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Abstract: We consider a nonlinear singular Dirichlet problem driven by the (p, q)-Laplacian and a reaction
where the singular term u™ is multiplied by a strictly positive Carathéodory function f(z, u). By using a
topological approach, based on the Leray-Schauder alternative principle, we show the existence of a
smooth positive solution.
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1 Introduction

Let Q ¢ RY, N > 2, be a bounded domain with a C2-boundary 9Q. In this article, we study the following
singular Dirichlet (p, q)-equation:
-Ayu(z) - Aqu(z) = M, u>0in Q,
u(z)" (1.1)
Up, = 0,

wherel<g<pandO<n<1.

By A,, with r € (1, +00), we denote the r-Laplace differential operator defined by Au = div(|Du|~1Du)
for all u € Wy'(Q).

In problem (1.1), the equation is driven by the sum of two such operators with different exponents. So,
the differential operator is not homogeneous. In the reaction (right-hand side) of (1.1), we have the product
of a singular term u™ with a Carathéodory function f(z, u) (i.e., for all x € R, the map z — f(z, x) is
measurable and for a.a. z € Q the map z — f(z, x) is continuous), which is positive and bounded away
from zero.

In the past, singular problems were examined with the singular term and f(z, u) decoupled, i.e., f(z, w)
enters in the equation as an additive perturbation of the singular term. We refer to the works of Giacomoni
et al. [6], Papageorgiou et al. [20,21], and the references therein.

That formulation allowed the use of the unique solution of the purely singular problem (the Dirichlet
problem with reaction only the singular term u™), as a lower solution of the problem. This was the crucial
step to bypass the singularity, deal with C!-functionals, and use the results of the critical point theory. This
is no longer possible for problem (1.1). Our approach here is topological based on the fixed point theory, and
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in particular, we use the Leray-Schauder alternative principle (Section 2). This approach is analogous to the
one used in problems with convection [22].

In the literature, the only work dealing with a singular problem like (1.1) is that by Dhanya et al. [3] who
study the problem

_ fu@)
u(z)"
Uy = 0,

, u>0 in Q,

with f: [0, +00) — [0, +00) being C'([0, +00)), f(0) > 0and 0 < n < 1.

In [3], the authors assume the existence of ordered pairs of upper and lower solutions and, using the
order fixed point theory of Amann [1], prove existence and multiplicity results. Our approach here is
different, and we do not assume existence of ordered pairs of upper and lower solutions.

Additional literature with problems that are solved using similar techniques can be found in
(2,4,9,11-17,23].

2 Mathematical background and hypotheses

Let X, Y be Banach spaces, C € X a nonempty set, and ¢ : C — Y. We say that ¢ is compact if ¢ is
continuous and maps bounded sets in C to relatively compact sets of Y. The Leray-Schauder alternative
principle says the following (see Papageorgiou and Kyritsi [18], p. 242):

Proposition 2.1. If X is a Banach space, C € X is a nonempty convex set with0 € C, ¢ : C — C is compact
and L = {u € C : u = Ap(u) for some A € (0, 1)}, then either L is unbounded or ¢(-) has a fixed point.

In the analysis of problem (1.1), the main spaces are Wy(Q) and C}(Q) = {u € CY(Q) : u,, = 0}. By |-|,
we denote the norm of the Sobolev space WyP(Q). On account of the Poincaré inequality, we have

lull = |IDulrq) forall u e WyP(Q).

intC+={ueC+:u(z)>0 forallzeQ,a—u
n

The Banach space C}(Q) is ordered, with positive (order) cone C, = {u € CX(Q) : 0 < u(z) forall z € Q}.
This cone has a nonempty interior given by
<0,
b0
with g—z = (Du, n)g~ and n(-) is the outward unit normal on 0Q.
1

Let V: WpP(Q) — wP(Q) = (WeP(Q))* (i + o= 1) be the nonlinear operator defined by

;=

(V(u), h) = j[lDulp’2 + |Dul9-2](Du, Dh)gndz ~ forall u, v € WaP(Q).
Q

Proposition 2.2. The operator V(-) is bounded (i.e., maps bounded sets to bounded sets), continuous, strictly
monotone (hence maximal monotone too).

Letu : QO — R be a measurable function. We define

u*(z) = max{+u(z), 0} forall z € Q.

Evidently u = u* — u, [u| = u* + u”, and if u € WyP(Q), then u* € WyP(Q).
Ifu,v: Q — R are measurable functions such that u(z) < v(z) for all z € Q, then we define
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[u,v] = {h € WyP(Q) : u(z) < h(z) < v(z) fora.a. z e Q}.

Our hypotheses on the function f(z, x) are the following:
e (H)f: QxR — (0, +00) is a Carathéodory function for which there exist a constant ¢, > 0 and a positive
function a € L*(Q) such that

co < flz,x) < a1 +xP1] foraa. zeQ, all x> 0.

We will need the following regularity result that complements those by Giacomoni et al. [6,7].
In what follows,

d(z) = dist(z, 9Q) forall z € Q.

Proposition 2.3. Let h : Q — (0, +00) be such that f € Lx(Q), and there exists a constant ¢ > 0 for which

h(z) < a(i)n for a.a. z € Q. Assume it € WyP(Q) is a distributional solution of
-Au(z) — Au(z) = h(z) in Q,
pU(z) — DAgu(z) = h(z) 2.1)
Up, = 0,

then it € Cy*(Q) (0 < a < 1) and |ldlicr«@) < M, with M = M(p, q, Q, 1, &).

Proof. Hardy’s inequality ([19], p. 66) implies that for every g € W}%(Q), £ € L*(Q). Therefore, for every

g € WH*(Q), we have

Q|

I<h, 81

Ihgdz
Q

jwmw

Q
¢
jymw

- ¢faEly
i
Q

IA

IN

o

IN

a J‘%dz for some constant ¢ > 0 (since d € int C))
Q

8

~

d I
clDgllzq) for some constant ¢; > O (by Hardy’s inequality)
= h € WL¥Q).

IN

1) for some constant ¢ > 0

IA

We take into account the linear Dirichlet problem
-Au(z) =h(z) in Q, wu, =0. (2.2)
Consider A € Z(W3A(Q), W(Q)) defined as
(A(uw), hy = I(Du,Dh)RNdz forall u, h € WyA(Q).
Q

Evidently A is strictly monotone, coercive, thus surjective. So, problem (2.2) has a unique solution
e Wh(Q), i >0, # 0 (if h # 0). (see [8])
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Also we consider the purely singular problem
-Au(z) = éu(z)™ in Q, wu,, =0.

From Papageorgiou et al. [21], Proposition 3, we know that this problem has a unique solution
u € int C,. Since u ¢ int C,, using Proposition 4.1.22, p. 274, of Papageorgiou et al. [19], we can find a
constant ¢, > 0 such that

o n
d<cd=d"'< 2. (2.3)

Let i, = ¢z € int C,. We have
Ai+h<Ai+cd" (see(2.3)
1A
<Al + &€ (2.4)
= ¢J[Au + ¢u ™)
=0 in Q.
Then (2.2), (2.4), and the weak comparison principle (Pucci and Serrin [24], Theorem 3.4.1, p. 61), imply
that

0<1uc<u,.

Invoking Theorem B1 of Giacomoni et al. [6], we can find 8 € (0, 1) such that ii € Cé'ﬁ(ﬂ).
Let a(y) = |y|P~%y + |y|?-2y for all y € RY and rewrite [3] as follows:

div(a(Di) + Dit) =0 in Q, 1wy, =0.

The nonlinear regularity theory of Lieberman [10] implies that
ue Cé'a(Q) with 0 < a < 1, "ﬁ”c&ﬂ(@) < M. O

3 Existence of positive solution

As we already mentioned in Section 1, our approach to problem (1.1) is topological, based on the fixed point
theory and in particular Proposition 2.1 (the Leray-Schauder alternative principle). To reach that point, we
employ the method of frozen variable. So, let w € C3(Q) and consider the following purely singular Dirichlet
problem:

f, w@)D

, u>0 in Q
u(z)n

-Apu(z) - Agu(z) = 3.1)
Uy, = 0.

From Proposition 3 of Gasinski and Papageorgiou [5] (see also Papageorgiou et al. [20]), we have the
following existence and uniqueness result.

Proposition 3.1. Problem (3.1) has a unique solution @i = ti(w) € int C,.

Based on this proposition, we can define the solution map k : C}(Q) — C3(Q) by k(w) = i € int C,. Our
aim is to apply Proposition 2.1 on this map. To this end, we need to know that k(-) is compact.

Proposition 3.2. If hypotheses (H) hold, then the solution map k : CX(Q) — CY(Q) is compact.

Proof. First we show that k(-) is continuous. So, let w, — w in C3(Q) and set u, = k(wy,), n € N. Let
Moy > suppenlif ¢, Iw( )Py and consider the following purely singular problem:
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Moy

u(z)"

-Apu(z) — Aqu(z) = , u>0 in Q

(3.2
U = 0.

We know that problem (3.2) has a unique solution @ € int C, [5]. Fix n € N and introduce the Car-
athéodory function e,(z, x) defined by

| Moun(2)™ if x < up(2)
ez, x) = {Mox"l if x > up(2). (3:3)
We consider the following nonlinear Dirichlet problem:
-Apu(z) — Aqu(z) = eq(z,u(z)) in Q, up, =0. (3.4)

As in Proposition 10 of Papageorgiou et al. [20], we show that problem (3.4) has a unique positive
solution u,; € int C,. We have

(V(uy), h) = fen(z, uHhdz forall h e WyP(Q). (3.5)
Q

We choose the test function (u, — u;})* € WaP(Q) and obtain

V), @ - =[S0 - uydz (e 33)
Q n
J‘W(un —uy)*dz (recall the choice of M) (3.6)
Q n

V), (Un — up)h,
= Uu, <u, (seeProposition2.2).

From (3.6) and (3.3), it follows that u;, is a positive solution of problem (3.2), and so u,; = i € int C, (by
the uniqueness of the solution). Therefore,

u, <u forall neN, 3.7)

Next let ¢y > 0 as postulated by hypotheses (H). We consider the following purely singular Dirichlet
problem:

{—Apu(z) - Au(z) =couz)™, u>0 in Q (3.8)

Uy, = 0.

As mentioned earlier, problem (3.8) has a unique solution i € int C,. By using this solution, we intro-
duce the Carathéodory function 6,(z, x) defined by

) fa w@)Di) ™ if x < ii(z)
Oz 2 = {f(z, Wa@Dx T if x > d(z2). (3.9)
We consider the following Dirichlet problem:
- pu(z) - Aqu(z) = en(Z, M(Z)) in Q, Up, = 0. (310)

As mentioned earlier (problem (3.4)), problem (3.10) has a unique solution i, € int C,. We have

V@), hy = IO,,(Z, i3 hdz forall h e WEP(Q). (3.11)
Q

In (3.11), we use the test function h = (ii — Gi,;))* € W“P(Q). Then
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(V(dy), (@ - dy)*) = If(Z, [wa )i (i - dy)*dz  (see (3.9))

> I&(u - iiy)tdz (see hypotheses (H)) (3.12)
un
Q
= V@), @ - iy)"),
>u<i,

From (3.12), (3.9), and (3.11), it follows that ii, is a solution of problem (3.1); hence, ii; = u, € int C, (by
the uniqueness of the solution). So, we have

U<u, forall neN (see(3.12). (3.13)
From (3.7) and (3.13), it follows that
uy € [ti,u] forall neN. (3.14)
Then Proposition 2.3 implies that for some a € (0, 1), we have

up € C3%Q), lunllcteqy < s for some constant ¢5 > 0, all n € N. (3.15)

From (3.15) and since C}'*(Q) — C4(Q) compactly, at least for a subsequence, we have
u, - 4 in CY(Q). (3.16)

For every n € N and every g ¢ Wé’p(Q), we have

[z, (wal)
(V(un), 8) = IT"gdZ (3.17)
From (3.16) and Proposition 2.2, we have
(V(un), 8) — (V(@), 8)- (3.18)
Also we have
pPics IW”')| | < M, Ignl (see (3.14)). (3.19)
n
Recall that ii € int C,. So, we can find a constant ¢g > O such that
céﬁ <iu (see[19], p.274).
Therefore we have
|~g_| < C7L£| for some constant ¢; > 0. (3.20)
i a"
Via Hardy’s inequality (see [19], p. 66), we see that - 'g ' < L[1(Q). Moreover, we have
f(Z’ |Wn(z)|)|g(z)| N f(Z: |W(Z)|)|g(z)| a.e. in Q, (3.21)
Un(z)" ucz)n
From (3.19)-(3.21) and the Lebesgue dominated convergence theorem, we infer that
fz, [wa(2)]) fz, w(@)]) 1,
g(z)dz — I g(z)dz forall g e WyP(Q).
—[ Un(z)" uez)n (3.22)
So, if in (3.17) we pass to the limit as n — +0co and use (3.18) and (3.22), then
V@), g) = jf @, ('VV)(f)D ()dz forall g e WiP(Q), d<i<u (see(3.14)). (3.23)
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Therefore, & = k(w) € int C,, and this proves the continuity of the solution map k(-).
Next let D ¢ CA(Q) be bounded, and let C = k(D) ¢ CAX(Q).
For every u € C, we have u = k(w) for some w € D. We know that

U<u (see(3.23)). (3.24)
Since ii € int C,, as mentioned earlier, we can find a constant cg > O such that
csa <t, =ul<il< C9&7” for some constant cg > 0 (3.24).
We also have

0< M < % for some constant Mp > 0, all w € D.

un

Then by Proposition 2.3, we have that C ¢ C3*(Q) (0 < a < 1) is bounded. The compact embedding of
CH%Q) into C}(Q) implies that C ¢ CA(Q) is relatively compact. We conclude that the solution map k(-) is

compact. =
Let now

L={ueCi®):u=2k(u),0<A<1}

Proposition 3.3. If hypotheses (H) hold, then L < CA(Q) is bounded.
Proof. Let u € L. We have

%u ~ k(u) with 0 <A< 1.

This inequality means that

1 A'f (z, u) :
<V(Iu), g> = Jngz forall g e WyP(Q). (3.25)
a

If in (3.25) we choose the test function g = u € Wé’p(Q), we obtain

Sl < [0z wz,
Q

= ullp < j&(z)[ul‘" +uPMdz (recall 0 <A< 1)
Q
< ¢p[1 + |luP~"] for some constant ¢ > O,

= L c WyP(Q) isbounded.
Then as in the proof of Lemma A6 of Giacomoni et al. [6] (see also [21], Proposition A1), we infer that
L ¢ L*(Q) isbounded.
We have

o<t EZ’ “3 < 1ML 7 with My = sup If (-,u(-)ll~@)
(Z u) (X Ll) uel

M ( . .1 )
< — since u<—u
un A

oM
< lAnL
d

for some constant ¢; > 0 (since i € int C,).

The Proposition 2.3 implies that L ¢ CA(Q) is bounded. O
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Theorem 3.4. If hypotheses (H) hold, then problem (1.1) has a solution 1i € int C, and if

Z,X) . . .
f(—’n) is non increasing on (0, +00),
X

then this solution is unique.

Proof. Propositions 3.2 and 3.3 permit the use of Proposition 2.1. So, we can find &I € Wy?(Q) such that
U =k() =i eintC, solvesproblem (1.1).

Suppose that the quotient function x — f@x) iq nonincreasing on (0 + 0o). Let v € Wé’p(Q) be another

XN
positive solution of (1.1). We have

V@), @ - 7)) = j%’nﬁ)(a _ Pyde
Q

< I—f (ZV;")(a — P)rdz
Q

=(V(®), @ -,
= U <V (seeProposition (2.2)).

Reversing the roles of @i and v in the aforementioned argument, we also show that v < #i. So, finally
U = v, and this means that @i € int C, is the unique positive solution of (1.1). O
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