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Abstract
The idea that proteins are the main determining factors in the functioning of cells and organisms, and their 
dysfunctions are the first cause of pathologies, has been predominant in biology and biomedicine until 
recently. This protein-centered view was too simplistic and failed to explain the physiological and 
pathological complexity of the cell. About 80% of the human genome is dynamically and pervasively 
transcribed, mostly as non-protein-coding RNAs (ncRNAs), which competitively interact with each other 
and with coding RNAs generating a complex RNA network regulating RNA processing, stability, and 
translation and, accordingly, fine-tuning the gene expression of the cells. Qualitative and quantitative 
dysregulations of RNA-RNA interaction networks are strongly involved in the onset and progression of 
many pathologies, including cancers and degenerative diseases. This review will summarize the RNA 
species involved in the competitive endogenous RNA network, their mechanisms of action, and involvement 
in pathological phenotypes. Moreover, it will give an overview of the most advanced experimental and 
computational methods to dissect and rebuild RNA networks.
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Introduction
At the beginning of the Human Genome Project (HGP) in the late 1990s, scientists hypothesized that the 
human genome contained approximately 100,000 protein-coding genes [1]. Such (today considered) 
overabundant estimation was the result of several misunderstandings and misconceptions: i) the empirical 
observation of gene number in organisms less biologically complex than Homo sapiens (e.g., the nematode 

https://orcid.org/0000-0002-6769-4516
https://orcid.org/0000-0002-3852-9933
https://orcid.org/0000-0003-4915-0854
https://orcid.org/0009-0009-0959-3133
https://orcid.org/0000-0002-4868-3045
https://orcid.org/0000-0001-5331-4554
https://orcid.org/0000-0002-6036-4469
https://orcid.org/0000-0002-4282-920X
mailto:mragusa@unict.it
https://doi.org/10.37349/emed.2023.00159
https://doi.org/10.37349/emed.2023.00159
http://crossmark.crossref.org/dialog/?doi=10.37349/emed.2023.00159&domain=pdf&date_stamp=2023-08-31


Explor Med. 2023;4:504–40 | https://doi.org/10.37349/emed.2023.00159 Page 505

Caenorhabditis elegans), ii) the consideration of the average size of genes and their non-overlapping and 
uniform distribution inside the genome, iii) inferring the gene number from the assembly of expressed 
sequence tags (ESTs) [1–3]. Over the years, the initial estimate of 100,000 protein-coding genes for humans 
has been progressively reduced. In 2001, the International Human Genome Sequencing Consortium 
(IHGSC) published the first human genome sequence, estimating that there were approximately 30,000 
protein-coding genes [4]. At once, Celera Genomics (the IHGSC competitor) estimated this figure to be 
26,588 [5]. This number was reduced to about 24,500 [6] when the final draft of the human genome was 
published in 2004, but an additional analysis in 2007 determined that it was around 20,500 [7]. Although 
this estimate was reduced to nearly 19,000 in the following years [8], the number of human protein-coding 
genes has been now assessed to 19,969 according to a recent re-sequencing by the Telomere-to-Telomere 
(T2T) Consortium [9]. This relatively small number, very close to other mammals or invertebrates, came as 
a shock to many scientists because counting genes was considered as a way of quantifying genetic 
complexity. The raw number of protein-coding genes is not sufficient to describe the molecular and 
functional complexity of proteomics within human cells: a tremendously higher number of protein species 
originate from the protein-coding genes thanks to alternative splicing, while the activity of these molecules 
can be regulated by post-translational modifications, subcellular localization or modulation of half-life [10]. 
Nevertheless, there is a piece of evidence supporting the hypothesis that proteins alone are not sufficient to 
explain the complexity of multicellular organisms: although the number of protein-coding genes gradually 
decreased, the number of other gene types was going to explode. The T2T final estimate is particularly 
startling because it would imply that less than 2% of the entire human genome encodes proteins. 
Accordingly, the 98% of the human DNA (the so-called dark matter of the genome), which does not encode 
proteins but would be endowed with essential regulatory functions, may be the foundation of Homo sapiens’ 
complexity. The Encyclopedia of DNA Elements (ENCODE) and Roadmap Epigenomics projects, two 
significant scientific initiatives funded by the US National Institutes of Health over the past twenty years, 
released ground-breaking information on the hundreds of thousands of functional regions of the human 
genome that control gene expression [11, 12]. These findings suggested that structural functions take up 
much less room in the human genome than regulatory functions. Additionally, it was suggested by these 
studies that about 80% of the human genome is dynamically and widely transcribed, primarily as non-
protein-coding RNAs (ncRNAs). Over the past years, the non-coding transcriptome’s biological importance 
has become indisputable. The relative amount of genome space occupied by the proteome-encoding-
genome compared to the regulatory (non-protein encoding)-genome varies greatly among evolutionarily 
distant species. For example, the protein-coding genome makes up only 2% of mammalian genomes while it 
accounts for almost the entire genome of the unicellular yeast Saccharomyces cerevisiae [13]. Intriguingly, 
complex diseases like cancer frequently involve quantitative changes to the non-coding 
transcriptome [14, 15]. These findings strongly imply that the complexity of higher eukaryotes and ncRNAs 
are closely related, and that pathological phenotypes could result from ncRNA dysfunction. RNA is a 
structurally adaptable molecule that can carry out a variety of molecular tasks. RNA can bind both DNA and 
RNA molecules in a very specific way by simple base-pairing and can control their transcription, processing, 
editing, translation, or degradation. Moreover, the tridimensional folding of RNA molecules and their 
dynamic conformational changes due to ligand binding, which give them allosteric properties and expand 
the range of potential molecular interactors (also including proteins), represent a widening area for 
potential therapeutic applications [16]. For all of these reasons, molecular interactions of RNAs, above all 
ncRNAs, have recently received a lot of attention due to their important biological roles in regulating 
cellular mechanisms. NcRNA genes are classified into two groups based on their transcript length: i) long 
non-coding RNAs (lncRNAs), including circular RNAs (circRNAs), have a length greater than 200 
nucleotides (nts); ii) small non-coding RNAs have a length equal to or inferior to 200 nts [i.e., microRNAs 
(miRNAs), small interfering RNAs (siRNAs), small nuclear RNAs (snRNAs or U-RNAs), small nucleolar RNAs 
(snoRNAs), PIWI-interacting RNAs (piRNAs), tRNA-derived small RNAs (tsRNA), and Y RNA-derived small 
RNAs (YsRNAs)] [14, 17, 18]. The majority of current research has concentrated on the roles that 
ncRNAs—particularly miRNAs—play in human pathophysiology and in modulating the expression of 
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protein-coding genes. However, the unexpected interplay of ncRNAs, which affects cell physiology and 
diseases, has recently come to light, according to new evidence [19]. NcRNAs can interact with and regulate 
each other through a variety of molecular mechanisms in addition to the conventional multilayered control 
of the expression of protein-coding genes, which is succinctly described below. This interaction results in a 
complex network involving various RNA species. As competing endogenous RNAs (ceRNAs), ncRNAs in 
such a regulatory network compete with one another for binding messenger RNAs (mRNAs), thus 
influencing their translation and, consequently, cellular processes [20]. In this review, we will discuss the 
current understanding of the intricate crosstalk among ncRNAs (including miRNAs, lncRNAs, circRNAs, and 
pseudogenes) and how they might work in concert to control cell physiology and, accordingly, pathological 
phenotypes, including cancers.

Competing interactions among RNA molecules
With the recent identification of several classes of ncRNAs, the fundamental role of RNA molecules in 
regulating cell physiology has been widely recognized. Indeed, the sequence of an RNA molecule is not only 
important for the translation of a functional protein but also for the possibility to interact with other 
transcripts by sequence complementarity [21]. It is well known that mutations also occurring outside the 
sequence of a protein-coding gene may be detrimental to cell health, because these mutations may affect 
RNA-RNA interactions (RRIs) and, consequently, alter the fine regulation mediated by RNAs [22]. The 
ceRNA network hypothesis considers all the interactions between RNA molecules in one single scenario, 
where the simultaneous presence of different molecules creates a competition for the interaction with a 
single transcript, thus tuning cell phenotype according to the stoichiometric equilibrium among all the 
molecular species [23]. The most interesting aspect of this hypothesis is that it involves both coding and 
non-coding RNAs, namely mRNAs, miRNAs, lncRNAs, circRNAs, and transcribed pseudogenes. That means 
competitive interactions are able to i) regulate gene expression at the post-transcriptional level by acting 
on mRNA stability or translation and miRNA availability; ii) alter the subcellular localization of RNAs and 
proteins according to the involved molecules; iii) modulate splicing patterns towards the production of 
specific splicing variants; etc. These observations make the ceRNA network a very simple and basic, but 
also potent and precise mechanism of epigenetic regulation within cells [21, 24].

Classically, the ceRNA hypothesis is centered on miRNAs [25]: indeed, it is well known that each mRNA 
can bear several miRNA-response elements (MREs) and, consequently, it can be targeted by several 
miRNAs. Based on that, Seitz [26] proposed a first hypothesis about the competition among miRNA targets 
for the binding of the ncRNA. Similarly, MREs are also present in other RNA molecules, such as lncRNAs, 
circRNAs, and transcribed pseudogenes, creating a competition among all these RNAs for the binding of a 
single miRNA species [27]. However, the competition may not directly involve the interaction with the 
miRNA. As an example, it has been shown that some lncRNAs are natural antisense transcripts (NATs) for a 
protein-coding gene, being transcribed from the opposite strand of the same locus; the function of a NAT 
may be to directly bind the mRNA and prevent the recognition of MREs: sirtuin 1 (Sirt1) and Sirt1 antisense 
RNA (Sirt1-AS) in mouse [28], beta-secretase 1 (BACE1) and BACE1 antisense RNA (BACE1-AS) in human, 
see below [29] or splicing sequences zinc finger E-box binding homeobox 2 (ZEB2) and ZEB2 antisense RNA 
1 (ZEB2-AS1) in human, see below [30]. These findings demonstrate that the ceRNA hypothesis must be 
widened to include all interactions among all classes of RNA molecules, including also those interactions 
not involving miRNAs.

Looking at this complex scenario where a variety of RNA species plays an important role, several 
different molecular mechanisms have been reported and suggested. In this paragraph, we will summarize 
some of the proposed mechanisms through which interactions involving a specific class of RNA molecules 
regulate cellular processes.

miRNAs
miRNAs are small endogenous non-coding transcripts sized 18–25 nts acting as post-transcriptional 
negative regulators of gene expression. Their mechanism of action has been widely studied in the last few 
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decades, showing that miRNAs bind specific MREs within the 3’-untranslated region (UTR) of mRNAs, thus 
inducing their degradation or block of translation. Viruses also produce miRNAs to manipulate cell 
physiology and the host immune system to their advantage [31]. The portion of the miRNA involved in the 
binding of the target is named “seed region”: it is located at the 5’-end, includes bases 2 to 8, and is highly 
conserved among species. After miRNA binding, the target mRNA is loaded into the RNA-induced silencing 
complex (RISC), a ribonucleoprotein complex leading to mRNA cleavage of inhibition of protein synthesis. 
Classically, it was reported that perfect complementarity causes mRNA degradation, while repression of 
translation requires a shorter region of complementarity, including bases 2 to 7 of the miRNA [27, 32]. Also, 
imperfect complementarity mainly determines translation inhibition rather than mRNA degradation [33]. It 
is possible to classify miRNA target sites according to the complementarity with the seed region: i) 8mer 
sites are characterized by the binding with bases 2–8 of the miRNA (the entire seed region plus the 
following nucleotide) and include an adenine (A) in the opposite position to the first nucleotide of the 
miRNA; ii) 7mer sites show either base-pairing with bases 2–8 (7mer-m8 site) or complementarity with 
bases 2–7 of the miRNA and an A in the opposite position of the first nucleotide of the miRNA (7mer-A1 
site); iii) 6mer sites present complementarity with bases 2–7 of the miRNA. The longer the region of 
complementarity between the miRNA and the target, the more effective the binding: indeed, 8mer sites 
show the highest binding affinity, followed by 7mer and 6mer sites [34]. The presence of an A in the 
opposite position to the first nucleotide of the miRNA is responsible for the recognition by the Argonaute 
(AGO) proteins, while the nucleotide present on the miRNA is irrelevant [35]. Importantly, it has been 
reported that miRNA levels may be also reduced after miRNA-target binding when the interaction involves 
the 3’-end of the miRNA [36].

It is now known that MREs are also present within the sequence of other transcripts besides mRNAs, 
including lncRNAs, circRNAs, transcribed pseudogenes, etc, and that the binding of the miRNA to these 
targets follows the same rules [20]. However, different from mRNAs, these transcripts generally do not 
undergo translation, even if the production of short peptides from ncRNAs has been recently reported [37]. 
Also, MREs within an mRNA are not limited to the 3’-UTR, where they induce the repressive mechanism 
previously described, but are also localized within the 5’-UTR and the coding sequence [38]. Which is the 
function of these MREs located in untranslated transcripts or outside the 3’-UTR of an mRNA? Nowadays, 
these MREs acquire a new function if the ceRNA network theory is considered. It has been suggested that 
these MREs may play an important role in the regulation of cytoplasmic availability of miRNAs: that means 
an mRNA/ncRNA (acting as ceRNA or sponge) may “sequester” a specific miRNA by binding it throughout 
its sequence, thus impairing the negative regulation induced by this miRNA on other mRNAs/ncRNAs [25]. 
This sponging function is influenced by several factors, such as the number of MREs, the type of miRNA 
target site, and, accordingly, the strength of the interaction, the abundance of both the ceRNA molecule and 
the miRNA; needless to say, the colocalization in the same subcellular compartment is required for the 
interaction, as discussed below [23, 24, 39].

An important recent discovery about miRNAs must be taken into consideration: indeed, different 
isoforms of miRNAs have been recently described [40]. These new miRNA isoforms (isomiRs) differ from 
the canonical miRNA, which is the isoform whose sequence is reported in the databases; in particular, 
isomiRs can show different lengths at the 5’-end (5’ isomiRs) or 3’-end (3’ isomiRs), or maintain the same 
length but include different bases in their sequence (polymorphic isomiRs); isomiRs characterized by 
differences in both sequence and length have also been described (mixed type isomiRs) [41]. These 
variations in length and sequence affect target recognition and play a crucial role in ceRNA networks [42], 
which must be investigated. It is interesting to note that the majority of canonical miRNAs listed in the 
miRBase database (www.mirbase.org) is not the most expressed isoform in cells, leading to 
misclassification of miRNAs dramatically affecting target prediction and ceRNA network 
reconstruction [27, 43].

The effectiveness of sponging miRNAs to modulate their function has been experimentally investigated 
back in 2007 by independent groups. The authors showed that the expression of artificial miRNA sponges 
was able to inhibit miRNA functions on target genes, giving the researcher the possibility to purposely 
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modulate gene expression [44–46]. The expression of artificial sponges was induced by vectors (adenoviral 
or lentiviral) producing, under the control of a strong promoter, transcripts characterized by numerous 
MREs; both in vitro and in vivo, these sponges showed an efficiency similar to antisense oligonucleotides 
(ASOs) in repressing miRNA function [46–50]. Importantly, these molecular sponges can be constructed to 
bind and sequester single or multiple miRNA species, according to the MREs included [46, 48]. During these 
studies, it was surprisingly discovered that the presence of a central mismatch within the region of 
interaction increased the sponging efficiency compared to a perfectly complementary 
interaction [46–49, 51, 52]. This may sound atypical, considering that perfect complementarity should 
induce a stronger interaction; but it must be taken into consideration that, according to miRNA function, a 
perfect complementarity would induce the degradation of the sponge, causing a reduction of its levels 
which would impair its sponging function. On the contrary, the presence of a mismatch may delay or 
abolish the degradation of the sponge, resulting in a higher sponging efficiency [47, 51].

In the same period, the miRNA sponge mechanism was also demonstrated in nature, with the first 
evidence coming from plants [53]. Franco-Zorrilla et al. [53] investigated the relationship between the non-
protein coding gene induced by phosphate starvation1 (IPS1) and miR-399, both induced by phosphate 
starvation, in Arabidopsis thaliana. The IPS1 transcript includes within its sequence an MRE for miR-399 
with imperfect complementarity because of a mismatch in the middle of it. This imperfect interaction 
between the miRNA and the lncRNA results in the suppression of miRNA-mediated degradation and makes 
IPS1 a sponge for miR-399. Accordingly, the authors reported that upregulation of the sponge IPS1 caused 
reduced availability of miR-399 and induced the upregulation of its target phosphate 2 (PHO2). Also, the 
expression of a mutant variant of IPS1 showing perfect complementarity with miR-399 was reduced after 
miRNA overexpression, confirming that perfect complementarity at the MRE induced the degradation of 
IPS1, as expected according to miRNA function and congruently to evidence on artificial sponges previously 
discussed. The authors coined the expression “target mimicry” to describe the sponging function regulating 
miRNA activity [53]. This non-canonical binding of miRNAs and targets is more common than expected. 
Indeed, in 2013, Helwak et al. [54] analyzed the human miRNA interactome. Results showed that most of 
the miRNA-target interactions involved the seed region, even if interactions occurring at the 3’-end of the 
miRNA were also observed; importantly, about 60% of all analyzed interactions were not perfect, 
containing mismatches [54]. Unfortunately, this evidence represents bad news. Indeed, if non-canonical 
miRNA-target interactions are common, that suggests that finding the actual targets of miRNAs may be 
difficult. Several algorithms and tools are available online to predict which targets are regulated by a given 
miRNA, but the rules underlying the recognition of the target are not well understood yet. Predictions of 
miRNA targets are based on: i) complementarity with the seed region; ii) thermodynamic stability, 
evaluated by calculating the free energy of the predicted interaction (the lower the free energy, the stronger 
the interaction); iii) evolutionary conservation of the MRE, based on the assumption that a functional 
interaction is maintained across species; iv) accessibility on the target transcript of the MRE, which must 
not be involved in intramolecular interactions creating secondary structures; v) number and localization of 
MREs within the target sequence, since the presence of numerous MRE enhances miRNA functions and 
MREs very close to each other would compete for the interaction with the miRNA. Most of the tools 
consider more than one of the described parameters [35].

The miRNA sponge function has been observed not only in eukaryotes but also in viruses and 
prokaryotes, suggesting that it represents an important regulative mechanism in cell physiology. In 2010, it 
has been reported that Herpesvirus saimiri, a primate virus, expresses a non-coding transcript able to 
control gene expression of the host cell by the ceRNA mechanism [55]. Indeed, when the virus infected T 
cells, seven Herpesvirus saimiri U-rich noncoding RNAs (HSURs) were transcribed from the viral genome; by 
analyzing their sequences, the authors observed in HSUR1 and HSUR2 the presence of MREs specific for 
three miRNAs expressed in T cells, namely miR-142-3p, miR-27, and miR-16. By co-immunoprecipitation, it 
was proved that HSUR1 and HSUR2 effectively bound these miRNAs. Infection of T cells with mutant viruses 
lacking HSUR1 and HSUR2 showed that miR-27a and miR-27b levels were strongly reduced by the presence 
of HSUR1, bearing MREs for these miRNAs. The authors demonstrated that the reduction of miR-27a and 
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miR-27b levels is due to the rapid degradation of the miRNAs induced by HSUR1 expression, while this 
effect was not observed for miR-16 and its predicted ceRNA HSUR2. Reduction of miR-27a and miR-27b 
levels increased the expression of their target forkhead box O1 (FOXO1), thus allowing the virus to control 
gene expression of the host cell. Importantly, mutations of the MRE within HSUR1 abolished miRNA 
degradation [55]. Among prokaryotes, the widespread existence of regulatory RNAs has been well-known 
for a long time. Indeed, RNA molecules are able to interact with proteins and other transcripts to modulate 
cell phenotype: antisense small RNAs (sRNAs) bind the target mRNA with base-pairing of 65 or more 
nucleotides to modulate mRNA stability or translation, while other prokaryotic sRNAs exert functions 
similar to miRNAs in eukaryotes [56].

Conclusively, the fundamental role of miRNAs as negative regulators of gene expression is not only 
confirmed but also strengthened and widened into a more complex scenario, where multiple interactors 
competing for miRNA binding contribute all together to the modulation of cell phenotype.

Protein-coding genes

The ceRNA hypothesis represents by itself a revolution in gene expression regulation, but one of the most 
intriguing aspects of this new perspective is the additional function conferred to mRNAs. Before the ceRNA 
hypothesis, mRNAs were considered exclusively as the manual of instruction for protein synthesis, carrying 
the information for the aminoacidic sequence of a functional protein. In light of this new complex scenario 
of competing RRIs, mRNAs became regulators able to modulate the gene expression of other mRNAs at the 
post-transcriptional level. That means an mRNA may exert its function even if it is not translated into a 
protein. Intriguingly, the non-coding function of the mRNA may be opposite to the function performed by 
the corresponding protein [25]. In addition, new effects must be taken into consideration when an mRNA is 
strongly up- or downregulated: dramatically increased levels of an mRNA would massively sequester 
miRNAs, thus freeing other transcripts from miRNA-mediated negative regulation; on the contrary, a strong 
reduction of mRNA levels would make a high number of miRNA molecules available for interaction with 
other mRNAs [20].

Once again, the researchers have to face a very intricate landscape. The human genome contains about 
20,000 protein-coding genes [9], but, because of alternative splicing patterns, the total number of mRNAs 
potentially transcribed is higher. As already discussed, each one of these mRNAs, expressed in a given cell 
type in a specific moment, includes within its sequence numerous MREs for different miRNAs, which in turn 
may be expressed or not expressed in the same cell or moment or specific developmental stage. The 
potential co-expression (or lack of co-expression) of mRNAs and miRNAs adds a new layer of complexity 
and tunability to the fine mechanism of regulation represented by ceRNA networks, making the system 
flexible and able to quickly answer to new stimuli.

The non-coding function of mRNAs was described by Tay et al. [57] in 2011 by investigating the 
expression of the well-known tumor suppressor gene phosphatase and tensin homolog (PTEN). The 
authors applied the mutually targeted MRE enrichment (MuTaME) approach, a combination of 
computational analysis and experimental validation, to identify mRNAs sharing MREs with PTEN mRNA; in 
particular, the ceRNA transcripts included at least seven out of ten MREs present in the 3’-UTR of PTEN. 
This approach led to the identification of several ceRNAs, among which CCR4-NOT transcription complex 
subunit 6 like (CNOT6L) and VAMP associated protein A (VAPA) were validated as PTEN regulators. Indeed, 
siRNA-mediated downregulation of both ceRNAs induced a reduction of PTEN protein expression; a less 
significant reduction of PTEN mRNA levels was also observed. It was also demonstrated that this decreased 
expression of PTEN was mediated by miRNAs by using a dicer 1, ribonuclease III (DICER1)-mutant cell line, 
in which miRNA processing was impaired and PTEN downregulation was consequently reduced. The 
effective instauration of this ceRNA circuit in vivo is sustained by the correlation of expression among PTEN 
and its putative ceRNAs observed in vivo. Importantly, this ceRNA mechanism resulted in the regulation of 
cell proliferation, thus impacting cancer growth [57]. The same group reported other ceRNAs for PTEN 
identified by using a similar approach in melanoma [58]. ZEB2, involved in the epithelial to mesenchymal 
transition (EMT), was shown to regulate PTEN expression acting as ceRNA thanks to its 3’-UTR, able to 
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sequester and suppress the function of miRNAs targeting PTEN. This represents an interesting example of 
an mRNA showing two opposite coding and non-coding functions: as a protein, ZEB2 activates EMT and 
thus fosters metastatization, while as an mRNA it sustains the expression of a tumor suppressor gene, 
namely PTEN, through ceRNA interactions [58]. In the same period, similar evidence was published by 
Sumazin et al. [59], who also focused on PTEN regulation of expression in glioblastoma. In this study, a 
different approach named Hermes, based on the modulator inference by network dynamics (MINDy) 
algorithm, was applied to identify potential ceRNAs of PTEN. Results again showed that the 3’-UTR of these 
ceRNAs was implicated in the regulative mechanism [59]. Another interesting example is represented by 
tyrosinase related protein 1 (TYRP1) mRNA-mediated sponging of miR-16 in melanoma, which occurs with 
non-canonical binding [60]. miR-16 sequestration fostered tumor progression by de-repressing RAB17, 
member RAS oncogene family (RAB17). A therapeutic approach using ASOs to impede the interaction 
between miR-16 and TYRP1 by masking its MRE led to increased RAB17 levels and apoptotic rate, also 
decreasing cell proliferation [60]. Collectively, this evidence suggests that competing interactions play a 
crucial role in carcinogenesis and may be considered targets for new therapeutic approaches.

As discussed, the most important region of the mRNAs driving miRNA-mediated regulation is the 3’-
UTR, which acts in cis by regulating the stability of the transcript it belongs to. Given the non-coding 
function of mRNAs within ceRNA networks, the 3’-UTR becomes a trans-acting regulator by titrating miRNA 
availability and indirectly regulating the expression of other mRNAs sharing MREs for the same 
miRNAs [25]. This function in trans is confirmed by the reports discussed above in addition to many others 
where the 3’-UTR of a given ceRNA is ectopically expressed alone, independently from the mRNA to which 
it belongs. In particular, Lee et al. [61] investigated the role of the 3’-UTR of versican (VCAN) in regulating 
miRNA function. VCAN is a component of the extracellular matrix (ECM) involved in cancer progression 
through the regulation of cell adhesion and migration, angiogenesis, and other processes [62]. Ectopic 
expression of this 3’-UTR in a breast cancer cell line reduced cell proliferation in vitro and tumor growth in 
vivo by sponging miR-144, miR-199a-3p, and miR-136, miRNAs also targeting the tumor suppressor genes 
RB transcriptional corepressor 1 (RB1) and PTEN [61]. The same group focused on the role of VCAN 3’-UTR 
in the onset and progression of hepatocellular carcinoma (HCC) [63]. Enforced expression of the 3’-UTR of 
VCAN led to HCC onset in vivo; in vitro, VCAN 3’-UTR induced increased proliferation, migration, and 
invasion, while decreasing apoptosis rate. In vitro assays showed that this tumor-promoting effect was due 
to the miRNA sponging performed by VCAN 3’-UTR on miR-133a, miR-199a*, miR-144, and miR-431; this 
sponging function protected from miRNA-mediated silencing VCAN mRNA itself, but also the transcripts 
coding fibronectin 1 (FN1) and CD34 molecule (CD34) [63]. The same group also investigated the role of the 
3’-UTR of [CD44 molecule (Indian blood group)] (CD44) in breast cancer [64, 65]. Overexpression of CD44 
3’-UTR reduced cell proliferation and promoted apoptosis by sequestering miR-216a, miR-330, and miR-
608, thus increasing protein levels of CD44 itself and cell division cycle 42 (CDC42), targeted by the same 
miRNAs [64]. Shortly after, expression of CD44 3’-UTR was reported to increase cell migration and invasion 
in vitro and promote metastasis in vivo by miRNA-mediated de-repression of collagen type I alpha 1 chain (
COL1A1) and FN1, achieved by sequestering miR-512-3p, miR-328, miR-491 and miR-671 [65]. Considering 
this evidence all together, FN1 may represent a link between the ceRNA networks centered on CD44 and 
VCAN, regulating the expression of genes crucial for cell proliferation such as CDC42, PTEN, and RB1, all 
participating in tumorigenesis [24].

The discovery of this sponge function performed by 3’-UTRs becomes very important in 
carcinogenesis. Indeed, the phenomenon of 3’-UTR shortening has been observed in several cancer 
models [66]. Mayr and Bartel [66] reported that aberrant production of several oncogenic proteins may 
occur in cancer also in absence of genetic alterations. The reason for increased protein levels often lies in 
the presence of a shorter 3’-UTR, because of the phenomenon of alternative cleavage and polyadenylation 
(APA), which abolishes several MREs. These shorter 3’-UTRs promote carcinogenesis, as demonstrated for 
the proto-oncogene insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1). Similarly, different 
splicing variants frequently show distinct 3’-UTRs; that means the regulation of alternative splicing 
patterns may affect competing interactions and modulate phenotype [67].
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Transcribed pseudogenes

Pseudogenes are copies of a parental gene that, unlike the latter, do not undergo translation. The 
comparison between pseudogenes and their coding counterparts shows that the abolishment of the coding 
ability of these gene copies is due to the loss of control regions or the accumulation of several genetic 
alterations acquired over time, such as the formation of premature stop codons or frameshift insertion/
deletion mutations. Indeed, pseudogenes were considered “genomic fossils” [20, 39]. According to their 
generation, pseudogenes can be classified into: i) unprocessed pseudogenes, originated from a duplication 
of protein-coding genes, usually maintain 5’-UTR, 3’-UTR, and introns within their sequence; ii) processed 
pseudogenes, generated by retrotransposition of an mRNA transcribed from a protein-coding gene, do not 
include introns but may maintain 5’-UTR and 3’-UTR; iii) unitary pseudogenes, deriving from unduplicated 
protein-coding genes which accumulated mutations and lost their protein-coding capability, usually do not 
show protein-coding counterparts in the same genome but have protein-coding orthologs in other species. 
It was estimated that the human genome overall includes more than 14,000 pseudogenes [68].

Albeit pseudogenes have been long considered part of the so-called “junk DNA”, lacking function, next-
generation sequencing experiments showed that pseudogenes are often conserved and actively transcribed 
(and in some cases also translated into proteins [69]), suggesting that they do exert functions and are 
subject to selective pressure [39, 70]. Indeed, a function for a few pseudogenes has been recently reported 
in the context of ceRNA networks, where they act as miRNA sponges regulating the expression of the 
parental gene. This function is due to the high number of MREs shared with the parental gene thanks to the 
sharing of the same 3’-UTR and the high sequence homology [19].

The first pseudogene reported as ceRNA is phosphatase and tensin homolog pseudogene 1 (PTENP1), a 
processed pseudogene able to regulate the expression of its parental gene PTEN [71]. Given the 
involvement of PTEN in carcinogenesis as a tumor suppressor, PTENP1 plays a crucial role in several cancer 
models; indeed, PTEN is frequently lost or mutationally inactivated in cancer cells. PTENP1 and PTEN show 
very high sequence complementarity, with only 18 mismatches, but a mutation abolishing the AUG start 
codon prevents the translation of the pseudogene. PTENP1 shows a 3’-UTR shorter compared to PTEN, with 
a difference of about 1 kilobase (kb); nevertheless, MREs for miR-17, miR-21, miR-214, miR-19, and miR-26 
families are shared between the two transcripts. It has been reported that PTENP1 sponged these miRNAs, 
thus protecting PTEN from miRNA-mediated repression at both mRNA and protein levels. In vitro assays 
showed that silencing of PTENP1 promoted cell proliferation, supporting the involvement of this 
pseudogene in carcinogenesis as a tumor suppressor. Accordingly, PTENP1 is also frequently lost in cancer 
and shows a correlation of expression with PTEN, suggesting that the pseudogene regulates the expression 
of the parental gene also in vivo [71]. PTENP1 represents a particular example in ceRNA networks because 
it also encodes a lncRNA participating in PTEN regulation (see below [72]). The function of regulator of 
parental gene expression was also reported for other pseudogenes, including the oncogenes KRAS proto-
oncogene, GTPase pseudogene 1 (KRASP1) for KRAS proto-oncogene, GTPase (KRAS) [71] and catenin alpha 
1 pseudogene 1 (CTNNAP1) for catenin alpha 1 (CTNNA) [73], or the tumor suppressors TUSC2 pseudogene 
1 (TUSC2P1) for tumor suppressor 2, mitochondrial calcium regulator (TUSC2) [74] and integrator complex 
subunit 6 pseudogene 1 (INTS6P1) for integrator complex subunit 6 (INTS6) [75]. All these pseudogenes 
originated from parental genes involved in carcinogenesis, supporting the hypothesis that competing 
interactions are crucial for cancer onset and progression.

lncRNAs

lncRNAs are non-coding RNA molecules characterized by a length comprised between 200 nts and kbs; they 
are similar to mRNAs concerning biogenesis, being often transcribed by RNA polymerase II, capped, 
polyadenylated, and spliced [76]. The total number of genes encoding lncRNAs in the human genome has 
been estimated between 10,000 and 100,000 [77], representing a conspicuous portion of it. Similar to 
pseudogenes, it has been proposed that lncRNA genes derived from duplication events occurring at both 
DNA and RNA levels, insertion of transposable elements, or mutational inactivation of protein-coding genes. 
lncRNAs are poorly conserved during evolution; accordingly, more than 80% of lncRNA families originated 
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in primates [78]. Typically, lncRNAs are mostly localized in the nucleus and poorly expressed compared to 
mRNAs [79]. For these reasons, lncRNAs have been long considered non-functional, but the observation of 
expression and localization patterns related to specific tissues or developmental stages, at least for a 
fraction of them, has suggested that they do exert functions within cells [77, 78]. To date, the exact function 
or mechanism of action of only a few lncRNAs has been demonstrated, showing that a high heterogeneity in 
functions is characteristic of this class of RNA molecules. Described functions include epigenetic regulation 
(such as chromatin remodeling), RNA or protein localization, regulation of transcriptional and post-
transcriptional events (including mRNA stability, splicing, and editing), and structural functions 
(scaffolding) [77, 80]. In the last decade, one of the most investigated functions performed by lncRNAs has 
been represented by miRNA sponging, whose involvement both in neoplastic and non-neoplastic diseases 
has been demonstrated [81–83].

One of the first reports describing a ceRNA function for lncRNAs was published in 2010 [84]. Highly up-
regulated in liver cancer (HULC) increased levels in HCC caused the decreased availability of miR-372, 
resulting in the upregulation of one of its targets, namely protein kinase cAMP-activated catalytic subunit 
beta (PRKACB). PRKACB in turn regulated the phosphorylation of cAMP responsive element binding protein 
1 (CREB1), responsible for HULC transcription. Therefore, this lncRNA regulates its expression through 
miRNA sponging creating an auto-regulatory loop [84]. Shortly after, Cesana et al. [85] showed that the 
lncRNA long intergenic non-protein coding RNA, muscle differentiation 1 (LINCMD1) participates in muscle 
differentiation both in mouse and human. By sponging miR-133 and miR-135 in myoblasts, LINCMD1 
regulated the levels of mastermind like transcriptional coactivator 1 (MAML1) and myocyte enhancer factor 
2C (MEF2C), two transcription factors (TFs) promoting the expression of muscle-specific genes [85]. HOX 
transcript antisense RNA (HOTAIR) is a lncRNA acting as an oncogene in several cancer models [86]. In 
gastric cancer, this oncogenic function may be in part exerted by the sequestration of miR-331-3p, resulting 
in the modulation of its target erb-b2 receptor tyrosine kinase 2 (HER2/ERBB2) [87]. To date, the list of 
reports about lncRNAs acting as miRNA sponges is constantly growing [34], supporting the fundamental 
role of such a mechanism within cells.

Besides sponging miRNAs, lncRNAs are able to regulate gene expression through other mechanisms. In 
particular, a specific subclass of lncRNAs includes NATs, involved in the regulation of the sense protein-
coding transcript. As an example, ZEB2-AS1 regulates the splicing of the sense transcript ZEB2 in epithelial 
cells [30]. ZEB2 acts as a transcriptional repressor of cadherin 1 (CDH1) and is upregulated when EMT is 
activated. One of the TFs triggering EMT is snail family transcriptional repressor 1 (SNAI1); intriguingly, 
Beltran et al. [30] showed that SNAI1 did not promote ZEB2 transcription, while it indirectly modulated 
ZEB2 splicing through its NAT ZEB2-AS1, expressed under the control of an alternative SNAI1 promoter. 
ZEB2-AS1 interacted by sequence complementarity with ZEB2 mRNA, thus preventing the binding of the 
spliceosome and the elimination of an intron including an internal ribosome entry site (IRES), responsible 
for ZEB2 translation. This example shows that RRIs not involving miRNAs are also crucial for gene 
expression regulation and modulation of biological processes associated with cell physiology and 
pathology. However, NATs may also indirectly interfere with miRNA function, supporting again the high 
complexity and heterogeneity of ceRNA interactions. BACE1-AS is the NAT of BACE1, the enzyme producing 
the amyloid-β peptide whose accumulation leads to Alzheimer’s disease [88]. BACE1-AS induced 
upregulation of BACE1 protein by interacting with its mRNA and masking the MRE for miR-485-5p [29]. 
Similar results were reported in mouse myoblasts for Sirt1-AS, sponging miR-34a and protecting Sirt1 
mRNA from miRNA-mediated repression [28]. In these examples, the direct interaction between sense and 
antisense transcripts, showing intrinsic sequence complementarity, acts as a “protector” from miRNA-
mediated repression for the sense mRNA when MREs are located within a region involved in the interaction 
with the antisense and are thus impeded from miRNA binding, despite the miRNA is not involved in 
competing interactions.

As previously mentioned, the locus of the pseudogene PTENP1 also encodes a lncRNA, the NAT PTENP1 
antisense RNA (PTENP1-AS), acting as a regulator of PTEN expression [72]. In particular, two isoforms of 
the lncRNA are transcribed, exerting different functions. The α isoform directly regulated PTEN expression 
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acting in trans: by interacting with the promoter of PTEN, this isoform recruited on it DNA 
methyltransferase 3 alpha (DNMT3A) and enhancer of zeste 2 polycomb repressive complex 2 subunit (
EZH2), hence inducing chromatin remodeling. On the contrary, the β isoform directly bound the sense 
transcript PTENP1, promoting its stability. Indeed, the lack of the polyadenylated tail reported for the 
PTENP1 transcript determined its instability. That means the β isoform indirectly regulated PTEN 
expression by stabilizing the PTENP1 transcript, thus increasing its levels and, consequently, reducing the 
availability of miRNAs able to repress PTEN expression [72]. This regulatory mechanism is extremely 
complex and fascinating, and the ceRNA network surrounding PTEN is a good illustration of how multiple 
ceRNA interactions may co-occur.

Another peculiar example concerning lncRNA-mRNA direct interactions reported in 2011 induced 
mRNA degradation [89]. The RNA-binding protein (RBP) Staufen double-stranded RNA binding protein 1 
(STAU1) was reported to recognize double-stranded RNA, leading them to degradation, through a STAU1-
binding site included within the 3’-UTR of the target mRNAs, in particular in a 19-base-pair stem [90]. Gong 
and Maquat [89] reported that not all STAU1-targeted mRNAs presented this stem structure within their 3’-
UTR; on the contrary, the double-stranded RNA structure inducing STAU1 binding may be created by the 
imperfect interaction between an Alu element included within the mRNA 3’-UTR and a cytoplasmic 
polyadenylated lncRNA also including an Alu element, guiding the interaction with the mRNA.

circRNAs

circRNAs represent an unusual class of lncRNAs, characterized by a circular structure resulting from the 
covalent binding of the two extremities. circRNAs arise from transcripts coded by protein-coding genes 
which undergo a particular form of alternative splicing, named backsplicing, where the 5’-site of an 
upstream exon is bound with the 3’-end of the same or a downstream exon; accordingly, circRNAs are 
transcribed by RNA polymerase II, but they do not show 5’-cap or 3’-polyadenilation [91, 92]. Because of 
their structure, circRNAs are resistant to exonucleases and show higher stability compared to linear 
transcript [92]. circRNAs are abundantly expressed in brain, where they participate in the physiology of the 
central nervous system [93], albeit being ubiquitously expressed in human tissues [94]. Generally, circRNAs 
are mostly cytoplasmic and evolutionarily conserved [92, 93] and are transcribed also by viruses, such as 
SARS-CoV-2 [95]. According to the portions of protein-coding genes included within their sequences, 
circRNAs can be classified into: exonic circular RNAs (ecircRNAs), circular intronic RNAs (ciRNAs), and 
exon–intron circRNA (EIciRNA). Recent evidence suggested that ecircRNAs may prevalently act as miRNA 
sponges, while ciRNAs and EIciRNAs (that is, the species including introns) are localized in the nucleus, 
where they regulate gene expression [96]. In particular, circRNAs can regulate the expression of the 
parental gene, acting as cis-regulators, or of independent genes, acting in trans. Several functions have been 
reported: i) miRNA sponging; ii) protein binding for activation or stabilization of enzymatic activity, 
promotion of subcellular localization, regulation of translation, epigenetic modifications, ubiquitination; iii) 
translation of small peptides or proteins [97, 98]. Recently, circRNA-protein interactions are gaining 
attention, suggesting a role in regulating also competing interactions between RNA molecules and 
RBPs [99, 100]. To date, more than 140,000 annotated human circRNAs have been included in the database 
circBank (http://www.circbank.cn/). Several isoforms of various circRNAs deriving from the same protein-
coding gene have been reported, making nomenclature very important to identify the specific transcript 
object of study [101].

One of the most known examples of miRNA-sponging circRNAs is represented by CDR1 antisense RNA 
(CDR1-AS), also known as circular RNA sponge for miR-7 (ciRS-7), which includes within its sequence 63 
MREs for miR-7 [102, 103]. CDR1-AS is transcribed from the same locus of cerebellar degeneration related 1 
(CDR1) (of which it represents a circular NAT) and is involved in brain physiology. Recently, the 
involvement of this circRNA in several diseases, including cancer, has been reported [104]. Another 
circRNA whose miRNA-sponging function has been widely investigated is circular RNA itchy E3 ubiquitin 
protein ligase (circ-ITCH), transcribed from the ITCH locus and acting as a tumor suppressor in esophageal 
squamous cell carcinoma (ESCC), colorectal cancer (CRC) and bladder cancer [105–107]. In ESCC, circ-ITCH 

http://www.circbank.cn/
http://www.circbank.cn/
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sponged miR-7, miR-17, and miR-214, leading to inhibition of the Wnt/β-catenin pathway [105]; the same 
effect was reported in CRC through the sequestration of miR-7, miR-20a, and miR-214 [106]. In bladder 
cancer, circ-ITHC downregulation resulted in increased availability of miR-17 and miR-224, in turn 
inducing repression of the targets PTEN and p21/cyclin dependent kinase inhibitor 1A (CDKN1A) [107]. 
Multiple evidence about circ-ITCH acting as a sponge in several cancer models supports the hypothesis of a 
fundamental and conserved role of ceRNA mechanisms in both physiological and pathological conditions.

Interestingly, a study published in 2022 reported that circRNAs may also interact with mRNAs [108], 
similarly to lncRNAs. The study focused on circular RNA zinc finger protein 609 (circZNF609), encoded 
from the ZNF609 locus, an oncogenic circRNA upregulated in several cancer models and reported to act as a 
miRNA sponge. Rossi et al. [108] showed that circZNF609 also interacted in vivo with mRNAs, namely 
cytoskeleton associated protein 5 (CKAP5), UPF2 regulator of nonsense mediated mRNA decay (UPF2), and 
serine and arginine repetitive matrix 1 (SRRM1), recruiting on their sequences ELAV like RNA binding 
protein 1 (ELAVL1), an RBP, in turn, regulating stability and translation of these mRNAs [108]. This new 
recent finding demonstrates that little is known about the potentiality of ceRNA networks, and further 
investigations will be needed to increase the knowledge about their mechanisms.

Conditions for ceRNA networks

Looking at ceRNA interactions as a whole, their complexity is undeniable (Figure 1). To understand how a 
particular mechanism operates within cells, researchers must ignore all other phenomena and concentrate 
only on a single molecular event. Nonetheless, it’s important to keep in mind that the mechanisms 
explained here occur in the complex framework presented above. To integrate the small puzzle pieces in 
the comprehensive context of a living cell, several studies investigated the conditions required for the 
existence of a ceRNA network. First of all, each component of the ceRNA network is characterized by 
specific expression levels, which may differ between the single actors involved in the interactions. The 
abundance of a given miRNA is crucial to understand if it will be able to bind all its potential targets or only 
a portion of them (most likely the ones with the higher binding affinity); on the contrary, if a ceRNA 
molecule (such as an mRNA, a pseudogene, a lncRNA or a circRNA) is more abundant than the miRNA, it 
could be speculated that only a few miRNA molecules (the majority of them being sponged) will be 
available for target-binding. Accordingly, Denzler et al. [109] demonstrated that the miRNA: target ratio is 
crucial for competing interaction by investigating miR-122 function in the liver. There are numerous 
examples of potential scenarios occurring within a cell, but it is easy to understand that the stoichiometric 
equilibrium among interacting RNAs is one of the most important parameters regulating ceRNA 
interactions. What seems to be elucidated is that a near equimolar expression among RNA interactors is 
necessary for ceRNA network establishment. This would allow a small alteration in the expression levels of 
a given ceRNA to affect the expression of the other interactors. As an example, consider a ceRNA that is 
highly more abundant than a miRNA, being able to sponge virtually all miRNA molecules: a small variation 
in ceRNA levels would not produce a significant effect on miRNA availability in the cytoplasm. The nearly 
equimolar equilibrium was estimated by a mathematical model using PTEN and VAPA interplay as a model 
of ceRNA interactions [110]. It should be noted that a debate arose regarding the true impact of ceRNA 
networks on cell biology. Denzler et al. [109] concluded in their study on miR-122 in the liver that variation 
in expression of a single miRNA family was unlikely to impact both physiology and pathology: indeed, 
modulation of miR-122 expression was able to regulate the expression of miRNA targets, while ceRNA 
effects were induced when the concentration of the miRNA reached levels exceeding physiology. Despite 
this negative result, the authors did not exclude the existence of other unidentified ceRNAs highly 
expressed within cells nor the possibility that their method was not sensitive enough to detect 
perturbations of the ceRNA network [109].

Another undeniable parameter is, as mentioned, the binding affinity between the miRNA and the MRE. 
The existence of MREs differing in the length of sequence complementarity with miRNA seed region 
(classified as 8mers, 7mers, and 6mers, see above) suggests that miRNAs may have primary targets, bound 
with higher affinity and effectively regulated, while other transcripts showing MREs with lower affinity may 
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Figure 1. Representation of ceRNA interactions and molecular effects. (A) ceRNA interactions occurring among the involved 
RNA species: miRNAs bind and negatively regulate mRNAs, pseudogenes, lncRNAs, and circRNAs; lncRNAs and circRNAs 
bind mRNAs and modulate their splicing or stability; (B) function of miRNAs: miRNAs bind mRNAs, lncRNAs, and pseudogenes 
with imperfect complementarity and induce target degradation; when a miRNA interacts with its mRNA target with perfect 
complementarity, translation is inhibited; (C) mRNAs act as miRNA sponges by binding miRNAs through multiple MREs 
included throughout their sequence, thus protecting other mRNAs from miRNA-mediated repression; (D) pseudogenes can 
regulate the expression of parental protein-coding genes by sponging miRNAs; high sequence homology between the 
pseudogene and the parental gene determines the high number of shared MREs; (E) lncRNAs can protect other transcripts from 
miRNA-mediated repression by sponging miRNAs; direct interactions between lncRNAs and mRNAs modulate the splicing of 
the latter; (F) circRNAs act as miRNA sponges, impairing their function on other transcripts, or directly interact with mRNAs 
recruiting on the RBPs involved in splicing or mRNA stabilization

be less affected by modulation of miRNA availability, or they may act as sponges [25, 26]. Indeed, it has 
been reported that 7mers and 6mers were respectively 50% and 20% as effective as 8mers in regulating 
target abundance [111]. Therefore, it can be assumed that low levels of a given miRNA would induce its 
preferential binding with high-affinity MREs, while binding to low-affinity target sites would require a 
higher abundance of the miRNA. It could be hypothesized that this binding affinity would also mirror the 
efficacy of miRNA-mediated repression, suggesting that targets bearing low-affinity MREs would be 
negatively regulated by the miRNA only whether it is abundantly expressed. Actually, effective binding 
between miRNAs and low-affinity MREs (and consequential negative regulation of the target) does occur 
within cells, in some cases with unexpected repression efficiency. This contradiction may be explained by 
other MRE-related parameters influencing ceRNA networks. First of all, it is important the number of MREs 
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included within the sequence of a given ceRNA: the higher the number of MREs, the more miRNA molecules 
sponged. But localization and distribution of MREs are also crucial since neighbor MREs showed to increase 
the binding affinity by acting in cooperation. Intriguingly, cooperation among low affinity or non-canonical 
MREs may contribute to target site abundance more than high affinity or canonical binding sites; 
experimental evidence showed that two closely spaced (58 nts apart) MREs induced a more efficient 
negative regulation than expected by their independent action [111].

Even in the presence of multiple MREs with comparable affinity, ceRNA interactors have to share the 
same subcellular localization for the physical interaction to occur. As discussed, lncRNAs (including 
circRNAs) showed to exert functions both in the nucleus and in the cytoplasm, while mRNAs and miRNAs 
typically localize in the cytoplasm where they are translated into proteins and act as negative regulators of 
gene expression, respectively. However, a nuclear function for miRNAs was reported, showing their 
involvement in regulation of transcription and alternative splicing [112]. The asymmetric distribution 
would impair a direct interaction. Nevertheless, this potential obstacle may be overcome by the shuttling of 
miRNAs and lncRNAs between nucleus and cytoplasm that has been demonstrated for some of 
them [113, 114], thus allowing subcellular colocalization (even if temporary) and direct interaction.

Supposing that ceRNA interactors colocalize within the same subcellular compartment, the regions of 
each molecule being involved in ceRNA interactions must be free to bind to each other. That means no other 
interactions should occur, neither intramolecular (formation of secondary structures) nor intermolecular 
(interactions with either RNAs or proteins). In this context, interactions with RBPs involved in physiological 
processes (such as splicing, miRNA-induced silencing, etc.) may represent an additional competitor for RNA 
binding affecting ceRNA interactions [34].

As previously discussed, alternative splicing patterns producing mRNAs differing at the level of the 3’-
UTR may contribute to MRE abundance within the cell [67], as well as the phenomenon of 3’-UTR 
shortening observed in cancer [66]. There is another molecular process, occurring physiologically in cells, 
that affects RRIs, namely RNA editing. Being part of post-transcriptional processes, RNA editing consists in 
modifying the sequence of a transcript [including mRNAs, transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), 
etc] by insertion, deletion, or substitution of specific nucleotides [115]. Interestingly, RNA editing is also 
responsible for isomiR biogenesis [41]. Adenosine-to-inosine modifications represent the most frequent 
sequence alterations induced by editing, modulating the function of the modified transcript [116]. 
Obviously, changes in a transcript sequence would affect ceRNA interactions, potentially disrupting or 
creating MREs. Similarly, the different patterns of expression of isomiRs, characterized by variation in 
length or sequence, would affect the affinity to existent MREs or induce a given isomiR to recognize new 
targets [41]. These observations suggest that ceRNA interactions may be finely regulated even in 
physiological contexts by the intricate modifications underlying the dynamics and complexity of cell 
processes. Hence, the dramatic twisting of molecular mechanisms inducing the onset of a disease, such as 
cancer, which includes accumulation of mutations, alternative splicing, and 3’-UTR shortening, would be 
able to extremely alter the ceRNA interactions, being simultaneously the cause and the effect of the 
pathological transformation of diseased cells.

Experimental methods for identification of RRIs
RNA molecules play crucial roles in a variety of biological processes by interacting with other RNAs. The 
significant achievement in resolving transcriptome-wide RRI networks has been the identification of a 
massive quantity of RRI data that considerably increased the understanding of the regulatory functions of 
various RNA classes.

For decades, RRIs have been studied using various biochemical approaches. Low-throughput 
techniques, before, and high-throughput next-generation sequencing of RNA permitted large-scale 
experimental detection of ceRNAs by identifying the entire network of endogenous RRIs [34, 117].
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For example, using the miRNA pull-down assay, Chan et al. [118] identified ferritin heavy chain 1 
(FTH1) and its numerous pseudogenes as targets of oncogenic miR-638 in prostate cancer. The authors 
observed that the FTH1-pseudogene-miRNA ceRNA network plays a significant role in the onset and 
progression of prostate cancer via regulating iron homeostasis. Chi et al. [119] performed AGO cross-
linking and immunoprecipitation (AGO-CLIP) to detect miRNA-mRNA interactions in mouse brain, and their 
results indicated that miRNA binding sites may be located in both 3’-UTRs and coding regions [119]. In a 
study by Nguyen et al. [120], interactions of the lncRNA metastasis associated lung adenocarcinoma 
transcript 1 (MALAT1) with eukaryotic translation initiation factor 4A2 (EIF4A2), transferrin receptor 
(TFRC), and solute carrier family 2 member 3 (SLC2A3) mRNAs were successfully validated by antisense 
RNA pulldown; also, MALAT1 and SLC2A3 association was proved via single-molecule Förster resonance 
energy transfer (smFRET), confirming the validity of MALAT1 targets discovered by Mapping RNA 
interactome in vivo (MARIO) technology.

The most common approaches for RRI identifications, including conventional methods and recently 
developed large-scale sequencing-based techniques, are summarized below.

Low-throughput biophysical, biochemical, and cellular methods for detecting RRIs
Electrophoretic mobility shift assay

In electrophoretic mobility shift assay (EMSA), RNA fragments are extracted from cells or synthesized 
according to the potentially interacting regions. This method is based on the principle of change in RNA 
mobility as a result of its association with other biomolecules, including other RNAs [121, 122]. 
Radiolabeled RNA probes are commonly used in RNA EMSA. To evaluate the shift in mobility of the labeled 
RNA-target complex, the labeled RNA probe is incubated with many target RNA molecules before 
separation on a non-denaturing polyacrylamide gel. Direct interaction of RNA with another ligand leads to 
retarded RNA mobility in the agarose or polyacrylamide gel due to the increase in mass/size of the 
complex. Numerous researchers have used this method to investigate RRIs, and a modified EMSA using 
biotin-labeled RNA probes has been created for the colorimetric detection of gel-shift bands [123].

Surface plasmon resonance

Surface plasmon resonance (SPR) is a common optical approach for detecting biomolecule interactions in 
which the target is mobile, while a probe (RNA-ligand) is immobilized on a sensor chip and the interaction 
with possible targets is analyzed in real-time [124, 125]. RNA ligands can be fixed to the chip surface for 
RRI evaluation using one of three following methods: bio-affinity, physical adsorption, or covalent cross-
linking. The target RNA molecule is then allowed to flow over the chip and interact with the RNA-ligand; the 
interaction is optically detected by measuring the signal resulting from a shift in refractive index at the 
chip’s surface. Given SPR’s strength, it might be used to find interactions between RNAs and other RNAs, 
peptides, proteins, or other biomolecules [125].

smFRET

Another biophysical method for determining energy transfer between two or more fluorophores is Förster 
resonance energy transfer (FRET) [126]. When used at the molecular level, this technique is known as 
smFRET and involves the excitation of donor and acceptor fluorophores. This non-radioactive technique 
needs the excitation of a donor fluorophore, which transfers its excitation energy to its acceptor 
fluorophore partner, resulting in specific fluorescence emission [127]. RNA molecules are anchored to the 
surface of quartz or enclosed in lipid vesicles during RRI investigations. Moreover, real-time monitoring can 
be performed using two fluorescent dyes labeled on precise positions of the two RNA interactors. Correct 
fluorescence signals are produced and recorded when two fluorescent dyes interact in a close area [128].

Co-sedimentation assay

In RNA co-sedimentation assays, RNA molecules are separated on sucrose/glycerol gradients, and the 
positions of distinct RNA molecules within the gradient are analyzed by northern blotting [129]. According 
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to the desired resolution and study, a variable proportion of sucrose/glycerol gradient is used as a 
supporting and stabilizing medium, permitting centrifugal migration of the RNAs and the associated 
proteins. The existence of two RNA molecules at a specific fraction in the sucrose gradient fractions implies 
their potential interaction [129].

Single-molecule fluorescent in situ hybridization

Single-molecule fluorescent in situ hybridization (smFISH) uses multiple fluorescent-labeled probes that 
hybridize with the target RNA in a fixed cell, allowing for the quantification and localization of individual 
RNA molecules using fluorescence microscopy [130]. Because of its high sensitivity, it has great potential 
for studying mRNAs and ncRNAs at the single-molecule level. smFISH has been successfully used to 
investigate RRIs and co-localization of several RNAs, including the lncRNAs nuclear paraspeckle assembly 
transcript 1 (NEAT1) and MALAT1, making it an interesting tool for exploring RRIs in the cellular 
context [129, 131].

Luciferase reporter assay

The luciferase reporter assay is a functional assay used to explore intermolecular interactions. 
Traditionally, it involves two constructs transfected into a cell: one construct contains the gene of interest 
combined with the gene encoding the luciferase enzyme, while the other includes the protein of 
interest [132]. The transfected cells are lysed, then luciferin is added as a substrate to evaluate luciferase 
activity. Although this assay was initially created to examine protein-mediated transcriptional regulation of 
genes, more recent studies have modified it to examine post-transcriptional regulation via interactions 
between miRNAs and mRNAs [133]. A particular dual-fluorescence assay system using constructs 
expressing mCherry with the miRNA target sequence was developed in 2012: this assay shows several 
advantages, including the possibility to use a larger sample size, and time-course investigations, and can be 
used for high-throughput approaches, making it a reliable method for studying RRIs [129].

Yeast RNA-hybrid system

This is an RNA-hybrid system established in Saccharomyces cerevisiae to detect a specific RRI by using a 
reporter gene whose activity is dependent on the interaction between two RNAs [134, 135].

High-throughput targeted methods for detecting RRIs

Next-generation sequencing technologies have been developed to study RNA molecules at the 
transcriptome level [136].

Cross-linking, ligation, and sequencing of hybrids

Cross-linking, ligation, and sequencing of hybrids (CLASH) is the first high-throughput RNA-sequencing 
(RNA-seq) technique adapted from cross-linking and immunoprecipitation (CLIP-seq) to decode 
transcriptome-wide analysis of RRIs [137]. CLASH involves ultraviolet (UV) cross-linking of RNAs 
associated with proteins, followed by protein purification and partial RNA digestion, and the extremities of 
the RNA-RNA hybrid are ligated together. Following linker addition, complementary DNA (cDNA) library 
preparation and high throughput sequencing of the ligated hybrid provide information about chimeric 
sequences, which can be analyzed to identify RNA-RNA interacting sites [129]. CLASH has been used to 
identify many types of RRIs in various species, including sRNA-centered interactions in bacteria, snoRNA-
rRNA interactions in yeast [137], and miRNA-mRNA interactions in humans [138, 139].

RNA antisense purification

RNA antisense purification (RAP) is a biochemical method used to investigate the interaction of a given 
lncRNA with its target. This method uses biotinylated antisense probes that are complementary to the 
target lncRNA and hybridize with it to capture the interacting RNA targets [140]. The biotinylated antisense 
probe and its interacting RNAs are subsequently isolated and detected by RNA-seq and quantitative 
polymerase chain reaction (PCR). Engreitz et al. [141] used the RAP method to prove that MALAT1 
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interacted with various pre-mRNAs and chromatin after 4’-aminomethyltrioxsalen (AMT) cross-linking, 
purification with an antisense probe, and sequencing [141]. Another example is the study by Panda 
et al. [142], in which RAP assay was applied to validate the circRNA interactions with miRNAs using ASOs 
targeting the back-splice junction of circRNAs.

AGO-CLIP

As previously discussed, the miRNAs incorporated within the RISC containing AGO proteins target the 3’-
UTR of mRNAs and suppress mRNA translation [38]. Because miRNA-mRNA complex interacts directly with 
AGO proteins, AGO-CLIP followed by sequencing is aimed at finding transcriptome-wide miRNA 
targets [143]. UV cross-linking is used in this procedure to establish protein-RNA interaction. The cellular 
lysate is therefore treated with ribonuclease (RNase) before immunoprecipitation of AGO proteins (by 
using a specific antibody) to produce RNA fragments of 20–100 nts. The fragmented RNA is then subjected 
to alkaline phosphatase treatment and radio-labeled by γ-32P-ATP using T4 polynucleotide kinase (PNK), 
and the protein–RNA complex is then separated in sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) Following that, the gel is observed by autoradiography to excise out the 
complex-corresponding portion, which is then treated with proteinase K to release the immunoprecipitated 
RNA fragments [143]. AGO-CLIP was used in some studies to detect miRNA interactions in pathological 
conditions such as ischemic stroke and cancer [144].

RNA hybrid and individual-nucleotide resolution ultraviolet cross-linking and immunoprecipitation

RNA hybrid and individual-nucleotide resolution ultraviolet cross-linking and immunoprecipitation 
(HiCLIP) is another advanced technique for detecting intra- and intermolecular RRIs by using the RBP 
STAU1 [145]. HiCLIP, like CLASH, starts with UV crosslinking of RNAs to proteins, followed by lysis and RNA 
digestion by RNase I. STAU1 is subsequently co-immunoprecipitated with its associated RNAs, but unlike 
CLASH, HiCLIP achieves better specificity by adding an adaptor in ligation: cloning adapter and linker 
adapters are ligated to both strands of the RNA duplex. The linker adaptor is removed to ligate the RNA 
strands flanking to the linker, which can result in either a duplex formed by the same mRNA or two distinct 
mRNAs; the RNA-RNA hybrid is subsequently converted to a cDNA library and sequenced [145]. HiCLIP has 
been used to decode RNA secondary structure bound by STAU1, but, in principle, it can also identify inter-
molecular RRIs [145, 146].

RNA walk

The RNA walk approach, like CLASH, uses AMT-induced UV cross-linking and affinity purification, but 
rather than ligation, RNA walk performs reverse transcriptase-PCR (RT-PCR) immediately after 
crosslinking, with primers designed to target distinct portions of the investigated RNA [147].

Identification of transcriptome-wide RRIs

The development of modern biochemical methods and high-throughput sequencing technology resulted in 
the discovery of ncRNAs, a novel family of RNAs, and the various functions exerted through interactions 
with other RNAs. Several technologies using biochemical RNA cross-linking followed by high-throughput 
sequencing have enabled us to discover the global map of RRIs crucial for physiological activities in recent 
years. The transcriptome-wide RNA interactome, which has the potential to include all of the RNAs in a cell, 
leads to the development of several novel techniques.

MARIO

MARIO is an in vivo enzyme-based method for detecting protein-assisted RNA interactions and structures 
allowed by proteins-RNA cross-linking [120]. Using this approach, RNA interactions were mapped in mouse 
embryonic stem cells, fibroblast cells, and brain cells. To capture RNA linked via protein, this technique 
performs RNA cross-linking using formaldehyde and ethylglycol bis (succinimidyl succinate). The 
biotinylated RNA linkers are subsequently coupled to the protein-bound proximal ends of RNAs, resulting 
in the formation of an RNA1-linker-RNA2 chimeric form of RNA. The linker-mediated chimeric RNA is 
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subsequently isolated using streptavidin-coated magnetic beads and successively used for the construction 
of a sequencing library. As a result, the hybrid’s paired-end reads reflect the interaction between 
RNAs [129]. Furthermore, the MARIO technique can detect in vivo RNA structure, including the proximal 
spatial organization of secondary and tertiary structures. For the first time, thousands of endogenous RNA 
connections in mouse embryonic stem cells and brain cells were discovered using this technology. 
Moreover, MALAT1 interactions with ergosterol biosynthesis 28 (ERG28), EIF4A2, TFRC, and SLC2A3 
mRNAs were successfully validated by antisense RNA pulldown; MALAT1 and SLC2A3 association was 
confirmed via smFISH, thus confirming the validity of MALAT1 targets discovered by MARIO [120].

Sequencing of psoralen cross-linked, ligated, and selected hybrids

Sequencing of psoralen cross-linked, ligated, and selected hybrids (SPLASH) is another high-throughput 
approach used to study transcriptome-wide intra- and inter-molecular RRIs [148]. This method relies on 
RNA-RNA cross-linking using biotin-labeled psoralen, RNA isolation, fragmentation followed by pulldown 
of biotin-labeled psoralen, and the ligation of proximal ends of psoralen cross-linked RNA hybrids. After 
that, the RNA-hybrids are reversely cross-linked. The biotin group on bio-psoralen also allows the selective 
enrichment of crosslinked interaction sites during the library preparation process, increasing the signal of 
pairwise interactions over the background of non-interacting sites. In this method, psoralen swiftly 
permeates cells and selectively cross-links at pyrimidines, making this approach highly specific for RRIs. 
This technique was used for in vivo mapping of RRIs in eukaryotes, leading to the identification of 
intermolecular interactions, including mRNA-rRNA, mRNA-mRNA, snoRNA-rRNA, and mRNA-lncRNA 
interactions [129, 148].

Psoralen analysis of RNA interactions and structures

The psoralen analysis of RNA interactions and structures (PARIS) method enables genome-wide 
determination of RRIs and RNA structures [149]. This method involves cross-linking RNA with AMT (a 
psoralen derivative) after UV irradiation at 365 nm. Total RNA is isolated and partially digested using 
RNase, followed by two-dimensional electrophoresis to purify interacting RNAs, and finally proximity 
ligation [129]. The RNA hybrid is then reversely cross-linked by UV irradiation at 254 nm and used for 
library preparation, followed by high-throughput sequencing and bioinformatics analysis [149]. This 
method was used to discover long-range structures originating from intramolecular base-pairing at near 
base-pair resolution, in addition to intermolecular RRIs across the transcriptome. For example, lncRNA X 
inactive specific transcript (XIST) was found to fold into conserved RNA structures by PARIS analysis [129]. 
Recently, an improved version of PARIS technology, namely PARIS2, has been developed to detect in vivo 
RNA interactome with more than 4,000-fold higher efficiency [150].

Ligation of interacting RNA followed by high-throughput sequencing

Ligation of interacting RNA followed by high-throughput sequencing (LIGR-seq) was developed to show the 
complex RNA-RNA interactome in human cells, facilitating the detection of multiple RRIs, particularly those 
involving mRNAs. LIGR-seq performs cross-linking by AMT and UV irradiation, resulting in pyrimidine-
mediated interlinked RNA hybrids [129]. Cells are then lysed to isolate RNA and highly abundant rRNAs are 
removed via rRNA depletion. Moreover, S1 nuclease is used to remove single-stranded RNA, and the free 
overhangs next to the duplexes are ligated with circRNA ligase. RNase R, an exoribonuclease that digests 
linear or uncross-linked RNAs, is used to digest the AMT cross-linked RNA. After reverse crosslinking at UV 
irradiation of the enriched duplexes at 254 nm, library preparation, and high throughput sequencing are 
performed [129, 151]. Unexpected and previously unknown interactions were observed between snoRNAs 
and mRNAs, including NOP14 nucleolar protein (NOP14), ribosomal protein S5 (RPS5), and serine and 
arginine rich splicing factor 3 (SRSF3), indicating that small nucleolar RNA, C/D box 83B (SNORD83B) 
contributes to the steady-state expression of its mRNA targets. Furthermore, parallel libraries from 
uncross-linked samples can aid to reduce artifacts caused by the library preparation to boost the sensitivity 
of this method [129].
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Parallel analysis of RNA structure

Parallel analysis of RNA structure (PARS) analyses global RNA structures by combining the traditional 
biochemical method of RNA cleavage with parallel DNA sequencing [152]. This approach was first used to 
investigate the structure of mRNAs in yeast and their role in gene regulation. Total RNA isolation from cells 
is performed to enrich mRNAs, which are then treated with S1 or V1 nuclease separately. After that, the 
obtained small structural fragments are retro-transcribed into double-stranded cDNA libraries. Different 
libraries are generated from the materials digested by each nuclease. However, only the sites cleaved by 
RNase V1 or S1 nuclease contain 5’-phosphate that are ligation-competent. The RNA is then size-selected, 
followed by 5’-adapter ligation, PAGE purification, and PCR amplification [152]. The amplified products are 
sequenced in the Sequencing by Oligo Ligation Detection (SOLiD) system or Illumina platform resulting in 
tens of millions of reads. Data analysis allows to identify the site digested by a specific nuclease or by both 
of them, comparing the cleaving frequencies of both RNases at each nucleotide [129]. This comparison is 
known as the PARS score, calculated through the formula log2 (V1/S1), which provides the single or 
double-stranded characteristic of each nucleotide in RNA sequence and provides the basis for the 
secondary structure of RNA [152]. A positive PARS score is indicative of a double-stranded base, while a 
negative value indicates a single-stranded base. Mapping the PARS scores to already known motifs of DNA-
binding transcription repressor ASH1 (ASH1) and glutathione peroxidase (URE2) mRNAs also confirmed 
that this technique may decode the structural information of these elements [153].

Parallel analysis of RNA structures with temperature elevation

Parallel analysis of RNA structures with temperature elevation (PARTE) is a modified version of the PARS 
technique based on a difference in temperature values for the analysis of RRIs. The relative melting 
temperature (Tm) of RNA structure of 4,000 transcripts was determined by testing the RNA secondary 
structures (called RNA thermometers) in yeast throughout a temperature range of 23°–75°C. Tm 
distinguishes mRNA polarity as well as coding, open reading frame (ORFs), and noncoding sections [154]. 
The PARTE profile reveals that the weakest pairs occur at the start and stop site of mRNAs, making them 
easily accessible for ribosome binding. Highly stable base-pairing is detected in regions 20 nts upstream of 
the start codon and 10 nts downstream of the stop codon, showing that the highly ordered structure plays 
an important role in the translation process [155]. The enriched mRNA samples are allowed to refold 
before being treated with V1 nuclease. Following Tm estimation and genomic analysis, the RNA fragments 
are retro-transcribed in cDNA libraries for sequencing [154].

Fragmentation sequencing

Fragmentation sequencing (FragSeq) is an enzyme-based high-throughput sequencing methodology that 
was developed to investigate the RNA structure by probing the whole mouse nuclear transcriptome [156]. 
Endonuclease P1, which destroys single-stranded RNA molecules and generates 3’-OH and 5’-phosphate 
ends, is used in this procedure. RNA is first denatured, then allowed to refold before being treated with PNK
; then, size selection of 20–100 nts by using the flash PAGE technique is performed. The RNA fragments are 
ligated with specific 3’- and 5’-SOLiD adapters, then reverse-transcribed, barcoded, and sequenced on the 
SOLiD3 platform. The sequenced reads are mapped to the specific genome, and the FragSeq algorithm is 
used to estimate the “cutting score” for each site in each transcript, which represents the enzyme’s catalytic 
preference at a specific position in control or treated RNA. A high cutting score indicated base pairing or 
tertiary interactions and was consistently high at stem-loop and hinge sites [156].

Selective 2’-hydroxyl acylation analyzed by primer extension-sequencing

Selective 2’-hydroxyl acylation analyzed by primer extension-sequencing (SHAPE-seq) provides 
information for every nucleotide of an RNA molecule. In SHAPE-seq, chemical probes covalently modify the 
RNA in a structure-dependent fashion [157, 158]. The positions of these adducts are detected using primer 
extension, which stops one nucleotide before the modification, to create a pool of cDNAs whose lengths 
reflect the location of SHAPE modification [159]. The cDNAs are then mapped by linking Illumina adaptors 
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with a single-stranded DNA ligase. The cDNA library is PCR amplified, then sequenced and bioinformatically 
analyzed to identify RNA-RNA duplexes and map RNA secondary structures [160]. In conclusion, SHAPE-
seq is a valid and reproducible method for obtaining RRI information at a single-nucleotide resolution, 
which may then be used in RNA folding algorithms to reconstruct RNA structures [129].

In silico methods for identifying RRIs
Discovering ceRNA networks provides a comprehensive view of the biological functions and regulatory 
processes of RNAs. Coupling computational prediction with experimental validation improves the efficiency 
and accuracy of RNA-RNA association detection at the systemic level.

In recent years, some in silico approaches for detecting ceRNA interactions have been developed to find 
RNA interactions, and according to the computational approach, the process of reconstructing ceRNA 
networks can be substantially divided into some fundamental steps: 1) collecting sample data, 2) 
identifying differentially expressed miRNAs and ceRNAs, 3) recognizing ceRNAs with MREs, 4) evaluating 
the statistical significance of ceRNA pairs sharing common miRNAs, 5) inferring candidate ceRNA 
interactions and 6) reconstructing global or condition-specific ceRNA networks [161, 162].

For ceRNA network reconstruction, correlated gene expression data from tumors and nearby normal 
controls are typically prioritized and used to investigate the role of ceRNAs, for example in the development 
and progression of cancer.

Expression data can be initially generated by high-throughput sequencing or downloaded from 
publicly available data repositories, such as The Cancer Genome Atlas (TCGA) [163] and Gene Expression 
Omnibus (GEO) [164]. Due to individual differences, it should be noted that the collected datasets need to 
include a sufficiently large number of human samples to be statistically meaningful. Additionally, the 
GENCODE project (part of the ENCODE project) [165] together with the databases miRBase [166] and 
circBase (http://www.circbase.org/) [167] can be used for functional annotation during data processing. 
As RNA molecules with altered expression patterns were more likely associated with specific biological 
processes, differentially expressed miRNAs, lncRNAs, circRNAs, and mRNAs are expected to be identified 
and analyzed using appropriate statistical methods.

Predicting ceRNAs is initially based on the principle of complementary base-pairing between miRNA 
and MREs included within the potential ceRNAs. Currently, multiple miRNA-target prediction algorithms, 
including miRanda (https://cbio.mskcc.org/miRNA2003/miranda.html) [168], TargetScan (https://www.
targetscan.org/vert_80/) [169], RNAhybrid (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid) [170] and 
RNA22 (https://cm.jefferson.edu/rna22/) [171], have been widely used to identify ceRNAs considering a 
variety of factors, such as complementarity to the miRNA, evolutionary conservation of MREs, the free 
energy of the miRNA-ceRNA heteroduplex, and flanking secondary structures. Although developments in 
computational algorithms have been made to increase prediction accuracy, the most commonly used 
miRNA-target prediction algorithms still have more than 40% false positive and false negative rates [34]. 
Predicted miRNA-ceRNA interactions should be further filtered and validated experimentally, as suggested 
by The Encyclopedia of RNA Interactomes (ENCORI) (previously known as Starbase v2.0) (https://rnasysu.
com/encori/) [172], DIANA-TarBase v8 (https://dianalab.e-ce.uth.gr/html/diana/web/index.php?r=
tarbasev8) [173] and mirTarBase (https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2022/php/
index.php) [174]. Furthermore, while the combination of prediction algorithms and experiment-supported 
databases could facilitate the prediction of ceRNA interactions with relatively high accuracy, there is no 
gold standard for the effective selection of appropriate combination methods in practice.

The ‘ceRNA hypothesis’ [25] states that information about the expression correlation between 
interacting ceRNA pairs and between ceRNA-miRNA pairs strengthens the computer-aided knowledge of 
ceRNA interaction.

Three types of computational approaches, based on the network concept, are mainly used: 1) pair-wise 
correlation approach, 2) partial correlation approach, and 3) mathematical modeling approach [175].
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Pair-wise correlation approach

The pair-wise correlation technique is based on the assumption that the expression levels of each pair of 
interacting ceRNAs in a network show a significant positive correlation, which can be evaluated by Pearson 
correlation coefficients. The positive correlation principle is based on the mechanism which evidences that 
a high concentration of a miRNA sponge will reduce the available miRNAs for interacting with its target 
RNAs [175], which, in turn, will not undergo miRNA-based repression and, accordingly, will increase their 
levels.

Using target prediction databases, this approach first searches a set of miRNAs for all pairs of RNAs 
that contain MREs. Given an RNA pair including RNA1 and RNA2, a statistical test, such as a hypergeometric 
test, is performed to determine the significance of the shared MREs; pairs with significant positive 
correlations or significant differences in correlations in two separate situations are predicted to have 
miRNA sponge interactions [175]. Zhou et al. [176] combined matched breast cancer miRNA and mRNA 
expression data with miRNA-mRNA relationships to identify breast cancer-specific miRNA sponge 
interactions. Using predicted miRNA target information and a hypergeometric test, the authors first 
identified common miRNAs for all mRNA-mRNA pairs. They then used Pearson correlation coefficients to 
evaluate the significance of the correlations between putative miRNA sponge interaction pairings sharing 
the same MREs. The miRNA sponge network was developed using the significant miRNA sponge interaction 
pairs that have been found. The targets in the miRNA sponge network revealed discriminative capability 
and were considered good biomarker candidates in breast cancer, according to the results of the survival 
study [176]. Xu et al. [177] applied a similar strategy to predict the landscape of mRNA-related miRNA 
sponge interactions across 20 major cancer types. Even though the majority of miRNA sponge connections 
are cancer-specific, malignancies involving the same cell type share a considerable number of common 
miRNA sponge interactions. In each cancer, functional analysis revealed preserved and rewired network 
miRNA sponge hubs, which established tense miRNA sponge connections to form conserved and cancer-
specific modules [177]. Using expression profiles and miRNA-target interactions, Shao et al. [178] 
suggested a pair-wise correlation-based technique to uncover dysregulated miRNA sponge interactions in 
lung adenocarcinoma. The authors classified the dysregulated miRNA sponge interactions as “gain” or 
“loss”. They discovered that correlations of gain miRNA sponge interactions are significantly positive in 
cancer, and correlations of loss miRNA sponge interactions are significantly positive in normal conditions. It 
was also observed that gain miRNA sponge pairs exhibit consistent expression in cancer, whereas loss 
miRNA sponge pairs do not. Additionally, gain and loss miRNA sponges that participate in gain and loss 
miRNA sponge interaction networks as topologically important nodes are linked to cancer development. 
Additionally, several dysregulated miRNA sponge modules may be considered diagnostic biomarkers even 
in other three independent lung datasets. In the field of biomarkers for diagnosis, this study suggests the 
possibility of a new biological mechanism in cancer [178]. Chiu et al. [179] analyzed optimal conditions for 
miRNA sponge regulation by integrating expression profiles and putative miRNA-target interactions in 
TCGA datasets of glioblastoma multiforme (GBM), ovarian serous cystadenocarcinoma (OV), lung squamous 
cell carcinoma (LUSC), and large acute myeloid leukemia (LAML). They reported that miRNA sponge 
regulation is dynamic, differed between cancer types, and was related to the number of common miRNAs 
and target binding sites [179]. Their findings help us comprehend the dynamic nature and important roles 
of miRNA sponge regulation in cancer [175].

Partial correlation approach

Differently from pair-wise correlation methods, partial association methods consider the miRNA expression 
levels when examining ceRNA-ceRNA interactions. When the relationships between miRNA sponges are 
assumed linear, the partial correlation methods measure the correlation between two ceRNAs sharing a 
common MRE [175, 180]. Also, when no assumptions are made about the nature of relationships (linear or 
non-linear) between miRNA sponges, conditional mutual information (CMI) methods can be used rather 
than partial correlation [59, 180].
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In their study, Sumazin et al. [59] examined the ability of coding and non-coding RNAs to interact as 
miRNA sponges in glioblastoma by evaluating a large set of related miRNA and gene expression profiles. 
They identified an extensive miRNA-mediated network of RRIs and uncovered miRNA-mediated crosstalk 
between different oncogenic pathways. They analyzed two types of miRNA-mediated modulators using 
distinctive molecular mechanisms: sponge modulators and non-sponge modulators. Owing to the 
prohibitive computational cost of examining a large number of ceRNA-miRNA-ceRNA triangles, they 
reduced the number of triangles to be evaluated by using experimentally validated or predicted miRNA-
target information. Only RNA-RNA pairs with a significant overlap of common miRNAs were examined for 
sponge modulators, and expression data were combined with predicted miRNA target regulatory 
interactions to form ceRNA-miRNA-ceRNA triangles. Concerning non-sponge modulators, all RNA-RNA 
pairs have been analyzed to predict triangles, including the empty and non-statistically significant overlap 
of common miRNAs, and their expression data were merged with experimentally validated miRNA-target 
information. Using mutual information (MI) and CMI, Sumazin et al. [59] identified over 7,000 sponge 
modulators as miRNA sponges with over 248,000 pairs of miRNA-mediated RRIs, and 148 non-sponge 
modulators with 169 miRNA-mediated RRIs with more than 100 mRNAs involved. This wide miRNA-
mediated network offers a new view on the deregulation of essential pathogenic and physiological 
processes. Paci et al. [181] suggested a partial correlation-based approach to investigate the role of lncRNAs 
as miRNA sponges. They studied the matched miRNA and gene expression profiles of 72 patients with 
breast invasive carcinoma (BRCA) obtained from TCGA. The tumor and normal tissue samples came from 
the same patients. They designed the miRNA-mediated interaction (MMI) networks in tumor and normal 
conditions by evaluating the difference between the Pearson correlation and partial correlation (sensitivity 
correlation) for each lncRNA-miRNA-RNA triangle. The tumor-MMI network appears to be clearly distinct 
from the normal-MMI network, demonstrating that the miRNA decoy mechanism may switch on or off its 
mediators depending on physiological or pathological conditions [181]. Chiu et al. [182] developed Cupid, 
an integrative framework for context-specific miRNA target and miRNA sponge interaction networks by 
combining sequence-based evidence and expression data. Cupid first applies a support vector machine 
(SVM) classifier to predict candidate miRNA-target interactions and then uses expression-based evidence to 
further determine ceRNA activities [182]. Cupid is a 3-step prediction method: firstly, it applies Fisher’s 
exact test [175] to estimate candidate miRNA sponge interaction pairs; secondly, it also uses MI and CMI to 
identify miRNA sponge interactions and finally performs Brown’s method to further infer significant miRNA 
sponge interactions [175]. The authors reported over 500 validated miRNA-target interactions involved in 
breast cancer by employing high-throughput data in breast cancer cell lines for validation. To evaluate the 
miRNA targets which compete for miRNA regulation, they focused on five breast cancer-associated RNA 
regulators, cyclin D1 (CCND1), estrogen receptor 1 (ESR1), hypoxia inducible factor 1 subunit alpha 
(HIF1A), platelet derived growth factor receptor alpha (PDGFRA), and nuclear receptor coactivator 3 (
NCOA3). As a result, 8 out of 11 of the predicted miRNA sponge interactions showed significant 
up-regulation [59].

Mathematical modeling approach

As the term suggests, mathematical modeling approaches focus on predicting ceRNA interactions using 
different mathematical models. In addition, among the various mathematical model, the minimal model and 
stochastic model reported results indicating that binding free energies and repression mechanisms are 
actively involved in ceRNA interactions [183, 184]. Bosia et al. [183] designed a stochastic model to define 
the equilibrium and disequilibrium characteristic of a miRNA-ceRNA interaction network, revealing how 
ceRNAs and miRNAs could oscillate correlatively under complex conditions like feedback or feedforward 
loops. In their study, Swain et al. [185] introduced a competitive endogenous RNA score model to identify 
candidate ceRNA pairs and estimate their ability to sequester miRNAs. Considering that the high number of 
components in ceRNA networks can enhance the computational complexity of mathematical models, it 
could be more efficient to use this method for the construction of smaller ceRNA networks. Following 
ceRNA interaction prediction, Cytoscape software [186] can be used to generate and analyze the network 
based on the identified ceRNA interactions [185].
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Ala et al. [110] and Figliuzzi et al. [184], used a similar in silico model to find the best settings for 
miRNA sponge activity. The model illustrates the molecular transition process for miRNA sponge 
interactions which are mediated by a shared pool of miRNAs. They improved the resulting network by 
deleting all edges that were not included in the conserved co-expression networks developed in a previous 
study by Piro et al. [187]. The evaluation of the complexity of the miRNA sponge interaction networks 
revealed that TFs and ceRNA interactions were cross-regulated, and the latter could cause upregulation or 
aberrant expression of the TFs in cancer. Furthermore, the results suggested that alterations of a single 
miRNA sponge have significant effects on the integrated transcriptional and miRNA sponge networks [110]. 
Yuan et al. [188] developed a coarse-grained model for a minimum miRNA sponge interaction network to 
quantitatively analyze the behavior of miRNA sponge regulation. They validated the computational results 
using a synthetic gene in cultured HEK293 cells and found that the number and binding strength of miRNAs 
and miRNA sponges, as well as the degree of complementarity between miRNAs and miRNA sponges, 
influenced the extent and strength of the miRNA sponge impact. The combined computational model and 
experimental validation results provided a clearer understanding of miRNA-mediated cross-regulation on 
miRNA sponges.

It should be mentioned that more research, optimization, and comparative study of bioinformatic 
approaches for creating ceRNA networks is required to gain a better understanding of ceRNA regulation.

To uncover miRNA sponge regulation in human cancers, most of the existing computational methods 
are proposed at the network level, and only a small number of methods are presented at the module level. 
Modules in this context refer to groups of miRNA sponges having mutual competition and acting as 
functional units in the regulation of biological processes [189]. Therefore, module identification is an 
important way to provide biological insights into ceRNA networks. As an example, modules could facilitate 
functional genome annotation by using the guilt-by-association principle [190] and help understand the 
origin and progression of human diseases [191]. Currently, most of the existing module discovery methods 
infer miRNA sponge modules by using ceRNA network data. Although these methods also use 
heterogeneous data (gene expression data, miRNA-target binding, and MRE information) in the process of 
inferring ceRNA networks, the identified miRNA sponge modules are network-level modules, each 
containing a set of miRNA sponges that frequently interact with each other in a ceRNA network. These 
module-based methods are categorized into three types: network-based clustering, matrix factorization, 
and step-wise evaluation, as summarized by Zhang et al. [189].

Since non-coding and protein-coding RNAs can act as miRNA sponges, RRI databases are valuable 
resources applied in computational approaches to develop potential networks of miRNA sponge 
interactions. There are two types of miRNA-target binding databases: those with experimentally validated 
target bindings and those with predicted miRNA-ceRNA interactions [175]. To identify potential miRNA 
sponge interactions, the users can query distinct databases or merge different datasets as the initial 
framework of computational approaches. Some of the most widely used datasets of miRNA sponge 
interactions are presented below (Table 1).

CeRDB (https://www.oncomir.umn.edu/cefinder/) [192] was one of the first-developed miRNA 
sponge interaction databases; the authors used TargetScan (https://www.targetscan.org/vert_80/) [206] 
to check for the co-occurrence of MREs in mRNAs across the genome. CeRDB estimates the miRNA sponges 
that compete with the other RNAs for the binding of a specific miRNA. CEFINDER, a web-based tool 
provided by CeRDB, allows users to find miRNA sponges for a specific mRNA target based on the homology 
of MREs located within the 3’-UTR sequence [192].

The ENCORI database (https://rnasysu.com/encori/) [172] stores 108 datasets obtained from 37 
studies, including 47 high-throughput sequencing of RNA isolated by CLIP (HITS-CLIP) datasets, 51 
photoactivatable-ribonucleoside-enhanced CLIP (PAR-CLIP) datasets, 9 individual-nucleotide resolution UV 
CLIP (ICLIP) datasets and 1 CLASH dataset. Recently, a miRNA sponge interaction database was added to 
ENCORI. The experiment results stored in ENCORI provide information about the physical binding between 
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Table 1. Summary of some of the most widely used databases for the investigation of miRNA sponge interactions

Database Type of 
data

Description Ref URL

CeRDB Predicted One of the earliest miRNA sponge interaction databases, 
finds miRNA sponges for a specific target mRNA based 
on the homology of miRNA binding sites

[192] https://www.oncomir.umn.
edu/cefinder/

DIANA-
TarBase v.8

Validated Aims to provide hundreds of thousands of high-quality 
manually curated experimentally validated miRNA: gene 
interactions, enhanced with detailed meta-data

[193] https://dianalab.e-ce.uth.gr/
html/diana/web/index.
php?r=tarbasev8

DIANA-
microT

Predicted Web server dedicated to miRNA target prediction/
functional analysis

[194] https://dianalab.e-ce.uth.gr/
microt_webserver/#/

ENCORI Validated Previously known as starBase v2.0, identifies millions of 
RBP-RNA and RRIs by analyzing thousands of CLIP-seq 
and various high-throughput sequencing data, studying 
their functions and mechanisms in human diseases

[172] https://rnasysu.com/encori/

LncACTdb 
v3.0

Predicted A comprehensive database of experimentally supported 
interactions among ceRNAs and the corresponding 
personalized networks contributing to precision medicine

[195] http://bio-bigdata.hrbmu.
edu.cn/LncACTdb/

LnCeCell Predicted 
and 
validated

Provides functional lncRNA-related miRNA sponge 
interaction networks in single cells and sub-cellular 
locations curated from the published literature and high-
throughput datasets

[196] http://bio-bigdata.hrbmu.
edu.cn/LnCeCell/

LnCeVar Predicted 
and 
validated

Database collecting genomic variations that disturb 
lncRNA-related miRNA sponge regulation curated from 
the published literature and high-throughput datasets 
across 33 human cancers

[197] http://www.bio-bigdata.net/
LnCeVar/

miRanda Predicted Algorithm for finding genomic targets for miRNAs, written 
in C and available as an open-source method

[168] https://cbio.mskcc.org/
miRNA2003/miranda.html

miRcode Predicted Provides “whole transcriptome” human microRNA target 
predictions based on the comprehensive GENCODE 
gene annotation

[198] http://www.mircode.org/

miRTarBase Validated Database providing information about experimentally 
validated miRNA-target interactions

[199] https://mirtarbase.cuhk.
edu.cn/~miRTarBase/
miRTarBase_2022/php/
index.php

miRTissuece Predicted Web service for the analysis and characterization of 
miRNA sponge interactions in several cancer tissue types

[200] http://tblab.pa.icar.cnr.it/
mirtissue.html

miRWalk Validated A comprehensive archive supplying the largest available 
collection of predicted and experimentally verified 
miRNA-target interactions

[201] http://mirwalk.umm.uni-
heidelberg.de/

Pan-
ceRNADB

Predicted Investigates mRNA-related miRNA sponge interactions 
across 20 major human cancers

[177] http://bio-bigdata.hrbmu.
edu.cn/pan-cernadb/

PicTar Predicted An algorithm for the identification of miRNA targets [202] https://pictar.mdc-berlin.de/
PITA Predicted An algorithm using standard settings to identify initial 

seeds for each miRNA in 3’ UTRs
[203] https://genie.weizmann.ac.

il/pubs/mir07/mir07_
prediction.html

RNA22 Predicted A method for identifying miRNA binding sites and their 
corresponding heteroduplexes

[204] https://cm.jefferson.edu/
rna22/

SomamiR Predicted Database of cancer somatic mutations that potentially 
alter the interactions between miRNAs and miRNA 
sponges

[205] http://compbio.uthsc.edu/
SomamiR/

TargetScan Predicted Prediction of miRNA target sites conserved among 
orthologous 3’-UTRs of vertebrates

[206] https://www.targetscan.org/
vert_80/

VECTOR Predicted 
and 
validated

An interactive tool that identifies and visualizes the 
relationships among RNA molecules associated with 
ChiP-seq data and expression data of miRNAs, lncRNAs, 
and mRNAs both in UM and physiological tissues

[207] https://vectordb.it/

CeRDB: Competitive Endogenous mRNA DataBase; Pan-ceRNADB: Pan-cancer associated ceRNA database; ChiP-seq: 
chromatin immunoprecipitation sequencing; VECTOR: uVeal mElanoma Correlation NeTwORk; UM: uveal melanoma

miRNA-mRNA, miRNA-lncRNA, miRNA-circRNA, miRNA-pseudogene, and miRNA-small ncRNAs. The 
interactions can be used to verify computational predictions [172].
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LncACTdb (http://bio-bigdata.hrbmu.edu.cn/LncACTdb/) is another database created by Wang 
et al. [161] defining lncRNA-miRNA-gene interactions as lncRNA-associated competing triplets (lncACTs). 
This is a database of lncRNA-associated competing triplets designed to aid in the study of lncRNA function 
as miRNA sponges. The database contains 5,119 functionally active and over 530,000 computationally 
predicted lncACTs derived from merging heterogeneous data from multiple in silico target prediction 
studies, AGO-CLIP assays, and transcriptome sequencing expression profiles. The database has been 
recently improved in LncACTdb 3.0, an updated and significantly expanded version that provides 
comprehensive information on ceRNAs in different species and diseases [195].

Another database is LnCeCell (http://bio-bigdata.hrbmu.edu.cn/LnCeCell/) which provides functional 
lncRNA-related miRNA sponge interaction networks in single cells and sub-cellular locations curated from 
the published literature and high-throughput datasets across 25 human cancers [196].

LnCeVar (http://www.bio-bigdata.net/LnCeVar/) is a comprehensive database that collects genomic 
variations that disturb lncRNA-related miRNA sponge regulation curated from the published literature and 
high-throughput datasets across 33 human cancers [197].

Other useful resources are: miRTissuece (http://tblab.pa.icar.cnr.it/mirtissue.html), a web service for 
the analysis and characterization of miRNA sponge interactions in several cancer tissue types [200]; 
SomamiR 2.0 (http://compbio.uthsc.edu/SomamiR/), a database of cancer somatic mutations that 
potentially alter the interactions between miRNAs and miRNA sponges (including mRNAs, circRNAs, and 
lncRNAs) [205]; Pan-ceRNADB (http://bio-bigdata.hrbmu.edu.cn/pan-cernadb/), a web resource which 
investigates mRNA-related miRNA sponge interactions across 20 major human cancers [177].

The VECTOR (https://vectordb.it/) database is also worth mentioning; it is an interactive tool that 
identifies and visualizes the relationships among RNA molecules. VECTOR database contains: i) the TCGA-
derived expression correlation values of miRNA-mRNA, miRNA-lncRNA, and lncRNA-mRNA pairs combined 
with predicted or validated RRIs; ii) data of sense-antisense sequence overlapping; iii) correlation values of 
TF-miRNA, TF-lncRNA, and TF-mRNA pairs associated with ChiP-seq data; iv) expression data of miRNAs, 
lncRNAs and mRNAs both in UM and physiological tissues [207].

Experimentally validated miRNA-mRNA binding databases mainly include miRTarBase (https://
mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2022/php/index.php) [199], DIANA-TarBase v.8 
(https://dianalab.e-ce.uth.gr/html/diana/web/index.php?r=tarbasev8) [193], and miRWalk (http://
mirwalk.umm.uni-heidelberg.de/) [201]. The commonly used predicted miRNA-mRNA binding databases 
are TargetScan (https://www.targetscan.org/vert_80/) [206], miRanda (https://cbio.mskcc.org/
miRNA2003/miranda.html) [168], PicTar (https://pictar.mdc-berlin.de/) [202], DIANA-microT (https://
dianalab.e-ce.uth.gr/microt_webserver/#/) [194], and PITA (https://genie.weizmann.ac.il/pubs/mir07/
mir07_prediction.html) [203].

Conclusions
Understanding the intricate interactions between ncRNAs and protein-coding RNAs will help us better 
comprehend how RNA signaling controls the complex processes of genome expression in both healthy and 
unhealthy conditions. The development of new experimental and computational methods for identifying 
and characterizing RRIs has allowed for the collection of an ever-increasing amount of data, which will have 
positive effects on the treatment of diseases, particularly cancer. Indeed, researchers have been developing 
effective RNA-based anticancer strategies realistically applicable to patients [14, 208]. These RNA-based 
drugs are conceived to target (i.e., repress) or replace RNA molecules whose dysregulation alters the 
stoichiometric equilibrium of ceRNA networks. Importantly, these new RNA-based therapeutic approaches 
may be associated with the already developed strategies targeting proteins or replace them aiming to 
improve the delivery thanks to the different chemical nature of nucleic acids [209]. To fully realize the 
clinical potential of this extremely promising approach, it will be essential to organize significant 
collaborative efforts between research institutes and industry before RNA therapeutics is widely used in 
clinical settings.
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