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a b s t r a c t 

Many applications in signal processing and machine learning require the study of probability density 

functions (pdfs) that can only be accessed through noisy evaluations. In this work, we analyze the noisy 

importance sampling (IS), i.e., IS working with noisy evaluations of the target density. We present the 

general framework and derive optimal proposal densities for noisy IS estimators. The optimal proposals 

incorporate the information of the variance of the noisy realizations, proposing points in regions where 

the noise power is higher. We also compare the use of the optimal proposals with previous optimality 

approaches considered in a noisy IS framework. 
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. Introduction 

A wide range of modern applications, especially in Bayesian 

nference framework [1] , require the study of probability den- 

ity functions (pdfs) which can be evaluated stochastically, i.e., 

nly noisy evaluations can be obtained [2–5] . For instance, this 

s the case of the pseudo-marginal approaches and doubly in- 

ractable posteriors [6,7] , approximate Bayesian computation (ABC) 

nd likelihood-free schemes [8,9] , where the target density cannot 

e computed in closed-form. 

The noisy scenario also appears naturally when mini-batches 

f data are employed instead of considering the complete likeli- 

ood of huge amounts of data [10,11] . More recently, the analysis 

f noisy functions of densities is required in reinforcement learn- 

ng (RL), especially in direct policy search which is an important 

ranch of RL, with applications in robotics [12,13] . The topic of in- 

erence in noisy settings (or where a function is known with a cer- 

ain degree of uncertainty) is also of interest in the inverse prob- 

em literature, such as in the calibration of expensive computer 

odes [14,15] . This is also the case when the construction of an 

mulator is considered, as a surrogate model [4,16,17] . 

In this work, we study the importance sampling (IS) scheme 

nder noisy evaluations of the target pdf. The noisy IS scenario has 

een already analyzed in the literature [2,3,18] . In the context of 

ptimization, some theoretical results can be found [19] . In the se- 

uential framework, IS schemes with random weights can be found 
∗ Corresponding author. 
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nd have been studied in different works [2,20–22] . We provide 

he optimal proposal densities for different noisy scenarios, in- 

luding also the case of integrals involving vector-valued functions. 

oreover, we discuss the convergence and variance of the estima- 

ors in a general setting. We consider a different approach with 

espect to other studies in the literature [3,23] . In those works, the 

uthors analyzed the trade-off between decreasing the noise power 

by increasing the number of auxiliary samples) and increasing the 

otal number of samples in the IS estimators. Here, this informa- 

ion is encompassed within the optimal proposal density, which 

lays a similar role to an acquisition function in active learning 

16,17] . This is information is relevant, especially if the noisy eval- 

ations are also costly to obtain. 

. Background 

.1. Bayesian inference 

In many applications, we aim at inferring a variable of inter- 

st given a set of observations or measurements. Let us denote the 

ariable of interest by x ∈ D ⊆ R 

d x , and let y ∈ R 

d y be the observed

ata. The posterior pdf is then 

p̄ (x | y ) = 

� (y | x ) g(x ) 

Z(y ) 
, (1) 

here � (y | x ) is the likelihood function, g(x ) is the prior pdf, and

(y ) is the model evidence (a.k.a. marginal likelihood) which is a 

seful quantity in model selection problems [24] . For simplicity, in 

he following, we skip the dependence on y in p̄ (x ) = p̄ (x | y ) and

 = Z (y ) . Generally, Z is unknown, so we are able to evaluate the

https://doi.org/10.1016/j.sigpro.2022.108455
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2022.108455&domain=pdf
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Table 1 

Noisy importance sampling algorithm 

1. Inputs: Proposal distribution q (x ) . 

2. For n = 1 , . . . , N: 

(a) Sample x n ∼ q (x ) and obtain one realization ˜ m (x n ) . 

(b) Compute 

w n = 

˜ m (x n ) 
q (x n ) 

(9) 

4 Outputs: the weighted samples { x n , w n } N n =1 . 
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Î

a

k

e

T

n

h

Î
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nnormalized target function, i.e., the numerator on the right hand 

ide of Eq. (1) , 

p(x ) = � (y | x ) g(x ) . (2) 

he analytical study of the posterior density p̄ (x ) ∝ p(x ) is unfea-

ible, so that numerical approximations are required [ 25 ]. 

.2. Noisy framework 

Generally, we desire to approximate the unnormalized density 

p(x ) , x ∈ X ⊂ R 

d , and the corresponding normalizing constant Z,

sing Monte Carlo methods. The unnormalized density p(x ) can 

epresent a posterior density in a Bayesian inference problem, as 

escribed above. We assume that, for any x , we cannot evaluate 

p(x ) exactly, but we only have access to a related noisy realization. 

oreover, in many applications, obtaining such a noisy realization 

ay be expensive. Hence, analyzing in which x we require a noisy 

ealization of p(x ) is an important problem, which is related to the 

oncept of optimality that we consider below. 

In the following, we introduce a concise mathematical formal- 

zation of the noisy scenario. This simple framework contains real 

pplication scenarios, such as latent variable models [3] (see ex- 

mple 4 in Sect. 4.1 ), likelihood-free inference setting [8] , doubly 

ntractable posteriors [7] , mini batch-based inference [10] . More 

pecifically, we assume to have access to a noisy realization related 

o p(x ) , i.e., ˜ 

 (x ) = H(p(x ) , ε) , (3) 

here H is a non-linear transformation involving p(x ) and ε, that 

s some noise perturbation. Thus, for a fixed value x , ˜ m (x ) is a ran-

om variable with 

 (x ) = E [ ̃  m (x )] , s (x ) 2 = Var [ ̃  m (x )] , (4)

or some mean function , m (x ) , and variance function , s (x ) 2 . The as-

umption that ˜ m (x ) must be strictly positive is important in prac- 

ice [2,23] . 

Noise power. In some applications, it is also possible to control 

he noise power s (x ) 2 , for instance by adding/removing data to the

ini-batches (e.g., in the context of Big Data) [10] , increasing the 

umber of auxiliary samples in latent variables models [6] , or in- 

eracting with an environment over longer/shorter periods of time 

e.g., in reinforcement learning) [12] . 

Unbiased scenario and related cases. The scenario where 

 (x ) = p(x ) appears naturally in some applications (such as in

he estimation of latent variable and stochastic volatility models 

n statistics [3,26] ; or in the context of optimal filtering of partially 

bserved stochastic processes [18] ), or it is often assumed as a pre- 

stablished condition by the authors [2,3] . In some other scenarios, 

he noisy realizations are known to be unbiased estimates of some 

ransformation of p(x ) , e.g., of log p(x ) [27,28] . This situation can

e encompassed by the following special case. If we consider an 

dditive perturbation, ˜ 

 (x ) = G ( p(x ) ) + ε, with E [ ε] = 0 , (5) 

e have m (x ) = E [ ̃  m (x )] = G ( p(x ) ) , where G (·) : R → R . If G is

nown and invertible, we have p(x ) = G 

−1 ( m (x ) ) . 

Generally, we can state that m (x ) always contains statistical in- 

ormation related to p(x ) . The subsequent use of m (x ) depends on

he specific application. Thus, we study the mean function m (x ) . 

ence, our goal is to approximate efficiently integrals involving 

 (x ) , i.e., 

 = 

1 

Z̄ 

∫ 
X 

f (x ) m (x ) dx , Z̄ = 

∫ 
X 

m (x ) dx , (6)

here f (x ) : X → R 

d f and I = [ I 1 , . . . , I d f ] 
� ∈ R 

d f denotes the vec-

or of integrals of interest. Note that, in the unbiased case m (x ) =
2 
p(x ) , we have Z̄ = Z. An integral involving m (x ) can be approxi-

ated employing a cloud of random samples using the noisy real- 

zations ˜ m (x ) via Monte Carlo methods. 

. Noisy Importance Sampling 

In a non-noisy IS scheme, a set of samples is drawn from a pro- 

osal density q (x ) . Then each sample is weighted according to the 

atio p(x ) 
q (x ) 

. A noisy version of importance sampling can be obtained 

hen we substitute the evaluations of p(x ) with noisy realizations 

f ˜ m (x ) . See Table 1 and note that the importance weights w n in

q. (9) are computed using the noisy realizations. Below, we show 

hat 

 

 = 

1 

N 

N ∑ 

n =1 

w n , (7) 

s an unbiased estimator of Z̄ , and 

 

 std = 

1 

N ̄Z 

N ∑ 

n =1 

w n f (x n ) , ̂ I self = 

1 

N ̂

 Z 

N ∑ 

n =1 

w n f (x n ) , (8) 

re consistent estimators of I . The estimator ̂ I std requires the 

nowledge of Z̄ , that is not needed in the so-called self-normalized 

stimator, ̂  I self . 

heorem. The estimators above constructed from the output of 

oisy IS converge to expectations under m (x ) . More specifically, we 

ave ̂  Z and ̂

 I std are unbiased estimators of Z̄ and I respectively, and 

 

 self is a consistent estimator of I . Moreover, these estimators have 

igher variance than their non-noisy counterparts. 

roof. Here, we provide a simple proof of convergence by applying 

terated conditional expectations. Equivalently, the correctness of 

he approach can be proved by using an extended space view (see, 

.g., [3,18] ). 

Let x 1: N = [ x 1 , . . . , x N ] denote the N samples from q . By the law

f total expectation, we have that E [ ̂  Z ] = E 

[
E [ ̂  Z | x 1: N ] 

]
. In the inner

xpectation, we use the fact the w i ’s are i.i.d., hence 

 [ ̂  Z | x 1: N ] = 

1 

N 

N ∑ 

i =1 

E [ w i | x i ] = 

1 

N 

N ∑ 

i =1 

1 

q (x i ) 
E [ ̃  m (x i ) | x i ] 

= 

1 

N 

N ∑ 

i =1 

m (x i ) 

q (x i ) 
= ̃

 Z , 

here ̃  Z is the non-noisy IS estimator of Z̄ , which is also unbiased, 

.e., 

 [ ̂  Z ] = E 

[
E [ ̂  Z | x 1: N ] 

]
= E [ ̃  Z ] = Z̄ . 

herefore, ̂  Z is an unbiased estimator of Z̄ = 

∫ 
X m (x ) dx , i.e., E [ ̂  Z ] = 

¯
 . Moreover, we show below that Var [ ̂  Z ] decreases to zero as N → 

 . Hence, ̂ Z is a consistent estimator of Z̄ . Now, with the same 

rguments, we can prove that the estimator ̂  E = 

1 
N 

∑ N 
i =1 

˜ m (x ) f (x ) 
q (x ) 

is 

lso unbiased and converges to E = 

∫ 
X f (x ) m (x ) dx . Thus, both the

stimator ̂  I std , and the ratio 

 

 = 

1 ̂ Z ̂
 E = 

1 ∑ N 
j=1 w j 

N ∑ 

i =1 

w i f (x i ) , 
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hich is the noisy self-normalized IS estimator ̂  I self in Eq. (8) , are 

onsistent estimators of 

 = 

∫ 
X f (x ) m (x ) dx ∫ 

X m (x ) dx 

= 

1 

Z̄ 

∫ 
X 

f (x ) m (x ) dx , 

iven in Eq. (6) . �

Variance of ̂  Z . By the law of total variance, we have that 

ar [ ̂  Z ] = E 

[
Var [ ̂  Z | x 1: N ] 

]
+ Var 

[
E [ ̂  Z | x 1: N ] 

]
. 

n a non-noisy scenario, i.e., in a non-noisy IS setting, the first term 

s null. Using the fact that ̂ Z is unbiased, we have that the second 

erm is 

ar 
[
E [ ̂  Z | x 1: N ] 

]
= Var [ ̃  Z ] = O ( 1 /N ) . 

egarding the first term, we have 

ar [ ̂  Z | x 1: N ] = 

1 

N 

2 

N ∑ 

i =1 

Var [ w i | x i ] = 

1 

N 

2 

N ∑ 

i =1 

1 

q (x i ) 2 
Var [ ̃  m (x i ) | x i ] 

= 

1 

N 

2 

N ∑ 

i =1 

s (x i ) 
2 

q (x i ) 2 
. 

ssuming that s (x ) 2 

q (x ) 2 
< ∞ for all x , we have that 

E 

[
Var [ ̂  Z | x 1: N ] 

]
= 

1 

N 

2 

N ∑ 

i =1 

E 

[
s (x i ) 

2 

q (x i ) 2 

]
= 

1 

N 

E 

[
s (x ) 2 

q (x ) 2 

]
, 

where x ∼ q (x ) . 

ence, we finally have that 

ar [ ̂  Z ] = 

1 

N 

E 

[
s (x ) 2 

q (x ) 2 

]
+ Var [ ̃  Z ] ≥ Var [ ̃  Z ] . (9) 

Therefore, ̂ Z has a greater variance than 

˜ Z , but the same con- 

ergence speed, i.e., its variance decreases at 1 
N rate. Proving that ̂E 

as greater variance than its non-noisy version is straightforward. 

. Optimal Proposal Density in Noisy IS 

In this section, we derive the optimal proposals for the noisy IS 

stimators ̂  Z , ̂  I std and ̂

 I self . 

.1. Optimal proposal for ̂  Z 

We can rewrite the variance of ̂  Z in Eq. (9) as 

ar [ ̂  Z ] = 

1 

N 

E 

[
m (x ) 2 + s (x ) 2 

q (x ) 2 

]
− 1 

N 

Z̄ 2 . 

y Jensen’s inequality, the first term is bounded below by 

 

[
m (x ) 2 + s (x ) 2 

q (x ) 2 

]
≥

( 

E 

[ √ 

m (x ) 2 + s (x ) 2 

q (x ) 

] ) 2 

. 

he minimum variance V min = min q Var [ ̂  Z ] is thus attained at 

 opt (x ) ∝ 

√ 

m (x ) 2 + s (x ) 2 , (10) 

ote that, for finite N, V min is always greater than 0, specifically, 

 min = 

1 

N 

[ ∫ 
X 

√ 

m (x ) 2 + s (x ) 2 dx 

] 2 
− 1 

N 

Z̄ 2 . (11) 

ence, differently from the non-noisy setting, in noisy IS the op- 

imal proposal does not provide an estimator with null variance. 
3 
f s (x ) = 0 for all x , then we come back to the non-noisy sce-

ario and V min = 

1 
N 

[∫ 
X m (x ) dx 

]2 − 1 
N Z̄ 

2 = 0 . Note that the variance 

f using q (x ) = 

1 
Z̄ 

m (x ) is 

 sub-opt = 

Z̄ 

N 

∫ 
X 

m (x ) 2 + s (x ) 2 

m (x ) 
d x − 1 

N 

Z̄ 2 = 

Z̄ 

N 

∫ 
X 

s (x ) 2 

m (x ) 
d x . (12) 

n the following, we show several examples of noise models and 

heir corresponding optimal proposal densities. 

Example 1. Let us consider a Bernoulli-type noise where ˜ 

 (x ) = p max ε, where ε ∼ Bernoulli 

(
p(x ) 
p max 

)
, and p max = max p(x ) . 

hen, we have 

 (x ) = p(x ) , s (x ) 2 = p(x )[ p max − p(x )] . 

eplacing in Eq. (10) , the optimal proposal density in this case is 

 opt (x ) ∝ p(x ) 
√ 

1 + [ p max − p(x )] 2 . (13) 

xample 2. Let us consider ˜ m (x ) = | p(x ) + ε| , with ε ∼ N (0 , σ 2 ) .

n this scenario, the random variable ˜ m (x ) corresponds to a folded 

aussian random variable. We have 

 (x ) = σ

√ 

2 

π
exp 

(
−p 2 (x ) / 2 σ 2 

)
+ p(x )[1 − 2 �(−p(x ) /σ )] , 

 (x ) 2 = p(x ) 2 + σ 2 − m (x ) 2 , 

here �(x ) is the cumulative function of the standard Gaussian 

istribution. Then, 

 opt (x ) ∝ 

√ 

p(x ) 2 + σ 2 . (14) 

xample 3. Let us consider a multiplicative noise ˜ m (x ) = e ε p(x ) 

ith E [ ε] = 0 , hence 

 (x ) = p(x ) E [ e ε] ∝ p(x ) , s (x ) 2 = p(x ) 2 Var [ e ε] . 

f we denote A = E [ e ε ] and σ 2 = Var [ e ε ] , then m (x ) = Ap(x ) and

 (x ) 2 = σ 2 p 2 (x ) . In this case, the optimal proposal coincides with

he optimal one in the non-noisy setting, since 

 opt (x ) ∝ 

√ 

A 

2 p 2 (x ) + σ 2 p 2 (x ) = p(x ) 
√ 

A 

2 + σ 2 ∝ p(x ) . (15) 

xample 4. In latent variable models, the noisy realization corre- 

ponds to the product of d y independent IS estimators, each built 

rom R auxiliary samples. With d y large enough, the distribution of 

his realization is approximately lognormal, i.e., ˜ 

 (x ) ∼ log N (μ(x ) , σ 2 (x )) , 

here μ(x ) = log p(x ) − γ 2 (x ) 
2 R and σ 2 (x ) = 

γ 2 (x ) 
R , for some func- 

ion γ 2 (x ) [3,23] . Equivalently, they write ˜ m (x ) = p(x ) e ε , where

∼ N (μ(x ) , σ 2 (x )) . Hence, 

 (x ) = p(x ) , s (x ) 2 = (e γ
2 (x ) /R − 1) p(x ) 2 , 

nd the optimal proposal is 

 opt (x ) ∝ p(x ) e 
γ 2 (x ) 

2 R . (16) 

his example is related with the cases studied in [3,23] . 

.2. Optimal proposal for ̂  I std 

We have already seen that the optimal proposal that minimizes 

he variance of ̂  Z is q opt (x ) ∝ 

√ 

m (x ) 2 + s (x ) 2 . Let us consider now 

he estimator ̂  I std . Note that this estimator assumes we can evalu- 

te Z̄ = 

∫ 
X m (x ) dx . Since we are considering a vector-valued func- 

ion, the estimator has d f components ̂  I std = [ ̂  I std , 1 . . . ̂
 I std ,d f 

] � , and 

ar [ ̂  I std ] corresponds to a d f × d f covariance matrix. We aim to 

nd the proposal that minimizes the sum of diagonal variances. 
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rom the results of the previous section, it is straightforward to 

how that the variance of the p-th component is 

ar [ ̂  I std ,p ] = Var [ ̃  I std ,p ] + 

1 

N ̄Z 2 
E 

[
f p (x ) 2 s (x ) 2 

q (x ) 2 

]
= 

1 

N ̄Z 2 
E 

[
f p (x ) 2 (m (x ) 2 + s (x ) 2 ) 

q (x ) 2 

]
− 1 

N ̄Z 2 
I 2 p , 

here f p (x ) and I p are respectively the p-th components of f (x )

nd I , and 

˜ I std ,p denotes the non-noisy estimator (i.e. using m (x ) 

nstead of ˜ m (x ) ). Thus, 

d f 
 

p=1 

Var [ ̂  I std ,p ] = 

1 

N ̄Z 2 
E 

[ ∑ d f 
p=1 

f p (x ) 2 (m (x ) 2 + s (x ) 2 ) 

q (x ) 2 

] 

− 1 

N ̄Z 2 

d f ∑ 

p=1 

I 2 p . 

y Jensen’s inequality, we have 

 

[ ∑ d f 
p=1 

f p (x ) 2 (m (x ) 2 + s (x ) 2 ) 

q (x ) 2 

] 

≥
( 

E 

[ √ 

m (x ) 2 + s (x ) 2 ‖ f (x ) ‖ 2 
q (x ) 

] ) 2 

, 

here ‖ f (x ) ‖ 2 denotes the euclidean norm. The equality holds if 

nd only if 

√ 

m (x ) 2 + s (x ) 2 ‖ f (x ) ‖ 2 
q (x ) 

is constant. Hence, the optimal pro- 

osal is 

 opt (x ) ∝ ‖ 

f (x ) ‖ 2 

√ 

m (x ) 2 + s (x ) 2 . (17) 

.3. Optimal proposal for ̂  I sel f 

Let us consider the case of the self-normalized estimator ̂  I self . 

ecall that ̂  I self = 

̂ E ̂ Z 
, where ̂ E denotes the noisy estimator of E = 

 

X f (x ) m (x ) dx , so that we are considering ratios of estimators.

gain, we aim to find the proposal that minimizes the variance 

f the vector-valued estimator ̂  I self . When N is large enough, the 

ariance of p-th ratio is approximated as [29] , 

ar [ ̂  I self ,p ] = Var 

[̂ E p ̂ Z 

]
≈ 1 

Z̄ 2 
Var [ ̂  E p ] − 2 

E p 

Z 
Cov [ ̂  E p , ̂  Z ] + 

E 2 p 

Z̄ 4 
Var [ ̂  Z ] , 

here E p is the p-th component of E , and 

Var [ ̂  E p ] = 

1 

N 

E 

[
f p (x ) 2 (m (x ) 2 + s (x ) 2 ) 

q (x ) 2 

]
− 1 

N 

E 2 p , 

Var [ ̂  Z ] = 

1 

N 

E 

[
m (x ) 2 + s (x ) 2 

q (x ) 2 

]
− 1 

N 

Z̄ 2 , 

ov [ ̂  E p , ̂  Z ] = 

1 

N 

E 

[
f p (x )(m (x ) 2 + s (x ) 2 ) 

q (x ) 2 

]
− 1 

N 

E p ̄Z . 

he first two results have been already obtained in the previous 

ections. The third result is given in Appendix Appendix A . The 

um of the variances is thus 

d f 
 

p=1 

Var [ ̂  I self ,p ] ≈
1 

N ̄Z 2 
E 

[ 

(m (x ) 2 + s (x ) 2 ) 
∑ d f 

p=1 
( f p (x ) − I p ) 2 

q (x ) 2 

] 

. 

y Jensen’s inequality, we can derive that the optimal proposal is 

 opt (x ) ∝ ‖ 

f (x ) − I ‖ 2 

√ 

m (x ) 2 + s (x ) 2 . (18) 

elationship with active learning. The optimal density q opt (x ) can 

e interpreted as an acquisition density , suggesting the regions of 

he space which require more number of acquisitions of the re- 

lizations ˜ m (x ) . Namely, q opt (x ) plays a role similar to an acqui-

ition function in active learning. This is information is relevant, 

specially if the noisy evaluations are also costly to obtain. 
4 
.4. Connection with other types of optimality 

Here, we discuss another approach for optimality in noisy IS 

nd connect it with our work. Other related works, in Monte Carlo 

nd noisy optimization literature, focus on the trade-off between 

ccuracy/noisiness and computational cost [3,23,30] . In those set- 

ings, it is assumed that one can control the variance s (x ) 2 of the

oisy realizations ˜ m (x ) . Clearly, taking samples with higher accu- 

acy, i.e. small variance s (x ) 2 , is beneficial since it decrease the 

agnitude of the terms E 

[ 
s (x ) 2 

m (x ) 2 

] 
and E 

[ 
f p (x ) 2 s (x ) 2 

m (x ) 2 

] 
, which are 

esponsible for the efficiency loss in the estimators, due to the 

resence of noise. However, taking accurate estimates implies in- 

reased computational cost, hence one must reduce the number 

f samples N, which affect the overall Monte Carlo variance. This 

rade-off have been investigated in both MCMC and IS frameworks 

3,23] . 

Let R denote the number of auxiliary samples employed to re- 

uce the variance of the noisy realizations. Namely, greater R im- 

lies greater accuracy but also greater cost. Moreover, this num- 

er could depend on x , i.e., R (x ) : X → N 

+ \{ 0 } . Then, the goal is

o obtain the optimal function R (x ) by balancing the decrease in 

ariance with the extra computational cost (see, e.g., Sections 3.3, 

.4 and 5 of [3] ). Namely, in this different approach, they try to 

educe s (x ) 2 at certain x increasing the value of R (x ) , instead of 

sing an optimal proposal pdf for the noisy scenario. On the con- 

rary, in this work we have considered the use of optimal proposal 

dfs and that s (x ) 2 is not tuned by the user, which means that R

s arbitrary and set constant for all x . 

. Numerical experiments 

In this section, we consider two illustrative numerical examples 

here we clearly show the performance of the optimal proposal 

df in the noisy IS setting (showing the variance gains in estima- 

ion, with respect to the use the optimal proposal density from 

he non-noisy setting). For simplicity, we consider one-dimensional 

cenarios, and test the optimal proposal pdf with different densi- 

ies p(x ) (uniform and Gaussian), and different types of variance 

ehavior, σ (x ) . 

First experiment. Let p(x ) = 

1 
b−a 

for x ∈ [ a, b] , i.e., a uniform

ensity in [ a, b] with a = 0 . 1 and b = 10 . We set ˜ m (x ) = p(x ) e ε

ith ε ∼ N 

(
−σ 2 / 2 , σ 2 

)
so that E [ e ε ] = 1 , and we have m (x ) =

 [ ̃  m (x )] = p(x ) . 

We consider the estimation of Z̄ = 1 using the optimal pro- 

osal pdf q opt (x ) in Eq. (10) , and the optimal proposal pdf in the

on-noisy setting, i.e., q sub-opt (x ) = p(x ) . More specifically, we con- 

ider 

(x ) = A | log (x ) | , A > 0 . 

ence, 

 (x ) 2 = 

e σ (x ) 2 − 1 

(b − a ) 2 
, and q opt (x ) ∝ 

1 

b − a 
e σ (x ) 2 . 

learly, by changing A , we change the form of both s (x ) 2 and

 opt (x ) . For instance, increasing A also increases the magnitude 

f s (x ) 2 and hence the mismatch between q sub-opt (x ) = p(x ) and

 opt (x ) , as depicted in Fig. 1 . Indeed, for A = 0 . 2 , q opt (x ) is almost

dentical to p(x ) since the magnitude of s (x ) is small w.r.t. the val-

es of p(x ) . As A increases, q opt (x ) deviates from p(x ) , being in

he middle between p(x ) and s (x ) , and eventually would converge 

o s (x ) for A � 1 . It is also interesting to note that q opt (x ) with

 = 1 . 2 has very little probability mass around x = 1 , where the

oise is zero, since it needs to concentrate probability mass in the 

xtremes of the interval, where the noise power is huge. 
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Fig. 1. Uniform example. (a) Optimal proposals q opt (x ) for different values of A , and the q sub-opt (x ) = p(x ) in dashed line; (b) The standard deviation s (x ) for different values 

of A . 

Fig. 2. Gaussian example. (a) Optimal proposals q opt (x ) for different values of A , and the q sub-opt (x ) = p(x ) in dashed line; (b) The standard deviation s (x ) 2 for different 

values of A . 

Fig. 3. Theoretical and empirical ratio of variances 
V sub-opt 

V opt 
in the estimation of Z̄ = 1 for both experiments. The x -axis denotes the noise level (larger A means greater noise). 

5 
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Let also denote as V sub-opt the variance obtained using 

 sub-opt (x ) = p(x ) given in Eq. (11) , and V opt = V min the variance ob-

ained using q opt (x ) given in Eq. (12) . In Fig. 3 (a), we show the

atio of variances 
V sub-opt 

V opt 
both theoretically and empirically, as a 

unction of A , where V sub-opt and V opt are the variances of ̂ Z when 

sing p(x ) and q opt (x ) as proposals, respectively. We can observe 

he clear advantage of using the optimal proposal density q opt (x ) 

n Eq. (10) . 

Second experiment. Let us consider now a Gaussian pdf, 

p(x ) = N (x | 0 , 1) , and the same error model as in the previous ex-

mple but considering 

(x ) = A | x | 1 2 , A > 0 . 

ig. 2 depicts the q opt (x ) and s (x ) , as a function of x , for several

alues of A . Note that, in this example, increasing A makes q opt (x )

ecome bimodal. As in the previous example, as A increases, the 

ptimal proposal q opt (x ) will converge to s (x ) . The theoretical and

mpirical curves of the ratio of variances, 
V sub-opt 

V opt 
, in estimating Z

re shown in Fig. 3 (b). 

. Conclusions 

Working with noisy evaluations of the target density is usual 

n Monte Carlo, especially in the last years. In this work, we have 

nalyzed the use of optimal proposal densities in a noisy IS frame- 

ork. Previous works have focused on the trade-off between ac- 

uracy in the evaluation and computational cost in order to form 

ptimal estimators. In this work, we have considered a general set- 

ing and derived the optimal proposals for the noisy IS estimators. 

hese optimal proposals incorporate the variance function of the 

oisy evaluation in order to propose samples in regions that are 

ore affected by noise. In this sense, we can informally state that 

he optimal proposal densities play the role of an acquisition func- 

ion that also take into account the noise power. 
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ppendix A. Covariance between 

̂ E p and 

̂ Z 

We show that 

ov [ ̂  E p , ̂  Z ] = 

1 

N 

E 

[
f p (x )(m (x ) 2 + s (x ) 2 ) 

q (x ) 2 

]
− 1 

N 

E p ̄Z . 

irst, recall that Cov [ ̂  E p , ̂  Z ] = E [ ̂  E p ̂  Z ] − E p ̄Z . By the law of iterated

xpectations, 

 [ ̂  E p ̂  Z ] = E [ E [ ̂  E p ̂  Z | x 1: N ]] . 

he inner expectation is 

 [ ̂  E p ̂  Z | x 1: N ] = E 

[ 

1 

N 

2 

N ∑ 

i =1 

w 

2 
i f p (x i ) + 

2 

N 

2 

N ∑ 

i =1 

N ∑ 

j>i 

w i w j f p (x i ) 

∣∣∣x 1: N 

] 

= 

1 

N 

2 

N ∑ 

i =1 

f p (x i )(s (x i ) 
2 + m (x i ) 

2 ) 

q (x i ) 2 

+ 

2 

N 

2 

N ∑ 

i =1 

N ∑ 

j>i 

m (x i ) f (x i ) 

q (x i ) 

m (x j ) 

q (x j ) 
. 

ence, we obtain 

 

[
E [ ̂  E p ̂  Z | x 1: N ] 

]
= 

1 

N 

E 

[
f (x )(s (x ) 2 + m (x ) 2 ) 

q (x ) 2 

]

6 
+ 

2 

N 

2 

N ∑ 

i =1 

N ∑ 

j>i 

E 

[
m (x i ) f (x i ) 

q (x i ) 

]
E 

[
m (x j ) 

q (x j ) 

]
= 

1 

N 

E 

[
f (x )(s (x ) 2 + m (x ) 2 ) 

q (x ) 2 

]
+ 

2 

N 

2 

N ∑ 

i =1 

N ∑ 

j>i 

E p ̄Z 

= 

1 

N 

E 

[
f (x )(s (x ) 2 + m (x ) 2 ) 

q (x ) 2 

]
+ E p ̄Z 

(
1 − 1 

N 

)
. 

ombining the results, we obtain the desired expression. 
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