PAPER • OPEN ACCESS

Chemical Analysis of prehistoric pottery complex of Valcorrente - Sicily (Italy)

To cite this article: Anna Maria Gueli et al 2022 J. Phys.: Conf. Ser. 2204 012086

View the article online for updates and enhancements.

You may also like

- <u>Non-destructive test of watermark</u> materials quality for art pottery using x-ray digital radiography N R Dewi, P Listiaji, P Marwoto et al.
- <u>Water efficienty and eggplant (Solanum</u> <u>melongena L.) growth with size pottery</u> <u>irrigation in Alfisols and Entisols</u> Rahayu, H Aktavia, H S Fabian et al.
- Potential threats on pottery as local wisdom in Sitiwinangun Cirebon district D P Putri

This content was downloaded from IP address 193.206.209.104 on 03/05/2022 at 11:35

Chemical Analysis of prehistoric pottery complex of Valcorrente - Sicily (Italy)

Anna Maria Gueli^{a,b}, Orazio Palio^c, Maria Turco^d, Stefania Pasquale^{a,b,*}, Giuseppe

Stella^{a,b}, Quentin Lemasson^e, Claire Pacheco^e, Laurent Pichon^e, Brice Moignard^e,

Giuseppe Politi^{a,b}

^a PH3DRA Laboratories, Dipartimento di Fisica e Astronomia «Ettore Majorana», Via S. Sofia 64, 95123 Catania, Italy

^b Istituto Nazionale di fisica Nucleare - Sezione di Catania, Via S. Sofia 64, 95123 Catania, Italy

^c Dipartimento di Scienze della Formazione, Via Biblioteca n. 4, 95100 Catania, Italy

^d Soprintendenza ai Beni Culturali di Catania, Via Luigi Sturzo 80, 95131 Catania, Italy ^e Centre de Recherche et de Restauration des Musée de France, 14 Quai François Mitterrand, 75001 Paris, France

*stefania.pasquale@ct.infn.it

Abstract. This paper is aimed at studying different pottery sherds excavated in the site of Valcorrente, located in Sicily, occupied in three main periods, dating respectively to the end of the Neolithic period, to the end of the Chalcolithic period, and to the Early Bronze Age. The chemical composition of the pottery sherds has been analysed with Ion Beam techniques at AGLAE facility at Centre de Recherche et Restauration des Musées de France and the results have been treated with principal component analysis in order to extract indications about the ceramic production technology in the area and the evolution in time.

1. Introduction

Pottery, thanks to the evidence of changes in technology, style, and use, is one of the best indicators for the definition of chronological sequences, reconstruction of economic, domestic, social, and symbolic activities, as well as the definition of areas and exchange system, connections, and relations between communities, sometimes even through long distances. The typological and stylistic analysis, associated with archaeometric studies of the fabrics, allows us to analyze the changes in both the manufacture processes adopted by the craftsmen and in the practical and symbolic uses

Valcorrente site is situated on a low hill on the south-western slopes of the volcano Etna, on the outskirts of the plain of Catania, less than 20 km from the sea. It was fortuitously identified in 2005 during some agricultural works and was systematically excavated from 2012 to 2015 by the University of Catania and the Local Archaeological service with three large trenches: two located in proximity to a rescue excavation conducted in 2005, and another one 80 m to the east, to ascertain the overall extension of the site. This issue was also tackled through an extensive survey that was carried out in 2013 and led to a hypothesis that during the EBA an area of about two hectares had been frequented [1-3]. The excavations revealed three main periods of frequentation, which date respectively to the end of the Neolithic period, to the end of the Chalcolithic period, and to the Early Bronze Age, dated with C14 and TL and OSL methods [4] between the end of fifth mill. BC and the half of the second mill. BC.

The different pottery fabrics recognized, belonging to different periods, seem to be mostly locally produced, although it is likely that different technological choices are related to the function of the different classes of materials. The aim of the work is to study similarities and difference in sherd coming from different periods to look for an evolution in production techniques and raw material origin.

2. Materials and methods

2.1. The samples

A set of 33 ceramic sherds among all the excavated ones has been chosen for this study; they are illustrated in figure 1. According to archeology classification, two sherds are remains of furnace, and they are identified as 101 and 102. The other fragments (numbers from 1 to 40) refer to similar vase forms, mainly closed vessels, with various fabric type. The production period ranges from Neolithic (NEO) to Final Copper – Bronze Age (FC-BA) and to Bronze Age (BA). The details about the identification code, and the dating are shown in Table 1.

Figure 1. Picture of analysed sherds

2.2. The PIXE analysis

The chemical composition of all the sherds has been obtained with PIXE analyses, widely used in archaeometry to obtain for different materials the major and minor components, with very low detection limits and small uncertainties. Measurements have been performed at the New AGLAE facility (ANR-10-EQPX-22) of the Centre de Recherche et Restauration des Musées de France (C2RMF) in the Louvre Palace in Paris [5].

A 3 MeV proton beam was extracted through a 0.1 μ m thick Si₃N₄ window (surface 1 mm²) and delivered to the samples 2 mm downstream, with a magnetic focus allowing a beam spot about 50 μ m wide. Three 50 mm² SDD detectors were used with 50 μ m aluminium filter to enhance the detection of high energy X-Rays, while one SDD with a smaller solid angle was used in helium atmosphere to enhance the response to low energy X-Rays. The sherds have been abraded by sandpaper and cleaned with ethylic alcohol to eliminate the contribution to the PIXE analysis of surface secondary alteration product due to the burial environment. For each sample several measurements were done, on internal and external surfaces and over the broken edge, i.e., in the bulk of the sherd. Inhomogeneity effects of sample were reduced in each measurement by analysing a 0.5×0.5 mm² wide area, scanned by combining rapid vertical magnetic deflection of the beam with horizontal mechanical translation of the sample holder. PIXE data sorting was performed with TRAUPIXE [6] AGLAE's software using the GUPIX code.

In Table 1, the PIXE analysis results, in terms of major (MgO, Al₂O₃, SiO₂, K₂O, CaO, TiO₂, Fe₂O₃, minor (P₂O5, Cr₂O₃, MnO) and trace elements (NiO, CuO, ZnO, Ga₂O₃, Rb₂O, SrO, Y₂O₃, ZrO₂), are listed.

	ZrO ₂	336	270	267	250	322	273	351	438	268	360	669	456	246	318	386	406	390	373	329	262	308	382	402	537	427	303	309	312	547	330	341	659	217
	$\gamma_2 O_3$	55	37	26	38	27	30	40	41	34	34	72	38	21	32	47	38	43	34	32	29	35	60	35	42	50	34	31	34	36	37	29	38	42
	SrO	494	519	429	368	718	661	854	520	892	429	419	827	597	467	572	750	858	577	673	555	578	576	511	479	771	438	464	649	667	673	556	553	538
	Rb_2O	115	125	108	155	53	100	77	138	122	94	108	109	64	130	90	114	79	114	98	90	66	97	128	125	94	125	66	116	114	113	113	121	152
	a2O3	9	1	7	3	0	8	2	8	5	1	9	9	0	0	2	1	5	2	7	7	8	4	0	3	0	4	0	9	1	6	0	7	2
	0	7 3	1 3) 2	3 3) 3	3 2	3 3	7 2	3 3	1 3	3 3	5 2) 3	2 3	3 3) 3) 3	7 3) 2) 2	2	7 2	3 3	5 3) 3) 3	2 3	3) 3) 2) 3	0	5 3
	0 Zn	737	207	28(318	205	393	183	157	293	284	373	365	219	312	283	439	169	237	16(19(211	187	248	176	28(229	182	161	199	20(16(209	345
	Cu	99	50	78	88	68	55	61	28	82	98	191	351	110	123	275	583	73	82	64	82	68	69	121	73	171	54	53	65	96	44	70	83	102
Table 1. Major, minor and trace elements (ppm) of the analysed sherds	ž	63	59	83	76	5 81	69	80	68	88	2 79	74	45	91) 132	71	49	44	91	67	117	85	48	51	71	45	116	111	56	51	59	45	78	61
	Fe_2O_3	81263	83965	85058	82115	118765	81690	74660	72425	88669	104452	78510	82514	98938	105809	82536	78995	82823	97086	81880	81343	75562	62156	79777	83674	86894	77394	80595	82412	92741	81326	74707	78360	79890
	MnO	928	832	773	1952	1680	1240	1064	725	1309	1478	2060	1139	1893	1742	1392	989	1081	1243	995	1028	688	1012	1377	1098	1718	624	596	1277	1235	1316	974	1200	2190
	Cr203	202	203	230	178	65	187	171	167	215	280	191	139	168	188	413	171	138	278	169	235	203	150	175	208	129	208	217	194	153	168	186	126	91
	TiO ₂	14314	14007	16748	13909	27767	14013	14214	10797	15355	18112	13758	15883	17577	17233	15130	13964	15066	17841	14115	14870	13865	13103	13804	14386	17476	13070	13534	13508	13949	15231	12099	9810	9070
	aO	3862	9804	0394	6532	5448	8979	0741	10887	3243	3862	0167	6483	8952	6487	2919	0457	6750	0555	5110	8406	6780	0363	0036	6927	1188	9402	9704	5951	6038	7963	8249	5590	4680
	0 0	489 7	007 4	837 4	497 4	473 4	901 6	435 5	536 1	437 3	114 5	754 7	905 5	941 8	232 3	681 9	218 8	134 8	686 6	787 6	197 4	349 6	226 5	784 8	969 7	531 6	169 3	096 3	378 9	587 5	524 8	665 6	700 3	080 7
	s K	5 23	38 24	59 18	39 20	17 15	1 22	3 18	5 24	5 16	5 20	11 19	59 21)4 14	4 16	3 17	7 22	5 22	33 20	58 21	98 21	t9 20	34 20	31 20	4 21	19	98 23	1 20	2 21	57 22	20 23	7 20	50 16	90 17
	P_2O	542(1053	158:	109	131	732	169	869:	796	8916	373	156:	1170	896	574:	665′	654:	150	104	1159	146	227.	202	591	169	104	860	8413	150:	416	942′	143:	436
	SiO ₂	573425	629809	637077	603792	544988	570617	91176	581003	621017	567690	580564	616629	561713	611266	570864	581964	570846	576003	582013	610825	602427	655756	578980	590798	591199	630144	631655	573068	599404	554559	617492	644600	571700
	Al ₂ O ₃	182881	176957	157024	190539	194424	186477	187610	162522	185783	185963	164098	158326	159548	166498	166245	181160	179352	176764	186491	171971	182932	151338	172473	170202	170808	177221	180472	177540	169389	161142	166969	169500	168300
	MgO	29514	23230	21400	25148	20398	32975	17200	20088	23981	29392	25857	20361	36371	27970	35318	21971	22375	27681	24966	29296	17137	15383	22703	25764	21648	22742	18141	20890	19920	23110	21781	19990	23850
	ype	Y	A A	A	A	A .	A	Y	A	C-BA	A	A	C-BA	C-BA	C-BA	C-BA	C-BA	C-BA	A	A	A	C-BA	C-BA	A	A	A	A A	A A	IEO	IEO	IEO	IEO	IEO	IEO
	Sample 1	S1 E	S2 E	S3 B	S4 E	S5 E	S6 E	S7 E	S8 E	S9 F	S10 E	S11 E	S12 F	S13 F	S14 F	S15 F	S16 F	S17 F	S18 E	S19 E	S20 E	S21 F	S22 F	S23 E	S24 E	S25 E	S26 E	S27 E	S34 N	S35 N	S39 N	S40 N	S101 N	S102 N

METROARCHAEO 2021 Journal of Physics: Conference Series **IOP** Publishing

2204 (2022) 012086 doi:10.1088/1742-6596/2204/1/012086

Results have been analysed with Principal Component Analysis; a multivariate technique used to simplify the structure of compositional data. In this work, the PCA calculations have been performed with the Statistica software on the standardized set of data.

3. Results

The chemical compositions of all the 33 samples have been studied with PCA in order to look for possible similarities and differences among the various observed ceramic typologies using all the elements and excluding only the Calcium because it is susceptible to be attacked by groundwater circulation and it can be interested in the formation of secondary products [7-8].

The scatter plot of the data set in the plane of the two principal components PC1 and PC2, accounting for 18.9 % and 15.9 % respectively, is presented in Figure 2. The PC1 *vs* PC3 and PC2 *vs* PC3 plots are not presented because they did not provide different results.

Figure 2. Data sample scatter plot in PC2-PC1 for all sherds

The Figure 2 shows how data does not present any particular pattern related to sample characteristics, as for example production period. It seems thus that all the specimens are homogeneous in composition and thus in provenance of the raw materials.

The correlation between the single elements can be studied to look for further confirmation of observed similarities and to search for peculiarities of some given single sample. Furthermore, the binary plots provide us information about the peculiar aspect of the technology and manufacturing phase. In order to acquire indications about the main components of the bulk, correlations among some elements $(Al_2O_3 \text{ vs } SiO_2 \text{ and } CaO \text{ vs } Al_2O_3)$ are plotted in Figure 3 a-b.

Figure 3. Al₂O₃ vs SiO₂ (a) and CaO vs Al₂O₃ (b) concentrations (ppm) for all analysed samples

Figure 4 reports the CaO vs SrO (a) and the TiO₂ vs Fe₂O₃ (b) concentrations for the samples. In the last case, the plot shows the expected linear relationship between these major elements, related to the sand used for the terracotta manufacturing. In Figure 5, the binary plots relating to the trace elements Cr_2O_3 vs NiO (a) and MgO vs K₂O (b) concentrations for all analysed samples are displayed.

Figure 4. CaO vs SrO (a) and TiO₂ vs Fe₂O₃ (b) concentrations (ppm) for all analysed samples

Figure 5. Cr₂O₃ vs NiO (a) and MgO vs K₂O (b) concentrations (ppm) for all analysed samples

In all the figures, it can be observed that no particular differences are present among samples of different periods (Bronze age, Final Copper-Bronze age, Neolithic) as well as among the sherds and two pieces of the remains of furnace.

4. Discussion and Conclusions

Chemical compositions of a set of ceramic sherds coming from the Valcorrente and produced in three different historical periods site has been determined with PIXE technique. The obtained data have been analysed with PCA, showing a quite homogeneous pattern, confirmed by the study of correlation plot between major elements. These results seem to suggest a common origin of raw materials and a similarity in realization techniques along all the concerned periods as we all the local provenance. This evidence is proved also by the analysis of two sherds of furnace, typically realized with local material. A further confirmation of this conclusion could be given by petrological analysis presently in course on the studied samples.

Acknowledgments

Financial support by the Access to Research Infrastructures activity in the 8th Framework Programme of the EU (IPERION-CH Grant Agreement n. 654028) is gratefully acknowledged.

References

[1] O. Palio, M. Turco (2014), Valcorrente (Belpasso, prov. di Catania), Notiziario di Preistoria e

Protostoria 1, IV, 101-103

- [2] O. Palio, S. Todaro, M. Turco (2015), Località Valcorrente (Belpasso, prov. di Catania). La quarta campagna di scavo", Notiziario di Preistoria e Protostoria 2, II, 46-48
- [3] O. Palio, S. Todaro, M. Turco. (2016), Valcorrente (prov. di Catania), Notiziario di Preistoria e Protostoria 3, II, 59-61
- [4] A. M. Gueli, V. Garro, O. Palio, S. Pasquale, G. Politi, G. Stella & M. Turco (2018), TL and OSL cross-dating for Valcorrente site in Belpasso (Catania, Italy), European Physical Journal Plus, 133(12) (2018) 542.
- [5] L. Pichon, B. Moignard, Q. Lemasson, C. Pacheco, P. Walter (2014), Developmentof a multidetector and a systematic imaging system on the AGLAE external beam, Nucl. Instr. Meth. B 318, 27-31
- [6] L. Pichon, T. Callicaro, Q. Lemasson, B. Moignard, C. Pacheco (2015), Programs for visualization, handling and quantification of PIXE maps at the AGLAE facility, Nucl. Instr. Meth. B 363, 48-54
- [7] W. D. Gilstrap, J.L. Meanwell, E.H. Paris, R. López Bravo, P.M. Day (2021), Post-Depositional Alteration of Calcium Carbonate Phases in Archaeological Ceramics: Depletion and Redistribution Effects. Minerals, 11(7), 749.
- [8] C. Vega Maeso, G. Gallello, S. Palmero, B. Ferrari, M.Á. Sánchez Carro, M.R. González Morales, A. Pastor (2021), Ceramic productions and human interactions during the Early Bronze Age in northern Iberia. Archaeometry, 63(1), 68-87.