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Abstract: Background: Radiomics shows promising results in supporting the clinical decision process,
and much effort has been put into its standardization, thus leading to the Imaging Biomarker Stan-
dardization Initiative (IBSI), that established how radiomics features should be computed. However,
radiomics still lacks standardization and many factors, such as segmentation methods, limit study
reproducibility and robustness. Aim: We investigated the impact that three different segmentation
methods (manual, thresholding and region growing) have on radiomics features extracted from 18F-
PSMA-1007 Positron Emission Tomography (PET) images of 78 patients (43 Low Risk, 35 High Risk).
Segmentation was repeated for each patient, thus leading to three datasets of segmentations. Then,
feature extraction was performed for each dataset, and 1781 features (107 original, 930 Laplacian of
Gaussian (LoG) features, 744 wavelet features) were extracted. Feature robustness and reproducibility
were assessed through the intra class correlation coefficient (ICC) to measure agreement between
the three segmentation methods. To assess the impact that the three methods had on machine
learning models, feature selection was performed through a hybrid descriptive-inferential method,
and selected features were given as input to three classifiers, K-Nearest Neighbors (KNN), Support
Vector Machines (SVM), Linear Discriminant Analysis (LDA), Random Forest (RF), AdaBoost and
Neural Networks (NN), whose performance in discriminating between low-risk and high-risk pa-
tients have been validated through 30 times repeated five-fold cross validation. Conclusions: Our
study showed that segmentation methods influence radiomics features and that Shape features were
the least reproducible (average ICC: 0.27), while GLCM features the most reproducible. Moreover,
feature reproducibility changed depending on segmentation type, resulting in 51.18% of LoG features
exhibiting excellent reproducibility (range average ICC: 0.68–0.87) and 47.85% of wavelet features
exhibiting poor reproducibility that varied between wavelet sub-bands (range average ICC: 0.34–0.80)
and resulted in the LLL band showing the highest average ICC (0.80). Finally, model performance
showed that region growing led to the highest accuracy (74.49%), improved sensitivity (84.38%) and
AUC (79.20%) in contrast with manual segmentation.
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1. Introduction

Prostate cancer (PCa) is estimated to be the most prevalent type of cancer in men
in 2023 and the second leading cause of cancer death, only below lung and bronchus
cancer [1]. Its early diagnosis is commonly carried out through prostate specific antigen
(PSA) screening, followed up by transrectal ultrasound-guided biopsy (TRUS-biopsy) in
men who present elevated values of PSA. However, PSA testing includes poor specificity,
thus leading to patients over treatment and men undergoing unnecessary biopsies [2,3].
Moreover, prostate biopsy is associated with some risks, such as hematuria, infection, pain,
inflammation and sepsis [4]. Therefore, imaging modalities such as Magnetic Resonance
Imaging (MRI) have been introduced to support the diagnostic process, providing accurate
prostate cancer localization, guiding targeted biopsies and for local cancer staging [5].
However, MRI could not be sufficiently accurate in detecting certain portions of prostate
cancer lesions, that only by adding molecular information provided by Positron Emission
Tomography (PET) imaging could be identified [6]. Moreover, PET imaging showed ex-
cellent sensitivity and specificity for recurrent prostate cancer and promising results in
the detection of bone metastasis, especially when the Prostate-specific membrane antigen
(PSMA) is targeted by radioligands such as 68Ga (Gallium 68) [7,8]. However, its shortcom-
ings related to short-half life, non-ideal energies and difficult production motivated the
consideration of 18F-labelled analogs, and the 18F-PSMA-1007 has been individuated as the
candidate compound to overcome such issues [9].

Furthermore, radiomics has recently emerged as a promising technique harnessing
advanced computational methodologies to derive quantitative data from medical images,
such as PET [10], MRI [11], Computed Tomography (CT) [12], or molecular hybrid imag-
ing [13]. These quantitative metrics are subsequently employed for constructing predictive
models that can offer assistance in diagnosing, planning treatment and forecasting out-
comes across a spectrum of diseases, spanning from oncology [14] to neurodegenerative
disorders [15,16].

Regarding prostate cancer, PET-based radiomics has been successfully used to predict
intraprostatic lesions [17,18], the low-vs-high lesion risk [19], the Gleason Score (GS) [20]
and bone metastases [21,22]. However, most of the studies employed 68Ga-PSMA-11 [17,18],
while few radiomics applications investigated the potential of 18F-PSMA-1007 [20,23].
Moreover, although its several benefits and the publication of the Imaging Biomarker
Standardization Initiative (IBSI), that established how radiomics features should be calcu-
lated [24], radiomics still lacks standardization and the variability in segmentation methods,
image pre-processing parameters and machine learning pipeline could limit study repro-
ducibility [25]. In the literature, there are several studies that investigated the impact of
segmentation methods on radiomics features [26–28], but none focused on 18F-PSMA-1007
PET-based images of patients affected by prostate cancer. Therefore, the aim of this study is
to focus on the impact of segmentation methods on 18F-PSMA-1007 PET-based radiomics
models for the prediction of the high pathological grade in prostate cancer and on the
robustness and reproducibility of radiomics features to variations in segmentation methods.
Furthermore, this study highlights the potential of 18F-PSMA-1007 PET in differentiating
between high-risk and low-risk prostate cancer.

2. Materials and Methods
2.1. Study Design

Eighty-one patients underwent 18F-PSMA-1007 PET/CT imaging using two different
scanners (General Electric Milwaukee, WI, USA, Discovery 690FX&MOT and Siemens
Knoxville, TN, USA, Biograph Horizon 4R). For the first scanner (30 patients), 16 row
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helical CT scan was used with the following conditions: tube voltage (140 kVp), tube
current (800 mAmax). PET collection time of every bed was 90 s, the whole-body scanning
needed 7–8 beds. PET matrix was 256 × 256, and CT matrix was 512 × 512. PET voxel size
was 2.73 × 2.73 × 3.27 mm3 and CT voxel size was 1.37 × 1.37 × 3.75 mm3. For the second
scanner (51 patients), 16 row helical CT scan was used with the following conditions: tube
voltage (130 kVp), tube current (345 mAmax). PET collection time of every bed was 90 s,
the whole-body scanning needed 6–7 beds. PET matrix was 512 × 512, and CT matrix
was 512 × 512. The PET voxel size was 1.45 × 1.45 × 3 mm3 and the CT voxel size was
0.98 × 0.98 × 3 mm3. The tracer produced was intravenously injected into patients at a
standardized dose of 4 MBq/kg. After the tracer administration, the patients rested in a
quiet room for about 120 min before scanning.

Inclusion patients’ criteria were: (1) diagnosis of PCa through biopsy; (2) elevated
serum PSA value; (3) no therapy before PET scan, neither surgery, chemotherapy, radio-
therapy, endocrine therapy, or anything else. Subjects who met the above three criteria
simultaneously were included in our study. The patients without exhibiting relevant radio-
tracer uptake above background in the prostate on 18F-PSMA-1007 imaging were excluded.
Consequently, at least in this phase, only patients with positive PET scans were consid-
ered. The study complies with the Declaration of Helsinki, and local ethics committee
approval was obtained (REDIRECT Study, n.101/2022). Finally, the number of patients
was further decreased to 78 (29 GE Milwaukee, WI, USA, 49 Siemens Knoxville, TN, USA)
due to segmentation reasons explained in Section 2.3. The complete tables are reported in
Section 3.1.

2.2. Gleason Score

PCa often demonstrates varying levels of aggressiveness across different regions of the
tumor due to its inherent heterogeneity [29]. To quantify this variation, a grading system is
used to assign grades to the two primary areas of cancerous tissue under examination, and
the sum of these grades determines the overall Gleason score (GS). In other words, the GS
is a scale used to assess the severity of prostate cancer based on its biopsy. The GS ranges
from 6 to 10 and is assigned based on the appearance of cancer cells in tissue samples.
The higher the GS, the greater the severity of prostate cancer. Specifically, the pathologist
identifies the two most prevalent patterns of cancerous growth within the tissue samples.
Each pattern is assigned a grade on the GS, ranging from 1 to 5. The two grades assigned
to the patterns are added together to obtain the final GS. The first number represents the
predominant grade within the tumor. For instance, a GS of 3 + 4 = 7 signifies that the
tumor is predominantly grade 3, with a smaller portion being grade 4. These two grades
are summed to derive the final GS, which, in this instance, is 7. In general, the degree of
aggressiveness in PCa can be categorized as follows [30]:

• GS ≤ 6: Signifying tumors with slow growth tendencies that typically do not metasta-
size to distant organs beyond the prostate (non-metastatic).

• GS = 7: Indicating tumors of intermediate aggressiveness.
• GS between 8 and 10: Corresponding to highly aggressive tumors with a propensity

for metastasis.

In our study, tumors with GS 3 + 3 or 3 + 4 were classified as low grade, while tumors
with GS 4 + 3, 4 + 4, or 4 + 5 were designated as high grade.

2.3. Segmentation and Segmentation Agreement

For each patient, image segmentation was performed through both manual and
semi-automated methods to extract PCa volumes from PET studies once uploaded to
matRadiomics 1.5 [31], a comprehensive radiomics framework that enables the import
of biomedical images, the segmentation of the target, the extraction and selection of the
radiomics features and the implementation of the predictive model via machine learning
algorithms within the same software. Regarding the segmentation task, for the manual ap-
proach, an experienced nuclear medicine physicist (C.M. author) manually performed the
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slice-by-slice delineation. For the semi-automatic approach, we used two semi-automatic
segmentation algorithms implemented in matRadiomics 1.5 [31], namely region grow-
ing [32,33] and thresholding [34,35]. Specifically, both semi-automatic methods were initial-
ized drawing a Region of Interest (ROI) that surrounds the target and locates the portion
of the image that was subsequentially elaborated by the region growing algorithm, based
on the “activecontour” MATLAB function [32,33], and the thresholding algorithm [34,35],
that uses a percentage of the maximum level of grey in the ROI as a threshold. Since three
patients could not be segmented through region growing and thresholding, they were
discarded from the total, that decreased from 81 to 78. Figure 1 shows the workflow that
led from image visualization to image segmentation. Finally, we compared the obtained
binary segmentations using the Jaccard Index [36] given in the equation below with X and
Y being sets of segmentations.

J(X, Y) =
|X ∩Y|
|X ∪Y| =

|X ∩Y|
|X|+ |Y| − |X ∩Y| (1)

Figure 1. From image visualization to prostate cancer segmentation using manual, thresholding and
region growing methods. In the image on the left, a PET slice displaying the tumor is visible, while
on the right, three blue masks enclosing the prostate tumor are shown. These masks, obtained using
three different segmentation algorithms, are then used to extract the radiomics features.

2.4. Feature Extraction

Feature extraction was repeated, for each patient, using the three sets of segmentations
(manual, based on region growing and based on thresholding), ending with three datasets
of extracted features. A total of 1781 radiomics features were extracted per dataset using the
Pyradiomics [37] extractor integrated in the matRadiomics software 1.5. Radiomics features
were extracted from the original images (107), from the wavelet decomposed images (744)
and from the Laplacian of Gaussian (LoG) filtered images (930), and they could be grouped
in three categories: (i) Shape features, based on target morphology, (ii) First Order Statistics
Features, based on the distribution of level of grays within the target, and (iii) Texture
features based on the pattern of level of grays within the target. Furthermore, Texture
features could be grouped in the gray level co-occurrence matrix (GLCM), gray level run
length matrix (GLRLM), gray level size zone matrix (GLSZM), neighboring gray tone
difference matrix (NGTDM) and the gray level dependence matrix (GLDM) [38–42].

The Pyradiomics configuration used in our analysis is reported in Table 1. The other
parameters were left to Pyradiomics’ default. Figure 2 shows the workflow from feature
segmentation to feature extraction.
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Table 1. Pyradiomics configuration used for the feature extraction process.

Bin width 0.25
Isotropic Resampling 2 × 2 × 2

Interpolator SitkBSpline
Wavelet Method Coif1

Log Sigma [0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]
Normalization True; Scale = 1
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2.5. Feature Robustness

After feature extraction, the intraclass correlation coefficient (ICC) was calculated for
every feature to quantify inter-observer feature reproducibility and consequently feature
robustness when using three segmentation methods. The ICC score ranges from 0 to 1,
representing no reproducibility to perfect reproducibility, respectively. Following Koo and
Li guidelines [43], ICC values have been grouped in ranges, ICC < 0.5, 0.5 < ICC < 0.75,
0.75 < ICC < 0.9, ICC > 0.9, indicating poor, moderate, good and excellent reproducibility,
respectively. It was computed using the formula proposed by McGraw and Wong in case
3A (A,1) [44] to measure absolute agreement as

ICC =
MSR −MSE

MSR + (k− 1)MSE + k
n (MSC −MSE)

(2)

where MSR = mean square for rows, MSE = mean square error, MSC = mean square for
columns, k = number of observers involved and n = number of subjects, j indicates the j-th
feature and KClass the total number of features for each class.

The ICCs were consequently averaged by grouping features by feature Class, thus
obtaining the ICCShape, ICCStatistics, ICCGLCM, ICCGLDM, ICCGLRLM, ICCGLSZM, ICCNGTDM.
The general formula is

ICCClass =
1

KClass
∑KClass

j=1 ICCj (3)

Finally, boxplots that summarize the distributions of ICC values were derived, as
detailed in Section 3, specifically within Section 3.3.
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2.6. Feature Selection and Machine Learning Methodology

For each dataset of extracted features, feature selection was performed through a
hybrid descriptive-inferential approach to streamline the feature reduction and selection
process. This method uses point biserial correlation to assign scores to the features, arrange
them in descending order based on their scores and then iteratively construct a logistic
regression model, as extensively documented in [45]. To sum it up, during each iteration,
the model’s p-value is compared to the previous iteration’s p-value. If the p-value fails
to decrease in the current iteration, the process concludes and the logistic regression
model is established. We ended with three subsets of selected features (manual, region
growing and thresholding) that were given as input to six machine learning models, Linear
Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), Radial Basis Function (RBF)
Support Vector Machines (SVM), Random Forest (RF), AdaBoost and Neural Networks
(NN). Models’ performances were assessed through 30 times repeated five-fold cross
validation and accuracy, area under curve (AUC), sensitivity, specificity, precision and f
score were calculated. Cross validation was implemented in such a way that each model
was trained and validated with the same folds.

2.7. Statistical Analysis

Data were first analyzed through Lilliefors test [46,47], histogram visual inspection and
q-q plots (quantile-quantile plots) to verify the assumption of normality and using Levene’s
test [48] to assess homogeneity of variance. Therefore, Kruskal–Wallis test [49,50] was used
to assess if feature classes (Shape, First Order Statistics, GLCM, GLRLM, GLSZM, GLDM,
NGTDM) had a statistically significant impact on ICC values for each image type (original,
LoG, wavelet), Friedman test [51,52] was used to assess if wavelet sub-bands (HHH, HLH,
HHL, HLL, LLL, LHL, LLH, LHH) had a statistically significant impact on wavelet features.
Moreover, to assess if models and segmentations had a statistically significant impact on
model performance, two separate Friedman tests [26,51,52] were performed. Each test
was followed by a post hoc test corrected with Dunn–Sidak [53] correction for multiple
comparisons. Finally, 95% confidence intervals were calculated for each model performance
through 1000 bootstrapping [54].

Statistical analysis was performed using MATLAB R2023b [55].

3. Results
3.1. Clinical Data

A total of 81 patients were included in this study and they were divided into two
groups based on their GS score (46 Low Grade, 35 High Grade) as reported in Table 2.

Table 2. Characteristics of the 81 patients with primary prostate cancer involved in this study.

PET/CT Scanner Patients Low Grade
GS = 3 + 3/3 + 4

High Grade
GS = 4 + 3/4 + 4/4 + 5

GE 30 20 10
Siemens 51 26 25

Total 81 46 35

After segmentation, because the semi-automated algorithms failed to correctly identify
the tumor region in 3 patients, the total number of patients decreased to 78 (43 Low Grade,
35 High Grade), as shown in Table 3. Specifically, three low-grade GS patients were removed
from the analysis.
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Table 3. Characteristics of the 78 patients after segmentation.

PET/CT Scanner Patients Low Grade
GS = 3 + 3/3 + 4

High Grade
GS = 4 + 3/4 + 4/4 + 5

GE 29 19 10
Siemens 49 24 25

Total 78 43 35

3.2. Segmentation Agreement

The segmentations obtained using manual, thresholding (TS) and region growing
(RG) methods were compared pairwise through the Jaccard Index. The lowest average
Jaccard Index value (0.51) was obtained comparing manual and RG segmentations, while
the highest average Jaccard Index value (0.58) was obtained comparing TS and RG methods,
as shown in Figure 3.
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Figure 3. Pairwise segmentation agreement matrix between the three segmentation methods (manual,
thresholding (TS) and region growing (RG). Numbers represent the average Jaccard Index values.

3.3. Feature Robustness Results

After feature extraction, feature robustness was assessed and the results are summa-
rized in the box plots shown in Figures 4–6. Each class of features is represented by a
boxplot, together with the average ICC value, and each figure is representative of the images
used (original, LoG filtered and wavelet decomposed). For the original images, the GLCM
feature class reached the highest average ICC value (ICCGLCM-original = 0.89), while the Shape
feature class reached the lowest (ICCShape-original = 0.27). The GLSZM feature class reached the
second lowest average ICC value (ICCGLSZM-original = 0.65). For the LoG filtered images, the
GLCM feature class reached the highest average ICC value (ICCGLCM-LoG = 0.87), while the
GLSZM feature class reached the lowest (ICCGLSZM-LoG = 0.72). For the wavelet decomposed
images, the GLCM and the First Order Statistics feature classes reached the highest average
ICC values (ICCGLCM-wavelet = 0.56, ICCFirst Order Statistics-wavelet = 0.56), while the GLSZM feature
class reached the lowest (ICCGLSZM-wavelet = 0.44). Complete results are reported in Table 4.
Statistical significance between feature class groups was assessed using the Kruskal–Wallis
analysis and was repeated for each image type (original, log and wavelet). Since the Kruskal–
Wallis tests were significant (pthreshold = 0.05) for each image type group (poriginal = 3.5× 10−7,
pLoG = 4.3 × 10−12, pwavelet = 0.0031), they were followed by post hoc tests corrected by the
Dunn–Sidak correction for multiple comparisons. For the original image type, the ICCs of
the Shape feature class differed significantly from those belonging to the First Order Statistics
(pShape-Statistics = 2.1× 10−6), GLCM (pShape-GLCM = 3.6× 10−7) and GLRLM (pShape-GLRLM = 0.02)
feature classes. For the LoG image type, the ICCs of both the First Order Statistics and GLCM fea-
ture classes differed significantly from those belonging to the GLSZM (pStatistics-GLSZM = 0.00012,
pGLCM-GLSZM = 2.1× 10−5), GLDM (pStatistics-GLDM = 1.2× 10−5, pGLCM-GLDM = 1.8× 10−6) and
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NGTDM (pStatistics-NGTDM = 4.2× 10−5, pGLCM-NGTDM = 1.7× 10−5) feature classes. In addition,
the ICCs values belonging to the GLDM and NGTDM feature classes differed significantly
from those belonging to the GLRLM class (pGLDM-GLRLM = 0.014, pNGTDM-GLRLM = 0.0057).
For the wavelet image type, the ICC values of both the First Order Statistics and GLCM fea-
ture classes differed significantly from those belonging to the GLSZM (pStatistics-GLSZM = 0.0047,
pGLCM-GLSZM = 0.0034) feature class.

Figure 4. ICC box plots for the original image type. Mean value expressed by the black numbers next
to the ‘×’ sign, while the horizontal line is the median.

Figure 5. ICC box plots for the LoG image type. Mean value expressed by the black numbers next to
the ‘×’ sign, while the horizontal line is the median.
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Figure 6. ICC box plots for the wavelet image type. Mean value expressed by the black numbers next
to the ‘×’ sign, while the horizontal line is the median.

Table 4. Feature robustness results (average ICC) grouped by image type and feature class. The
hyphen is present where shape features were not computed.

Image Type Shape Statistics GLCM GLDM GLRLM GLSZM NGTDM

Original 0.27 0.87 0.89 0.75 0.77 0.65 0.72
LoG - 0.84 0.87 0.73 0.81 0.68 0.72

Wavelet - 0.56 0.56 0.51 0.54 0.44 0.49

As reported in Figure 7, the following results were obtained:

• Excellent reproducibility (ICC > 0.9) was reached by 51.18% LoG features, 48.60%
original features and only 9.01% wavelet features.

• Good reproducibility (0.75 < ICC < 0.9) was reached by 14.02% original features,
22.47% LoG features and 17.07% wavelet features.

• Moderate reproducibility (0.5 < ICC < 0.75) was reached by 18.69% original features,
15.38% LoG features, 26.08% wavelet features.

• Poor reproducibility (ICC < 0.5) was reached by 18.69% original features, 10.97% LoG
features, 47.85 % wavelet features.

Furthermore, as shown in Figure 8, 71.43% Shape features obtained poor reproducibil-
ity, and only 7.14% Shape features reached good reproducibility, while excellent repro-
ducibility was reached by 38.30% First Order features, 42.98% GLCM features, 23.31%
GLDM features, 32.57% GLRLM features, 28.95% GLSZM features and 20% NGTDM fea-
tures. Finally, ICC values were evaluated per wavelet band (HHH, HHL, HLH, HLL, LLL,
LLH, LHL, LHH), as shown in Figure 9.
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Figure 7. Frequency of poor, moderate, good, excellent reproducible features divided by image type.

Figure 8. Frequency of poor, moderate, good, excellent reproducible features divided by feature class.
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Figure 9. ICC box plots for the wavelet sub-bands (HHH, HHL, HLH, HLL, LLL, LHL, LLH,
LHH). Mean value expressed by the black numbers next to the ‘×’ sign, while the horizontal line is
the median.

The highest average ICC (0.8) was reached by the LLL sub-band, while the lowest
average ICC (0.34) was reached by the HHL sub-band.

Since the Friedman test suggested statistical significance (pthreshold = 0.05) between sub-bands
groups, a post hoc test with Dunn–Sidak correction for multiple comparisons was performed. It
resulted that the ICCs of the LLL sub-band significantly differed from those belonging to the other
sub-bands (pLLL-LHL = 1.1× 10−8, pLLL-LLH = 5.0× 10−8, pLLL-LHH = 6.3× 10−5, pLLL-HHH <<
0.05, pLLL-HHL << 0.05, pLLL-HLH << 0.05, pLLL-HLL << 0.05). Moreover, the LHL, LHH and LLH
sub-band ICC values differed significantly from those belonging to HHH (pLHL-HHH = 5.6× 10−11,
pLHH-HHH << 0.05, pLLH-HHH = 9.8× 10−12), HLH (pLHL-HLH = 0.0010, pLHH-HLH = 4.3× 10−7,
pLLH-HLH = 0.00035), HHL (pLHL-HHL << 0.05, pLHH-HHL << 0.05, pLLH-HHL << 0.05) and HLL
(pLHL-HLL = 4.19× 10−9, pLHH-HLL = 5.9× 10−14, pLLH-HLL = 8.5× 10−10) sub-bands. In addition,
the ICC values of the HLH sub-band differed significantly from those belonging to the HHL
(pHLH-HHL = 3.0× 10−5) sub-band. The notation p << 0.5 is used instead of p = 0, obtained when
the p was very low and software precision could not represent it.

3.4. Feature Selection and Machine Learning Results

After feature extraction, feature selection was performed on the three datasets of
extracted features (manual, region growing, thresholding). We ended with three subsets of
selected features, all containing only one feature, as shown in Table 5. For the dataset based
on manual segmentation, only the feature named “wavelet_LLL_firstorder_Minimum” was
selected, while the feature named “wavelet_HHL_glszm_LowGrayLevelZoneEmphasis” was
selected for the dataset based on thresholding segmentation. For the dataset based on region
growing segmentation, the feature named “wavelet_HLH_glszm_LowGrayLevelZoneEmphasis”
was selected. All selected features belonged to the wavelet decomposed image type. Six
machine learning models based on the three subsets of selected features were built using
LDA, KNN, SVM, RF, AdaBoost and NN, whose performances (accuracy, AUC, sensitivity,
specificity, precision, fscore) are reported in Tables 6–11. All performances are averaged on
30 repetitions of five-fold cross validation. Results show that all six models based on manual
segmentation reached the highest specificity (LDA: 86.05%, SVM: 81.40%, KNN: 79.61%,
RF: 75.66%, AdaBoost: 70.23%, NN: 68.91%) and the highest precision (LDA: 75.10%, SVM:
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71.43%, KNN: 70.19%, RF: 65.90%, AdaBoost: 59.87%, NN: 54.69%) when compared to
the models based on region growing (RG) and thresholding (TS). Instead, sensitivity was
always higher in the models based on semi-automatic segmentation methods, and the
RG-SVM reached the highest value (sensitivity = 85.24%), while the RG-LDA had the
second highest value (sensitivity = 84.38%). Moreover, all six models based on region
growing segmentation reached the highest fscore (LDA: 74.80%, SVM: 73.09%, KNN: 71%,
RF: 70.54%, AdaBoost: 61.29%, NN: 64.29%) when compared to the models based on
manual and thresholding segmentations.

Table 5. Subset of selected features divided by manual method.

Segmentation Selected Features

Manual wavelet_LLL_firstorder_Minimum
TS wavelet_HHL_glszm_LowGrayLevelZoneEmphasis
RG wavelet_HLH_glszm_LowGrayLevelZoneEmphasis

Table 6. LDA classifier performance for the three segmentation methods. Numbers in brackets
represent the 95% confidence interval. Maximum values represented in bold.

Segmentation Accuracy AUC Sensitivity Specificity Precision Fscore

Manual 70.64%
(70.47–70.81%)

73.08%
(72.69–73.41%)

51.71%
(51.43–52.19%)

86.05%
(86.05–86.05%)

75.10%
(74.99–75.27%)

61.25%
(61.01–61.63%)

TS 70.60%
(70.26–70.85%)

73.40%
(73.63–74.38%)

74.48%
(74.29–74.95%)

67.44%
(66.90–67.91%)

65.07%
(64.69–65.42%)

69.45%
(69.21–69.72%)

RG 74.49%
(74.10–74.91%)

79.20%
(78.89–79.50%)

84.38%
(83.90–84.86%)

66.43%
(65.81–67.13%)

67.19%
(66.78–67.65%)

74.80%
(74.44–75.19%)

Table 7. SVM classifier performance for the three segmentation methods. Numbers in brackets
represent the 95% confidence interval. Maximum values represented in bold.

Segmentation Accuracy AUC Sensitivity Specificity Precision Fscore

Manual 70.47%
(70–71.11%)

73%
(72.56–73.41%)

57.05%
(56.29–58%)

81.40%
(80.78–82.17%)

71.43%
(70.73–72.45%)

63.41%
(62.72–64.17%)

TS 68.50%
(67.78–69.19%)

72.50%
(71.89–73.08%)

74.19%
(73.43–74.86%)

63.88%
(63.02–64.81%)

62.60%
(61.91–63.31%)

67.89%
(67.19–68.51%)

RG 71.84%
(74.10–74.91%)

77.32%
(77.06–77.63%)

85.24%
(84.57–85.71%)

60.93%
(60.16–61.63%)

63.99%
(63.57–64.38%)

73.09%
(72.71–73.40%)

Table 8. KNN classifier performance for the three segmentation methods. Numbers in brackets
represent the 95% confidence interval. Maximum values represented in bold.

Segmentation Accuracy AUC Sensitivity Specificity Precision Fscore

Manual 70.26%
(69.65–71.07%)

67.41%
(66.76–67.97%)

58.76%
(57.62–59.71%)

79.61%
(78.76–80.70%)

70.19%
(69.25–71.39%)

63.92%
(63.04–64.77%)

TS 66.37%
(65.62–67.14%)

68.58%
(67.84–69.18%)

67.33%
(66.19–68.38%)

65.58%
(64.49–67.21%)

61.51%
(60.61–62.43%)

64.23%
(63.51–65.03%)

RG 71.75%
(70.81–72.61%)

77.86%
(77.13–78.58%)

77.05%
(76–78.10%)

67.44%
(66.12–68.84%)

65.91%
(64.89–66.87%)

71%
(70.13–71.82%)
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Table 9. RF classifier performance for the three segmentation methods. Numbers in brackets represent
the 95% confidence interval. Maximum values represented in bold.

Segmentation Accuracy AUC Sensitivity Specificity Precision Fscore

Manual 67.65%
(66.88–68.46%)

66.77%
(65.79–67.61%)

57.81%
(56–59.33%)

75.66%
(74.73–76.59%)

65.90%
(64.93–66.98%)

61.52%
(60.18–62.66%)

TS 63.55%
(62.52–64.66%)

67.40%
(66.55–68.12%)

65.62%
(63.60–67.81%)

61.86%
(60.19–63.68%)

58.40%
(57.43–59.62%)

61.67%
(60.29–63.03%)

RG 71.15%
(70.43–72.01%)

73.82%
(73.01–74.61%)

77.05%
(75.62–78.48%)

66.36%
(65.27–67.37%)

65.12%
(64.44–65.94%)

70.54%
(69.72–71.46%)

Table 10. AdaBoost classifier performance for the three segmentation methods. Numbers in brackets
represent the 95% confidence interval. Maximum values represented in bold.

Segmentation Accuracy AUC Sensitivity Specificity Precision Fscore

Manual 63.16%
(61.79–64.44%)

62.91%
(61.81–63.88%)

54.48%
(52.27–56.57%)

70.23%
(68.45–71.71%)

59.87%
(58.19–61.35%)

56.95%
(55.09–58.56%)

TS 57.22%
(56.11–58.33%)

62.70%
(61.56–63.74%)

58.19%
(56.10–60.38%)

56.43%
(54.88–57.91%)

52.06%
(50.96–53.32%)

54.87%
53.51–56.30%)

RG 63.72%
(62.56–64.74%)

68.99%
(67.88–70.05%)

64.19%
(61.71–65.71%)

63.33%
(61.86–64.81%)

58.78%
(57.52–59.81%)

61.29%
(59.64–62.40%)

Table 11. NN classifier performance for the three segmentation methods. Numbers in brackets
represent the 95% confidence interval. Maximum values represented in bold.

Segmentation Accuracy AUC Sensitivity Specificity Precision Fscore

Manual 58.72%
(57.48–60.56%)

56.05%
(54.20–57.97%)

46.19%
(43.43–48.95%)

68.91%
(66.82–70.68%)

54.69%
(52.90–57.02%)

49.90%
(47.79–52.48%)

TS 62.14%
(60.66–63.50%)

63.50%
(61.91–65.04%)

66.76%
(64.57–69.14%)

58.37%
(56.43–60.54%)

56.74%
(55.34–58.23%)

61.22%
(59.70–62.74%)

RG 65.77%
(64.27–66.97%)

69.24%
(67.96–70.33%)

69.14%
(65.90–71.52%)

63.02%
(61.32–64.73%)

60.35%
(58.95–61.55%)

64.29%
(62.18–65.79%)

The RG-LDA also reached the highest accuracy (74.49%) and the highest AUC (79.20%).
Finally, even if the Friedman test suggested that models had a statistically significant

impact on machine learning performance, post hoc tests corrected with Dunn–Sidak correc-
tion for multiple comparisons did not find a significant performance difference between
models. On the contrary, the Friedman test suggested that segmentation had a statistically
significant impact on model performance, and statistical significance was also found dur-
ing post hoc tests corrected with the Dunn–Sidak correction for multiple comparisons. It
resulted that accuracies differed significantly (pRG-TS = 0.022) between region growing and
thresholding methods, that AUCs differed significantly (pmanual-RG = 0.0067, pTS-RG = 0.031)
between manual and region growing methods, and between thresholding and region grow-
ing methods, that sensitivities differed significantly (pmanual-RG = 0.0012) between manual
and region growing methods, that specificities differed significantly between manual and
region growing (pmanual-RG = 0.032) methods and between manual and thresholding meth-
ods (pmanual-TS = 0.0077), that precisions differed significantly (pmanual-TS = 0.027) between
manual and thresholding methods, and that the fscore differed significantly between man-
ual and region growing methods (pmanual-RG = 0.0061). Complete results per iteration are
provided for each model and segmentation methods in the Supplementary File.

4. Discussion

It has been shown in several studies that radiomics has the potential to support the
clinical decision-making process, but it still lacks standardization, and several factors such
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as image pre-processing, image kernel reconstruction settings and segmentation methods
could influence radiomics feature values [56]. Concerning prostates, most of the stud-
ies employed MRI images rather than PET images, and only few of them investigated
radiomics feature reproducibility and robustness. In MRI images, it has emerged that
normalization techniques and manual segmentation repeated by different operators nega-
tively impact radiomics feature reproducibility [57,58]. Indeed, manual segmentation is
operator-dependent, as shown in several studies not only related to prostates, and semi-
automatic methods should be preferred to improve radiomics study reproducibility [59–61].
Therefore, we analyzed the effect of three segmentation methods (manual, thresholding,
region growing) before and after feature extraction. The Jaccard Index showed that there
were dissimilarities between segmentations, reaching the maximum value of 0.58 when
comparing thresholding and region growing methods. From our study, it emerged that
Shape features obtained the lowest average ICC (0.27), and 71.43% of Shape features ob-
tained poor reproducibility (ICC < 0.5). This behavior could be due to the difficulties in
identifying target contours in PET images, and it is in line with [62], that showed that
Shape features obtained the lowest ICC performance, even if higher than those obtained
in our study, but radiomics features were extracted with a different software, different
radiotracers were used and the clinical aim was different. Otherwise, Texture features
performed better, with GLCM features exhibiting the highest average ICCs value in all the
three image types (original, LoG and wavelet), with 61.4% GLCM features obtaining good
(18.42%) and excellent (42.98%) reproducibility. Our study also shows that reproducibility
differs depending on image type, and therefore on image filtering. Indeed, LoG features
exhibited a higher rate of features with excellent reproducibility (51.18%) when compared
with original features (48.60%) and wavelet features (9.01%). However, comparison with
original features is not completely accurate since LoG features and wavelet features do
not include the Shape feature class, only present in the original features. Moreover, the
analysis showed that wavelet decomposition is the worst performing filter in terms of
reproducibility, with 47.85% wavelet features exhibiting poor reproducibility. It has been
shown in previous studies [63,64] that image denoising could lead to more robust features,
and the difference in performance between LoG and wavelet could be due to the different
wavelet sub-band combinations. Indeed, the combinations that started with a high pass
filter (HHH, HLH, HHL, HLL) obtained the lowest average ICC (ICCHHL: 0.34), while
those that started with a low pass filter obtained the highest values, with the LLL sub-band
showing the highest average ICC (0.8). This could be since low pass filtering managed to
suppress image noise.

In addition, we showed that different segmentation methods lead to different subsets
of selected features. However, feature selection based on semi-automatic methods led to
the same selected feature, namely “glszm_LowGrayLevelZoneEmphasis”, even if processed
with a different wavelet combination. This result could be since semi-automatic methods
are more reproducible and similar when compared with manual segmentations. To assess
if thresholding and region growing are more reproducible methods than manual segmen-
tation, inter-observer variability per single method should be evaluated. Furthermore,
machine learning models were impacted by segmentation methods. All manual-based
models showed higher specificity than sensitivity, with a maximum of 86.05% reached by
the LDA classifier, while semi-automatic methods showed higher sensitivity than specificity,
with a maximum of 85.24% reached by the RG-SVM classifier, while the RG-LDA classifier
obtained the second highest sensitivity (84.38%). Moreover, statistical tests suggested that
the model type did not have a significantly impact on model performance and differences
between performance derived mainly from segmentation methods. From our results, it
seems that manual segmentation is more specific rather than sensitive, and therefore there
are radiomics features that are more sensitive and/or specific than others. Statistical tests
also corroborated the findings that region growing-based models enhanced sensitivities,
AUCs and accuracies when compared with manual-based models.
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Finally, our study demonstrates that 18F-PSMA-1007 PET radiomics can differentiate
between low-risk and high-risk prostate patients, reaching the highest accuracy (74.49%)
with the RG-LDA model (accuracy: 74.49%, AUC: 79.20%, sensitivity: 84.38%). However,
models were based on wavelet features that showed the worst average ICC performance
(ICCwavelet-Statistics = 0.56, ICCwavelet-GLSZM = 0.44), affecting the ability of the model to generalize.

All our analyses have been based on matRadiomics 1.5 [31], which emerges as a tool
in addressing the imperative of explainability in radiomics. Explainability is a critical
aspect that enhances the interpretability of complex models and fosters trust in their
outcomes [65]. matRadiomics 1.5, with its comprehensive suite of functionalities, provides
a robust platform to segment biomedical images and extract and analyze a wide array of
quantitative features, allowing users to complete the whole radiomics workflow within
a single software, simplifying the process and making it replicable. It not only has the
capacity to generate radiomics models but also to offer transparency and interpretability. As
machine learning algorithms play an increasingly pivotal role in radiomics, understanding
how these models arrive at specific predictions is essential for clinical acceptance. Clinicians
and healthcare professionals require insights into the decision-making processes of these
algorithms, especially when the stakes involve patient diagnosis and treatment planning.
Transparent and interpretable radiomics models facilitate a deeper understanding of the
features influencing predictions. Efforts in research and development are directed towards
creating machine learning models in radiomics that not only deliver accurate results but also
provide interpretable rationales for their predictions, ultimately contributing to improved
patient care and diagnostic precision.

To date, this is the first study based on 18F-PSMA-1007 PET imaging of patients
affected by prostate cancer, with the aim of evaluating the robustness and reproducibility of
radiomics features to variations in segmentation methods and the impact that segmentation
methods have on selected features and model performance, thereby contributing to the
standardization of radiomics. However, this study has limitations, such as the small sample
size and its single-center nature that could affect results generalization. In fact, features
robustness and reproducibility depend on the dataset used, even if the clinical aim is the
same, and/or from the center that acquired the images [66], and multicenter studies should
be preferred. This issue can also be extended to the models’ generalization ability. However,
the main goal of this study was not to build the best machine learning models but to study
the effects of segmentation methods on model performance.

5. Conclusions

The present study, which utilizes 18F-PSMA-1007 PET imaging of prostate cancer
patients, investigated the robustness and reproducibility of radiomics features to variations
in segmentation methods. Additionally, it examined the influence that segmentation meth-
ods had on selected features and model performance. The results showed that the Shape
feature class is the least robust, while the GLCM feature class is the most robust. In addition,
segmentation methods impacted feature selection, resulting in a higher specific feature
when manual segmentation was used and in higher sensitive features when semi-automatic
methods were used. Finally, our study demonstrates that 18F-PSMA-1007 PET radiomics
using the RG-LDA model can differentiate between low-risk and high-risk prostate patients,
reaching the best performance (accuracy: 74.49%, AUC: 79.20%, sensitivity: 84.38%)
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