoring plugins of the default Kubernetes

scheduler.

Algorithm 1 Custom scheduler node scoring function

Input: p, cpup, memp, n, cpuni
, memni

cns, l, saff , daff

Output: score

1: rascore← α× cpuni−cpup

cpup
× 100 + β × memni−memp

memp
× 100

2: cmc← 0

3: for cn in cns do

4: pcmc← 0

5: for cnp in cn.pods do

6: pcmc← pcmc+ ln,cn × (saffp,cnp + daffp,cnp)

7: end for

8: cmc← cmc+ pcmc

9: end for

10: nascore← −cmc

11: score← γ × rascore+ δ × nascore

67

The algorithm takes as inputs the following arguments:

• p: the Pod to be scheduled.

• cpup: the CPU usage of Pod p.

• memp: the memory usage of Pod p.

• n: the node to be scored.

• cpun: the CPU available on node n.

• memn: the memory available on node n.

• cns: the set of nodes in the cluster, including node n.

• l: the network latencies between node n and all the other nodes cns.

• saff : the static communication affinities between the Pod p and all

the other Pods in the application.

• daff : the dynamic communication affinities between the Pod p and

all the other Pods in the application and the input and output proxy

Pods.

The algorithm starts by calculating the value of the variable rascore.

This variable represents the partial contribution to the final node score given

by the ResourceAware scheduler plugin. Its value is given by the weighted

sum of the percentage differences between the CPU and memory currently

available on node n and the respective usage values of Pod p. The α and

β parameters are in the range between 0 and 1 and their sum is equal to

68

1. By changing the values of these parameters, a different contribution to

the rascore variable value is given by the respective CPU and memory per-

centage differences. Unlike the default Kubernetes scheduler that estimates

computational resources availability on a node based on the sum of the re-

quested resources of each Pod running on that node, the ResourceAware

plugin considers current node resource usage based on the run time teleme-

try data. The higher the difference between available resources on node n

and those used by Pod p, the greater the score assigned to node n. This al-

lows to effectively balance the load between cluster nodes and then to reduce

the shared resource interference between Pods resulting from incorrect node

resource usage estimation and then its impact on application performances.

Then the partial contribution to the final node score given by the Net-

workAware scheduler plugin is calculated. First the variable cmc is initialized

to zero. This variable represents the total cost of communication between

the Pod p and all the other Pods in the application when the Pod p is placed

on node n. This variable represents the total cost of communication between

the Pod p and all the other Pods of the application (or those corresponding

to input or output proxies) when the Pod p is placed on node n. The algo-

rithm iterates through the list of cluster nodes cns. For each cluster node

cn the pcmc variable value is calculated. This variable represents the cost of

communication between the Pod p and all the other Pods cn.pods currently

running on node cn when the Pod p is placed on node n. For each Pod

cnp running on node cn the sum of the values of the parameters saffp,cnp

and daffp,cnp is multiplied by the network latency ln,cn between node n and

node cn and added to the pcmc variable. The pcmc variable value is then

69

added to the cmc variable. The final partial node score contribution of the

NetworkAware scheduler plugin is assigned to the variable nascore as the

opposite of the cmc variable value. The nascore variable value is assigned

in such a way that the Pod p is placed on the node, or in a nearby node

in terms of network latencies, where the Pods with which the Pod p has

the highest communication affinity are executed. By considering the current

node-to-node network latencies and the communication affinities between mi-

croservices the proposed NetworkAware plugin implements a dynamic Pod

scheduling strategy differently from the default inter-Pod affinity plugin that

implements a static scheduling strategy. For each affinity rule the default

Kubernetes scheduler assigns a score different from zero only to the nodes

that belong to a topology domain matched by the topologyKey parameter of

the rule. The NetworkAware plugin instead scores all the cluster nodes based

on the current relative network distance between them. This allows to imple-

ment a more fine-grained node scoring approach able to take into account the

ever changing network conditions in the cluster instead of using node labels

statically assigned before the run time phase. Furthermore, differently from

the inter-Pod affinity plugin that takes into account only statically assigned

communication affinity weights between Pods, the NetworkAware plugin also

evaluates the traffic between Pods to determine the effective communication

affinities between them that can change at run time. By considering also

the communication affinities between the application Pods and those corre-

sponding to input or output proxies, with the last ones placed near to the

corresponding external services, the custom scheduler is able to schedule the

application near the end users from which the highest amount of requests

70

originates or the most requested external services.

Then the final node score is calculated as the weighted sum between the

rascore and nascore variables values, where the γ and δ parameters are in the

range between 0 and 1 and their sum is equal to 1. By changing the values

of these parameters, a different contribution to the score variable value is

given by the rascore and nascore values.

The QueueSort plugin is invoked during the sorting phase in order to

determine an ordering for the Pod scheduling queue. This function takes

as input two Pods and returns true if the value of the index label on the

first Pod is lesser than the value of the same label on the second one, other-

wise it returns false. This way Pods with lower values of the index label are

scheduled first. The index label is used to determine a topological sorting

of the microservices graph and application developers have to assign a value

for this label on the Pod templates of each application Deployment, with

lower values given to the frontend microservices. By scheduling frontend mi-

croservices first, communication affinities between these microservices and

the input proxies are evaluated earlier during the scoring phase, resulting

in the application placement following the end user position. If backend

microservices are instead scheduled before the frontend ones, only commu-

nication affinities between internal application microservices are evaluated

during the scoring phase and this can lead to situations where the frontend

microservices are placed far away from the end user.

71

4.6 Custom descheduler

The custom descheduler runs as a controller in the Kubernetes control plane.

This component is a Kubernetes operator written in the Go language by using

the Operator SDK framework7. This operator is activated by an instance of

the same AppGroup Kubernetes custom resource that activates the applica-

tion monitoring operator. The runPeriod property of the AppGroup resource

determines the interval between two consecutive executions of the desched-

uler logic. The name and namespace properties are used to select the set of

Pods that compose a specific microservices application.

The main business logic of the custom descheduler is implemented by

a descheduling function that is called periodically for each application Pod

to establish if that Pod should be rescheduled or not. Pods are evaluated

based on the same ordering defined by the QueueSort plugin. Inside the

descheduling function the same node scoring function implemented by the

custom scheduler and showed in Algorithm 1 is invoked for each cluster node

in order to assign them a score based on the current cluster and application

group graphs. If there is at least one node with a higher score than that

of the node where the Pod is currently executed, the descheduler evicts the

Pod. As in the case of the default Kubernetes descheduler, the proposed

custom descheduler does not schedule a replacement of evicted Pods but

relies on the custom scheduler for that. The use of the proposed custom

descheduler is aimed at giving the running application Pods the possibility

to be rescheduled on the basis of the current cluster network latencies and

computational resources availability on each node and the traffic exchanged

7https://sdk.operatorframework.io

72

between microservices and their computational resources usage, thus allow-

ing to optimize the application placement at run-time. By evicting currently

running Pods and then forcing them to be rescheduled, application schedul-

ing can take into account the ever changing cluster and application states

with the latter mainly influenced by the user request load and patterns. One

limitation of the proposed approach is that Pod eviction can cause downtime

in the overall application. However, it should be considered that cloud-native

microservices are typically replicated, so the temporary shutdown of one in-

stance generally causes only a graceful degradation of the application quality

of service. To reduce the impact of Pod rescheduling, for each execution the

descheduler evicts one Pod at most among the replicas of a single Deploy-

ment.

73

Chapter 5

Evaluation

5.1 Application and test bed environment

The proposed framework has been validated using the Sock Shop application1

executed on a test bed environment. As shown in Figure 5.1, this applica-

tion is composed of multiple microservices and exposes different APIs that

can be requested by external users from the frontend service. An external

request for an API consists of multiple sub-requests between a subset of the

application microservices. Then the application can be thought of as com-

posed of different microservice chains, each activated by a specific application

API. In this application three different communication patterns between mi-

croservices are present. The communication between the frontend service

and the other backend services and between the order and shipping services

is a synchronous HTTP communication. The order, user, catalogue and cart

services store their data in different database servers and the communication

1https://microservices-demo.github.io

74

frontend

cartcatalogueuserpaymentorder

shipping queue queue-master

user-dborder-db catalogue-db cart-db

Figure 5.1: Sock Shop application

75

frontend

route

order

route

payment user

route

catalogue

route

cart

route

service service service service service

order-db

se
rv
ic
e

user-db

service

catalogue-db

service

cart-db

service

shipping

se
rv
ic
e

ro
ut
e

queue

se
rv
ic
e

queue-
master

HTTPRoute

SynchronousRoute

se
rv
ic
e route

AMQPRoute

Figure 5.2: Sock Shop application TOSCA service template

with them is a synchronous TCP communication. The queue service is a

message broker and the communication between this service and the ship-

ping and queue-master services is an asynchronous AMQP communication.

Figure 5.2 shows the TOSCA service template of the Sock Shop applica-

tion. Each service is modeled as a node template, while the communication

channels between services are modeled as relationship templates. Each node

template is an instance of the Service node type, defined in the Puccini

TOSCA profile, and each relationship template, that associates a route re-

quirement with a service capability, is an instance of one of the relationship

types presented in chapter 4. Starting from the TOSCA service template,

the Puccini compiler creates the corresponding Deployment and Service re-

76

sources and assigns static affinity labels to each Pod template based on the

relationship templates of the service template. For each node template rep-

resenting a database server the compiler creates a Deployment and a Service

for the corresponding output proxy.

Figure 5.3 shows the test bed environment for the experiments. It consists

of a node where the database servers are executed and a Kubernetes cluster

with one master node and six worker nodes being part of three different

layers: Cloud, Fog and Edge. These nodes are deployed as virtual machines

on a Proxmox2 physical node and configured with different resources: 16GB

of RAM and 4 vCPU for the node in the Cloud layer, 8GB of RAM and 2

vCPU for the two nodes in the Fog layer and 4GB of RAM and 1 vCPU for

the three nodes in the Edge layer. In order to simulate a realistic Cloud-to-

Edge continuum environment with geo-distributed nodes, network latencies

between nodes being part of different layers and between Edge nodes are

simulated by using the Linux traffic control (tc3) utility. By using this utility

network latency delays are configured on virtual network cards of the nodes.

Output proxies associated with the corresponding database servers are forced

to be scheduled on the Cloud layer worker node by using a node affinity rule.

Black box experiments are conducted by evaluating the end-to-end re-

sponse time of the Sock Shop application when HTTP requests are sent to

the frontend service with a specified number of virtual users each sending

one request every second in parallel. Requests to the application are sent

through the k6 load testing utility4. Each experiment consists of 10 trials,

2https://www.proxmox.com
3https://man7.org/linux/man-pages/man8/tc.8.html
4https://k6.io

77

DBN N1

N2 N3

N4 N5 N6

Fog

Edge

Cloud

Figure 5.3: Test bed environment

78

during which the k6 tool sends requests to the frontend service for 40 minutes.

For each trial, statistics about the end-to-end application response time are

measured and averaged with those of the other trials of the same experiment.

The trial interval is partitioned into 5 minutes sub-intervals, during which

the k6 tool sends requests to a different application API. This way a realistic

scenario with variability in the user requests distribution and the application

usage patterns is simulated by activating different microservice channels at

different time intervals. Furthermore, during each sub-interval the k6 tool

sends requests to a different worker node and in the last sub-interval requests

are equally distributed to all the nodes. By sending user requests to different

nodes geo-distribution of users is simulated. For each experiment we com-

pare both cases when our cluster and application monitoring operators and

custom scheduler and descheduler components are deployed on the cluster

and when only the default Kubernetes scheduler is present. We consider five

different scenarios based on the network latency between the nodes of the

different layers and between the Edge nodes: 10ms, 100ms, 200ms, 300ms

and 500ms. In all the scenarios the α and β parameters of the ResourceAware

plugin of the custom scheduler are assigned the same value of 0.5 in order to

make the CPU and memory percentage differences between the respective re-

source availability on cluster nodes and the resource usage of Pods contribute

equally to the rascore variable value. Similarly the γ and δ parameters are

assigned the same value of 0.5 in order to make the rascore and nascore vari-

ables values, determined by the ResourceAware and NetworkAware plugins

respectively, equally contribute to the final node score.

79

10 100 200 300 400 500 600
100

500

1,000

2,000

3,000

3,500

Virtual users

95
th

p
er
ce
n
ti
le

re
sp
on

se
ti
m
e
(m

s)

10ms network latency

Proposed Approach
Default Scheduler

Figure 5.4: Experiments results (Scenario 1)

5.2 Experiments and results

Figures 5.4, 5.5, 5.6, 5.7 and 5.8 illustrate the results of the five experiments

performed, each for a different scenario, showing the 95th percentile of the

application response time as a function of the number of virtual users that

send requests to the application in parallel. In all the cases, the proposed ap-

proach performs better than the default Kubernetes scheduler with average

improvements of 39%, 56%, 66%, 68% and 70% in the five scenarios respec-

tively. In the first scenario, network communication has no significant impact

on the application response time because of the low node-to-node network la-

tencies. Thus, the proposed network-aware scheduling strategy does not lead

to high improvements in the application response time. Furthermore, for a

low number of virtual users the proposed approach has similar performances

80

10 100 200 300 400 500 600
100

500

1,000

2,000

3,000

3,500

Virtual users

95
th

p
er
ce
n
ti
le

re
sp
on

se
ti
m
e
(m

s)

100ms network latency

Proposed Approach
Default Scheduler

Figure 5.5: Experiments results (Scenario 2)

10 100 200 300 400 500 600
100

500

1,000

2,000

3,000

3,500

Virtual users

95
th

p
er
ce
n
ti
le

re
sp
on

se
ti
m
e
(m

s)

200ms network latency

Proposed Approach
Default Scheduler

Figure 5.6: Experiments results (Scenario 3)

81

10 100 200 300 400 500 600
100

500

1,000

2,000

3,000

3,500

Virtual users

95
th

p
er
ce
n
ti
le

re
sp
on

se
ti
m
e
(m

s)

300ms network latency

Proposed Approach
Default Scheduler

Figure 5.7: Experiments results (Scenario 4)

10 100 200 300 400 500 600
100

500

1,000

2,000

3,000

3,500

Virtual users

95
th

p
er
ce
n
ti
le

re
sp
on

se
ti
m
e
(m

s)

500ms network latency

Proposed Approach
Default Scheduler

Figure 5.8: Experiments results (Scenario 5)

82

to the default scheduler. This is because of the limited shared resource in-

terference between Pods though they are placed on the same nodes by the

default scheduler. However, when the number of virtual users increases, the

proposed approach performs better than the default scheduler, with higher

improvements for higher numbers of virtual users. The response time in the

case of the default scheduler grows faster than in the case of the proposed

approach. This is because of the proposed resource-aware scheduling strat-

egy that distributes Pods on cluster nodes based on their run time resource

usage, then reducing the shared resource interference between Pods. In the

other scenarios, network communication becomes a bottleneck for the ap-

plication response time and the lack of a network-aware scheduling strategy

leads to high response times. In these scenarios our approach performs better

than the default scheduler for low numbers of virtual users also, with higher

improvements for higher node-to-node network latencies. One consequence

of the combination of both a resource-aware and a network-aware scheduling

strategy in our approach is that when the number of virtual users increases

the response time grows much faster for high network latencies, though it re-

mains lower than the response time in the case of the default scheduler. This

can be explained by the fact that, for a higher number of virtual users and

then for a higher request load, the average resource usage of microservices

increases and then the distribution of Pods among cluster nodes caused by

the resource-aware scheduling strategy is higher. This leads to an increase

in the network latency between application microservices and then in the

end-to-end application response times.

83

Conclusions

In this work we proposed Sophos, in order to extend the Kubernetes platform

with an application and infrastructure-aware orchestration strategy. The

main goal is to overcome the limitations of the Kubernetes static scheduling

policies when dealing with the placement of microservices-based applications

that are executed in the Cloud-to-Edge continuum. The idea is to make the

Kubernetes scheduler aware of the run time communication intensity between

microservices and their resource usage, and the cluster network conditions to

make scheduling decisions that aim to reduce the overall application response

time. Furthermore, a descheduler is proposed to dynamically reschedule

microservices if better scheduling decisions can be made based on the ever

changing application and cluster network states.

As a future work we plan to extend the scheduler and descheduler com-

ponents in order to define SLO-aware orchestration strategies. By specifying

an SLO in the application performances it is possible to define an equilib-

rium condition that is reached when that SLO is guaranteed and reschedule

the application only when that condition is not met. Furthermore, we plan

to improve our scheduling strategy by improving the analysis of the appli-

cation telemetry data. At the moment only the relationships between Pods

84

that communicate directly are evaluated by measuring the traffic exchanged

between them. However, considering the fact that in a microservices-based

application a user request traverses a chain of requests, placing Pods that

belong to the same request chain near to each other may improve the ap-

plication response time. In this context, we plan to make use of distributed

tracing techniques to find relationships between Pods that do not communi-

cate directly.

85

Bibliography

[1] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and

Ivona Brandic. Cloud computing and emerging it platforms: Vision, hype,

and reality for delivering computing as the 5th utility. Future Generation

Computer Systems, 25(6):599–616, 2009.

[2] Nist. The nist definition of cloud computing 2011. https://nvlpubs.nist.

gov/nistpubs/legacy/sp/nistspecialpublication800-145.pdf, 2011.

[3] Flexera. Rightscale state of the cloud report 2019. https://bit.ly/

RightScaleReport, 2019.

[4] Azure. Microsoft azure global infrastructure. htps://azure.microsoft.

com/en-in/explore/global-infrastructure, 2023.

[5] Intel. Intelligent decisions with intel internet of things. https://intel.ly/

32ybEs2, 2018.

[6] IoT Analytics. State of the iot 2018. http://bit.ly/State_IoT, 2018.

[7] CLAudit. Planetary-scale cloud latency auditing platform 2017. http://

claudit.feld.cvut.cz, 2017.

86

[8] Mohammed S. Elbamby, Cristina Perfecto, Mehdi Bennis, and Klaus

Doppler. Toward low-latency and ultra-reliable virtual reality. IEEE Net-

work, 32(2):78–84, 2018.

[9] Nik Bessis and Ciprian Dobre. Big Data and Internet of Things: A Roadmap

for Smart Environments. Springer Publishing Company, Incorporated, 2014.

[10] Paul Wood, Heng Zhang, Muhammad-Bilal Siddiqui, and Saurabh Bagchi.

Dependability in edge computing. CoRR, abs/1710.11222, 2017.

[11] Asif Laghari, Awais Jumani, and Rashid Laghari. Review and state of art

of fog computing. Archives of Computational Methods in Engineering, 28, 02

2021.

[12] Sergej Svorobej, Malika Bendechache, Frank Griesinger, and Jörg Domaschka.

Orchestration from the Cloud to the Edge, pages 61–77. Springer International

Publishing, Cham, 2020.

[13] Asif Laghari, Rashid Laghari, Asif Wagan, and Aamir Umrani. Effect of

packet loss and reorder on quality of audio streaming. ICST Transactions on

Scalable Information Systems, 7, 09 2019.

[14] Gopika Premsankar, Mario Francesco, and Tarik Taleb. Edge computing for

the internet of things: A case study. IEEE Internet of Things Journal, PP:1–

1, 02 2018.

[15] Kashif Bilal, Osman Khalid, Aiman Erbad, and Samee U. Khan. Potentials,

trends, and prospects in edge technologies: Fog, cloudlet, mobile edge, and

micro data centers. Computer Networks, 130:94–120, 2018.

87

[16] Mahadev Satyanarayanan, Paramvir Bahl, Ramon Caceres, and Nigel Davies.

The case for vm-based cloudlets in mobile computing. IEEE Pervasive Com-

puting, 8(4):14–23, 2009.

[17] D. Calcaterra, G. Di Modica, and O. Tomarchio. Cloud resource orchestration

in the multi-cloud landscape: a systematic review of existing frameworks.

Journal of Cloud Computing, 9(49), 2020.

[18] Mohammad Aazam, Sherali Zeadally, and Khaled A. Harras. Offloading in fog

computing for iot: Review, enabling technologies, and research opportunities.

Future Generation Computer Systems, 87:278–289, 2018.

[19] Cheol-Ho Hong and Blesson Varghese. Resource management in fog/edge

computing. ACM Computing Surveys, 52(5):1–37, sep 2019.

[20] Daniel Maniglia A. da Silva, Godwin Asaamoning, Hector Orrillo, Rute C.

Sofia, and Paulo M. Mendes. An analysis of fog computing data placement al-

gorithms. In Proceedings of the 16th EAI International Conference on Mobile

and Ubiquitous Systems: Computing, Networking and Services, MobiQuitous

’19, page 527–534, New York, NY, USA, 2020. Association for Computing

Machinery.

[21] Karima Velasquez, David Perez Abreu, Marcio R. M. Assis, Carlos Senna,

Diego F. Aranha, Luiz F. Bittencourt, Nuno Laranjeiro, Marilia Curado,

Marco Vieira, Edmundo Monteiro, and Edmundo Madeira. Fog orchestra-

tion for the internet of everything: state-of-the-art and research challenges.

Journal of Internet Services and Applications, 9(1):14, Jul 2018.

[22] Blesson Varghese, Nan Wang, Sakil Barbhuiya, Peter Kilpatrick, and Dim-

itrios S. Nikolopoulos. Challenges and opportunities in edge computing. In

88

2016 IEEE International Conference on Smart Cloud (SmartCloud), pages

20–26, 2016.

[23] Claus Pahl, Nabil El Ioini, Sven Helmer, and Brian Lee. An architecture pat-

tern for trusted orchestration in iot edge clouds. In 2018 Third International

Conference on Fog and Mobile Edge Computing (FMEC), pages 63–70, 2018.

[24] Marcelo Amaral, Jordà Polo, David Carrera, Iqbal Mohomed, Merve Unuvar,

and Malgorzata Steinder. Performance evaluation of microservices architec-

tures using containers. In 2015 IEEE 14th International Symposium on Net-

work Computing and Applications, pages 27–34, 2015.

[25] Roberto Morabito. Virtualization on internet of things edge devices with

container technologies: A performance evaluation. IEEE Access, 5:8835–8850,

2017.

[26] Claus Pahl and Brian Lee. Containers and clusters for edge cloud architec-

tures – a technology review. In 2015 3rd International Conference on Future

Internet of Things and Cloud, pages 379–386, 2015.

[27] David Bernstein. Containers and cloud: From lxc to docker to kubernetes.

IEEE Cloud Computing, 1(3):81–84, 2014.

[28] Emiliano Casalicchio. Container Orchestration: A Survey, pages 221–235.

Springer International Publishing, Cham, 2019.

[29] Zeineb Rejiba and Javad Chamanara. Custom scheduling in kubernetes: A

survey on common problems and solution approaches. ACM Comput. Surv.,

55(7), dec 2022.

[30] Carmen Carrión. Kubernetes scheduling: Taxonomy, ongoing issues and chal-

lenges. ACM Comput. Surv., 55(7), dec 2022.

89

[31] José Santos, Tim Wauters, Bruno Volckaert, and Filip De Turck. Towards

network-aware resource provisioning in kubernetes for fog computing appli-

cations. In IEEE Conference on Network Softwarization (NetSoft), pages

351–359, 2019.

[32] Fabiana Rossi, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli.

Geo-distributed efficient deployment of containers with kubernetes. Computer

Communications, 159:161–174, 2020.

[33] Mohamed Rahali, Cao-Thanh Phan, and Gerardo Rubino. Krs: Kubernetes

resource scheduler for resilient nfv networks. In 2021 IEEE Global Commu-

nications Conference (GLOBECOM), pages 1–6, 2021.

[34] Agust́ın C. Caminero and Roćıo Muñoz-Mansilla. Quality of service provision

in fog computing: Network-aware scheduling of containers. Sensors, 21(12),

2021.

[35] Lianjie Cao and Puneet Sharma. Co-locating containerized workload using

service mesh telemetry. In Proceedings of the 17th International Conference

on Emerging Networking EXperiments and Technologies, CoNEXT ’21, page

168–174, New York, NY, USA, 2021. Association for Computing Machinery.

[36] Thomas Pusztai, Fabiana Rossi, and Schahram Dustdar. Pogonip: Scheduling

asynchronous applications on the edge. In IEEE 14th International Confer-

ence on Cloud Computing (CLOUD), pages 660–670, September 2021.

[37] Lukasz Wojciechowski, Krzysztof Opasiak, Jakub Latusek, Maciej Wereski,

Victor Morales, Taewan Kim, and Moonki Hong. Netmarks: Network metrics-

aware kubernetes scheduler powered by service mesh. In IEEE INFOCOM

2021 - IEEE Conference on Computer Communications, pages 1–9, 2021.

90

[38] Stefan Nastic, Thomas Pusztai, Andrea Morichetta, Vı́ctor Casamayor Pujol,

Schahram Dustdar, Deepak Vii, and Ying Xiong. Polaris scheduler: Edge

sensitive and slo aware workload scheduling in cloud-edge-iot clusters. In

2021 IEEE 14th International Conference on Cloud Computing (CLOUD),

pages 206–216, 2021.

[39] Kaihua Fu, Wei Zhang, Quan Chen, Deze Zeng, Xin Peng, Wenli Zheng,

and Minyi Guo. Qos-aware and resource efficient microservice deployment

in cloud-edge continuum. In IEEE International Parallel and Distributed

Processing Symposium (IPDPS), pages 932–941, 2021.

[40] Michael Chima Ogbuachi, Chinmay Gore, Anna Reale, Péter Suskovics, and

Benedek Kovács. Context-aware k8s scheduler for real time distributed 5g

edge computing applications. In 2019 International Conference on Software,

Telecommunications and Computer Networks (SoftCOM), pages 1–6, 2019.

[41] David Haja, Mark Szalay, Balazs Sonkoly, Gergely Pongracz, and Laszlo Toka.

Sharpening kubernetes for the edge. In Proceedings of the ACM SIGCOMM

2019 Conference Posters and Demos, SIGCOMM Posters and Demos ’19,

page 136–137, New York, NY, USA, 2019. Association for Computing Ma-

chinery.

[42] László Toka. Ultra-reliable and low-latency computing in the edge with ku-

bernetes. Journal of Grid Computing, 19(3):31, July 2021.

[43] Angelo Marchese and Orazio Tomarchio. Network-aware container placement

in cloud-edge kubernetes clusters. In 2022 22nd IEEE International Sympo-

sium on Cluster, Cloud and Internet Computing (CCGrid), pages 859–865,

2022.

91

[44] Angelo Marchese and Orazio Tomarchio. Extending the kubernetes platform

with network-aware scheduling capabilities. In Service-Oriented Computing:

20th International Conference, ICSOC 2022, Seville, Spain, November 29

– December 2, 2022, Proceedings, page 465–480, Berlin, Heidelberg, 2022.

Springer-Verlag.

[45] Angelo Marchese. and Orazio Tomarchio. Sophos: A framework for appli-

cation orchestration in the cloud-to-edge continuum. In Proceedings of the

13th International Conference on Cloud Computing and Services Science -

CLOSER, pages 261–268. INSTICC, SciTePress, 2023.

[46] Damian A. Tamburri, Willem-Jan Van den Heuvel, Chris Lauwers, Paul Lip-

ton, Derek Palma, and Matt Rutkowski. Tosca-based intent modelling: goal-

modelling for infrastructure-as-code. SICS Software-Intensive Cyber-Physical

Systems, 34(2):163–172, Jun 2019.

[47] OASIS. Topology and Orchestration Specification for Cloud Applications Ver-

sion 2.0. http://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html,

October 2020.

92

