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Introduction

During my Ph.D. experience, research work led to the development of numerous

scientific articles which revolve around the understanding of the human mentality

and behavior. A model is an abstract representation of reality that includes aspects

relevant to the purpose of its study. Modeling reality and its behavior represents

one of the most investigated topics of scientific research in the field of operational

research. The investigation moved through two main approaches: mathematical

models of variational inequalities and metaheuristic algorithms and both of them

are complex decision-making systems. The two approaches, the variational one

and the metaheuristic one, can both be represented and modeled through networks.

In the study of a phenomenon, after a careful analysis, a mathematical model is

developed. It must represent the problem effectively and take into consideration

all the agents involved and the relevant aspects. In the first approach, the model is

analyzed from a strictly mathematical point of view: the constraints are formalized

and through a variational game theory approach an equilibrium point is determined

that maximizes profit or minimizes cost for all agents. Through the metaheuristic

approach the problems are analyzed with probabilistic algorithms. This approach

has the advantage of being able to simultaneously analyze a very high number of

xvii



xviii Introduction

agents and to progressively investigate the states of the problem and observe the

behavior and reactions of the agents in the development of the situation. Nowadays,

due to the development of new technologies, smartphones and internet connectivity

devices are becoming cheaper and easier to access, thus expanding the possibilities

to approach other people. As a consequence, a first line of my research is focused

on a game theoretical approach to investigate the strategic behavior of content

providers in relation to the viewers of their videos. The goal of content providers

is to maximize their profit as a result of their reputation, the quality of the content

uploaded and the income through the various advertisements or sponsors and the

number of views obtained. I decided to improve the previous model by considering

a dependence on time in order to better analyze how the profits of content providers

change after different instants of time as a consequence of their strategies which

in both models are characterized by the number of views and the quality of the

content. In these two models the focus was concentrated on the analysis of the

behavior of content providers who post videos on the YouTube platform. Then the

eBay platform was studied. I decided to develop another model where the behavior

of a production chain was investigated starting from manufacturers passing through

retailers to consumers. Unlike the well-known production supply chain, a closed-

loop network is studied. In this work the study of behavior is not limited to

consumers. In fact some consumers decide to resell their used products through

an e-commerce platform such as eBay, and these items will be bought back by

others. Consumers thus make this chain a closed-loop network. The results show

that customer loyalty is important for every level of decision makers. Also this

model has been extended considering the time dependence even if these results

will not be analyzed in the thesis. During my first and second year of Ph.D.,
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the outbreak of the Covid-19 pandemic in early 2020, prompted me to study

healthcare models. The first scientific paper in this area, that I analyze in this

thesis, was developed in collaboration with the local speech therapy center, which

required staff assignments to patients with different levels of priority, optimizing

the working hours of the few employees specialized in some particular therapies

and not, and finally optimizing their path to visit patients in their homes and in the

various speech centers in the area. The analysis of the pandemic situation has led

to the study of emergency models under uncertainty. In particular, at the beginning

of 2020, I started the study of two-stage stochastic variational inequalities models

considering the behavior of warehouses in relation to hospitals, which sell medical

material to the latter. The goal is to minimize transportation time, transportation

cost and unmet demand. This model was subsequently extended and published

in Journal of Optimization Theory and Applications. At the same time, the

behavior of agents during an evacuation situation was investigated. The issue of

evacuation was analyzed following two different approaches: the first by analyzing

the optimal strategies through a two-stage stochastic variational model, the second

by observing and studying the strategies and in particular the behavior of agents

in an emergency situation. The objective of the first model is to minimize the

transportation cost, the transportation time, the penalty cost on the links with

training to evacuate the greatest number of agents who have to escape from an

area that is no longer safe to a shelter. The results showed that the values of

the deterministic profit functions are greater than the respective values of the

Lagrange relaxation approach, used in this model. This observation implies that

the stochastic framework and the real-time updating of information allow one to

evaluate more precisely the situation, and to lower evacuation costs. The other
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approach, used to solve this second evacuation model, represents an agent based

model in which two different types of agents, cooperative and non-cooperative,

must reach the exit from a fixed income by minimizing the path, in a dynamic

graph. The goal is minimizing the time of the path and costs and maximizing

the number of agents who reach the exit. The algorithm created incorporates Ant

Colony Optimization (ACO), a Methaeuristic Swarm Intelligence. I investigate

the Ant Colony Optimization correlating with the study of agent-based model

associated with game theory and optimization model. Game theory is the study

of mathematical models of strategic interaction among rational decision-makers,

on the other hand, ACO is a probabilistic technique for solving computational

problems for multi-agent methods inspired by the behaviour of real ants. The

main relationship between ACO and Game Theory is that both of them try to find

a good solution in a situation where agents, with different ideas and strategies

have to share a particular environment. As the crowd, a group of ants tries to

achieve the exit, as safe as is possible. The Ant Colony Optimization’s works are

connected to the work on two stage stochastic variational model on evacuation.

Furthermore, the study of immunological metaheuristics was carried out. Two

algorithms have been developed respectively called Opt-IA and Hybrid-Ia. Both

are immunological algorithms, for clustering problems, that in our specific case

have been applied to social networks and then to biological networks. The purpose

of these two algorithms is to analyze the interaction between agents or molecules,

respectively for social networks and biological networks. I detect highly linked

communities in a network with the aim to understand relationships between entities

or interactions between biological genes.
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Objectives and contents The work presented in this thesis represents an excur-

sus of some approaches, such as game theory, variational inequality models and

metaheuristic algorithms, used for the study and resolution of mathematical mod-

els with the aim to investigate human behavior and strategies. I have completed

and published on proceedings or journals 12 works in different fields, such supply

chain, healthcare, evacuation, agents based models and community detection. In

details, the thesis is structured as follow:

In Chapter 1, a dynamic model of competition for the diffusion of online contents

in a two-layer network consisting of content providers and viewers is presented.

Each content provider seeks to maximize the profit by determining the optimal

views and quality levels. I assume that there is a known and fixed limit to the

number of times each viewer can access a content. This requirement generates

shared constraints for all the providers. The problem is expressed as a Generalized

Nash equilibrium with shared constraints that is then formulated via a variational

inequality. I construct the locally projected dynamical system model, which

provides a continuous-time evolution of views and quality levels, and whose set of

stationary points coincides with the set of solutions to the variational inequality.

I discuss some stability conditions using a monotonicity approach, and, finally, I

present some numerical examples (see [89]).

In Chapter 2, I extend the model in Chapter 1 and I develop a dynamic network

model of the competition of digital contents on social media platforms, assuming

that there is a known and fixed upper bound on the total amount of views. In

particular, I consider a two-layer network consisting of creators and viewers.

Each creator seeks to maximize the profit by determining views and likes. The

problem is formulated as a time-dependent generalized Nash equilibrium for which
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I provide the associated evolutionary variational inequality, using the variational

equilibrium concept. It is also discussed a possible differential game formulation.

Finally, using a discrete-time approximation of the continuous time adjustment

process, I present a numerical example (see [91]).

In Chapter 3, a closed-loop supply chain network equilibrium problem with on-

line second-hand trading of high-uniqueness products is studied. The closed-loop

supply chain network consists of manufacturers, retailers, demand markets, and

one online second-hand platform engaging in both horizontal and vertical compe-

tition. The optimal behaviors of all the decision-makers are modeled as variational

inequality problems, and the governing closed-loop supply chain network equilib-

rium conditions are given (see [88]).

In Chapter 4, I propose a multi-stage integer linear programming problem to solve

the scheduling of speech-language pathologists involved in conventional treat-

ments as well as in augmentative and alternative communication therapies. In

order to reduce the complexity of this problem, I suggest a hierarchical approach

that breaks the problem into three sub-problems: patient selection for augmen-

tative and alternative communication therapies, therapists’ shift assignment, and

routing optimization of home-based rehabilitation services. The resulting mod-

els were tested on data collected in a physiotherapy centre in Acireale (Catania,

Italy), using AMPL optimization package and Genetic Algorithm implemented in

Matlab. From the results of the case study, the model ensures the maximization of

the number of patients eligible for augmentative and alternative communication

therapies, the assignment of sustainable therapist schedule, and the optimization

of the home therapy routing (see [86]).

In Chapter 5 and 6, the competition of healthcare institutions for medical supplies
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in emergencies caused by natural disasters is studied. In particular, in Chapter

5 I develop a two-stage stochastic programming model in a generalized Nash

equilibrium framework. It provides the optimal amount of medical supplies from

warehouses to hospitals, in order to minimize both the purchasing cost and the

transportation costs. For effective disaster planning, I allow for real-time infor-

mation spreading and up-to-date disaster evaluation. Thus, each institution deals

with a two-stage stochastic programming model that considers the unmet demand

at the first stage, and the consequent penalty. Then, the institutions simultaneously

solve their own stochastic optimization problems and reach a stable state governed

by the stochastic generalized Nash equilibrium concept. Moreover, I formulate

the problem as a two-stage variational inequality. I also present an alternative

two-stage variational inequality formulation using the Lagrangian relaxation ap-

proximation (see [87]). Also, in Chapter 6 I modelled a medical supply network

that involves warehouses and hospitals with multiple medical items and multiple

transportation modes during emergencies situations, in a random environment. I

consider a pre-event policy, in which each healthcare institution seeks to minimize

the purchasing cost of medical items and the transportation time from the first

stage, and a recourse decision process to optimize the expected overall costs and

the penalty for the prior plan, in response to each disaster scenario. Thus, each

institution deals with a two-stage stochastic programming model that takes into

account the unmet demand at the first stage, and the consequent penalty. Then,

the institutions simultaneously solve their own stochastic optimization problems

and reach a stable state governed by the stochastic Nash equilibrium concept,

unlike the Chapter 5 in which a generalized Nash equilibrium problem has been

studied. Moreover, I formulate the problem as a variational inequality; both the
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discrete and the general probability distribution cases are described. In Chapter 6,

I also present an alternative formulation using infinite dimensional duality tools,

characterizing the second-stage equilibrium, in the case of general probability dis-

tribution, by means of infinite-dimensional Lagrange duality. Finally, we test the

equilibrium model with two different numerical illustrations with realistic data,

investigating the different strategies used by hospital in situation with high or low

penalty on the unfulfilled demand, applying the Progressive Hedging Method (see

[84]). The results reveal that hospitals are able to re-arrange timely their requests

in order to satisfy the need for medical items. In emergencies, uncertainty plays a

fundamental role in the success of disaster management.

In Chapter 7, I focus on evacuation planning which is a complex and challenging

process able to predict or evaluate different disaster scenarios. In particular, I

present an evacuation model where a population has to be evacuated from cri-

sis areas to shelters, and propose an optimization formulation for minimizing a

combination of the transportation cost and the transportation time. In addition,

I admit uncertainty in the size of the population to be evacuated and provide a

two-stage stochastic programming model. I propose an equivalent two-stage vari-

ational inequality formulation, using the Lagrangian relaxation approach. In order

to illustrate the modeling framework, I present a numerical example, solving the

deterministic and the stochastic model. From the results has been emerged that the

values of the deterministic profit functions are greater than the respective values

of the two-stage evacuation model without the Lagrange relaxation. This confirms

the efficiency of the stochastic approach (see [90]).

In Chapter 8, I introduce some new methodologies in a general path problem.

Finding a good path is always a desirable task and it can be also crucial in



xxv

emergency and panic situations, in which people tend to assume different and

unpredictable behaviors. In this Chapter, I analyze an escape situation in which the

environment is a labyrinth and people are agents that act as two different kinds of ant

colonies. In particular, I assume that people act according to opposite behaviors:

(𝑖) cooperatively, helping each other and the group; (𝑖𝑖) non cooperatively, helping

just themselves, and not caring about the rest of the group. So, I use in a path

problem an Ant Colony Algorithm based on two breeds of colonies: a cooperative

and a non-cooperative one. I imagine that their task is to find the exit of the

labyrinth making decisions according to the ACO rules and according to their

breed. Every breed has, in fact, two different strategies. Via a game theory

approach, I investigate how these two strategies affect the final payoff of each

breed. In particular, I notice that if a number of evacuees choose cooperative

strategies, then the function’s value is higher than the same number of evacuees

can gain playing a competitive strategy (see [47]).

In Chapter 9, I present an agent-based model to evaluate the effects of different

behaviors in a crowd simulation. Two different behaviours of agents were consid-

ered: collaborative, acting attentively and collaboratively, and defector who, on the

other hand, acts individually and recklessly. Many experimental simulations on

different complexity scenarios were performed and each outcome proves how the

presence of a percentage of defector agents helps and motivates the collaborative

ones to be better and more fruitful. This investigation was carried out considering

the (i) number of agents evacuated, (ii) exit times and (iii) path costs as evaluation

metrics. It has been emerged that a mixed crowd in which are presented both

behaviors is more efficient not only in obtaining the best values of the metrics used

but also in the transmission of the information from one group to another (see
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[46]).

In Chapter 10, I present an experimental analysis of how different behavior per-

formed by a group of ants affects the optimization efficiency of the entire colony.

Two different interaction ways of the ants with each other and with the environ-

ment, that is a weighted network, have been considered: (𝑖) Low Performing Ants

(LPA), which destroy nodes and links of the network making it then dynamic; and

(𝑖𝑖) High Performing Ants (HPA), which, instead, repair the destroyed nodes or

links encountered on their way. The purpose of both ant types is simply to find the

exit of the network, starting from a given entrance, whilst, due to the uncertainty

and dynamism of the network, the main goal of the entire colony is maximize the

number of ants that reach the exit, and minimize the path cost and the resolution

time. From the analysis of the experimental outcomes, it is clear that the presence

of the LPAs is advantageous for the entire colony in improving its performances,

and then in carrying out a better and more careful optimization of the environment.

An excess of information is self-defeating for the group because, since their actions

are calibrated according to this quantity, it does not allow the ants to explore the

rest of the network, letting them choose the same path over and over (see [45]).

In Chapter 11 and 12, I present a challenging problem i.e. community detection.

Community detection is an interesting and valuable approach to discover the struc-

ture of the community in a complex network, revealing the internal organization

of the nodes, and has been designed as a leading research topic in the analysis of

complex networks. Being able to detect highly linked communities in a network

can lead to many benefits, such as understanding relationships between entities

or interactions between biological genes, for instance. In particular, in Chapter

11, two different immunological algorithms have been designed for this problem,
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called Opt-IA and Hybrid-IA, respectively. The main difference between the two

algorithms is the search strategy and related immunological operators developed:

the first carries out a random search together with purely stochastic operators; the

last one is instead based on a deterministic Local Search that tries to refine and

improve the current solutions discovered. The robustness of Opt-IA and Hybrid-

IA has been assessed on several real social networks. These same networks have

also been considered for comparing both algorithms with other seven different

metaheuristics and the well-known greedy optimization Louvain algorithm. The

experimental analysis conducted proves that Opt-IA and Hybrid-IA are reliable

optimization methods for community detection, outperforming all compared al-

gorithms. Finally, I give some conclusions (see [50]). Otherwise, in Chapter 12

is investigated the link between biological modules and network communities in

a test-case biological networks that are commonly used as a reference point and

which include Protein-Protein Interactions Networks, Metabolic Networks and

Transcriptional Regulation Networks. In order to identify small and structurally

well-defined communities in biological context, a hybrid immune metaheuristic

algorithm Hybrid-IA is proposed. The proposed algorithm performs community

detection based on the modularity maximization, and it is compared to several

metaheuristics, hyper-heuristic, and the well-known greedy algorithm Louvain.

Considering the limitation of modularity optimization, which can fail to identify

smaller communities, the efficiency and reliability of Hybrid-IA were also ana-

lyzed with respect to the Normalized Mutual Information (𝑁𝑀𝐼), an evaluation

metric that allows to assess how similar the detected communities are concerning

to real ones. Finally, inspecting all outcomes and comparisons performed, if on

one hand Hybrid-IA finds slightly lower modularity values than Louvain, but
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outperforming all other metaheuristics, on the other hand, it is able to detect more

similar communities to the real ones compared to those detected by Louvain (see

[51]).

Finally, in Chapter 13, I present the final conclusion of my thesis.

To sum up the main objectives in this thesis, they are as follows:

1. Investigate and solve deterministic models as dynamics of popularity of

online contents, a closed-loop supply chain network for second-hand trading

of high-uniqueness products and scheduling problem of speech-language

pathologists.

2. Develop two-stage procurement planning model in a random environment,

during emergency situations as health emergency or natural disasters.

3. Study the behavior of agents that have to escape or have to group in com-

munities.



Chapter 1
Generalized Nash equilibrium and

dynamics of popularity of online

contents

1.1 Introduction

Online contents represent the largest part of Internet traffic. Individuals can use

Internet to access as well as to distribute contents. Most of such contents are

multimedia products posted online by the contents’ owners. The content distri-

bution is provided by user-generated content (UGC) platforms, like commercial

platforms or social network platforms. One of the world’s biggest UGC platform

is YouTube, with more than 1,8 billion people registered on the site to watch daily

5 billion videos.

An important feature for the contents’ owners is the viewcount, namely the number

of times a content has been accessed. In fact, content providers can profit from

their potential viewers. Due to the finite size of the browser’s window, only

1
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contents with the highest number of views can be visible on a webpage without

scrolling. Therefore, providers are willing to promote their contents and accelerate

the views. Platforms like YouTube provide tools to boast the distribution of

contents, introducing recommendation lists and other ranking mechanisms. In

addition, the popularity of a content can be increased by paying a cost for hosting

advertisement. As a result, the content gains some priority in the recommendation

lists and will be accessed more frequently. The acceleration mechanisms generate

competition among content providers to obtain popularity, visibility and influence.

Game theory represents an excellent methodological framework for the investiga-

tion of decision-makers who compete amongst themselves and need to determine

the benefit of advertisement investments so as to accelerate the views. The lit-

erature on the competition of online contents is vast and mainly focuses on the

evolution of popularity of online contents; see [34, 35]. The aim is to develop

models for early-stage prediction of contents’ popularity. In [5, 6, 62], the authors

model the behavior of contents’ owners as a dynamic game. In addition, some

acceleration mechanisms of views are incorporated in the formulation. In [85], the

authors develop a non cooperative model for the diffusion of online contents. The

content providers, the players, compete amongst themselves and seek to maximize

their profits while investing in acceleration mechanisms. The underlying equilib-

rium concept is that of Nash equilibrium. The problem is then formulated as a

variational inequality (see [78, 72] for backgrounds on variational inequalities),

and the role of Lagrange multipliers is also analyzed.

In this paper, I extend the model in [85] in two directions. First, I require a

reasonable limit to the number of times each viewer can access a content. I

consider this limit as known and fixed: this generates common constraints to all
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the providers. Thus, each player’s strategy implicitly depends on the rival players’

strategies through the shared constraints, and the governing concept is that of

generalized Nash equilibrium (GNE).

GNE (see [7, 77, 76, 112, 176, 194]) is a generalization of the well-known

Nash equilibrium problem (see [165, 166]), where each player’s strategy set may

depend on the rivals’ strategies. There is a large interest in GNE problems, as

there are many notable applications, ranging from economics to engineering; see

[43, 60, 172]. If a Nash equilibrium problem, when each player solves a convex

programming problem, can be formulated as a variational inequality (see, [78, 72]),

GNE can be formulated as a quasi-variational inequality (see [112]). However, a

GNE with shared constraints can be also obtained via a variational inequality; see

[77, 76, 153]. Thus, I formulate our model as a variational inequality for which

the existence of solutions is guaranteed.

Our second improvement of the model in [85] is the study of the continuous-time

evolution of views and quality levels. In particular, I construct a locally projected

dynamical system model, whose set of stationary points coincides with the set

of solutions to the variational inequality. I also prove the stability of the unique

solution via the strict monotonicity of the operator of the variational inequality.

I describe a dynamic adjustment process for the evolution of the equilibrium

pattern, and derive some important characteristics of the model, discussing some

combinations of active and non-active constraints. I then present some numerical

examples to illustrate our results.

The paper is organized as follows. In Section 1.2, I present the model, and give

the variational inequality formulation. In Section 1.3, I recall some theoretical

preliminaries. In Section 1.4, I discuss the stability of solutions, and, in Section
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1.5, I provide the dynamic adjustment process. In Section 1.6, I illustrate some

examples, and, finally, in Section 1.7, I draw our conclusions.

1.2 The game theory model

In this section, I present an online content diffusion network with views and quality

competition, that consists of 𝑚 content providers and 𝑛 viewers, see Figure 1.1

(see also [85]). Each content provider 𝑖, 𝑖 = 1, . . . , 𝑚, posts one content that
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Figure 1.1: The two-layer online content diffusion network

can be accessed by each viewer 𝑗 , 𝑗 = 1, . . . , 𝑛. The contents are assumed to

be homogeneous, namely, of the same type (for instance, blogs, videos, podcasts,

social media contents, ebooks, photos, etc.), and of a similar topic (for instance,

music, travels, film reviews, recipes, etc. ). The viewers can access each of the

𝑚 contents at the first opportunity. Let 𝑄𝑖 𝑗 ≥ 0 denote the accesses of content 𝑖

selected by viewer 𝑗 . I group the 𝑄𝑖 𝑗 elements for all 𝑗 into the vector 𝑄𝑖 ∈ R𝑛+,

and then I group all the vectors 𝑄𝑖 for all 𝑖 into the vector 𝑄 ∈ R𝑚𝑛+ . In this model,

I assume that 𝑄𝑖 𝑗 are continuous variables. This allows us to take into account

whether a content is watched entirely or partially.

In addition, 𝑞𝑖 denotes the quality level of content 𝑖 and takes a value in the interval

𝐼 = [𝑞
𝑖
, 𝑞𝑖] = [1, 5], from 1 = sufficient to 5 = excellent. I group the quality levels
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of all providers into the vector 𝑞 ∈ R𝑚+ . All vectors here are assumed to be column

vectors, except where noted.

I define the viewcount of content 𝑖, 𝑖 = 1, . . . , 𝑚, as the number of times content 𝑖

has been fully accessed, and is given by
⌊ ∑𝑛

𝑗=1𝑄𝑖 𝑗

⌋
. Usually, a content must reach

a minimum amount of accesses to gain the interest of viewers and be in competition

with the other homogeneous contents. I denote this threshold by 𝑠 > 0. Thus, for

each posted content 𝑖, the amount of views must satisfy the condition
𝑛∑︁
𝑗=1
𝑄𝑖 𝑗 ≥ 𝑠, 𝑖 = 1, . . . , 𝑚. (1.1)

Even if a content can be repeatedly accessed, it is reasonable to require a limit to

the number of times a viewer can access a content. Hence, for each viewer 𝑗 , I

introduce an upper bound on the total amount of views, denoted by 𝑑 𝑗 . It suggests

the satisfaction towards the contents posted by all the providers, and reflects the

taste for the digital products. In addition, I assume 𝑑 𝑗 to be known and fixed, and

the following condition must hold:
𝑚∑︁
𝑖=1

𝑄𝑖 𝑗 ≤ 𝑑 𝑗 , 𝑗 = 1, . . . , 𝑛. (1.2)

Following network economic models as in [159, 160, 156], I now introduce specific

functional forms which are then utilized in the numerical examples. I associate

with each content provider 𝑖 a production cost

𝑓𝑖 (𝑄, 𝑞𝑖), 𝑖 = 1, . . . , 𝑚, (1.3)

and assume that the production cost of provider 𝑖 depends on the general attrac-

tiveness of the topic of the contents, namely, on the total amount of views, and on

the quality of the content itself. I assume that the production cost is convex and

continuously differentiable.
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Due to the finite size of the browser’s window, only contents with the highest

number of views can appear in the recommendation lists, and be visible on a

webpage without scrolling. Therefore, providers are willing to promote their

contents and accelerate the views. Thus, I assume that providers pay a fee for the

advertisement service in the UGC platform. Hence, for each provider 𝑖, I introduce

the advertisement cost function

𝑐𝑖

𝑛∑︁
𝑗=1
𝑄𝑖 𝑗 , 𝑖 = 1, . . . , 𝑚, (1.4)

with 𝑐𝑖 > 0, 𝑖 = 1, . . . , 𝑚. Similarly, the revenue of provider 𝑖 (revenue for hosting

advertisements, benefits from firms, etc.) is given by

𝑝𝑖

𝑛∑︁
𝑗=1
𝑄𝑖 𝑗 , 𝑖 = 1, . . . , 𝑚, (1.5)

with 𝑝𝑖 > 0, 𝑖 = 1, . . . , 𝑚. Each viewer 𝑗 reflects the preferences through the

evaluation function that represents the feedback of the contents

𝐸 𝑗 (𝑄, 𝑞), 𝑗 = 1, . . . , 𝑛, (1.6)

where 𝑞 = 1
𝑚

∑𝑚
𝑖=1 𝑞𝑖 is the average quality level. Thus, I can write 𝐸 𝑗 (𝑄, 𝑞) =

𝐸 𝑗 (𝑄, 𝑞), for all 𝑗 , and consider the case where the evaluation function may

depend on the taste and the expertise of viewers, represented by the entire amount

of accesses 𝑄, and on the total quality level. Now, I can define the reputation or

popularity function of provider 𝑖 as the function
𝑛∑︁
𝑗=1

𝐸 𝑗 (𝑄, 𝑞) · 𝑄𝑖 𝑗 , 𝑖 = 1, . . . , 𝑚. (1.7)

I assume that the reputation function is concave and continuously differentiable.

The content diffusion competition can be represented as a game where I define

players, strategies and profits; see also [160]. Players are content providers,
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who compete for the diffusion of their contents. Viewers are not strategic, and

simply provide their preferences through their evaluation functions, that reflect the

attractiveness of the topic of the contents, given by the entire amount of views,

and on the average quality level. The scope of the game is to find the number

of views and the quality target to maximize the profit and predict how much the

advertisement strategies of content providers can be remunerative.

Strategic variables are content views 𝑄 and quality level 𝑞. Profit for player 𝑖 is

the difference between total revenues and total costs, namely,

𝑈𝑖 (𝑄, 𝑞) =
𝑛∑︁
𝑗=1

𝐸 𝑗 (𝑄, 𝑞) · 𝑄𝑖 𝑗 + 𝑝𝑖
𝑛∑︁
𝑗=1
𝑄𝑖 𝑗 − 𝑓𝑖 (𝑄, 𝑞𝑖) − 𝑐𝑖

𝑛∑︁
𝑗=1
𝑄𝑖 𝑗 , 𝑖 = 1, . . . , 𝑚.

Let K𝑖 denote the feasible set of content provider 𝑖, where

K𝑖 =
{
(𝑄𝑖, 𝑞𝑖) ∈ R𝑛+1 : 𝑄𝑖 𝑗 ≥ 0,∀ 𝑗 ;

𝑛∑︁
𝑗=1
𝑄𝑖 𝑗 ≥ 𝑠; 𝑞

𝑖
≤ 𝑞𝑖 ≤ 𝑞𝑖

}
.

I also define K =
∏𝑚
𝑖=1K𝑖.

In addition, players have to satisfy the shared constraints (1.2). Hence, I define the

set S as follows:

S =

{
𝑄 ∈ R𝑚𝑛+𝑚 :

𝑚∑︁
𝑖=1

𝑄𝑖 𝑗 ≤ 𝑑 𝑗 , 𝑗 = 1, . . . , 𝑛
}
.

In my model, the 𝑚 providers post their contents and behave in a non-cooperative

fashion, each one trying to maximize his own profit. I note that the production cost

functions capture competition for contents since the production cost of a particular

provider depends not only on his views, but also on those of the other providers.

Moreover, the evaluation functions show that viewers care about the quality level

associated with their favorite contents, but also on that of the other contents, as

well as the views. Since players have to satisfy the shared constraints (1.2), each
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player’s strategy vector (𝑄𝑖, 𝑞𝑖) belongs to the setK𝑖, but implicitly depends on the

rival players’ strategies through the constraints 𝑄 ∈ S. Therefore, the underlying

equilibrium concept will be that of Generalized Nash equilibrium; see [77, 76,

112, 176].

Definition 1.2.1. (Generalized Nash equilibrium) A view amount and quality

level pattern (𝑄∗, 𝑞∗) ∈ K,∀𝑄 ∈ S is said to be a Generalized Nash equilibrium

if for each content provider 𝑖; 𝑖 = 1, . . . , 𝑚,

𝑈𝑖 (𝑄∗𝑖 , 𝑞∗𝑖 , 𝑄∗−𝑖, 𝑞∗−𝑖) ≥ 𝑈𝑖 (𝑄𝑖, 𝑞𝑖, 𝑄∗−𝑖, 𝑞∗−𝑖), ∀(𝑄𝑖, 𝑞𝑖) ∈ K𝑖,∀𝑄 ∈ S, (1.8)

where 𝑄−𝑖 denotes the amount of views of contents posted by all the providers

except for 𝑖. Analogously, 𝑞−𝑖 expresses the quality levels of all the providers’

contents except for 𝑖.

According to the above definition, a Generalized Nash equilibrium is established

if no provider can unilaterally improve upon his profit by choosing an alternative

vector of views and quality level, given the amount of views of the contents posted

and quality level decisions of the other providers, and the shared constraints. The

above GNE belongs to a special class of GNE problems, where the constraint

functions that depend on rivals’ strategies are identical for all players. A solution

of such a GNE problem can be found solving a quasi-variational inequality as in

[78, 112]. However, a GNE with shared constraints can be also obtained via a

variational inequality; see [77, 76, 131, 142].

Definition 1.2.2. Let us assume that for each content provider 𝑖 the profit function

𝑈𝑖 (𝑄, 𝑞) is concave with respect to the variables (𝑄𝑖1, . . . , 𝑄𝑖𝑛), and 𝑞𝑖, and is

continuous and continuously differentiable. A variational inequality approach to
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finding a GNE is to define the setK = K∩S, and to solve the variational inequality

−
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜕𝑈𝑖 (𝑄∗, 𝑞∗)
𝜕𝑄𝑖 𝑗

×
(
𝑄𝑖 𝑗 −𝑄∗𝑖 𝑗

)
−

𝑚∑︁
𝑖=1

𝜕𝑈𝑖 (𝑄∗, 𝑞∗)
𝜕𝑞𝑖

×
(
𝑞𝑖 − 𝑞∗𝑖

)
≥ 0, (1.9)

∀(𝑄, 𝑞) ∈ K .

It is worth noting that, with the variational approach, the Lagrange multipliers

for the shared constraints are identical for all players. Since players usually have

different objective functions, the multipliers for the shared constraints are not

necessarily equal. Thus, with the variational approach, only a part of the GNE can

be found. In addition, as noted in [11] and references therein, it is not possible to

obtain a full characterization of the solutions of a GNE problem as solutions of

a variational inequality. For this reason, recently, the research of non variational

equilibria has raised large interest; see [11, 80, 153]. However, in view of the

study of the dynamics of this model, I adopt a variational approach to my GNE

problem.

I can put the above variational inequality into the standard form. Thus, I define

the (𝑚𝑛 + 𝑚)-dimensional vector 𝑋 = (𝑄, 𝑞) and the (𝑚𝑛 + 𝑚)-dimensional row

vector 𝐹 (𝑋) = (𝐹1(𝑋), 𝐹2(𝑋)), with the (𝑖, 𝑗)-th component of 𝐹1(𝑋), and the

𝑖-th component of 𝐹2(𝑋), respectively, given by

𝐹1
𝑖 𝑗 (𝑋) = −

𝜕𝑈𝑖 (𝑄, 𝑞)
𝜕𝑄𝑖 𝑗

, 𝐹2
𝑖 (𝑋) = −

𝜕𝑈𝑖 (𝑄, 𝑞)
𝜕𝑞𝑖

.

Then, problem (1.9) can be written as

⟨𝐹 (𝑋∗), 𝑋 − 𝑋∗⟩ ≥ 0,∀𝑋 ∈ K . (1.10)

Problem (1.9) or (1.10) admits a solution since the classical existence theorem,

which requires that the set K is closed, convex, and bounded, and the operator is

continuous, is satisfied (see [78, 148]).
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1.3 Theoretical preliminaries

I recall some typical concepts of convex analysis (see, for instance, [120, 193]),

and confine my attention to the Euclidean space. Let Ω ⊆ R𝑛 be a non-empty,

closed and convex set, the tangent cone to Ω at 𝑥, 𝑇Ω(𝑥), and the normal cone to

Ω at 𝑥, 𝑁Ω(𝑥), are defined, respectively, by

𝑇Ω(𝑥) = ∪ℎ>0(Ω − 𝑥)/ℎ, 𝑁Ω(𝑥) = {𝑣 ∈ R𝑛 : ⟨𝑣, 𝑦 − 𝑥⟩ ≤ 0,∀𝑦 ∈ Ω}.

If Ω ⊆ R𝑛 is a polyhedral set, namely,

Ω = {𝑥 : ⟨𝑎𝑖, 𝑥⟩ ≤ 𝛼𝑖, 𝑖 = 1, . . . , 𝑚},

where 𝑎𝑖 ∈ R𝑛 and 𝛼𝑖 ∈ R, ∀𝑖, then it results

𝑁Ω(𝑥) = {𝑦1𝑎1 + . . . , 𝑦𝑚𝑎𝑚 |𝑦𝑖 ≥ 0, 𝑖 ∈ 𝐼 (𝑥), 𝑦𝑖 = 0,∀𝑖 ∉ 𝐼 (𝑥)},

𝐼 (𝑥) = {𝑖 : ⟨𝑎𝑖, 𝑥⟩ = 𝛼𝑖}.

If 𝐶 = 𝐶1 × · · · × 𝐶𝑚 for closed sets 𝐶𝑖 ∈ R𝑛𝑖 , 𝑛𝑖 ∈ N for all 𝑖, then at any

𝑥 = (𝑥1, . . . , 𝑥𝑚) with 𝑥𝑖 ∈ 𝐶𝑖, I have 𝑁𝐶 (𝑥) = 𝑁𝐶1 (𝑥1) × · · · × 𝑁𝐶𝑚 (𝑥𝑚). Let us

introduce the projection operator 𝑃Ω : R𝑛 → Ω, where 𝑃Ω(𝑧) is such that

∥𝑃Ω(𝑧) − 𝑧∥ = inf
𝑦∈Ω
∥𝑦 − 𝑧∥.

I also consider the operatorΠΩ : Ω×R𝑛 → R𝑛, defined by the directional derivative

ΠΩ(𝑥, 𝑣) = lim
𝑡→0

𝑃Ω(𝑥 + 𝑡𝑣) − 𝑥
𝑡

.

Thus, ΠΩ(𝑥, 𝑣) = 𝑃𝑇Ω (𝑥) (𝑣), namely, ΠΩ(𝑥, 𝑣) is the metric projection of 𝑣 onto

the tangent cone to Ω at 𝑥. In addition, as in [40] and references therein, there

exists 𝑛 ∈ 𝑁Ω(𝑥) such that

𝑣 ∈ ΠΩ(𝑥, 𝑣) + 𝑛. (1.11)
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Following [72, 164], a locally projected dynamical system (PDS) is an ordinary

differential equation of the form

¤𝑥 = ΠΩ(𝑥,−𝜑(𝑥)), (1.12)

where 𝜑 : Ω → R𝑛 is a given vector field. A solution to (1.12) is a function

𝑥 : [0,∞) → Ω that is absolutely continuous and satisfies

¤𝑥(𝑡) = ΠΩ(𝑥(𝑡),−𝜑(𝑥(𝑡))),

except for a set of Lebesgue measure zero.

The problem is complemented by the initial condition 𝑥(0) = 𝑥0 ∈ Ω. Problem

(1.12) is a non standard ordinary differential equation, where the right-hand side

is related to the projection operator, and thus, is discontinuous on the boundary of

Ω. I also note that a solution of the dynamical system belongs to the constraint

set Ω. A vector 𝑥∗ is a critical point or stationary point of the locally projected

dynamical system if 𝑥∗ satisfies

ΠΩ(𝑥∗,−𝜑(𝑥∗)) = 0.

This means that once the locally projected dynamical system reaches 𝑥∗ at some

time 𝑡 ≥ 0, it will remain at 𝑥∗ for all future times.

An important feature of locally projected dynamical systems is that the set of

stationary points coincides with the set of solutions of the finite-dimensional and

time-independent variational inequality (see [72])

⟨𝜑(𝑥∗), 𝑥 − 𝑥∗⟩ ≥ 0, ∀𝑥 ∈ Ω.

Moreover, problem (1.3) is equivalent to ¤𝑥 = 𝑃𝑇Ω (𝑥)
(
− 𝜑(𝑥)

)
. Due to (1.11), the

initial value problem

¤𝑥 = ΠΩ(𝑥,−𝜑(𝑥)), 𝑥(0) = 𝑥0 ∈ Ω (1.13)
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consists in finding the solution of minimal norm to the initial condition 𝑥(0) =

𝑥0 ∈ Ω and the differential variational inequality

¤𝑥(𝑡) = −
(
𝑁Ω(𝑥(𝑡)) + 𝜑(𝑥(𝑡))

)
. (1.14)

The above problem is, in turn, equivalent to finding the solution of minimal norm

to the initial condition 𝑥(0) = 𝑥0 ∈ Ω and the projected variational inequality

¤𝑥(𝑡) ∈ 𝑃𝑇Ω (𝑥(𝑡))
(
− 𝜑(𝑥(𝑡))

)
.

The following result gives the existence of PDS (see [72]).

Theorem 1.3.1. Let Ω ⊂ R𝑛 be a polyhedron. Suppose that 𝑥0 ∈ Ω, and assume

that 𝜑 : Ω → R𝑛 is a vector field with linear growth, namely, there exists 𝑀 > 0

so that for all 𝑥 ∈ Ω, ∥𝜑(𝑥)∥ ≤ 𝑀 (1+ ∥𝑥∥). Then, the initial value problem (1.13)

has unique absolutely continuous solution on the interval [0,∞[.

I note that Lipschitz continuity implies the linear growth assumption and, hence,

it is a sufficient condition for the existence of a unique solution to locally projected

dynamical systems.

1.4 Stability of solutions

In this section, I focus my attention on the stability of solutions under perturbations;

see [40, 156, 164]. In the theory of PDS, monotonicity concept and its extensions

are connected to stability. In fact, monotonicity describes the behavior of perturbed

equilibria and show the existence of periodic cycles.

I consider variational inequality (1.10) and the associated locally projected dy-

namical system

¤𝑋 = ΠK (𝑋,−𝐹 (𝑋)), 𝑋 (0) = 𝑋0 ∈ K . (1.15)
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Definition 1.4.1. A mapping 𝐹 : K → R𝑚𝑛+𝑚 is said to be

- monotone if

⟨𝐹 (𝑋) − 𝐹 (𝑌 ), 𝑋 − 𝑌⟩ ≥ 0,∀𝑋,𝑌 ∈ K .

- strictly monotone if

⟨𝐹 (𝑋) − 𝐹 (𝑌 ), 𝑋 − 𝑌⟩ > 0,∀𝑋,𝑌 ∈ K, 𝑋 ≠ 𝑌 .

- strongly monotone if there exists ` > 0 such that

⟨𝐹 (𝑋) − 𝐹 (𝑌 ), 𝑋 − 𝑌⟩ ≥ `∥𝑋 − 𝑌 ∥2,∀𝑋,𝑌 ∈ K .

In the following, 𝐵(𝑋∗, 𝛿) denotes the open ball centered at 𝑋∗ with radius 𝛿. I

now recall some definitions; see [177] for further discussions and examples.

Definition 1.4.2. Let 𝑋∗ be a critical point of (1.15).

• 𝑋∗ is called monotone attractor if there exists 𝛿 > 0 such that, for every

solution 𝑋 (𝑡) with 𝑋 (0) ∈ 𝐵(𝑋∗, 𝛿) ∩ K, ∥𝑋 (𝑡) − 𝑋∗∥ is a non increasing

function of 𝑡.

• 𝑋∗ is a strictly monotone attractor if ∥𝑋 (𝑡) − 𝑋∗∥ is decreasing to 0 in 𝑡.

• 𝑋∗ is a strictly global monotone attractor if the above property holds for any

solution 𝑋 (𝑡) such that 𝑋 (0) ∈ K.

• 𝑋∗ is exponentially stable if the solutions starting from points close to 𝑋∗

are convergent to 𝑋∗ with exponential rate, namely, if there is 𝛿 > 0 and

two constants 𝑏 > 0 and 𝐶 > 0 such that for every solution 𝑋 (𝑡), with

𝑋 (0) ∈ 𝐵(𝑋∗, 𝛿) ∩ K, it results

∥𝑋 (𝑡) − 𝑋∗∥ ≤ 𝐶∥𝑋 (0) − 𝑋∗∥𝑒−𝑏𝑡 , ∀𝑡 ≥ 0.
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• 𝑋∗ is globally exponentially stable if the above property holds for all solu-

tions 𝑋 (𝑡) such that 𝑋 (0) ∈ K.

I also recall a stability theorem; see [164].

Theorem 1.4.1. Suppose that 𝑋∗ solves (1.10).

(i) If 𝐹 is monotone, then 𝑋∗ is a global monotone attractor for the content

diffusion dynamics.

(ii) If 𝐹 is strictly monotone, then 𝑋∗ is a strictly global monotone attractor for

the content diffusion dynamics.

(iii) If 𝐹 is strongly monotone, then 𝑋∗ is globally exponentially stable for the

content diffusion dynamics.

Definition 1.4.3. For each provider 𝑖, the production cost 𝑓𝑖 (𝑄, 𝑞𝑖) is said to be

additive if

𝑓𝑖 (𝑄, 𝑞𝑖) = 𝑓 1
𝑖 (𝑄𝑖) + 𝑓 2

𝑖 (𝑄−𝑖) + 𝑓 3
𝑖 (𝑞𝑖),

where 𝑄−𝑖 denotes the views of the rivals of provider 𝑖.

For each viewer 𝑗 , the evaluation function 𝐸 𝑗 (𝑄, 𝑞) is said to be additive if

𝐸 𝑗 (𝑄, 𝑞) = �̃� 𝑗 (𝑄) + 𝐸1
𝑗 (𝑞1) + · · · + 𝐸𝑚𝑗 (𝑞𝑚).

Theorem 1.4.2. The operator 𝐹 of the variational inequality (1.10) is strictly

monotone if the production cost 𝑓𝑖, 𝑖 = 1, . . . , 𝑚, are additive, 𝑓 𝑙
𝑖

are strictly

convex, 𝑖 = 1, . . . , 𝑚, 𝑙 = 1, 2, 3, 𝐸 𝑗 (𝑄, 𝑞), 𝑗 = 1, . . . , 𝑛, are additive, −𝐸 (𝑄, 𝑞) =

(−𝐸 𝑗 (𝑄, 𝑞)) 𝑗 , 𝑗 = 1, . . . , 𝑛, are strictly monotone with respect to 𝑄, �̃� 𝑗 (𝑄) =

�̃� 𝑗
∑𝑚
𝑖=1𝑄𝑖 𝑗 , with �̃� 𝑗 < 0, 𝑗 = 1, . . . , 𝑛, and −𝐸 𝑖

𝑗
(𝑞𝑖) · 𝑄𝑖 𝑗 , 𝑖 = 1, . . . , 𝑚, 𝑗 =

1, . . . , 𝑛, are strictly convex functions with respect to 𝑞𝑖.
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Proof. Let 𝑋′ = (𝑄′, 𝑞′), 𝑋′′ = (𝑄′′, 𝑞′′), 𝑋 ≠ 𝑌 . I consider

⟨𝐹 (𝑋′) − 𝐹 (𝑋′′), 𝑋′ − 𝑋′′⟩

=

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

[
𝜕 𝑓𝑖 (𝑄′, 𝑞′𝑖)
𝜕𝑄𝑖 𝑗

−
𝜕 𝑓𝑖 (𝑄′′, 𝑞′′𝑖 )

𝜕𝑄𝑖 𝑗

]
× (𝑄′𝑖 𝑗 −𝑄′′𝑖 𝑗 )

−
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

[
𝐸 𝑗 (𝑄′, 𝑞′) +

𝑛∑︁
𝑘=1

𝜕𝐸𝑘 (𝑄′, 𝑞′)
𝜕𝑄𝑖 𝑗

· 𝑄′𝑖𝑘 − 𝐸 𝑗 (𝑄
′′, 𝑞′′)

−
𝑛∑︁
𝑘=1

𝜕𝐸𝑘 (𝑄′′, 𝑞′′)
𝜕𝑄𝑖 𝑗

· 𝑄′′𝑖𝑘

]
× (𝑄′𝑖 𝑗 −𝑄′′𝑖 𝑗 )

+
𝑚∑︁
𝑖=1

[
𝜕 𝑓𝑖 (𝑄′, 𝑞′𝑖)

𝜕𝑞𝑖
−
𝜕 𝑓𝑖 (𝑄′′, 𝑞′′𝑖 )

𝜕𝑞𝑖

]
× (𝑞′𝑖 − 𝑞′′𝑖 )

−
𝑚∑︁
𝑖=1

[
𝑛∑︁
𝑘=1

𝜕𝐸𝑘 (𝑄′, 𝑞′)
𝜕𝑞𝑖

· 𝑄′𝑖𝑘 −
𝜕𝐸𝑘 (𝑄′′, 𝑞′′)

𝜕𝑞𝑖
· 𝑄′′𝑖𝑘

]
× (𝑞′𝑖 − 𝑞′′𝑖 ).

Since 𝑓𝑖, 𝑖 = 1, . . . , 𝑚, are additive, and 𝑓 𝑙
𝑖

are strictly convex functions, 𝑖 =

1, . . . , 𝑚, 𝑙 = 1, 2, 3, I have

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

[
𝜕 𝑓𝑖 (𝑄′, 𝑞′𝑖)
𝜕𝑄𝑖 𝑗

−
𝜕 𝑓𝑖 (𝑄′′, 𝑞′′𝑖 )

𝜕𝑄𝑖 𝑗

]
× (𝑄′𝑖 𝑗 −𝑄′′𝑖 𝑗 )

+
𝑚∑︁
𝑖=1

[
𝜕 𝑓𝑖 (𝑄′, 𝑞′𝑖)

𝜕𝑞𝑖
−
𝜕 𝑓𝑖 (𝑄′′, 𝑞′′𝑖 )

𝜕𝑞𝑖

]
× (𝑞′𝑖 − 𝑞′′𝑖 )

=

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

[
𝜕 𝑓 1

𝑖
(𝑄′)

𝜕𝑄𝑖 𝑗
−
𝜕 𝑓 1

𝑖
(𝑄′′)

𝜕𝑄𝑖 𝑗

]
× (𝑄′𝑖 𝑗 −𝑄′′𝑖 𝑗 )

+
𝑚∑︁
𝑖=1

[
𝜕 𝑓 3

𝑖
(𝑞′
𝑖
)

𝜕𝑞𝑖
−
𝜕 𝑓 3

𝑖
(𝑞′′
𝑖
)

𝜕𝑞𝑖

]
× (𝑞′𝑖 − 𝑞′′𝑖 ) > 0.

Due to strict monotonicity of −𝐸 (𝑄, 𝑞) with respect to 𝑄, I have

−
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

[
𝐸 𝑗 (𝑄′, 𝑞′) − 𝐸 𝑗 (𝑄′′, 𝑞′′)

]
× (𝑄′𝑖 𝑗 −𝑄′′𝑖 𝑗 ) > 0.

Moreover, 𝐸 𝑗 (𝑄, 𝑞), 𝑗 = 1, . . . , 𝑛 are additive, and �̃� 𝑗 (𝑄) = �̃� 𝑗
∑𝑚
𝑖=1𝑄𝑖 𝑗 , with
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�̃� 𝑗 < 0, 𝑗 = 1, . . . , 𝑛, then I find

−
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

[
𝑛∑︁
𝑘=1

𝜕𝐸𝑘 (𝑄′, 𝑞′)
𝜕𝑄𝑖 𝑗

· 𝑄′𝑖𝑘 −
𝑛∑︁
𝑘=1

𝜕𝐸𝑘 (𝑄′′, 𝑞′′)
𝜕𝑄𝑖 𝑗

· 𝑄′′𝑖𝑘

]
× (𝑄′𝑖 𝑗 −𝑄′′𝑖 𝑗 )

= −
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

[
𝑛∑︁
𝑘=1

𝜕�̃�𝑘 (𝑄′)
𝜕𝑄𝑖 𝑗

· 𝑄′𝑖𝑘 −
𝑛∑︁
𝑘=1

𝜕�̃�𝑘 (𝑄′′)
𝜕𝑄𝑖 𝑗

· 𝑄′′𝑖𝑘

]
× (𝑄′𝑖 𝑗 −𝑄′′𝑖 𝑗 )

= −
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

�̃� 𝑗

(
𝑄′𝑖 𝑗 −𝑄′′𝑖 𝑗

)2
> 0.

Finally, −𝐸 𝑖
𝑗
(𝑞𝑖) ·𝑄𝑖 𝑗 , 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛 are strictly convex functions with

respect to 𝑞𝑖, then I have

−
𝑚∑︁
𝑖=1

[
𝑛∑︁
𝑘=1

𝜕𝐸𝑘 (𝑄′, 𝑞′)
𝜕𝑞𝑖

· 𝑄′𝑖𝑘 −
𝜕𝐸𝑘 (𝑄′′, 𝑞′′)

𝜕𝑞𝑖
· 𝑄′′𝑖𝑘

]
× (𝑞′𝑖 − 𝑞′′𝑖 )

= −
𝑚∑︁
𝑖=1

[
𝑛∑︁
𝑘=1

𝜕𝐸 𝑖
𝑘
(𝑞′
𝑖
)

𝜕𝑞𝑖
· 𝑄′𝑖𝑘 −

𝜕𝐸 𝑖
𝑘
(𝑞′′
𝑖
)

𝜕𝑞𝑖
· 𝑄′′𝑖𝑘

]
× (𝑞′𝑖 − 𝑞′′𝑖 ) > 0.

Thus, I conclude that 𝐹 is strictly monotone. □

Now, I am able to state the following result.

Theorem 1.4.3. Under the assumption of Theorem 1.4.2, the variational inequality

(1.10) has at most one solution, which is a global strictly monotone attractor for

the content diffusion dynamics.

1.5 Dynamics of contents diffusion

I now propose a dynamic adjustment process for the evolution of content providers’

views and quality levels. I consider the locally projected dynamical system asso-

ciated with variational inequality (1.9)

¤𝑋 =
𝑑𝑋 (𝑡)
𝑑𝑡

= ΠK (𝑋,−𝐹 (𝑋)) = 𝑃𝑇K (𝑋) (−𝐹 (𝑋)).
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By Theorem 1.4.3 and inclusion (1.14), the unique optimal strategy for my game

is 𝑋∗ ∈ K, where 𝑋∗ is the solution of the inclusion −𝐹 (𝑋) ∈ 𝑁K (𝑋).

I note that the strategy set K can be written into the form K = K1 × K2, where

K1 =

{
𝑄 ∈ R𝑚𝑛 : 𝑄𝑖 𝑗 ≥ 0,∀𝑖, 𝑗 ;

𝑛∑︁
𝑗=1
𝑄𝑖 𝑗 ≥ 𝑠,∀𝑖;

𝑚∑︁
𝑖=1

𝑄𝑖 𝑗 ≤ 𝑑 𝑗 ,∀ 𝑗
}
,

K2 =

{
𝑞 ∈ R𝑚 : 𝑞

𝑖
≤ 𝑞𝑖 ≤ 𝑞𝑖,∀𝑖

}
.

Therefore, 𝑁K (𝑋) = 𝑁K (𝑄, 𝑞) = 𝑁K1 (𝑄) × 𝑁K2 (𝑞).

Under the additivity assumptions as in Definition 1.4.3, for all 𝑖, 𝑗 , I set

�̃�1
𝑖 𝑗 (𝑄, 𝑞) = 𝑐𝑖 +

𝜕 𝑓 1
𝑖
(𝑄)

𝜕𝑄𝑖 𝑗
− 𝑝𝑖 − 𝐸 𝑗 (𝑄, 𝑞) −

𝑛∑︁
𝑘=1

𝜕�̃�𝑘 (𝑄)
𝜕𝑄𝑖 𝑗

· 𝑄𝑖𝑘 ,

�̃�2
𝑖 (𝑄, 𝑞) =

𝜕 𝑓 3
𝑖
(𝑞𝑖)

𝜕𝑞𝑖
−

𝑛∑︁
𝑘=1

𝜕𝐸 𝑖
𝑘
(𝑞)

𝜕𝑞𝑖
· 𝑄𝑖𝑘 .

If 𝑋∗ solves the inclusion −𝐹 (𝑋) ∈ 𝑁K (𝑋), then

− �̃�1(𝑄∗, 𝑞∗) =
(
−�̃�1

𝑖 𝑗 (𝑄, 𝑞)
)
𝑖, 𝑗
∈ 𝑁K1 (𝑄∗),

− �̃�2(𝑄∗, 𝑞∗) =
(
−�̃�2

𝑖 (𝑄, 𝑞)
)
𝑖
∈ 𝑁K2 (𝑞∗).

Moreover, I note that 𝑁K2 (𝑞∗) = 𝑁[𝑞
1
,𝑞1] (𝑞

∗
1) × · · · × 𝑁[𝑞𝑚,𝑞𝑚] (𝑞

∗
𝑚).

I now focus on some combinations of active and non-active constraints that are

more interesting to my purposes.

1. If
∑𝑛
𝑗=1𝑄

∗
𝑖 𝑗

= 𝑠 for all 𝑖, the normal cone is generated by vectors with

negative components; hence, −�̃�1(𝑄∗, 𝑞∗) < 0.

2. If
∑𝑚
𝑖=1𝑄

∗
𝑖 𝑗

= 𝑑 𝑗 , for all 𝑗 , the normal cone is generated by vectors with

positive components; hence, −�̃�1(𝑄∗, 𝑞∗) > 0.
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3. If
∑𝑚
𝑖=1𝑄

∗
𝑖 𝑗
< 𝑑 𝑗 , for all 𝑗 , and

∑𝑛
𝑗=1𝑄

∗
𝑖 𝑗
> 𝑠, for all 𝑖, then 𝑁K1 (𝑄∗) = {0};

hence, �̃�1(𝑄∗, 𝑞∗) = 0.

4. If 𝑞∗
𝑖
= 𝑞

𝑖
, for all 𝑖,𝑁[𝑞

𝑖
,𝑞𝑖] (𝑞𝑖) contains vectors with negative components;

hence −�̃�2(𝑄∗, 𝑞∗) < 0.

5. If 𝑞∗
𝑖
= 𝑞𝑖, for all 𝑖, 𝑁[𝑞

𝑖
,𝑞𝑖] (𝑞𝑖) contains vectors with positive components;

hence −�̃�2(𝑄∗, 𝑞∗) > 0.

6. If 𝑞
𝑖
< 𝑞∗

𝑖
< 𝑞𝑖, for all 𝑖, 𝑁[𝑞

𝑖
,𝑞𝑖] (𝑞

∗
𝑖
) = {0}; hence, �̃�2(𝑄∗, 𝑞∗) = 0.

I now discuss the main scenarios:

Case 1.5.1. The game can be monotonically attracted to 𝑋∗ = (𝑄∗, 𝑞∗), with∑𝑛
𝑗=1𝑄

∗
𝑖 𝑗

= 𝑠 for all 𝑖 and 𝑞∗ = 𝑞. This means that −�̃�1(𝑄∗, 𝑞∗) < 0, namely,

the marginal profit with respect to views is negative. In addition, −�̃�2(𝑄∗, 𝑞∗) <

0, namely, the marginal profit with respect to quality level is negative. As a

consequence, the investment in acceleration mechanisms is not advantageous for

the content providers. The quality level is low as well as the views, there is no

successful strategy to increase profits.

Case 1.5.2. The game can be monotonically attracted to 𝑋∗ = (𝑄∗, 𝑞∗), with∑𝑛
𝑗=1𝑄

∗
𝑖 𝑗

= 𝑠 for all 𝑖 and 𝑞∗ = 𝑞. This means that −�̃�1(𝑄∗, 𝑞∗) < 0, that is,

the marginal profit view-wise is negative. Moreover, −�̃�2(𝑄∗, 𝑞∗) > 0, that is,

the marginal profit quality-wise is positive. The content is very good, but still

unpopular to make investments in acceleration mechanisms be profitable.

Case 1.5.3. The game can be monotonically attracted to 𝑋∗ = (𝑄∗, 𝑞∗), with∑𝑛
𝑗=1𝑄

∗
𝑖 𝑗

= 𝑠 for all 𝑖 and 𝑞 < 𝑞∗ < 𝑞. Thus, −�̃�1(𝑄∗, 𝑞∗) < 0, namely, the

marginal profit view-wise is negative. I also have �̃�2(𝑄∗, 𝑞∗) = 0, namely, the
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total marginal revenue equals the total marginal cost quality-wise. Thus, there

is no incentive to invest in acceleration mechanisms. Providers are indifferent to

improving quality level.

Case 1.5.4. The game can be monotonically attracted to 𝑋∗ = (𝑄∗, 𝑞∗), with∑𝑚
𝑖=1𝑄

∗
𝑖 𝑗
= 𝑑 𝑗 for all 𝑗 and 𝑞∗ = 𝑞; this means that −�̃�1(𝑄∗, 𝑞∗) > 0, namely, the

marginal profit view-wise is positive. In addition, −�̃�2(𝑄∗, 𝑞∗) < 0, namely, the

marginal profit quality-wise is negative. Investments in acceleration mechanisms

can be profitable. The contents reached their lifetime, hence, improving quality

level is not convenient.

Case 1.5.5. The game can be monotonically attracted to 𝑋∗ = (𝑄∗, 𝑞∗), with∑𝑚
𝑖=1𝑄

∗
𝑖 𝑗

= 𝑑 𝑗 for all 𝑗 and 𝑞∗ = 𝑞. This means that −�̃�1(𝑄∗, 𝑞∗) > 0, that is,

the marginal profit view-wise is positive. Moreover, −�̃�2(𝑄∗, 𝑞∗) > 0, that is, the

marginal profit quality-wise is positive. Investing in both acceleration mechanisms

and quality improvement is a successful strategy, even if the contents reached their

lifetime.

Case 1.5.6. The game can be monotonically attracted to 𝑋∗ = (𝑄∗, 𝑞∗), with∑𝑚
𝑖=1𝑄

∗
𝑖 𝑗

= 𝑑 𝑗 for all 𝑗 and 𝑞 < 𝑞∗ < 𝑞. Thus, −�̃�1(𝑄∗, 𝑞∗) > 0, namely,

the marginal profit view-wise is positive. I also have �̃�2(𝑄∗, 𝑞∗) = 0. Thus,

investing in acceleration mechanisms can be profitable. Providers are indifferent

to improving quality level.

Case 1.5.7. The game can be monotonically attracted to 𝑋∗ = (𝑄∗, 𝑞∗), with∑𝑚
𝑖=1𝑄

∗
𝑖 𝑗
< 𝑑 𝑗 , for all 𝑗 ,

∑𝑛
𝑗=1𝑄

∗
𝑖 𝑗
> 𝑠, for all 𝑖, and 𝑞 < 𝑞∗ < 𝑞. In this

case, �̃�1(𝑄∗, 𝑞∗) = �̃�2(𝑄∗, 𝑞∗) = 0, and, hence, the marginal revenues equal

the marginal costs. Providers are indifferent to both investing in acceleration
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mechanisms and improving quality level.

1.6 Numerical examples

Youtube is now the world’s second biggest search engine with more than 1,8 billion

people registered on the site to watch daily 5 billion videos. Every 60 seconds

more than 300 hours of HD quality video are uploaded to YouTube to generate

the massive collection of 1,300,000,000 videos. The major structure unit that

YouTube is built on is a channel. There are hundreds of thousands channels; some

have very few subscribers and some are very popular.

One of the main features of Youtube, is that people, as well as video contents

published may become very popular. A large number of viewers allows video cre-

ators to profit from the volume of traffic that their videos generates. On YouTube,

video creators can take part in the YouTube Partner Program (in short, YTPP),

see 1, and monetize contents through a variety of ways including advertisements,

paid subscriptions, and merchandise. Specific terms to these agreements are often

reserved, but it is known that Google keeps 45% of YouTube advertising revenue.

The advertising can take the form of a banner advertisement, a pre-video com-

mercial, or an in-video box advertisement. The system monitors video views, ad

clicks, and other metrics that convert the videos’ popularity into a monetary value

that can be charged to advertisers and then shared with partners of YTPP. The key

to attracting advertisers is having good contents that are able to capture a large

number of viewers and subscribers.

The revenue for content’s owner is based on the cost per mille (CPM) system or

1https://support.google.com/youtube/answer/72851?hl=en - V,v., A,a.: What is the YouTube

Partner Program?, GOOGLE
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on a cost per click (CPC) system. The CPM system assigns an advertisement cost

per one thousand views; whereas the CPC assigns an advertisement cost per each

view. Recently, YouTube has tightened the rules around the YTPP and applies

new eligibility policy to all existing channels, so that channels that fail to meet the

threshold will no longer be able to make income from advertisement.

I now apply the achievements to some numerical examples. Even if the examples

are of small dimensions, my setting is not restrictive, since my aim is to show

the feasibility of my model and the effectiveness of my approach. I consider a

population of users divided into social groups, each having a different characteristic

according to a certain criterion (for instance, hobbies, age, education, etc...).

Therefore, viewers of the same group are aggregated together and represented as

a single viewer. The variational solutions of the examples are implemented as an

M-script file of MatLab and are solved by applying the extragradient method with

constant steplength as in [128] (see also [167] for further discussions on efficient

computational procedures).

Example 1 I consider two channel creators who post one video each, and two

groups of aggregated viewers. I assume that both YouTubers are eligible for the

YTPP. The data for this example were constructed for easy interpretation purposes.

The production cost functions are assumed to be:

𝑓1(𝑄, 𝑞1) = 0.2𝑄2
11 + 0.2𝑄2

12 + 𝑞
2
1,

𝑓2(𝑄, 𝑞2) = 0.2𝑄2
21 + 0.5𝑄2

22 + 0.5𝑞2
2.

The evaluation functions for each viewer are:

𝐸1(𝑄, 𝑞) = −0.1(𝑄11 +𝑄21)4 + 0.5(𝑞1 + 𝑞2) + 58,

𝐸2(𝑄, 𝑞) = −0.1(𝑄12 +𝑄22)4 + 0.5(𝑞1 + 𝑞2) + 126.
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I consider 𝑄𝑖 𝑗 in the order of tens of thousand. I assume that the advertiser pays

6$ every click to YouTuber 1 and 7$ to YouTuber 2. Moreover, YouTube takes the

45% of the advertisement payment; hence, YouTuber 1 pays 2.7$ every view and

YouTuber 2 pays 3.15$ every view.

I set: 𝑝1 = 6, 𝑐1 = 2.7, 𝑝2 = 7, 𝑐2 = 3.15, 𝑑1 = 5, 𝑑2 = 4.

The assumptions of Theorem 1.4.2 are verified; hence, the variational inequality

associated with the GNE problem has at most one solution, which is a global strictly

monotone attractor for the content diffusion dynamics. I first seek for variational

solutions. Assuming that the shared constraints are satisfied as equalities, I find

the equilibrium solution

𝑄∗11 = 2.49454; 𝑄∗12 = 3.00577; 𝑄∗21 = 2.50546; 𝑄∗22 = 2.99423;

𝑞∗1 = 1.37509; 𝑞∗2 = 2.74987.

I observe that, even if the second content is better than the first one, the viewcount

for YouTuber 1 (55, 003 views) is very close to that of YouTuber 2 (54, 996 views).

The reason could be that the first YouTuber is more popular than the second one,

and his followers access his contents even if the quality is not high. The total

profit of YouTuber 1 is 25, 067.5 $, and the total profit of YouTuber 2 is 9, 439.44$.

Thus, the advertisement strategy for YouTuber 1 is more profitable.

I can also consider non variational solutions, applying KKT conditions to the
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optimization problems of the YouTubers. I find

𝑄∗11 = 1.27778 + 0.555556_1 + 3.88889_2,

𝑄∗12 = 3.61111 + 1.22222_1 + 0.555556_2,

𝑄∗21 = 3.72222 − 0.555556_1 − 3.88889_2,

𝑄∗22 = 2.38889 − 1.22222_1 − 0.555556_2,

𝑞∗1 = 1.22222 + 0.444444_1 + 1.11111_2,

𝑞∗2 = 3.05556 − 0.888889_1 − 2.22222_2.

where _1, _2 are the Lagrange multipliers attached to the shared constraints and

can be opportunely chosen. For instance, I may have

− 0.125 < _1 ≤ 0.5

3.58932 · 10−30(−5.57209 · 1028 − 1.11442 · 1029_1) ≤ _2

≤ 1.31148 · 10−29(7.05309 · 1028 − 3.04999 · 1028_1)

It is worth noting that under the assumption that the shared constraints are equali-

ties, the game results in a Pseudo-Nash equilibrium problem, and all the solutions

can be obtained by solving a suitable variational inequality. I address the interested

reader to [11].

Example 2 I consider the case of two YouTubers and six aggregated viewers.

The production cost functions are:

𝑓1(𝑄, 𝑞1) = 0.00089(𝑄14 +𝑄15 +𝑄16)2 + 0.5𝑄2
13 + 0.4𝑄2

12 + 0.5𝑄2
11 + 𝑞

2
1,

𝑓2(𝑄, 𝑞2) = 0.00089(𝑄21 +𝑄22 +𝑄23)2 + 0.3𝑄2
26 + 0.2𝑄2

24 + 0.4𝑄2
25 + 1.2𝑞2

2.
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The evaluation functions of each viewer are:

𝐸1(𝑄, 𝑞) = −3(𝑄11 +𝑄21) + 0.5(𝑞1 + 𝑞2) + 10,

𝐸2(𝑄, 𝑞) = −2(𝑄12 +𝑄22) + 0.5(𝑞1 + 𝑞2) + 9,

𝐸3(𝑄, 𝑞) = −1.5(𝑄13 +𝑄23) + 0.5(𝑞1 + 𝑞2) + 7,

𝐸4(𝑄, 𝑞) = −3(𝑄14 +𝑄24) + 0.5(𝑞1 + 𝑞2) + 6,

𝐸5(𝑄, 𝑞) = −2.5(𝑄15 +𝑄25) + 0.5(𝑞1 + 𝑞2) + 8.5,

𝐸6(𝑄, 𝑞) = −3.5(𝑄16 +𝑄26) + 0.5(𝑞1 + 𝑞2) + 7.5.

I set: 𝑝1 = 6, 𝑐1 = 2.7, 𝑝2 = 7, 𝑐2 = 3.15, 𝑠 = 0.5, 𝑑1 = 5, 𝑑2 = 7, 𝑑3 = 8, 𝑑4 = 4,

𝑑5 = 5, and 𝑑6 = 4.

The assumptions of Theorem 1.4.2 are verified, and the variational inequality

associated with this game has at most one solution, which is a global strictly

monotone attractor for the content diffusion dynamics.

The variational solutions with active shared constraints are:

𝑄11 = 2.0674; 𝑄12 = 2.80663; 𝑄13 = 2.86795; 𝑄14 = 2.03715; 𝑄15 = 2.74789;

𝑄16 = 2.08392; 𝑄21 = 2.9326; 𝑄22 = 4.19337; 𝑄23 = 5.13205; 𝑄24 = 1.96285;

𝑄25 = 2.25211; 𝑄26 = 1.91608; 𝑞1 = 3.65274; 𝑞2 = 3.83105.

In this case, the second content is slightly better than the first one and the viewcount

for YouTuber 2 (183, 890 views) is more than that of YouTuber 1 (146, 109 views).

YouTuber 2 earns 234, 307.7 $, whereas YouTuber 1 earns 46, 338.8 $. Thus, for

YouTuber 2 the advertisement strategy is more profitable.

Obviously, the above examples are highly stylized, however they show the efficacy

of the model. One can now conduct numerous simulations by altering the data as

well as adding decision-makers with their associated functions.
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1.7 Conclusions

In this chapter, I introduced a dynamic network game theory model of online

contents’ competition, with a known and fixed limit to the number of times each

viewer could access a content. This requirement generated shared constraints for all

the providers. The model resulted in a GNE problem because both the providers’

profit functions and their feasible sets depend on the rival players’ strategies.

Due to the common constraints, I proposed a variational inequality formulation,

rather than a quasi-variational inequality one. I then provided a continuous-

time adjustment process, guaranteed existence and uniqueness of the dynamic

trajectories, and gave conditions for the stability analysis, using a monotonicity

approach. The results in this work add to the growing literature on modeling

and analysis of UGC platforms. As further research issues, I could study the

connection with potential games, see [79, 196]. Moreover, in order to incorporate

the viewers in the model, I could investigate a bilevel formulation of the problem

in which the viewers are followers and the providers are leaders, see [133].



26 Generalized Nash equilibrium and dynamics of popularity of online contents



Chapter 2
Time-Dependent Generalized Nash

Equilibria in Social Media Platforms

2.1 Introduction

Nowadays, due to the development of new technologies, smartphones and internet

connectivity devices are becoming cheaper and easier to access, thus expanding the

possibilities to approach other people. Every year, there is an increasing number

of people signing up for social media. In 2019, there were around 2.77 billion

people using social media, and, in 2021, more than 3 billion people were using

social media. Of course, the rising popularity boosts social media company profits.

YouTube is the largest video-sharing social media site in the world. Users may

upload videos on the platform, view videos from other users, and interact with

them. In 2019, it had an average of 2.3 billion monthly active users. YouTube users

spend an average of 23.2 hours per month on the Android app watching videos

on the platform. In this paper, I study the competition among the creators of user

generated contents posted on a social media platform. Specifically, I consider

27
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a two-layer dynamic network consisting of creators and viewers. Each creator

seeks to determine the optimal views and likes, so as to maximize the profit. I

assume that there is a known and fixed upper bound on the total amount of views

and, hence, I formulate the competitive interaction of creators as a time-dependent

generalized Nash equilibrium. Generalized Nash equilibrium problems (GNEPs)

are non-cooperative games where the strategy of each player may depend on the

strategies of the rivals. A large class of problems can be formulated as GNEPs,

such as oligopolies, transportation networks, and electricity market models. In

[194], Rosen introduced a case of GNEPs where the players have to share some

constraints. For this class of problems, in [76] the authors showed that in finite

dimensional spaces, certain solutions can be computed by solving a variational

inequality and that the KKT multipliers of all players are equal. An infinite

dimensional formulation of GNEPs was studied in [12], where the formulation

of the GNEP as an evolutionary variational inequality problem is proved in the

general setting of quasi convex functions. In [83], the authors extended the

result in [76] to an infinite-dimensional functional setting. In [147], the authors

studied GNEPs in Lebesgue spaces by means of a family of variational inequalities

parameterized by an 𝐿∞ vector. Other contributions to the search of non variational

solutions are given in [11, 80]. Motivated by all the above analysis, I construct

a dynamic equilibrium model of the competition among creators on a social

media platform. Our contribution consists in improving the models in [85, 89] by

considering time-varying data. In addition, I consider as our decision variables

the views, given by a fraction of the number of subscribers, and the likes. Then,

the problem is modelled as a time-dependent generalized Nash equilibrium, and,

using the concept of variational equilibrium, I derive an evolutionary variational
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inequality formulation. This gives rise to challenging problems in both theory and

computations (see [54]). Moreover, following [36] I formulate the competition

problem as a dynamic game, derived from an infinitely repeated simultaneous

game. Therefore, I propose a unified approach and provide a differential game

formulation for the dynamic generalized Nash equilibrium model. The paper is

organized as follows. In Section 2.2, I introduce the game theory model, and

give the related optimization problem. In Section 2.3, I characterize the GNEP

as a solution of an evolutionary variational inequality. Moreover, I discuss a

differential game approach. In Section 2.4, I provide an illustrative example, and,

finally, Section 2.5 is dedicated to the conclusions.

2.2 The time-dependent game theory model of digi-

tal content competition

In this section, I present a dynamic game theory model of the competition among

digital creators. I consider a network that consists of 𝑚 creators and 𝑛 groups

of viewers with homogeneous interests, feelings and age. Each creator posts a

content in the planning horizon [0,T]. The topology of the network of this model

is the same in [0,T]. Each creator 𝑖 ∈ {1, . . . , 𝑚} posts a content at time 𝑡,

that can be accessed by each group 𝑗 ∈ {1, . . . , 𝑛}. In order to express the time

dependence, I choose as our functional setting the Hilbert space 𝐿2( [0,T],R𝑘 )

of square-integrable functions defined in the closed interval 𝐼 = [0,T], endowed

with the scalar product ⟨·, ·⟩𝐿2 =
∫ T

0 ⟨·, ·⟩𝑑𝑡 and the usual associated norm ∥ · ∥𝐿2 .

In particular, I suppose that the functional space for the trajectories of views is

𝐿2(𝐼,R𝑚𝑛), while for the trajectories of likes is 𝐿2(𝐼,R𝑚).
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Let 𝑣𝑖 𝑗 (𝑡) denote the views given by the fraction of subscribers who have accessed

to the content generated by 𝑖 at time 𝑡 ∈ 𝐼. I group the {𝑣𝑖 𝑗 } elements for all 𝑗 into

the vector 𝑣𝑖 ∈ 𝐿2(𝐼,R𝑛+) and then I group all the vectors 𝑣𝑖 for all 𝑖 into the vector

𝑣 ∈ 𝐿2(𝐼,R𝑚𝑛+ ). In addition, ℓ𝑖 (𝑡) denotes the percentage of likes of content 𝑖 at

time 𝑡, and takes value in the interval [0, 1]. I group the likes of all creators into

the vector ℓ ∈ 𝐿2(𝐼, [0, 1]𝑚).

Usually, a content must reach a minimum amount of accesses to raise the interest of

viewers and enter the competition with the other contents. I denote this threshold

by 𝑠 > 0. Thus, for each posted content 𝑖, the views must satisfy the condition
𝑛∑︁
𝑗=1
𝑣𝑖 𝑗 (𝑡) ≥ 𝑠, 𝑖 = 1, . . . , 𝑚, a.e. 𝑡 ∈ 𝐼 . (2.1)

In addition, since each content has a lifetime, I denote by �̄� 𝑗 (𝑡) the upper bound

on the total amount of views at time 𝑡 in each group 𝑗 . I also assume �̄� 𝑗 (𝑡) to be

known and fixed, and the following condition must hold:
𝑚∑︁
𝑖=1

𝑣𝑖 𝑗 (𝑡) ≤ �̄� 𝑗 (𝑡), 𝑗 = 1, . . . , 𝑛, a.e. 𝑡 ∈ 𝐼 . (2.2)

Each creator 𝑖 incurs a production cost 𝜋𝑖 (𝑣, ℓ𝑖), 𝑖 = 1, . . . , 𝑚. I assume that the

production cost of 𝑖 may depend upon the entire amount of views and on its own

likes. I also assume that creators may accelerate the viewcount by paying a fee for

the advertisement service in the social media platform. Hence, for each creator 𝑖,

I introduce the advertisement cost function

𝑐𝑖 (𝑡)
𝑛∑︁
𝑗=1
𝑣𝑖 𝑗 (𝑡), 𝑖 = 1, . . . , 𝑚, a.e. 𝑡 ∈ 𝐼, (2.3)

with 𝑐𝑖 (𝑡) ≥ 0, 𝑖 = 1, . . . , 𝑚, a.e 𝑡 ∈ 𝐼. Similarly, the revenue of creator 𝑖, deriving

from hosting advertisements and benefits from firms, is given by

𝑝𝑖 (𝑡)
𝑛∑︁
𝑗=1
𝑣𝑖 𝑗 (𝑡), 𝑖 = 1, . . . , 𝑚, a.e. 𝑡 ∈ 𝐼, (2.4)
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with 𝑝𝑖 (𝑡) ≥ 0, 𝑖 = 1, . . . , 𝑚, a.e 𝑡 ∈ 𝐼. The advertisements hosted in the videos

can be of several types, i.e. the creator can decide to insert a small advertising

spot, shot by himself, during his video or to interrupt the video by broadcasting

advertisements managed by the YouTube platform.

I associate to each group of viewers 𝑗 the feedback function 𝑓 𝑗 (𝑡, 𝑣, ℓ), that repre-

sents the evaluation of the contents and depends upon the entire amount of views

and likes. Now, I define the popularity function of creator 𝑖 as the function
𝑛∑︁
𝑗=1

𝑓 𝑗 (𝑡, 𝑣, ℓ)𝑣𝑖 𝑗 , 𝑖 = 1, . . . , 𝑚, a.e. 𝑡 ∈ 𝐼 . (2.5)

I consider the content diffusion model as a game where players are the creators,

who compete for the diffusion of their contents. Strategic variables are content

views 𝑣 and likes ℓ. The profit for player 𝑖, denoted by 𝑈𝑖 (𝑡, 𝑣, ℓ), 𝑖 = 1, . . . , 𝑚, is

the difference between total revenue and total costs, namely, for a.e. 𝑡 ∈ 𝐼

𝑈𝑖 (𝑡, 𝑣, ℓ) =
𝑛∑︁
𝑗=1

𝑓 𝑗 (𝑡, 𝑣, ℓ)𝑣𝑖 𝑗 (𝑡) + 𝑝𝑖 (𝑡)
𝑛∑︁
𝑗=1
𝑣𝑖 𝑗 (𝑡) − 𝜋𝑖 (𝑡, 𝑣, ℓ𝑖) − 𝑐𝑖 (𝑡)

𝑛∑︁
𝑗=1
𝑣𝑖 𝑗 (𝑡).

(2.6)

Thus, the set of strategies of creator 𝑖 is given by

K𝑖 =
{
(𝑣𝑖 , ℓ𝑖) ∈ 𝐿2(𝐼,R𝑛+1) : 𝑣𝑖 𝑗 (𝑡) ≥ 0,∀ 𝑗 ;

𝑛∑︁
𝑗=1
𝑣𝑖 𝑗 (𝑡) ≥ 𝑠; 0 ≤ ℓ𝑖 ≤ 1, a.e. in 𝐼

}
.

I also define K =
∏𝑚
𝑖=1K𝑖.

In addition, players have to satisfy the shared constraints (1.2). Hence, I define the

set S as follows:

S =

{
𝑣 ∈ 𝐿2(𝐼,R𝑚𝑛+𝑚) :

𝑚∑︁
𝑖=1

𝑣𝑖 𝑗 (𝑡) ≤ �̄� 𝑗 (𝑡), 𝑗 = 1, . . . , 𝑛, a.e. in 𝐼
}
.

I suppose that the production cost function 𝜋𝑖 (𝑡, 𝑣, ℓ𝑖), ∀𝑖, is defined on 𝐼 × R𝑚𝑛 ×

R→ R+, it is measurable in 𝑡 and continuous with respect to 𝑣 and ℓ𝑖. Moreover,
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I assume that 𝜕𝜋𝑖
𝑣𝑖 𝑗

and 𝜕𝜋𝑖
ℓ𝑖

exist and that they are measurable in 𝑡 and continuous

with respect to 𝑣 and ℓ𝑖. I also require that the feedback function 𝑓 𝑗 (𝑡, 𝑣, ℓ), ∀ 𝑗 , is

defined on 𝐼 × R𝑚𝑛 × R𝑚 → R+, it is measurable in 𝑡 and continuous with respect

to 𝑣 and ℓ. In addition, I assume that 𝜕 𝑓 𝑗
𝑣𝑖 𝑗

and 𝜕 𝑓 𝑗
ℓ𝑖

exist and that they are measurable

in 𝑡 and continuous with respect to 𝑣 and ℓ. Further, I set 𝑢𝑖 = (𝑣, ℓ𝑖), 𝑢 = (𝑣, ℓ),

and require the following growth conditions, ∀𝑖, 𝑗 and a.e. in 𝐼:

���𝜋𝑖 (𝑡, 𝑢)��� ≤ 𝛼1(1 + ∥𝑢𝑖∥),∀ℓ,
��� 𝑓 𝑗 (𝑡, 𝑢)��� ≤ 𝛼2(1 + ∥𝑢∥),∀𝑣, ℓ, (2.7)����� 𝜕𝜋𝑖𝜕𝑣𝑖 𝑗

����� ≤ 𝛽1(1 + ∥𝑣∥),∀𝑣,
�����𝜕𝜋𝑖𝜕𝑙𝑖

����� ≤ 𝛽2(1 + ∥ℓ∥),∀ℓ, (2.8)����� 𝜕 𝑓 𝑗𝜕𝑣𝑖 𝑗

����� ≤ 𝛽3(1 + ∥𝑣∥),∀𝑣,
�����𝜕 𝑓 𝑗𝜕𝑙𝑖

����� ≤ 𝛽4(1 + ∥ℓ∥),∀ℓ, (2.9)

with 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛽3, 𝛽4 > 0.

The above conditions will be useful in the following, since they ensure that problem

(2.12) is well-defined.In fact, if (𝑣𝑖, ℓ𝑖, 𝑣−𝑖, ℓ−𝑖) ∈ 𝐿2(𝐼,R𝑚𝑛+𝑚) and conditions

(2.7)-(2.9) hold, then𝑈𝑖 (𝑡, 𝑣𝑖, ℓ𝑖, 𝑣−𝑖, ℓ−𝑖) ∈ 𝐿2(𝐼,R).

2.3 The Generalized Nash Equilibrium Formulation

In our model, the creators behave in a non-cooperative fashion, each one trying

to maximize her profit. Since players have to satisfy the shared constraints (2.2),

each player’s strategy vector (𝑣𝑖, ℓ𝑖) belongs to the set K𝑖, but depends also on the

rival players’ strategies through the constraints 𝑣 ∈ S. Therefore, the underlying

equilibrium concept will be that of a time-dependent generalized Nash equilibrium;

see [12, 76, 83, 147]. I use the notation (𝑣−𝑖, ℓ−𝑖) to indicate the variables for all

players except 𝑖. So that for any 𝑡 ∈ 𝐼, (𝑣−𝑖 (𝑡), ℓ−𝑖 (𝑡)) is the vector formed by



2.3. The Generalized Nash Equilibrium Formulation 33

all players’ decision variables except the player 𝑖 at time 𝑡 ∈ 𝐼. Following [12,

194], the strategy profile is chosen in a common subset 𝐾 and thus the admissible

strategy set of each player is defined as

𝐾𝑖 (𝑣−𝑖, ℓ−𝑖) = {(𝑣𝑖, ℓ𝑖) ∈ 𝐿2(𝐼,R𝑚+1) : (𝑣𝑖, ℓ𝑖, 𝑣−𝑖, ℓ−𝑖) ∈ 𝐾}. (2.10)

Definition 2.3.1. Let 𝑈𝑖 : 𝐿2(𝐼,R𝑚+1) → R be the profit function for player 𝑖.

A strategy (𝑣∗, ℓ∗) ∈ 𝐾 ⊆ 𝐿2(𝐼,R𝑚𝑛+𝑛) is a time-dependent generalized Nash

equilibrium if and only if for each player 𝑖, I have (𝑣∗
𝑖
, ℓ∗
𝑖
) ∈ 𝐾𝑖 (𝑣∗−𝑖, ℓ∗−𝑖) and

𝑈𝑖 (𝑡, 𝑣∗, ℓ∗) ≤ 𝑈𝑖 (𝑡, 𝑣∗𝑖 , ℓ∗𝑖 , 𝑣∗−𝑖, ℓ∗−𝑖), ∀(𝑣𝑖, ℓ𝑖) ∈ 𝐾𝑖 (𝑣∗−𝑖, ℓ∗−𝑖). (2.11)

This means that (𝑣∗, ℓ∗) ∈ 𝐾 ⊆ 𝐿2(𝐼,R𝑚𝑛+𝑛) is a time-dependent generalized Nash

equilibrium if, for all creators 𝑖, (𝑣∗
𝑖
, ℓ∗
𝑖
) ∈ 𝐿2( [0, 𝑇],R𝑚+1) solves the following

optimization problem

min
(𝑣𝑖 ,ℓ𝑖)∈𝐾𝑖 (𝑣∗−𝑖 ,ℓ∗−𝑖)

∫
𝐼

𝑈𝑖 (𝑡, 𝑣𝑖, ℓ𝑖, 𝑣∗−𝑖, ℓ∗−𝑖)𝑑𝑡. (2.12)

Since the convex sets 𝐾𝑖 (𝑣∗−𝑖, ℓ∗−𝑖), ∀𝑖, depend on the solution, the GNEP can

be formulated as a quasi-variational inequality. However, following [83, 194],

considering the structure of the feasible strategies, I am allowed to reduce the

problem to a variational inequality.

Definition 2.3.2. Let us assume that for each creator 𝑖 the profit function𝑈𝑖 (𝑡, 𝑣, ℓ)

is concave with respect to the variables (𝑣𝑖1, . . . , 𝑣𝑖𝑛), and ℓ𝑖, continuously differ-

entiable, and the growth conditions (2.7)-(2.9) hold. A variational inequality

approach to finding a GNE is to define the set K = K ∩ S, and to solve the evolu-

tionary variational inequality
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Find (𝑣∗, ℓ∗) ∈ K :∫ T

0

{
−

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜕𝑈𝑖 (𝑡, 𝑣∗, ℓ∗)
𝜕𝑣𝑖 𝑗

×
(
𝑣𝑖 𝑗 (𝑡) − 𝑣∗𝑖 𝑗 (𝑡)

)
−

𝑚∑︁
𝑖=1

𝜕𝑈𝑖 (𝑡, 𝑣∗, ℓ∗)
𝜕ℓ𝑖

×
(
ℓ𝑖 (𝑡) − ℓ∗𝑖 (𝑡)

) }
𝑑𝑡 ≥ 0,∀(𝑣, ℓ) ∈ K . (2.13)

For a discussion on the existence of solutions, I address the reader to [148]. As in

[76, 83], I have the following result.

Theorem 2.3.1. Every solution of variational inequality (2.13) is a solution of

GNEP.

2.3.1 A differential Game Model

In contrast to the differential game approach as in [6], the evolution of the state

in our model is not governed by differential equations. In fact, I present the

competition problem of creators as an evolutionary variational inequality. Thus,

I am able to describe how creators adapt the choice of contents to be posted, and

the acceleration mechanisms in response to the reactions of viewers in the time

horizon. However, I may provide a unified approach and present a differential

game formulation for the dynamic generalized Nash equilibrium model. The

model presented in this work can be regarded as an infinitely repeated simultaneous

move game. In the repeated games, the same static game, called the stage game, is

repeated a finite or infinite number of times, and the result of each stage is observed

by all the players before the new stage starts. In our case, the competitive game

represents the stage game that is repeated and played almost at the same way at all

the instants 𝑡. In fact, at each repetition the game is slightly different, since creators

adjust their strategies according to the demands that change over time. I also



2.3. The Generalized Nash Equilibrium Formulation 35

emphasize that all the creators make their decisions simultaneously at the beginning

of the game and such simultaneous moves are repeated indefinitely. Therefore,

each creator chooses his decisions without any knowledge of the decisions taken

by the other creators.

Now, I focus on differential games, where time evolves continuously and the state

evolution can be modelled by a set of differential equations given by

¤𝑥(𝑡) = 𝑔(𝑥(𝑡), 𝑧1(𝑡), . . . , 𝑧𝑛 (𝑡)), 𝑥(0) = 𝑥0,

where 𝑥(𝑡) is the state, 𝑧1(𝑡), . . . , 𝑧𝑛 (𝑡) are the controls and 𝑡 is the time.

I can transform the digital content competition game into a problem that can be

approached as a differential game. Nevertheless, I emphasize that the game itself

is not a differential game. I set:

Ψ𝑖 (𝑡, 𝑣(𝑡), ℓ(𝑡)) =
𝑛∑︁
𝑗=1

𝜕𝑈𝑖 (𝑡, 𝑣∗, ℓ∗)
𝜕𝑣𝑖 𝑗

×
(
𝑣𝑖 𝑗 (𝑡) − 𝑣∗𝑖 𝑗 (𝑡)

)
− 𝜕𝑈𝑖 (𝑡, 𝑣

∗, ℓ∗)
𝜕ℓ𝑖

×
(
ℓ𝑖 (𝑡) − ℓ∗𝑖 (𝑡)

)
and observe that the competition problem of creator 𝑖 is equivalent to

min
(𝑣,ℓ)∈K

∫ T

0
Ψ𝑖 (𝑡, 𝑣(𝑡), ℓ(𝑡))𝑑𝑡.

Now, I introduce the profit of creator 𝑖 over the interval [0, 𝑡]:∫ 𝑡

0
Ψ𝑖 (𝜏, 𝑣(𝜏), ℓ(𝜏))𝑑𝜏 = 𝐺𝑖 (𝑡).

Then, the problem of creator 𝑖 becomes

min𝐺𝑖 (T )

subject to
𝑑𝐺𝑖 (𝑡)
𝑑𝑡

= Ψ𝑖 (𝑡, 𝑣(𝑡), ℓ(𝑡)), 𝐺𝑖 (0) = 0,

and the constraints in K. In the above formulation, 𝐺𝑖 (𝑡) represents the state,

whereas 𝑣(𝑡) and ℓ(𝑡) are the controls.
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2.4 An Illustrative Example

In this section, I present a numerical example. Even if the problem could be solved

using optimal control tools, I will adopt a variational inequality approach. I focus

on an example in which I consider two creators and one group of viewers who have

the same preferences about the contents. The steps that I use to solve the example

are the following: Firstly, I use a discretization procedure and select discrete points

in the time interval (see [41, 42]). Then, I reduce our problem to solve a static

variational inequality at each discrete point. Finally, I solve each static variational

inequality using the extragradient method as in [128]. This procedure can be

performed if the continuity of the solutions is guaranteed, see [17].

I consider the production cost functions as:

𝜋1(𝑣11(𝑡), ℓ1(𝑡)) = 43𝑣11(𝑡)2 + 𝑣21(𝑡) + 25ℓ1(𝑡)2 + 3,

𝜋2(𝑣21(𝑡), ℓ2(𝑡)) = 160𝑣21(𝑡)2 + 400𝑣11(𝑡) + 50ℓ2(𝑡)2 + 6;

the evaluation function for the group of viewers as:

𝑓1(𝑣11(𝑡), 𝑣21(𝑡), ℓ1(𝑡), ℓ2(𝑡)) = −(𝑣11(𝑡) + 𝑣21(𝑡)) + 0.4ℓ1(𝑡) + 0.5ℓ2(𝑡).

All functions are chosen so as to guarantee the existence, uniqueness, and conti-

nuity of the solution. I also emphasize that all the functions are expressed in a

form widely used in relevant literature, see for instance [41, 42, 54]. I suppose that

creator 1 earns from advertisement 16400$ per 10000 views, otherwise creator 2

earns from advertisement 40000$ per 10000 views. This means that creator 2 has

brands, as advertising partner, that are more famous than the brand advertised by

the creator 1. Moreover, for each creator, the coefficients of the cost functions

and the revenue functions are: 𝑝1 = 16400, 𝑐1 = 7380, 𝑝2 = 40000, 𝑐2 = 18000.
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Following the policy of YouTube, the cost parameter 𝑐𝑖 is the 45% of the revenue

parameter 𝑝𝑖, for 𝑖 = 1, 2. I set 𝑠 = 0.5, �̄�1 = 30𝑡. Our aim is to investigate only

the first six minutes after that the video has been posted, and analyze the impact

of the video on the subscribers of the channel at the time when the video has

been released. Thus, I set 𝑡 = 0, . . . 6. I observe that Fig.2.1 represents the views

made by the analyzed user group. It can be seen from the plot that creator 1 has

less views when the video is posted, but after a few instants of time it exceeds

the views of the video of creator 2, which has more or less a constant trend of

the number of views over time. The same trend of the equilibrium solutions as

regards the views can also be observed from the Fig.2.4. It represents a heat map,

where the 𝑥-axis and the 𝑦-axis are the creators for 𝑖 = 1, 2 and the time interval

from the starting point until the sixth minute after that the video has been posted,

respectively. Fig.2.2 shows the total percentage of likes that the group of viewers

gives to the video for each instant of time. I note that the video of creator 2 has

a small increase over time, whereas the other creator has a significant increase.

Indeed, this confirms once again that video 1 is more appreciated by the audience.

As a consequence, this appreciation is also reflected in Fig.2.1, where the number

of views of video 1 is greater than the number of views of video 2. The same trend

of the equilibrium solutions concerning the percentage of likes, i.e. ℓ𝑖, can also

be observed from the Fig.2.5. It represents a heat map, where the 𝑥-axis and the

𝑦-axis are the creators for 𝑖 = 1, 2 and the time interval from the starting point until

the sixth minute after that the video has been posted, respectively. Fig.2.7 shows

that obtaining a percentage of likes and a number of views with a slight increase

over time brings a greater profit 𝑈2 than 𝑈1, in the first six minutes after that the

video has been posted. As I can observe in Fig.2.3-2.6, the strategies of creator 1
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Figure 2.1: Number of views for each creator

Figure 2.2: Percentage of likes for each creator

Figure 2.3: Total number of views and total percentage of likes for each creator

for each time 𝑡 ∈ {0, . . . , 6}
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Figure 2.4: Number of views 𝑣𝑖 𝑗 (𝑡)
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Figure 2.6: Equilibrium solutions of the number of views and the percentage of

likes over time 𝑡 ∈ {0, . . . , 6} for all creator 𝑖 = 1, 2 and for the group of viewers

𝑗 = 1
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could pay off over time respect to the strategies of creator 2, despite that the profit

of the second creator remains higher than the profit of the first one in the first six

minutes. In Fig.2.7, I characterize the net profit of each creator with dotted lines.

The difference between the net and the gross profit depends on the profit that a

content earns from advertisement. Indeed, only the 15% of the views counts as

a profit from advertisement strategies, because the only views that make creator

earn money are those in which viewers have watched the advertisement for at least

30 seconds, or half advertisement for a very short video.
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Figure 2.7: The net profit, i.e. 𝑈𝑛𝑒𝑡
𝑖
(𝑡, 𝑣𝑖 𝑗 (𝑡), ℓ𝑖 (𝑡)), and gross profit, i.e.

𝑈𝑖 (𝑡, 𝑣𝑖 𝑗 (𝑡), ℓ𝑖 (𝑡)), considering the net and the gross viewcount at each time

𝑡 ∈ {0, . . . , 6} for all creators

2.5 Conclusions

In this Chapter, I focused on a dynamic network model that allowed us to describe

the complex social media platform mechanisms and the evolution of views over
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time. I showed that the underlying generalized Nash equilibrium problem can be

represented by means of an evolutionary variational inequality. This may give the

opportunity to use the powerful variational inequality theory for existence results,

stability and sensitivity of solutions, and computational procedures. Moreover, I

remark that a static approach is not suitable to follow the behavior of phenomena

evolving in time, whereas a dynamic approach is more efficient and desirable.

Finally, I suggested a possible differential game formulation, so as to unify GNEPs,

variational inequalities and differential games. As a future research issue, I could

conduct a Lagrange analysis of the multipliers to assess the role of the constraints.
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Chapter 3
Closed-Loop Supply Chain Network

Equilibrium with online second-hand

trading

3.1 Introduction

Reverse logistics aims at improving the exploitation of used products through

recycling or re-manufacturing and leads to a reduction in environmental damage.

Products may reverse direction in the supply chain for several motivations, such

as manufacturing returns, product recalls, warranty or service returns, end-of-use

returns, and end-of-life returns. Reverse logistics and, in particular, second-hand

trading has received large interest for the opportunity of sustainable consumption,

extending the life span of products and reducing adverse environmental impacts

due to the purchase of new goods. Recently, the increasing use of the Internet

and trading platforms, such as eBay or Vinted, has completely changed the market

conditions. In the U.S., the e-commerce sales have reached $876 billion in the

43
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first quarter of 2021, up 38% year-over-year. Moreover, the speculative buying of

limited edition goods has become a real business. In fact, people may gain profit

from selling high-uniqueness goods at a price much higher than the original one

to potential consumers when the goods get scarce over time.

Due to several advantages, closed-loop supply chains (CLSCs) have been exten-

sively studied in recent years. Many researchers have investigated the network

structure of the CLSC, which includes competitive manufacturers, competitive re-

tailers and consumer markets. For example, Nagurney and Toyasaki [163] develop

a network model for supply chain decision-making with environmental criteria. In

[197], the authors explore a reverse supply chain network model using variational

inequality. In [203], Shen et al. examine the sale of second-hand products through

an online platform on a supply chain consisting of contributors, one second-hand

online platform, and one supplier. Different scenarios in terms of CLSC structure

and block-chain use are considered. In [220], Wang et al. study the waste of

electrical and electronic equipment and provide a variational inequality to model

the CLSC network. In [234], the authors examine a CLSC network equilibrium

problem in multiperiod planning horizons, with consideration to product lifetime

and carbon emission constraints. By variational inequalities and complementary

theory, the governing CLSC network equilibrium model is established.

Motivated by all the above analysis, this paper establishes a CLSC network equi-

librium model with online second-hand trading of high-uniqueness products. I

consider a CLSC network consisting of manufacturers, retailers, demand mar-

kets, and one online platform, in which the consumers purchase new products and

collect them. Then, collectors sell the goods to consumers through the online plat-

form. By variational inequalities, the optimal behaviors of all the decision-makers
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are modeled, and, in turn, the governing CLSC network equilibrium model is

given. The main contributions of this paper are: the modeling of the second-hand

market in a reverse logistics setting, and the study of the horizontal competition

among the members of the same tiers as well as the vertical one between adjacent

tiers. I describe the forward and the reverse logistics, taking into account capacity

constraints of manufacturers and retailers, as well as consumers’ risk-aversion to

purchasing second-hand goods, and platform’s risk-aversion to transacting with

collectors.

The paper is organized as follows. In Section 3.2, I develop the CLSC model

by describing the manufacturers’ and the retailers’ competitive behavior, and the

interactions with the demand markets and the online platform. I then provide a

variational inequality formulation of the optimal behavior of decision-makers. In

Section 3.3, I state that the governing equilibrium conditions of the CLSC network.

I summarize our results and present our conclusions in Section 3.4.

3.2 The closed-loop supply chain network

I consider a CLSC network consisting of multiple manufacturers, multiple retailers,

and multiple demand markets, in which the consumers purchase new products and

collect them. Collectors distribute the used goods through an online platform for

the aim of gaining profit on the resale. The criterion of each player in the network

is the total profit maximization.

Let 𝑀 be the set of manufacturers (I denote by 𝑚 the typical manufacturer), 𝑅 be

the set of retailers (I denote by 𝑟 the typical retailer),𝐾 be the set of demand markets

(I denote by 𝑘 the typical demand market) and I consider a single online platform

as eBay, Marketplace by Facebook, Vinted etc... Abusing notation, without risk
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𝑚
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Figure 3.1: The closed-loop supply chain network

of confusion, I use the same symbols here to denote the sets 𝑀, 𝑅, 𝐾 and their

cardinalities. Furthermore, I introduce the set of collectors 𝐾𝑐, with |𝐾𝑐 | ≤ 𝐾 ,

that represents the set of consumers who decide to resell their collectibles. The

network can be divided into two parts: the forward chain, formed by manufacturers,

retailers and consumers, and the reverse chain, formed by collectors, the online

platform and consumers. The collectors and the online platform make it possible

to connect the forward and the reverse chains and form the closed-loop network. I

consider two different types of items: the new ones denoted by index 𝑛 = 1, . . . 𝑁

and the used ones indicated by index 𝑢 = 1 . . . 𝑈. The model network can be

represented as in Figure 3.1. The solid lines represent the forward transactions

and the dashed lines refer to the reverse ones.

I first focus on the manufacturers. I then turn to the retailers, to the consumers,

and, finally, to the platform. The complete equilibrium model is then constructed

as a variational inequality.

3.2.1 The Optimal Behavior of the Manufacturers

Let 𝑥𝑛𝑚𝑟 be the quantity of new item 𝑛 sold by manufacturer 𝑚 to retailer 𝑟. I

group all the 𝑛 and 𝑟 elements into the vector 𝑥𝑚 ∈ R𝑁𝑅, and then I group all the
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vectors (𝑥𝑚) for all 𝑚 into the vector 𝑥𝑀 ∈ R𝑁𝑀𝑅. I denote by 𝑥𝑚𝑎𝑥𝑚 the production

capacity of manufacturer 𝑚.

In the forward logistics, a manufacturer incurs production costs and transaction

costs. In order to maximize his own profit, each manufacturer 𝑚 must decide

the quantity 𝑥𝑛𝑚𝑟 of new item 𝑛 to be sold to retailer 𝑟. I associate with each

manufacturer production cost, 𝑐𝑚, and assume that it can depend, in general, on

the entire vector of production outputs, namely, 𝑐𝑚 = 𝑐𝑚 (𝑥𝑀). I denote by 𝑡𝑚𝑟 (𝑥𝑛𝑚𝑟)

the transaction cost from manufacturer 𝑚 to retailer 𝑟. Moreover, I assume that

𝑐𝑚 (𝑥𝑀) and 𝑡𝑚𝑟 (𝑥𝑛𝑚𝑟) are continuous, differentiable and convex functions. Finally,

I consider 𝑝𝑛𝑚𝑟 as the selling price of a new product. Given the above notation,

each manufacturer 𝑚 wishes to maximize the profit as follows:

max
∑︁
𝑛∈𝑁

∑︁
𝑟∈𝑅

𝑝𝑛𝑚𝑟𝑥
𝑛
𝑚𝑟 − 𝑐𝑚 (𝑥𝑀) − 𝑡𝑚𝑟 (𝑥𝑛𝑚𝑟) (3.1)∑︁

𝑛∈𝑁

∑︁
𝑟∈𝑅

𝑥𝑛𝑚𝑟 ≤ 𝑥𝑚𝑎𝑥𝑚 , 𝑥𝑛𝑚𝑟 ≥ 0,∀𝑛, 𝑟. (3.2)

The objective function (3.1) maximizes the profit, which equals sales revenue

minus costs associated with production and transaction. The first constraint in

(3.2) expresses the production capacity of manufacturer 𝑚. All the manufactures

compete in a non-cooperative fashion, and each manufacturer seeks to maximize

his profit given other manufacturers’ decisions. Thus, the optimality conditions of

all the manufacturers can be described by the following variational inequality, see

[155]:

∑︁
𝑛∈𝑁

∑︁
𝑚∈𝑀

∑︁
𝑟∈𝑅

(
𝜕𝑐𝑚 (𝑥∗𝑀)
𝜕𝑥𝑛𝑚𝑟

+
𝜕𝑡𝑚𝑟 (𝑥∗𝑛𝑚𝑟)
𝜕𝑥𝑛𝑚𝑟

− 𝑝𝑛𝑚𝑟

)
(𝑥𝑛𝑚𝑟 − 𝑥∗𝑛𝑚𝑟) ≥ 0,∀𝑥𝑀 ∈ 𝑆𝑀 , (3.3)

𝑆𝑀 =

{
𝑥𝑀 ∈ R𝑁𝑀𝑅+ :

∑︁
𝑛∈𝑁

∑︁
𝑟∈𝑅

𝑥𝑛𝑚𝑟 ≤ 𝑥𝑚𝑎𝑥𝑚 ,∀𝑚 ∈ 𝑀
}
. (3.4)
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3.2.2 The Optimal Behavior of Retailers

The retailers interact with manufacturers and consumers. Specifically, they decide

the amount of products to order from the manufactures, so as to transact with the

demand markets, while seeking to maximize their profit. The product shipment

of new good 𝑛 between retailer 𝑟 and consumer 𝑘 is denoted by 𝑥𝑛
𝑟𝑘

; the product

shipments 𝑥𝑛
𝑟𝑘

for all 𝑛 and 𝑘 are then grouped into the column vector 𝑥𝑟 ∈ R𝑁𝐾

and, further, into the vector 𝑥𝑅 ∈ R𝑁𝑅𝐾 .

Each retailer 𝑟 has associated management cost 𝑐𝑟 related to the items in stock. I

assume that it depends on the amounts of the product held by other retailers, that

is, 𝑐𝑟 = 𝑐𝑟 (𝑥𝑀). Let 𝑐𝑛𝑚𝑟 (𝑥𝑛𝑚𝑟), be the transportation cost from 𝑚 for new items

and let 𝑝𝑛
𝑟𝑘

be the sale price associated with a new item. Moreover , retailers

incur transaction costs 𝑡𝑛
𝑟𝑘
(𝑥𝑛
𝑟𝑘
), when selling new products to consumers. Finally,

I assume that 𝑐𝑟 (𝑥𝑛𝑚𝑟), 𝑐𝑛𝑚𝑟 (𝑥𝑀), and 𝑡𝑟𝑘 (𝑥𝑁𝑟𝑘 ) are continuous, differentiable and

convex functions.

Each retailer 𝑟 seeks to maximize his profit function as follows:

max
∑︁
𝑛∈𝑁

( ∑︁
𝑘∈𝐾

𝑝𝑛𝑟𝑘𝑥
𝑛
𝑟𝑘 −

∑︁
𝑚∈𝑀

𝑐𝑛𝑚𝑟 (𝑥𝑛𝑚𝑟) −
∑︁
𝑘∈𝐾

𝑡𝑛𝑟𝑘 (𝑥
𝑛
𝑟𝑘 ) −

∑︁
𝑚∈𝑀

𝑝𝑛𝑚𝑟𝑥
𝑛
𝑚𝑟

)
− 𝑐𝑟 (𝑥𝑀)

(3.5)∑︁
𝑛∈𝑁

∑︁
𝑘∈𝐾

𝑥𝑛𝑟𝑘 ≤
∑︁
𝑛∈𝑁

∑︁
𝑚∈𝑀

𝑥𝑛𝑚𝑟 , 𝑥𝑛𝑚𝑟 ≥ 0, 𝑥𝑛𝑟𝑘 ≥ 0,∀𝑛, 𝑚, 𝑘. (3.6)

Objective function (3.5) expresses that the profit of the retailer is equal to sales

revenues minus costs associated with the management, the transportation, the

transaction and the payout to the manufacturers. The first constraint in (3.6) states

that consumers cannot purchase more from a retailer than is held in stock. Since

all the retailers compete in a non-cooperative fashion, the optimality conditions

for all retailers can be expressed as the variational inequality:
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∑︁
𝑛∈𝑁

∑︁
𝑟∈𝑅

∑︁
𝑘∈𝐾

(
𝜕𝑡𝑟𝑘 (𝑥∗𝑛𝑟𝑘 )
𝜕𝑥𝑛

𝑟𝑘

− 𝑝𝑛𝑟𝑘

)
(𝑥𝑛𝑟𝑘 − 𝑥

∗𝑛
𝑟𝑘 )

+
∑︁
𝑛∈𝑁

∑︁
𝑚∈𝑀

∑︁
𝑟∈𝑅

(
𝑝𝑛𝑚𝑟 +

𝜕𝑐𝑟 (𝑥∗𝑛𝑚𝑟)
𝜕𝑥𝑛𝑚𝑟

+
𝜕𝑐𝑛𝑚𝑟 (𝑥∗𝑀)
𝜕𝑥𝑛𝑚𝑟

)
(𝑥𝑛𝑚𝑟 − 𝑥∗𝑛𝑚𝑟) ≥ 0,

∀(𝑥𝑅, 𝑥𝑀) ∈ 𝑆𝑅, (3.7)

𝑆𝑅 =

{
(𝑥𝑅, 𝑥𝑀) ∈ R𝑁𝑅𝐾+𝑁𝑀𝑅+ :

∑︁
𝑛∈𝑁

∑︁
𝑘∈𝐾

𝑥𝑛𝑟𝑘 ≤
∑︁
𝑛∈𝑁

∑︁
𝑚∈𝑀

𝑥𝑛𝑚𝑟 ,∀𝑟 ∈ 𝑅
}
. (3.8)

3.2.3 The Optimal Behavior of the Consumers

The consumers at demand markets transact with the retailers as well as the online

platform. Specifically, in the forward supply chain, consumers purchase new

products; in the reverse supply chain, consumers act as collectors and sell their

goods on the online platform, that are then purchased by consumers at demand

markets. I analyze these situations separately.

The Consumers in the Forward Logistics

Let 𝑐𝑛
𝑟𝑘
(𝑥𝑛
𝑟𝑘
) be the transportation cost for new product 𝑛 sold by retailer 𝑟 to demand

market 𝑘 . Moreover, let 𝑑𝑛
𝑘

be the demand of new item 𝑛 at demand market 𝑘 and

be 𝑝𝑛
𝑘

the price of new product 𝑛 at demand market 𝑘 . The equilibrium conditions

for consumers at demand market 𝑘 are (see [158, 163, 162, 161, 157]):

𝑝∗𝑛𝑟𝑘 + 𝑐
𝑛
𝑟𝑘 (𝑥

∗𝑛
𝑟𝑘 )


= 𝑝∗𝑛

𝑘
if 𝑥∗𝑛

𝑟𝑘
> 0,

≥ 𝑝∗𝑛
𝑘

if 𝑥∗𝑛
𝑟𝑘

= 0,
∀𝑟, 𝑘, 𝑛. (3.9)

𝑑𝑛𝑘 (𝑝
∗𝑛
𝑘 )


=

∑
𝑟∈𝑅 𝑥

∗𝑛
𝑟𝑘

if 𝑝∗𝑛
𝑘
> 0,

≤ ∑
𝑟∈𝑅 𝑥

∗𝑛
𝑟𝑘

if 𝑝∗𝑛
𝑘

= 0,
∀𝑘, 𝑛. (3.10)
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Inequality (3.9) states that if the consumers at demand market 𝑘 purchase the

products from retailer 𝑟 , then the price charged by the retailer for the product plus

the transportation cost undertaken by the consumers does not exceed the price that

the consumers are willing to pay. Equation (3.10) states that if the equilibrium price

that the consumers are willing to pay for the new products at the demand market

is positive, then the quantities purchased of new goods from the retailers will

be exactly equal to the demand. These conditions correspond to the well-known

spatial price equilibrium conditions, see [155].

The Consumers in the Reverse Logistics

In the reverse supply chain, some consumers resell collectible items to the demand

market through the online platform. The product shipment of second-hand good

𝑢 between collector 𝑘𝑐 and consumer 𝑘 , using the platform, is denoted by 𝑥𝑢
𝑘𝑐𝑘

.

The product shipments 𝑥𝑢
𝑘𝑐𝑘

, for all 𝑢 and 𝑘 , are then grouped into the column

vector 𝑥𝑘𝑐 ∈ R𝑈𝐾 and, further, into the vector 𝑥𝑈 ∈ R𝑈𝐾𝑐𝐾 . I set 𝑄𝑘𝑐 as the

amount of items in the collection of collector 𝑘𝑐. Let 𝑝𝑢
𝑘𝑐

be the price charged by

the collector 𝑘𝑐 for second-hand items. I note that selling on the online platform

can give higher visibility to the products and, as a consequence, it can be more

profitable, even if the platform retains a portion of the sale price. For instance, on

eBay the transaction price amounts to the 10% of the selling price, indicated by the

coefficient 𝛾. Let 𝑐𝑘𝑐 (𝑥𝑘𝑐 ) be the maintenance and restoring cost of the collector

𝑘𝑐, depending on the amount of items that he resells on the online platform. Let

𝑐𝑛
𝑟𝑘𝑐
(𝑥𝑅), be the transportation cost from 𝑟 for new item 𝑛 to collector 𝑘𝑐. I assume

that 𝑐𝑘𝑐 (𝑥𝑘𝑐 ) and 𝑐𝑛
𝑟𝑘𝑐
(𝑥𝑅) are continuous, differentiable and convex functions. I

denote by `𝑘𝑐 ∈ (0, 1] the portion of second-hand goods that collector 𝑘𝑐 ∈ 𝐾𝑐
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decides to sell on the platform.

Each collector 𝑘𝑐 ∈ 𝐾𝑐 seeks to maximize his profit function as follows:

max
∑︁
𝑢∈𝑈

∑︁
𝑘∈𝐾
(1 − 𝛾)𝑝∗𝑢𝑘𝑐𝑥

𝑢
𝑘𝑐𝑘
− 𝑐𝑘𝑐 (𝑥𝑘𝑐 ) −

∑︁
𝑛∈𝑁

∑︁
𝑟∈𝑅

(
𝑝𝑛𝑟𝑘𝑐𝑥

𝑛
𝑟𝑘𝑐
− 𝑐𝑛𝑟𝑘𝑐 (𝑥

𝑅)
)

(3.11)∑︁
𝑢∈𝑈

∑︁
𝑘∈𝐾

𝑥𝑢𝑘𝑐𝑘 ≤ `𝑘𝑐𝑄𝑘𝑐 , 𝑥𝑢𝑘𝑐𝑘 , 𝑥
𝑛
𝑟𝑘𝑐
≥ 0, ∀𝑛, 𝑢, 𝑟, 𝑘 . (3.12)

Objective function (3.11) expresses that the profit of the collector is equal to sales

revenues minus costs associated with restoring, purchasing and transportation.

The first constraint in (3.12) states that the amount of products collector 𝑘𝑐 decides

to sell should be less than or equal to the amount of collectibles in 𝑘𝑐’s collection.

I now examine the transactions between the platform and the demand market 𝑘 .

Let 𝑐𝑢
𝑘𝑐𝑘
(𝑥𝑈) be the transportation cost from collector 𝑘𝑐 to consumer 𝑘 for used

product 𝑢 purchased on the platform. Furthermore, let 𝑑𝑢
𝑘

be the demand of second-

hand items at demand market 𝑘 , and 𝜌𝑢
𝑘

be the willingness to pay second-hand

items at demand market 𝑘 . I group all these 𝜌𝑢
𝑘

into a column vector 𝜌𝑘 ∈ R𝑈 , and

then into the vector 𝜌𝑈 ∈ R𝑈𝐾 . I also consider a risk associated with purchasing

second-hand items from the trading platform. Therefore, each consumer exhibits

risk aversion that may be dependent on flows controlled by other demand markets.

Hence, the risk aversion function can be expressed as the continuous function

𝜋𝑘 (𝑥𝑈), [161]. The equilibrium conditions for consumers at demand market 𝑘 in

the reverse supply chain are

𝑝∗𝑢𝑘𝑐 + 𝑐
𝑢
𝑘𝑐𝑘
(𝑥∗𝑈) + 𝜋𝑘 (𝑥∗𝑈)


= 𝜌∗𝑢

𝑘
if 𝑥∗𝑢

𝑘𝑐𝑘
> 0,

≥ 𝜌∗𝑢
𝑘

if 𝑥∗𝑢
𝑘𝑐𝑘

= 0,
∀𝑘𝑐, 𝑢. (3.13)

𝑑𝑢𝑘 (𝜌
∗𝑈)


= 𝑥∗𝑢

𝑘𝑐𝑘
if 𝜌∗𝑢

𝑘
> 0,

≤ 𝑥∗𝑢
𝑘𝑐𝑘

if 𝜌∗𝑢
𝑘

= 0,
𝑝∗𝑛𝑟𝑘 − 𝜌

∗𝑢
𝑘


< 0 if 𝑥∗𝑛

𝑟𝑘
= 0,

≥ 0 if 𝑥∗𝑛
𝑟𝑘
> 0,

∀𝑟, 𝑘, 𝑢, 𝑛.

(3.14)
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Equality (3.13) states that if the consumers at demand market 𝑘 purchase the

product on the online platform, then the price charged by the collector 𝑘𝑐 for

second-hand items plus the transportation cost plus the risk undertaken by the

consumer is equal to the price that the consumer is willing to pay. The first

condition in (3.14) states that if the equilibrium price the consumers at demand

market 𝑘 are willing to pay for the second-hand product is positive, then the amount

purchased of second-hand product should exactly be equal to the demand of this

second-hand item. The second condition in (3.14) means that the unitary price of

a second-hand collectible is higher than the unitary price of a new collectible that

is totally sold out.

The Consumers’ Equilibrium Conditions

Combining consumer behaviors in both forward and reverse supply chain, the

equilibrium conditions for all the demand markets can be expressed as the following

variational inequality, see [158, 163, 162, 161, 157]:∑︁
𝑛∈𝑁

∑︁
𝑘∈𝐾

(∑︁
𝑟∈𝑅

𝑥𝑛𝑟𝑘 − 𝑑
∗𝑛
𝑘 (𝑝

∗𝑛
𝑘 )

)
(𝑝𝑛𝑘 − 𝑝

∗𝑛
𝑘 )

+
∑︁
𝑢∈𝑈

∑︁
𝑘𝑐∈𝐾𝑐

(
𝜕𝑐𝑘𝑐 (𝑥𝑘𝑐 )
𝜕𝑥𝑢

𝑘𝑐𝑘

+ 𝛾𝑝∗𝑢𝑘𝑐 + 𝑐
𝑢 (𝑥∗𝑢𝑘𝑐𝑘 ) + 𝜋𝑘 (𝑥

∗𝑈) − 𝜌∗𝑢𝑘

)
(𝑥𝑢𝑘𝑐𝑘 − 𝑥

∗𝑢
𝑘𝑐𝑘
)

+
∑︁
𝑢∈𝑈

∑︁
𝑘∈𝐾

(
𝑥∗𝑢𝑘𝑐𝑘 − 𝑑

𝑢
𝑘 (𝜌
∗𝑈)

)
(𝜌𝑢𝑘 − 𝜌

∗𝑢
𝑘 )

+
∑︁
𝑛∈𝑁

∑︁
𝑟∈𝑅

∑︁
𝑘∈𝐾

(
𝑝∗𝑛𝑟𝑘 + 𝑐

𝑛
𝑟𝑘 (𝑥

∗𝑛
𝑟𝑘 ) − 𝑝

∗𝑛
𝑘 + 𝑝

∗𝑛
𝑟𝑘 −

∑︁
𝑢∈𝑈

𝜌∗𝑢𝑘 −
𝜕𝑐𝑛

𝑟𝑘𝑐
(𝑥𝑅)

𝜕𝑥𝑛
𝑟𝑘

)
(𝑥𝑛𝑟𝑘 − 𝑥

∗𝑛
𝑟𝑘 ),

+
∑︁
𝑛∈𝑁

∑︁
𝑟∈𝑅

𝑝𝑛𝑟𝑘𝑐 (𝑥
𝑛
𝑟𝑘𝑐
− 𝑥∗𝑛𝑟𝑘𝑐 ) ≥ 0, ∀(𝑝𝑁 , 𝑥𝑈𝐾 , 𝜌𝑈 , 𝑥𝑈 , 𝑥𝑅) ∈ 𝑆𝐾 , (3.15)

𝑆𝐾 =

{
(𝑝𝑁 , 𝑥𝑈𝐾 , 𝜌𝑈 , 𝑥𝑈 , 𝑥𝑅) ∈ R𝐾𝑁+2𝑈𝐾+𝑈𝐾𝑐𝐾+𝑁𝑅𝐾+ :

∑︁
𝑢∈𝑈

∑︁
𝑘∈𝐾

𝑥𝑢𝑘𝑐𝑘 ≤ `𝑘𝑐𝑄𝑘𝑐

}
.
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3.2.4 The Behavior of the Online Platform

Now, I present the behavior of the online platform as an intermediary that matches

consumers and collectors. As an intermediary, the platform is involved in trans-

actions both with the collectors, as well as with the consumers at the demand

markets.

Collectors resell items on the platform and determine the unitary price 𝑝𝑢
𝑘

of

second-hand goods. Let𝐶𝑢 (𝑥𝑈) be the management costs of second-hand product

𝑢, including processing and advertisement, and let 𝑡𝑢
𝑘
(𝑥𝑢
𝑘
) be the transaction cost

function between the platform and demand market 𝑘 , where 𝑥𝑢
𝑘
=

∑
𝑘𝑐
𝑥𝑢
𝑘𝑐𝑘

. Since

the platform has no decision-making power on the choice of products that will

be sold, it takes the risk of owning false objects or with descriptions that do not

correspond to the real conditions of the item. As a consequence, the intermediary

may have risk associated with transacting with the various collectors and with

the demand markets. Let 𝜋(𝑥𝑈) denote the risk function associated with online

platform. I assume that 𝐶 (𝑥𝑈), 𝑡𝑢
𝑘
(𝑥𝑢
𝑘
) and 𝜋(𝑥𝑈) are continuous, differentiable

and convex. Let `𝑘𝑐 the portion of second-hand goods that collector 𝑘𝑐 decides

to sell on the platform, and satisfies `𝑘𝑐 ∈ (0, 1]. I define 𝑄𝑢 ∈ 𝑅𝑈 as the total

amount of item 𝑢 on the online platform. Each online platform makes his optimal

decisions based on maximizing the following profit function:

max
∑︁
𝑢∈𝑈

( ∑︁
𝑘𝑐∈𝐾𝑐

∑︁
𝑘∈𝐾

𝛾𝑝𝑢𝑘𝑐𝑥
𝑢
𝑘𝑐𝑘
− 𝐶𝑢 (𝑥𝑈) −

∑︁
𝑘∈𝐾

𝑡𝑢𝑘 (𝑥
𝑢
𝑘 ) − 𝜋(𝑥

𝑈)
)
. (3.16)∑︁

𝑘∈𝐾
𝑥𝑢𝑘 ≤ 𝑄

𝑢, 𝑥𝑢𝑘 , 𝑥
𝑢
𝑘𝑐𝑘
≥ 0, ∀𝑢, ∀𝑘. (3.17)

Objective function (3.16) expresses that the profit of the online platform is equal to

a percentage of the profit of sale of the product minus the management, transaction



54
Closed-Loop Supply Chain Network Equilibrium with online second-hand

trading

costs and teh risk. The first constraint in (3.17) states that the total amount of each

second-hand item bought by all consumers 𝑘 on platform should be less or equal

than the availability of item 𝑢.

Under my assumptions, the optimality conditions for the online platform can be

expressed as the variational inequality:

∑︁
𝑢∈𝑈

∑︁
𝑘𝑐∈𝐾𝑐

∑︁
𝑘∈𝐾

(
𝜕𝐶𝑢 (𝑥∗𝑈)
𝜕𝑥𝑢

𝑘𝑐𝑘

− 𝜕𝜋
𝑢 (𝑥∗𝑈)
𝜕𝑥𝑢

𝑘𝑐𝑘

− 𝛾𝑝∗𝑢𝑘

)
(𝑥𝑢𝑘𝑐𝑘 − 𝑥

∗𝑢
𝑘𝑐𝑘
) (3.18)

+
∑︁
𝑢∈𝑈

∑︁
𝑘∈𝐾

(
𝜕𝑡𝑢
𝑘
(𝑥𝑢
𝑘
)

𝜕𝑥𝑢
𝑘

)
(𝑥𝑢𝑘 − 𝑥

∗𝑢
𝑘 ) ≥ 0, ∀(𝑥𝑈 , 𝑥𝐾𝑐 ) ∈ 𝑆𝑃 (3.19)

𝑆𝑃 =

{
(𝑥𝑈 , 𝑥𝐾𝑐 ) ∈ R𝑈𝐾𝑐𝐾+𝑈𝐾+ :

∑︁
𝑘∈𝐾

𝑥𝑢𝑘 ≤ 𝑄
𝑢,∀𝑢 ∈ 𝑈

}
. (3.20)

3.3 The Equilibrium Conditions of the CLSC Net-

work

In equilibrium state, the optimality conditions for all suppliers, manufacturers,

retailers, demand markets and online platform must be satisfied simultaneously.

I now define the CLSC network equilibrium and give an equivalent variational

inequality formulation.

Definition 3.3.1. The CLSC network is at equilibrium if the forward and reverse

flows between the tiers of the decision-makers coincide and the product flows and

prices satisfy the sum of optimal conditions in (3.3), (3.7), (3.15), and (3.19).

Using standard arguments, it can be prove that the equilibrium conditions govern-

ing the CLSC network model with competition are equivalent to solve a single

variational inequality problem. I can establish the following theorem:
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Theorem 3.3.1. The equilibrium conditions governing the CLSC network model

with competition are equivalent to solve a single variational inequality problem,

given by the sum of problems (3.3), (3.7), (3.15), and (3.19).

3.4 Conclusions

This study presents an equilibrium model of a CLSC network consisting of man-

ufacturers, retailers, demand markets, and one online platform, in which the con-

sumers purchase new products and collect them. Then, collectors sell the goods

to consumers through the online platform. I take into consideration capacity

constraints of manufacturers and retailers, as well as consumers’ risk-aversion to

purchasing second-hand goods, and platform’s risk-aversion to transacting with

collectors. I model the optimal behaviors of all the decision-makers as varia-

tional inequality problems and provide the governing CLSC network equilibrium

conditions.

Future research can explore the equilibrium problem in multi-period planning

horizons, and the introduction of some random factors in the demand functions.

Notwithstanding its limitations, this study may suggest some valuable insights for

the market trend.
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Chapter 4
A multi-stage integer linear

programming problem for personnel

and patient scheduling for a therapy

centre

4.1 Introduction

The nurse scheduling problem is one of the main issues in healthcare system.

It aims to assign a number of nurses to a number of shifts in order to satisfy

hospital demand [217]. Scheduling in healthcare is often planned manually and

it is time-consuming. Therefore, the automatic assignment of shifts can lead to

improvements in efficiency, personnel and patient satisfaction, and staff workload.

This research aims at presenting the multi-stage integer linear programming prob-

lem for determining the proper scheduling of speech-language pathologists. The

model is tested on a case study conducted in a speech therapy centre in Acireale

57
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(Catania, Italy), where qualified therapists are involved in conventional treatments

as well as in Augmentative Alternative Communication (for simplicity, AAC) ther-

apies. In addition, all the therapists, apart from the therapy sessions at the centre,

have to provide rehabilitation services in patients’ homes. In this paper, I deal with

the following problems encountered by the personnel and patients of the speech

therapy centre:

1. selection of patients for AAC therapy according to their priority levels;

2. assignment of therapists’ shifts (for conventional and AAC therapies) to

optimize their workload;

3. planning of the routes/reducing time for the delivery of home-based therapy.

Therefore, I propose a hierarchical approach that breaks the problem into three sub-

problems: the selection of the maximum number of patients for AAC therapies,

the achievement of an equitable distribution of therapists’ workload, and decrease

in the transfer time of therapists, who have to change location during the working

day, respectively [173]. The first sub-problem is to determine the maximum

number of patients benefiting from AAC therapies, with respect to predetermined

staff capacity. Because of the extremely high demand of this service, selection

of patients must be done before the scheduling. In this step, the selection of

patients for AAC treatment among the total number of patients is made according

to their priority decided by doctors. In the second sub-problem, I minimize the

penalty of each soft constraint and, in particular, I find the optimal assignment of

therapists’ shifts on weekdays from Monday to Saturday. Thus, the important goal

of this study is to provide a balanced schedule for every speech therapist. The

AAC therapy is scheduled throughout a week, in order to replicate what really
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happens in the centre I analyzed. Finally, in the third sub-problem, I determine the

minimum cost on the journeys made by therapists so as to minimize their travel

time. The remainder of this paper is organized as follows. Section 4.2 is devoted

to the related literature. Section 4.3 presents the proposed methodology which

encompasses parameters, model formulation, and solution method. Section 4.4

describes the case study and the numerical experiment results. Finally, Section

4.5 draws the conclusions and illustrates further research issues.

4.2 Related Work

The problem addressed in this work relates to a model described in [173], where a

hierarchical mathematical programming problem is proposed to generate weekly

staff scheduling. The model is decomposed into three hierarchical stages: the

selection of patients, the assignment of patients to the staff, and the scheduling of

patients throughout a day.

In the past years, several approaches were proposed, such as tabu search [30],

genetic algorithms [2], learning methodologies [1, 75], scatter search [29], and

mathematical programming [174, 224, 221]. The approach used is to penalize

the violation of the constraints in the objective function. In real applications, it is

often difficult to find feasible solutions. In [137], the authors study the scheduling

process for two types of nursing teams, regular teams from care units and the float

team that covers for shortages in the hospital. The corresponding multi-objective

model and heuristics are presented. In [73], the authors study a nurse scheduling

problem to minimize the overall hospital cost, and maximize nurses’ preferences,

while taking into consideration the governmental rules and hospital standards.

The mathematical model presented is based on multi-commodity network flow
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model. In [23, 24], a multi-objective approach is introduced that differentiates

between hard and soft constraints. In [216], a non-optimal solution is generated by

solving the mathematical model, and a post-optimization phase using tabu search

is performed. In [225], the authors solve the nurse scheduling problem in a Hong

Kong emergency department with a two-phase heuristic implemented in Excel.

In [201], the authors present an algorithm for supporting weekly planning of

therapists. In particular, it allows one to match patient demand with therapist skills

while minimizing treatment, travel, administrative and mileage reimbursement

costs. Solutions are found with a parallel Greedy Randomized Adaptive Search

Procedure (GRASP) that exploits a novel decomposition scheme and employs a

number of benefit measures that explicitly address the trade-off between feasibility

and solution quality.

This study is builds on the work of [173], but with the following extensions: 1) in

this model all the patients receive basic treatments at the centre and some of them

are eligible for the AAC therapy program; 2) only some therapists in the centre are

qualified to deliver AAC therapies; 3) AAC qualified therapists may also deliver

conventional treatments; 4) some patients (AAC and not) receive home-based

rehabilitation services.

4.3 Proposed Methodology

This section presents the assumption of the model and the formulation. The

assumptions of the model are defined as below:

• the number of patients eligible to start the AAC program is known and fixed;

• the number of therapists in the speech centre is known and constant;
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• the velocity of the vehicles used for delivering home-based therapy is con-

stant, and the traffic conditions are not taken into consideration.

The overall problem was broken down into three hierarchical sub-problems, since

it was rather difficult to solve the entire problem within an acceptable time for even

small size problem instances [174]. The first sub-problem, called “AAC patient

selection” aims to get the list of patients whose AAC therapy will be scheduled for

the following weeks. These patients receive special therapies only from qualified

AAC therapists, while continuing with conventional treatments delivered by the

other therapists. The second stage called ”Shift assignment” aims to get the weekly

shifts for both AAC and basic therapists. Lastly, the third stage called ”Travelling

therapist problem” aims to get the best route of therapists for delivering home-based

sessions during a working day. Mathematical programming models corresponding

to each stage are explained in detail in the following subsections.

4.3.1 Problem I: Augmentative Alternative Communication Pa-

tient Selection

The purpose of this stage is to select patients that will be scheduled for the following

weeks from the candidate list, considering therapists’ capacity and priority of

patients. The first step of the process is then to determine the maximum number of

patients benefiting from the AAC therapy, with respect to the predetermined staff

capacity. Moreover, patients may have different priority levels. This difference

must be included in an efficient scheduling plan. Priority of patients are categorized

into three levels as high, normal, and low according to specialized doctors. In

addition, AAC therapy sessions are longer than conventional ones; hence, it is

important to balance the distribution of patients among therapists.
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Indices and Parameters

• 𝑃: number of patients;

• 𝑝: patients index;

• 𝑤𝑝: priority level of patients;

• 𝑡𝑏𝑝: basic treatment time of 𝑝th patient;

• 𝑡𝐴𝐴𝐶𝑝 : AAC treatment time of 𝑝th patient;

• 𝐻: total weekly hours;

• 𝑇 𝐴𝐴𝐶 : total weekly hours of AAC sessions.

Decision variables Decision variables at this stage are defined as followed;

𝑥𝑝 =


1 if 𝑝th patient is selected,

0 otherwise.

Objective function Problem I In the objective function (4.1), total number of

selected patients is maximized considering priority factor of patients.

max
𝑃∑︁
𝑝=1

𝑤𝑝𝑥𝑝 (4.1)

Subject to:
𝑃∑︁
𝑝=1

𝑥𝑝 (𝑡𝑏𝑝 + 𝑡𝐴𝐴𝐶𝑝 ) ≤ 𝐻; (4.2)

𝑡𝑏𝑝𝑥𝑝 ≤ 1.5, ∀𝑝 ∈ 𝑃; (4.3)
𝑃∑︁
𝑝=1

𝑡𝐴𝐴𝐶𝑝 𝑥𝑝 ≤ 𝑇 𝐴𝐴𝐶 ; (4.4)
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Constraint (4.2) ensures that the total sum of the therapy times for all patients must

not exceed the total time available in a working week. Inequality (4.3) expresses

that each patient does an hour and a half weekly each basic treatment. Finally,

inequality (4.4) establishes that the sum over all the time for all AAC patients is

less or equal than the total hours devote to AAC sessions per week. I remark that

when patients complete the AAC program, it is necessary to update the list of

eligible ones, and a new optimal selection is performed.

4.3.2 Problem II: Shift Assignment

In this section, I present the second sub-problem in which I focus on the planning

of the shifts. The assignment of shifts is based on the schedules and the availability

of the therapy centre to which I am referring. In particular, I differentiate the shifts

in the following way: the morning shift, the afternoon shift and the shift for AAC

therapy, during the working week from Monday to Saturday, excluding Saturday

afternoon. The shift assignment is going to be the same and is repeated for each

week. Some patients change as the weeks change but the number of patients in the

first sub-problem can be catered for every week. The aim of this sub-problem is

to minimize the sum of all the deviations of the soft constraints, multiplied each

by an appropriate weight.

Indices

• 𝐶 = {1, . . . , 𝑐} set of therapists working for the AAC program.

• 𝑇 = {𝑐 + 1, . . . , 𝑡} set of shift workers.

• 𝐼 = 𝐶 ∪ 𝑇 = {1, . . . 𝑖, . . . , 𝑡} set of the total number of therapists in the

centre.
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• 𝐿 = {1, 2, 3} set of shifts, with the typical element of the set denoted by 𝑙,

where

– 𝑙 = 1 = 𝑀 : morning shift;

– 𝑙 = 2 = 𝐴 : afternoon shift;

– 𝑙 = 3 = 𝐴𝐴𝐶 : AAC shift.

• 𝐽 = {1, . . . , 𝑗 , . . . , 6} set of working days.

The days will be identified as follows:

– 𝑗 = 1: Monday;

– 𝑗 = 2: Tuesday;

– 𝑗 = 3: Wednesday;

– 𝑗 = 4: Thursday;

– 𝑗 = 5: Friday;

– 𝑗 = 6: Saturday.

• 𝑆: set of soft constraints;

• 𝑊𝑠: weight parameter ∀𝑠 ∈ 𝑆 assigned to each violation of soft constraints.

Decision variables

𝑋𝑖 𝑗 𝑙 =


1 if the therapist 𝑖 is assigned to the shift 𝑙

on the day 𝑗 ,

0 otherwise.
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Hard Constraints ∑︁
𝑖∈𝐶

𝑋𝑖 𝑗3 = 2, 𝑗 = 2, 4; (4.5)∑︁
𝑖∈𝐼

𝑋𝑖22 ≥ 3; (4.6)∑︁
𝑖∈𝐼

𝑋𝑖51 ≥ 1; (4.7)∑︁
𝑙∈𝐿

𝑋𝑖 𝑗 𝑙 = 1, ∀𝑖 ∈ 𝐶, 𝑗 ∈ 𝐽; (4.8)

𝑋𝑖 𝑗1 + 𝑋𝑖 𝑗2 = 1, ∀𝑖 ∈ 𝑇, 𝑗 ∈ 𝐽; (4.9)

𝑋𝑖62 = 0, ∀𝑖 ∈ 𝐼; (4.10)

𝑋𝑖 𝑗2 = 0, ∀𝑖 ∈ 𝐶, 𝑗 = 2, 4; (4.11)

𝑋𝑖 𝑗3 = 0, ∀𝑖 ∈ 𝑇,∀ 𝑗 ∈ 𝐽 (4.12)

𝑋𝑖 𝑗3 = 0, ∀𝑖 ∈ 𝐶, 𝑗 = 1, 3, 5; (4.13)

6
∑︁
𝑗∈𝐽

𝑋𝑖 𝑗3 ≥ 𝑇 𝐴𝐴𝐶 , ∀𝑖 ∈ 𝐶; (4.14)

Constraint (4.5),(4.6) and (4.7) ensure that two therapists are required for AAC

shifts, three therapists are required for Tuesday afternoons and one for Friday

mornings, respectively. Constraints (4.8) and (4.9) state that each therapist only

has to do one shift a day. Constraint (4.10) specifies that the centre is closed on

Saturday afternoon. Constraints (4.11) and (4.13) state that each AAC therapist

has not to do afternoon shift on Tuesday and Thursday, and has not to do AAC shift

on Monday, Wednesday and Friday. Constraint (4.12) ensures that shift workers

have not to do AAC shift. Finally, inequality (4.14) establishes that the therapists

have to do at least 𝑇 𝐴𝐴𝐶 hours per week. I emphasize that I set the constraints

according to the specific centre under consideration. They can be modified as

needed and adapted to other situations.
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Soft Constraint Now, I present the soft constraints and introduce the variables

that take into account the deviations of the constraints from their predetermined

goals. These variables will then be minimized in the objective function in order

to obtain the best possible solution, trying to reduce the deviations from these

constraints. I denoted by 𝑑+
𝑠𝑖
≥ 0, 𝑑+

𝑠𝑖 𝑗
≥ 0 and 𝑑+

𝑠𝑖 𝑗
≥ 0, 𝑑−

𝑠𝑖
≤ 0 the positive and

the negative deviations, respectively, associated to the soft constraint 𝑠 ∈ 𝑆, 𝑖 ∈ 𝐼

and 𝑗 ∈ 𝐽.

The soft constraints are the following:

6
∑︁
𝑗∈𝐽
(𝑋𝑖 𝑗2 + 𝑋𝑖 𝑗2) + 6

∑︁
𝑗∈𝐽

𝑋𝑖 𝑗3 + 𝑑+1𝑖 ≥ 36, ∀𝑖 ∈ 𝐶; (4.15)

6
∑︁
𝑗∈𝐽

𝑋𝑖 𝑗3 − 𝑑−2𝑖 ≤ 18, ∀𝑖 ∈ 𝐶; (4.16)

6
∑︁
𝑗∈𝐽
(𝑋𝑖 𝑗2 + 𝑋𝑖 𝑗1) + 𝑑+3𝑖 ≥ 36, ∀𝑖 ∈ 𝑇 ; (4.17)

𝑋𝑖 𝑗3 + 𝑋𝑖( 𝑗+1)1 − (𝑑+4𝑖 𝑗 + 𝑑
−
4𝑖 𝑗 ) = 1, ∀𝑖 ∈ 𝐶, 𝑗 ∈ 𝐽 (4.18)

𝑋𝑖 𝑗2 + 𝑋𝑖( 𝑗+1)2 − (𝑑+5𝑖 𝑗 + 𝑑
−
5𝑖 𝑗 ) = 1, ∀𝑖 ∈ 𝑇, 𝑗 ∈ 𝐽 (4.19)

𝑋𝑖 𝑗1 + 𝑋𝑖( 𝑗+1)1 − (𝑑+6𝑖 𝑗 + 𝑑
−
6𝑖 𝑗 ) = 1, ∀𝑖 ∈ 𝑇, 𝑗 ∈ 𝐽 (4.20)

Constraint (4.15) and (4.16) establish that it is preferable that the therapists do at

least thirty six hours a week. Constraint (4.18) states that is preferable that the

therapists do no more than eighteen hours per week of AAC sessions. Finally,

equalities (4.17), (4.19) and (4.20) ensure that is preferable that they do not have

two consecutive mornings or afternoons.

Objective function Problem II The overall objective function to be minimized

is given by the sum of all the deviations of the soft constraints described above,

each multiplied by an appropriate weight, chosen on the basis of the importance
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of the violated constraint.

min
(
𝑊1

∑︁
𝑖∈𝐶

𝑑+1𝑖 +𝑊2
∑︁
𝑖∈𝐶
−𝑑−2𝑖 +𝑊3

∑︁
𝑖∈𝑇

𝑑+3𝑖

+𝑊4
∑︁
𝑖∈𝐶

∑︁
𝑗∈𝐽
(𝑑+4𝑖 𝑗 − 𝑑

−
4𝑖 𝑗 ) +𝑊5

∑︁
𝑖∈𝑇

∑︁
𝑗∈𝐽
(𝑑+5𝑖 𝑗 − 𝑑

−
5𝑖 𝑗 )

+𝑊6
∑︁
𝑖∈𝑇

∑︁
𝑗∈𝐽
(𝑑+6𝑖 𝑗 − 𝑑

−
6𝑖 𝑗 )

)
; (4.21)

The minimization of the objective function, subject to the constraints already

described, guarantees a solution that satisfies all the hard constraints and violates

the soft constraints as little as possible.

4.3.3 Problem III: Travelling therapist problem

In this section, I optimize the routing from one location to another one during

the working day. The problem can be defined as an asymmetric multiple Trav-

eling Salesman Problem with Time Windows (mTSPTW) [21], and additional

constraints, such as an upper bounded variable of the number of therapists, and

the maximum traveling time or distance of each therapist. I also include time win-

dow at each location. Usually, the mTSP is specified as an integer programming

formulation.

Sets and Parameters

• 𝐺 = (𝑉, 𝐸);

• 𝑉 = {𝑣1, . . . 𝑣ℎ, . . . , 𝑣𝑘 , . . . , 𝑣𝑛} set of vertices;

• 𝐸 = {(𝑣ℎ, 𝑣𝑘 )} set of edges, which satisfy the symmetric property;

• 𝐼 = {1, . . . 𝑖, . . . , 𝑡} set of the total number of therapists in the centre, where

𝑖 is the general one;
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• 𝑇𝑊 indicates the time window. It is important to remark the role of this

parameter as each therapist takes at least 2 hours for home-based therapies

(considering transfer time and therapy session), before leaving for a new

destination. Morevoer, the daily working hours are limited.

• 𝑐ℎ𝑘 , where 𝑐ℎ𝑘 = 𝑐ℎ𝑘 + 𝑐𝑇𝑊𝑘 is the total cost considered;

• 𝑐ℎ𝑘 ordinary cost (distance or duration) associated with 𝐸 . The costs could

be symmetric if 𝑐ℎ𝑘 = 𝑐𝑘ℎ, ∀(𝑣ℎ, 𝑣𝑘 ) ∈ 𝐸 and asymmetric otherwise;

• 𝑐𝑇𝑊
𝑘

cost of the time window𝑇𝑊 , where every therapist has to do the therapy

in each location, which takes about 2 hours;

• 𝐼 upper bound of the therapist 𝑖, namely, the actual number of therapist used,

i.e. the number of available therapists;

• 𝑐𝑖 cost of the involvement of a therapist 𝑖 ∈ 𝐼, i.e a fixed cost aiming to

minimize their number;

• 𝐷 maximum length of any tour in the solution.

Decision variables

𝑦ℎ𝑘𝑖 =


1 if therapist 𝑖 chooses the edge(𝑣ℎ, 𝑣𝑘 ),

0 otherwise.
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Objective function Stage III

min
𝑛∑︁
ℎ=0

𝑛∑︁
𝑘=0

𝑐ℎ𝑘

𝑡∑︁
𝑖=1

𝑦ℎ𝑘𝑖 + 𝑡 · 𝑐𝑖 (4.22)

Subject to
𝑛∑︁
ℎ=0

𝑡∑︁
𝑖=1

𝑦ℎ𝑘𝑖 = 1, ∀𝑘 = 1, . . . , 𝑛, (4.23)

𝑛∑︁
𝑘=0

𝑡∑︁
𝑖=1

𝑦ℎ𝑘𝑖 = 1, ∀ℎ = 1, . . . , 𝑛, (4.24)

𝑛∑︁
ℎ=1

𝑡∑︁
𝑖=1

𝑦1𝑘𝑖 = 𝑡, ∀𝑘 = 1, . . . , 𝑛, (4.25)

𝑛∑︁
𝑘=1

𝑡∑︁
𝑖=1

𝑦ℎ1𝑖 = 𝑡, ∀ℎ = 1, . . . , 𝑛, (4.26)

𝑛∑︁
ℎ=1

𝑛∑︁
𝑘=1

𝑐ℎ𝑘 · 𝑦ℎ𝑘𝑖 ≤ 𝐷, ∀𝑖 ∈ 𝐼 (4.27)

+ sub tour elimination constraints (4.28)

The objective function (4.22) represents the minimization of the cost of the journey,

where 𝑐ℎ𝑘 is expressed as a weight on each edge, based on the distance or the cost

of the journey, and 𝑐𝑖 is the cost of involvement of the therapist 𝑖. Constraints (4.23)

and (4.24) state that in each node 𝑣ℎ only one edge enters and exits ∀ℎ, 𝑘 = 1, . . . 𝑛.

Constraints (4.25) and (4.26) are the usual assignment constraints for the starting

and the ending point, using the binary variable. Constraints (4.27) ensures that the

tour length of each therapist is under the specified bound 𝐷.

4.4 Case Study

In order to apply my models, a data set of the speech therapy centre of Acireale,

Sicily (Italy) is used. In this centre, there are two therapists assigned to work on
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the AAC project and six conventional therapists, who are working 6 days a week

for 6 hours a day. To solve the mathematical models, AMPL and CPLEX solver

for the first and the second problem and GA Matlab code for the third problem

were used.

4.4.1 Problem I

In this stage, priority of patients, which was categorized into three levels as high,

medium, and low, according to specialized doctors’ view, is reflected in the model.

Determination of these weights (𝑤𝑝) for each priority level depends on the decision

maker’s preferences. The difference between the weights for different levels of

priorities should be selected large enough to maintain a certain hierarchy between

priorities. The selection of weights is just a case for an illustration of the model.

I fixed 𝑤𝑝 = 0.8, 𝑤𝑝 = 0.5 and 𝑤𝑝 = 0.2 for high, medium and low level,

respectively. I considered the number of patients equal to 50, (𝑃 = 50), who ask

to participate in the AAC program in addition to basic therapy. This particular

therapy can only be carried out by some therapists because the staff must be

qualified for this additional therapy. In fact, Table 4.1 shows that only 21 patients

were selected among those who asked to participate in the special AAC program,

as a consequence the following Table 4.1 represents the patients that are selected

for the AAC treatment, considering only the two therapists who are involved in the

AAC shift. Unselected patients are not ignored, but will continue to be followed

through basic therapy, because they do not have severe language difficulties and

do not urgently need additional therapy.

In this case study, the treatment time was classified into two categories; 𝑡𝑏𝑝 and

𝑡𝐴𝐴𝐶𝑝 were assigned to symbolize basic treatment (45 min) and AAC treatment
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Weight Patient 𝑖 Selected

𝑤𝑖 = 0.2

1 0
...

...

15 0

𝑤𝑖 = 0.5

16 1
...

...

26 1

27 0
...

...

40 0

𝑤𝑖 = 0.8

41 1
...

...

50 1

Table 4.1: Selected Patients Number

(≥ 60 min), respectively. Finally, I fixed 24 weekly hours dedicated to basic

therapy by each AAC therapist and 12 hours carried out simultaneously by both

AAC therapists. Therefore the total hours available to AAC therapists is 𝐻 = 60.

4.4.2 Problem II

In this stage, I considered two therapists 𝑖 = 1, 2 who perform both basic shifts and

AAC treatments and six shift workers, 𝑖 = 3, . . . 8. In the centre under study, the

weekly work is structured from Monday to Friday, morning (M) and afternoon (A),

and on Saturday only in the morning. In particular, the AAC treatment is carried



72
A multi-stage integer linear programming problem for personnel and patient

scheduling

out only on Tuesday, Thursday and Saturday mornings, indicated with the index

𝑙 = 3. I remind that the centre is closed on Saturday afternoons. In the objective

function (4.21), I fixed 𝑊1 = 0.84, 𝑊2 = 0.3, 𝑊3 = 0.58, 𝑊4 = 0.88, 𝑊5 =

0.67, 𝑊6 = 0.68, which represent the weight associated with the soft constraint.

The greater the weight, the greater the importance of the soft constraint. I fixed

𝑡𝑝 = 0.75 and 𝑡𝐴𝐴𝐶𝑝 = 2 to define the following constraint:

0.75𝑥𝑝 ≤ 1.5, ∀𝑝 ∈ 𝑃; (4.29)

2
𝑃∑︁
𝑝=1

𝑥𝑝 ≤ 12. (4.30)

In Table 4.2, I provide the shifts for the eight therapists that I have considered.

Morning Afternoon AAC

Mon 4, 7, 8 1, 2, 3, 5, 6

Tue 3, 5, 6 4, 7, 8 1, 2

Wed 7, 8 1, 2, 3, 4, 5, 6

Thu 3, 4, 5, 6 7, 8 1, 2

Fri 7, 8 1, 2, 3, 4, 5, 6

Sat 3, 4, 5, 6, 7, 8 closed 1, 2

Table 4.2: Therapists’ shifts

4.4.3 Problem III

In this subsection I investigate the problem of moving from one location to another

one considering fixed time windows. In fact, during the working day, therapists

have to move from one therapy centre to another one, from one centre to another
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location to deliver home-based rehabilitation services, or from one house to another

one. I considered 𝐼 = 8 therapists, who have the starting point at the centre of

Acireale and I supposed that patients’ houses are in the other locations considered,

to simulate that some therapies are carried out directly at home. The corresponding

multiple traveling salesmen problem was implemented using the genetic algorithm

with multi-chromosome representation as in [127]. The algorithm considers that

each therapist starts at the first location, and ends at the first location, but travels to a

unique set of cities in between. I assume that the first location is the central location

placed in Acireale, Italy, then each therapist has her own patients in different places.

As a consequence, except for the starting point, each location is visited by exactly

one therapist. The algorithm uses a special, so-called multi-chromosome genetic

representation to code solutions into individuals. Special genetic operators (even

complex ones) are used. The number of therapists that every day have to travel

from one location to another is minimized during the algorithm. The algorithm

also considers additional constraints, such as the minimum number of locations

that the therapists visit and the maximum distance travelled by each therapist. I

fixed 𝐷 = 80 kilometers as the maximum tour length for each therapist, since

a working day lasts only six hours. I considered the objective function (4.22),

where the weights, considered as distances and costs, associated with the edges,

are defined as

𝑐ℎ𝑘 =

√︃
(𝑥ℎ − 𝑥𝑘 )2 + (𝑦ℎ − 𝑦𝑘 )2, ∀𝑣ℎ, 𝑣𝑘 ∈ 𝑉. (4.31)

I solved this problem using a genetic algorithm (GA), implemented in Matlab

[127], tested on MacBook Air (2021), processor Apple M1 8 Core, 3.2 GHz,

RAM 8 GB.

For instance, I obtained the total distance traveled by all the therapists equal to
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379 kilometers, obtained by 474 number of iterations and 19 time in milliseconds

until the solution was given. The following plots explain better the solution

reached. Figure 4.1 represents the different 40 locations chosen in the example.

Figure 4.1: City Locations

It is necessary that therapists move from one location to another, because some

therapies, especially on younger people, are carried out in places where they spend

a lot of their life, for example at home or in parks or even at school.

Figure 4.2: Total Distance

Figure 4.2 shows the routes solution of each therapist. As a conclusion, I underline

that the minimum number of therapists needed to reach all the 40 locations in one
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day is six. As a consequence of the six hours a day of each therapist, the time spent

for travel influence the number of patients that could be treated. The Figure 4.2

underlines that some therapists are forced to face even long distances on a daily

basis to satisfy the request of their patients.

4.5 Conclusions

This work presented a multi-stage integer linear programming problem to solve the

scheduling of speech-language pathologists involved in conventional treatments as

well as Augmentative Alternative Communication therapies. In order to reduce

the complexity of this problem, I developed a mathematical model based on

a hierarchical approach. Thus, the problem was broken down into three sub-

problems. The aims were: the selection of the maximum number of patients,

who can use the Augmentative Alternative Communication therapy program in

addition to basic therapy; the achievement of an equitable distribution of therapists’

workload to optimize work shifts and distribute them optimally during the week;

the decrease of the time-wasting of therapists during transfers, who have to move

for home-based therapies and have to change location during the working day. The

model was tested on a therapy centre and the solution time was acceptable for

the hierarchical implementation, with AMPL optimization package and Genetic

Algorithm implementation in Matlab to find the solution in a faster way and to avoid

the limitations of AMPL software. The model presented has some limitations that

encourage us to further investigate the problem and improve my achievements. In

fact, I did not take into consideration the preferences of therapists about their shifts,

and the staggered entry times due to COVID-19 pandemic. As a future research, I

can also explore the model with a higher number of therapists and patients.
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Chapter 5
A two-stage variational inequality for

medical supply in emergency

management

5.1 Introduction

In recent years, emergencies and natural disasters have significantly affected our

social and economic progress. Therefore, emergency management has become

one of the most important and challenging issues. Moreover, emergency resource

storage and distribution have led to strong competition for medical supplies among

healthcare institutions.

In this paper, I investigate hospital competition for medical supplies as a general-

ized Nash equilibrium problem, and propose a stochastic programming model to

describe the behaviour of each demand location. Thus, I am able to obtain the op-

timal amount of medical items from warehouses to hospitals, in order to minimize

both the purchasing cost and the transportation costs. Following [220], I consider

77
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real-time information spreading and up-to-date disaster evaluation. Therefore, I

provide a two-stage stochastic programming model based on disaster scenarios

that takes into account the unmet demand at the first stage, and the consequent

penalty, see [138]. In particular, in the first stage, hospitals receive the early warn-

ing information about the emergency and decide the medical item procurement

planning; however, they are not aware of the real situation. Subsequently, accurate

real-time information is observed and the process reaches the second-stage, where

the decision relies on the first-stage solution and on the observed scenario. More-

over, I introduce a penalty function for the unmet demand of medical supplies in

the second stage decision, see also [90]. The problem is then formulated as a

two-stage stochastic variational inequality (see [138]).

The importance of an efficient approach to emergency management and medical

supply planning has been investigated in several papers. For instance, in [72] the

authors construct a generalized Nash equilibrium model with stochastic demand

to analyse competition among organizations for medical supplies. The problem

is then formulated as a variational inequality, using the concept of variational

equilibrium. In [155], Nagurney et al. present a stochastic generalized Nash

equilibrium model for disaster relief. Each humanitarian organization solves a

two-stage stochastic optimization problem, and the model is formulated as a finite-

dimensional variational inequality. In [197], Nagurney and Salarpour introduce a

variational inequality formulation of a two-stage stochastic game theory model in

order to examine the behavior of national governments during Covid-19 pandemic

and their competition for essential medical supplies. In [138], the authors develop

a stochastic programming model to select the storage locations of medical supplies

and required inventory levels for each type of medical supply. The resulting model



5.1. Introduction 79

captures the information updating making use of disaster scenarios. In [53],

the authors present an optimization model consisting of a dynamic supply chain

network for personal protective equipment, and study the related evolutionary

variational inequality in the presence of a delay function.

Recently, two-stage stochastic variational inequalities have been introduced, where

one seeks a decision vector before the stochastic variables are known, and a decision

vector after the scenario has been realized. In [38], the authors propose a two-stage

stochastic variational inequality model to deal with random variables in variational

inequalities, and formulate this model as a two-stage stochastic programming with

recourse. In [138], the authors investigate the transformation of a general two-stage

stochastic programming problem to a two-stage stochastic variational inequality. In

[192], Rockafellar and Wets discuss the multistage stochastic variational inequality.

In [190], the authors develop progressive hedging methods for solving multistage

convex stochastic programming, see also [189].

In this paper, I extend the model in [72] in two directions. First, I tackle the medical

item procurement planning problem as a two-stage stochastic programming prob-

lem. Then, I describe the model as a generalized Nash equilibrium problem. Our

second improvement is the characterization as a two-stage variational inequality.

This approach allows us to decompose the problem in two lower dimensional vari-

ational inequalities, instead of solving a unique large-scale variational inequality.

I also present an alternative formulation based on Lagrangian relaxation approxi-

mation, that makes it possible to investigate the role of Lagrange multipliers in the

market behavior.

The structure of this paper is as follows. In Section 5.2, I introduce the two-

stage stochastic model. In Section 5.3, I model the competition among healthcare
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institutions as a generalized Nash equilibrium problem, and provide a two-stage

variational inequality formulation. I also present an alternative two-stage varia-

tional inequality based on the Lagrangian relaxation approach. Finally, in Section

5.4, I draw our conclusions and present further research issues.

5.2 Two-Stage Stochastic Model of the Competition

for Medical Supply

In this section, I present a two-stage stochastic model for the medical supply

competition. LetW denote the set of warehouses, with typical warehouse denoted

by 𝑤; let H denote the set of hospitals, with typical hospital denoted by ℎ; let

K denote the set of medical supply type, with typical type denoted by 𝑘 , and let

M denote the set of transportation modes, with typical mode denoted by 𝑚. I

consider a network representation as in Figure 5.1. The links between the levels

Warehouses
𝑤1 𝑊

ℎ1 𝐻

Hospitals

Figure 5.1: The Network representation of Warehouses and Hospitals

of the network represent all the possible connections between warehouses and

hospitals. Multiple links between each warehouse and each hospital depict the

possibility of alternative modes of transportation. I note that the choice of the

transportation mode is due to the distance between supply and demand locations.
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For example, for long distances airplanes are preferred to transportation by truck

or train. The choice of the transportation mode may also depend on the type of

medical item or on the severity of the emergency.

I denote by 𝑄𝑘
𝑤 the amount of medical item of type 𝑘 in warehouse 𝑤, and by

𝑄𝑤 =
∑
𝑘∈K 𝑄

𝑘
𝑤 the total amount of medical items in warehouse 𝑤.

Now, let 𝑥𝑘
𝑤ℎ

be the amount of medical item of type 𝑘 from warehouse 𝑤 to hospital

ℎ, and let 𝜌𝑘𝑤 be the unitary price of medical item 𝑘 at warehouse𝑤. Let 𝑥𝑤ℎ denote

the total amount delivered from warehouse 𝑤 to hospital ℎ, where

𝑥𝑤ℎ =
∑︁
𝑘∈K

𝑥𝑘𝑤ℎ.

I further group the 𝑥𝑤ℎ into the𝑊𝐻−dimensional column vector 𝑥.

In addition, I introduce the transportation time 𝑡𝑚
𝑤ℎ

from warehouse 𝑤 to hospital

ℎ with mode 𝑚 and assume that it depends on the amount 𝑥𝑤ℎ, namely, 𝑡𝑚
𝑤ℎ

=

𝑡𝑚
𝑤ℎ
(𝑥𝑤ℎ).

Table 5.1 summarizes the relevant notations used in the model formulation.

I consider a pre-event policy, in which each demand location (hospital) seeks to

minimize the purchasing cost of medical items and the transportation time from

the first stage, and a recourse decision process to optimize the transportation costs

from the second stage, in response to each disaster scenario. Let (Ω, F , 𝑃) be

a probability space, where the random parameter 𝜔 ∈ Ω represents the typical

disaster scenario. For each 𝜔 ∈ Ω, I denote by b : Ω → R𝑊𝐻𝐾+𝐻𝐾 a finite

dimensional random vector and by Eb the mathematical expectation with respect

to b. In order to formulate the two-stage stochastic model, I introduce two types

of decision variables. The first-stage decision variable 𝑥𝑘
𝑤ℎ

is used to represent the

quantity of medical supplies of type 𝑘 from warehouse𝑤 to hospital ℎ. The second-

stage decision variables are 𝑦𝑘
𝑤ℎ
(𝜔) and 𝑧𝑘

ℎ
(𝜔). The variable 𝑦𝑘

𝑤ℎ
(𝜔) represents
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Symbols Definitions

W set of warehouses, with typical warehouse denoted by 𝑤, 𝑐𝑎𝑟𝑑 (W) = 𝑊

H set of hospitals, with typical hospital denoted by ℎ, 𝑐𝑎𝑟𝑑 (H) = 𝐻

K set of different medical items, with typical item denoted by 𝑘 , 𝑐𝑎𝑟𝑑 (K) = 𝐾

M set of transportation modes, with typical mode denoted by 𝑚, 𝑐𝑎𝑟𝑑 (M) = 𝑀

𝑑𝑘
ℎ

demand of medical item 𝑘 of hospital ℎ in stage one

𝑑𝑘
ℎ
(𝜔) demand of medical item 𝑘 of hospital ℎ in stage two under scenario 𝜔

𝑥𝑘
𝑤ℎ

amount of medical item 𝑘 from warehouse 𝑤 to hospital ℎ in stage one

𝑥𝑤ℎ amount of medical items delivered from warehouse 𝑤 to hospital ℎ in stage one

𝑥 amount of total medical items from all warehouses to all hospitals in stage one

𝑄𝑘
𝑤 the amount of the medical item 𝑘 in warehouse 𝑤

𝑄𝑤 =
∑
𝑘∈K 𝑄

𝑘
𝑤 the total amount of the medical items in warehouse 𝑤

𝑒𝑘 maximum amount available of medical item 𝑘

𝜌𝑘𝑤 unitary price of medical item 𝑘 at warehouse 𝑤

𝑡𝑚
𝑤ℎ
(𝑥𝑤ℎ) transportation time from warehouse 𝑤 to hospital ℎ with mode 𝑚

𝑦𝑤ℎ (𝜔) amount of medical items to be delivered from warehouse 𝑤 to hospital ℎ in stage two under scenario 𝜔

𝑧𝑘
ℎ
(𝜔) amount of unfulfilled demand at hospital ℎ of medical supply item 𝑘 under scenario 𝜔

𝑐𝑚
𝑤ℎ
(𝑦𝑤ℎ (𝜔), 𝜔) transportation cost from warehouse 𝑤 to hospital ℎ with mode 𝑚 under scenario 𝜔

𝜋𝑘
ℎ
(𝑧𝑘
ℎ
(𝜔), 𝜔) penalty for unfulfilled demand at hospital ℎ of medical supply item 𝑘 under scenario 𝜔

Table 5.1: The notation for the two-stage stochastic model

the quantity of medical supplies of type 𝑘 to be delivered from warehouse 𝑤 to

hospital ℎ under scenario 𝜔. The variable 𝑧𝑘
ℎ
(𝜔) is the unfulfilled demand at

hospital ℎ of medical item 𝑘 under scenario𝜔. I penalize the amount of unfulfilled

demand 𝑧𝑘
ℎ
(𝜔) by function 𝜋𝑘

ℎ
= 𝜋𝑘

ℎ
(𝑧𝑘
ℎ
(𝜔), 𝜔). From the perspective of demand

locations, 𝑥𝑘
𝑤ℎ

is chosen before a realization of b is revealed and later 𝑦𝑘
𝑤ℎ
(𝜔) and

𝑧𝑘
ℎ
(𝜔) are selected with known realization. Finally, I introduce the transportation

cost 𝑐𝑚
𝑤ℎ

from warehouse 𝑤 to hospital ℎ with mode 𝑚 and assume that it depends

on the amount 𝑦𝑤ℎ (𝜔) =
∑
𝑘∈K 𝑦

𝑘
𝑤ℎ
(𝜔), namely, 𝑐𝑚

𝑤ℎ
= 𝑐𝑚

𝑤ℎ
(𝑦𝑤ℎ (𝜔), 𝜔).

Our aim is to obtain an efficient plan of medical item procurement of each demand

location in the first stage by the evaluation of adaptive plans in the second stage.
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5.2.1 First-Stage Problem

For each hospital ℎ, I minimize the purchasing cost and the transportation time of

the first stage with the expected overall costs and the penalty for the prior plan.

Therefore, the first-stage problem is given by:

min
∑︁
𝑤∈W

( ∑︁
𝑘∈K

𝜌𝑘𝑤𝑥
𝑘
𝑤ℎ +

∑︁
𝑚∈M

𝑡𝑚𝑤ℎ (𝑥𝑤ℎ)
)
+ Eb (Φℎ (𝑥, b (𝜔))) (5.1)

subject to∑︁
ℎ∈H

∑︁
𝑘∈K

𝑥𝑘𝑤ℎ ≤ 𝑄𝑤, ∀𝑤 ∈ W, (5.2)∑︁
𝑤∈W

𝑥𝑘𝑤ℎ = 𝑑
𝑘
ℎ , ∀𝑘 ∈ K, (5.3)∑︁

𝑤∈W
𝑥𝑘𝑤ℎ ≤ 𝑒𝑘 , ∀𝑘 ∈ K, (5.4)

𝑥𝑘𝑤ℎ ≥ 0, ∀𝑤 ∈ W, ∀𝑘 ∈ K . (5.5)

The objective function (5.1) minimizes the sum of the purchasing cost for early

supply plan, the transportation time, and the expected value of costs of hospital

ℎ in the second stage with respect to disaster scenarios. Constraint (5.2) ensures

that the storage capacity of warehouse 𝑤 is satisfied. It is a shared constraint and

realizes that hospitals compete for medical items available at the warehouses at

a maximum supply. Constraint (5.3) states that the amount of delivered medical

items of type 𝑘 has to satisfy the requirement of hospital ℎ; constraint (5.4) is

the maximum availability constraint of medical item 𝑘; constraint (5.5) is the

non-negativity requirement on variables. I require that 𝑑𝑘
ℎ
≤ 𝑒𝑘 , ∀ℎ, 𝑘 . Finally, I

assume that 𝑡𝑚
𝑤ℎ
(·) is continuously differentiable and convex for all 𝑤, ℎ, 𝑚.



84A two-stage variational inequality for medical supply in emergency management

5.2.2 Second-Stage Problem

The second stage is the evaluation of the first stage to obtain the optimal medical

supply procurement.

For a given realization 𝜔 ∈ Ω, the second-stage problem of hospital ℎ is given as:

Φℎ (𝑥, b (𝜔)) = min
∑︁
𝑤∈W

∑︁
𝑚∈M

𝑐𝑚𝑤ℎ (𝑦𝑤ℎ (𝜔), 𝜔) +
∑︁
𝑘∈K

𝜋𝑘ℎ (𝑧
𝑘
ℎ (𝜔), 𝜔) (5.6)

subject to∑︁
ℎ∈H

∑︁
𝑘∈𝐾

𝑦𝑘𝑤ℎ (𝜔) ≤ 𝑄𝑤 (𝜔) −
∑︁
ℎ∈H

∑︁
𝑘∈K

𝑥𝑘𝑤ℎ, ∀𝑤 ∈ W,P-a.s., (5.7)∑︁
𝑤∈W

𝑦𝑘𝑤ℎ (𝜔) + 𝑧
𝑘
ℎ (𝜔) = 𝑑

𝑘
ℎ (𝜔), ∀𝑘 ∈ K,P-a.s., (5.8)∑︁

𝑤∈W
𝑦𝑘𝑤ℎ (𝜔) ≤ 𝑒𝑘 (𝜔), ∀𝑘 ∈ K,P-a.s., (5.9)

𝑦𝑘𝑤ℎ (𝜔) ≥ 0, 𝑧𝑘ℎ (𝜔) ≥ 0 ∀𝑤 ∈ W, ∀𝑘 ∈ K,P-a.s. (5.10)

Thus, Φℎ (𝑥, b (𝜔)) is the optimal value of the second-stage problem (5.6)-(5.10),

where the constraints hold almost surely (P-a.s.). The objective function (5.6)

minimizes the total cost and the penalty for the unmet demand at the second

stage. Constraint (5.7) is the warehouse storage capacity which takes into account

the quantity of medical items already delivered. Constraint (5.8) is a balance

constraint, and states that the supply at the second stage plus the unmet demand

should be equal to the demand at the second stage. Constraint (5.9) is the maximum

availability constraint of medical supply of type 𝑘 at the second stage. Finally,

(5.10) is the non-negativity constraint. I emphasize that the connection between

stage-wise decision variables 𝑥 and 𝑦 is captured by coupling constraint (5.7). It

is the linking factor between the first and second stage, and communicates the

first-stage decisions to the second one.
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I assume that:

a) 𝑐𝑚
𝑤ℎ
(·, 𝜔), 𝜋𝑘

ℎ
(·, 𝜔), a.e. in Ω, are continuously differentiable and convex for

all 𝑤, ℎ, 𝑘, 𝑚;

b) for each 𝑢 ∈ R𝑊𝐻 , 𝑐𝑚
𝑤ℎ
(𝑢, ·) is measurable with respect to the random

parameter in Ω for all 𝑤, ℎ, 𝑚;

c) for each 𝑣 ∈ R𝐻𝐾 , 𝜋𝑘
ℎ
(𝑣, ·) is measurable with respect to the random param-

eter in Ω for all ℎ, 𝑘;

d) 𝑦𝑘
𝑤ℎ

: Ω→ R and 𝑧𝑘
ℎ

: Ω→ R are measurable mappings for all 𝑤, ℎ, 𝑘;

e) 𝑑𝑘
ℎ

: Ω→ R is a measurable mapping for all ℎ and all 𝑘 .

Finally, I require that 𝑑𝑘
ℎ
(𝜔) ≤ 𝑒𝑘 (𝜔), ∀ℎ, 𝑘 and for all scenario 𝜔.

If the random parameter 𝜔 ∈ Ω follows a discrete distribution with finite support

Ω = {𝜔1, . . . , 𝜔𝑟} and probabilities 𝑝(𝜔𝑟) associated with each realization 𝜔𝑟 ,

𝑟 ∈ R = {1, . . . , 𝑅}, then the two-stage problem of hospital ℎ can be formulated
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as the unique large scale problem:

min
∑︁
𝑤∈W

( ∑︁
𝑘∈K

𝜌𝑘𝑤ℎ𝑥
𝑘
𝑤ℎ +

∑︁
𝑚∈M

𝑡𝑚𝑤ℎ (𝑥𝑤ℎ)
)

+
∑︁
𝑟∈R

𝑝(𝜔𝑟)
( ∑︁
𝑤∈W

∑︁
𝑚∈M

𝑐𝑚𝑤ℎ (𝑦𝑤ℎ (𝜔𝑟), 𝜔𝑟) +
∑︁
𝑘∈K

𝜋𝑘ℎ (𝑧
𝑘
ℎ (𝜔𝑟), 𝜔𝑟)

)
(5.11)

subject to∑︁
ℎ∈H

∑︁
𝑘∈K

𝑥𝑘𝑤ℎ ≤ 𝑄𝑤, ∀𝑤 ∈ W, (5.12)∑︁
𝑤∈W

𝑥𝑘𝑤ℎ = 𝑑
𝑘
ℎ , ∀𝑘 ∈ K, (5.13)∑︁

𝑤∈W
𝑥𝑘𝑤ℎ ≤ 𝑒𝑘 , ∀𝑘 ∈ K, (5.14)∑︁

ℎ∈H

∑︁
𝑘∈K

𝑦𝑘𝑤ℎ (𝜔𝑟) ≤ 𝑄𝑤 (𝜔𝑟) −
∑︁
ℎ∈H

∑︁
𝑘∈K

𝑥𝑘𝑤ℎ, ∀𝑤 ∈ W,∀𝑟 ∈ R, (5.15)∑︁
𝑤∈W

𝑦𝑘𝑤ℎ (𝜔𝑟) + 𝑧
𝑘
ℎ (𝜔𝑟) = 𝑑

𝑘
ℎ (𝜔𝑟), ∀𝑘 ∈ K,∀𝑟 ∈ R, (5.16)∑︁

𝑤∈W
𝑦𝑘𝑤ℎ (𝜔𝑟) ≤ 𝑒𝑘 (𝜔𝑟), ∀𝑘 ∈ K,∀𝑟 ∈ R, (5.17)

𝑥𝑘𝑤ℎ ≥ 0, ∀𝑤 ∈ W, ∀𝑘 ∈ K, (5.18)

𝑦𝑘𝑤ℎ (𝜔𝑟) ≥ 0, ∀𝑤 ∈ W, ∀𝑘 ∈ K,∀𝑟 ∈ R, (5.19)

𝑧𝑘ℎ (𝜔𝑟) ≥ 0, ∀𝑘 ∈ K,∀𝑟 ∈ R. (5.20)

5.3 Stochastic generalized Nash equilibrium

Competition for medical supplies among hospitals can be studied also as a game.

The underlying equilibrium concept is then that of a stochastic generalized Nash

equilibrium (SGNE), namely, a Nash equilibrium when the functions are expected

value functions, and the players are subject to shared constraints.
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I define the sets:

𝑆ℎ =

{
𝑥ℎ = (𝑥𝑘𝑤ℎ)𝑤,𝑘 ∈ R

𝑊𝐾 : (5.3) − (5.5) hold
}
,

𝑋 = {𝑥 = (𝑥ℎ)ℎ ∈ R𝐻 : 𝑥 satisfies (5.2)},

𝑇ℎ =

{
(𝑦ℎ (𝜔), 𝑧ℎ (𝜔)) =

(
(𝑦𝑘𝑤ℎ (𝜔))𝑤,𝑘 , (𝑧

𝑘
ℎ (𝜔))𝑘

)
∈ R𝑊𝐾+𝐾 :

(5.8) − (5.10) hold, P-a.s.
}
,

𝑉 = {(𝑦(𝜔), 𝑧(𝜔)) = (𝑦ℎ (𝜔), 𝑧ℎ (𝜔))ℎ ∈ R2𝐻 : (5.7) holds, P-a.s.}.

I also define 𝑆 =
∏
ℎ 𝑆ℎ and 𝑇 =

∏
ℎ 𝑇ℎ.

I refer to the objective function (5.1) for ℎ ∈ H as the function:

Jℎ (𝑥ℎ, 𝑥−ℎ) =
∑︁
𝑤∈W

( ∑︁
𝑘∈K

𝜌𝑘𝑤ℎ𝑥
𝑘
𝑤ℎ +

∑︁
𝑚∈M

𝑡𝑚𝑤ℎ (𝑥𝑤ℎ)
)
+ Eb (Φℎ (𝑥ℎ, 𝑥−ℎ, b (𝜔))),

where 𝑥−ℎ denotes the amount of medical items required by all hospitals except

for ℎ.

Definition 5.3.1. A vector of medical items 𝑥∗ = (𝑥∗
ℎ
, 𝑥∗−ℎ) ∈ 𝑆 ∩ 𝑋 is a stochastic

generalized Nash equilibrium of the first-stage if for each ℎ ∈ H

Jℎ (𝑥∗ℎ, 𝑥
∗
−ℎ) ≤ Jℎ (𝑥ℎ, 𝑥

∗
−ℎ), ∀𝑥ℎ ∈ 𝑆ℎ,∀𝑥 ∈ 𝑋.

Analogoysly, I can define the SGNE for the second stage. A solution of such a

problem can be found solving a quasi-variational inequality; see [112]. I point out

that this problem can also be solved in the form of a variational inequality, using

the concept of variational equilibrium; see [76, 131]. However, I note that it is

not possible to obtain a full characterization of the solutions of a SGNE problem

as solutions of a variational inequality. For this reason, recently, some authors

focused on the computation of non-variational equilibria; see [80, 153].
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5.3.1 Two-Stage Variational Inequality Formulation

I now adopt a variational equilibrium approach to my SGNE problem. The two-

stage stochastic problem is then equivalent to a two-stage variational inequality

(see [126, 155] for theoretical aspects and applications on variational inequality

theory).

I restrict my attention to the case of discrete probability distribution.

Theorem 5.3.1. The vector (𝑥∗, 𝑦∗(𝜔𝑟), 𝑧∗(𝜔𝑟)), ∀𝜔𝑟 , 𝑟 ∈ R, is an optimal solu-

tion of the medical item procurement planning if and only if:

1. the vector 𝑥∗ = (𝑥∗
ℎ
, 𝑥∗−ℎ) ∈ 𝑆 ∩ 𝑋 is a solution of the variational inequality∑︁

𝑤∈W

∑︁
ℎ∈H

∑︁
𝑘∈K

(
𝜌𝑘𝑤ℎ +

∑︁
𝑚∈M

𝜕𝑡𝑚
𝑤ℎ
(𝑥∗
𝑤ℎ
)

𝜕𝑥𝑘
𝑤ℎ

+
∑︁
𝑟∈R

𝑝(𝜔𝑟)
𝜕Φℎ (𝑥∗, b (𝜔𝑟))

𝜕𝑥𝑘
𝑤ℎ

)
× (𝑥𝑘𝑤ℎ − 𝑥

∗𝑘
𝑤ℎ) ≥ 0,∀𝑥 ∈ 𝑆 ∩ 𝑋; (5.21)

2. the vector (𝑦∗(𝜔𝑟), 𝑧∗(𝜔𝑟)) ∈ 𝑇 ∩ 𝑉 , ∀𝜔𝑟 , 𝑟 ∈ R, is a solution of the

variational inequality∑︁
𝑟∈R

𝑝(𝜔𝑟)
∑︁
𝑤∈W

∑︁
ℎ∈H

∑︁
𝑘∈K

( ∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝑦∗
𝑤ℎ
(𝜔𝑟), 𝜔𝑟)

𝜕𝑦𝑘
𝑤ℎ
(𝜔𝑟)

)
× (𝑦𝑘𝑤ℎ (𝜔𝑟) − 𝑦

∗𝑘
𝑤ℎ (𝜔𝑟))

+
∑︁
𝑟∈R

𝑝(𝜔𝑟)
∑︁
ℎ∈H

∑︁
𝑘∈K

𝜕𝜋𝑘
ℎ
(𝑧∗𝑘
ℎ
(𝜔𝑟), 𝜔𝑟)

𝜕𝑧𝑘
ℎ
(𝜔𝑟)

× (𝑧𝑘ℎ (𝜔𝑟) − 𝑧
∗𝑘
ℎ (𝜔𝑟)) ≥ 0,

∀(𝑦(𝜔𝑟), 𝑧(𝜔𝑟)) ∈ 𝑉 ∩ 𝑇. (5.22)

In order to ensure the existence of solutions to (5.21), I note that the set 𝑆 ∩ 𝑋 is

compact and convex, and the operator that enters (5.21) is continuous. Thus, a

solution exists from the standard theory of variational inequalities; see [126]. A

similar reasoning ensures the existence of solutions to (5.22).
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5.3.2 Lagrangian Relaxation Approach

In the following, I provide an alternative two-stage variational inequality, that

leads to a lower bound to the optimal value of the initial model. I relax constraints

(5.2) and (5.7) into their respective objective functions by Lagrangian relaxation

approach (see [22, 138]). I associate a non-negative Lagrange multiplier _𝑤 ≥ 0

to constraint (5.2), for each 𝑤 ∈ W. I group all the Lagrange multipliers into

the vector _ ∈ R𝑊+ . Analogously, I associate a non-negative Lagrange multiplier

`𝑤 (𝜔𝑟) ≥ 0 to constraint (5.7), for each 𝑤 ∈ W and 𝑟 ∈ R. I group all the

Lagrange multipliers into the vector `(𝜔𝑟) ∈ R𝑊+ , ∀𝑟 ∈ R. Thus, I find the

following two-stage variational inequality:

1. Find 𝑥∗ = (𝑥∗
ℎ
, 𝑥∗−ℎ) ∈ 𝑆 and _∗ ∈ R𝑊+ such that

∑︁
𝑤∈W

∑︁
ℎ∈H

∑︁
𝑘∈K

(
𝜌𝑘𝑤ℎ +

∑︁
𝑚∈M

𝜕𝑡𝑚
𝑤ℎ
(𝑥∗
𝑤ℎ
)

𝜕𝑥𝑘
𝑤ℎ

+
∑︁
𝑟∈R

𝑝(𝜔𝑟)
𝜕Φℎ (𝑥∗, b (𝜔𝑟))

𝜕𝑥𝑘
𝑤ℎ

+ _𝑤

)
× (𝑥𝑘𝑤ℎ − 𝑥

∗𝑘
𝑤ℎ)

+
∑︁
𝑤∈W

(
𝑄𝑤 −

∑︁
ℎ∈H

∑︁
𝑘∈K

𝑥∗𝑘𝑤ℎ

)
× (_𝑤 − _∗𝑤) ≥ 0,∀𝑥 ∈ 𝑆, _ ∈ R𝑊+ . (5.23)
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2. Find (𝑦∗(𝜔𝑟), 𝑧∗(𝜔𝑟)) ∈ 𝑇 and `∗(𝜔𝑟) ∈ R𝑊+ , ∀𝜔𝑟 , 𝑟 ∈ R , such that∑︁
𝑟∈R

𝑝(𝜔𝑟)
∑︁
𝑤∈W

∑︁
ℎ∈H

∑︁
𝑘∈K

∑︁
𝑚∈M

(
𝜕𝑐𝑚

𝑤ℎ
(𝑦∗
𝑤ℎ
(𝜔𝑟), 𝜔𝑟)

𝜕𝑦𝑘
𝑤ℎ
(𝜔𝑟)

+ `𝑤 (𝜔𝑟)
)

× (𝑦𝑘𝑤ℎ (𝜔𝑟) − 𝑦
∗𝑘
𝑤ℎ (𝜔𝑟))

+
∑︁
𝑟∈R

𝑝(𝜔𝑟)
∑︁
ℎ∈H

∑︁
𝑘∈K

𝜕𝜋𝑘
ℎ
(𝑧∗𝑘
ℎ
(𝜔𝑟), 𝜔𝑟)

𝜕𝑧𝑘
ℎ
(𝜔𝑟)

× (𝑧𝑘ℎ (𝜔𝑟) − 𝑧
∗𝑘
ℎ (𝜔𝑟))

+
∑︁
𝑟∈R

𝑝(𝜔𝑟)
∑︁
𝑤∈W

(
𝑄𝑤 (𝜔𝑟) −

∑︁
ℎ∈H

∑︁
𝑘∈K
(𝑥𝑘𝑤ℎ + 𝑦

∗𝑘
𝑤ℎ (𝜔𝑟))

)
× (`𝑤 (𝜔𝑟) − `∗𝑤 (𝜔𝑟)) ≥ 0

∀(𝑦(𝜔𝑟), 𝑧(𝜔𝑟)) ∈ 𝑇,∀`(𝜔𝑟) ∈ R𝑊+ . (5.24)

The operator in (5.23) can be obtained applying Karush-Kuhn-Tucker conditions

to the Lagrangian relaxation of the problem (5.1)-(5.5), with dual variable _𝑤, for

all 𝑤 ∈ W. Thus, the first term is the stationarity condition of each optimization

problem (5.1)-(5.5); while the second term is the complementarity condition.

Analogously, I can construct the operator in (5.24).

I emphasize that variational inequalities (5.23)-(5.24) are expressed in terms of

Lagrange variables _𝑤 and `𝑤 (𝜔𝑟), that have a fundamental role in regulating the

medical item procurement. In fact, _𝑤 is a control variable on the item availability

level; whereas `𝑤 (𝜔𝑟) is a control variable on the second-stage warehouse storage

capacity. Therefore, the above formulation can be advantageous since allows us to

to gain a deeper understanding of the market behavior.

5.4 Conclusions

In this Chapter, I present a stochastic generalized Nash equilibrium model for a

medical supply network. Specifically, I consider a two-layer network that consists
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of warehouses and hospitals with multiple medical items and multiple transporta-

tion modes. Each hospital solves a two-stage stochastic optimization problem: in

the first stage, he seeks to minimize the purchasing cost of medical items and the

transportation time; in the second stage, he adopts a recourse decision process

to optimize the expected overall costs and the penalty, for the prior plan for each

possible disaster scenario. The hospitals simultaneously solve their own stochastic

optimization problems and reach a stable state given by the stochastic generalized

Nash equilibrium concept. The model is formulated as a two-stage variational

inequality. By Lagrangian relaxation approximation, an alternative two-stage

variational inequality based on the Lagrange multipliers is given. I highlight that

dual variables play a fundamental role in investigating the market behavior.

Further research issues are the study of the two-stage stochastic problem in the

case of general probability distribution with the associated infinite-dimensional

variational inequality, and a characterization of the second-stage equilibrium by

means of infinite-dimensional Lagrange duality tools. Partial results in these

directions have already been achieved.



92A two-stage variational inequality for medical supply in emergency management



Chapter 6
A Stochastic Nash Equilibrium

Problem for Medical Supply

Competition

6.1 Introduction

Emergencies resulting from man-made or natural events strongly affect our social

and economic life. Depending on the type of emergency different hazards may

occur in the emergency locations. Thus, emergency management has raised in-

creasing interest. In particular, businesses require special measures to protect their

activities from any potential dangerous effect of an emergency. Therefore, it is

important to establish a plan before the occurrence of these events to be prepared

in case an emergency happens. A business continuity plan defines how a company

will continue operating, even in the case of a natural disaster, IT failure or a cyber

attack. The end goal is to preserve profitability and market position [82].

In this paper, I focus on a plan for the storage and distribution of medical supplies

93
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among healthcare institutions in emergencies caused by natural disasters. In

particular, I model the competition among hospitals as a Nash equilibrium problem,

and introduce a stochastic programming model to design and evaluate the behaviour

of each demand location. Inspired by [138, 220], I provide a two-stage stochastic

programming model based on disaster scenarios that introduces the unmet demand

at the first stage, and the consequent penalty at the second stage, see also [90].

Thus, I consider a pre-event policy, in which each healthcare institution minimize

both the purchasing cost of medical items and the transportation time from the

first stage. Then, I present a post-event policy through a recourse decision process

to optimize the expected overall costs, and the penalty for the preassigned plan,

in response to each possible disaster scenario of the second stage. Institutions

simultaneously solve their own two-stage stochastic optimization problems and

reach a stable state governed by the stochastic Nash equilibrium concept, that

is formulated as a large-scale variational inequality. In addition, in the case of

a general probability distribution, I define the stochastic Nash equilibrium as a

random variational inequality in a Hilbert space setting. Then, I give the first

order optimality conditions for the second-stage problem in terms of Lagrange

multipliers, using a separation assumption, called Assumption 𝑆, as a constraint

qualification [55, 58, 57, 117]. This condition results to be a necessary and

sufficient condition for strong duality to hold. In infinite dimensional spaces,

the classical theorems, which prove strong duality and existence of multipliers,

require that the interior of the ordering cone be nonempty [120]. However, in

most infinite dimensional cases, where the functional space is 𝐿2 or a Sobolev

space, the ordering cone has the empty interior. Therefore, I aim at proving

that the second-stage problem verifies the Assumption 𝑆. As a result, I ensure
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the existence of Lagrange multipliers and give an alternative formulation of the

two-stage problem. Moreover, I show that the dual variables regulate the medical

item procurement. In fact, they represent the control variables on the first-stage

demand, on the second-stage demand, and on the unfulfilled demand.

The importance of an efficient approach to emergency management and medical

supply planning has been investigated in several papers. As an example, in [138],

the authors presented a stochastic programming model, in which they selected the

storage locations of medical supplies and use inventory levels for medical items.

In the model they captured the information updating during disaster scenarios.

In [155], Nagurney et al. developed a stochastic generalized Nash equilibrium

model consisting of multiple purchase locations for the disaster relief items, mul-

tiple humanitarian organizations, multiple freight service provision options and

multiple hubs for storage to multiple points of demand. In [72] the authors pre-

sented a generalized Nash equilibrium model with stochastic demand to analyse

competition among organizations at demand points for medical supplies. In [197],

Nagurney and Salarpour introduced a two-stage stochastic game theory model in

order to examine the behavior of national governments during Covid-19 pandemic,

and their competition for essential medical supplies in both the preparation and

response phases. All the problems presented in [155], [72], [197] were solved as

variational inequalities, using the concept of variational equilibrium. I remark that

our model differs from the treatment in [138] as I develop a variational inequality

approach. In addition, although the problems introduced in [155], [72], [197] have

similarities, they are all restricted to the case of discrete probability distribution;

whereas our model is valid also for general probability distribution. This poses

challenges for both theory and computations.
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Recently, two-stage stochastic variational inequalities have been introduced to

model cases where one looks for a decision vector before the real situation is

known, and a new one after the scenario has been realized. In [38], the authors

formulated the two-stage stochastic variational inequality as a two-stage stochastic

programming problem with recourse. In [138], Li and Zhang studied the trans-

formation of a general two-stage stochastic programming problem to a two-stage

stochastic variational inequality. In [87], the authors presented an evacuation

model where a population had to be evacuated from crisis areas to shelters, and,

due to the uncertainty in the size of the population to be evacuated, a two-stage

stochastic variational inequality model was given. In [192], Rockafellar and Wets

discussed the multistage stochastic variational inequality. In [190], the authors

developed progressive hedging methods for solving multistage convex stochastic

programming, see also [189].

In [106], Gwinner and Raciti studied the random variational inequality and general

random equilibrium problems. In particular, they worked on a class of linear

random variational inequalities on random sets, with results on measurability,

existence and uniqueness in a Hilbert space. Furthermore, they provided an

approximation procedure in a special case. Then, in [107], the same authors

carried out the theory of random variational inequalities to study a class of random

equilibrium problems on networks in the linear case, and in [108] they studied

the application to nonlinear random traffic equilibrium problem. A valuable

additional contribution of the same authors is the book in [105]. In [81], the

authors formulated the multicriteria spatial price network equilibrium problem as

a random variational inequality, in which the consumers weight, using random

fluctuations, transportation cost and the transportation time associated with the
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shipment of a given item. In [59, 56], the authors applied a general random traffic

equilibrium problem, featuring the random Wardrop equilibrium distribution using

random variational inequality. In [119], Jadamba and Raciti explored stochastic

Nash equilibrium problems using monotone variational inequalities in probabilistic

Lebesgue spaces. Their results are applied to a class of oligopolistic market

equilibrium problems.

Inspired by the above works, in this paper, I provide a variational inequality formu-

lation of the two-stage stochastic optimization problem describing the competition

of healthcare institutions in case an emergency happens. The main contributions

of our work are:

• Modeling a medical supply network that involves warehouses and hospitals

with multiple medical items and multiple transportation modes.

• Providing a two-stage stochastic programming model based on disaster sce-

narios that considers the unmet demand at the first stage, and the consequent

penalty at the second stage.

• Deriving a variational inequality formulation in both the discrete and general

probability cases.

• Characterizing the second-stage equilibrium, in the case of general proba-

bility distribution, by means of infinite-dimensional Lagrange duality.

• Testing the equilibrium model with numerical illustrations with realistic

data.

An analysis of the Lagrange multipliers is also performed and, hence, this paper

adds to the literature on the study of marginal utilities in the more challenging

setting of stochastic programming problems.
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This paper is organized as follows. In Section 6.2, I introduce the two-stage

stochastic model for the medical supply competition. In Section 6.3, I present

the stochastic Nash equilibrium concept underlying our model and the equivalent

variational inequality formulation. The cases of discrete and general probability

distribution are discussed. In Section 6.4, I recall some infinite-dimensional duality

tools, and, in Section 6.5, I present an alternative formulation of the second-stage

problem. The progressive hedging algorithm is then applied to some numerical

examples in Section 6.6. I summarize our results and draw our conclusions in

Section 6.7.

6.2 The Two-Stage Stochastic Model

In this section, I present my two-stage stochastic model for the medical supply

competition. LetW be the set of warehouses, with typical warehouse denoted by

𝑤; let H be the set of hospitals, with typical hospital denoted by ℎ; let K be the

set of medical supply type, with typical type denoted by 𝑘 , and letM be the set

of transportation modes, with typical mode denoted by 𝑚. I consider a network

model as in Figure 6.1. The links between the nodes of the network represent all

Warehouses
𝑤1 𝑊

ℎ1 𝐻

Hospitals

Figure 6.1: The Network representation of Warehouses and Hospitals

the possible connections between the warehouses and the hospitals. Multiple links
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between each warehouse and each hospital describe the possibility of alternative

modes of transportation. I note that the suitable transportation mode is often

connected to the distance between supply and demand locations. Thus, for long

distances airplanes are preferred to transportation by truck or train. The choice of

the transportation mode may also depend on the type of medical item or on the

severity of the emergency.

Let 𝑥𝑘
𝑤ℎ

be the amount of medical item of type 𝑘 from warehouse 𝑤 to hospital ℎ,

and let 𝜌𝑘𝑤 be the unitary price of medical item 𝑘 at warehouse 𝑤. Let 𝑥𝑤ℎ denote

the total amount delivered from warehouse 𝑤 to hospital ℎ, where

𝑥𝑤ℎ =
∑︁
𝑘∈K

𝑥𝑘𝑤ℎ.

I further group the 𝑥𝑤ℎ into the𝑊𝐻−dimensional column vector 𝑥.

Moreover, I introduce the transportation time 𝑡𝑚
𝑤ℎ

from warehouse 𝑤 to hospital

ℎ with mode 𝑚 and assume that it depends on the total amount 𝑥, namely, 𝑡𝑚
𝑤ℎ

=

𝑡𝑚
𝑤ℎ
(𝑥). I consider two stages, where one corresponds to the preparedness phase

and the other represents the response phase. In the first phase, each demand

location, namely the hospital, looks for minimizing the purchasing cost of medical

items and the transportation time from the first stage; in the second one, a recourse

decision process is developed to optimize the transportation costs from the second

stage, in response to each disaster scenario. Let (Ω, F , 𝑃) be a probability space,

where the random parameter 𝜔 ∈ Ω represents the typical disaster scenario. For

each 𝜔 ∈ Ω, I denote by b : Ω → R𝑊𝐻𝐾+𝐻𝐾 a finite dimensional random vector

and by Eb the mathematical expectation with respect to b. In order to formulate the

two-stage stochastic model, I introduce two types of decision variables. The first-

stage decision variable 𝑥𝑘
𝑤ℎ

is used to represent the quantity of medical supplies

of type 𝑘 from warehouse 𝑤 to hospital ℎ in stage one. The second-stage decision
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variables are 𝑦𝑘
𝑤ℎ
(𝜔) and 𝑧𝑘

ℎ
(𝜔). The variable 𝑦𝑘

𝑤ℎ
(𝜔) represents the quantity of

medical supplies of type 𝑘 to be delivered from warehouse 𝑤 to hospital ℎ under

scenario 𝜔. The variable 𝑧𝑘
ℎ
(𝜔) is the unfulfilled demand at hospital ℎ of medical

supply item 𝑘 under scenario 𝜔. The amount of unfulfilled demand 𝑧𝑘
ℎ
(𝜔) is

penalized by the penalty function 𝜋𝑘
ℎ
= 𝜋𝑘

ℎ
(𝜔, 𝑧𝑘

ℎ
(𝜔)). I note that 𝑥𝑘

𝑤ℎ
is chosen

before a realization of b is revealed and later 𝑦𝑘
𝑤ℎ
(𝜔) and 𝑧𝑘

ℎ
(𝜔) are selected with

known realization. I set 𝑦𝑤ℎ (𝜔) =
∑
𝑘∈K 𝑦

𝑘
𝑤ℎ
(𝜔). I further group the 𝑦𝑤ℎ (𝜔) into

the𝑊𝐻−dimensional column vector 𝑦(𝜔). Finally, I introduce the transportation

cost 𝑐𝑚
𝑤ℎ

from warehouse 𝑤 to hospital ℎ with mode 𝑚 and assume that it depends

on the total amount 𝑦(𝜔), namely, 𝑐𝑚
𝑤ℎ

= 𝑐𝑚
𝑤ℎ
(𝜔, 𝑦(𝜔)). Table 6.1 summarizes the

relevant notations used in the model formulation. I aim at obtaining an efficient

Symbols Definitions

W set of warehouses, with typical warehouse denoted by 𝑤, 𝑐𝑎𝑟𝑑 (W) = 𝑊

H set of hospitals, with typical hospital denoted by ℎ, 𝑐𝑎𝑟𝑑 (H) = 𝐻

K set of different medical items, with typical item denoted by 𝑘 , 𝑐𝑎𝑟𝑑 (K) = 𝐾

M set of transportation modes, with typical mode denoted by 𝑚, 𝑐𝑎𝑟𝑑 (M) = 𝑀

𝑑𝑘
ℎ

demand of medical item 𝑘 of hospital ℎ in stage one

𝑑𝑘
ℎ
(𝜔) demand of medical item 𝑘 of hospital ℎ in stage two under scenario 𝜔

𝑥𝑘
𝑤ℎ

amount of medical item 𝑘 from warehouse 𝑤 to hospital ℎ in stage one

𝑥𝑤ℎ amount of medical items delivered from warehouse 𝑤 to hospital ℎ in stage one

𝑥 amount of total medical items from all warehouses to all hospitals in stage one

𝑒𝑘 maximum amount available of medical item 𝑘

𝜌𝑘𝑤 unitary price of medical item 𝑘 at warehouse 𝑤

𝑡𝑚
𝑤ℎ
(𝑥) transportation time from warehouse 𝑤 to hospital ℎ with mode 𝑚

𝑦𝑤ℎ (𝜔) amount of medical items to be delivedered from warehouse 𝑤 to hospital ℎ in stage two under scenario 𝜔

𝑦(𝜔) amount of medical items to be delivedered from all warehouses to all hospitals in stage two under scenario 𝜔

𝑧𝑘
ℎ
(𝜔) amount of unfulfilled demand at hospital ℎ of medical supply item 𝑘 under scenario 𝜔

𝑐𝑚
𝑤ℎ
(𝜔, 𝑦(𝜔)) transportation cost from warehouse 𝑤 to hospital ℎ with mode 𝑚 under scenario 𝜔

𝜋𝑘
ℎ
(𝜔, 𝑧𝑘

ℎ
(𝜔)) penalty for unfulfilled demand at hospital ℎ of medical supply item 𝑘 under scenario 𝜔

Table 6.1: The notation for the two-stage stochastic model

plan of medical item procurement of each demand location in the first stage by



6.2. The Two-Stage Stochastic Model 101

the evaluation of adaptive plans in the second stage. Thus, for each hospital, I

minimize the purchasing cost and the transportation time of the first stage with

the expected overall costs and the penalty for the prior plan. For each hospital, a

two-stage procurement planning model in a random environment is formulated. I

first present the hospital’s problem as a two-stage stochastic programming problem

and then define the stochastic Nash equilibrium describing the competition of all

hospitals.

For each hospital ℎ, the first-stage problem is given by

min
∑︁
𝑤∈W

( ∑︁
𝑘∈K

𝜌𝑘𝑤𝑥
𝑘
𝑤ℎ +

∑︁
𝑚∈M

𝑡𝑚𝑤ℎ (𝑥)
)
+ Eb (Φℎ (𝑥, b (𝜔))) (6.1)∑︁

𝑤∈W
𝑥𝑘𝑤ℎ≥𝑑

𝑘
ℎ , ∀𝑘 ∈ K, (6.2)∑︁

𝑤∈W
𝑥𝑘𝑤ℎ ≤ 𝑒𝑘 , ∀𝑘 ∈ K, (6.3)

𝑥𝑘𝑤ℎ ≥ 0, ∀𝑤 ∈ W, ∀𝑘 ∈ K . (6.4)

The objective function (6.1) minimizes the sum of the purchasing cost for early

supply plan, the transportation time, and the expected value of the second stage

solution, with respect to disaster scenario, Φℎ (𝑥, b (𝜔)). Constraint (6.2) states that

hospital ℎ receives at least the needed amount of medical items; constraint (6.3)

is the maximum availability constraint of each medical supply type 𝑘; constraint

(6.4) is the non-negativity requirement on variables. In order to ensure that the

constraint set is nonempty, I require that 𝑑𝑘
ℎ
≤ 𝑒𝑘 ,∀ℎ, 𝑘 .
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For a given realization 𝜔 ∈ Ω, Φℎ (𝑥, b (𝜔)) is given by

Φℎ (𝑥, b (𝜔)) = min
∑︁
𝑤∈W

∑︁
𝑚∈M

𝑐𝑚𝑤ℎ (𝜔, 𝑦(𝜔)) +
∑︁
𝑘∈K

𝜋𝑘ℎ (𝜔, 𝑧
𝑘
ℎ (𝜔)) (6.5)

subject to∑︁
𝑤∈W

𝑦𝑘𝑤ℎ (𝜔) + 𝑧
𝑘
ℎ (𝜔)≥𝑑

𝑘
ℎ (𝜔), ∀𝑘 ∈ K,P-a.s., (6.6)∑︁

𝑤∈W
𝑦𝑘𝑤ℎ (𝜔) +

∑︁
𝑤∈W

𝑥𝑘𝑤ℎ ≤ 𝑒𝑘 (𝜔), ∀𝑘 ∈ K,P-a.s., (6.7)

𝑦𝑘𝑤ℎ (𝜔) ≥ 0, 𝑧𝑘ℎ (𝜔) ≥ 0, 𝑧𝑘ℎ (𝜔) ≤ 𝛼 𝑑
𝑘
ℎ ,∀𝑤 ∈ W, ∀𝑘 ∈ K,P-a.s. (6.8)

Thus, Φℎ (𝑥, b (𝜔)) is the optimal value of the second-stage problem (6.5)-(6.8)

associated with hospital ℎ, where the constraints hold almost surely (P-a.s.). I

remark that Φℎ (𝑥, b (𝜔)) depends on 𝑥 via constraint (6.7). The objective function

(6.5) minimizes the total cost and the penalty for unmet demand at the second stage.

Constraint (6.6) states that the supply at the second stage plus the unmet demand

should be at least as much as the demand at the second stage. Constraint (6.7) is the

maximum availability constraint of each medical supply of type 𝑘 . I emphasize

that the connection between stage-wise decision variables 𝑥 and 𝑦 is captured

by constraint (6.7). It is the linking factor between the first and second stage,

and communicates the first-stage decisions to the second one. Constraint (6.8) is

the non-negativity requirement on variables. I also assume that 𝑧𝑘
ℎ
(𝜔) ≤ 𝛼 𝑑𝑘

ℎ
,

𝛼 ∈]0, 1], P-a.s., namely, the unmet demand cannot exceed a fixed percentage of

the first stage demand.

In order to ensure that the constraint set of the second stage is nonempty, it suffices

to require that

𝑑𝑘ℎ (𝜔) ≤ min
{
𝑒𝑘 (𝜔),

𝑑𝑘
ℎ

𝛼

}
, ∀ℎ, 𝑘,P-a.s.

I assume that:
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a) 𝑡𝑚
𝑤ℎ
(·) is continuously differentiable and convex for all 𝑤, ℎ, 𝑘;

b) 𝑐𝑚
𝑤ℎ
(𝜔, ·), 𝜋𝑘

ℎ
(𝜔, ·), a.e. in Ω, are continuously differentiable and convex for

all 𝑤, ℎ, 𝑘, 𝑚;

c) for each 𝑢 ∈ R𝑊𝐻 , 𝑐𝑚
𝑤ℎ
(·, 𝑢) is measurable with respect to the random

parameter in Ω for all 𝑤, ℎ, 𝑚;

d) for each 𝑣 ∈ R𝐻𝐾 , 𝜋𝑘
ℎ
(·, 𝑣) is measurable with respect to the random param-

eter in Ω for all ℎ, 𝑘;

e) 𝜕𝑐𝑚
𝑤ℎ
(𝜔,𝑦(𝜔))
𝜕𝑦𝑘
𝑤ℎ

, 𝜕𝜋
𝑘
ℎ
(𝜔,𝑧𝑘

ℎ
(𝜔))

𝜕𝑧𝑘
ℎ

are measurable in 𝜔 and continuous in 𝑦 and 𝑧;

f) 𝑦𝑘
𝑤ℎ

: Ω→ R and 𝑧𝑘
ℎ

: Ω→ R are measurable mappings for all 𝑤, ℎ, 𝑘;

g) 𝑑𝑘
ℎ

: Ω→ R is a measurable mapping for all ℎ and all 𝑘 .

The two-stage problem of hospital ℎ can be also formulated as the unique large

scale problem:
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min
∑︁
𝑤∈W

( ∑︁
𝑘∈K

𝜌𝑘𝑤ℎ𝑥
𝑘
𝑤ℎ +

∑︁
𝑚∈M

𝑡𝑚𝑤ℎ (𝑥)
)
+ Eb (Φℎ (𝑥, b (𝜔))) (6.9)

subject to∑︁
𝑤∈W

𝑥𝑘𝑤ℎ≥𝑑
𝑘
ℎ , ∀𝑘 ∈ K,P-a.s., (6.10)∑︁

𝑤∈W
𝑥𝑘𝑤ℎ ≤ 𝑒𝑘 , ∀𝑘 ∈ K,P-a.s., (6.11)∑︁

𝑤∈W
𝑦𝑘𝑤ℎ (𝜔) + 𝑧

𝑘
ℎ (𝜔)≥𝑑

𝑘
ℎ (𝜔), ∀𝑘 ∈ K,P-a.s., (6.12)∑︁

𝑤∈W
𝑦𝑘𝑤ℎ (𝜔) +

∑︁
𝑤∈W

𝑥𝑘𝑤ℎ ≤ 𝑒𝑘 (𝜔), ∀𝑘 ∈ K,P-a.s., (6.13)

𝑥𝑘𝑤ℎ ≥ 0, ∀𝑤 ∈ W, ∀𝑘 ∈ K,P-a.s., (6.14)

𝑦𝑘𝑤ℎ (𝜔) ≥ 0, ∀𝑤 ∈ W, ∀𝑘 ∈ K,P-a.s., (6.15)

𝑧𝑘ℎ (𝜔) ≥ 0, ∀𝑘 ∈ K,P-a.s., (6.16)

𝑧𝑘ℎ (𝜔) ≤ 𝛼 𝑑
𝑘
ℎ , ∀𝑘 ∈ K,P-a.s. (6.17)

6.3 Stochastic Nash Equilibrium Problem

In this section, I present the equilibrium concept underlying my model and the

equivalent variational inequality formulation. Both the cases of discrete and

general probability distribution are discussed.

Each hospital minimizes the deterministic costs and the expected costs for all

the scenarios. Then, the hospitals simultaneously solve their own optimization

problems and reach a stable state governed by the Nash equilibrium concept.
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I define the sets:

𝑆ℎ =

{
𝑥ℎ = (𝑥𝑤ℎ)𝑤 ∈ R𝑊 : (6.10) − (6.11), (6.14) hold

}
,

𝑇ℎ =

{
(𝑦ℎ, 𝑧ℎ) = (𝑦𝑤ℎ (𝜔), 𝑧ℎ𝑘 (𝜔))𝑤,𝑘 ∈ R𝑊+𝐾 :

(6.12) − (6.13), (6.15) − (6.17) hold, P-a.s.
}
,

𝑆 =
∏
ℎ

𝑆ℎ,

𝑇 =
∏
ℎ

𝑇ℎ.

I will refer to the objective function (6.9) as the function Jℎ (𝜔, 𝑥, 𝑦(𝜔), 𝑧(𝜔)),

namely

Jℎ (𝜔, 𝑥, 𝑦(𝜔), 𝑧(𝜔)) =
∑︁
𝑤∈W

( ∑︁
𝑘∈K

𝜌𝑘𝑤ℎ𝑥
𝑘
𝑤ℎ +

∑︁
𝑚∈M

𝑡𝑚𝑤ℎ (𝑥)
)
+ Eb (Φℎ (𝑥, b (𝜔))).

Definition 6.3.1. A vector of medical items (𝑥∗, 𝑦∗, 𝑧∗) ∈ 𝑆×𝑇 is a stochastic Nash
equilibrium if for each ℎ ∈ H

Jℎ (𝜔, 𝑥∗ℎ, 𝑦
∗
ℎ (𝜔), 𝑧

∗
ℎ (𝜔), 𝑥

∗
−ℎ, 𝑦

∗
−ℎ (𝜔), 𝑧

∗
−ℎ (𝜔)) ≤ Jℎ (𝜔, 𝑥ℎ, 𝑦ℎ (𝜔), 𝑧ℎ (𝜔), 𝑥

∗
−ℎ, 𝑦

∗
−ℎ (𝜔), 𝑧

∗
−ℎ (𝜔)),

∀(𝑥ℎ, 𝑦ℎ (𝜔), 𝑧ℎ (𝜔)) ∈ 𝑆ℎ × 𝑇ℎ, P-a.s.,

where 𝑥−ℎ, 𝑦−ℎ (𝜔), 𝑧−ℎ (𝜔) denotes the amount of medical items and the unmet

demands of all hospitals except for ℎ.

According to the above definition, a Nash equilibrium is established if no hospital

can unilaterally improve upon his profit by choosing an alternative medical item

flow pattern, given other hospitals’ decision strategies.

6.3.1 Discrete Probability Distribution

If the random parameter 𝜔 ∈ Ω follows a discrete distribution with finite support

Ω = {𝜔1, . . . , 𝜔𝑟} and probabilities 𝑝(𝜔𝑟) associated with each realization 𝜔𝑟 ,
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𝑟 ∈ R = {1, . . . , 𝑅}, then the objective function (6.9) for ℎ ∈ H becomes

Jℎ (𝜔, 𝑥, 𝑦(𝜔), 𝑧(𝜔)) =
∑︁
𝑤∈W

( ∑︁
𝑘∈K

𝜌𝑘𝑤ℎ𝑥
𝑘
𝑤ℎ +

∑︁
𝑚∈M

𝑡𝑚𝑤ℎ (𝑥)
)

+
∑︁
𝑟∈R

𝑝(𝜔𝑟)
( ∑︁
𝑤∈W

∑︁
𝑚∈M

𝑐𝑚𝑤ℎ (𝜔𝑟 , 𝑦(𝜔𝑟)) +
∑︁
𝑘∈K

𝜋𝑘ℎ (𝜔𝑟 , 𝑧
𝑘
ℎ (𝜔𝑟))

)
, (6.18)

and the cost minimization problem for ℎ ∈ H is given by

min Jℎ (𝜔, 𝑥, 𝑦(𝜔), 𝑧(𝜔)) (6.19)∑︁
𝑤∈W

𝑥𝑘𝑤ℎ≥𝑑
𝑘
ℎ , ∀𝑘 ∈ K, (6.20)∑︁

𝑤∈W
𝑥𝑘𝑤ℎ ≤ 𝑒𝑘 , ∀𝑘 ∈ K, (6.21)∑︁

𝑤∈W
𝑦𝑘𝑤ℎ (𝜔𝑟) + 𝑧

𝑘
ℎ (𝜔𝑟)≥𝑑

𝑘
ℎ (𝜔𝑟), ∀𝑘 ∈ K,∀𝑟 ∈ R, (6.22)∑︁

𝑤∈W
𝑦𝑘𝑤ℎ (𝜔𝑟) +

∑︁
𝑤∈W

𝑥𝑘𝑤ℎ ≤ 𝑒𝑘 (𝜔𝑟), ∀𝑘 ∈ K,∀𝑟 ∈ R, (6.23)

𝑥𝑘𝑤ℎ ≥ 0, ∀𝑤 ∈ W, ∀𝑘 ∈ K, (6.24)

𝑦𝑘𝑤ℎ (𝜔𝑟) ≥ 0, ∀𝑤 ∈ W, ∀𝑘 ∈ K,∀𝑟 ∈ R, (6.25)

𝑧𝑘ℎ (𝜔𝑟) ≥ 0, ∀𝑘 ∈ K,∀𝑟 ∈ R, (6.26)

𝑧𝑘ℎ (𝜔𝑟) ≤ 𝛼 𝑑
𝑘
ℎ , ∀𝑘 ∈ K,∀𝑟 ∈ R. (6.27)

It is well known that a Nash equilibrium can be characterized as a solution to

a variational inequality problem (see [126, 158] for theory and applications on

variational inequalities). Thus, the competition among hospitals under the Nash

criterion is described by the following variational inequality:
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∑︁
𝑤∈W

∑︁
ℎ∈H

∑︁
𝑘∈K

(
𝜌𝑘𝑤ℎ +

∑︁
𝑚∈M

𝜕𝑡𝑚
𝑤ℎ
(𝑥∗)

𝜕𝑥𝑘
𝑤ℎ

)
× (𝑥𝑘𝑤ℎ − 𝑥

∗𝑘
𝑤ℎ)

+
∑︁
𝑟∈R

𝑝(𝜔𝑟)
∑︁
𝑤∈W

∑︁
ℎ∈H

∑︁
𝑘∈K

( ∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔𝑟 , 𝑦∗(𝜔𝑟))
𝜕𝑦𝑘

𝑤ℎ

)
× (𝑦𝑘𝑤ℎ (𝜔𝑟) − 𝑦

∗𝑘
𝑤ℎ (𝜔𝑟))

+
∑︁
𝑟∈R

𝑝(𝜔𝑟)
∑︁
ℎ∈H

∑︁
𝑘∈K

𝜕𝜋𝑘
ℎ
(𝜔𝑟 , 𝑧∗𝑘ℎ (𝜔𝑟))
𝜕𝑧𝑘

ℎ

× (𝑧𝑘ℎ (𝜔𝑟) − 𝑧
∗𝑘
ℎ (𝜔𝑟)) ≥ 0,

∀(𝑥, 𝑦(𝜔𝑟), 𝑧(𝜔𝑟)) ∈ 𝑆 × 𝑇,∀𝑟 ∈ R. (6.28)

I note that the set 𝑆, and the set 𝑇 , ∀𝑟 ∈ R, are nonempty, compact and convex,

and the operator entering (6.28) is continuous. Therefore, a solution to the above

problem exists from the standard theory of variational inequalities [126].

6.3.2 General Probability Distribution

In the case of a general probability space (Ω, F , 𝑃), studying the optimality

conditions can be very hard, as one should state the order of the decision process

explicitly. For this reason, I choose as my functional setting a Hilbert space

and assume that 𝑦 ∈ 𝐿2(Ω, 𝑃,R𝑊𝐻), 𝑧 ∈ 𝐿2(Ω, 𝑃,R𝐻𝐾), 𝑑 ∈ 𝐿2(Ω, 𝑃,R𝐻𝐾).

𝐿2(Ω, 𝑃,R𝑊𝐻) denotes the class of R𝑊𝐻-valued functions defined in Ω, that are

square integrable with respect to the probability measure 𝑃. Analogous meaning

has the space 𝐿2(Ω, 𝑃,R𝐻𝐾).

Moreover, I require the following growth conditions, ∀𝑚, 𝑤, ℎ, 𝑘:
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���𝑐𝑚𝑤ℎ (𝜔, 𝑦)��� ≤ 𝛽1𝑚
𝑤ℎ (𝜔) (1 + ∥𝑦∥),∀𝑦 ∈ R

𝑊𝐻 , (6.29)���𝜋𝑘ℎ (𝜔, 𝑧)��� ≤ 𝛽2𝑘
ℎ (𝜔) (1 + ∥𝑧∥),∀𝑧 ∈ R

𝐻𝐾 , P-a.s., (6.30)�����𝜕𝑐𝑚𝑤ℎ (𝜔, 𝑦)𝜕𝑦𝑘
𝑤ℎ

����� ≤ 𝛽3𝑚
𝑤ℎ (𝜔) (1 + ∥𝑦∥),∀𝑦 ∈ R

𝑊𝐻 , (6.31)�����𝜕𝜋𝑘ℎ (𝜔, 𝑧ℎ)𝜕𝑧𝑘
ℎ

����� ≤ 𝛽4𝑘
ℎ (𝜔) (1 + ∥𝑧∥),∀𝑧 ∈ R

𝐻𝐾 , P-a.s., (6.32)

where 𝛽1𝑚
𝑤ℎ
, 𝛽2𝑘

ℎ
, 𝛽3𝑚

𝑤ℎ
, 𝛽4𝑘

ℎ
are non-negative functions of 𝐿∞(Ω).

Theorem 6.3.1. Under assumptions a)-g) and conditions (6.29)-(6.32), a vector

(𝑥∗, 𝑦∗, 𝑧∗) ∈ 𝑆 × 𝑇 is an optimal solution of the medical supply problem if and

only if it is a solution of the following variational inequality:

∑︁
𝑤∈W

∑︁
ℎ∈H

∑︁
𝑘∈K

(
𝜌𝑘𝑤ℎ +

∑︁
𝑚∈M

𝜕𝑡𝑚
𝑤ℎ
(𝑥∗)

𝜕𝑥𝑘
𝑤ℎ

)
× (𝑥𝑘𝑤ℎ − 𝑥

∗𝑘
𝑤ℎ)

+
∑︁
ℎ∈H

∑︁
𝑘∈K

∫
Ω

[ ∑︁
𝑤∈W

( ∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

)
× (𝑦𝑘𝑤ℎ (𝜔) − 𝑦

∗𝑘
𝑤ℎ (𝜔))

+
𝜕𝜋𝑘

ℎ
(𝜔, 𝑧∗𝑘

ℎ
(𝜔))

𝜕𝑧𝑘
ℎ

× (𝑧𝑘ℎ (𝜔) − 𝑧
∗𝑘
ℎ (𝜔)))

]
𝑑𝑃(𝜔) ≥ 0, ∀(𝑥, 𝑦, 𝑧) ∈ 𝑆 × 𝑇.

(6.33)

Proof. The proof procceds as in [16]. □

Ensure the existence of solutions, I may apply the results in [148]. I first recall

some definitions.

Let 𝐸 be a reflexive Banach space with dual space 𝐸∗ and 𝐾 ⊂ 𝐸 a closed convex

set.

Definition 6.3.2. A mapping 𝐴 : 𝐾 ↦→ 𝐸∗ is called pseudomonotone in the sense

of Brezis if and only if
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• for each sequence 𝑢𝑛 weakly converging to 𝑢 in 𝐾 and such that

lim sup
𝑛

⟨𝐴𝑢𝑛, 𝑢𝑛 − 𝑢⟩ ≤ 0

it results

lim inf
𝑛
⟨𝐴𝑢𝑛, 𝑢𝑛 − 𝑣 ≥ ⟨𝐴𝑢, 𝑢 − 𝑣⟩, ∀𝑣 ∈ 𝐾;

• for each 𝑣 ∈ 𝐾 the function 𝑢 ↦→ ⟨𝐴𝑢, 𝑢 − 𝑣⟩ is lower bounded on the

bounded subsets of 𝐾 .

Definition 6.3.3. A mapping 𝐴 : 𝐾 ↦→ 𝐸∗ is hemicontinuous in the sense of

Fan if and only if for all 𝑣 ∈ 𝐾 the function 𝑢 ↦→ ⟨𝐴𝑢, 𝑢 − 𝑣⟩ is weakly lower

semicontinuous on 𝐾 .

Definition 6.3.4. The map 𝐴 : 𝐾 → 𝐸∗ is said to be lower hemicontinuous along

line segments, if and only if the function:

b ↦→ ⟨𝐴b, 𝑢 − 𝑣⟩

is lower semicontinuous for all 𝑢, 𝑣 ∈ 𝐾 on the line segments [𝑢, 𝑣].

Definition 6.3.5. The map 𝐴 : 𝐾 → 𝐸∗ is said to be pseudomonotone in the sense

of Karamardian if and only if for all 𝑢, 𝑣 ∈ 𝐾

⟨𝐴𝑣, 𝑢 − 𝑣⟩ ≥ 0→ ⟨𝐴𝑢, 𝑢 − 𝑣⟩ ≥ 0.

Theorem 6.3.2. Let us assume that the map 𝐴 : 𝐾 ↦→ 𝐸∗ be B-pseudomonotone

or F-hemicontinuous and there exist 𝑢0 ∈ 𝐾 and 𝑅 > ∥𝑢0∥ such that

⟨𝐴𝑣, 𝑣 − 𝑢0⟩ ≥ 0, ∀𝑣 ∈ 𝐾 ∩ {𝑣 ∈ 𝐸 : ∥𝑣∥ = 𝑅}. (6.34)

Then, the variational inequality ⟨𝐴𝑢, 𝑣 − 𝑢⟩,∀𝑣 ∈ 𝐾 admits solutions.
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Theorem 6.3.3. Let 𝐴 : 𝐾 ↦→ 𝐸∗ be a K-pseudomonotone map which is lower

hemicontinuous along line segments. Let us assume that condition (6.34) holds

true. Then, variational inequality ⟨𝐴𝑢, 𝑣 − 𝑢⟩,∀𝑣 ∈ 𝐾 admits solutions.

I recall that condition (6.34) is satisfied if the coercivity condition is verified:

lim
∥𝑢∥→∞
𝑢∈𝐾

⟨𝐴𝑢, 𝑢 − 𝑢0⟩
∥𝑢∥ = +∞. (6.35)

I can apply Theorem 6.3.2 and Theorem 6.3.3, assuming that the operator of the

variational inequality is B-pseudomonotone or F-hemicontinuous and (6.34) or

(6.35) holds true, or assuming that it is K-pseudomonotone, conditions (6.29)-

(6.32) are verified, and (6.34) or (6.35) holds true. I also recall that condition

(6.32) is sufficient to guarantee that the operator is lower hemicontinuous along

line segments (see [77]).

6.4 Duality Theory

I now present some infinite dimensional Lagrange duality results as in [55, 58,

57, 117]. For reader’s convenience, I first recall some typical concepts in duality

theory [120]. Let 𝑋 denote a real normed space and 𝑋∗ the topological dual of

all continuous linear functionals on 𝑋 . Given 𝐶, a nonempty subset of 𝑋 , and an

element 𝑥 ∈ 𝑋 , the set

𝑇𝐶 (𝑥) : =
{
ℎ ∈ 𝑋 : ℎ = lim

𝑛→∞
_𝑛 (𝑥𝑛 − 𝑥), _𝑛 ∈ R, _𝑛 > 0 ∀𝑛 ∈ N,

𝑥𝑛 ∈ 𝐶 ∀𝑛 ∈ N, lim
𝑛→∞

𝑥𝑛 = 𝑥

}
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is called the contingent cone to 𝐶 at 𝑥. Of course, if 𝑇𝐶 (𝑥) ≠ ∅, then 𝑥 belongs to

the closure of 𝐶, denoted by cl 𝐶. If 𝐶 is convex, then [120]

𝑇𝐶 (𝑥) = cl cone(𝐶 − {𝑥}),where cone(𝐶) : = {_𝑥 : 𝑥 ∈ 𝐶, _ ∈ R, _ ≥ 0}.

I now present the statement of Theorem 3.2 in [149]. Let 𝑋 be a real normed

space real and 𝑆 be a nonempty subset of 𝑋; let (𝑌, ∥ · ∥) be a real normed space,

partially ordered by a convex cone 𝐶. Let 𝑓 : 𝑆 → R and 𝑔 : 𝑆 → 𝑌 be two

convex functions. Let us consider the primal problem

min
𝑥∈𝐾

𝑓 (𝑥), 𝐾 := {𝑥 ∈ 𝑆 : 𝑔(𝑥) ∈ −𝐶}, (6.36)

and the dual problem

max
𝑢∈𝐶∗

inf
𝑥∈𝑆
{ 𝑓 (𝑥) + ⟨𝑢, 𝑔(𝑥)⟩}, 𝐶∗ :=

{
𝑢 ∈ 𝑌 ∗ : ⟨𝑢, 𝑣⟩ ≥ 0,∀𝑣 ∈ 𝐶

}
, (6.37)

where 𝐶∗ is the dual cone of 𝐶.

I say that Assumption 𝑆 is fulfilled at a point 𝑥0 ∈ 𝐾 if and only if it results:

𝑇
𝑀
( 𝑓 (𝑥0), 0𝑌 )∩] − ∞, 0[×{0𝑌 } = ∅,

where

𝑀 :=
{
( 𝑓 (𝑥) − 𝑓 (𝑥0) + 𝛾, 𝑔(𝑥) + 𝑣) : 𝑥 ∈ 𝑆 \ 𝐾, 𝛼 ≥ 0, 𝑣, 𝑦 ∈ 𝐶

}
.

Then, in [149] the following theorem is proved.

Theorem 6.4.1. Under the above assumptions, if problem (6.36) is solvable and

Assumption 𝑆 is fulfilled at the extremal solution 𝑥0 ∈ 𝐾 , then also problem (6.37)

is solvable, the extreme values of both problems are equal and, denoted by 𝑢 the

optimal solution of (6.37), it results that ⟨𝑢, 𝑔(𝑥0)⟩ = 0.
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The following result entitles us to characterize a solution of problem (6.36) as a

saddle point of the Lagrange function [55].

Theorem 6.4.2. Let us assume that assumptions of Theorem 6.4.1 be satisfied.

Then, 𝑥0 ∈ 𝐾 is a minimal solution to problem (6.36) if and only if there exists

𝑢 ∈ 𝐶∗ such that (𝑥0, 𝑢) is a saddle point of the Lagrange function, namely,

L(𝑥0, 𝑢) ≤ L(𝑥0, 𝑢) ≤ L(𝑥, 𝑢),∀𝑥 ∈ 𝑆, 𝑢 ∈ 𝐶∗, ⟨𝑢, 𝑔(𝑥0)⟩ = 0.

I now apply the duality framework in [55, 58, 57] to the second stage problem

(6.5)-(6.8). First, I note problem (6.5)-(6.8) is equivalent to a variational inequality,

see [16].

Theorem 6.4.3. The vector (𝑦∗
ℎ
, 𝑧∗
ℎ
) ∈ 𝑇ℎ, for all ℎ ∈ H , is an optimal solution

of the second-stage problem (6.5)-(6.8) if and only if (𝑦∗
ℎ
, 𝑧∗
ℎ
) ∈ 𝑇ℎ solves the

variational inequality

∑︁
𝑘∈K

∫
Ω

[ ∑︁
𝑤∈W

( ∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

)
× (𝑦𝑘𝑤ℎ (𝜔) − 𝑦

∗𝑘
𝑤ℎ (𝜔))

+
𝜕𝜋𝑘

ℎ
(𝜔, 𝑧∗𝑘

ℎ
(𝜔))

𝜕𝑧𝑘
ℎ

× (𝑧𝑘ℎ (𝜔) − 𝑧
∗𝑘
ℎ (𝜔)))

]
𝑑𝑃(𝜔) ≥ 0,∀(𝑦ℎ, 𝑧ℎ)) ∈ 𝑇ℎ. (6.38)

Now, I give two preliminary results.

Lemma 6.4.1. Let (𝑦∗
ℎ
, 𝑧∗
ℎ
) ∈ 𝑇ℎ be a solution to (6.38). Let us introduce, a.e. in

Ω,
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a1
ℎ (𝜔) = min

{ ∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

: 𝑤 ∈ W, 𝑘 ∈ K
}
,

a2
ℎ (𝜔) = min

{
𝜕𝜋𝑘

ℎ
(𝜔, 𝑧∗𝑘

ℎ
(𝜔))

𝜕𝑧𝑘
ℎ

: 𝑘 ∈ K
}

Ω1𝑘
𝑤 =

{
𝜔 ∈ Ω :

∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

= a1
ℎ (𝜔)

}
, 𝑤 ∈ W, 𝑘 ∈ K

Ω2𝑘
𝑤 =

{
𝜔 ∈ Ω :

∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

> a1
ℎ (𝜔)

}
, 𝑤 ∈ W, 𝑘 ∈ K

Ω3𝑘 =

{
𝜔 ∈ Ω :

𝜕𝜋𝑘
ℎ
(𝜔, 𝑧∗𝑘

ℎ
(𝜔))

𝜕𝑧𝑘
ℎ

= a2
ℎ (𝜔)

}
, 𝑘 ∈ K,

Ω4𝑘 =

{
𝜔 ∈ Ω :

𝜕𝜋𝑘
ℎ
(𝜔, 𝑧∗𝑘

ℎ
(𝜔))

𝜕𝑧𝑘
ℎ

> a2
ℎ (𝜔)

}
, 𝑘 ∈ K .

Then,

𝜔 ∈ Ω1𝑘
𝑤 ⇒ 𝑦𝑘𝑤ℎ (𝜔) ≥ 0, 𝜔 ∈ Ω2𝑘

𝑤 ⇒ 𝑦𝑘𝑤ℎ (𝜔) = 0, (6.39)

𝜔 ∈ Ω3𝑘 ⇒ 𝑧𝑘ℎ (𝜔) ≥ 0, 𝜔 ∈ Ω4𝑘 ⇒ 𝑧𝑘ℎ (𝜔) = 0. (6.40)

Vice versa, if there exist two functions a1
ℎ
, a2
ℎ
∈ 𝐿2(Ω, 𝑃,R) such that (6.39)-(6.40)

hold, then (𝑦∗
ℎ
, 𝑧∗
ℎ
) ∈ 𝑇ℎ solves (6.38).

Proof. I assume that (𝑦∗
ℎ
, 𝑧∗
ℎ
) ∈ 𝑇ℎ is a solution to (6.38). Following [16], I prove

that if there exist 𝑤1, 𝑘1, 𝑤2, 𝑘2 such that

∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤1ℎ
(𝜔, 𝑦∗(𝜔))

𝜕𝑦
𝑘1
𝑤1ℎ

<
∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤2ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘2

𝑤2ℎ

, (6.41)

then 𝑦𝑘2
𝑤2ℎ

= 0. By contradiction, suppose that there exists a set 𝐸 ⊆ Ω, with
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positive measure, such that 𝑦𝑘2
𝑤2ℎ

> 0, for all 𝜔 ∈ 𝐸 and (6.41) holds. Let us set

𝑦𝑘𝑤ℎ =



𝑦∗𝑘
𝑤ℎ

in Ω \ 𝐸,

𝑦∗𝑘
𝑤ℎ

if 𝑤 ≠ 𝑤1, 𝑤2, 𝑘 ≠ 𝑘1, 𝑘2, in 𝐸,

𝑦
∗𝑘1
𝑤1ℎ
+ 𝑦∗𝑘2

𝑤2ℎ
if 𝑤 = 𝑤1, 𝑘 = 𝑘1, in 𝐸,

0 if 𝑤 = 𝑤2, 𝑘 = 𝑘2, in 𝐸,

with
∑
𝑤∈W 𝑥𝑘

𝑤ℎ
≥𝑑𝑘

ℎ
,
∑
𝑤∈W 𝑥𝑘

𝑤ℎ
≤ 𝑒𝑘 , 𝑥𝑘𝑤ℎ ≥ 0,∀𝑤 ∈ W, ∀𝑘 ∈ K and 𝑧𝑘

ℎ
(𝜔) =

𝑧∗𝑘
ℎ
(𝜔), ∀𝑘 ∈ K. Variational inequality (6.38) becomes

∑︁
𝑘∈K

∫
Ω\𝐸

[ ∑︁
𝑤∈W

( ∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

)
× (𝑦𝑘𝑤ℎ (𝜔) − 𝑦

∗𝑘
𝑤ℎ (𝜔))

]
𝑑𝑃(𝜔)

+
∑︁
𝑘∈K

𝑘≠𝑘1,𝑘2

∫
𝐸

[ ∑︁
𝑤∈W

𝑤≠𝑤1,𝑤2

( ∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

)
× (𝑦𝑘𝑤ℎ (𝜔) − 𝑦

∗𝑘
𝑤ℎ (𝜔))

]
𝑑𝑃(𝜔)

+
∫
𝐸

( ∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤1ℎ
(𝜔, 𝑦∗(𝜔))

𝜕𝑦
𝑘1
𝑤1ℎ

)
× (𝑦𝑘1

𝑤1ℎ
(𝜔) − 𝑦∗𝑘1

𝑤1ℎ
(𝜔))𝑑𝑃(𝜔)

+
∫
𝐸

( ∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤2ℎ
(𝜔, 𝑦∗(𝜔))

𝜕𝑦
𝑘2
𝑤2ℎ

)
× (𝑦𝑘2

𝑤2ℎ
(𝜔) − 𝑦∗𝑘2

𝑤2ℎ
(𝜔))𝑑𝑃(𝜔)

=

∫
𝐸

( ∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤1ℎ
(𝜔, 𝑦∗(𝜔))

𝜕𝑦
𝑘1
𝑤1ℎ

−
∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤2ℎ
(𝜔, 𝑦∗(𝜔))

𝜕𝑦
𝑘2
𝑤2ℎ

)
𝑦
𝑘2
𝑤2ℎ
(𝜔)𝑑𝑃(𝜔) < 0.

This contradics variational inequality (6.38). Thus, I have

∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

= a1
ℎ (𝜔) ⇒ 𝑦∗𝑘𝑤ℎ (𝜔) ≥ 0,∑︁

𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

> a1
ℎ (𝜔) ⇒ 𝑦∗𝑘𝑤ℎ (𝜔) = 0.
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Analogously, I find

𝜕𝜋𝑘
ℎ
(𝜔, 𝑧∗𝑘

ℎ
(𝜔))

𝜕𝑧𝑘
ℎ

= a2
ℎ (𝜔) ⇒ 𝑧∗𝑘ℎ (𝜔) ≥ 0,

𝜕𝜋𝑘
ℎ
(𝜔, 𝑧∗𝑘

ℎ
(𝜔))

𝜕𝑧𝑘
ℎ

> a2
ℎ (𝜔) ⇒ 𝑧∗𝑘ℎ (𝜔) = 0.

Now, I suppose that there exist two functions a1
ℎ
, a2
ℎ
∈ 𝐿2(Ω, 𝑃,R) such that

(6.39)-(6.40) hold. Variational inequality (6.38) becomes

∑︁
𝑘∈K

∫
Ω

[ ∑︁
𝑤∈W

( ∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

)
× (𝑦𝑘𝑤ℎ (𝜔) − 𝑦

∗𝑘
𝑤ℎ (𝜔))

+
𝜕𝜋𝑘

ℎ
(𝜔, 𝑧∗𝑘

ℎ
(𝜔))

𝜕𝑧𝑘
ℎ

× (𝑧𝑘ℎ (𝜔) − 𝑧
∗𝑘
ℎ (𝜔)))

]
𝑑𝑃(𝜔)

=
∑︁
𝑤∈W

∑︁
𝑘∈K

∫
Ω1𝑘
𝑤

a1
ℎ (𝜔) (𝑦

𝑘
𝑤ℎ (𝜔) − 𝑦

∗𝑘
𝑤ℎ (𝜔))𝑑𝑃(𝜔)

+
∑︁
𝑤∈W

∑︁
𝑘∈K

∫
Ω2𝑘
𝑤

∑︁
𝑤∈W

( ∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

)
(𝑦𝑘𝑤ℎ (𝜔) − 𝑦

∗𝑘
𝑤ℎ (𝜔))𝑑𝑃(𝜔)

+
∑︁
𝑤∈W

∑︁
𝑘∈K

∫
Ω3𝑘

a2
ℎ (𝜔) (𝑧

𝑘
ℎ (𝜔) − 𝑧

∗𝑘
ℎ (𝜔))𝑑𝑃(𝜔)

+
∑︁
𝑤∈W

∑︁
𝑘∈K

∫
Ω4𝑘

∑︁
𝑤∈W

(
𝜕𝜋𝑘

ℎ
(𝜔, 𝑧∗𝑘

ℎ
(𝜔))

𝜕𝑧𝑘
ℎ

)
(𝑧𝑘ℎ (𝜔) − 𝑧

∗𝑘
ℎ (𝜔))𝑑𝑃(𝜔)

≥
∑︁
𝑤∈W

∑︁
𝑘∈K

∫
Ω1𝑘
𝑤

a1
ℎ (𝜔) (𝑦

𝑘
𝑤ℎ (𝜔) − 𝑦

∗𝑘
𝑤ℎ (𝜔))𝑑𝑃(𝜔)

+
∑︁
𝑤∈W

∑︁
𝑘∈K

∫
Ω2𝑘
𝑤

a1
ℎ (𝜔) (𝑦

𝑘
𝑤ℎ (𝜔) − 𝑦

∗𝑘
𝑤ℎ (𝜔))𝑑𝑃(𝜔)

+
∑︁
𝑤∈W

∑︁
𝑘∈K

∫
Ω3𝑘

a2
ℎ (𝜔) (𝑧

𝑘
ℎ (𝜔) − 𝑧

∗𝑘
ℎ (𝜔))𝑑𝑃(𝜔)

+
∑︁
𝑤∈W

∑︁
𝑘∈K

∫
Ω4𝑘

a2
ℎ (𝜔) (𝑧

𝑘
ℎ (𝜔) − 𝑧

∗𝑘
ℎ (𝜔))𝑑𝑃(𝜔) = 0.

Therefore, variational inequality (6.38) is satisfied. □
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Now, I prove that Assumption 𝑆 is verified.

Theorem 6.4.4. Problem (6.38) verifies Assumption 𝑆 at the optimal solution

(𝑦∗
ℎ
, 𝑧∗
ℎ
) ∈ 𝑇ℎ.

Proof. I suppose that (𝑦∗
ℎ
, 𝑧∗
ℎ
) ∈ 𝑇ℎ is a solution to (6.38), and prove that Assump-

tion 𝑆 is verified at (𝑦∗
ℎ
, 𝑧∗
ℎ
) ∈ 𝑇ℎ. I set 𝑌 = 𝐿2(Ω, 𝑃,R𝑊𝐾), 𝑍 = 𝐿2(Ω, 𝑃,R𝐾),

and prove that if (𝑙, \𝑌 , \𝑌 , \𝑌 , \𝑍 , \𝑍 ) is such that

𝑙 = lim
𝑛
_𝑛

{ ∑︁
𝑘∈K

∫
Ω

[ ∑︁
𝑤∈W

( ∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

)
× (𝑦𝑘𝑤ℎ (𝜔) − 𝑦

∗𝑘
𝑤ℎ (𝜔))

(6.42)

+
𝜕𝜋𝑘

ℎ
(𝜔, 𝑧∗𝑘

ℎ
(𝜔))

𝜕𝑧𝑘
ℎ

× (𝑧𝑘ℎ (𝜔) − 𝑧
∗𝑘
ℎ (𝜔))

]
𝑑𝑃(𝜔) + 𝛾𝑛

}
, (6.43)

\𝑌 = lim
𝑛
_𝑛

(
𝑑𝑘ℎ (𝜔) −

∑︁
𝑤∈W

𝑦𝑘𝑤ℎ (𝜔) − 𝑧
𝑘
ℎ (𝜔) + 𝑢

1
𝑛

)
,

\𝑌 = lim
𝑛
_𝑛

( ∑︁
𝑤∈W

𝑦𝑘𝑤ℎ (𝜔) +
∑︁
𝑤∈W

𝑥𝑘𝑤ℎ − 𝑒𝑘 (𝜔) + 𝑢
2
𝑛

)
, (6.44)

\𝑌 = lim
𝑛
_𝑛

(
− 𝑦𝑘𝑤ℎ (𝜔) + 𝑢

3
𝑛

)
,

\𝑍 = lim
𝑛
_𝑛

(
− 𝑧𝑘ℎ (𝜔) + 𝑢

4
𝑛

)
, (6.45)

\𝑍 = lim
𝑛
_𝑛

(
𝑧𝑘ℎ (𝜔) − 𝛼𝑑

𝑘
ℎ + 𝑢

5
𝑛

)
, (6.46)
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with 𝛾𝑛 ≥ 0, _𝑛 > 0, 𝑢𝑖𝑛 ≥ 0, 𝑖 = 1, . . . , 5, and

lim
𝑛

{ ∑︁
𝑘∈K

∫
Ω

[ ∑︁
𝑤∈W

( ∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

)
× (𝑦𝑘𝑤ℎ (𝜔) − 𝑦

∗𝑘
𝑤ℎ (𝜔))

+
𝜕𝜋𝑘

ℎ
(𝜔, 𝑧∗𝑘

ℎ
(𝜔))

𝜕𝑧𝑘
ℎ

× (𝑧𝑘ℎ (𝜔) − 𝑧
∗𝑘
ℎ (𝜔))

]
𝑑𝑃(𝜔) + 𝛾𝑛

}
= 0,

lim
𝑛

(
𝑑𝑘ℎ (𝜔) −

∑︁
𝑤∈W

𝑦𝑘𝑤ℎ (𝜔) − 𝑧
𝑘
ℎ (𝜔) + 𝑢

1
𝑛

)
= \𝑌 ,

lim
𝑛

( ∑︁
𝑤∈W

𝑦𝑘𝑤ℎ (𝜔) +
∑︁
𝑤∈W

𝑥𝑘𝑤ℎ − 𝑒𝑘 (𝜔) + 𝑢
2
𝑛

)
= \𝑌 ,

lim
𝑛

(
− 𝑦𝑘𝑤ℎ (𝜔) + 𝑢

3
𝑛

)
= \𝑌 ,

lim
𝑛

(
− 𝑧𝑘ℎ (𝜔) + 𝑢

4
𝑛

)
= \𝑍 , lim

𝑛
_𝑛

(
𝑧𝑘ℎ (𝜔) − 𝛼𝑑

𝑘
ℎ + 𝑢

5
𝑛

)
= \𝑍 ,

then 𝑙 must be nonnegative. I prove that every term in (6.42)-(6.43) tends to zero.

I first considers only the terms in 𝑦:



118 A Stochastic Nash Equilibrium Problem for Medical Supply Competition

_𝑛

{ ∑︁
𝑘∈K

∫
Ω

[ ∑︁
𝑤∈W

( ∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

)
×

(
𝑦𝑘𝑤ℎ (𝜔) − 𝑦

∗𝑘
𝑤ℎ (𝜔)

)}
= _𝑛

{ ∑︁
𝑤∈W

∑︁
𝑘∈K

∫
Ω1𝑘
𝑤

a1
ℎ (𝜔)

(
𝑦𝑘𝑤ℎ (𝜔) − 𝑦

∗𝑘
𝑤ℎ (𝜔)

)
𝑑𝑃(𝜔)

+
∑︁
𝑘∈K

∫
Ω2𝑘
𝑤

∑︁
𝑤∈W

( ∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

)
(𝑦𝑘𝑤ℎ (𝜔) − 𝑦

∗𝑘
𝑤ℎ (𝜔))𝑑𝑃(𝜔)

}
≥ _𝑛

{ ∑︁
𝑤∈W

∑︁
𝑘∈K

∫
Ω1𝑘
𝑤

a1
ℎ (𝜔)

(
𝑦𝑘𝑤ℎ (𝜔) − 𝑦

∗𝑘
𝑤ℎ (𝜔)

)
𝑑𝑃(𝜔)

+
∑︁
𝑤∈W

∑︁
𝑘∈K

∫
Ω2𝑘
𝑤

a1
ℎ (𝜔)

(
𝑦𝑘𝑤ℎ (𝜔) − 𝑦

∗𝑘
𝑤ℎ (𝜔)

)
𝑑𝑃(𝜔)

}
= _𝑛

{ ∑︁
𝑤∈W

∑︁
𝑘∈K

∫
Ω

a1
ℎ (𝜔)

(
𝑦𝑘𝑤ℎ (𝜔) − 𝑦

∗𝑘
𝑤ℎ (𝜔)

)
𝑑𝑃(𝜔)

}
= _𝑛

{ ∑︁
𝑘∈K

∫
Ω

a1
ℎ (𝜔)

( ∑︁
𝑤∈W

𝑦𝑘𝑤ℎ (𝜔) +
∑︁
𝑤∈W

𝑥𝑘𝑤ℎ − 𝑒𝑘 (𝜔) + 𝑢
2
𝑛

)
𝑑𝑃(𝜔)

+
∑︁
𝑘∈K

∫
Ω

a1
ℎ (𝜔)

(
−

∑︁
𝑤∈W

𝑥𝑘𝑤ℎ + 𝑒𝑘 (𝜔) −
∑︁
𝑤∈W

𝑦∗𝑘𝑤ℎ (𝜔)
)
𝑑𝑃(𝜔)

}
.

Taking into account that
∑
𝑤∈W 𝑦∗𝑘

𝑤ℎ
(𝜔) = −∑

𝑤∈W 𝑥𝑘
𝑤ℎ
+ 𝑒𝑘 (𝜔), all the terms

tends to zero. Analogously, I can prove that the other terms tends to zero. □ □

6.5 Application of the Infinite-Dimensional Duality

to the Second-Stage Problem

In this section, I prove that variational inequality (6.38) can be expressed in

terms of Lagrange variables. As a consequence, the second-stage problem can be

replaced by optimality conditions and the large scale problem (6.9)-(6.17) can be

reformulated.
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Theorem 6.5.1. (𝑦∗
ℎ
, 𝑧∗
ℎ
) ∈ 𝑇ℎ is a solution to (6.38) if and only if there exist

_1𝑘
ℎ
, _2𝑘

ℎ
, `1𝑘

𝑤 , `
2𝑘
𝑤 , `

3𝑘
𝑤 ∈ 𝐿2(Ω, 𝑃,R+), such that

∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

− _∗1𝑘ℎ (𝜔) + _
∗2𝑘
ℎ (𝜔) − `

∗1𝑘 (𝜔) = 0, P-a.s.

𝜕𝜋𝑘
ℎ
(𝜔, 𝑧∗𝑘

ℎ
(𝜔))

𝜕𝑧𝑘
ℎ

− `∗2𝑘 (𝜔) + `∗3𝑘 (𝜔) = 0, P-a.s.

_1𝑘
ℎ (𝜔)

(
𝑑𝑘ℎ (𝜔) −

∑︁
𝑤∈W

𝑦𝑘𝑤ℎ (𝜔) − 𝑧
𝑘
ℎ (𝜔)

)
= 0, P-a.s.

_2𝑘
ℎ (𝜔)

( ∑︁
𝑤∈W

𝑦𝑘𝑤ℎ (𝜔) +
∑︁
𝑤∈W

𝑥𝑘𝑤ℎ − 𝑒𝑘 (𝜔)
)
= 0, P-a.s.

`1𝑘
𝑤 (𝜔)𝑦𝑘𝑤ℎ (𝜔) = 0, `2𝑘

𝑤 (𝜔)𝑧𝑘ℎ (𝜔) = 0, P-a.s.

`3𝑘
𝑤 (𝜔)

(
𝑧𝑘ℎ (𝜔) − 𝛼𝑑

𝑘
ℎ

)
= 0, P-a.s.

Proof. I assume that (𝑦∗
ℎ
, 𝑧∗
ℎ
) ∈ 𝑇ℎ is a solution to (6.38). For ℎ = 1, . . . , 𝐻 and

for given 𝑥 ∈ 𝑆, I set:

Ψℎ (𝑥, 𝑦, 𝑧) =
∑︁
𝑘∈K

∫
Ω

[ ∑︁
𝑤∈W

( ∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

)
× (𝑦𝑘𝑤ℎ (𝜔) − 𝑦

∗𝑘
𝑤ℎ (𝜔))

+
𝜕𝜋𝑘

ℎ
(𝜔, 𝑧∗𝑘

ℎ
(𝜔))

𝜕𝑧𝑘
ℎ

× (𝑧𝑘ℎ (𝜔) − 𝑧
∗𝑘
ℎ (𝜔))

]
𝑑𝑃(𝜔) ≥ 0,∀(𝑦ℎ, 𝑧ℎ) ∈ 𝑇ℎ

and observe that variational inequality (6.38) is equivalent to the minimization

problem

min
𝑦,𝑧∈𝑇

Ψℎ (𝑥, 𝑦, 𝑧) = Ψℎ (𝑥, 𝑦∗, 𝑧∗) = 0. (6.47)

For ℎ = 1, . . . , 𝐻, I consider the Lagrange function associated with optimization
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problem (6.47):

Lℎ (𝑥, 𝑦, 𝑧, _, `) = Ψℎ (𝑥, 𝑦, 𝑧) +

+
∫ 𝑇

0

∑︁
𝑘∈K

_1𝑘
ℎ (𝜔)

(
𝑑𝑘ℎ (𝜔) −

∑︁
𝑤∈W

𝑦𝑘𝑤ℎ (𝜔) − 𝑧
𝑘
ℎ (𝜔)

)
𝑑𝑃(𝜔) +

+
∫ 𝑇

0

∑︁
𝑘∈K

_2𝑘
ℎ (𝜔)

( ∑︁
𝑤∈W

𝑦𝑘𝑤ℎ (𝜔) +
∑︁
𝑤∈W

𝑥𝑘𝑤ℎ − 𝑒𝑘 (𝜔)
)
𝑑𝑃(𝜔),

−
∫ 𝑇

0

∑︁
𝑘∈K

∑︁
𝑤∈W

`1𝑘
𝑤 (𝜔)𝑦𝑘𝑤ℎ (𝜔)𝑑𝑃(𝜔) −

∫ 𝑇

0

∑︁
𝑘∈K

`2𝑘
𝑤 (𝜔)𝑧𝑘ℎ (𝜔)𝑑𝑃(𝜔) +

+
∫ 𝑇

0

∑︁
𝑘∈K

`3𝑘
𝑤 (𝜔)

(
𝑧𝑘ℎ (𝜔) − 𝛼𝑑

𝑘
ℎ

)
𝑑𝑃(𝜔), (6.48)

∀𝑦 ∈ 𝐿2(Ω, 𝑃,R𝑊𝐻), 𝑧 ∈ 𝐿2(Ω, 𝑃,R𝐻𝐾), _1𝑘
ℎ
, _2𝑘

ℎ
, `1𝑘

𝑤 , `
2𝑘
𝑤 , `

3𝑘
𝑤 ∈ 𝐿2(Ω, 𝑃,R+).

Then, applying results in [58, 57], since I proved Assumption 𝑆, there exist

_∗1𝑘
ℎ
(𝜔), _∗2𝑘

ℎ
(𝜔), `∗1𝑘𝑤 (𝜔), `∗2𝑘𝑤 (𝜔), `∗3𝑘𝑤 (𝜔) ≥ 0, 𝑃.a.s. such that

(𝑦ℎ, 𝑧ℎ, _∗1𝑘ℎ , _∗2𝑘ℎ , `∗1𝑘𝑤 , `∗2𝑘𝑤 , `∗3𝑘𝑤 )

is a saddle point of the Lagrange functional

Lℎ (𝑥, 𝑦∗, 𝑧∗, _, `) ≤ Lℎ (𝑥, 𝑦∗, 𝑧∗, _∗, `∗) ≤ Lℎ (𝑥, 𝑦, 𝑧, _∗, `∗)

∀(𝑦ℎ, 𝑧ℎ) ∈ 𝑇ℎ,∀_1𝑘
ℎ (𝜔), _

2𝑘
ℎ (𝜔), `

1𝑘
𝑤 (𝜔), `2𝑘

𝑤 (𝜔), `3𝑘
𝑤 (𝜔) ≥ 0, 𝑃.𝑎.𝑠.

_∗1𝑘ℎ (𝜔)
(
𝑑𝑘ℎ (𝜔) −

∑︁
𝑤∈W

𝑦∗𝑘𝑤ℎ (𝜔) − 𝑧
∗𝑘
ℎ (𝜔)

)
= 0, P-a.s.

_∗2𝑘ℎ (𝜔)
( ∑︁
𝑤∈W

𝑦∗𝑘𝑤ℎ (𝜔) +
∑︁
𝑤∈W

𝑥𝑘𝑤ℎ − 𝑒𝑘 (𝜔)
)
= 0, P-a.s.

`∗1𝑘𝑤 (𝜔)𝑦∗𝑘𝑤ℎ (𝜔) = 0, `∗2𝑘𝑤 (𝜔)𝑧∗𝑘ℎ (𝜔) = 0, P-a.s.

`∗3𝑘𝑤 (𝜔)
(
𝑧∗𝑘ℎ (𝜔) − 𝛼𝑑

𝑘
ℎ

)
= 0, P-a.s.
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Thus, I find

0 = Lℎ (𝑥, 𝑦∗, 𝑧∗, _∗, `∗) ≤ Lℎ (𝑥, 𝑦, 𝑧, _∗, `∗)

=
∑︁
𝑘∈K

∫
Ω

[ ∑︁
𝑤∈W

( ∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

− _∗1𝑘ℎ (𝜔) + _
∗2𝑘
ℎ (𝜔) − `

∗1𝑘 (𝜔)
)
×

(𝑦𝑘𝑤ℎ (𝜔) − 𝑦
∗𝑘
𝑤ℎ (𝜔))

(
𝜕𝜋𝑘

ℎ
(𝜔, 𝑧∗𝑘

ℎ
(𝜔))

𝜕𝑧𝑘
ℎ

− `∗2𝑘 (𝜔) + `∗3𝑘 (𝜔)
)
× (𝑧𝑘ℎ (𝜔) − 𝑧

∗𝑘
ℎ (𝜔))

]
𝑑𝑃(𝜔)

Setting 𝑦𝑘
𝑤ℎ
(𝜔) = 𝑦∗𝑘

𝑤ℎ
(𝜔) ± 𝜖1(𝜔), and then 𝑧𝑘

ℎ
(𝜔) = 𝑧∗𝑘

ℎ
(𝜔) ± 𝜖2(𝜔), I find that∑︁

𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

− _∗1𝑘ℎ (𝜔) + _
∗2𝑘
ℎ (𝜔) − `

∗1𝑘 (𝜔) = 0, P-a.s.

𝜕𝜋𝑘
ℎ
(𝜔, 𝑧∗𝑘

ℎ
(𝜔))

𝜕𝑧𝑘
ℎ

− `∗2𝑘 (𝜔) + `∗3𝑘 (𝜔) = 0, P-a.s.

The converse is easily achieved. □

Therefore, the two-stage problem can be reformulated as follow

min
∑︁
𝑤∈W

( ∑︁
𝑘∈K

𝜌𝑘𝑤𝑥
𝑘
𝑤ℎ +

∑︁
𝑚∈M

𝑡𝑚𝑤ℎ (𝑥)
)
+

∫
Ω

Φℎ (𝑥, b (𝜔))𝑑𝑃(𝜔)∑︁
𝑤∈W

𝑥𝑘𝑤ℎ≥𝑑
𝑘
ℎ , ∀𝑘 ∈ K,∑︁

𝑤∈W
𝑥𝑘𝑤ℎ ≤ 𝑒𝑘 , ∀𝑘 ∈ K,

𝑥𝑘𝑤ℎ ≥ 0, ∀𝑤 ∈ W, ∀𝑘 ∈ K,∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

− _∗1𝑘ℎ (𝜔) + _
∗2𝑘
ℎ (𝜔) ≥ 0, P-a.s.

𝜕𝜋𝑘
ℎ
(𝜔, 𝑧∗𝑘

ℎ
(𝜔))

𝜕𝑧𝑘
ℎ

+ `∗3𝑘 (𝜔) ≥ 0, P-a.s.

_1𝑘
ℎ (𝜔)

(
𝑑𝑘ℎ (𝜔) −

∑︁
𝑤∈W

𝑦𝑘𝑤ℎ (𝜔) − 𝑧
𝑘
ℎ (𝜔)

)
= 0, P-a.s.

_2𝑘
ℎ (𝜔)

( ∑︁
𝑤∈W

𝑦𝑘𝑤ℎ (𝜔) +
∑︁
𝑤∈W

𝑥𝑘𝑤ℎ − 𝑒𝑘 (𝜔)
)
= 0, P-a.s.

`3𝑘
𝑤 (𝜔)

(
𝑧𝑘ℎ (𝜔) − 𝛼𝑑

𝑘
ℎ

)
= 0, P-a.s.
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I now describe some relevant consequences that gives an insights into the market

behavior with respect to the product shipment. Dual variables _1𝑘
ℎ

, _2𝑘
ℎ

, `1𝑘
𝑤 , `2𝑘

𝑤 ,

`3𝑘
𝑤 regulate the medical item procurement. In particular, _1𝑘

ℎ
is a control variable

on the first-stage demand; _2𝑘
ℎ

is a control variable on the item availability level;

`1𝑘
𝑤 is a control variable on the second-stage demand; `2𝑘

𝑤 and `3𝑘
𝑤 are control

variables on the unfulfilled demand. I discuss some cases, considering active and

non-active constraints. I have:∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

− _∗1𝑘ℎ (𝜔) + _
∗2𝑘
ℎ (𝜔) − `

∗1𝑘 (𝜔) = 0, P-a.s.

If 𝑦∗𝑘
𝑤ℎ
(𝜔) > 0, then `1𝑘

𝑤 (𝜔) = 0, P-a.s., and∑︁
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔, 𝑦∗(𝜔))
𝜕𝑦𝑘

𝑤ℎ

= _∗1𝑘ℎ (𝜔) − _
∗2𝑘
ℎ (𝜔), P-a.s.

namely, the marginal cost is equal to the difference of the control variables on

demand and market item availability. Moreover, if _∗1𝑘
ℎ
(𝜔) = 0, _∗2𝑘

ℎ
(𝜔) >

0, P-a.s., I find
∑
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔,𝑦∗ (𝜔))
𝜕𝑦𝑘
𝑤ℎ

= −_∗2𝑘
ℎ
(𝜔), P-a.s., and the marginal cost

decreases. If _∗2𝑘
ℎ
(𝜔) = 0, _∗1𝑘

ℎ
(𝜔) > 0, P-a.s., I find thet

∑
𝑚∈M

𝜕𝑐𝑚
𝑤ℎ
(𝜔,𝑦∗ (𝜔))
𝜕𝑦𝑘
𝑤ℎ

=

_∗1𝑘
ℎ
(𝜔), P-a.s., and the marginal cost increases.

From
𝜕𝜋𝑘

ℎ
(𝜔, 𝑧∗𝑘

ℎ
(𝜔))

𝜕𝑧𝑘
ℎ

= `∗2𝑘 (𝜔) − `∗3𝑘 (𝜔), P-a.s.,

I note that the marginal penalty is equal to the difference between the control

variables on the unfulfilled demand. If 0 < 𝑧∗𝑘
ℎ
(𝜔) < 𝛼𝑑𝑘

ℎ
, P-a.s., then `∗2𝑘 (𝜔) =

`∗3𝑘 (𝜔) = 0, and 𝜕𝜋𝑘
ℎ
(𝜔,𝑧∗𝑘

ℎ
(𝜔))

𝜕𝑧𝑘
ℎ

= 0, P-a.s., namely, the marginal penalty is equal

to zero. If `∗2𝑘 (𝜔) > 0, then 𝑧∗𝑘
ℎ
(𝜔) = 0, P-a.s. This is the case of an effective

emergency plan, in which hospital does not incur in any unmet demand. If

`∗3𝑘 (𝜔) > 0, then `∗2𝑘 (𝜔) = 0, P-a.s., and 𝜕𝜋𝑘
ℎ
(𝜔,𝑧∗𝑘

ℎ
(𝜔))

𝜕𝑧𝑘
ℎ

= −`∗3𝑘 (𝜔), P-a.s.,

namely, the marginal penalty decreases.
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6.6 Numerical Example

In this section, I present two small numerical examples for illustrative purposes. I

consider two warehouses (𝑤 = 2), two hospitals (ℎ = 2), three different items (𝑘 =

3), one transportation mode (𝑚 = 1) and five scenarios. The economic data mainly

come from [4]. For the calculation of transportation costs, I apply the Product

& Distance-based calculation rule, which computes the transportation costs based

on the coefficients for transportation costs (that include all the different terms,

e.g. fuel price, tolls, etc.) for national shipments assumed to be 0.19e/𝑘𝑚 ∗ 𝑚3.

For transportation time from warehouses to hospitals, I consider hourly cost set,

that includes the time spending for the loading process, the route to go and the

unloading process. Penalty costs, concerning the unfulfilled demand, depends on

the number of items that are not delivered in one day.

The numerical simulations are solved applying the Progressive Hedging Method

(PHM) [191]. This is a well-known algorithm that has been recently extended

to multistage SVI and multistage stochastic Lagrangian variational inequalities

[190, 189]. In [8], the authors presented a new framework that shows how PHM

can be utilized, while guaranteeing convergence, to globally optimal solutions of

mixed-integer stochastic convex programs. I now briefly present the Progressive

Hedging Algorithm for a two-stage stochastic optimization problem.

I consider the problem:

min
𝑥∈𝑋

𝑓 (𝑥) + Eb (Φℎ (𝑥, b (𝜔))),
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where

𝑓 (𝑥) =
∑︁
𝑤∈W

( ∑︁
𝑘∈K

𝜌𝑘𝑤𝑥
𝑘
𝑤ℎ +

∑︁
𝑚∈M

𝑡𝑚𝑤ℎ (𝑥)
)

is convex in 𝑥 andΦℎ (𝑥, b (𝜔)) is the recourse function, defined as the second-stage

optimal value function

Φℎ (𝑥, b (𝜔)) = min
𝑦(b)∈𝑌 (𝑥,b)

𝑔(𝑥, 𝑦(b), b (𝜔)),

where

𝑔(𝑥, 𝑦(b), b (𝜔)) =
∑︁
𝑤∈W

∑︁
𝑚∈M

𝑐𝑚𝑤ℎ (𝜔, 𝑦(𝜔)) +
∑︁
𝑘∈K

𝜋𝑘ℎ (𝜔, 𝑧
𝑘
ℎ (𝜔)),

𝑐𝑚
𝑤ℎ
(𝜔, ·) and 𝜋𝑘

ℎ
(𝜔, ·) are convex function for all 𝑤, ℎ, 𝑘, 𝑚. I emphasize that the

Algorithm 1 Pseudo-code of PHM for two-stage stochastic programming.
Initial. 𝑥0(b) = 0, 𝑦0(b) = 0 and 𝑤0(b) = 0∀b, 𝑟 > 0, 𝑣 = 1.

Step 1. For each b, obtain 𝑥𝑣 (b) and �̂�𝑣 (b) by solving subproblem:

min 𝑓 (𝑥(b)) + 𝑔(𝑥(b), 𝑦(b), b) + ⟨𝑥(b), 𝑤𝑣 (b)⟩ + 𝑟
2 | |𝑥(b) − 𝑥

𝑣 (b) | |2,

s.t. 𝑥(b) ∈ 𝑋, 𝑦(b) ∈ 𝑌 (𝑥(b), b);

Step 2. Update 𝑥𝑣+1 = Eb [𝑥𝑣 (b)], 𝑦𝑣+1(b) = �̂�𝑣 (b) ∀b,

𝑤𝑣+1(b) = 𝑤𝑣 (b) − 𝑟 (𝑥𝑣 (b) − 𝑥𝑣+1(b)) ∀b;

𝑣 := 𝑣 + 1, repeat.

convergence of PHM to global optimal solution is ensured for convex stochastic

programs if the involved function in the corresponding variational inequality is

strongly monotone, [190, 189].

All the codes were written in MATLAB and run in MATLAB R2020a (derived

data supporting the findings of this study are available from the corresponding

author upon request.). Following a discrete approximation scheme as in [138], I

choose |𝑅 | = 5 realizations of random variable b with probability 1/𝑅. I note
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that hospital medical items are generally purchased as multiple packs into boxes.

In my examples I consider two different cases. In the first example I consider

some indispensable items; hence, I use a high penalty of unfulfilled demand, and

I consider all cost referred to a single pack. In the second example I consider a

box as a unit of measurement, which contains thousand packs and a low penalty

of unfulfilled demand.

Numerical Example 1: In this numerical example, the items are collected in

multiple packages, and the coefficients of the cost functions are related to a single

package. I have considered high penalty functions, since not satisfying the demand

for a particular item would cause severe discomfort. It can be noted that, given the

danger of the penalty, at equilibrium I get zero penalties as it is likely that hospitals

pay more attention to some indispensable items. The matrix of the cost functions

is given by

©«
2, 6 2, 9 3, 5 7, 2 0, 00019 0, 00029 0, 00038 0, 00023 1800 1600

2, 7 2, 5 1, 7 2, 2 0, 00025 0, 00031 0, 00024 0, 00018 1500 1400

1, 6 1, 9 1, 02 2, 03 0, 00021 0, 00036 0, 00032 0, 00028 1300 1500

ª®®®®¬
.

(6.49)

First of all, I focus my attention on the flows 𝑥𝑘
𝑤ℎ

of the first stage. I find

𝑥1
11 = 3, 00; 𝑥1

12 = 3, 40; 𝑥1
21 = 0, 00; 𝑥1

22 = 0, 00;

𝑥2
11 = 0, 00; 𝑥2

12 = 0, 00; 𝑥2
21 = 0, 00; 𝑥2

22 = 0, 00;

𝑥3
11 = 0, 00; 𝑥3

12 = 1, 50; 𝑥3
21 = 1, 00; 𝑥3

22 = 0, 00. (6.50)

From the numerical result of the first example [see (6.50),Tab.6.2], I notice that

in a condition without emergency, each hospital prefers to choose his trusted

warehouse. In particular,



126 A Stochastic Nash Equilibrium Problem for Medical Supply Competition

• All hospitals decide to buy the medical item one (𝑘 = 1) from warehouse

one (𝑤 = 1);

• All hospitals decide not to buy the medical item two (𝑘 = 2) from warehouse

one (𝑤 = 1) or two (𝑤 = 2);

• For medical item three (𝑘 = 3), hospital two (ℎ = 2) decides to rely

on warehouse one (𝑤 = 1) and hospital one (ℎ = 1) on warehouse two

(𝑤 = 2).

In the second stage, namely, in an emergency situation, the usual choice is no

longer the optimal one, but demand must always be satisfied by minimizing costs.

Furthermore, the penalties are fortunately null for each hospital and for each item.

The results are shown in Table 6.2.
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Numerical Example 2: In this numerical example, the items are treated as

boxes and the coefficients of the cost functions are related to boxes which contain

thousand packages. I have considered low penalty functions, since not satisfying

the demand for a particular item would not cause severe discomfort. In this case,

the amount of unfulfilled demand at hospital ℎ of medical supply item 𝑘 under

scenario 𝜔, for all ℎ, 𝑘 are not null. This is a consequence of the fact that for these

items it is not necessary to satisfy fully the daily demand. Another difference

with the first numerical example, is that all hospitals use all warehouses, without

choosing the trusted warehouses.

The coefficient matrix of the cost functions is represented by (6.51).

©«
2, 41 2, 44 2, 47 2, 42 1, 90 2, 85 3, 80 2, 28 0, 05 0, 04

2, 81 2, 84 2, 87 2, 82 2, 54 3, 10 2, 42 1, 83 0, 07 0, 03

1, 76 1, 79 1, 82 1, 77 2, 10 3, 63 3, 21 2, 82 0, 02 0, 08

ª®®®®®¬
× 10−3.

(6.51)

The flows 𝑥𝑘
𝑤ℎ

of the first stage (6.52) are given by

𝑥1
11 = 1, 65; 𝑥1

12 = 1, 71; 𝑥1
21 = 1, 44; 𝑥1

22 = 1, 78;

𝑥2
11 = 1, 14; 𝑥2

12 = 1, 11; 𝑥2
21 = 0, 94; 𝑥2

22 = 1, 17;

𝑥3
11 = 0, 64; 𝑥3

12 = 0, 79; 𝑥3
21 = 0, 52; 𝑥3

22 = 0, 85. (6.52)

In the following Table 6.3, I group all variables for the second stage, under scenario

𝜔.
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6.7 Conclusions

In this chapter, I constructed a stochastic Nash equilibrium model for a medical

supply network that consists of warehouses and hospitals with multiple medi-

cal items and multiple transportation modes. Each hospital solves a two-stage

stochastic optimization problem, where, in the first stage, seeks to minimize the

purchasing cost of medical items and the transportation time. Then, I introduced

a recourse decision process to optimize the expected overall costs and the penalty

for the prior plan, in response to each possible disaster scenario of the second

stage. The hospitals simultaneously solve their own stochastic optimization prob-

lems and reach a stable state given by the stochastic Nash equilibrium concept.

Specific features of the model include: the uncertainty of the scenarios, the supply

availability of medical items, the penalty for unmet demand and the fluctuating

costs. The model is formulated as a variational inequality. In the case of general

probability distribution, I characterized the Nash equilibrium of the problem as

a solution to an infinite-dimensional variational inequality in the Hilbert space

𝐿2. The associated Lagrange function was studied and a strong duality result was

provided. Finally, I presented some numerical illustrations solved applying the

progressive hedging algorithm.

The results reveal that hospitals are able to re-arrange timely their requests in

order to satisfy the need for medical items. In emergencies, uncertainty plays a

fundamental role in the success of disaster management; hence, health institutions

must be ready to adjust the request of medical items. My contributions to the

literature lie in advancing the state-of-the-art of stochastic programming for disaster

management as well as applications of variational inequalities and strong duality. I
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also emphasize that to-date there has been limited work on stochastic programming

problems under general probability distribution.

This model could be extended in future research. For example, I could incorporate

additional details to the model and solve examples using data from real situa-

tions. The extension to a multi-stage problem where I consider different stages of

information is another future research opportunity.
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Items Flows Scenario1 Scenario2 Scenario3 Scenario4 Scenario5

𝑘 = 1

𝑦11(𝜔) 1,21 1,56 1,66 1,82 2,04

𝑦12(𝜔) 1,12 1,12 1,31 1,41 1,57

𝑦21(𝜔) 0,79 0,64 0,85 0,99 1,03

𝑦22(𝜔) 1,29 1,49 1,58 1,68 1,91

𝑘 = 2

𝑦11(𝜔) 0,51 0,62 0,77 0,91 1,01

𝑦12(𝜔) 0,56 0,57 0,73 0,81 0,85

𝑦21(𝜔) 0,51 0,65 0,81 0,94 1,06

𝑦22(𝜔) 0,65 1,00 1,16 1,28 1,42

𝑘 = 3

𝑦11(𝜔) 0,34 1,25 0,48 0,57 0,79

𝑦12(𝜔) 0,44 0,46 0,54 0,58 0,64

𝑦21(𝜔) 0,31 0,27 0,37 0,40 0,41

𝑦22(𝜔) 0,48 0,55 0,66 0,72 0,87

𝑘 = 1
𝑧1(𝜔) 0,00 0,00 0,00 0,00 0,00

𝑧2(𝜔) 0,00 0,00 0,00 0,00 0,00

𝑘 = 2
𝑧1(𝜔) 0,00 0,00 0,00 0,00 0,00

𝑧2(𝜔) 0,00 0,00 0,00 0,00 0,00

𝑘 = 3
𝑧1(𝜔) 0,00 0,00 0,00 0,00 0,00

𝑧2(𝜔) 0,00 0,00 0,00 0,00 0,00

Table 6.2: Numerical results solved by PHM about indispensable items
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Items Flows Scenario1 Scenario2 Scenario3 Scenario4 Scenario5

𝑘 = 1

𝑦11(𝜔) 1,25 1,47 1,77 2,07 2,22

𝑦12(𝜔) 0,44 0,51 0,46 0,51 0,42

𝑦21(𝜔) 0,21 0,15 0,15 0,15 0,21

𝑦22(𝜔) 1,25 1,38 1,63 1,79 2,32

𝑘 = 2

𝑦11(𝜔) 0,34 0,39 0,51 0,63 0,70

𝑦12(𝜔) 0,10 0,20 0,21 0,21 0,24

𝑦21(𝜔) 0,41 0,46 0,64 0,80 0,94

𝑦22(𝜔) 0,75 0,94 1,22 1,41 1,57

𝑘 = 3

𝑦11(𝜔) 0,37 0,44 0,52 0,62 0,72

𝑦12(𝜔) 0,19 0,23 0,25 0,28 0,23

𝑦21(𝜔) 0,14 0,17 0,19 0,19 0,22

𝑦22(𝜔) 0,50 0,52 0,69 0,75 0,96

𝑘 = 1
𝑧1(𝜔) 0,65 0,68 0,67 0,67 0,68

𝑧2(𝜔) 0,79 0,78 0,79 0,78 0,77

𝑘 = 2
𝑧1(𝜔) 0,40 0,44 0,44 0,44 0,44

𝑧2(𝜔) 0,47 0,47 0,48 0,48 0,48

𝑘 = 3
𝑧1(𝜔) 0,21 0,20 0,20 0,20 0,19

𝑧2(𝜔) 0,32 0,32 0,33 0,33 0,34

Table 6.3: Numerical result solved by PHM with unfulfilled demand
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Chapter 7
Optimal Emergency Evacuation with

Uncertainty

7.1 Introduction

Natural disasters (earthquakes, hurricanes, landslides, etc.) as well as unnatural

ones (wars, terrorist attacks, etc.) are a serious threat for the humankind. Evac-

uation of the disaster region is the most used strategy to save people affected

by a disaster. Generally, disasters cannot be predicted, and it is extremely diffi-

cult to estimate their intensity and damages; hence, evacuation planning must be

done under uncertainty. For this reason, it is generally formulated as a stochastic

programming problem (see [202]). Incomplete information may regard different

factors, such as evacuation demand, link capacity, disruption in the road network

or how much infrastructures may be impacted by disasters.

In this paper, I propose a scenario-based evacuation planning model that provides

the optimal flows of evacuees from crisis areas to shelters, in order to minimize

both the transportation cost and the transportation time, under uncertainty on the

133
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evacuation demand and the link capacities. Inspired by [220], I admit real-time

information availability, which makes the evacuation process be divided into two

stages. In the first stage, people at risk receive the early warning information

about the disaster and escape from the crisis areas; however, they cannot obtain the

exact information of disaster intensity. After a certain time period, accurate real-

time information is observed and the process reaches the second-stage, where the

decision relies on the first-stage solution and on the observed scenario. Moreover,

I introduce a penalty to the unmet demand of evacuation which will affect the

second stage decision.

The importance of an efficient approach to emergency management and evacuation

planning has been emphasized in several papers.

In [47] the authors model an escape situation in a labyrinth, where people are

agents that act as two different kinds of ant colonies. Payoff values in both the

competitive and the cooperative framework are studied, merging a game theoretical

approach and Ant Colony Optimization.

In [18] the authors present a two-stage stochastic programming model to plan

the transportation of vital first-aid commodities to disaster-affected areas during

emergency response. A multi-commodity, multi-modal network flow formulation

is then developed. Since it is difficult to predict the timing and magnitude of

any disaster, uncertainty and information asymmetry naturally arise. The authors

introduce randomness as a finite sample of scenarios for capacity, supply and

demand.

In [20], the authors propose a scenario-based two-stage stochastic evacuation

planning model that optimally chooses shelter sites, and assigns evacuees to nearest

shelters within a tolerance degree to minimize the expected total evacuation time.



7.1. Introduction 135

The model takes into account the uncertainty in the evacuation demand and the

disruption in the road network and shelter sites.

In [184], the authors develop a stochastic optimization model that determines the

order in which patients should be evacuated over time, based on the evolution of

the storm by considering a weighted sum of the expected risk and the expected

cost of evacuation.

In [199], a bi-objective optimization model is proposed, which study critical

management before and after the disaster. The first level investigates the locations

of shelters and warehouses before the disaster, and maximizes the weights of the

sites selected for construction of shelters. The second level minimizes the distances

from warehouses to the shelters and the distances from crisis areas to the shelters.

In [220], the authors study the regional emergency resources storage, and, in

particular, the region division. A two-stage stochastic programming model is

proposed to solve the region division problem.

Recently, two-stage stochastic variational inequalities were introduced, where one

seeks a decision vector before the stochastic variables are known, and a decision

vector after the scenario has been realized. In [192], Rockafellar and Wets proposed

the multistage stochastic variational inequality. In [190], the authors develop pro-

gressive hedging methods for solving multistage convex stochastic programming,

see also [189]. In [38], the authors formulate the two-stage stochastic variational

inequality as a two-stage stochastic programming problem with recourse.

In this paper, I present a two-stage stochastic programming problem for the evac-

uation planning and give an equivalent formulation as a two-stage stochastic vari-

ational inequality, using the Lagrangian relaxation approach. I also discuss the

qualitative properties of the two-stage stochastic variational inequality.
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The structure of this paper is as follows. In Section 7.2, we present the deterministic

evacuation model and derive an equivalent variational inequality formulation. In

Section 7.3, I present the two-stage stochastic model. In Section 7.4, I propose an

equivalent two-stage variational inequality formulation. In Section 7.5, I provide

a numerical example, and, finally, I present our conclusions in Section 7.6.

7.2 The deterministic model

I assume that a population of 𝑁 individuals is located in some crisis areas and must

be evacuated to some shelters. Different modes of transportation are considered

to enhance node accessibility. I denote by 𝐴 the set of crisis areas, with typical

area denoted by 𝑖, by 𝑆 the set of shelters, with typical shelter denoted by 𝑗 , and

by 𝑀 the set of transportation modes, with typical mode denoted by 𝑚. I consider

a network representation as in Figure 7.1. The links between the levels of the

network represent all the possible connections between the crisis areas and the

shelters. Multiple links between each area and each shelter depict the possibility

of alternative modes of transportation.

Areas
i1 n

j1 l

Shelters

Figure 7.1: The Network representation of Areas and Shelters
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Let 𝑑𝑚
𝑖

be the demand of crisis area 𝑖 for evacuation with mode𝑚, namely, the num-

ber of people to be evacuated from area 𝑖 with mode𝑚, where
∑
𝑖∈𝐴

∑
𝑚∈𝑀 𝑑

𝑚
𝑖
≤ 𝑁 .

I denote by 𝑑𝑖 =
∑
𝑚∈𝑀 𝑑

𝑚
𝑖

the demand of area 𝑖 on all modes. Moreover, let 𝑥𝑖 𝑗

the flows of evacuees from area 𝑖 to shelter 𝑗 . I also assume that 𝐾 𝑗 is maximum

number of people that can be hosted in shelter 𝑗 , and 𝑘 𝑗 is the minimum number

of people required to open shelter 𝑗 . Thus, the following conditions have to be

satisfied:

∑︁
𝑖∈𝐴

𝑥𝑖 𝑗 ≤ 𝐾 𝑗 ,∀ 𝑗 ∈ 𝑆,
∑︁
𝑖∈𝐴

𝑥𝑖 𝑗 ≥ 𝑘 𝑗 ,∀ 𝑗 ∈ 𝑆.

I group the flows 𝑥𝑖 𝑗 into a column vector 𝑥 ∈ R𝑛𝑙 . In addition, I introduce the

transportation cost 𝑐𝑚
𝑖 𝑗

from area 𝑖 to shelter 𝑗 with mode 𝑚 and assume that

it depends on the flow 𝑥𝑖 𝑗 , namely, 𝑐𝑚
𝑖 𝑗

= 𝑐𝑚
𝑖 𝑗
(𝑥𝑖 𝑗 ). Analogously, I define the

transportation time 𝑡𝑚
𝑖 𝑗

from area 𝑖 to shelter 𝑗 with mode 𝑚 and assume that it

depends on the flow 𝑥𝑖 𝑗 , namely, 𝑡𝑚
𝑖 𝑗
= 𝑡𝑚

𝑖 𝑗
(𝑥𝑖 𝑗 ).

I summarize the relevant notations used in the mathematical formulation in Table

7.1.

I introduce the total evacuation cost 𝐶𝑚
𝑖 𝑗

given by

𝐶𝑚𝑖 𝑗 (𝑥𝑖 𝑗 ) = 𝑤 𝑐𝑚𝑖 𝑗 (𝑥𝑖 𝑗 ) + (1 − 𝑤) 𝑡𝑚𝑖 𝑗 (𝑥𝑖 𝑗 ), ∀𝑖 ∈ 𝐴 , 𝑗 ∈ 𝑆 , 𝑚 ∈ 𝑀.

Our aim is to minimize the total evacuation costs; hence, I seek to solve the

following optimization problem:
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Symbols Definitions

𝐴 set of crisis areas, with typical area denoted by 𝑖, 𝑐𝑎𝑟𝑑 (𝐴) = 𝑛

𝑆 set of shelters, with typical shelter denoted by 𝑗 , 𝑐𝑎𝑟𝑑 (𝑆) = 𝑙

𝑀 set of transportation modes, with typical mode denoted by 𝑚, 𝑐𝑎𝑟𝑑 (𝑀) = �̄�

𝑑𝑚
𝑖

demand of crisis area 𝑖 for evacuation with mode 𝑚

𝑑𝑖 =
∑
𝑚∈𝑀 𝑑𝑚

𝑖
the demand of area 𝑖 on all modes

𝐾 𝑗 maximum number of people that can be hosted in shelter 𝑗

𝑘 𝑗 recommended number of people to open shelter 𝑗

𝑤 weight in [0, 1]

Y positive balance tolerance

`𝑖 𝑗 flow capacity on link (𝑖, 𝑗)

` = (`𝑖 𝑗 )𝑖, 𝑗 total flow capacity

𝑥𝑖 𝑗 flow of evacuees from area 𝑖 to shelter 𝑗

𝑥 = (𝑥𝑖 𝑗 )𝑖, 𝑗 total flow of evacuees

𝑐𝑚
𝑖 𝑗
(𝑥𝑖 𝑗 ) transportation cost from area 𝑖 to shelter 𝑗 with mode 𝑚

𝑡𝑚
𝑖 𝑗
(𝑥𝑖 𝑗 ) transportation time from area 𝑖 to shelter 𝑗 with mode 𝑚

Table 7.1: The notation for the deterministic model

min
∑︁
𝑖∈𝐴

∑︁
𝑗∈𝑆

∑︁
𝑚∈𝑀

𝐶𝑚𝑖 𝑗 (𝑥𝑖 𝑗 ) (7.1)∑︁
𝑖∈𝐴

𝑥𝑖 𝑗 ≤ 𝐾 𝑗 , ∀ 𝑗 ∈ 𝑆, (7.2)∑︁
𝑖∈𝐴

𝑥𝑖 𝑗 ≥ 𝑘 𝑗 , ∀ 𝑗 ∈ 𝑆, (7.3)

𝑥𝑖 𝑗 ≤ `𝑖 𝑗 , ∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝑆, (7.4)∑
𝑖∈𝐴 𝑥𝑖 𝑗
𝐾 𝑗

−
∑
𝑖∈𝐴 𝑥𝑖 𝑗 ′

𝐾′
𝑗

≤ Y, ∀ 𝑗 , 𝑗 ′ ∈ 𝑆, (7.5)∑︁
𝑗∈𝑆
𝑥𝑖 𝑗 ≤ 𝑑𝑖, ∀𝑖 ∈ 𝐴, (7.6)

𝑥𝑖 𝑗 ≥ 0, ∀𝑖 ∈ 𝐴 , 𝑗 ∈ 𝑆. (7.7)
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The objective function (7.1) is the weighted sum of transportation cost and trans-

portation time, where 𝑤 ∈ [0, 1]. Constraint (7.2) ensures that the capacity of

each shelter 𝑗 is not exceeded. Constraint (7.3) guarantees that each shelter 𝑗 is

used. Constraint (7.4) requires that the flow on link (𝑖, 𝑗) must satisfy the flow

capacity on that link. Constraint (7.5) states that the number of evacuees is bal-

anced amongst the shelters. Constraint (7.6) establishes that for each area 𝑖 the

evacuation demand 𝑑𝑖 on all modes is satisfied, and, finally, (7.7) represents the

non-negativity requirement on flows.

I now introduce the set of feasible flows

𝑋 =

{
𝑥 ∈ R𝑛𝑙 : 𝑥𝑖 𝑗 ≥ 0,∀𝑖, 𝑗 ;

∑︁
𝑖∈𝐴

𝑥𝑖 𝑗 ≤ 𝐾 𝑗 , ∀ 𝑗 ;
∑︁
𝑖∈𝐴

𝑥𝑖 𝑗 ≥ 𝑘 𝑗 , ∀ 𝑗 ;

𝑥𝑖 𝑗 ≤ `𝑖 𝑗 , ∀𝑖, 𝑗 , ;
∑
𝑖∈𝐴 𝑥𝑖 𝑗
𝐾 𝑗

−
∑
𝑖∈𝐴 𝑥𝑖 𝑗 ′

𝐾′
𝑗

≤ Y, ∀ 𝑗 , 𝑗 ′;
∑︁
𝑗∈𝑆
𝑥𝑖 𝑗 ≤ 𝑑𝑖, ∀𝑖

}
.

I assume that the transportation cost and the transportation time functions are

continuously differentiable and convex. In addition, since the set 𝑋 is closed,

bounded and convex, I can apply the classical theory on variational inequalities

(see, for instance, [78], [126] or [158]) and formulate problem (7.1)-(7.7) as the

following variational inequality:

Find 𝑥∗ ∈ 𝑋 :∑︁
𝑖∈𝐴

∑︁
𝑗∈𝑆

∑︁
𝑚∈𝑀

[
𝑤
𝜕𝑐𝑚

𝑖 𝑗
(𝑥∗
𝑖 𝑗
)

𝜕𝑥𝑖 𝑗
+ (1 − 𝑤)

𝜕𝑡𝑚
𝑖 𝑗
(𝑥∗
𝑖 𝑗
)

𝜕𝑥𝑖 𝑗

]
×

(
𝑥𝑖 𝑗 − 𝑥∗𝑖 𝑗

)
, ∀𝑥 ∈ 𝑋.

The above variational inequality can be put in standard form as follows (see [158]):

Find 𝑥∗ ∈ 𝑋 such that ⟨𝐹 (𝑥∗), 𝑥 − 𝑥∗⟩ ≥ 0, ∀𝑥 ∈ 𝑋, (7.8)
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where ⟨·, ·⟩ denotes the inner product in the (𝑛𝑙)-dimensional Euclidean space and

𝐹 (𝑥∗) =
[
𝑤
𝜕𝑐𝑚

𝑖 𝑗
(𝑥∗
𝑖 𝑗
)

𝜕𝑥𝑖 𝑗
+ (1 − 𝑤)

𝜕𝑡𝑚
𝑖 𝑗
(𝑥∗
𝑖 𝑗
)

𝜕𝑥𝑖 𝑗

]
𝑖∈𝐴
𝑗∈𝑆
𝑚∈𝑀

.

Under the assumptions on the feasible set 𝑋 and the objective function, I can

ensure the existence of at least one solution to (7.8) (see [126]). Moreover, if the

function 𝐹 (𝑥) in (7.8) is strictly monotone on 𝑋 , namely

⟨𝐹 (𝑥1) − 𝐹 (𝑥2), 𝑥1 − 𝑥2⟩ > 0 ∀𝑥1, 𝑥2 ∈ 𝑋, 𝑥1 ≠ 𝑥2,

then variational inequality (7.8) admits a unique solution.

7.3 Two-stage stochastic evacuation model

In this section, I present a scenario-based stochastic optimization model to repre-

sent the evacuation process after an earthquake. At the occurrence of the disaster

event, affected people receive the early warning information and escape from the

crisis areas. After the event, accurate information is available, for instance due to

technological communication tools. Since the initial response will depend on a

number of disaster scenarios, I propose a two-stage stochastic programming model

with recourse, where both the first stage and the second stage arise in different

time phases in the same evacuation network. I remark that the first-stage decision

is taken before the realization of the disaster scenario is observed. After that this

information is accessible, the decision process reaches the second-stage, where the

decision depends on the first-stage solution and on the observed scenario.

As it is very hard to estimate exactly the impact of a natural disaster, I allow for

uncertainty in the modeling assumptions, and introduce some random parameters.
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In particular, since the effects of disasters naturally randomizes the number of

people who survive, I consider random evacuation demands at the emergency

sites. Moreover, I take into account possible disruptions on network links, and

deal with random capacities on links.

I note that, in the first stage, the evacuation demand and the link capacities are

known only from a probabilistic point of view. Thus, in the first stage, people at

risk must be evacuated from crisis areas before observing the real data. Instead, in

the second stage, the evacuation plan will be obtained with the realization of the

evacuation demand and the link capacities.

The aim is to formulate the random evacuation problem as a two-stage optimization

problem. In the first stage, I seek for the optimal flows to minimize the penalty cost

generated by the decisions taken before the acquisition of the information plus the

recourse cost for the disaster scenario. In the second stage, another optimization

problem is solved, based on a given realization of each scenario.

Let (Ω, F , 𝑃) be a probability space, where the random parameter 𝜔 ∈ Ω rep-

resents the typical disaster scenario. For each 𝜔 ∈ Ω, I denote by b : Ω → R𝐾

a finite dimensional random vector and by Eb the mathematical expectation with

respect to b.

In order to formulate the two stage stochastic evacuation model, I introduce two

types of decision variables. In the first stage, the decision variable 𝑥𝑖 𝑗 is used to

represent the flow of evacuees from area 𝑖 to shelter 𝑗 in stage one. The second-

stage decision variable 𝑦𝑖 𝑗 (𝜔) represents the flow of evacuees from area 𝑖 to shelter

𝑗 in stage two under scenario 𝜔. From the perspective of the entire system, the

decision planner chooses 𝑥𝑖 𝑗 before a realization of b is revealed and later selects

𝑦(𝜔) with known realization.
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Table 7.2 summarizes the relevant notations used in the model formulation.

Symbols Definitions

`𝑖 𝑗 flow capacity on link (𝑖, 𝑗) in stage one

`𝑖 𝑗 (𝜔) random flow capacity in stage two

𝑑𝑚
𝑖

evacuation demand of crisis area 𝑖 with mode 𝑚 in stage one

𝑑𝑖 =
∑
𝑚∈𝑀 𝑑𝑚

𝑖
demand of area 𝑖 on all modes in stage one

𝑑𝑚
𝑖
(𝜔) evacuation demand of crisis area 𝑖 with mode 𝑚 in stage two

𝑑𝑖 (𝜔) =
∑
𝑚∈𝑀 𝑑𝑚

𝑖
(𝜔) demand of area 𝑖 on all modes in stage two

b (𝜔) random parameters in stage two resulting from decisions made in

stage one according to 𝜔

𝑥𝑖 𝑗 flow of evacuees from area 𝑖 to shelter 𝑗 in stage one

𝑦𝑖 𝑗 (𝜔) flow of evacuees from area 𝑖 to shelter 𝑗 in stage two under scenario 𝜔

𝜋𝑖 𝑗 (𝑥𝑖 𝑗 ) the penalty cost on link (𝑖, 𝑗)

Table 7.2: The notation for the two-stage stochastic model

I denote by 𝜋𝑖 𝑗 = 𝜋𝑖 𝑗 (𝑥𝑖 𝑗 ) the penalty cost generated by the decisions taken before

obtaining the information. In order to minimize the penalty for the prior evacuation

plan and the expected total evacuation expenses (time and cost) for each scenario,

I formulate the following two-stage evacuation problem.
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min
∑︁
𝑖∈𝐴

∑︁
𝑗∈𝑆

∑︁
𝑚∈𝑀

𝜋𝑖 𝑗 (𝑥𝑖 𝑗) + Eb (Φ(𝑥, b (𝜔))) (7.9)

subject to∑︁
𝑖∈𝐴

𝑥𝑖 𝑗 ≤ 𝐾 𝑗 , ∀ 𝑗 ∈ 𝑆, (7.10)∑︁
𝑖∈𝐴

𝑥𝑖 𝑗 ≥ 𝑘 𝑗 , ∀ 𝑗 ∈ 𝑆, (7.11)

𝑥𝑖 𝑗 ≤ `𝑖 𝑗 , ∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝑆, (7.12)∑
𝑖∈𝐴 𝑥𝑖 𝑗

𝐾 𝑗
−

∑
𝑖∈𝐴 𝑥𝑖 𝑗′

𝐾 ′
𝑗

≤ Y, ∀ 𝑗 , 𝑗 ′ ∈ 𝑆, (7.13)∑︁
𝑗∈𝑆

𝑥𝑖 𝑗 ≤ 𝑑𝑖 , ∀𝑖 ∈ 𝐴, (7.14)

𝑥𝑖 𝑗 ≥ 0, ∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝑆, (7.15)

where

Φ(𝑥, b (𝜔)) = min
∑︁
𝑖∈𝐴

∑︁
𝑗∈𝑆

(
𝑤 𝑐𝑚𝑖 𝑗 (𝑦𝑖 𝑗 (𝜔)) + (1 − 𝑤) 𝑡𝑚𝑖 𝑗 (𝑦𝑖 𝑗 (𝜔))

)
(7.16)

subject to∑︁
𝑖∈𝐴

𝑦𝑖 𝑗 (𝜔) ≤ 𝐾 𝑗 , ∀ 𝑗 ∈ 𝑆, P-a.s., (7.17)∑︁
𝑖∈𝐴

𝑦𝑚𝑖 𝑗 (𝜔) ≥ 𝑘 𝑗 , ∀ 𝑗 ∈ 𝑆,P-a.s., (7.18)

𝑦𝑖 𝑗 (𝜔) ≤ `𝑖 𝑗 (𝜔), ∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝑆,P-a.s., (7.19)∑
𝑖∈𝐴 𝑦𝑖 𝑗 (𝜔)
𝐾 𝑗

−
∑
𝑖∈𝐴 𝑦𝑖 𝑗′ (𝜔)
𝐾 ′
𝑗

≤ Y, ∀ 𝑗 , 𝑗 ′ ∈ 𝑆, P-a.s., (7.20)∑︁
𝑗∈𝑆

𝑦𝑖 𝑗 (𝜔) +
(
𝑑𝑖 −

∑︁
𝑗

𝑥𝑖 𝑗
)
≤ 𝑑𝑖 (𝜔), ∀𝑖 ∈ 𝐴, P-a.s., (7.21)

𝑦𝑖 𝑗 (𝜔) ≥ 0, ∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝑆, P-a.s. (7.22)

Problem (7.9)-(7.15) is the first-stage problem. The objective function (7.9) min-

imizes the sum of the penalty for early evacuation plan and the recourse cost
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Φ(𝑥, b (𝜔)). Constraints (7.10)-(7.11) ensure that the capacity of each shelter 𝑗

is satisfied. Constraint (7.12) is the link flow capacity, constraint (7.13) is the

balance constraint amongst the shelters, constraint (7.14) states that for each area

𝑖 the number of evacuees cannot exceed the number of affected people. Finally,

(7.15) is the non-negativity requirements on flows.

For a given realization 𝜔 ∈ Ω, Φ(𝑥, b (𝜔)) is the optimal value of the second-

stage problem (7.16)-(7.22), where the constraints hold almost surely (P-a.s.). The

objective function (7.16) minimizes the total evacuation cost and the transportation

time in the second stage. Constraints (7.17)-(7.18) are the shelter capacities,

constraint (7.19) is the flow capacity, constraint (7.20) is the balance constraint

amongst the shelters. Constraint (7.21) establishes that the number of evacuees

at the second stage plus the unmet demand of evacuation at the first stage, given

by 𝑑𝑖 −
∑
𝑗∈𝑆 𝑥𝑖 𝑗 , cannot exceed the two-stage demand of people at risk 𝑑𝑖 (𝜔). I

emphasize that the connections between stage-wise decision variables 𝑥 and 𝑦 are

captured by constraint (7.21). It is the linking factor between the first and second

stage, and communicates the first-stage decisions to the second one. Finally, (7.22)

is the non-negativity constraint.

I assume that:

1. 𝜋𝑖 𝑗 (·), is continuously differentiable and convex for all 𝑖, 𝑗 ;

2. 𝑐𝑚
𝑖 𝑗
(·, 𝜔), 𝑡𝑚

𝑖 𝑗
(·, 𝜔), a.e. in Ω, are continuously differentiable and convex for

all 𝑖, 𝑗 ;

3. for each 𝑢 ∈ R𝑝𝑞, 𝑐𝑚
𝑖 𝑗
(𝑢, ·), 𝑡𝑚

𝑖 𝑗
(𝑢, ·) are measurable with respect to the random

parameter in Ω for all 𝑖, 𝑗 ;

4. 𝑦𝑖 𝑗 : Ω→ R and `𝑖 𝑗 : Ω→ R are measurable mappings for all 𝑖, 𝑗 ;
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5. 𝑑𝑚
𝑖

: Ω→ R is a measurable mapping for all 𝑖 and all 𝑚.

Now, I set

𝑌 =

{
𝑦(𝜔) ∈ R𝑛𝑙 : 𝑦𝑖 𝑗 (𝜔) ≥ 0,∀𝑖, 𝑗 ;

∑︁
𝑖∈𝐴

𝑦𝑖 𝑗 (𝜔) ≤ 𝐾 𝑗 , ∀ 𝑗 ;
∑︁
𝑖∈𝐴

𝑦𝑖 𝑗 (𝜔) ≥ 𝑘 𝑗 , ∀ 𝑗 ;

𝑦𝑖 𝑗 (𝜔) ≤ `𝑖 𝑗 (𝜔), ∀𝑖, 𝑗 ;
∑
𝑖∈𝐴 𝑦𝑖 𝑗 (𝜔)
𝐾 𝑗

−
∑
𝑖∈𝐴 𝑦𝑖 𝑗 ′ (𝜔)
𝐾′
𝑗

≤ Y, ∀ 𝑗 , 𝑗 ′, P-a.s.
}
,

which is a closed, convex and bounded subset of R𝑝𝑞.

Thus, the two-stage stochastic problem can be stated in a more compact form as

min
𝑥∈𝑋

∑︁
𝑖∈𝐴

∑︁
𝑗∈𝑆

𝜋𝑖 𝑗 (𝑥𝑖 𝑗 ) + Eb (𝐹 (𝑥, b (𝜔))), (7.23)

Φ(𝑥, b (𝜔)) = min
𝑦(𝜔)∈𝑌

∑︁
𝑖∈𝐴

∑︁
𝑗∈𝑆

∑︁
𝑚∈𝑀

(
𝑤 𝑐𝑚𝑖 𝑗 (𝑦𝑖 𝑗 (𝜔)) + (1 − 𝑤) 𝑡𝑚𝑖 𝑗 (𝑦𝑖 𝑗 (𝜔))

)
(7.24)∑︁

𝑗∈𝑆
𝑦𝑖 𝑗 (𝜔) + (𝑑𝑖 −

∑︁
𝑗

𝑥𝑖 𝑗 ) ≤ 𝑑𝑖 (𝜔), ∀𝑖 ∈ 𝐴, P-a.s. (7.25)

If the random parameter 𝜔 ∈ Ω follows a discrete distribution with finite support

Ω = {𝜔1, . . . , 𝜔𝑟} and probabilities 𝑝(𝜔1), . . . , 𝑝(𝜔𝑟) associated with each real-

ization 𝜔1, . . . , 𝜔𝑟 , then the two-stage problem can be formulated as the unique

large scale problem
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min 𝜋𝑖 𝑗 (𝑥𝑖 𝑗 ) +
∑︁
𝑟∈𝑅

𝑝(𝜔𝑟)
∑︁
𝑖∈𝐴

∑︁
𝑗∈𝑆

∑︁
𝑚∈𝑀

(
𝑤 𝑐𝑚𝑖 𝑗 (𝑦𝑖 𝑗 (𝜔𝑟)) + (1 − 𝑤) 𝑡𝑚𝑖 𝑗 (𝑦𝑖 𝑗 (𝜔𝑟))

)
∑︁
𝑖∈𝐴

𝑥𝑖 𝑗 ≤ 𝐾 𝑗 ,∀ 𝑗 ∈ 𝑆,∑︁
𝑖∈𝐴

𝑥𝑖 𝑗 ≥ 𝑘 𝑗 ,∀ 𝑗 ∈ 𝑆,

𝑥𝑖 𝑗 ≤ `𝑖 𝑗 ,∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝑆,∑
𝑖∈𝐴 𝑥𝑖 𝑗
𝐾 𝑗

−
∑
𝑖∈𝐴 𝑥𝑖 𝑗 ′

𝐾′
𝑗

≤ Y, ∀ 𝑗 , 𝑗 ′ ∈ 𝑆,∑︁
𝑗∈𝑆
𝑥𝑖 𝑗𝑟 ≤ 𝑑𝑖, ∀𝑖 ∈ 𝐴,∑︁

𝑖∈𝐴
𝑦𝑖 𝑗 (𝜔𝑟) ≤ 𝐾 𝑗 ,∀ 𝑗 ∈ 𝑆, 𝑟 ∈ 𝑅,∑︁

𝑖∈𝐴
𝑦𝑖 𝑗 (𝜔𝑟) ≥ 𝑘 𝑗 ,∀ 𝑗 ∈ 𝑆, 𝑟 ∈ 𝑅,

𝑦𝑖 𝑗 (𝜔𝑟) ≤ `𝑖 𝑗 (𝜔𝑟),∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝑆, 𝑟 ∈ 𝑅,∑
𝑖∈𝐴 𝑦𝑖 𝑗 (𝜔𝑟)
𝐾 𝑗

−
∑
𝑖∈𝐴 𝑦𝑖 𝑗 ′ (𝜔𝑟)

𝐾′
𝑗

≤ Y, ∀ 𝑗 , 𝑗 ′ ∈ 𝑆, 𝑟 ∈ 𝑅,∑︁
𝑗∈𝑆

𝑦𝑖 𝑗 (𝜔𝑟) + 𝑑𝑖 −
∑︁
𝑗∈𝑆
𝑥𝑖 𝑗 ≤ 𝑑𝑖 (𝜔𝑡), ∀𝑖 ∈ 𝐴, 𝑟 ∈ 𝑅,

𝑥𝑖 𝑗 ≥ 0,∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝑆,

𝑦𝑖 𝑗 (𝜔𝑟) ≥ 0,∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝑆, 𝑟 ∈ 𝑅,

where 𝑅 = {1, . . . , 𝑟}. If the number of scenarios is not excessive, then a possible

approach is to solve directly the linear programming problem using a solver such

as CPLEX. In the next section, I suggest an alternative approach that decomposes

the original problem into two variational inequality subproblems.
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7.4 Two-stage variational inequality formulation

In this section, I propose an equivalent two-stage variational inequality formulation,

using the Lagrangian relaxation approach.

I note that the second-stage problem (7.24)-(7.25), due to constraint (7.25), contains

the variable 𝑥 that is not yet known at that stage. For this reason, the problem

is not easy to solve. Thus, I suggest to relax (7.25) into the objective function

by Lagrangian relaxation approach (see [22, 122, 138]). As a consequence, I

decompose the original problem into two sub-problems, that can be easily solved,

and provide a lower bound of the optimal value of the initial model (7.9)-(7.22).

Now, I focus on the second stage problem and give its Lagrangian formulation. I

introduce the Lagrange multiplier vector _ : Ω→ R𝑛, with _𝑖 (𝜔) ≥ 0 i.e. 𝜔 ∈ Ω,

for all 𝑖 ∈ 𝐴, and consider the relaxed constraints

∑︁
𝑖∈𝐴

_𝑖 (𝜔)
(∑︁
𝑗∈𝑆

𝑦𝑖 𝑗 (𝜔) + 𝑑𝑖 −
∑︁
𝑗∈𝑆
𝑥𝑖 𝑗 − 𝑑𝑖 (𝜔)

)
.

Lagrange multiplier _𝑖 (𝜔) represents the price or disutility deriving from the

unmet demand at the first stage. Therefore, the Lagrangian of the second-stage

problem with general probability distribution is

𝐿 (𝑥, 𝑦(𝜔), _(𝜔), 𝜔) =
∑︁
𝑖∈𝐴

∑︁
𝑗∈𝑆

∑︁
𝑚∈𝑀

(
𝑤 𝑐𝑚𝑖 𝑗 (𝑦𝑖 𝑗 (𝜔)) + (1 − 𝑤) 𝑡𝑚𝑖 𝑗 (𝑦𝑖 𝑗 (𝜔))

)
+

∑︁
𝑖∈𝐴

_𝑖 (𝜔)
(∑︁
𝑗∈𝑆

𝑦𝑖 𝑗 (𝜔) + 𝑑𝑖 −
∑︁
𝑗∈𝑆
𝑥𝑖 𝑗 − 𝑑𝑖 (𝜔)

)
.

I have
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inf
𝑦∈𝑌

𝐿 (𝑥, 𝑦(𝜔), _(𝜔), 𝜔) =
∑︁
𝑖∈𝐴

_𝑖 (𝜔)
(
𝑑𝑖 −

∑︁
𝑗∈𝑆
𝑥𝑖 𝑗 − 𝑑𝑖 (𝜔)

)
+ inf
𝑦∈𝑌

(∑︁
𝑖∈𝐴

∑︁
𝑗∈𝑆

∑︁
𝑚∈𝑀

(
𝑤 𝑐𝑚𝑖 𝑗 (𝑦𝑖 𝑗 (𝜔)) + (1 − 𝑤) 𝑡𝑚𝑖 𝑗 (𝑦𝑖 𝑗 (𝜔))

)
+

∑︁
𝑖∈𝐴

_𝑖 (𝜔)
∑︁
𝑗∈𝑆

𝑦𝑖 𝑗 (𝜔)
)
.

Then, the dual problem is

max
_≥0

(∑︁
𝑖∈𝐴

_𝑖 (𝜔)
(
𝑑𝑖 −

∑︁
𝑗∈𝑆
𝑥𝑖 𝑗 − 𝑑𝑖 (𝜔)

)
(7.26)

+ inf
𝑦∈𝑌

(∑︁
𝑖∈𝐴

∑︁
𝑗∈𝑆

∑︁
𝑚∈𝑀

(
𝑤 𝑐𝑚𝑖 𝑗 (𝑦𝑖 𝑗 (𝜔)) + (1 − 𝑤) 𝑡𝑚𝑖 𝑗 (𝑦𝑖 𝑗 (𝜔))

)
+

∑︁
𝑖∈𝐴

_𝑖 (𝜔)
∑︁
𝑗∈𝑆

𝑦𝑖 𝑗 (𝜔)
))
.

(7.27)

Thus, the two-stage problem becomes

min
𝑥∈𝑋

∑︁
𝑖∈𝐴

∑︁
𝑗∈𝑆

∑︁
𝑚∈𝑀

𝜋𝑚𝑖 𝑗 (𝑥𝑖 𝑗 ) + Eb (Φ1(𝑥, b (𝜔))),

Φ1(𝑥, b (𝜔)) = max
_≥0

inf
𝑦∈𝑌

𝐿 (𝑥, 𝑦(𝜔), _(𝜔), 𝜔).

Under the assumption of discrete probability space, I find

Eb (Φ1(𝑥, b (𝜔))) =
∑︁
𝑟∈𝑅

𝑝(𝜔𝑟)Φ1(𝑥, b (𝜔𝑟)), ∇𝑥Eb (Φ1(𝑥, b (𝜔))) =

= Eb (−_(𝜔)) = −
∑︁
𝑟∈𝑅

𝑝(𝜔𝑟)_(𝜔𝑟).

Theorem 7.4.1. The pair (𝑥∗, 𝑦∗(𝜔)), where 𝑥∗ ∈ R𝑛𝑙 and 𝑦∗ : Ω → R𝑛𝑙 is a

measurable map, is an optimal solution of the two-stage problem if and only if

there exists _∗ : Ω→ R𝑛 measurable such that
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1. 𝑥∗ is a solution of the variational inequality∑︁
𝑖∈𝐴

∑︁
𝑗∈𝑆

( ∑︁
𝑚∈𝑀

𝜕𝜋𝑚
𝑖 𝑗
(𝑥∗
𝑖 𝑗
)

𝜕𝑥𝑖 𝑗
−

∑︁
𝑟∈𝑅

𝑝(𝜔𝑟)_∗𝑖 (𝜔𝑟)
)
× (𝑥𝑖 𝑗 − 𝑥∗𝑖 𝑗 ) ≥ 0, ∀𝑥 ∈ 𝑋.

(7.28)

2. (𝑦∗(𝜔𝑟), _∗(𝜔𝑟)) is a solution of the parametric variational inequality∑︁
𝑟∈𝑅

∑︁
𝑖∈𝐴

∑︁
𝑗∈𝑆

𝑝(𝜔𝑟 )
(
𝑤

∑︁
𝑚∈𝑀

𝜕𝑐𝑚
𝑖 𝑗
(𝑦∗
𝑖 𝑗
(𝜔𝑟 ))

𝜕𝑦𝑖 𝑗
+

+ (1 − 𝑤)
∑︁
𝑚∈𝑀

𝜕𝑡𝑚
𝑖 𝑗
(𝑦∗
𝑖 𝑗
(𝜔𝑟 ))

𝜕𝑦𝑖 𝑗
+ _𝑖 (𝜔𝑟 )

)
× (𝑦𝑖 𝑗 (𝜔𝑟 ) − 𝑦∗𝑖 𝑗 (𝜔𝑟 ))+

+
∑︁
𝑟∈𝑅

𝑝(𝜔𝑟 )
∑︁
𝑖∈𝐴

(∑︁
𝑗∈𝑆

𝑥∗𝑖 𝑗 −
∑︁
𝑗∈𝑆

𝑦∗𝑖 𝑗 (𝜔𝑟 ) − 𝑑𝑖 + 𝑑𝑖 (𝜔𝑟 )
)
× (_𝑖 (𝜔𝑟 ) − _∗𝑖 (𝜔𝑟 )) ≥ 0,

∀𝑦(𝜔𝑟 ) ∈ 𝑌,∀_𝑖 (𝜔𝑟 ) ≥ 0. (7.29)

Proof. Function Φ1(𝑥, b (𝜔𝑟)) is linear w.r.t. 𝑥, and, hence, is convex for all

𝜔𝑟 ∈ Ω. This implies the convexity of the expectation function Eb (Φ1(𝑥, b (𝜔𝑟))).

Since Ω is finite, for any 𝑥0 ∈ ∩𝑟∈𝑅Φ1(𝑥, b (𝜔𝑟)), the expectation function is

differentiable at 𝑥0. Then, by interchangeability of the gradient and the expectation

operators, and by classical variational inequality theory, I conclude that the first

stage problem (7.23) is equivalent to variational inequality (7.28). Finally, from

the optimality conditions of the dual problem (7.27), then it is easy to see that

_∗(𝜔𝑟) implies the existence of 𝑦∗(𝜔𝑟) such that (𝑦∗(𝜔𝑟), _∗(𝜔𝑟)) satisfies (7.29)

. □

I observe that problem (7.28)-(7.29) can be put in the standard form variational

inequality,

⟨𝐺 (𝑧∗), 𝑧 − 𝑧∗⟩ ≥ 0, ∀𝑧 ∈ 𝑋 × 𝑌 × R𝑛+, (7.30)
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where

𝑧 =


𝑥

𝑦

_


,

𝐺 (𝑧) =



∑
𝑚∈𝑀

𝜕𝜋𝑚
𝑖 𝑗
(𝑥𝑖 𝑗 )

𝜕𝑥𝑖 𝑗
−∑

𝑟∈𝑅 𝑝(𝜔𝑟 )_𝑖 (𝜔𝑟 )∑
𝑟∈𝑅 𝑝(𝜔𝑟 )

(
𝑤

∑
𝑚∈𝑀

𝜕𝑐𝑚
𝑖 𝑗
(𝑦𝑖 𝑗 (𝜔𝑟 ) )
𝜕𝑦𝑖 𝑗

+ (1 − 𝑤)∑𝑚∈𝑀
𝜕𝑡𝑚

𝑖 𝑗
(𝑦𝑖 𝑗 (𝜔𝑟 ) )
𝜕𝑦𝑖 𝑗

+ _𝑖 (𝜔𝑟 )
)

𝑝(𝜔𝑟 )
( ∑

𝑗∈𝑆 𝑥𝑖 𝑗 −
∑
𝑗∈𝑆 𝑦𝑖 𝑗 (𝜔𝑟 ) − 𝑑𝑖 + 𝑑𝑖 (𝜔𝑟 )

)
𝑟∈𝑅𝑖∈𝐴
𝑗∈𝑆

.

In virtue of Theorem 7.4.1, variational inequality (7.30) represents the optimality

conditions of the decision planner that is faced with the two-stage stochastic

optimization problem (7.23)-(7.25). I now highlight the economic interpretation

of these conditions. From variational inequality (7.28), I can infer that, if there

is a positive evacuation flow between area 𝑖 and shelter 𝑗 in the first stage, then

the expected price 𝑝(𝜔𝑟)_𝑟 (𝜔𝑟) is equal to the marginal penalty cost of the unmet

demand at the first stage. From the first term in inequality (7.29), I have that,

if there is a positive evacuation flow between area 𝑖 and shelter 𝑗 in the second

stage, then the marginal evacuation costs plus the price _(𝜔𝑟) must be null. From

the second term, I also note that if no flow is positive, then sum of the marginal

evacuation costs plus the price _(𝜔𝑟) can be positive. Finally, from the second

term in inequality (7.29), I see that the price _(𝜔𝑟) serves as the price to balance

the system.

I now discuss some qualitative properties of (7.30). Since the feasible set underly-

ing the variational inequality problem is not compact we cannot derive existence

of a solution simply from the assumption of continuity of the functions. Instead, I

could require some coercivity conditions (see, for instance, [78]). It is well-known

that the uniqueness of the solution to the above variational inequality is ensured

by the strict monotonicity of mapping 𝐺 (𝑧). The theorem below presents the
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sufficient conditions for the uniqueness.

Theorem 7.4.2. Let us assume that functions 𝜋𝑚
𝑖 𝑗
(𝑥𝑖 𝑗 ) are strictly convex in 𝑥𝑖 𝑗 ,

𝑐𝑚
𝑖 𝑗
(𝑦𝑖 𝑗 ) and 𝑡𝑚

𝑖 𝑗
(𝑦𝑖 𝑗 ) are strictly convex in 𝑦𝑖 𝑗 . Then, the vector function G involved

in the variational inequality (7.30) is strictly monotone, that is,

⟨𝐺 (𝑧) − 𝐺 (𝑧), 𝑧 − 𝑧⟩ > 0,∀𝑧, 𝑧 ∈ 𝑋 × 𝑌 × R𝑛+, 𝑧 ≠ 𝑧.

Proof. For any 𝑧 = (𝑥𝑇 , �̄�𝑇 , _̄𝑇 )𝑇 , 𝑧 = (𝑥𝑇 , �̃�𝑇 , _̃𝑇 )𝑇 ∈ 𝑋 × 𝑌 × R𝑛+, and using the

linearity of constraint (7.21) (see [138], Theorem 2), direct computations lead to

⟨(𝐺 (𝑧) − 𝐺 (𝑧)), 𝑧 − 𝑧⟩ =
∑︁
𝑖∈𝐴

∑︁
𝑗∈𝑆

∑︁
𝑚∈𝑀

(
𝜕𝜋𝑚

𝑖 𝑗
(𝑥𝑖 𝑗 )

𝜕𝑥𝑖 𝑗
−
𝜕𝜋𝑚

𝑖 𝑗
(𝑥𝑖 𝑗 )

𝜕𝑥𝑖 𝑗

)
(𝑥𝑖 𝑗 − 𝑥𝑖 𝑗 )

+
∑︁
𝑟∈𝑅

∑︁
𝑖∈𝐴

∑︁
𝑗∈𝑆

𝑝(𝜔𝑟)
(
𝑤

∑︁
𝑚∈𝑀

(
𝜕𝑐𝑚

𝑖 𝑗
( �̄�𝑖 𝑗 (𝜔𝑟))
𝜕𝑦𝑖 𝑗

−
𝜕𝑐𝑚

𝑖 𝑗
( �̃�𝑖 𝑗 (𝜔𝑟))
𝜕𝑦𝑖 𝑗

)
+(1 − 𝑤)

∑︁
𝑚∈𝑀

(
𝜕𝑡𝑚
𝑖 𝑗
( �̄�𝑖 𝑗 (𝜔𝑟))
𝜕𝑦𝑖 𝑗

−
𝜕𝑡𝑚
𝑖 𝑗
( �̃�𝑖 𝑗 (𝜔𝑟))
𝜕𝑦𝑖 𝑗

))
( �̄�𝑖 𝑗 − �̃�𝑖 𝑗 ).

Since 𝜋𝑚
𝑖 𝑗
, 𝑐𝑚
𝑖 𝑗
, 𝑡𝑚
𝑖 𝑗

are strictly convex functions, the matrices of the second deriva-

tives of those functions are positive definite, and the functions are strictly mono-

tone. Thus, 𝐺 (𝑧) is strict monotone if and only if 𝑧 ≠ 𝑧. □

7.5 Numerical results

In this section, I introduce a numerical example for the aim of validating my

approach.

For simplicity, I consider only a single mode of transportation between each crisis

area and each shelter (𝑚 = 1). Moreover, I set 𝑤 = 0.6, Y = 0.01, 𝑟 = 100. Then,

I choose the random parameter 𝜔𝑟 ∈ [0, 1], and fix the following parameters for

𝑖 = 1, 2, 𝑗 = 1, 2 and 𝑟 = 1, . . . , 100, as follows:
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• the probabilities 𝑝(𝜔𝑟) = 1
100 associated with each realization 𝜔𝑟 , randomly

taken in [0, 1];

• the recommended number and the maximum number of people that can be

hosted in shelter:

𝑘1 = 4, 𝑘2 = 3,

𝐾1 = 40, 𝐾2 = 40;

• capacity of flows in stage one and random flow capacity in stage two:

`𝑖 𝑗 = 50 ∀𝑖 = 1, 2, 𝑗 = 1, 2;

• evacuation demand in stage one and random evacuation demand in stage

two:

𝑑1 = 50, 𝑑1(𝜔𝑟) = 50𝜔𝑟 ;

𝑑2 = 60, 𝑑2(𝜔𝑟) = 60𝜔𝑟 .

I now describe the two-stage variational inequality formulation, based on La-

grangian relaxation approach. The procedure is structured in two steps:

1. I first solve the second-stage parametric variational inequality, and find the

solution (𝑦∗(𝑥, 𝜔), _∗(𝜔));

2. I write the operator
∑
𝑚∈𝑀

∑
𝑖∈𝐴

∑
𝑗∈𝑆 𝜋

𝑚
𝑖 𝑗
(𝑥∗
𝑖 𝑗
) + Eb (𝐹 (𝑥∗, b (𝜔))), solve the

first-stage variational inequality, and find 𝑥∗.

I obtain the solution (𝑥∗, 𝑦∗(𝜔), _∗(𝜔)). I remark that
∑
𝑚∈𝑀

∑
𝑖∈𝐴

∑
𝑗∈𝑆 𝜋

𝑚
𝑖 𝑗
𝑥∗
𝑖 𝑗

+Eb (𝐹 (𝑥∗, b (𝜔))) is a lower bound of the optimal value of the original prob-

lem.
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I apply the extragradient method (see [128]) to compute solutions to my numerical

problem and implement it as M-script files of MatLab.
The first step of this approach consists in solving the second-stage parametric
variational inequality, using the Lagrangian approach. The profit function 𝐹𝑖 𝑗 for
each area 𝑖 = 1, 2 and shelter 𝑗 = 1, 2 are given by

𝐹11 =

100∑︁
𝑟=1

𝑝(𝜔𝑟 )
(
𝑤(20𝑦11 (𝜔𝑟 )2 − 90𝑦11 (𝜔𝑟 ) + 200) + (1 − 𝑤) (20𝑦11 (𝜔𝑟 )2 − 180𝑦11 (𝜔𝑟 ) + 600)

+ _1 (𝑦11 (𝜔𝑟 ) + 𝑦12 (𝜔𝑟 ) + 50 − 𝑥11 − 𝑥12 − 50𝜔𝑟 )
)
+

2𝑥2
11 + 𝑥

2
12 − 5𝑥11

2
,

𝐹12 =

100∑︁
𝑟=1

𝑝(𝜔𝑟 )
(
𝑤(45𝑦12 (𝜔𝑟 )2 − 105𝑦12 (𝜔𝑟 ) + 225) + (1 − 𝑤) (60𝑦12 (𝜔𝑟 )2 − 180𝑦12 (𝜔𝑟 ) + 900)

+ _1 (𝑦11 (𝜔𝑟 ) + 𝑦12 (𝜔𝑟 ) + 50 − 𝑥11 − 𝑥12 − 50𝜔𝑟 )
)
+
𝑥2

11 + 1.5𝑥2
12 − 5.4𝑥12

2
,

𝐹21 =

100∑︁
𝑟=1

𝑝(𝜔𝑟 )
(
𝑤(80𝑦21 (𝜔𝑟 )2 − 200𝑦21 (𝜔𝑟 ) + 300) + (1 − 𝑤) (45𝑦21 (𝜔𝑟 )2 − 120𝑦21 (𝜔𝑟 ) + 450)

+ _2 (𝑦21 (𝜔𝑟 ) + 𝑦22 (𝜔𝑟 ) + 60 − 𝑥21 − 𝑥22 − 60𝜔𝑟 )
)
+
𝑥2

22 + 3𝑥2
21 − 7.4𝑥21

2
,

𝐹22 =

100∑︁
𝑟=1

𝑝(𝜔𝑟 )
(
𝑤(30𝑦22 (𝜔𝑟 )2 − 110𝑦22 (𝜔𝑟 ) + 350) + (1 − 𝑤) (54𝑦22 (𝜔𝑟 )2 − 168𝑦22 (𝜔𝑟 ) + 675)

+ _2 (𝑦21 (𝜔𝑟 ) + 𝑦22 (𝜔𝑟 ) + 60 − 𝑥21 − 𝑥22 − 60𝜔𝑟 )
)
+

2𝑥2
22 + 𝑥

2
21 − 6.2𝑥22

2
.

I obtain the following solutions

𝑦11 = −35.9789 + 35.9155𝜔𝑟 + 0.71831𝑥11 + 0.71831𝑥12,

𝑦12 = −14.0211 + 14.0845𝜔𝑟 + 0.28169𝑥11 + 0.28169𝑥12,

𝑦21 = −22.375 + 22.5𝜔𝑟 + 0.375𝑥21 + 0.375𝑥22,

𝑦22 = −37.625 + 37.5𝜔𝑟 + 0.625𝑥21 + 0.625𝑥22,

_1 = 156515 − 143662𝜔𝑟 − 2873.24𝑥11 − 2873.24𝑥12,

_2 = 312150 − 297000𝜔𝑟 − 4950𝑥21 − 4950𝑥22.

For all 𝑖 and 𝑗 , each flow 𝑦𝑖 𝑗 and the corresponding Lagrange multipliers _𝑖 depend
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on 𝑥𝑖 𝑗 and 𝜔𝑟 , for 𝑟 = 1, . . . , 100.

The second step consists in calculating 𝑥𝑖 𝑗 using the profit function of the first stage

𝐹𝑖 𝑗 ; hence, I obtain the flows of the first and the second stage and the Lagrange

multipliers of the second-stage, which depend on 𝜔𝑟 . I find

𝑥11(𝜔𝑟) = 32.9972 − 30.8684𝜔𝑟 ,

𝑥12(𝜔𝑟) = 18.3999 − 16.1403𝜔𝑟 ,

𝑥21(𝜔𝑟) = 17.6953 − 16.3862𝜔𝑟 ,

𝑥22(𝜔𝑟) = 42.7048 − 40.9655𝜔𝑟 .

𝑦11(𝜔𝑟) = 0.940151 + 2.14868𝜔𝑟 ,

𝑦12(𝜔𝑟) = 0.456949 + 0.842619𝜔𝑟 ,

𝑦21(𝜔𝑟) = 0.275037 + 0.993113𝜔𝑟 ,

𝑦22(𝜔𝑟) = 0.125063 + 1.65519𝜔𝑟 ,

_1(𝜔𝑟) = 8838.8 − 8594.72𝜔𝑟 ,

_2(𝜔𝑟) = 13169.5 − 13109.1𝜔𝑟 .

Thus, the average values of profit functions 𝐹𝑖 𝑗 , for 𝑖 = 1, 2, 𝑗 = 1, 2 and

𝜔1, . . . , 𝜔100, are

𝐹11 = 39602, 𝐹12 = 25789,

𝐹21 = 43715, 𝐹22 = 60095.

In the following Table 7.3, I present the average value of flows 𝑥𝑖 𝑗 , 𝑦𝑖 𝑗 , and the

multipliers _𝑖 𝑗 .

In order to verify the effectiveness of the proposed model, we compare the deter-

ministic model and the Lagrange relaxation approach.



7.5. Numerical results 155

(𝑖, 𝑗) (1, 1) (1, 2) (2, 1) (2, 2)

𝑥𝑖 𝑗 17.6921 10.3973 9.5707 22.3934

_̄𝑖 𝑗 4577.4 4577.4 6669.8 6669.8

�̄�𝑖 𝑗 2.0055 0.8747 0.7674 0.9457

Table 7.3: Average of flows 𝑥𝑖 𝑗 , 𝑦𝑖 𝑗 , and multipliers _𝑖 𝑗 in each scenarios and the

total profit function 𝐹𝑖 𝑗

In the deterministic case, using the same data, I find the solutions:

𝑥11 = 2.82246, 𝑥12 = 1.47495,

𝑥21 = 1.177549, 𝑥22 = 2.12505.

The values of the deterministic profit functions 𝐹𝑖 𝑗 , 𝑖 = 1, 2, 𝑗 = 1, 2, are then:

𝐹11 = 163.696, 𝐹12 = 406.831,

𝐹21 = 253.689, 𝐹22 = 357.92.

I note that the values of the deterministic profit functions 𝐹𝑖 𝑗 are greater than the

respective values of the Lagrange relaxation approach. This observation implies

that the stochastic framework and the real-time updating of information allow one

to evaluate more precisely the situation, and to lower evacuation costs. Of course,

for small dimensional models the two-stage stochastic evacuation problem can be

directly solved.

Thus, I consider the two-stage evacuation model without the Lagrange relaxation.
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I define 𝐹𝑖 𝑗 for 𝑖 = 1, 2, and 𝑗 = 1, 2 as

𝐹11 =

100∑︁
𝑟=1

𝑝(𝜔𝑟 )
(
𝑤(20𝑦11 (𝜔𝑟 )2 − 90𝑦11 (𝜔𝑟 ) + 200) + (1 − 𝑤) (20𝑦11 (𝜔𝑟 )2 − 180𝑦11 (𝜔𝑟 ) + 600)

)
+

2𝑥2
11 + 𝑥

2
12 − 5𝑥11

2
,

𝐹12 =

100∑︁
𝑟=1

𝑝(𝜔𝑟 )
(
𝑤(45𝑦12 (𝜔𝑟 )2 − 105𝑦12 (𝜔𝑟 ) + 225) + (1 − 𝑤) (60𝑦12 (𝜔𝑟 )2 − 180𝑦12 (𝜔𝑟 ) + 900)

)
+
𝑥2

11 + 1.5𝑥2
12 − 5.4𝑥12

2
,

𝐹21 =

100∑︁
𝑟=1

𝑝(𝜔𝑟 )
(
𝑤(80𝑦21 (𝜔𝑟 )2 − 200𝑦21 (𝜔𝑟 ) + 300) + (1 − 𝑤) (45𝑦21 (𝜔𝑟 )2 − 120𝑦21 (𝜔𝑟 ) + 450)

)
+
𝑥2

22 + 3𝑥2
21 − 7.4𝑥21

2
,

𝐹22 =

100∑︁
𝑟=1

𝑝(𝜔𝑟 )
(
𝑤(30𝑦22 (𝜔𝑟 )2 − 110𝑦22 (𝜔𝑟 ) + 350) + (1 − 𝑤) (54𝑦22 (𝜔𝑟 )2 − 168𝑦22 (𝜔𝑟 ) + 675)

)
+

2𝑥2
22 + 𝑥

2
21 − 6.2𝑥22

2
.

I obtain the following average of the flows of the first and second stage over

𝑟 = 1, . . . , 100, respectively

𝑥11 = 13.69769, �̄�11 = 3.15,

𝑥12 = 13.59372, �̄�12 = 1.32,

𝑥21 = 12.85349, �̄�21 = 1.27,

𝑥22 = 16.96938, �̄�22 = 1.78.

As a consequence the value of profit functions 𝐹𝑖 𝑗 , for 𝑖 = 1, 2, 𝑗 = 1, 2 and

𝜔1, . . . , 𝜔100, are:

𝐹11 = 43343, 𝐹12 = 62724,

𝐹21 = 72244, 𝐹22 = 74621.

As expected, the values of the deterministic profit functions 𝐹𝑖 𝑗 , for all 𝑖, 𝑗 , are
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greater than the respective values of the two-stage evacuation model without the

Lagrange relaxation. This confirms the efficiency of the stochastic approach.

7.6 Conclusions

In this Chapter, I introduced a two-stage stochastic programming model for the

emergency evacuation problem. I proposed a scenario-based evacuation planning

model able to provide the optimal flows of evacuees from crisis areas to shelters,

in order to minimize both the transportation cost and the transportation time, and

under uncertainty on the evacuation demand and the link capacities.

I then proposed a variational inequality formulation of the model; in particular,

I reduced my problem to a two-stage stochastic variational inequality, using the

Lagrangian relaxation approach. I also discussed the qualitative properties of

the two-stage stochastic variational inequality. In addition, I analyzed the role

of Lagrange multipliers associated with the relaxed constraints. Finally, in order

to show the applicability and effectiveness of my model, I provided a numerical

example. Future research may include extending this framework to multistage

stochastic models.



158 Optimal Emergency Evacuation with Uncertainty



Chapter 8
A Game Theory Approach for Crowd

Evacuation Modelling

8.1 Introduction

Throughout history, humans have been interested in natural disasters and the topic

of evacuation, because optimizing the evacuation’s strategies has vital importance

in reducing the human and social harm, and saving the aid time. During evacuation,

there are more than a few decisions which have to be made in a very short period of

time, and in the most appropriate way. Significant research efforts have been made

in the literature, (see [129]), to deal with evacuation optimization on the basis of

deterministic optimization model, nevertheless the cooperative or non-cooperative

behavior’s aspects of real-world evacuation have not been taken into account

comprehensively. In [93] the authors focused their ideas on the evacuation routes;

whereas, in our work I focused on the minimum path and also on the behavior of the

crowd. A suitable way to find optimum evacuation routes, during an emergency,

is using Ant Colony Optimization (ACO) algorithms [232, 109, 113]. Indeed,

159
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humans have faced complex optimization problems such as finding the shortest

path between various points, evacuation simulations and optimization, allocating

the optimum amount of resources, determining the optimum sequence of the

processes in a production line, among others. Ant Colony Optimization algorithms

are approximate techniques, belonging to the Swarm Intelligence methods, which

imitate the cooperative behavior of real ants to solve optimization problems. Each

artificial ant is inspired by the behavior of a real ant and can be seen as an agent of

a multi-agent system. Real ants are eusocial insects and use collective behavior to

achieve complex task, such as finding shortest paths between food sources and their

nest. Using a simple communication mechanism like a chemical trail (pheromone),

an ant colony is able to find the shortest path between two points. Initially,

ant colony optimization algorithms have been applied to many combinatorial

optimization problems, achieving good results in solving different problems, such

as graph coloring [44], scheduling [236, 187] and assignment problems [31].

Nowadays, ACO algorithms have also been applied to problems belonging to the

class of dynamic optimization problems, in which topology and costs can change

during the execution of the algorithm. Routing in telecommunications networks

is an example of such a problem [115]. Game theory has been widely used in

the research of various scientific disciplines, from biological systems to economic

and social networks [89].With the help of game theory, researchers can conduct

extensive studies on the pedestrian and evacuation dynamics [68, 239]. However,

game-theoretical models are focused on the study of the crowd’s behavior in

evacuation process. Indeed, in [238] the authors study a game-theoretical model

to underline the relationship between cooperative and competitive agents in a

crowd. Also, [181] discusses the basic principles of multiple robot cooperative
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system using Game Theory and Ant Colony Algorithms. The aim of this research

work is to study and analyse the collective behavior of a little social group that tries

to escape from a disaster situation, such as earthquakes, volcanic eruptions, and/or

hurricanes, trying to reach a safe location in the shortest possible time. Therefore,

an ACO algorithm has been taken into account to study the behavior of different

agents in strictly dynamic situations. Specifically, two different agents have been

considered, which act differently: cooperative and non-cooperative agents. Ants

colonies are recognized to be the best organized and cooperative social system,

able to make their social community work at the best, and able to perform complex

tasks, such as, for instance, discovering the shortest path between food and anthill,

or defend the own anthill from attack by predators [171]. Moreover, any action

of any ant, is related only to its local environment, local interactions with other

ants, simple social rules, and in total absence of centralized decisions. These last

features, that I find own in catastrophic situations, convinced us to consider ACO

as the simulation model suitable for our study, because a sophisticated collective

behavior based on local interactions, social rules, and in absence of centralized

decisions, becomes crucial in reaching safe locations. Finally, the relationship

between ACO and Game Theory aims to find a good solution in the case where

agents with different ideas and strategies have to share a particular situation. As

happens in an emergency scenario for the crowd, the same happens with a group

of ants that tries to achieve the exit as safe as possible.

8.2 The Model

The Ant Colony Optimization algorithm is a well-known procedure that takes

inspiration from the ants’ behavior, when they look for a path between any food
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source and their anthill. It has been observed that they can identify the shortest

path, and communicate it to the others through chemical signals released along

the path, called pheromones. In recent years, this behavior has been translated

into mathematical and computer language and used to solve different kinds of

optimization problems through different versions of the algorithm itself. Despite

the different contexts where it has been applied, the mathematical description of

the algorithm is quite the same for most of the problems. In particular, the ant’s

environment is considered as a graph 𝐺 = (𝑁, 𝐿), where 𝑁 is the set of nodes

and 𝐿 is the set of links. A generic ant 𝑘 is supposed to be placed on a node 𝑖,

and she must choose a destination node according to her behavior in real life; that

is, preferring a path with some pheromone traces. However, this behavior is not

deterministic so a proportional transition rule 𝑝𝑘
𝑖 𝑗
(𝑡) is defined as in Eq. (8.1). It

states that an ant 𝑘 , on a node 𝑖 and at a time 𝑡 will choose a destination node 𝑗

with a probability that is proportional to the quantity of pheromone on the link

connecting 𝑖 with 𝑗 , if the link 𝑗 belongs to the set of possible displacements for

𝑘 . The probability is 0 otherwise. In formulas, I have:

𝑝𝑘𝑖 𝑗 (𝑡) =


𝜏𝑖 𝑗 (𝑡)𝛼 ·[𝛽𝑖 𝑗∑
𝑙∈𝐽𝑘

𝑖
𝜏𝑖𝑙 (𝑡)𝛼 ·[𝛽𝑖𝑙

if 𝑗 ∈ 𝐽𝑘
𝑖

0 if 𝑗 ∉ 𝐽𝑘
𝑖
.

(8.1)

As said previously, 𝐽𝑘
𝑖

is the set of possible movements of the ant 𝑘 . Moreover,

[𝑖 𝑗 is the visibility of node 𝑗 (defined as the inverse of the distance between two

nodes), 𝜏𝑖 𝑗 (𝑡) is the pheromone intensity on a path at a given iteration, while 𝛼

and 𝛽 are two parameters that determine the importance of pheromone intensity

with respect to the visibility of a path. Once the ant 𝑘 arrives at a destination

node 𝑗 , she updates the pheromone trace by releasing at a time 𝑡 an amount of it

proportional to the inverse of the length of the path 𝐿𝑘 (𝑡) (eventually multiplied
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by a Q-factor) if the link (𝑖, 𝑗) belongs to the path 𝑇 𝑘 (𝑡) of the ant at time 𝑡. It is 0

otherwise. In this way, the greater the length of a path is, the less pheromone will

be present on it. This feature is described by Eq. (8.2) in which Δ𝜏𝑘
𝑖 𝑗
(𝑡) represents

the amount of pheromone deposited by the ant 𝑘 .

Δ𝜏𝑘𝑖 𝑗 (𝑡) =


𝑄

𝐿𝑘 (𝑡) if (𝑖, 𝑗) ∈ 𝑇 𝑘 (𝑡)

0 if (𝑖, 𝑗) ∉ 𝑇 𝑘 (𝑡).
(8.2)

Finally, a global updating rule 𝜏𝑖 𝑗 (𝑡 + 1) is applied as in Eq. (8.3). It states that the

intensity of pheromone will be updated considering the intensity 𝜏𝑖 𝑗 (𝑡) of it at a

previous step, and decreasing it with an evaporation factor 𝜌.

𝜏𝑖 𝑗 (𝑡 + 1) = (1 − 𝜌) · 𝜏𝑖 𝑗 (𝑡) +
𝑚∑︁
𝑘=1

Δ𝜏𝑘𝑖 𝑗 (𝑡). (8.3)

Now, starting from this procedure I have modified and extended ACO rules to fit

them in my model. In particular, I have tried to mix concepts of game theory

with concepts of optimization, to explore and highlight some novel features still

not completely understood. To do this, I have imagined a generic risk situation

like the one a group of ants is forced to live if it must solve a labyrinth. In

other words, I assume that ants must find the exit of the labyrinth from a certain

entrance as soon as possible to survive. I have modelled this escape situation

like a game in which every ant can adopt two different strategies to exit from the

labyrinth. I have chosen a labyrinth structure, since it generalizes and makes more

interesting and challenging the optimization problem of finding the shortest path

in a graph. I have realized this model using NetLogo [222], an agent-based model

software that allowed us not only to build materially the structure of the labyrinth

itself and implement the algorithm, but also to see what was happening during

the simulation thanks to an opportune dedicate tab. I have built the labyrinth
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modifying an existing model proposed in [209]. I have fixed the seed of the

random numbers to regenerate, at each run, the same labyrinth. Then, I have

created a network underneath the labyrinth and realized more complex labyrinths

by strictly modifying the procedure proposed in [209]. This upgraded version can

add other links between some nodes with at least two first neighbors and other

nodes with at least two first neighbors, in order to prevent the loss of the dead ends.

I have repeated this procedure for different kinds of labyrinths with different sets

of nodes and links, and grouped them in order to increase complexity. Finally, I

have selected for all of them one node on the left part of the labyrinth to be the

entrance, and one node on the right part to be the exit. I underline that the entrance

and the exit are chosen on the left and on the right, respectively, to give an example

to focus on a sample of the labyrinth. In order to generalize the problem, I can

put the exit wherever I want or I can rotate the labyrinth, as suitably as I need.

Then, I have created two different kinds of ants that act differently, and each of

them follow a different strategy to escape from the labyrinth. In particular, I have

imagined what would happen if some ants acted cooperatively, while other ants

acted non cooperatively. Thus, at first I initialize the set of the whole colony and

then, by means of a cooperation parameter 𝑓 , I establish the fraction of ants who

will act cooperatively. It follows that the remaining fraction (1 − 𝑓 ) of ants will

act non cooperatively. In detail, I set the two strategies, that cannot be changed

once the fraction of cooperative ants is defined, as follows:

• Non-Cooperative: they block a random node of their path. In Fig. 8.1, non-

cooperative ants are colored in blue, while a blocked node is represented as

a fire.

• Cooperative: if they find a damaged node close to their path, they repair it.
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In Fig. 8.1, cooperative ants are colored in red.

Figure 8.1: In this model the entrance is fixed (always on the left part of the

labyrinth), whilst the exit changes, in any position of the labyrinth, in according

to the number of prizes on it. Bigger black nodes represent end nodes, i.e. dead

ends roads; fires indicate the damaged nodes by the non-cooperative ants; and the

black labels on the edges indicate the intensity of pheromone on that route. With

red are showed the cooperative ants, and in blue the non-cooperative ones.

Both of them become safe if and only they arrive at the exit. Every kind of ant

is ”equipped” with the same transition rule. In other words, each ant chooses the

next target node according to the same rule, even if it belongs to different families

and acts differently. In particular, the transition rule in (8.4) defines the probability

𝑝𝑘
𝑖 𝑗
(𝑡) of an ant to go from a starting node 𝑖 to a destination node 𝑗 as follows:

during the first iteration, the ants explore randomly the labyrinth. They choose to

visit a link according to the intensity of pheromone on it that, in the first iteration,

is equal to 1 for all the links of the labyrinth.

The first ant of each kind that arrives at the exit releases a trace of pheromone

Δ𝜏𝑖 𝑗 along every link of her path. For simplicity, in my model, the intensity of

pheromone released by each ant on every link of her path is Δ𝜏𝑖 𝑗 = 1.5. After that,
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the other ants of the same kind die, the global updating rule (8.5) is applied and a

new generation is launched. In formulas, I define the transition rule as:

𝑝𝑘𝑖 𝑗 (𝑡) =


𝜏𝑖 𝑗 (𝑡)∑
𝑙∈𝐽𝑘

𝑖
𝜏𝑖𝑙 (𝑡) if 𝑗 ∈ 𝐽𝑘

𝑖

0 otherwise,
(8.4)

with 𝜏𝑖 𝑗 intensity of pheromone on the link (𝑖, 𝑗) and 𝐽𝑘
𝑖

is the set of allowed links.

Finally, the global updating rule is defined as:

𝜏𝑖 𝑗 (𝑡 + 1) = (1 − 𝛼) · 𝜏𝑖 𝑗 (𝑡) + Δ𝜏𝑖 𝑗 , (8.5)

where 𝛼 is the evaporation rate, 𝜏𝑖 𝑗 is the pheromone intensity on the link (𝑖, 𝑗) at

the previous step and Δ𝜏𝑖 𝑗 is the amount of deposited pheromone by the winning

ant, at each turn, on the same link. In this model, I have also imposed that, once

the quantity of pheromone falls below a certain threshold, it remains fixed and

does not decrease further. This choice is to prevent the stagnation of the algorithm

around a local optimum. Thus, within this situation, I want to analyze how two

different strategies evolve in time during a critical situation, namely, in finding

the shortest path from the entrance to the exit in the shortest possible time. In

the next section, I will discuss about some game theory definitions used in the

model. I decide not to consider the gain of a single link, but the aim of one ant

is to reach the exit as soon as possible. In fact, the exit, or in my case the shelter,

has a capacity that in the algorithm is represented by a prize in the exit. If there

are no more prizes on the exit, i.e. capacity in the shelter, the exit will move (with

the same budget of prizes) to another edge node of the graph, except the ones on

the left part of the labyrinth. I am ruling out the possibility that the exit and the

entrance are on the same side of the graph. It is a dynamic case in which not only

the ants must be able to find the exit from the maze through the shortest path, but
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from time to time, they must also have the ability to organize themselves for a new

objective that gives the opportunity to collect prizes.

8.2.1 Evacuees’ game

Game theory allows one to define how much an agent can gain from its actions

and decisions. Indeed, agents are defined to be rational and intelligent and try to

reach the highest value of the profit function. In game theory, the profit function

models reality so as to give a value to the emotional or economic gain to the agent

who adopts a certain strategy. A strategy space for a player is the set of all possible

strategies of a player; whereas, a strategy is a complete plan of action for every

stage of the game. Formally, I define a payoff function for a player as a map from

the cross-product of players’ strategy spaces to reals, i.e. the payoff function of a

player takes as its input a strategy profile and yields a representation of payoff as

its output.

In this model, I consider an 𝑁-players game (𝑁 ≥ 2). The evacuees represent the

players of the game, who have to reach a safe area. I suppose that evacuees can

choose either to cooperate (C) or not to cooperate (NC), when attempting to arrive

a desired safe area after or during a disaster. Each player starts from the same node

and tries to reach an exit using the minimum path. A little group of evacuees tries

to arrive in a safe area, which has a capacity 𝐾 , but only one member of the group

can reach that place. When the shelter is full or is not enough safe, I consider a

new shelter, placed in another node of the graph, which the evacuees have to reach.

Let 𝐺 = (𝑉, 𝐿) be the graph associated with the game, where 𝑉 is the set of

vertices and 𝐿 the set of links. The payoff of the player that finally reaches the

safe area depends on a parameter, the pheromone 𝜏𝑖 𝑗 on the edge (𝑖, 𝑗) used in the
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Ant Colony Algorithm. According to the strategies I define two different payoff

functions, which depend on the strategy that an agent chooses. As a consequence,

I define the payoff function of an agent 𝑘 , who chooses the cooperative strategy

𝑎𝐶
𝑘

:

𝑢𝑘 (𝑎𝐶𝑘 , 𝑎−𝑘 ) =
𝑓 ·∑𝑖, 𝑗 𝜏𝑖 𝑗

𝑛
, 0 < 𝑓 ≤ 1. (8.6)

I define the payoff function of an agent 𝑘 , who chooses the non-cooperative strategy

𝑎𝑁𝐶
𝑘

:

𝑢𝑘 (𝑎𝑁𝐶𝑘 , 𝑎−𝑘 ) =
(1 − 𝑓 ) ·∑𝑖, 𝑗 𝜏𝑖 𝑗

𝑛
, 0 ≤ 𝑓 < 1. (8.7)

I denote 𝑓 as the percentage of cooperative players and 𝑛 as the number of evacuees

of a group. I consider
∑
𝑖, 𝑗 𝜏𝑖 𝑗 as the sum of the pheromone on the links of the

agent path. I underline that 𝑎𝑘 is a generic strategy, that an agent 𝑘 can choose

from (C) or (NC) and I denote 𝑎−𝑘 the strategies of all agents, except 𝑘 .

I group for all 𝑘 , the cooperative (C) and the non-cooperative ants (NC) respec-

tively, as:

𝑢𝐶 = 𝑓 ·
∑︁
𝑖, 𝑗

𝜏𝑖 𝑗 , 0 < 𝑓 ≤ 1; 𝑢𝑁𝐶 = (1 − 𝑓 ) ·
∑︁
𝑖, 𝑗

𝜏𝑖 𝑗 , 0 ≤ 𝑓 < 1.

Finally, I denote the profit function of the game as the sum of the payoff of all

cooperative ants plus the payoff of all non-cooperative ants, i.e. 𝑈 = 𝑢𝐶 + 𝑢𝑁𝐶 .

8.3 Experiments and Results

In my simulations, I use ant shape agents according to the implemented algorithm,

but this is just a graphic feature that doesn’t affect the correctness of the procedure.

It follows that a generation of ants represents a group of people who try to arrive

at a shelter or a safe area. At the end of each generation, only one ant of each
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(a) (b)

Figure 8.2: Comparison of the average profit obtained by cooperative agents (plot

(a)), compared to obtained one by non-cooperatives (plot (b)).

kind survives. After several preliminary experiments, I choose a set of 𝑛 = 10

agents and perform 10 different simulations for different values of 𝑓 , starting from

𝑓 = 0 to 𝑓 = 1 and increasing 𝑓 at a regular interval of 0.20. For my purposes,

I consider the trend of ten generations. Figure 8.2 shows the trend of the average

profit function over 10 simulations at different values of 𝑓 (and correspondingly

(1 − 𝑓 )). In each plot, the 𝑥-axis indicates the generations number, while in the

𝑦-axis are displayed the average profits obtained, respectively, by the cooperative

agents (Fig. 8.2a) and by the non-cooperative ones (Fig. 8.2b). In particular,

the figure represents the comparison of the values of the profit function for each

evacuee referred to the percentage of cooperative agents ( 𝑓 ). I notice that when

the number of cooperative agents increases, the value of profit function increases

too, following a linear trend. Furthermore, for 𝑓 = 0.8 and 𝑓 = 1.0, after a few

generations, the average profit function grows similarly, reaching the same value

after 10 generations. This suggests that a non-cooperative behavior of a few agents

can increase the profit of the other ones. In the same way, the plot in Fig. 8.2b



170 A Game Theory Approach for Crowd Evacuation Modelling

shows that a non-cooperative strategy is good if and only if a lot of agents choose

that particular strategy. Also, in this case, the average profit function reaches the

best values for 𝑓 = 0.2 and 𝑓 = 0.4, leading to the same evaluation of the previous

case.

In Fig. 8.3 I can see the average profit function comparison for 𝑓 = 0.2 and 𝑓 = 0.8,

both for cooperative evacuees and non-cooperative evacuees. In Fig. 8.3a, I find

the value of 𝑓 for which are present 2 cooperative evacuees and 8 non-cooperative

evacuees, and in Fig. 8.3e the symmetric situation. The same distinction is present

also in Fig. 8.3 for 𝑓 = 0.4 in Fig. 8.3b, and 𝑓 = 0.6 in Fig. 8.3d, but with 4

and 6 different kinds of evacuees in two symmetric situations. For these plots,

the average profit function is higher for the larger groups (non-cooperative for

𝑓 < 0.5 and cooperative for 𝑓 > 0.5). This can be explained because these plots

are calculated for a percentage of cooperation less than 𝑓 = 0.5. In fact, at 𝑓 = 0.5

something special happens. In Fig. 8.3c the trend of the average profit function

for cooperative evacuees starts to be lower than the one for the non-cooperative

evacuees, but as the generations increase, the two functions tend to reach the same

value.

The Chicken Game supports my considerations. Indeed, the main feature of this

game is that players try to avoid appearing as a ”chicken”. So each player taunts

the others to increase the risk of shame in giving up. However, when a player

surrenders, the conflict is avoided and the game is mostly over. Furthermore, the

fact that the profit function is the same when half of the population is cooperative

and the other is not, leads to compare the Chicken Game with the particular case

𝑓 = 0.5. In fact, the balance of the game is obtained when one player chooses

strategy (C) and the other the strategy (NC), that is the opposite strategy. In this
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(a) (b)

(c) (d)

(e)

Figure 8.3: Average profit function comparison obtained by the cooperative and

non-cooperative agents, at different values of 𝑓 and (1 − 𝑓 ).

situation, no player is considered a ”chicken” until the moment when the value

of 𝑓 decreases, and hence the competitive strategy takes advantage. I observe,
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Figure 8.4: Average profit function comparison over 10 simulations and over 10

generations for cooperative and non-cooperative evacuees.

however, that the game of chicken is considered as a social dilemma [144].

To better investigate the meaning of these data, I calculate the average values

of the profit function over 10 simulations for each group of evacuees and for

each value of 𝑓 . Fig. 8.4 shows what I have obtained. As I can see, as the

percentage of 𝑓 increases, the average value of the profit function has two different

trends. The one for cooperative evacuees increases as 𝑓 increases. The one for

non-cooperative evacuees decreases. In particular, the average value of the profit

function for 𝑓 ≥ 0.50 is higher than the ones for 𝑓 ≤ 0.50. This means that the

average values calculated for two opposite and symmetric configurations are not

the same. In fact, the two curves are not symmetrical because they are the outcome

of different dynamic scenarios, where the two kinds of agents (cooperative and

non-cooperative) act differently. Of course, these effects are strongly affected by

the number of the former compared to the latter, and in particular, higher values of

the profit function (𝑢) are strictly related to higher values of the parameter 𝑓 . This,
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in general, is not a surprising result since is quite common that cooperation means,

in most cases, better performances. It is important to say that in game theory there

are several examples in which players can choose whether to adopt a more or less

cooperative strategy. Let’s consider the classic game of hawks and doves as an

example. These sample-animals represent couples of the same type of animals and

same population that fly on a prey. Each animal can choose to behave like a hawk

or a dove: hawk (strategy H) or dove (strategy D) behavior indicates aggressive

or peaceful behavior, respectively. In this example, if the players choose the same

strategy then they divide the loot, otherwise, if they both choose the same strategy,

one will get the maximum profit the other the minimum profit. From this example

I can see how in situations where there is total collaboration, a greater profit is

obtained than in a situation in which only one can obtain a good profit. However,

in this context, I imagine that better performances can be linked or explained

with one evacuee’s willing to improve its profit. It is presumable that in real-life

escape situations people tend to act in the same way that is, trying to improve their

profit function. Therefore, my results suggest that to do this they should prefer a

cooperative strategy.

8.4 Conclusions

In this chapter, I analyse the affinity between the behavior of ants and people in

a particular situation. Indeed, in an emergency situation, a crowd seems to move

in a messy way but inside the crowd there are little groups that try to decide their

behavior inside that group. As a consequence, I investigate the cooperative or

non-cooperative agents’ choice inside each single group. This original approach

consists of correlation between ants and people, that give us the possibility to
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underline some interesting factors, as the importance of using the sum of the

pheromone into the profit function. The payoff’s values, for each agent, lead to

significant observations regarding the cooperative and competitive behaviors of

the agents, in a difficult situation, where an evacuee has to decide as fast as he can.

Furthermore, the idea to insert the percentage of cooperative agents in the profit

function represents another innovative aspect that allows us to better understand

both the behavior of the agents and the profit they may have as I explain in Section

8.3. In fact, for the first time is used a game theory approach to an evacuation model

using an ACO algorithm, to find the solution of the profit function of the game.

The quality and safety of the chosen path is directly proportional to the sum of the

pheromone along this path. This leads to a profit function that reflects the safety and

efficiency of the path chosen by the evacuees. Moreover, during the comparison

over 10 simulations and over 10 generations for cooperative and non-cooperative

evacuees, I notice that if a lot of evacuees choose cooperative strategies, then the

value of the function is higher than the same number of evacuees can gain playing

a competitive strategy. The results presented in this work are just a small part of

a bigger study that is still under work. Further studies and simulations have to be

made. Especially because this model considers just one winner at each run, which

is not a desirable situation in real life.



Chapter 9
An agent-based model to evaluate

strategies in a crowd evacuation

9.1 Introduction

Modeling and understanding crowds’ behaviour has become one of the most en-

gaging and challenging topics of the last decades in different disciplines ,such as

establishing evacuation plans after an emergency [141, 180, 235], optimal archi-

tectural design [206, 205, 200], or even for entertainment purposes [230, 118].

All these fields are based on one key point: the comprehension of human be-

haviour. It is well known that how people act and react to different situations may

positively or negatively affect the overall outcome, especially in emergencies and

evacuations, where understanding the human behaviour becomes a primary issue

to optimize evacuation plans [207]. However, the common problem encountered

in these studies is the lack of human and social behavioural data [175]. For this

reason, modeling and studying human behaviour is became one of the main pur-

poses for many research areas [207]. Indeed, different models o crowd behaviour

175
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exist nowadays, each of which however focuses on different aspects of the prob-

lem depending on the framework used. Evacuation models can be classified into

three main categories: (1) macroscopic models [67, 90, 114, 111], which consider

the crowd’s dynamics as a flow; (2) microscopic models [139, 151, 110], which

consider individual behaviour; and (3) hybrid models [19, 37, 103], which are a

combination of both. Macroscopic models are mostly used to evaluate evacua-

tion flow but can not describe emergent crowd behaviour. Microscopic models,

on the other hand, are used to investigate how small changes in the individual’s

characteristics affect the whole behaviour but are inefficient in large scenarios due

to their computational cost. The main advantage in using hybrid models is that by

combining macroscopic and microscopic methods, or even methods from different

areas, one can exploit the best aspects of both or different approaches. Following

the guidelines proposed in [207], in this paper an agent-based model is presented to

evaluate whether and how different agent behaviours affect the collective behavior

of the whole group in a crowd simulation. In particular, a hybrid model has been

developed in which agent-based models, which are one of the most powerful tech-

niques to model individual-decision making and social behaviour, are combined

to the features and dynamics of swarm intelligence methods. It consists of a set of

agents that must reach a specific location, named exit, starting from a chosen point,

adopting two different behavioral strategies: (𝑖) the collaborative one, that is share

information about the paths and/or repair destroyed paths; and (𝑖𝑖) defector that,

on the other hand, doesn’t share any information, can destroy some paths and/or

nodes, but in any case exploits the help of the collaborative agents. Regardless of

their behavior, the goal of each agent is to reach the exit point. In this context,

swarm intelligence algorithms, are useful not only for optimization purposes [125]
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but also to model the dynamics of the crowd [116, 241, 219, 47], since they are

capable to show the collective behaviours of the system under investigation. In the

presented model, the Ant Colony Optimization (ACO) algorithm’s principles and

dynamics are considered to simulate the agents’ behaviour and the environment

setup. In particular, the agents are equipped with movement and decision rules

that take inspiration from the ones used in ACO. The aim is to understand whether

and how their behaviours, collaboratives and defectors, affect the whole behaviour

of the crowd. The investigation has been conducted by comparing simultaneously

three evaluation metrics: (𝑖) number of agents that have reached the exit; (𝑖𝑖) exit

times, and (𝑖𝑖𝑖) cost of the paths to reach the exit. Using these metrics, the best

expected performances are, therefore, the ones for which the number of outgoing

agents is the highest possible, while the exit time and the path cost are the lowest

possible.

9.2 The mathematical model

The idea of taking inspiration from the Ant Colony Optimization algorithm (ACO)

to model the agents’ behaviour comes from the observation that people in a crowd

and ants seem to share some characteristics. Both of them, indeed, seem to behave

following unwritten social rules. For instance, ants are able to find the shortest

route from their anthill to a source of food and share it with the rest of the colony

using some chemical signs called pheromones. This kind of communication is

undirected because ants do not really communicate with each other but release

their pheromones along their path, and these pheromones act as roads to follow for

the rest of the colony. The colony is able to find the best route thanks to this kind

of communication and the finding itself is an example of emergent behaviour that
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is something indescribable if looking at the colony as a sum of single elements, the

ants. On the other hand in some contexts, for instance, in exiting and evacuation

processes, people manifest the same local interactions, like ants do, since they

take decisions following what their neighbours do, and they do it in absence of

centralized decisions. Think for instance about how many times in a social context

people find the exit of a place just by following the crowd. There is no one that

guides the crowd and the success of the process depends on how people are able

to share information, directly by communicating with each other or indirectly by

seeing what others do. In our model, the agents’ behaviours take inspiration from

the ones of the ants. The agents may be able to find promising routes in an

unknown environment by communicating with each other in an indirect way. In

addition, they may adopt an alternative behaviour of not sharing information about

the path and destroying a part of it. The environment in which the agents move is

represented as a weighted undirected graph 𝐺 = (𝑉, 𝐸, 𝑤), where 𝑉 is the set of

vertices, 𝐸 ⊆ 𝑉 ×𝑉 is the set of edges and 𝑤 : 𝑉 ×𝑉 → R+ is a weighted function

that assigns to each edge of the graph a positive cost. The weighted function

highlights how hard is crossing a edge. Let define 𝐴𝑖 = { 𝑗 ∈ 𝑉 : (𝑖, 𝑗) ∈ 𝐸} as

the set of vertices adjacent to vertex 𝑖 and 𝜋𝑘 (𝑡) = (𝜋1, 𝜋2, . . . , 𝜋𝑡) as a non-empty

sequence of vertices, with repetitions, visited by an agent 𝑘 at the timestep 𝑡, where

(𝜋𝑖, 𝜋𝑖+1) ∈ 𝐸 for 𝑖 = 1, . . . , 𝑡 − 1. Starting from a prefixed point, a population

of 𝑁 agents explore the environment trying to reach a destination point as quick

as possible, through a path that has a lower cost. This population of agents is

divided in Γ groups, each of which begins its exploration at regular intervals.

For instance, it can be considered a simplified version of a delayed evacuation

strategy, as the authors in [207] mention in their survey. Indeed, it is supposed
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that in some contexts, people do not evacuate all at the same time but organize

themselves to evacuate in the ordered possible manner, for instance, in schools,

public offices, and especially in recent pandemic plans to avoid Covid-19 diffusion.

I have modeled this situation by establishing that each group starts its tour after

a fixed time. At a specific time 𝑡, an agent 𝑘 placed on a vertex 𝑖 chooses as

destination one of its neighbour vertices 𝑗 , with a probability 𝑝𝑘
𝑖 𝑗
(𝑡) defined as the

proportional transition rule defined in [69]:

𝑝𝑘𝑖 𝑗 (𝑡) =


𝜏𝑖 𝑗 (𝑡)𝛼 ·[𝑖 𝑗 (𝑡)𝛽∑
𝑙∈𝐽𝑘

𝑖
𝜏𝑖𝑙 (𝑡)𝛼 ·[𝑖𝑙 (𝑡)𝛽 if 𝑗 ∈ 𝐽𝑘

𝑖

0 otherwise,
(9.1)

where 𝐽𝑘
𝑖
= 𝐴𝑖 \ {𝜋𝑘𝑡−1} are all the possible displacements of the agent 𝑘 from

vertex 𝑖, 𝜏𝑖 𝑗 (𝑡) is the trace intensity on the edge (𝑖, 𝑗) and [𝑖 𝑗 (𝑡) is the desirability

of the edge (𝑖, 𝑗) at a given time 𝑡, while 𝛼 and 𝛽 are two parameters that determine

the importance of trace intensity with respect to the desirability of an edge. The

trace intensity 𝜏𝑖 𝑗 on the edge (𝑖, 𝑗) is a data that manifest how many times an edge

is crossed by the agents and can help new agents to make a decision based on the

actions of other agents. It is the equivalent of the pheromone in ACO algorithm.

This value is a passive information, because the agents leave it unintentionally and

after each movement the trace 𝜏𝑖 𝑗 (𝑡) is increased by a constant quantity 𝐾 , that is:

𝜏𝑖 𝑗 (𝑡 + 1) = 𝜏𝑖 𝑗 (𝑡) + 𝐾, (9.2)

where 𝐾 is a user-defined parameter. Equation 9.2 is the equivalent of the rein-

forcement rule of the ACO algorithm. This rule is so called because at each step,

the amount of pheromone on a path (𝑖, 𝑗) is augmented by the ants of a quantity

that may be constant or not. In other words, every agent leave a constant trace after



180 An agent-based model to evaluate strategies in a crowd evacuation

crossing an edge (𝑖, 𝑗). On the other hand, every 𝑇 ticks1 the amount of trace on

the edges decays according to the global updating rule, which is also in this case

the same present in ACO procedure. In ACO algorithm, the global updating rule

states that the amount of pheromone present in the environment is not fixed but it

decays in time:

𝜏𝑖 𝑗 (𝑡 + 1) = (1 − 𝜌)𝜏𝑖 𝑗 (𝑡), (9.3)

where 𝜌 is the evaporation decay parameter.

The desirability [𝑖 𝑗 (𝑡) in Equation 10.1, at a given time 𝑡, establish how much an

edge (𝑖, 𝑗) is promising. This information is not known a priory and it is released

intentionally by an agent on a vertex after crossing an edge. In particular, [𝑖 𝑗 (𝑡) is

related to the discovered information by the agent 𝑘 after crossing the edge ( 𝑗 , 𝑖).

Its value depends on the inverse of the weight of the edge (𝑖, 𝑗), that is:

[𝑖 𝑗 (𝑡) = 1/𝑤(𝑖, 𝑗). (9.4)

It is important to note that the desirability is asymmetric because this information

is present on the vertices, that is [𝑖 𝑗 (𝑡) ≤ [ 𝑗𝑖 (𝑡) at a given time 𝑡. Lower the cost to

cross an edge is, greater the desirability and the probability to follow a promising

path is; vice versa, higher is the cost to cross an edge, lower is the desirability.

The agents are divided in two categories, each with its specific behaviour:

• collaborators 𝐶: they leave an information [𝑖 𝑗 (𝑡) after crossing an edge

( 𝑗 , 𝑖) to help other agents during the escape and may repair a destroyed

edge and/or a destroyed vertex before performing his movement, with a

probability 𝑃𝐶𝑒 and 𝑃𝐶𝑣 respectively.

1The time unit used that corresponds to a single movement of all agents.
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• defectors 𝐷: they not leave any information after crossing an edge and

may destroy an edge and/or a vertex after performing his movement, with

probability 𝑃𝐷𝑒 and 𝑃𝐷𝑣 respectively. A node or an edge destroyed is one no

more traversable by other agents.

In other words, collaborators mainly perform actions that somehow help all the

other agents to reach the rescue point as quick as possible. I can assume that they

cross an edge or vertex in a cautious way, taking care not only to not destroy it,

but also engaging themselves to repairing it if destroyed by a defector. Moreover,

they leave an information [𝑖 𝑗 (𝑡) about how hard is to cross a particular edge,

so that the other agents can exploit in their own strategies. This increases the

possibility to discover a more promising path toward the rescue point. To focus

on a real situation, one can imagine leaving information to the other agent as,

for example, a written message, a color mark or a simple indication. On the

other hand, the defectors mainly act in a hasty way, carrying out actions that can

destroy the surrounding environment. Indeed, after crossing a node or an edge,

and with a certain probability, they may destroy it decreasing the possibility of the

other agents exploring the environment. This action may influence not only the

cooperatives but also themselves especially if the destroyed path is an important

one that is crucial to reach the location. The defectors’ behaviour can be seen as

a consequence of a stress and panic situation in which the agents like real people,

due to this, are unable to be aware of their actions. They only try to find a good

path by following the others and not informing the rest of the group about what

they have found.

To evaluate how these two different behaviour strategies influence the performance

of all agents, the model takes into account as comparison metrics (𝑖) the path
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Variable Description

𝑤(𝑖, 𝑗) weight of an edge

𝑝𝑘
𝑖 𝑗
(𝑡) transition probability of the agents

𝜏𝑖 𝑗 (𝑡) trace intensity on the edge

[𝑖 𝑗 (𝑡) desirability of an edge

𝑃𝑒,𝑣 destruction/repair probability of a node and/or edge

Table 9.1: Table of the variables and constants used.

cost, (𝑖𝑖) the exit time, and (𝑖𝑖𝑖) the number of agents that successfully reach the

destination point. These three quantities have been considered together because the

action of destroying/repair of nodes and/or edges makes the environment a dynamic

environment. To clarify: once a simulation is launched, and if the population of

agents is mixed with both kinds of agents, it may happen that one or more defectors

cross an edge and/or a node and destroy it. Within the same simulation, it may

also happen that one or more collaborator, approach the same nodes and/or edges

destroyed by the defectors and may decide to repair them. Since a destroyed node

and/or edge is no more traversable, it follows that these two actions change, from

time to time, the structure of the environment, making the scenario dynamic. For

this reason, considering just one of the three evaluation metrics mentioned above

would have been incorrect because a promising path may not be the best in terms

of cost, or just in terms of the success rate of the agents, or just in terms of exit

time. A good path is one that minimizes its cost and exit time and, at the same

time, maximizes the number of agents exiting that path.
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Mathematically, the cost of a generic path 𝜋(𝑡) = (𝜋1, 𝜋2, . . . , 𝜋𝑡) is calculated as:

𝑡−1∑︁
𝑖=1

𝑤(𝜋𝑖, 𝜋𝑖+1), (9.5)

where 𝜋1 and 𝜋𝑡 are the starting and destination points, respectively. Since every

tick all agents in the environment perform a single movement (from one vertex to

another one), the exit time is calculated as the number of moves that an agent makes

in its exploration and corresponds to the length of the path 𝜋(𝑡). All variables of

interest are listed in Table 9.1.

9.3 NetLogo Model

The results are obtained using NetLogo [222], a multi-agent programmable mod-

eling environment. As said in Section 9.2, the environments have been modelled

as graphs with a topology similar to grid graphs, where each node can be con-

nected with its 8-neighbours. The connectivity of a node with its neighbours is

controlled by two parameters: 0 ≤ 𝑝1 ≤ 1, that represents the probability to create

horizontal and vertical edges, and 0 ≤ 𝑝2 ≤ 1, that represents the probability

to create oblique edges. The weight of each edge is a real value assigned with

a uniform distribution in the range [1, 100]. Two different scenarios have been

considered for the experiments:

• scenario A with |𝑉 | = 100 and |𝐸 | = 213, generated with 𝑝1 = 0.6, 𝑝2 = 0.2;

• scenario B with |𝑉 | = 225 and |𝐸 | = 348, generated with 𝑝1 = 0.6, 𝑝2 = 0.0.

They are both represented in Fig. 9.1.
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(a) (b)

Figure 9.1: Examples of networks used for the simulations in scenario A (Fig. 9.1a)

and in scenario B (Fig. 9.1b). The starting point is represented by the house-shaped

red node on the left of the network, while the exit point is the house-shaped green

node on the right. Red nodes and edges represent the destroyed nodes by the

defectors. The defectors themselves are represented by human-shaped blue agents,

while the collaborators are of the same shape but in orange.

9.4 Experimental Results

As the first step of this investigation, in both scenarios, have been considered

𝑁 = 1000 agents divided into Γ = 10 groups. These values was chosen since

1000 agents represent a common number of people involved in a crowd, and 10

groups to better distribute the agents during the simulations. Depending on the

value of the parameter 𝑓 ∈ [0, 1], user-defined and named collaborative factor, in

each group there will be 𝑓 collaborative agents, and (1 − 𝑓 ) defectors. Therefore,

in each group may be present both, or just one type of agent. In particular, if
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𝑓 = 0.0 groups with only defectors are considered; if 𝑓 = 0.5 (for instance) each

group is formed by half collaborative and half defectors; while for 𝑓 = 1.0 only

collaborative groups are generated.

Each group begins its exploration at different times, and precisely after a given

time 𝑇𝑒 from the group that precedes it, excepts the first group that obviously starts

at the time 0. In general, then, the 𝑖-th group will begin its exploration at the time

(𝑇𝑒 × (𝑖 − 1)). Note that the value to assign to 𝑇𝑒 is related to the vertices number

of the scenario considered (𝑇𝑒 = |𝑉 |). Therefore at every 𝑇𝑒 ticks, a new group

starts its journey, having however a maximum time within which the agents must

reach the exit. Let 𝑇𝑚𝑎𝑥 the overall maximum time allowed to reach the exit, given

by:

𝑇𝑚𝑎𝑥 = 2 × Γ × 𝑇𝑒, (9.6)

where Γ is the number of the groups, and 2 is a fixed parameter. It follows therefore

that the time window within which each agent must reach the exit is from the begins

of its exploration to the overall maximum time 𝑇𝑚𝑎𝑥 , that is:

𝑇𝑚𝑎𝑥 − (𝑇𝑒 × (𝑖 − 1)), (9.7)

where 𝑖 is the agent belonging group.

Analysing the Equations 9.6 and 9.7 one can note that the first groups have more

time to explore the environment compared to the others. This is due because

the groups begin their exploration even if in the environment are still present

agents belonging to the previous groups. This means also that agents belonging

to the same group can exit at different times (always within their time window)

and those belonging to the first groups benefit more time to find the exit. It

is important to highlight that the trace left by the collaborators along their path

degrades over time with a evaporation interval fixed at 𝑇𝑑 = 50. This means, then,
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that to every 𝑇𝑑 ticks the global updating rule defined in Equation 9.3 is applied

with evaporation rate 𝜌 = 0.10. Note that initially the trace on all edges is set

to 𝜏𝑖 𝑗 (0) = 1.0. Moreover, the parameters that regulate the importance of the

trace and desirability in Equation 10.1, i.e. 𝛼 and 𝛽, are both set to 1.0. The

destruction-repair probabilities on a vertex and an edge are 𝑃𝐶𝑒 = 𝑃𝐷𝑒 = 0.02 and

𝑃𝐶𝑣 = 𝑃𝐷𝑣 = 0.02, respectively and they are the same for both kinds of agents.

Finally, to evaluate the effects of the two behaviours, collaboratives and defectors,

I have carried out experiments varying the collaborative factor 𝑓 , that is the

percentage of collaborators among the population of agents. For each value of 𝑓 ,

from 0.0 to 1.0 with step of 0.1, I have performed 100 independent simulations.

The exit time (Fig. 9.2) and path cost (Fig. 9.3) plots, have been normalized with

respect to the group success rate, that is the percentage of agents in a group, which

successfully reach the exit point. Lower these values are, the better performances

of the agents are. In both scenarios, the exit time decreases, so gets better, with

respect to the collaborative factor, indicating that the more collaborative the agents

are, faster their exit will be. This seems true except for 𝑓 = 1.0, i.e. when all

agents are collaboratives, where the performances of each group are worst than the

previous values of 𝑓 . The groups are indicated by different colored lines and it also

seems that the exit time decreases with respect to the group number, indicating

that the groups that evacuate later, even if they have less allowed time, in some

way, exploit the information left by those who have previously evacuated. In fact,

looking for instance at group 1, in both scenarios, one can see how it has worse

performances for low values of 𝑓 , and better performances for high values of 𝑓 . It

means that the agents of this group are able to exploit better the information about

the path especially when the crowd is composed mainly of collaborative agents.
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Figure 9.2: The exit time for (a) scenario A and (b) scenario B.

Do not be confused by the fact that the same group has good performance even

for the lowest value of the collaborative factor 𝑓 , because for that value, as it will
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be shown later, few agents find the exit from the environment and so, considering

both metrics (the exit time and the number of agents exited) it can be concluded

that it is not a significant result. On the other hand, by looking at group 10, in both

scenarios, its performances improve with 𝑓 , except for 𝑓 = 1.0. This indicates that

the last group can exploit better the information about the path when the crowd is

composed mainly, but not totally, of collaborative agents. Same conclusions can

be done for the path cost in Fig. 9.3, that decreases with respect to the collaborative

factor and the group number. This is true for every value of 𝑓 except for 𝑓 = 1.0.

This indicates, as above, that the more collaborative the agents are, the better path

they will find, but if the collaboration is absolute, it seems to not work.

The heat maps in Figs. 9.4a and 9.5a represent the number of agents that reached

the exit and they are normalized with respect to the exit time available for each

group. They represent how many agents have been evacuated in one unit of time

(that is how many agents have been evacuated at each tick). The higher this value

is, the better the performances of the agents are. It is present the same trend, but

opposite in value, observed for the exit time and the path cost: it seems that the

number of exited agents increases with the collaborative factor except, also in this

case, for 𝑓 = 1.0, value for which few agents reach the exit. The performances of

the agents are better not when all of them are collaborative but, oddly, when some

of them act in a different way as defectors. The same quantity seems to increase

with respect to the group number, indicating that the last groups benefit from the

first ones, especially in scenario A.

Figs. 9.4b and 9.5b represent the total number of exited agents for the A scenario

and for the B scenario. Even without considering the group number, one can

come to the same conclusions as above: the number of agents, that reaches the
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Figure 9.3: The path cost for (a) scenario A and (b) scenario B.

exit, increases with respect to the collaborative factor and one can better observe

the collective behaviour of the simulated crowd. The maximum number of exited
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Figure 9.4: The number of agents for the scenario A.

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Collaborative Factor

G
ro
u
p

0.02

0.04

0.06

Agents
per Tick

Number of exited agents per tick - B

(a)

0

500

1000

1500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Collaborative Factor

N
u
m
b
er

of
A
ge
n
ts

Number of exited agents - B

(b)

Figure 9.5: The number of agents for the scenario B.

agents is obtained for 𝑓 = 0.7 for scenario A and for 𝑓 = 0.9 for scenario

B. Considering the overall trend of the metrics used (the number of agents that

reaches the exit, the path cost, and the exit time) it is possible to observe that the

best performances of the agents are not when the entire group is composed only

of collaborative agents, but when some of them are defectors. In other words, the

crowd seems to perform better when some agents act differently and, in general,
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when there is a condition of mixed strategy among the agents.

9.5 Conclusions

In this work, I proposed an agent-based model to evaluate the effects of two

different behaviours in a crowd simulation: a collaborative and a defector one.

Each strategy corresponds to different actions performed by the agents. The

metrics used to evaluate the strategies are the number of exited agents, the path

cost, and the exit time. From the results presented I can conclude that:

• a completely collaborative crowd has, in general, bad performances because

it exits spending more time, by a more expensive path and does not maximize

the number of agents that reach the exit point;

• a mixed crowd in which are present both behaviours is more efficient not only

in obtaining the best values of the metrics used but also in the transmission

of the information from one group to another;

• the results are confirmed for two scenarios with different characteristics,

indicating that they may be generalized to more complex ones.

Future works include simulations with more complex scenarios, more starting

points and end points and, a sensitivity analysis of the parameters used.
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Chapter 10
How a Different Ant Behavior Affects

on the Performances of the Whole

Colony

10.1 Introduction

Ant Colony Optimization (ACO) is a well-known optimization procedure and rep-

resents nowadays the most representative methodology into the Swarm Intelligence

family as it was successfully applied in many hard combinatorial optimization

problems [70]. ACO is a metaheuristic that takes inspiration from observing for-

aging behavior of natural ant colonies since they can find exactly the shortest path

from their nest to source of food, and they communicate with each other through

chemical signals called pheromones. Thanks to these properties, it has become

powerful optimization techniques for solving different kinds of complex combi-

natorial optimization problems [182], such as scheduling and routing problems

[63, 121], coloring [44, 92], the robot path planning to patrol areas where humans

193
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cannot get there [26, 3, 233], transportation problems [123], and feature selection

[179]. Ant colonies are also recognized to be the best organized and cooperative

system, able to make its community work at its best, and able to perform com-

plex tasks [171]: any action of each ant is related only to its local environment,

local interactions with other ants, simple social rules, and in the total absence of

centralized decisions. It is known that it is not the single ant that finds the best

solution but its cooperation and interaction with the environment and the rest of

the colony that produces the desired result. These features have been implemented

in ACO algorithms to solve not only the previously mentioned problems but also

to evaluate how they affect the efficiency of the algorithm [48] and to investigate

and analyze crowds’ behavior [47]. This research paper proposes an analysis of

what happens if in an ACO algorithm some ants act in a different way from the

rest of the colony. In particular, the presented study consists of analyse two dif-

ferent kinds of ants, which act in different way: Low Performing Ants (LPAs) that

can accidentally destroy some nodes or links of the network, therefore making

them not crossable; and High Performing Ants (HPAs) that instead repair them.

These different actions performed by the ants make the network dynamics in the

sense that both actions (destroy or repair) change instantaneously the environment,

modifying consequently the network topology. This means that a node or a link

can be not crossable in the timestep 𝑡, but becoming crossable just after (𝑡 + 1).

Both kinds of ants must find the exit point of the network, starting from a given

entrance, with the overall goal to maximize the number of ants that reach the exit,

and minimize the path cost and the resolution time. The problem studied is a gen-

eral path problem, however, the shortest path, in this case, is not a good evaluation

metric due to the dynamism of the network. Moreover, thinking about a possible
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application of this study in the field of swarm robotics, it is desirable that if there

are some robots exploring unknown environments, the same robots will be able

to come out from them in the maximum possible number. Two different complex

networks have been considered to analyze how the presence of LPA affects the

performance of the entire colony at different levels of available information: high

trace, i.e. high amount of pheromone released, and low trace, low amount of

pheromone released. Analyzing the investigation conducted on entire colony from

an optimization point of view, emerges that the presence of a group of LPA helps

and stimulates the rest of the colony to work better, especially when the amount of

trace shared is high. Indeed, the disturbing actions performed by LPAs force the

rest of the colony to change its behavior, and, consequently, to explore new paths.

10.2 The Model

The presented model has been realized using the software NetLogo [222], and the

environment in which the ants move is a weighted network defined mathematically

as a graph 𝐺 = (𝑉, 𝐸, 𝑤), where 𝑉 is the set of vertices, 𝐸 is the set of edges

and 𝑤 : 𝑉 × 𝑉 → R+ is the weighted function that assigns a positive cost to each

edge of the graph. The weight indicates how difficult is crossing a particular edge.

The starting point is a node randomly chosen in one side of the graph (e.g. left

side), whilst the exit point is another node randomly chosen in the opposite side to

the starting one (e.g. right side). Every link is crossable in both directions. The

colony is composed of two kinds of ants:

• Low Performing Ants (LPAs): they are always low performing in the sense

that they do not work properly and so they can destroy, with a certain

probability 0 ≤ 𝜌𝑒 ≤ 1, some edges of the network or, with a probability
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0 ≤ 𝜌𝑣 ≤ 1 some nodes of the network. They do not leave any amount of

pheromone after crossing an edge (𝑖, 𝑗) of their path;

• High Performing Ants (HPAs): they always are high performing, in fact,

if they find they find a destroyed node they can repair it with a probability

0 ≤ 𝜌𝑣 ≤ 1 and, if they find a destroyed edge they can repair it with a

probability 0 ≤ 𝜌𝑒 ≤ 1. Moreover, they release two different kinds of

information about the path: the classic pheromone information after they

have crossed ad edge (𝑖, 𝑗), and a more sophisticate information named

[𝑖 𝑗 (𝑡) = 1/𝑤𝑖 𝑗 (𝑡), where 𝑤𝑖 𝑗 (𝑡) is the weight of the edge (𝑖, 𝑗) at a time 𝑡

and so [𝑖 𝑗 (𝑡) indicate to the rest of the colony how difficult is that path.

It is important to highlight that the action of destroy an edge or a node means

that this becomes impracticable, i.e. uncrossable. Instead, repair an edge or a

node means that it is practicable again. Both actions, therefore, make the network

dynamic. The number of HPAs in the colony is determined by the performing

factor 𝑝 𝑓 ∈ [0, 1], and therefore, once it is set, the remaining ants (i.e. 1 − 𝑝 𝑓 )

will be LPAs. Note that when 𝑝 𝑓 = 1, i.e. all ants are HPA, the ACO classical

version is obtained.

Let be 𝐴𝑖 = { 𝑗 ∈ 𝑉 : (𝑖, 𝑗) ∈ 𝐸} the set of vertices adjacent to vertex 𝑖 and

𝜋𝑘 (𝑡) = (𝜋1, 𝜋2, . . . , 𝜋𝑡) the set of vertices visited by an ant 𝑘 at a certain time

𝑡, where (𝜋𝑖, 𝜋𝑖+1) ∈ 𝐸 for 𝑖 = 1, . . . , 𝑡 − 1. Due to the action of the HPAs that

can repair damaged nodes and/or links, the path 𝜋𝑘 (𝑡) is not just a simple path,

because an ant can visit again a vertex due to a back-tracking operation. The

probability 𝑝𝑘
𝑖 𝑗
(𝑡) with which an ant 𝑘 placed on a vertex 𝑖 chooses as destination

one of its neighbor vertices 𝑗 at the time 𝑡 is defined according to the Ant Colony
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Optimization proportional transition rule:

𝑝𝑘𝑖 𝑗 (𝑡) =


𝜏𝑖 𝑗 (𝑡)𝛼 ·[𝛽𝑖 𝑗∑
𝑙∈𝐽𝑘

𝑖
𝜏𝑖𝑙 (𝑡)𝛼 ·[𝛽𝑖𝑙

if 𝑗 ∈ 𝐽𝑘
𝑖

0 otherwise,
(10.1)

where 𝐽𝑘
𝑖
= 𝐴𝑖 \ {𝜋𝑘𝑡 } are all the possible displacements of the ant 𝑘 from vertex 𝑖,

𝜏𝑖 𝑗 (𝑡) is the pheromone intensity on the edge (𝑖, 𝑗) and [𝑖 𝑗 (𝑡) is the desirability of

the edge (𝑖, 𝑗) at a given time 𝑡, while 𝛼 and 𝛽 are two parameters that determine

the importance of pheromone intensity with respect to the desirability of an edge.

For contextualization reasons with the environment/scenario tackled, from now on

the term pheromone will be replaced with the term trace. The amount of trace

released by the 𝑘 ant after crossing an edge (𝑖, 𝑗) at a time 𝑡 is constant and it is

defined as:

Δ𝜏𝑘𝑖 𝑗 (𝑡) = 𝐾. (10.2)

The desirability [𝑖 𝑗 (𝑡) at a given time 𝑡, establish how much an edge (𝑖, 𝑗) is

promising. In particular and it is defined as [ 𝑗𝑖 (𝑡)) = 1
𝑤𝑖 𝑗 (𝑡) . This information

is released by each ant as the trace, however it does not depend on the ant itself,

but only on the edge (𝑖, 𝑗). Each link is updated asynchronously with two kinds

of updating rules based on the ticks 𝑇 of the software used for the simulations1.

A local updating rule that updates the trace levels at the end of each tour of the

winning ant, according to the follow rule:

𝜏𝑖 𝑗 (𝑡 + 1) = 𝜏𝑖 𝑗 (𝑡) + 𝐾, (10.3)

where 𝐾 represents the trace that every ant leave after crossing an edge (𝑖, 𝑗) and

𝜏𝑖 𝑗 (𝑡) is the amount of trace on the link at time 𝑡. A global updating rule that

1Each tick correspond to an ant displacement and movement.
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update the amount of trace on all the links of the network every 𝑇 ticks:

𝜏𝑖 𝑗 (𝑡 + 1) = (1 − 𝜌) · 𝜏𝑖 𝑗 (𝑡), (10.4)

where 𝜏𝑖 𝑗 (𝑡) is the amount of trace on the edge (𝑖, 𝑗) at a time 𝑡 and 𝜌 is the

evaporation decay parameter. The aim of the ants is to explore the graph and find

in the shortest time, the cheapest path from the starting point to the end point,

orienting themselves using the amount of trace on the paths and the information

exchanged about their desirability. At the same time, they must maximize their

number at the end point, that is the exit. Mathematically, this means the one have

to optimize three different objective functions: minimize the path cost function

and the time cost function, and maximize the exit function that represent how many

ants have reached the end point. Since the path cost function and the time cost

function must both be minimized, they have been put together into the following

unified objective function:

min
𝑡−1∑︁
𝑖=1

𝑤(𝜋𝑘𝑖 , 𝜋𝑘𝑖+1) + |𝜋
𝑘 |. (10.5)

It represents both the minimization of the cost of the path and the resolution time,

where the first term represents the path made by an ant 𝑘 , while the second term

represents the number of steps made by the same ant 𝑘 . It can be used as a time

term because each unit of time corresponds to an ant displacement, i.e. the number

of the nodes visited by an ant corresponds to the resolution time.

Finally, the exit function is defined as:

max
∑︁
𝑔∈𝐺

∑︁
𝑘∈𝑁

𝑘𝑔 . (10.6)

It represents the maximization of the number of ants that must reach the exit, where

𝐺 is the total number of groups, 𝑔 is the index of the group to which the ant 𝑘

belongs, 𝑘𝑔 is the ant 𝑘 that belongs to 𝑔 group and 𝑁 is the set of ants.
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10.3 Experiments and results

The simulations have been realized using two different kinds of scenarios, that

correspond to different networks with increasing complexity. Within each scenario,

two parameters of the model have been varied. In particular, the amount 𝐾 of trace

deposited by each ant on the links and the value of the parameter 𝛽 that measures

the importance of the information with respect to the amount of trace itself. This

choice was meant to study and understand if and how the values of the model affect

the performances of the colony when it is composed of two different kinds of ants.

The two scenarios are:

• Scenario B1: a network with |𝑉 | = 225 nodes and |𝐸 | = 348 links.

• Scenario B2: a network with |𝑉 | = 225 nodes but |𝐸 | = 495 links.

The general experimental setup is the following. For each scenario, 𝑁 = 1000 ants

divided into 𝐺 = 10 groups have been considered. This means that each group is

composed of 𝑁𝑔 = 100 ants that start their journey from the starting point at regular

intervals computed multiplying the values of rows and columns, so 𝑇𝑙 = 225 ticks.

As said previously, the colony is composed of two different kinds of ants: high

performing ants (HPAs) that always work at their best, and low performing ants

(LPAs) that may destroy some nodes or links of their path. The number of HPAs

and LPAs is regulated by a performing factor 𝑝 𝑓 that establishes the fraction of

the first respect to the second. It goes from 𝑝 𝑓 = 0.0 (that defines a colony of just

LPAs) to 𝑝 𝑓 = 1.0 (that defines a colony of just HPAs and correspond to the ACO

classic version) with steps of 𝑝 𝑓 = 0.10. For instance, in a colony of 100 ants a

value of 𝑝 𝑓 = 0.30 means that 30 ants are HPAs while the other 70 are LPAs.
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Due to limited time resources, the ants must find the exit in a maximum time,

which depends on the number of groups and the complexity of the network. This

time is set to 𝑇𝑚𝑎𝑥 = 2×𝐺 ×𝑇𝑙 , where 𝐺 is the number of groups, 𝑇𝑙 is the launch

interval and 2 is just a corrective factor. The initial trace intensity on the links is

set to 1.0 and it decreases over time according to the trace evaporation interval,

𝑇𝑑 = 50 (i.e. every 50 ticks the amount of trace evaporate with the evaporation

rate 𝜌 = 0.10). For the scenarios defined as High Trace, the parameters 𝛼 and

𝛽 are both set to 1 and the amount of trace deposited by each ant on the links of

its path is set to 𝐾 = 0.1. For the scenarios defined as Low Trace, the parameter

𝛼 is set to 1, the parameter 𝛽 is set to 0.5 and the amount of trace deposited

by each ant on the links of its path is set to 𝐾 = 0.001. Since the parameter

𝛽 regulates the influence of the information with respect to the amount of trace,

one can expects that decreasing both 𝛽 and 𝐾 the colony will act taking more

into account the information acquired about the path and less the information

released with the trace. Finally, the edge destruction-repair probability and vertex

destruction-repair probability are for both configurations 𝜌𝑒 = 0.02 and 𝜌𝑣 = 0.02.

With these configurations of the parameters, 10 independent simulations have been

performed, starting from the value 𝑝 𝑓 = 0.0 of the performing factor to 𝑓 = 1.0,

with steps of 0.1. Two different kinds of analysis have been done: (𝑖) a group

analysis to understand how many ants have reached the exit, considering both

the value of the performing factor and the number of groups; and (𝑖𝑖) an overall

analysis considering the (1) path cost found by the colony, (2) how much time the

ants have used to find it, and (3) how many of them have reached the exit in time.

In the following results, the label High Trace refers to a value of 𝐾 = 0.1 and a

value of 𝛽 = 1.0, while the label Low Trace refers to a value of 𝐾 = 0.001 and a
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value of 𝛽 = 0.5. It is worth emphasizing once again that, due to the dynamism of

the network produced by the actions of the two types of ants, it is not possible to

consider the shortest path as evaluation metric, and therefore the number of ants

that reach the exit (to be maximized), the cost of the paths and the resolution time

(both to be minimized) were considered as the investigation measure.

10.3.1 Group analysis

As said, in this first kind of analysis both the performing factor and the number

of groups have been considered to evaluate the number of ants that have reached

the exit. A heat map has been used to plot the results and by looking at the legend

on the right of each plot one can easily understand that the lighter the blue is, the

higher the value of the number of ants is. On the contrary, the darker the blue

is, the lower the same number is. The absence of color implies that no ants have

reached the exit for that value of the performing factor or for that value of the

group. In Fig. 10.1 are shown the results obtained for the simulation performed in

scenario B1 and in particular in Fig. 10.1a are plotted the number of ants that have

reached the exit per ticks when there is a high-level trace. In Fig. 10.1b is plotted

the same quantity but when there is a low-level trace.

Comparing Fig. 10.1a and Fig. 10.1b one can easily see that the best results, that is

the maximum number of ants that reach the exit, are obtained not only for different

values of the performing factor, but also for different values of the groups. In

particular, when there is a high-level trace the best performances of the colony are

obtained by the last groups and when the performing factor is round 𝑝 𝑓 = 0.9. On

the contrary, comparing these results with the ones obtained in the same scenario

with a low-level trace, one can see that in this case, the best results are obtained
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Figure 10.1: Heat map representing the number of ants that have reached the exit

per ticks in scenario B1. The performances of the colony change depending on the

amount of the trace released by the ants: in (a) one can see that they reach their

best for the last group 𝑔 = 10 and when the performing factor is equal to 𝑝 𝑓 = 0.9,

if there is a high level trace. The trend is similar in (b), that is when there is a low

level trace released by the ants even if in this case the good performances continue

to the value of the performing factor 𝑝 𝑓 = 1.0

from the last groups not only when the performing factor in equal to 𝑝 𝑓 = 0.9 but

also when it is equal to 𝑝 𝑓 = 1.0. This indicates that the presence of LPAs is much

more important when the trace level is high. In fact, it is noted that the number of

ants per ticks exiting is greater for values of the performing factor equal to 𝑓 = 0.9

or, a little bit lower, at 𝑓 = 0.8. This behavior is similar for all the groups as

the performing factor varies. These results are justified by the fact that when the

trace is high, the ants are mistakenly affected and tend to follow incorrect paths.

Furthermore, from the plots in Fig. 10.1 it is observed that in the case in which

there is a high-level trace, the number of ants that reach the exit is higher respect
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to the one obtained when there is a low-level trace. This indicates that the action

of the LPAs is crucial to maximize the ants when there is a high-level trace, since

for 𝑝 𝑓 = 1.0 the performances of the colony are worst. Fig. 10.2 shows the same
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Figure 10.2: Heat map representing the number of ants that have reached the exit

per ticks in scenario B2. In (a) one can see that the colony reaches its best for the

first groups and when the performing factor is round 𝑝 𝑓 = 0.5, if there is a high

level trace. On the contrary, when there is a low level trace released, as in (b), the

best performances are obtained for higher values of the performing factor, grater

then 𝑝 𝑓 > 0.7 and for more groups following the firsts.

analysis carried out for scenario B2. The trend is similar to the one presented in the

previous heat maps for scenario B1, but with some differences. In this case, when

there is a high-level trace, as presented in Fig. 10.2a, in general the number of ants

that reach the exit is lower than the one obtained for the same configuration but

in scenario B1. Moreover, the best results are achieved by the first groups of the

colony when the performing factor is round 𝑝 𝑓 = 0.5 that is, when it is composed

of some LPAs. On the contrary, when there is a low-level trace, as in Fig. 10.2b,
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the optimum is achieved by the first group and when the colony is composed by

mainly HPAs, that is when the performing factor is equal to 𝑝 𝑓 = 1.0. This makes

stronger the thesis of this work, for which a high trace confuses the colony and so,

at the same time, a small percentage of LPAs stimulates the rest of the group to

change its behavior.

10.3.2 Overall analysis

This second kind of analysis evaluates the performances of the whole colony con-

sidering only how they vary with respect to the performing factor, not considering

the number of groups in which are divided the ants. The analysis is carried out

considering, as in the Section 10.3.1, the different performances of the colony

when there is a high-level trace and a low-level trace. The quantities analyzed are

the number of ants that have reached the exit, the path cost, and the resolution time.

The aim of the experiments was to maximize the number of ants and minimize the

path cost and the resolution time. Fig. 10.3 shows how many ants have reached

the exit in scenario B1. In particular, Fig. 10.3a represents the results obtained for

high-level trace, while Fig. 10.3b represents the ones obtained for low-level trace.

As one can see, the actions of the LPAs are more powerful and useful when there

is an excess of trace released by all the ants, since the colony reaches better results

when there is a small percentage of LPAs within it, as is clear from Fig. 10.3a for

which the best value is obtained when the performing factor 𝑝 𝑓 = 0.9. On the other

hand, the presence of LPAs seems to not boost the performances of the colony

when there is a low-level trace. Fig. 10.3b shows that the number of ants that

reached the exit is approximately the same for 𝑝 𝑓 = 0.9 and 𝑝 𝑓 = 1.0, indicating

that the presence of LPAs does not affect positively the colony.
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Figure 10.3: Overall number of ants that have reached the exit in scenario B1. In

(a) the values obtained for a high level trace; in (b) the ones obtained for a low

level trace. The presence of LPAs is much more important and useful when there

is a high-level trace, leading the colony to better performances. The best values

are obtained for 𝑝 𝑓 = 0.9 when there is a high-level trace and for 𝑝 𝑓 = 1.0 when

there is a low-level trace.

The same considerations can be done for scenario B2, whose results are shown

in Fig. 10.4. In particular, Fig. 10.4a shows how many ants have reached the

exit when there is a high-level trace. In this case, the maximum number of ants

is obtained when the performing factor is 𝑝 𝑓 = 0.5. Fig. 10.4b, on the other

hand, shows the same quantity when there is a low-level trace, and here the best

performances of the colony are obtained when the performing factor is 𝑝 𝑓 = 1.0.

As in the previous case, the presence of LPAs seems to be more important and

helpful when there is an excess of trace release along the path since in this case, the

colony has better performances when it is not composed of just HPAs. A note of

interest is that scenario B2 has been obtained lower average values of the number

of ants with respect to the ones obtained for scenario B1. This may depend on
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the complexity of the network: the higher it is the worst the performances of the

colony will be.
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Figure 10.4: Overall number of ants that have reached the exit in scenario B1. In

(a) the values obtained for a high level trace; in (b) the ones obtained for a low

level trace. As in Fig. 10.3, the presence of LPAs is much more helpful when there

is a high-level trace. The best values are obtained for 𝑝 𝑓 = 0.5 when there is a

high-level trace and for 𝑝 𝑓 = 1.0 when there is a low-level trace.

The path cost and the resolution time are both quantities to be minimized so

they have been put together in the same plot. In particular, the principal plot

represents the resolution time, the inset one the path cost. This has been done

both for scenario B1, in Fig. 10.5, and for scenario B2, in Fig. 10.6. In particular,

Fig. 10.5a represents how the resolution time and path cost vary with respect to

the performing factor in scenario B1 with high-level trace; Fig. 10.5b shows the

same quantities in the same scenario with a high-level trace. In this case, the best

values are the lowest ones because they correspond to the best performances of

the colony. Comparing these results with the ones regarding the number of ants

in Fig. 10.3a, one can realize that in scenario B1, when there is a high-level trace,
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the colony has better performances when it is composed of a small fraction of

LPAs because the maximum number of ants that reaches the exit, the minimum

value of the resolution time and the minimum of the path cost is obtained for a

value of the performing factor equal to 𝑝 𝑓 = 0.9. Doing the same with Fig. 10.5b

and Fig. 10.3b, one can see that when there is a low-level trace the presence of

LPAs not only does not affect positively the number of ants that reach the exit but

neither on the resolution time and on the path cost find by the colony. In this case,

indeed, the best values are obtained when the colony is composed of just HPAs,

reinforcing the hypothesis for which the presence of LPAs is useful to regulate the

actions when there is an excess of trace.
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Figure 10.5: Overall resolution time (principal plot) and path cost (inset plot) of

the colony for scenario B1. In (a) the values obtained for a high-level trace; in (b)

the ones obtained for a low level trace. As in Fig. 10.3, the presence of LPAs is

much more helpful when there is a high-level trace. The best values are obtained

for 𝑝 𝑓 = 0.9 when there is a high-level trace and for 𝑝 𝑓 = 1.0 when there is a

low-level trace.

It is not surprising that the same results have been obtained also for scenario B2,
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as represented in Fig. 10.6. In this case, the importance of the presence of LPAs

is clear especially looking at the values obtained when there is a high-level trace.

Indeed, there is a lot of difference between the path cost found by the colony

(in the inset plot) when the performing factor is equal to 𝑝 𝑓 = 1.0 and the one

obtained when the performing factor is equal to 𝑝 𝑓 = 0.9. The second value is

much better than the first and it is obvious that the same worst performances are

present also considering the resolution time in the principal plot, and the number

of ants, as shown in Fig. 10.4a. On the contrary, but as previously shown, when

there is a low-level trace, the presence of LPAs does not help the colony to boost

its performances, which are better when it is composed of just HPAs. Fig. 10.6,

indeed shows that the best values of the resolution time and the path cost are

obtained when the performing factor is equal to 𝑝 𝑓 = 1.0.

10.4 Conclusions

This Chapter aims to investigate how different behaviors of the ants in the Ant

Colony Optimization algorithm affect the global performances of the colony. To

do this, two different kinds of ants have been considered: (1) low performing ants

(LPAs), which can damage with certain probability nodes and links of their paths,

and which do not help the rest of the colony sharing their information about the

cost of each link; and (2) high performing ants (HPAs) which, on the contrary,

may repair with a certain probability the damaged nodes and links and share their

information about the cost of the links. The model has been tested on two networks

with increasing complexity and has been investigated if and how the presence of

LPA affects the performances of the group when different levels of information are

present. Two different kinds of analysis have been carried out: (𝑖) a group analysis,
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Figure 10.6: Overall resolution time (principal plot) and path cost (inset plot) of

the colony for scenario B1. In (a) the values obtained for a high-level trace; in (b)

the ones obtained for a low level trace. As in Fig. 10.4, the presence of LPAs is

much more helpful when there is a high-level trace. When there is a high-level

trace, the best value of the resolution time is for 𝑝 𝑓 = 0.6 and the one for the path

cost is for 𝑝 𝑓 = 0.5. When there is a low-level trace the same bests are obtained

for 𝑝 𝑓 = 1.0.

to analyze how the number of ants that reach the endpoint of the network varies

with respect to the performing factor and the group of the colony considered; and

(𝑖𝑖) an overall analysis to analyze how the number of ants of the colony, the path

cost find by it and its resolution time of the network vary taking into account only

the performing factor. Both kinds of analysis have been realized naming High

Trace the configuration for which the amount of pheromone released by the ants

is 𝐾 = 0.1 and the parameter 𝛽 = 1.0 (i.e. more information available), and Low

Trace the configuration for which the amount of pheromone release by the ants

is 𝐾 = 0.001 and the parameter 𝛽 = 0.5 (i.e. less information available). From

the group analysis, emerges that the presence of LPA helps the rest of the colony
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especially when there is a condition of high-level trace because the disturbing

actions performed by the LPAs stimulate the others to search for other paths and

to share their information among the other groups of the colony. This seems to

be true even for the overall analysis which considers the objective functions. The

presence of LPAs is crucial when the amount of trace shared by the ants, and so

present in the environment, is too high. An excess of information is self-defeating

for the group because, since their actions are calibrated according to this quantity,

it does not allow the ants to explore the rest of the network, letting them choose

the same path over and over. In this sense, the presence of LPAs is helpful for the

rest of the group because their actions force the rest of the colony to change its

behavior in order to search for more fruitful paths.



Chapter 11
Optimization Algorithms for Detection

of Social Interactions

11.1 Introduction

In last few years, many approaches have been proposed to detect communities

in social networks using diverse ways. Community detection is one of the most

important research topics in network science and graph analysis. Informally, a

community is defined as a set of network’s elements that are highly linked within

the group and weakly linked to the outside. Modeling and examining complex

systems that contain biological, ecological, economic, social, technological, and

other information is a very difficult process because the systems used for the real-

world data representation contain highly important information, such as social

relationships among people or information exchange interactions between molec-

ular structures in a body. For this reason, the study of community structures

inspires intense research activities to visualize and understand the dynamics of a

network at different scales [97, 104, 65]. In order to evaluate the quality of node

211
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partitions of a network, the modularity is certainly the most used quality index

[170].

Taking the modularity (𝑄) into account as an evaluation measure, community

detection can easily be seen as a combinatorial optimization problem, since the

problem aims to find a clustering that maximizes 𝑄. It is also a hard optimization

problem since Community Detection has been proven to be an NP-complete

problem [27]. Therefore, several search algorithms (both exact and approximate)

for clustering problems have been proposed, and, generally, they have been proven

to be robust in finding as cohesive as possible communities in large and complex

networks [168, 169]. It is well known in the literature that metaheuristics work

better than exact methods in large, complex, and uncertainty environments. Indeed,

they are approximation methods successfully applied on many hard and complex

problems able to find good solutions within reasonable computing times [213]. In

this work, I propose two Immunological Algorithms for the community detection

problem, called Opt-IA and Hybrid-IA, respectively. The first is based on a

random and blind search, and employs specifically designed stochastic operators

to carefully explore the search space, while Hybrid-IA uses a Local Search (LS)

technique that deterministically tries to refine the solutions found so far. The main

goal in this work is to prove the efficiency, robustness, and reliability of the two

immune-inspired algorithms in community detection problem, as they have been

successfully applied to several other areas and optimization tasks on networks. The

efficiency and robustness of both algorithms were tested on several social networks

(with different sizes), and, further, a comparison with seven other metaheuristic

methods has also been performed in order to assess the reliability of Opt-IA and

Hybrid-IA with respect to the state-to-the-art on community detection. In view
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of such comparisons, I am able to assert that both immunological algorithms

outperforms all other methods used for comparison, and find the best modularity

in all tested networks. By reducing the comparison to only Opt-IA and Hybrid-

IA, it is possible to assert overall that the algorithms are comparable, although the

first one, as expected, needs a higher number of generations due to its random and

blind search. Finally, it is important to underline the fact that, differently than all

other algorithms used for comparison, which have been tested and refined over

the years, Opt-IA and Hybrid-IA are already very competitive and successful,

even though they are at a first stage of development in community detection

tasks, and still need a deep study of their key parameters and operators. The

rest of the chapter is organized as follows. In Section 11.2, the problem of

community detection is introduced and the definition of the modularity measure

are formulated. In Section 11.3, the two immunological algorithms are introduced

and I focus the description primarily on their common concepts, whilst the detailed

descriptions on their features and operators developed are presented, respectively,

in Sections 11.3.1 (Opt-IA) and Section 11.3.2 (Hybrid-IA). In Section 11.4, all

experiments performed and comparisons done are described in detail, including

the used dataset and experimental protocol, and an analysis on the convergence

behavior of the two proposed immunological algorithms (Opt-IA and Hybrid-IA).

Finally, conclusions and some future research directions are presented in Section

11.5.
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11.2 Mathematical Definition of Modularity in Net-

works

The main aims in community detection are to uncover the inherent community

structure of a network, that is to say, those groups of nodes sharing common and

similar properties. This means, then, to detect groups (communities or modules)

internally strongly connected, and externally weakly connected. Being able to

detect community structures is a key and relevant task in many areas (biology,

computer science, engineering, economics, and politics) because they allow for

uncovering and understanding important information about the function of the

network itself and how its elements affect and interact with each other. For instance,

in World Wide Web networks, the communities can identify those pages dealing

with topics which are related; in biological networks, instead, they correspond to

proteins having the same specific function; in social sciences, they can identify

circles of friends or people who have the same hobby, or those people who live in

the same neighborhood.

In order to evaluate the quality of the uncovered groups in a network, modularity

is certainly the most used quality index [170]. It is based on the idea that a random

graph is not expected to have a community structure; therefore, the possible

existence of communities can be revealed by the difference of density between

vertices of the graph and vertices of a random graph with the same size and degree

distribution. Formally, it can be defined as follows: given an undirected graph

𝐺 = (𝑉, 𝐸), with𝑉 the set of vertices (|𝑉 | = 𝑁), and 𝐸 the set of edges (|𝐸 | = 𝑀),
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the modularity of a community is defined as:

𝑄 =
1

2𝑀

[
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

(
𝐴𝑖 𝑗 −

𝑑𝑖𝑑 𝑗

2𝑀

)
𝛿(𝑖, 𝑗)

]
, (11.1)

where 𝐴𝑖 𝑗 is the adjacency matrix of 𝐺, 𝑑𝑖 and 𝑑 𝑗 are the degrees of nodes 𝑖 and 𝑗

respectively, and 𝛿(𝑖, 𝑗) = 1 if 𝑖, 𝑗 belong to the same community, 0 otherwise.

As asserted by Brandes et al. in [27], the modularity value for unweighted and

undirected graphs lies in the range [−0.5, 1]. Then, a low 𝑄 value, i.e., close

to the lower bound, reflects a bad clustering, and implies the absence of real

communities, whilst good groups are identified by a high modularity value that

implies the presence of highly cohesive communities. For a trivial clustering,

with a single cluster, the modularity value is 0. However, the modularity has the

tendency to produce large communities and, therefore, fails to detect communities

which are comparatively small with respect to the network [95].

11.3 Immunological Algorithms

Immunological Algorithms (IA) are among the most used population-based meta-

heuristics, successfully applied in search and optimization tasks. They take inspi-

ration from the dynamics of the immune system in performing its job of protecting

living organisms. One of the features of the immune system that makes it a very

good source of inspiration is its ability to detect, distinguish, learn, and remem-

ber all foreign entities discovered [96]. Both proposed algorithms, Opt-IA and

Hybrid-IA, belong to the special class Clonal Selection Algorithms (CSA) [178,

49], whose efficiency is due to the three main immune operators: (i) cloning, (ii)

hypermutation, and (iii) aging. Furthermore, both are based on two main concepts:

antigen (𝐴𝑔), which represents the problem to tackle, and B cell, or antibody (𝐴𝑏)
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that represents a candidate solution, i.e., a point in the solution space. At each

time step 𝑡, both algorithms maintain a population of 𝑑 candidate solutions: each

solution is a subdivision of the vertices of the graph 𝐺 = (𝑉, 𝐸) in communities.

Let 𝑁 =| 𝑉 |, then a B cell ®𝑥 is a sequence of 𝑁 integers belonging to the range

[1, 𝑁], where 𝑥𝑖 = 𝑗 indicates that the vertex 𝑖 has been added to the cluster 𝑗 .

The population, for both algorithms, is initialized at the time step 𝑡 = 0 randomly

assigning each vertex 𝑖 to a group 𝑗 , with 𝑗 ∈ [1, 𝑁] . Then, just after the initial-

ization step, the fitness function (Equation (11.1)) is evaluated for each randomly

generated element (®𝑥 ∈ 𝑃(𝑡)) by using the function ComputeFitness(𝑃(𝑡)). The

two algorithms end their evolutionary cycle when the halting criterion is reached.

For this work, it was fixed to a maximum number of generations (𝑀𝑎𝑥𝐺𝑒𝑛).

Among all immunological operators, cloning is the only one that is roughly the

same between Opt-IA and Hybrid-IA (6𝑡ℎ line in Algorithms 2 and 3). This

operator simply copies 𝑑𝑢𝑝 times each B cell producing an intermediate population

𝑃(𝑐𝑙𝑜) of size 𝑑 × 𝑑𝑢𝑝. I used a static cloning for both algorithms in order to avoid

premature convergences. Indeed, if a number of clones proportional to to the

fitness value is produced instead, I could have a population of B cells very similar

to each other, and I would, consequently, be unable to perform a proper exploration

of the search space getting easily trapped in local optima. Hybrid-IA, more in

detail, assigns an age to each cloned B cell, which determines how long it can live

in the population, from the assigned age until it reaches the maximum age allowed

𝜏𝐵, a user-defined parameter). Specifically, a random age chosen in the range

[0 : 2
3𝜏𝐵]𝑖𝑠𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑡𝑜𝑒𝑎𝑐ℎ𝑐𝑙𝑜𝑛𝑒. In this way, each clone is guaranteed to stay in

the population for at least a fixed number of generations (1
3𝜏𝐵 in the worst case).

The age assignment and the aging operator (see Section 11.3.2) play a crucial role
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on Hybrid-IA performances, and any evolutionary algorithm in general because

they are able to keep a right amount of diversity among the solutions, thus avoiding

premature convergences [64].

11.3.1 Opt-IA

Opt-IA [208] is a totally blind stochastic algorithm, a particular type of optimiza-

tion method that generates a set of random solutions for the community detection

problem. It is based on

(i) the hypermutation operator, which acts on each clone in order to explore its

neighborhood;

(ii) the precompetition operator, which makes it possible to maintain a more

heterogeneous population during the evolutionary cycle;

(iii) the stochastic aging operator whose aim is keep high diversity into the pop-

ulation and consequently help the algorithm in escaping from local optima;

and, finally,

(iv) the selection operator which identifies the best 𝑑 elements without repetition

of fitness, ensuring heterogeneity into the population.

In Algorithm 2, the pseudocode of Opt-IA, and its key parameters, are described:

The purpose of the hypermutation operator is to carefully explore the neighborhood

of each solution in order to generate better solutions from iteration to iteration.

It basically performs at most 𝑚 mutations on each B cell, where 𝑚 is a user-

defined constant parameter. Unlike the other clonal selection algorithms, including

Hybrid-IA, the 𝑚 mutation rate of each element is not determined by a law
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Algorithm 2 Pseudo-code of Opt-IA
1: procedure Opt-IA(𝑑, 𝑑𝑢𝑝, 𝑚, 𝑃𝑑𝑖𝑒)

2: 𝑡 ← 0

3: 𝑃(𝑡) ← InitializePopulation(𝑑);
4: ComputeFitness(𝑃(𝑡))
5: while ¬StopCriterion do
6: 𝑃(𝑐𝑙𝑜) ← Cloning(𝑃(𝑡) , 𝑑𝑢𝑝)
7: 𝑃(ℎ𝑦𝑝) ← Hypermutation(𝑃(𝑐𝑙𝑜) , 𝑚)
8: ComputeFitness(𝑃(ℎ𝑦𝑝))
9: 𝑃(𝑝𝑟𝑒) ← Precompetition(𝑃(𝑡))

10: 𝑃
(𝑝𝑟𝑒)
𝑎 ← StochasticAging(𝑃(𝑝𝑟𝑒) , 𝑃𝑑𝑖𝑒)

11: 𝑃(𝑡+1) ← Selection(𝑃(𝑝𝑟𝑒)𝑎 , 𝑃(ℎ𝑦𝑝))
12: 𝑡 ← 𝑡 + 1;

13: end while
14: end procedure

inversely proportional to the fitness function, but it will be the same for anyone.

In this way, possible premature convergences are avoided. In this algorithm, three

different types of mutation have been designed, which can act on a single node

(local operators) or a set of nodes (global operators):

1. equiprobability: randomly select a vertex from the solution and reassign it

to a cluster among those existing at that time. Each cluster has the same

probability of being selected;

2. destroy: randomly select a cluster 𝑐𝑖 from the solution ®𝑥, a percentage 𝑃 in

the range [1%, 50%], and a cluster 𝑐 𝑗 in the range [1, 𝑁]. All vertices in 𝑐𝑖

are then moved to the cluster 𝑐 𝑗 with 𝑃 probability. Note that, if the cluster

𝑐 𝑗 does not exist, then a new community is created;
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3. fuse: randomly select a cluster and assign all its nodes to a randomly selected

cluster among those existing.

After the hypermutation operator, the fitness values for all mutated B cell are

computed. Three operators act on the population at this point.

Precompetition operator: the primary aim of this operator is to obtain a more

heterogeneous population by trying to maintain solutions which have different

community numbers in order to better explore the search space. Basically, this

operator randomly selects two different B cells from 𝑃(𝑡) , and, if they have same

community number, the one with a lower fitness value will be deleted with a 50%

probability.

StochasticAging operator: this operator helps the algorithm to escape from local

optima by introducing diversity in the population. At each iteration, each B cell

in 𝑃(𝑝𝑟𝑒) will be removed with probability 𝑃𝑑𝑖𝑒 (a user-defined parameter). Using

this type of aging operator, Opt-IA is able to, on one hand, to introduce diversity

in the population, which is crucial for jumping out from local optima, and, on the

other hand, to have an accurate exploration and exploitation of the neighborhoods.

Selection operator: finally, the selection operator has the task to generate the new

population for the next generation made up of the best B cells discovered so far.

Therefore, the new population 𝑃(𝑡+1) is created by selecting the best 𝑑 B cells

among the survivors in 𝑃(𝑝𝑟𝑒)𝑎 and hypermutated B cells in 𝑃(ℎ𝑦𝑝) . It is important

to highlight that no redundancy is allowed during the selection: if a hypermutated

B cell is candidate to be selected for the new population 𝑃(𝑡+1) , but it has the

same fitness value with someone in 𝑃(𝑝𝑟𝑒)𝑎 , then it will be discarded. This ensures

monotonicity in the evolution dynamic.
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11.3.2 Hybrid-IA

A fundamental difference between Opt-IA and Hybrid-IA is that the former, as

described above, is a stochastic IA that finds solutions by random methods. The

latter, instead, uses a deterministic local search, based on rational choices that

refine and improve the solutions found so far. The pseudocode of Hybrid-IA is

described in Algorithm 3.

Algorithm 3 Pseudo-code of Hybrid-IA.
1: procedure Hybrid-IA(𝑑, 𝑑𝑢𝑝, 𝜌, 𝜏𝐵)

2: 𝑡 ← 0

3: 𝑃(𝑡) ← InitializePopulation(𝑑)
4: ComputeFitness(𝑃(𝑡))
5: while ¬StopCriterion do
6: 𝑃(𝑐𝑙𝑜) ← Cloning(𝑃(𝑡) , 𝑑𝑢𝑝)
7: 𝑃(ℎ𝑦𝑝) ← Hypermutation(𝑃(𝑐𝑙𝑜) , 𝜌)
8: ComputeFitness(𝑃(ℎ𝑦𝑝))
9: (𝑃(𝑡)𝑎 , 𝑃(ℎ𝑦𝑝)𝑎 ) ← Aging(𝑃(𝑡) , 𝑃(ℎ𝑦𝑝) , 𝜏𝐵)

10: 𝑃(𝑠𝑒𝑙𝑒𝑐𝑡) ← (` + _)−Selection(𝑃(𝑡)𝑎 , 𝑃(ℎ𝑦𝑝)𝑎 )
11: 𝑃(𝑡+1) ← LocalSearch(𝑃(𝑠𝑒𝑙𝑒𝑐𝑡))
12: ComputeFitness(𝑃(𝑡+1))
13: 𝑡 ← 𝑡 + 1;

14: end while
15: end procedure

The hypermutation operator developed in Hybrid-IA has the main goal of explor-

ing the neighborhoods of solutions by evaluating how good each clone is. Unlike

Opt-IA, the mutation rate is determined through an inversely proportional law to

the fitness function value of the B cell considered, that is, the better the fitness
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value of the element is, the smaller the mutation rate will be. In particular, let ®𝑥 be

a cloned B cell, the mutation rate 𝛼 = 𝑒−𝜌 𝑓 (®𝑥) is defined as the probability to move

a node from one community to another one, where 𝜌, a user-defined parameter

that determines the shape of the mutation rate, and 𝑓 (®𝑥) is the fitness function

normalized in the range [0, 1]. Formally, the designed hypermutation works as

follows: for each B cell, two communities 𝑐𝑖 and 𝑐 𝑗 are randomly chosen (𝑐𝑖 ≠ 𝑐 𝑗 ):

the first is chosen among all existing ones , and the second in the range [1, 𝑁] .

Then, all vertices in 𝑐𝑖 are moved to 𝑐 𝑗 with probability given by 𝛼. If a value

that does not correspond to any currently existing community is assigned to 𝑐 𝑗 , a

new community 𝑐 𝑗 is created and added to the existing ones. The idea behind this

approach is to better explore the search space and create and discover new com-

munities by moving a variable percentage of nodes from existing communities.

This search method balances the effects of local search (as described below), by

allowing the algorithm to avoid premature convergences towards local optima.

The static aging operator in Hybrid-IA acts on each mutated B cells by removing

older ones from the two populations 𝑃(𝑡) and 𝑃(ℎ𝑦𝑝) . Basically, let 𝜏𝐵 be the

maximum number of generations allowed for every B cell to stay in its population;

then, once the age of a B cell exceeds 𝜏𝐵 (i.e., age=𝜏𝐵+1), it will be removed

independently from its fitness value. However, an exception may be done for the

best current solution, which is kept into the population even if its age is older

than 𝜏𝐵. Such a variant of the aging operator is called elitist aging operator. In

the overall, the main goal of this operator is to allow the algorithm to escape and

jump out from local optima, assuring a proper turnover between the B cells in the

population, and producing, consequently, high diversity among them.

After the aging operator, the best 𝑑 survivors from both populations 𝑃(𝑡)𝑎 and
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𝑃
(ℎ𝑦𝑝)
𝑎 are selected, in order to generate the temporary population 𝑃(𝑠𝑒𝑙𝑒𝑐𝑡) , on the

local search will be performed. Such a selection is performed by the (` + _)-

Selection operator, where ` = 𝑑 and _ = (𝑑 × 𝑑𝑢𝑝). The operator identifies the

𝑑 best elements among the set of offsprings and the old parent B cells, ensuring

consequently monotonicity in the evolution dynamics.

The Local Search designed and introduced in Hybrid-IA is the key operator to

properly speed up the convergence of the algorithm, and, in a way, drive it towards

more promising regions. Furthermore, it intensifies the search and explore the

neighborhood of each solution using the well-known Move Vertex approach (MV)

[124]. The basic idea of the proposed LS is to assess deterministically if it is

possible to move a node from its community to another one within its neighbors.

The MV approach takes into account the move gain that can be defined as the

variation in modularity produced when a node is moved from a community to

another. Before formally defining the move gain, it is important to point out that

the modularity 𝑄, defined in Equation (11.1), can be rewritten as:

𝑄(𝑐) =
𝑘∑︁
𝑖=1

[
ℓ𝑖

𝑀
−

(
𝑑𝑖

2𝑀

)2
]
, (11.2)

where 𝑘 is the number of the found communities; 𝑐 = {𝑐1, . . . , 𝑐𝑖, . . . 𝑐𝑘 } is the

set of communities that is the partitioning of the set of vertice V; 𝑙𝑖 and 𝑑𝑖 are,

respectively, the number of links inside the community 𝑖, and the sum of the

degrees of vertices belonging to the 𝑖 community. The move gain of a vertex 𝑢 ∈ 𝑐𝑖

is, then, the modularity variation produced by moving 𝑢 from 𝑐𝑖 to 𝑐 𝑗 , that is:

Δ𝑄𝑢 (𝑐𝑖, 𝑐 𝑗 ) =
𝑙𝑐 𝑗 (𝑢) − 𝑙𝑐𝑖 (𝑢)

𝑀
+ 𝑑𝑉 (𝑢)

[
𝑑𝑐𝑖 − 𝑑𝑉 (𝑢) − 𝑑𝑐 𝑗

2𝑀2

]
, (11.3)

where 𝑙𝑐𝑖 (𝑢) and 𝑙𝑐 𝑗 (𝑢) are the number of links from 𝑢 to nodes in 𝑐𝑖 and 𝑐 𝑗
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respectively, and 𝑑𝑉 (𝑢) is the degree of 𝑢 when considering all the vertices 𝑉 .

If Δ𝑄𝑢 (𝑐𝑖, 𝑐 𝑗 ) > 0, then moving node 𝑢 from 𝑐𝑖 to 𝑐 𝑗 produces an increment in

modularity, and then a possible improvement. Consequently, the goal of MV is to

find a node 𝑢 to move to an adjacent community in order to maximize Δ𝑄𝑢:

argmax
𝑣∈𝐴𝑑𝑗 (𝑢)

Δ𝑄𝑢 (𝑖, 𝑗), (11.4)

where 𝑢 ∈ 𝐶𝑖, 𝑣 ∈ 𝐶 𝑗 and 𝐴𝑑𝑗 (𝑢) is the adjacency list of node 𝑢.

For each solution in 𝑃(𝑠𝑒𝑙𝑒𝑐𝑡) , the Local Search begins by sorting the communities

in increasing order with respect to the ratio between the sum of inside links and the

sum of the node degrees in the community. In this way, poorly formed communities

are identified. After that, MV acts on each community of the solution, starting

from nodes that lie on the border of the community, that is, those that have at

least an outgoing link. In addition, for communities, the nodes are sorted with

respect to the ratio between the links inside and node degree. The key idea

behind LS is to deterministically repair the solutions which were produced by the

hypermutation operator, by discovering then new partitions with higher modularity

value. Equation (11.3) can be calculated efficiently because 𝑀 and 𝑑𝑉 (𝑢) are

constants, the terms 𝑙𝑐𝑖 and 𝑑𝑐𝑖 can be stored and updated using appropriate data

structures, while the terms 𝑙𝑐𝑖 (𝑢) can be calculated during the exploration of all

adjacent nodes of 𝑢. Therefore, the complexity of the move vertex operator is

linear on the dimension of the neighborhood of node 𝑢.

11.4 Results

In this section, all the experiments and comparisons performed on the two pro-

posed algorithms, Opt-IA and Hybrid-IA, are presented, in order to assess their
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efficiency and robustness in detecting highly linked communities. Different social

networks have been taken into account for the experimental analyses conducted on

the two algorithms, and for their comparison with other efficient metaheuristics

which are present in literature.

The instances are well-known networks used for the community detection problem

and their characteristics are summarized and reported in Table 11.1. Gravy’s Zebra

[212] is a network created by Sundaresan et al. in which a link between to nodes

indicates that a pair of zebras appeared together at least once during the study.

In Zachary’s Karate Club [231] network, collected by Zachary in 1977, a node

represents a member of the club and an edge represents a tie between two members

of the club. Bottlenose Dolphins [143] is an undirected social network of dolphins

where an edge represents a frequent association. Books about US Politics [130]

is a network of books sold, compiled by Krebs, where edges represent frequent

co-purchasing of books by the same buyers. Another network considered is

American College Football [97], a network of football games between colleges.

Jazz Musicians [98] is the collaboration network between Jazz musicians. Each

node is a Jazz musician and an edge denotes that two musicians have played

together in a band. These specific networks have been chosen because they are the

most used as test benches and, consequently, allowed us to compare my algorithms

with several others and, in particular, with different metaheuristics. Although

there exist bigger networks in literature, large and meaningful comparisons are

more difficult to develop.

For all experiments carried out and presented in this section, both Opt-IA and

Hybrid-IA maintain a population of B cells of size 𝑑 = 100, whereas the number

of generated clones depends upon the approach used. Since Opt-IA needs high
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variability, 𝑑𝑢𝑝 = 10 has been set for larger networks (|𝑉 | ≥ 100), and 𝑑𝑢𝑝 = 4

for smaller ones (|𝑉 | < 100); 𝑑𝑢𝑝 = 2, has been, instead, set in Hybrid-IA for all

tested network types.

Table 11.1: The social networks used in the experiments.

Name |𝑽 | |𝑬 |

Grevy’s Zebras [212] 28 111

Zachary’s Karate Club [231] 34 78

Bottlenose Dolphins [143] 62 159

Books about US Politics [130] 105 441

American College Football [97] 115 613

Jazz Musicians Collaborations [98] 198 2742

Moreover, the 𝑚 and 𝑃𝑑𝑖𝑒 parameters in Opt-IA have been set to 1 and 0.02,

respectively; however, for Hybrid-IA, 𝜌 and 𝜏𝐵 have been set to 1.0 and 5. Note that

all parameters of Opt-IA have been determined through careful tuning experiments,

whilst those of Hybrid-IA have been identified both from the knowledge learned by

previous works [178, 49], and from a preliminary and not in-depth experiments. As

described above, the maximum number of generations has been taken into account

as stopping criterion. For all experiments performed in this research work, it was

fixed 𝑀𝑎𝑥𝐺𝑒𝑛 = 1000 for Opt-IA, and 𝑀𝑎𝑥𝐺𝑒𝑛 = 100 for Hybrid-IA. Note

that a higher iterations number has been considered for Opt-IA due to its blind

search, which, for obvious reasons, requires larger time steps to reach acceptable

solutions.

Initially, the experimental analysis has been focused on the inspection of the

efficiency of both algorithms, Opt-IA and Hybrid-IA, in terms of convergence
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and solution quality found. In Figure 11.1, the convergence behavior of both Opt-

IA and Hybrid-IA on the Books about US Politics network is showed. In this plot,

the curves represent the evolution of the best and average fitness of the population;

the standard deviation of the fitness values of the population is superimposed onto

the average fitness and gives an idea about how heterogeneous the elements in the

population are.
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Figure 11.1: Convergence behavior of Opt-IA and Hybrid-IA on the Books about

US Politics network.

From Figure 11.1, one can note how Opt-IA converges more slowly towards the

best solution, as expected, always keeping a certain variability within the popu-

lation. This allows the algorithm to better explore the search space. When the

population is composed of very different elements, i.e., when the standard devi-

ation is high, the algorithm discovers new solutions, significantly improving the

current best solution. However, after about 250 generations, Opt-IA reaches the

optimal solution and the curves (best and average fitness) tend to overlap. More-

over, the achievement of the optimal solution helps the creation of better clones,
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reducing the variability of the population. Unlike Opt-IA, Hybrid-IA converges

easily thanks to the local search applied to the elements after the selection phase.

As can be noted from the inset plot in Figure 11.1, Hybrid-IA reaches the opti-

mal solution after a few generations. Even in this case, once the best solution is

reached, the population follows the same trend of the curve of the best fitness, and

both curves continue (almost) as a single line. If on one hand the local search helps

to quickly discover good solutions, on the other, it reduces the diversity inside the

population, reducing then the exploration of the search space. In particular, as

demonstrated by the worst value found in the Jazz Musicians network, reported in

Table 11.2, Hybrid-IA prematurely converges towards local optima, from which

it will hardly be able to get out. At the end of the analysis of Figure 11.1, it is

possible to conclude that the stochastic operators designed in Opt-IA guarantee an

excellent and large exploration of the search space, but with the disadvantage of

requiring a longer evolution time; however, the local search developed in Hybrid-

IA, and relative sorting criteria, allow for quickly discovering good solutions to

exploit during the evolutionary process.

In order to evaluate the performances and reliability of both immunological algo-

rithms with respect the state-of-the-art, a wide comparison has been performed

with several metaheuristics, and a well-known deterministic algorithm, on the

all dataset reported in Table 11.1. In particular, Opt-IA and Hybrid-IA have

been compared with: Louvain [25], a greedy optimization method; HDSA, a

Hyper-Heuristics Differential Search Algorithm based on the migration of artifi-

cial superorganisms [39]; BADE, an improved Bat Algorithm based on Differen-

tial Evolution algorithm [211, 210]; SSGA, a Scatter Search [99, 146] based on

Genetic Algorithm; BB-BC, a modified Big Bang–Big Crunch algorithm [74];
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BA, an adapted Bat Algorithm for community detection [227]; GSA, a Gravita-

tional Search Algorithm re-designed for solving the community detection problem

[185]; and MA-Net, a Memetic Algorithm [154]. For all algorithms, I considered

𝑀𝑎𝑥𝐺𝑒𝑛 = 100, except for Opt-IA, as described above, and MA-Net whose stop-

ping criterion has been set to 30 generations without improvement (see [154] for

details). All results of the above methods, as well as the experimental protocol,

have been taken from Atay et al. [9], except for Louvain (I have considered the

Louvain algorithm included in igraph R package) and MA-Net.

The comparison performed on all dataset is reported in Table 11.2, where I show

for each algorithm (where possible) the best, mean, and worst values of the𝑄 mod-

ularity; standard deviation (𝜎), and, finally, the created communities number (𝑘).

Furthermore, whilst the experiments for Opt-IA and Hybrid-IA were performed

on 100 independent runs, for all other compared algorithms, only 30 independent

runs have been considered, excepts for MA-Net with 50 runs. It is important to

note that, for the MA-Net outcomes, the values reported, and taken from [154],

have been rounded to third decimal places unlike the others that are instead based

on four decimals. Obviously, all 10 algorithms optimize the same fitness function

reported in Equation (11.1) and rewritten in a simpler way in Equation (11.2).

From Table 11.2, it is possible to note that all algorithms reach the optimal solution

in the first two networks Zebra and Karate Club, except Louvain, which fails

on the second; on all the other network instances, both Opt-IA and Hybrid-IA

outperform all other compared algorithms, matching their best values only with

HDSA and MA-Net ones. It is important to point out, which proves even more the

efficiency of the two proposed immunological algorithms, how the mean values

obtained by Opt-IA and Hybrid-IA, on all tested networks, are better than the best



11.4. Results 229

modularity found by the other algorithms, such as: BADE, SSGA, BB-BC, BA,

and GSA; even on the Dolphins and Football networks, the worst modularity value

obtained by Opt-IA is equal to or greater than the best one obtained by the same

algorithms. On the Dolphins network, Opt-IA reaches a better mean value than

Hybrid-IA, HDSA, and MA-Net, since, because of its random/blind exploration

of the search space, it jumps out from local optima more easily than the other

three. The opposite behavior of Opt-IA occurs when the size and complexity of

the networks increase. In such a case, it obviously needs more generations to

converge towards the optimal solutions and this is highlighted by the mean value

and the standard deviation obtained for Political Books and Football. Note that,

with longer generations, Opt-IA finds roughly the same mean values as Hybrid-

IA. Hybrid-IA shows more stable results on all tested networks than Opt-IA,

obtaining lower standard deviation values on all instances. On Dolphins network,

Hybrid-IA has a mean value slightly lower than Opt-IA and HDSA, while in

Political Books lower only than HDSA. As described above, this is due to the local

search that leads the algorithm to a premature convergence towards local optima,

obtaining the lowest worst value. Furthermore, HDSA is a hyper-heuristic which

uses a genetic algorithm and scatter search to create the initial population for

the differential search algorithm, speeding up the convergence of the algorithm,

and reducing the spread of results. In Jazz Musicians network, both Opt-IA

and Hybrid-IA algorithms obtain similar results, comparable to those obtained

by MA-Net. Finally, if I focus on the comparison with only the deterministic

Louvain algorithm, both immunological algorithms outperform it in almost all

networks (3 out of 6). In conclusion, from the experimental analysis, it is possible

to assert that both Opt-IA and Hybrid-IA perform very well on networks (large and
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small) considered for the experiments and are competitive with the state-of-the-art

in terms of efficiency and robustness. Furthermore, inspecting the found mean

values, I can see that both algorithms show themselves to be reliable optimization

methods in detecting highly linked communities.

11.4.1 Large Synthetic Networks

In order to assess the scalability of Hybrid-IA, as last step of this research work,

I considered larger synthetic networks with 1000 and 5000 vertices. The clear

advantages of using them are given by the knowledge of the communities and

consequently by the possibility of evaluating the goodness of the detected commu-

nities, as well as the possibility of testing the algorithm on different scenarios and

complexities. The validity of this benchmark is given by faithfully reproducing

the keys features of real graphs communities. The new benchmark was produced

using the 𝐿𝐹𝑅 algorithm proposed by Lancichinetti and Fortunato in [134]. Two

different network instances were considered with |𝑉 | = 1000 and |𝑉 | = 5000,

respectively, considering 𝑘 = 20 as average degree and 𝑘𝑚𝑎𝑥 = 50 as maximum

degree. For both values of |𝑉 |, I considered 𝜏1 = 2 as exponent of the degrees

distribution and 𝜏2 = 1 for the one of the communities’ sizes. Moreover, about the

community dimension, I fixed 𝑚𝑖𝑛𝑐 = 10 and 𝑚𝑎𝑥𝑐 = 50, respectively, minimum

and maximum sizes. Finally, the mixing parameter `𝑡 was varied from 0.1 to 0.7,

which identifies the relationships percentage of a node with those belonging to

different communities. Therefore, the larger the value of `𝑡 , the larger are the re-

lationships that a vertex has with other nodes outside its community. More details

on the 𝐿𝐹𝑅 algorithm, the key parameters, and the generated benchmark can be

found in [135, 134].
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Thanks to the advantages offered by the synthetic networks, I took into account a

new evaluation metric in order to confirm the efficiency of the proposed Hybrid-IA

in detecting strong communities. In particular, I considered the Normalized Mutual

Information (𝑁𝑀𝐼) [61], which is a widely used measure to compare community

detection methods since it discloses the similarity between the true community and

the detected community structures. Thus, while the modularity allows for assessing

how cohesive the detected communities are, the 𝑁𝑀𝐼 allows for evaluating how

similar they are with respect to the real ones. In Table 11.3, the outcomes of

Hybrid-IA on these new synthetic datasets are then reported and compared to the

ones obtained by Louvain. Modularity (𝑄) and 𝑁𝑀𝐼 values are presented and

considered for the comparisons. In the first column of the table, the features of

each instance tackled are also shown. Analyzing the comparison, it is possible

to see how Hybrid-IA outperforms Louvain in all networks with 1000 vertices

with respect to the 𝑄 modularity metric, whilst the opposite happens for those

instances with 5000 vertices, where instead Louvain outperforms Hybrid-IA.

This gap is due to the combination between the random search and local search that,

together with the diversity produced by the immune operators, requires a longer

convergence time than the Louvain one. It is important to point out that very likely,

with a larger number of generations, Hybrid-IA would reach comparable results

to Louvain in terms of 𝑄 modularity also on these larger networks. Different

instead is the assessment of the comparison if it is analyzed with respect the 𝑁𝑀𝐼

metric [61]: Hybrid-IA outperforms Louvain in all networks, and this proves a

better ability of the hybrid immune algorithm proposed in detecting communities

closer to the true ones than the greedy optimization algorithm. Note that, although

modularity assesses the cohesion of the communities detected, maximizin𝑄 might
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not correspond to detect the true communities.

11.4.2 On the Computational Complexity of Opt-IA and Hybrid-

IA

Both algorithms are population based algorithms; therefore, any analysis of their

computational complexity must deal not only with the size of the input problems

and its implementation, which in turn implies the analysis of the computational

cost of computing the fitness of any individual, but also with the choice of the key

parameters, such as the number of elements in the population 𝑑, the total number

of iterations 𝑀𝑎𝑥𝐺𝑒𝑛,, etc. I will discuss these issues properly in what follows.

When I look at the code for Opt-IA, I have the following:

• Any element of the population, i.e., a tentative solution, is an array of length

𝑁, where 𝑁 is the number of vertices of the input graph.

• The operator InitializePopulation(𝑑) randomly creates a population of 𝑑

tentative solutions. Thus, total cost is O(𝑑𝑁). However, I stress here the

fact that 𝑑, which is set experimentally, is actually constant, i.e., it does not

depend on the size of the input. In my case, I fixed to the value 100 for all

of the experiments. This allows us to say that the cost of the procedure is

actually O(𝑁).

• The operator ComputeFitness() computes the fitness for all the 𝑑 = 100

elements of the population. A bound on the cost of the procedure can easily

be computed using Equation (11.1), and it clearly is O(𝑁2).

• The operator Cloning() creates 𝑑𝑢𝑝 copies of each of the elements of the

population. As you can see from my settings, 𝑑𝑢𝑝 is a parameter which
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does not depend on the size of the input graph, but just on the nature of the

algorithm. This allows us to say that the cost of Cloning() is O(𝑁).

• The operator Hypermutation() mutates each element of the population with

constant probability 𝑚. As I described earlier, I have three different imple-

mentations. In all three cases, I have either the random selection of a vertex

or the random selection of a cluster. In the two most time-consuming imple-

mentations, namely destroy and fuse, I might have the reallocation of several

vertices. Thus, all in all, Hypermutation() has an upper bound O(𝑁).

• The operator Precompetition() randomly selects two vertices, checks their

community numbers, and, if they are the same, it deletes with probability

1/2 the one with lower fitness. Since the fitness value was already computed,

the overall cost of the operator is clearly O(1).

• The operator StochasticAging() goes through all the elements of the popu-

lation and removes an element with the user defined probability 𝑃𝑑𝑖𝑒. Thus,

its overall cost is O(𝑁).

• Finally, the operator Selection() chooses, without repetition of fitness values,

the best 𝑑 B cells among 𝑃(𝑝𝑟𝑒)𝑎 and 𝑃(ℎ𝑦𝑝) . As I underlined before, the

number of elements in these two populations is constant with respect to the

size of the input, so I can simply say that the cost of the operator is O(1).

In summary, the cost of one iteration of Opt-IA has a computational upper bound

O(𝑁2 + 𝑁) = O(𝑁2). Finally, let us take into consideration the number of iter-

ations. I mentioned that for all the experiments concerning Opt-IA the number

of generations was fixed to 1000. For the bigger graphs, it is a number smaller

than the number of edges and about five times the number of vertices. It is clear,
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though, that, contrary to the other parameters, the number of generations cannot be

considered independent from the size of the input. The bigger the input, the bigger

is the number of generations that I expect to need. However, how does it grow

with respect to 𝑁? The possibility of keeping it constant for large graphs, and the

results of my experiments tell us that such a growth is at worst linear with respect

to 𝑁. Thus, if I want to be very cautious in estimating the overall complexity of

Opt-IA, I can say that I need at most 𝑐 · 𝑁 generations to obtain good results. If I

check again Figure 11.1, I see that. after about 250 ∼ 2.5|𝑉 | generations, Opt-IA

reaches the optimal solution. In general, I estimate that the number of generations

is at most 5 · |𝑁 |. If I add such a bound on the overall computational analysis of

Opt-IA , I can certainly claim that the upper bound for its running time is O(𝑁3).

If I study the computational cost of Hybrid-IA, I find very few differences with

what I saw for Opt-IA. Namely,

• The operator Hypermutation() in the worst case moves all the vertices from

one community to another, but it is still obviously O(𝑁).

• The operator Aging() goes through all the elements of the populations which

I consider a constant number, again independent from the size of the input

graph, so, all in all, it is O(1).

• The operator LocalSearch() acts on every vertex of the given graph and

explores its vicinity. Therefore, I can estimate that its work has an upper

bound O(𝑁2).

In summary, the cost of one iteration of Hybrid-IA has a computational upper

bound O(𝑁2), just like Opt-IA, though clearly higher internal constant factors.

Such a constant factor is balanced by the number of generations. I fixed it to
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100 for all the experiments, including the very large synthetic graphs, where I

noted I should have probably had a larger number of generations. Once again,

the number of generations cannot be considered independent from the size of

the input. However, certainly for Hybrid-IA, it is asymptotically not larger than

what I estimated for Opt-IA. Moreover, even assuming that its growth is linear

with respect to |𝑉 |, the constant factor is definitively smaller. In any case, I can

conclude that, also for Hybrid-IA, I have a computational upper bound O(𝑁3).

11.5 Conclusions

Two novel immunological algorithms have been developed for the community

detection, one of the most challenging problems in network science, with an

important impact on many research areas. The two algorithms, respectively Opt-IA

and Hybrid-IA, are inspired by the clonal selection principle, and take advantage

of the three main immune operators of cloning, hypermutation, and aging. The

main difference between the two algorithms is the designed search strategy: Opt-

IA performs a random and blind search in the search space, and it is coupled with

pure stochastic operators, whilst Hybrid-IA is based on a refinement of the current

best solutions through a deterministic local search. The efficiency and efficacy of

both algorithms have been tested on several real social networks, different both

in complexity and size. From the experimental analysis, it emerges that Opt-IA,

thanks to its structure, carries out a careful exploration of the solutions space, but

it needs a larger number of iterations, whilst Hybrid-IA quickly discovers good

solutions, and exploits them during the evolutionary cycle. Opt-IA and Hybrid-

IA have also been compared with seven efficient metaheuristics (included one

Hyper-Heuristic), and one greedy optimization method. The obtained outcomes
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prove the reliability of both algorithms, showing competitiveness, and efficiency

with respect to all other algorithms to which they are compared.

In particular, they prove that, under the same conditions, both Opt-IA and Hybrid-

IA reach better solutions (i.e., higher modularity) than the other algorithms, includ-

ing Louvain. Moreover, these results, along with previous successful applications

in several optimization tasks on networks, prove once again that my proposed

immunological approach and algorithm is one of the best metaheuristics methods

in literature.

Several points need to be carefully analyzed as future work, such as an appropriate

parameters tuning, an improvement of effectiveness of the hypermutation operator,

and local search method in order to build more efficiently the clusters, better

guide the move of the nodes between the clusters, and speed up the convergence.

Finally, an obvious future research direction is to tackle larger networks, especially

biological ones, which are harder and of high relevance.
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Table 11.2: Comparison of Opt-IA and Hybrid-IA on social networks with

reference algorithms. For HDSA, BADE, SSGA, BB-BC, BA, and GSA the results

are calculated over 30 independent runs, while for MA-Net over 50 independent

runs.

Algorithms

Networks Louvain Opt-IA Hybrid-IA HDSA BADE SSGA BB-BC BA GSA MA-Net

Zebra

Best 0.2768 0.2768 0.2768 0.2768 0.2768 0.2768 0.2768 0.2768 0.2768 -

Mean - 0.2768 0.2768 0.2768 0.2768 0.2768 0.2766 0.2768 0.2768 -

Worst - 0.2768 0.2768 0.2768 0.2768 0.2768 0.2761 0.2768 0.2768 -

𝜎 - 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 -

𝑘 4 4 4 4 4 4 4 4 4 -

Karate Club

Best 0.4188 0.4198 0.4198 0.4198 0.4198 0.4198 0.4198 0.4198 0.4198 0.420

Mean - 0.4198 0.4198 0.4198 0.4188 0.4198 0.4196 0.4133 0.4170 0.419

Worst - 0.4198 0.4198 0.4198 0.4156 0.4198 0.4188 0.3946 0.4107 -

𝜎 - 0.0000 0.0000 0.0000 0.0018 0.0000 0.0004 0.0105 0.0037 0.002

𝑘 4 4 4 4 4 4 4 4 4 4

Dolphins

Best 0.5185 0.5285 0.5285 0.5285 0.5268 0.5257 0.5220 0.5157 0.4891 0.529

Mean - 0.5285 0.5273 0.5282 0.5129 0.5200 0.5141 0.4919 0.4677 0.523

Worst - 0.5268 0.5220 0.5276 0.4940 0.5156 0.5049 0.4427 0.4517 -

𝜎 - 0.0003 0.0009 0.0005 0.0120 0.0040 0.0068 0.0289 0.0155 0.004

𝑘 5 5 5 5 4 5 5 4 6 5

Political Books

Best 0.5205 0.5272 0.5272 0.5272 0.5239 0.5221 0.4992 0.5211 0.4775 0.527

Mean - 0.5267 0.5270 0.5272 0.5178 0.5203 0.4914 0.5020 0.4661 0.526

Worst - 0.5063 0.5246 0.5272 0.5137 0.5167 0.4799 0.4815 0.4558 -

𝜎 - 0.0028 0.0005 0.0000 0.0042 0.0024 0.0084 0.0149 0.0079 0.002

𝑘 4 5 5 5 4 5 9 3 5 5

Football

Best 0.6046 0.6046 0.6046 0.6046 0.5646 0.5330 0.5171 0.5523 0.4175 0.605

Mean - 0.5989 0.6039 0.6033 0.5513 0.5277 0.5061 0.5272 0.4032 0.601

Worst - 0.5736 0.6031 0.6019 0.5430 0.5189 0.4986 0.4742 0.3905 -

𝜎 - 0.0078 0.0007 0.0009 0.0085 0.0057 0.0069 0.0325 0.0109 0.003

𝑘 10 10 10 10 11 6 10 7 5 10

Jazz Musicians

Best 0.4451 0.4451 0.4451 - - - - - - 0.445

Mean - 0.4449 0.4450 - - - - - - 0.445

Worst - 0.4449 0.4446 - - - - - - -

𝜎 - 0.0001 0.0002 - - - - - - 0.000

𝑘 4 4 4 - - - - - - 4
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Table 11.3: Comparison between Hybrid-IA and Louvain on Synthetic Networks

with 1000 and 5000 vertices, with respect to modularity (𝑄) and 𝑁𝑀𝐼 evaluation

metrics.

Hybrid-IA Louvain Difference

(|𝑽 |, 𝒌, 𝝁𝒕) 𝑸 𝑵𝑴𝑰 𝑸 𝑵𝑴𝑰 𝑸 𝑵𝑴𝑰

(1000, 20, 0.1) 0.8606 0.9980 0.8607 0.9931 −0.0001 +0.0049

(1000, 20, 0.2) 0.7622 0.9970 0.7622 0.9909 0.0 +0.0061

(1000, 20, 0.3) 0.6655 0.9927 0.6642 0.9790 +0.0013 +0.0137

(1000, 20, 0.4) 0.5668 0.9905 0.5656 0.9588 +0.0012 +0.0317

(1000, 20, 0.5) 0.4685 0.9857 0.4685 0.9393 0.0 +0.0464

(1000, 20, 0.6) 0.3687 0.9767 0.3658 0.9084 +0.0029 +0.0683

(1000, 20, 0.7) 0.2707 0.9127 0.2635 0.6969 +0.0072 +0.2158

(5000, 20, 0.1) 0.8923 0.9991 0.8934 0.9589 −0.0011 +0.0402

(5000, 20, 0.2) 0.7927 0.9966 0.7948 0.9399 −0.0021 +0.0567

(5000, 20, 0.3) 0.6929 0.9967 0.6959 0.9282 −0.0030 +0.0685

(5000, 20, 0.4) 0.5931 0.9945 0.5975 0.9076 −0.0044 +0.0869

(5000, 20, 0.5) 0.4936 0.9953 0.5001 0.8789 −0.0065 +0.1164

(5000, 20, 0.6) 0.3939 0.9976 0.4027 0.8518 −0.0088 +0.1458

(5000, 20, 0.7) 0.2929 0.9942 0.3033 0.8064 −0.0104 +0.1878

(5000, 20, 0.7) 0.2929 0.9942 0.3033 0.8064 −0.0104 +0.1878



Chapter 12
Discovering Entities Similarities in

Biological Networks Using a Hybrid

Immune Algorithm

12.1 Introduction

In the last few years, significant advances in biological technology and the rapid

adoption of high-throughput approaches [218] have made possible to measurement

of tens of thousands of ”omic” data points across multiple levels (DNA, RNA,

protein, metabolite, etc.) from a biological sample. The availability of a large

amount of data has changed and revised the approach to the biology leading to the

development of new methods based on the integration analysis of molecular data

with mathematical models, and the consequently establishment and consolidation

of the Systems Biology, an interdisciplinary research area that uses a holistic

approach to the research biological by crossing the field of systems theory and

applied mathematical methods with the aim to derive global models of cellular

239
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processes in physiology and disease. The challenge from the systems biology

perspective is how to convert the data into information and knowledge that improve

patient personalized therapy. Becomes therefore necessary to carry out a high-level

analysis from a representation of a biological system.

Networks are probably the most suitable tool for this type of investigation. They

allow a representation of the binary relationships between biological entities and

are for this reason the most used tool in systems biology [13, 15]. They also

provide a mathematical representation of biological systems, within which nodes

represent proteins, as in the case of protein-protein iteration networks, or genes

and transcription factors, as in the case of regulation networks gene and gene

co-expression networks, or representatives of metabolites, in the case of metabolic

networks. These interactions determine the molecular and cellular mechanisms

responsible for healthy and diseased states in organisms and can be physical or

functional. In this second case the nodes of the network are associated with each

other in modules, where a tightly connected group of nodes share a common

function to perform a certain task. The modules detected by biological networks

are generally responsible for a common phenotype and are useful in providing

insights related to biological functionality. Disease phenotypes are generally

caused by the failure of groups of genes that are referred to as the disease form.

Since the genes responsible for a phenotype often have common functions, there

is a strong association between pathological and functional modules [100, 10,

15]. The detection of modules within biological networks, generally responsible

for a common phenotype, is useful and crucial in providing insights into the

biological functionality of these genes. The techniques that allow the identification

of modules, known as community detection techniques, are methods that play a
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key role in obtaining the functional modules which appear to be closely related

to pathological forms, the recognition of which would be useful for the molecular

understanding and etiology of the disease. From this would arise the development

of specific drugs whose targets would be the genes belonging to these modules.

In this research work, a hybrid immune algorithm for the community detection

is proposed, which takes inspiration from the immune system dynamics, and it is

based on carrying out an effective exploration of large search spaces, combining a

random search process with a deterministic one, and in an efficient exploitation of

the learning gained. Albeit the algorithm has been successful applied on several

research areas, included also community detection [208, 50], the main goal of this

work is to consolidate the goodness and reliability of the proposed algorithm in

detecting community structures on large size biological networks. Furthermore,

to pursue this aim, an investigation has been also conducted on how similar the

detected communities to real ones are.

The rest of the paper is organized as follows. In section 12.2 is introduced and

described the community detection problem and its relevance in biological context.

The detection has been performed on the basis of modularity optimization, which

is described, and formally defined in Sect. 12.2.1. The proposed and developed

Hybrid-IA is explained in detail in Sect. 12.3. In Sect. 12.4 is presented

a summary of the biological networks used as data set, whilst outcomes and

comparisons are displayed and discussed in Sect. 12.5. In particular, in Sect.

12.5.1 is presented the convergence and learning analysis performed, while in

Sect. 12.5.2 are discussed in detail all results obtained and all comparisons

conducted. In Sect. 12.5.3, instead, are presented the investigation performed on

Hybrid-IA with respect the NMI metric evaluation. Finally in Sect. 12.6 are given
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and discussed the conclusions on this work.

12.2 Community Detection

Community detection is one of the most important research topics in network

science and graph analysis, as it allows to understand the dynamics of a complex

network at different scales [97, 104, 65], such as for instance connections and inter-

actions between underlying entities, and, consequently, uncover many important

information that become useful and crucial in many application areas: biology;

medicine; economic; social sciences; and many others. However, modeling and

examining complex systems is a very difficult process because the systems used

for the real-world data representation contain highly important information: so-

cial relationships among people or information exchange and interactions between

molecular structures. It follows, then, that the study of community structures in a

network is central issue in better understanding such dynamics, and, for this, it has

inspired intense research activities. Indeed, detecting highly linked communities

can lead to many benefits, such as understanding how the elements of a network

(biological genes, for instance) interact and affect each other. Informally, a com-

munity in a network is defined as a set of elements that are highly linked within

the group and weakly linked to the outside.

The modularity (𝑄) is an evaluation measure commonly used for assessing the

quality of node partitions detected in a network [170]. Hence, the community

detection problem can be easily summed up in finding clustering that maximized

𝑄, whose decision version has been proved to be a NP-complete problem [27].

Several search algorithms for clustering problems have been developed and proved

to be robust in finding as good communities as possible in complex networks
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[168, 169]. However, from the literature is possible to note that metaheuristics

approaches are more suitable on this optimization problem than exact methods,

being able to find good solutions within reasonable computing times. This is due

to the ability of the former to effectively tackle problems in complex, large and

uncertain environments [213].

In this research paper a Hybrid Immunological Algorithm for the community de-

tection problem, called Hybrid-IA, is proposed, which, in addition to the immune

operators, makes use of a Local Search (LS) technique that deterministically tries

to refine the solutions found. The goal of this paper is to prove the efficiency,

robustness, and primarily reliability of Hybrid-IA in community detection, with

main reference to the biological networks.

12.2.1 Modularity Optimization in Networks

Community detection is then a powerful tool to understanding the structure of

complex networks, and ultimately extracting useful information from them. Note

that a closely connection imply a faster rate of information transmission, instead

of a loosely connected community. On the one hand, a network is represented

by a number of individual nodes connected by edges, with a certain degree of

interaction between some nodes; on the other hand, communities are defined as

groups of nodes, densely interconnected, but in sparse order with the rest of the

network. The modularity is based on the idea that a random graph is not expected

to have a community structure, therefore, the possible existence of communities

can be revealed by the difference of density between vertices of the graph and

vertices of a random graph with the same size and same degree distribution.

Formally modularity is defined as follow: given an undirected graph 𝐺 = (𝑉, 𝐸),
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with 𝑉 the set of vertices (|𝑉 | = 𝑁), and 𝐸 the set of edges (|𝐸 | = 𝑀), the

modularity of a community is defined by:

𝑄 =
1

2𝑀

[
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

(
𝐴𝑖 𝑗 −

𝑑𝑖𝑑 𝑗

2𝑀

)
𝛿(𝑖, 𝑗)

]
, (12.1)

where 𝐴𝑖 𝑗 is the adjacency matrix of 𝐺, 𝑑𝑖 and 𝑑 𝑗 are the degrees of nodes 𝑖 and 𝑗

respectively; 𝛿(𝑖, 𝑗) = 1 if 𝑖, 𝑗 belong to the same community, 0 otherwise.

As asserted in [27], the modularity value for unweighted and undirected graphs

lies in the range [−0.5, 1], therefore, a low 𝑄 value (close to the lower bound)

reflects a bad graph partitioning, and implies the absence of real communities;

good partitions are instead identified by a higher modularity value that implies the

presence of highly cohesive communities. For a trivial clustering, with a single

cluster, the modularity value is 0. Interestingly, the modularity has the tendency to

produce large communities and, therefore, fails in detecting communities that are

comparatively small with respect to the network [95]. Taking into account the 𝑄

modularity as an evaluation measure, the community detection can easily be seen

as a combinatorial optimization problem as the problem aims to find a clustering

that maximize 𝑄.

12.3 Hybrid-IA: the Hybrid Immune Algorithm

Immunological Algorithms (IA) are among the most used population-based meta-

heuristics, successfully applied in search and optimization tasks. They take inspi-

ration from the dynamics of the immune system in performing its job of protecting

living organisms. One of the features of the immune system that makes it a very

good source of inspiration is its ability to detect, distinguish, learn, and remember

all foreign entities discovered [96]. Hybrid-IA [50] uses a deterministic local
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search, based on rational choices that refine and improve the solutions found so

far and belongs to the special class Clonal Selection Algorithms (CSA) [178, 49],

whose efficiency is due to the three main immune operators: (i) cloning, (ii) hy-

permutation, and (iii) aging. Furthermore, this algorithm is based on two main

concepts: antigen (𝐴𝑔), which represents the problem to tackle, and B cell, or

antibody (𝐴𝑏) that represents a candidate solution, i.e. a point in the solution

space. At each time step 𝑡, the algorithm maintains a population of 𝑑 candidate

solutions: each solution is a subdivision of the vertices of the graph 𝐺 = (𝑉, 𝐸) in

communities. Let 𝑁 = |𝑉 |, a B cell ®𝑥 is a sequence of 𝑁 integers belonging to the

range [1, 𝑁], where 𝑥𝑖 = 𝑗 indicates that the vertex 𝑖 has been added to the cluster

𝑗 . The population is initialized at the time step 𝑡 = 0 randomly assigning each

vertex 𝑖 to a group 𝑗 , with 𝑗 ∈ [1, 𝑁] . Just after the initialization step, the algorithm

evaluate the fitness function of each generated element (®𝑥 ∈ 𝑃(𝑡)), i.e. Equation

12.1, using the procedure ComputeFitness(𝑃(𝑡)) Hybrid-IA ends its evolution

once the halting criterion is reached, which was fixed to a maximum number of

generations (𝑇𝑚𝑎𝑥). The pseudocode of Hybrid-IA is described in Algorithm 4.

Cloning is the first immune operator to be carried out, which simply copies 𝑑𝑢𝑝

times each B cell producing an intermediate population 𝑃(𝑐𝑙𝑜) of size 𝑑 × 𝑑𝑢𝑝. A

static version was considered for avoiding premature convergences, which can in-

stead occur using the proportional one. Indeed, if a number of clones proportional

to the fitness value is produced, preferring the cloning of the best through a higher

number of clones, already in the first iterations is very likely that a population of

B cells very similar to each other is obtained, with the outcome to cannot perform

a proper exploration of the search space, and thus getting easily trapped in local

optima. Once a clone is created, Hybrid-IA assigns an age to it that determines
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Algorithm 4 Pseudo-code of Hybrid-IA.
1: procedure Hybrid-IA(𝑑, 𝑑𝑢𝑝, 𝜌, 𝜏𝐵)

2: 𝑡 ← 0

3: 𝑃(𝑡) ← InitializePopulation(𝑑)

4: ComputeFitness(𝑃(𝑡))

5: while ¬StopCriterion do

6: 𝑃(𝑐𝑙𝑜) ← Cloning(𝑃(𝑡) , 𝑑𝑢𝑝)

7: 𝑃(ℎ𝑦𝑝) ← Hypermutation(𝑃(𝑐𝑙𝑜) , 𝜌)

8: ComputeFitness(𝑃(ℎ𝑦𝑝))

9: (𝑃(𝑡)𝑎 , 𝑃(ℎ𝑦𝑝)𝑎 ) ← Aging(𝑃(𝑡) , 𝑃(ℎ𝑦𝑝) , 𝜏𝐵)

10: 𝑃(𝑠𝑒𝑙𝑒𝑐𝑡) ← (` + _)−Selection(𝑃(𝑡)𝑎 , 𝑃(ℎ𝑦𝑝)𝑎 )

11: 𝑃(𝑡+1) ← LocalSearch(𝑃(𝑠𝑒𝑙𝑒𝑐𝑡))

12: ComputeFitness(𝑃(𝑡+1))

13: 𝑡 ← 𝑡 + 1;

14: end while

15: end procedure

how long the clone/solution can live inside the population: from such assigned age

until it reaches the maximum age allowed 𝜏𝐵 (user-defined parameter). Specifi-

cally, a random age chosen in the range [0 : 2
3𝜏𝐵] is assigned to each clone. In

this way, each clone is guaranteed to stay in the population for at least a fixed

number of generations (1
3𝜏𝐵 in the worst case). The age assignment and the aging

operator (described below) play a crucial role on Hybrid-IA performances, and

any evolutionary algorithm in general, because they are able to keep a right amount

of diversity among the solutions, helping thus the algorithm to avoid premature

convergences [64].
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The aims of the hypermutation operator is to generate new elements, acting on

each clone in 𝑃(𝑐𝑙𝑜) , with the main purpose to efficiently and carefully explore

the search space. Just as happens in the natural immune system, the number of

changes on each clone, called mutation rate, is determined through an inversely

proportional law to the fitness function value of the B cell considered: better the

fitness value of the solution, smaller the relative mutation rate will be. In particular,

let ®𝑥 be a cloned B cell, the mutation rate 𝛼 = 𝑒−𝜌 𝑓 (®𝑥) is defined as the probability

to move a node from one community to another one, where 𝜌 is a user-defined

parameter that determines the shape of the mutation rate, and 𝑓 (®𝑥) is the fitness

function normalized in the range [0, 1]. In Figure 12.1 is shown how the mutation

shape 𝜌 affects the probability 𝛼 for different values of fitness function.
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Figure 12.1: The mutation rate 𝛼 for different values of the mutations shape 𝜌.
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Formally, it works as follows: for each B cell, two communities 𝑐𝑖 and 𝑐 𝑗 are

randomly chosen (𝑐𝑖 ≠ 𝑐 𝑗 ): the first one is chosen among all existing ones, while

the second one in the range [1, 𝑁] . Then, all vertices in 𝑐𝑖 are moved to 𝑐 𝑗 with

probability given by 𝛼. If a value that does not correspond to any currently

existing community is assigned to 𝑐 𝑗 , a new community 𝑐 𝑗 is created and added

to the existing ones. Depending on 𝑐 𝑗 , I can have a merging operator (Figure

12.2), where a subset of vertices will be moved to another community, or splitting

operator (Figure 12.2), where a same subset of nodes will create a new community.

The idea behind this approach is create and discover new communities by moving

a variable percentage of nodes from existing communities. This search method

balances the effects of local search (as described below), by allowing the algorithm

to avoid premature convergences towards local optima.

Figure 12.2: Hypermutation operator. A subset of nodes from community 𝑐𝑖 will

be merged to an existing community 𝑐 𝑗 . A subset of nodes from community 𝑐𝑖

will be splitted to create a new community 𝑐 𝑗 .

The static aging operator is the one that plays in the overall the central role on the

efficiency and reliability of Hybrid-IA, particularly when it is applied on complex

and large problems. It simply acts on each mutated B cells by removing older

ones from the two populations 𝑃(𝑡) and 𝑃(ℎ𝑦𝑝) . Let 𝜏𝐵 be the maximum number
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of generations allowed for every B cell to stay in the population; once the age of

a B cell exceeds 𝜏𝐵 (age = 𝜏𝐵+1), it will be removed from the relative population,

independently from its fitness value. However, an exception may be done for the

best current solution, which is kept alive even if its age is older than 𝜏𝐵. Such

variant is called elitist aging operator. The purpose of this operator is, then, allow

the algorithm to escape and jump out from local optima, assuring a proper turnover

between the B cells in the population, and producing, consequently, high diversity

among them.

The last operator to be performed within the evolutionary cycle is the (` + _)-

Selection operator, with ` = 𝑑 and _ = (𝑑 × 𝑑𝑢𝑝), which has the aim to select

the best 𝑑 survivors from both populations 𝑃(𝑡)𝑎 and 𝑃(ℎ𝑦𝑝)𝑎 , producing a temporary

population 𝑃(𝑠𝑒𝑙𝑒𝑐𝑡) , on which the local search will be performed later. Basically

it identifies the best 𝑑 elements among the set of offsprings and the parent B

cells (those survived to the aging step), ensuring monotonicity in the evolution

dynamics.

The local search designed and introduced is the key operator to properly speed up

the convergence of the algorithm, and, in a way, drive it towards more promising

regions. Furthermore, it intensifies the search and explore the neighborhood of

each solution using the well-known Move Vertex approach (MV) [124]. The basic

idea of the proposed LS is to assess deterministically if it is possible to move a

node from its community to another one within its neighbors. The MV approach

takes into account the move gain that can be defined as the variation in modularity

produced when a node is moved from a community to another. Before formally

defining the move gain, it is important to point out that the modularity 𝑄, defined
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in Equation (12.1), can be rewritten as:

𝑄(𝑐) =
𝑘∑︁
𝑖=1

[
ℓ𝑖

𝑀
−

(
𝑑𝑖

2𝑀

)2
]
, (12.2)

where 𝑘 is the number of the found communities; 𝑐 = {𝑐1, . . . , 𝑐𝑖, . . . 𝑐𝑘 } is the

set of communities that is the partitioning of the set of vertices 𝑉 ; 𝑙𝑖 and 𝑑𝑖 are,

respectively, the number of links inside the community 𝑖, and the sum of the

degrees of vertices belonging to the 𝑖 community. Thus, the move gain of a vertex

𝑢 ∈ 𝑐𝑖 is the modularity variation produced by moving 𝑢 from 𝑐𝑖 to 𝑐 𝑗 , that is:

Δ𝑄𝑢 (𝑐𝑖, 𝑐 𝑗 ) =
𝑙𝑐 𝑗 (𝑢) − 𝑙𝑐𝑖 (𝑢)

𝑀
+ 𝑑𝑉 (𝑢)

[
𝑑𝑐𝑖 − 𝑑𝑉 (𝑢) − 𝑑𝑐 𝑗

2𝑀2

]
, (12.3)

where 𝑙𝑐𝑖 (𝑢) and 𝑙𝑐 𝑗 (𝑢) are the number of links from 𝑢 to nodes in 𝑐𝑖 and 𝑐 𝑗

respectively, and 𝑑𝑉 (𝑢) is the degree of 𝑢 when considering all the vertices 𝑉 .

If Δ𝑄𝑢 (𝑐𝑖, 𝑐 𝑗 ) > 0, then moving node 𝑢 from 𝑐𝑖 to 𝑐 𝑗 produces an increment in

modularity, and therefore a possible improvement. Consequently, the goal of MV

is to find a node 𝑢 to move to an adjacent community in order to maximize Δ𝑄𝑢:

𝑎𝑟𝑔 max
𝑣∈𝐴𝑑𝑗 (𝑢)

Δ𝑄𝑢 (𝑖, 𝑗), (12.4)

where 𝑢 ∈ 𝐶𝑖, 𝑣 ∈ 𝐶 𝑗 and 𝐴𝑑𝑗 (𝑢) is the adjacency list of node 𝑢.

For each solution in 𝑃(𝑠𝑒𝑙𝑒𝑐𝑡) , the Local Search begins by sorting the communities

in increasing order with respect to the ratio between the sum of inside links and the

sum of the node degrees in the community. In this way, poorly formed communities

are identified. After that, MV acts on each community of the solution, starting

from nodes that lie on the border of the community, that is, those that have at

least an outgoing link. In addition, for communities, the nodes are sorted with

respect to the ratio between the links inside and node degree. The key idea

behind LS is to deterministically repair the solutions which were produced by the
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hypermutation operator, by discovering then new partitions with higher modularity

value. Equation (12.3) can be calculated efficiently because 𝑀 and 𝑑𝑉 (𝑢) are

constants, the terms 𝑙𝑐𝑖 and 𝑑𝑐𝑖 can be stored and updated using appropriate data

structures, while the terms 𝑙𝑐𝑖 (𝑢) can be calculated during the exploration of all

adjacent nodes of 𝑢. Therefore, the complexity of the move vertex operator is

linear on the dimension of the neighborhood of node 𝑢.

12.4 Biological Networks Data Set

In this section, the eight different biological networks used during the tests are

summarized, and for which the communities were identified. They are grouped

into the three types described below and refer to biological interactions and main

molecular networks.

12.4.1 Protein-Protein Interaction Networks

The physical interaction between the proteins have always been an important

consideration for the gene function. Proteins are the main participants in a variety

of biological processes inside cells, including signal transduction, homeostasis

control, maintenance of internal balance and developmental processes [237]. They

rarely function independently but form protein complexes [102]. The mathematical

representation of the physical contacts between proteins inside the cell can be

obtained through a non-direct binary physical PPI network [140], in which nodes

represent proteins and whose edges connect pairs of interacting proteins. By

considering the spatial and temporal aspects of interactions, networks can help

understand the general organization of protein-protein connections and discover
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the principles of their organization within the cell. These have a fundamental role in

all biological processes and in all organisms [218], therefore a complete knowledge

of PPIs and their protein interconnections, would allow the understanding of cell

physiology in pathogenic (and normal) states. This would have a great impact for

disease diagnosis, disease genes often interact with other disease genes [100], as

well as for drug discovery and disease treatment [152, 215, 66]. In this work, two

small Cattle PPI and Helicobacter pylori PPI Protein-Protein interactions [33,

226, 183] and two large networks (with a number of vertices > 2000), related to

Yeast PPI instances [229, 28] have been considered. All networks in question are

related to the data of interactions between proteins in the three different organisms

mentioned before (cattle, helicobacter pylori and yeast) where each node represents

a protein and they are linked if they interact physically within the cell.

12.4.2 Metabolic Networks

With the technological advancement and the sequencing of whole genomes, as

well as it has been possible to reconstruct the protein-protein interaction networks

described above, it has also been possible to obtain the networks of biochemical

reactions in many organisms. Metabolic networks are powerful tools to represent

and study a complete set of relationships between metabolites, a small chemical

compound, and proteins/enzymes. They describe the set of processes and reactions

that determine the biochemical and physiological properties of a cell, including

the chemical reactions of metabolism, the metabolic pathways and regulatory

interactions that drive these reactions. Metabolic networks make it possible to

detect diseases given an enzymatic defect in a reaction that can affect flows in

subsequent reactions. These defects often cause cascading effects responsible for
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associated metabolic diseases [136]. Therefore, this type of networks can be used

to understand if metabolic disorders are linked due to their related reactions [195].

In order to investigate this functional information, it’s necessary to identify the

functional modules in it [228]. Identify the communities in the metabolic networks

will help in understanding the pathways and cycles in metabolic networks [94].

In the two considered real networks, the metabolic network of Caenorhabditis

elegans and E. Coli bacteria [71, 198], each vertex represents a metabolite, and

each direct link a reaction between them that binds the metabolite with the reaction

product.

12.4.3 Transcriptional Regulatory Networks

Understanding the mechanisms underlying the regulation of gene expression is the

main goal of contemporary biology. Important cellular processes, such as cell

differentiation, cell cycle and metabolism are controlled by the complex biological

mechanism of gene regulation. However, the relationship between structure and

regulatory function is not easy to observe experimentally. Therefore, a Systems

Biology-based approach is needed. In this regard, network theory is useful for

understanding the activity behind these complex transcriptional regulatory mech-

anisms [14]. The transcriptional network can be represented as a direct graph,

composed of transcription factors (TFs) and target genes (TGs) which are regu-

lated in a tightly coordinated way. Within the network each node represents a

gene (or operon, in the case of prokaryotic organisms) and the edges represent

direct transcriptional regulation. Each edge is directed from a gene (or operon)

that encodes a transcription factor to a gene (or operon) that is regulated by that

transcription factor. Transcription factors are modular proteins that regulate the
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gene expression of other proteins by binding to specific sites in the DNA (promoter

sites) and allowing (or preventing) the synthesis of mRNA. The relationships be-

tween TFs and their targets (TGs) determines a given phenotype [186]. Moreover,

in transcription regulatory networks, modules (or communities) correspond to sets

of co-regulated genes [32, 145, 223, 240]. For this reason, the problem of com-

munity detection, plays a relevant role [214]. Escherichia coli and Saccharomyces

cerevisiae are two well-known organisms often used as a model for studying gene

regulation. In this work, two transcriptional regulatory network, E. Coli TRN and

Yeast TRN [204, 150] have been considered, constituted by transcription factors

and target genes, where each edge in network is directed from an operon that

encodes a TF to an operon that it directly regulates.

12.4.4 Synthetic Networks

In addition to real biological networks, artificial instances were also taken into

account in the experimental phase. These synthetic networks can be generated

with different characteristics and with a known community structure. Using these

kind of networks, allows to test the algorithms on different scenarios and gives the

possibility of evaluating the goodness of the detected communities. The algorithm

used to generate these synthetic networks is the LFR benchmarks, proposed in [135,

134]. The algorithm assumes that both the distributions of degree and community

size are power laws, with exponents 𝜏1 and 𝜏2, respectively. The mixing parameter

`𝑡 , identifies the relationship between the node’s external and internal degree. In

particular, each vertex of the networks shares a fraction 1 − `𝑡 of its edges with

the other vertices of its community and a fraction `𝑡 with other vertices outside

of its community. Also, the LFR benchmarks can be used to generate directed
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and weighted synthetic networks with overlapping communities. More details on

the LFR algorithm about key parameters and how to generate benchmark can be

found in [135, 134].

12.5 Experimental results

For evaluating the efficiency and reliability of Hybrid-IA, many experiments have

been performed on all biological networks described above. In each experiment

Hybrid-IA maintains a population of 𝑑 = 100 B cells; uses a duplication parameter

𝑑𝑢𝑝 = 2; keeps a solution for at most 𝜏𝐵 = 5 generations within the population;

and uses 𝜌 = 1.0 as mutation shape.

12.5.1 Convergence and Learning Analysis

In the initial part of the experimental phase, the analysis has been focused on

the convergence behavior and learning rate in order to inspect the efficiency of

Hybrid-IA. For this study, artificial networks have been taken into account as

benchmark instances, which have been generated by the LFR algorithm [135, 134]

and described in Section 12.4.4. In particular, networks with 1000 nodes and

average degree 15 and 20, and networks with |𝑉 | = 5000 and average degree 20

and 25 have been generated. For each of these networks generated, the maximum

degree was set to 50, while the exponents of the power laws, which control the

degree and community sizes distribution (𝜏1 and 𝜏2), have been set to 2 and 1,

respectively. A minimum of 10 nodes to a maximum of 50 have been set as sizes

of the communities. The mixing parameter `𝑡 was fixed to 0.5. Finally, for these

experiments, a maximum number of generations𝑇𝑚𝑎𝑥 = 100 was set, and 5 random
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instances were generated for each network parameters configuration.
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Figure 12.3: Convergence behavior of Hybrid-IA: average and best fitness value

versus generations on LFR(1000,15,0.5) and LFR(1000,20,0.5).

In Figure 12.3 is shown the convergence plot on the LFR instances with 1000 nodes

and average degree 𝑘 of 15 and 20. The two curves represent the best and average

fitness of the population and both are averaged over 100 independent runs. From

this plot can be noted how the two curves of the best fitness have the same trend

for both values of 𝑘: reach a high value of modularity in the early generations

and then improves slowly. The improvement for 𝑘 = 20 compared to the first

generations is minimal, while for 𝑘 = 15 the increase in modularity is slightly

more significant. Instead, the average fitness curves have a similar trend in the first

generations, but subsequently decrease and then gradually increase. From these

two curves can be seen how the population maintains a good degree of diversity

within the population, favoring thus a better exploration of the search space.
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A similar situation can be also observed on the LFR instances with 5000 nodes.
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Figure 12.4: Convergence behavior of Hybrid-IA: average and best fitness value

versus generations on LFR(5000,20,0.5) and LFR(5000,25,0.5).

The plots in Figure 12.4 shows the best and average fitness of the population for

𝑘 = 20 and 𝑘 = 25. For 𝑘 = 25, Hybrid-IA obtains a high value of modularity in a

few generations, and after that it stays in a steady-state for the rest of the execution,

reaching a high-modularity plateau [101]. On the other hand, for 𝑘 = 20 the

algorithm has a growth much more constant and linear, both in terms of the best

solution and average of the population. Also in this case, the two curves of best

and average fitness are well separated, indicating that the algorithm maintains a

good diversity of solutions within the population.

Once analyzed the convergence behavior, an investigation on the learning ability of

Hybrid-IA has been performed as well, using the information gain that measure

the quantity of information the algorithm gains during the evolutionary process
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[132, 52], that is the amount of information learned compared to the randomly

generated initial population. At each generations 𝑡, let 𝐵𝑡𝑚 be the number of the B

cells that have the fitness function value to 𝑚; the candidate solutions distribution

function 𝑓
(𝑡)
𝑚 can be defined as the ratio between the number 𝐵𝑡𝑚 and the total

number of candidate solutions:

𝑓
(𝑡)
𝑚 =

𝐵𝑡𝑚∑ℎ
𝑚=0 𝐵

𝑡
𝑚

=
𝐵𝑡𝑚

𝑑
. (12.5)

It follows that the information gain 𝐾 (𝑡, 𝑡0) can be calculated as:

𝐾 (𝑡, 𝑡0) =
∑︁
𝑚

𝑓
(𝑡)
𝑚 log( 𝑓 (𝑡)𝑚 / 𝑓 (𝑡0)𝑚 ). (12.6)

The plots in Figures 12.5 and 12.6 show the information gain obtained by the

algorithm during its running in different scenarios. For both values of |𝑉 |, Hybrid-

IA is able to learn information step by step, showing thus an increasing curve until

to reach a steady-state, which is exactly when the modularity of all solutions begins

to become similar. The monotonically increasing of the information gain curve

until reaching a steady-state is consistent with the maximum information-gain

principle: 𝑑𝐾
𝑑𝑡
≥ 0.
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Figure 12.5: Learning ability of Hybrid-IA: information gain and standard devi-

ation versus generations on LFR(1000,15,0.5) and LFR(1000,20,0.5),
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Figure 12.6: Learning ability of Hybrid-IA: information gain and standard devi-

ation versus generations on LFR(5000,20,0.5) and LFR(5000,25,0.5).
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In the overall, the convergence behavior and learning process analyzed (Figs. 12.3,

12.4 and 12.5, 12.6), suggest that Hybrid-IA finds very quickly good solutions in

networks with medium/high density (i.e. 𝑘 = 20 for 1000 nodes and 𝑘 = 25 for

5000), as the community structure is well-defined. On the other hand, on sparse

networks, with an unclear community structure, the algorithm converges more

slowly. In addition, a convergence analysis on the network E.coli MRN [198] was

carried out, which presents a very low density (less than 1%). In Figures 12.7 and

12.8 are shown the plots relative to the run in which Hybrid-IA has reached its best

solution. Again, after the initial climb, the algorithm begins its exploration around

the solutions found, gradually improving. In some places (inset plot of Figure

12.7) the algorithm seems to stagnate in some local optima but, thanks to the

aging operator, manages to escape, finding better solutions. During these phases,

the population tends to reduce its diversity, being almost entirely composed of

solutions of equal quality.
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Figure 12.7: Convergence behaviour of Hybrid-IA on E.coli MRN network.

Average and best fitness value of the population versus generations.

 24

 25

 26

 27

 28

 29

 30

 1  10  100

K
(t

, 
t 0

)

Generations

Information Gain and Standard Deviation

S
D

Figure 12.8: Convergence behaviour of Hybrid-IA on E.coli MRN network Infor-

mation gain and standard deviation versus generations.



262
Discovering Entities Similarities in Biological Networks Using a Hybrid Immune

Algorithm

12.5.2 The Biological Networks

In this section, the outcomes obtained by Hybrid-IA on the biological networks,

described above and summarize in Table 12.1, are presented and analyzed. For

proving the competitiveness and reliability of Hybrid-IA with respect to the state

of the art and assessing its performance in general, the algorithm was compared

to other well-known metaheuristics, each based on a modularity optimization ap-

proach [9]. In particular, it was compared with an effective Hyper-Heuristics

Table 12.1: The biological networks used in the experiments.

Name Ref |𝑉 | |𝐸 |

Cattle PPI [33] 268 303

E.coli TRN [204] 418 519

C.elegans MRN [71] 453 2025

Yeast TRN [150] 688 1078

Helicobacter pylori PPI [226],[183] 724 1403

E.coli MNR [198] 1039 4741

Yeast PPI (1) [229] 2018 2705

Yeast PPI (2) [28] 2284 6646

Differential Search Algorithm based on the migration of artificial superorganisms

(HDSA) [39]; an improved Bat Algorithm based on Differential Evolution algo-

rithm (BADE) [210]; a Scatter Search algorithm based on the Genetic Algorithm

(SSGA) [99, 146]; a modified Big Bang–Big Crunch algorithm (BB-BC) [74], the

original Bat Algorithm based on echolocation behavior of bats adapted for com-

munity detection (BA) [227]; and the original Gravitational Search Algorithm,



12.5. Experimental results 263

re-designed for solving the community detection problem (GSA) [185]. Further,

the Louvain algorithm [25], a greedy optimization method that attempts to op-

timize the modularity, was also considered for the comparison. The parameter

configuration used by Hybrid-IA is the same described above, whilst the number

of generations (𝑇𝑚𝑎𝑥) considered depends on the size of the biological network

tested: for instances with less than 1000 nodes, 𝑇𝑚𝑎𝑥 was set to 1000, while for the

ones with more than 1000 nodes, 𝑇𝑚𝑎𝑥 is 2000.

Table 12.2 displays the detailed results of Hybrid-IA in comparisons to the oth-

ers, and presents, for each algorithm, the best values of the 𝑄 modularity (𝐵𝑒𝑠𝑡)

found, the average of the values (𝑀𝑒𝑎𝑛), the worst modularity (𝑊𝑜𝑟𝑠𝑡), the stan-

dard deviation (𝑆𝑡𝐷) and the number of community structures (𝑘) detected by

the best solution. Noticeably, proposed Hybrid-IA algorithm outperformed all

metaheuristics in terms of both the value of modularity obtained and mean value,

except HDSA in the E.coli TRN biological network, although it still provides an

upper limit very close to that obtained. It is important to highlight that Hybrid-IA

results underline the efficiency of the proposed algorithm, also proved by the fact

that the average values obtained on Cattle PPI, E. Coli TRN, C. elegans MRN

and Helicobacter pylory PPI networks are better than the 𝐵𝑒𝑠𝑡 modularity values

obtained by the other algorithms, with the exception of the Hyper-heuristic Dif-

ferential Search Algorithm (HDSA). Furthermore, from the analysis of the results

obtained by the Louvain algorithm, the only deterministic algorithm included in

the comparison, it is clear how Hybrid-IA performs well equating the modularity

value in the Cattle PPI dataset, and exceeding it in the C. Elegans MRN and E.

Coli MRN networks. For these datasets, the Figures 12.9, 12.12, 12.13 show the

detected community structures by Hybrid-IA. Figure 12.10 shows the commu-
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Table 12.2: Comparisons of the results of Hybrid-IA obtained on biological networks

with other algorithms. The results are calculated over 100 independent runs for Hybrid-

IA and Louvain, while over 30 runs for the rest.

Name Hybrid-IA Louvain HDSA BADE SSGA BB-BC BA GSA

Cattle PPI

𝑘 40 40 40 41 40 48 42 43

Best 0.7195 0.7195 0.7195 0.7183 0.7118 0.7095 0.7143 0.7053

Worst 0.7011 0.7181 0.7194 0.7059 0.7052 0.7079 0.7063 0.6949

Mean 0.7154 0.7193 0.7195 0.7138 0.7079 0.7084 0.7100 0.6983

StD 0.0037 0.0005 0.0001 0.0051 0.0025 0.0007 0.0035 0.0041

E.coli TRN

𝑘 43 41 47 58 61 71 56 61

Best 0.7785 0.7793 0.7822 0.7680 0.7507 0.7520 0.7629 0.7416

Worst 0.7563 0.7747 0.7808 0.7560 0.7412 0.7452 0.7542 0.7328

Mean 0.7701 0.7779 0.7815 0.7621 0.7457 0.7485 0.7599 0.7375

StD 0.0049 0.0011 0.0006 0.0043 0.0035 0.0026 0.0034 0.0034

C.elegans MRN

𝑘 10 10 13 25 22 21 22 24

Best 0.4506 0.4490 0.4185 0.3473 0.3336 0.3374 0.3514 0.3063

Worst 0.4321 0.4216 0.3962 0.3335 0.3124 0.3194 0.3356 0.2974

Mean 0.4437 0.4365 0.4074 0.3385 0.3220 0.3266 0.3438 0.3039

StD 0.0040 0.0049 0.0010 0.0054 0.0077 0.0074 0.0073 0.0037

Yeast TRN

𝑘 33 26 - - - - - -

Best 0.7668 0.7683 - - - - - -

Worst 0.7363 0.7489 - - - - - -

Mean 0.7569 0.7607 - - - - - -

StD 0.0050 0.0033 - - - - - -

Helicobacter pylori PPI

𝑘 51 24 52 69 70 75 62 77

Best 0.5359 0.5462 0.5086 0.4926 0.4726 0.4681 0.4900 0.4600

Worst 0.5104 0.5356 0.5048 0.4809 0.4659 0.4642 0.4738 0.4549

Mean 0.5240 0.5410 0.5078 0.4854 0.4695 0.4660 0.4814 0.4567

StD 0.0056 0.0025 0.0017 0.0047 0.0021 0.0018 0.0073 0.0020

E.coli MRN

𝑘 13 8 - - - - - -

Best 0.3817 0.3734 - - - - - -

Worst 0.3598 0.3450 - - - - - -

Mean 0.3695 0.3583 - - - - - -

StD 0.0042 0.0058 - - - - - -

Yeast PPI (2)

𝑘 159 46 - - - - - -

Best 0.5796 0.5961 - - - - - -

Worst 0.5524 0.5870 - - - - - -

Mean 0.5652 0.5925 - - - - - -

StD 0.0052 0.0019 - - - - - -

Yeast PPI (1)

𝑘 353 213 - - - - - -

Best 0.7002 0.7648 - - - - - -

Worst 0.6602 0.7519 - - - - - -

Mean 0.6798 0.7609 - - - - - -

StD 0.0078 0.0022 - - - - - -
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nities generated for E.coli TRN network. For the other instances considered, the

modularity is however close to the optimal one. Finally, as will be explained in

detail in the next section, although Louvain manages to achieve a better maxi-

mization of the modularity value than the ones achieved by Hybrid-IA, the latter

reveals a higher number of communities. This is due to the different nature of two

algorithms, where Louvain algorithm tends to aggregate communities.

12.5.3 Normalized Mutual Information

In order to uphold the efficiency and reliability of Hybrid-IA in detecting strong

communities, a new evaluation metric has been considered. Thanks to the ad-

vantages offered by the synthetic networks (see Section 12.4.4), the Normalized

Mutual Information (𝑁𝑀𝐼) [61] has been taken into account, which is a widely

used measure to compare community detection methods as it discloses the similar-

ity between the genuine community (target) and the detected community structures.

While the modularity allows for getting the measure of how cohesive the detected

communities are, the 𝑁𝑀𝐼 allows for assessing how similar they are concerning

the real ones. For this analysis a new dataset of LFR instances has been generated,

with the mixing parameter `𝑡 that ranges from 0.1 to 0.8.

In Table 12.3, the Hybrid-IA outcomes on these new synthetic datasets are re-

ported and compared to the ones obtained by Louvain. The features of the LFR

networks tested are shown in the first column; for each of these parameters, 5

random instances have been generated. The values of modularity 𝑄 and 𝑁𝑀𝐼

have been computed over 100 independent runs for both algorithms. Analysing

the comparison, it is possible to see how Louvain outperforms Hybrid-IA in

almost all networks with 1000 vertices with respect to the 𝑄 modularity metric,
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Figure 12.9: Community structure identified by Hybrid-IA on 12.9 Cattle PPI.



12.5. Experimental results 267

Figure 12.10

Figure 12.11: Community structure identified by Hybrid-IA on 12.10 E.coli TRN

networks.



268
Discovering Entities Similarities in Biological Networks Using a Hybrid Immune

Algorithm

Figure 12.12: Community structure identified by Hybrid-IA on 12.12 C.elegans

MRN.



12.5. Experimental results 269

Figure 12.13

Figure 12.14: Community structure identified by Hybrid-IA on 12.13 E.coli MRN

networks.
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Table 12.3: Comparison between Hybrid-IA and Louvain on synthetic networks with

1000 and 5000 vertices, with respect to modularity (𝑄) and 𝑁𝑀𝐼 evaluation metrics.

Hybrid-IA Louvain

( |𝑉 |, 𝑘, `𝑡) 𝑄 𝑁𝑀𝐼 𝑄 𝑁𝑀𝐼

(1000, 15, 0.1) 0.8608 0.9951 0.8608 0.9918

(1000, 15, 0.2) 0.7621 0.9894 0.7623 0.9807

(1000, 15, 0.3) 0.6646 0.9862 0.6651 0.9716

(1000, 15, 0.4) 0.5654 0.9836 0.5660 0.9691

(1000, 15, 0.5) 0.4670 0.9847 0.4688 0.9462

(1000, 15, 0.6) 0.3688 0.9612 0.3718 0.9113

(1000, 15, 0.7) 0.2712 0.5467 0.2675 0.4977

(1000, 15, 0.8) 0.2415 0.1600 0.2354 0.1536

(1000, 20, 0.1) 0.8606 0.9980 0.8607 0.9931

(1000, 20, 0.2) 0.7622 0.9964 0.7622 0.9914

(1000, 20, 0.3) 0.6656 0.9921 0.6658 0.9830

(1000, 20, 0.4) 0.5668 0.9910 0.5676 0.9656

(1000, 20, 0.5) 0.4685 0.9829 0.4700 0.9491

(1000, 20, 0.6) 0.3688 0.9748 0.3712 0.9263

(1000, 20, 0.7) 0.2714 0.9244 0.2737 0.8230

(1000, 20, 0.8) 0.2169 0.1708 0.2069 0.1793

(5000, 20, 0.1) 0.8923 0.9988 0.8934 0.9586

(5000, 20, 0.2) 0.7927 0.9965 0.7949 0.9394

(5000, 20, 0.3) 0.6929 0.9965 0.6960 0.9252

(5000, 20, 0.4) 0.5931 0.9948 0.5976 0.9065

(5000, 20, 0.5) 0.4936 0.9951 0.5003 0.8779

(5000, 20, 0.6) 0.3939 0.9966 0.4030 0.8474

(5000, 20, 0.7) 0.2932 0.9927 0.3056 0.8145

(5000, 20, 0.8) 0.2084 0.3285 0.2102 0.2634

(5000, 25, 0.1) 0.8922 0.9993 0.8925 0.9770

(5000, 25, 0.2) 0.7925 0.9988 0.7936 0.9527

(5000, 25, 0.3) 0.6929 0.9986 0.6948 0.9348

(5000, 25, 0.4) 0.5931 0.9987 0.5966 0.9125

(5000, 25, 0.5) 0.4934 0.9955 0.4983 0.8907

(5000, 25, 0.6) 0.3939 0.9950 0.4008 0.8621

(5000, 25, 0.7) 0.2940 0.9951 0.3037 0.8285

(5000, 25, 0.8) 0.1872 0.6067 0.1942 0.5654
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Figure 12.15: Performances of Hybrid-IA and Louvain on the LFR instances

with 1000 nodes and average degree 15 and 20. The plots show the normalized

mutual information as function of the mixing parameter. Each point corresponds

to an average over 5 graph realizations and 100 runs.

and in all instances with 5000 vertices. On the other hands, though, Hybrid-IA

outperforms Louvain in all networks with respect to the 𝑁𝑀𝐼 index, except just

for one (1000, 20, 0.8). This gap is due to the combination between the random

search and local search that, together with the diversity produced by the immune

operators, requires a longer convergence time than Louvain. Indeed, Louvain is

a multilevel algorithm that which obtain a good modularity, but it aggregates too

much the communities, bypassing the real community structure of the networks.

This proves a better ability of the hybrid immune algorithm proposed in detecting

communities closer to the true ones than the greedy optimization algorithm. Im-

portantly, although modularity assesses the cohesion of the communities detected,

maximizing 𝑄 might not correspond to detecting true communities.



272
Discovering Entities Similarities in Biological Networks Using a Hybrid Immune

Algorithm

N = 5000

k = 20

N = 5000

k = 25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.4

0.6

0.8

1.0

Mixing parameter

N
or
m
al
iz
ed

M
u
tu
al

In
fo
rm

at
io
n

Hybrid-IA Louvain

Figure 12.16: Performances of Hybrid-IA and Louvain on the LFR instances

with 5000 nodes and average degree 20 and 25. The plots show the normalized

mutual information as function of the mixing parameter. Each point corresponds

to an average over 5 graph realizations and 100 runs.
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In Figure 12.15 are shown the curves of the 𝑁𝑀𝐼 index for all LFR benchmarks

with 1000 vertices. From these plots can be observed that the two curves have

the same trend: for low values of `𝑡 (≤ 0.3), both algorithms obtain similar

results, and the 𝑁𝑀𝐼 curves growth as a common line, while as the `𝑡 parameter

increases, the gap between Hybrid-IA and Louvain begins to be more consistent.

Moreover, when the mixing parameter increases, the generated LFR networks

have a community structure not well-defined, resulting in low values of 𝑁𝑀𝐼 for

both algorithms. In Figure 12.16 are shown the curves of the 𝑁𝑀𝐼 for the LFR

networks with 5000 nodes. For these instances, instead, the difference between

Louvain and Hybrid-IA is much more substantial, and it is evident even at low

values of `𝑡 .

12.6 Conclusions

Being able to efficiently analyze complex networks is one of the most crucial and

central issue in many areas, included systems biology, since through them is possi-

ble to understand and identify dynamics and structures of molecular interactions.

In general, disease phenotypes are generally caused by the failure of modules of

genes that often have similar biological roles. In light of this, being able to detect

elements of a network that have characteristic in common, or similar functions,

plays a key and useful role in providing insights into the biological functionality

of these elements. Therefore, developing efficient and robust algorithmic meth-

ods able to uncover such elements in biological networks may help in detecting

those groups of genes that are cause of disease, and, consequently, useful in the

development of specific and targeted drugs. The problem to identify modules in a

network is known as community detection.
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A Hybrid Immune Algorithm, called Hybrid-IA, was designed for the community

detection problem and was tested on several large biological networks. The strength

of Hybrid-IA is given not only by the immune operators (cloning, hypermutation

and aging) but also by a specially designed Local Search, which aims to speed up

the convergence of Hybrid-IA towards promising regions. Basically, it attempt

deterministically to move a node from the belonging community to an other within

its neighbors with the purpose to refine and improve the solutions discovered.

For assessing the robustness of Hybrid-IA, a comparison with other metaheuris-

tics, hyper-heuristic and the well-known greedy algorithm Louvain has been

performed. Such comparison has been conducted based on the modularity func-

tion maximization. However, due the limitation of the modularity optimization

in detecting communities that are comparatively small, the Hybrid-IA perfor-

mances have been also evaluated with respect the Normalized Mutual Information

(𝑁𝑀𝐼) that is a commonly evaluation metric used in community detection, which

simply assesses how similar the communities discovered are with respect to the

real ones. Inspecting, in the overall, all outcomes obtained and all comparisons

performed clearly emerges how Hybrid-IA outperforms all metaheuristics and

hyper-heuristics compared in term of best and mean modularity values. Focusing

only on the comparison with Louvain, is possible to assert that although Hybrid-

IA finds slightly lower modularity values, it is still able to detect more similar

communities to the real ones with respect those discovered by Louvain.



Chapter 13
Final Conclusions

In this thesis, I presented my research papers in which I had spent the last three

years. The aim of my research topic is to investigate, with different techniques

and approaches the behaviour, the strategies and the interactions between agents.

Firstly, I presented the part of my study on game theoretical approach using vari-

ational inequalities and multi-stage integer programming models, both static and

dynamic, i.e. models in which no randomness is involved in the development of

future states of the system. The approach used to solve the different models, with

continuous variables, is finding a solution of variational inequality problem. Oth-

erwise, the model proposed in Chapter 4, is solved as a integer linear problem and

using a genetic algorithm. Secondly, I presented the part of my study on stochastic

models, under uncertainly, during emergencies situations. Each model presented

in Chapter 5,6 and 7 is based on two-stage stochastic variational inequality ap-

proach. Finally, I presented my study on Metaheuristics focusing on two main

aspects: the Swarm Intelligence, in detail on Ant Colony Optimization, and the

Immunological Algorithms to solve the problem of the Community Detection.

In my personal opinion, the most important thesis results are inside the opportunity
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to study in depth the problems of two-stage stochastic variational inequalities

models, covered in Chapters 5,6 and 7, topics that had not yet been thoroughly

investigated before 2020. On the other hand, the most novel elements fit into the up-

to-date research areas are the study of YouTube and eBay social networks dynamics

solved using a variational inequality approach (see 1, 2 and 3). Furthermore, the

possibility of having two supervisors has given me ample space for study and

research in different fields, as can be seen from the thesis. As a consequence, we

investigate a correlation between Ant Colony Optimization (which is a metaheurstic

approach) and the game theoretical approach. This kind of analysis it does not

appear to have precedent in the literature (see 8).

Some next steps on following-up some of the investigations presented in the thesis

are, for instance, the model presented in the Chapter 3 that has been extended from

variational inequality to evolutionary variational inequality problem and submitted

for review. Furthermore, a numerical example has been included; in this example

the importance and relevance of the model created and solved is highlighted. In

the near future, as regards the two-stage stochastic problems, such as Chapters 5,

6 and 7, I would like to investigate and extend my works to three-stage stochastic

variational inequality problems by considering no longer a single stochastic phase

but two. This concerns both the evacuation problem and the model of shipments of

medical items. Furthermore, an other future project, in collaboration with both of

mine supervisors, is to produce a genetic algorithm to solve the supply chains. In

particular, the idea is to solve the evacuation model present in Chapter 7, through

a genetic algorithm. Starting by the ideas developed in Chapters 8, 9 and 10, I

would like to insert a dynamism within each group and the respective strategies of

the agents, using more dynamic parameters to realize the graph. Finally, regarding



the last chapters, as soon as we have the response from the article of Chapter 11,

we will try to test the algorithm on even bigger instances.

In conclusion, the work done during this Ph.D course gave me a lot of satisfaction

both from the point of view of personal results obtained and achievements at

European level. In fact, at the beginning of the academic year 2021-2022, the

works presented in the thesis has been evaluated in an excellent way, so as to

receive the YoungWomen4OR Award as one of the best twelve Young Operational

Research researchers in all of Europe. This Award was personally given, by the

President Prof. Marc Sevaux of the Association of European Operational Research

Societies (EURO), during the last conference EURO2022 held in Espoo, Finland,

in July 2022. Surely, this was a fully rewarding and challenging result, the result

of intense and demanding years.
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Appendix A
Literature Review/Preliminaries

A.1 Game Theory

Some game-theoretic ideas can be traced to the 18th century, but the major de-

velopment of the theory began in the 1920s with the work of the mathematician

Emile Borel (1871–1956) and the polymath John Von Neumann (1903–57). A

decisive event in the development of the theory was the publication in 1944 of

the book Theory of games and economic behavior by Von Neumann and Oskar

Morgenstern. In the 1950s game-theoretic models began to be used in economic

theory and political science, and psychologists began studying how human subjects

behave in experimental games. In the 1970s game theory was first used as a tool in

evolutionary biology. Subsequently, game theoretic methods have come to dom-

inate microeconomic theory and are used also in many other fields of economics

and a wide range of other social and behavioral sciences. The 1994 Nobel prize

in economics was awarded to the game theorists John C. Harsanyi (1920–2000),

John F. Nash (1928–2015), and Reinhard Selten (1930–2016). The computation of

economic and game theoretic equilibria has been of great interest in the academic
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and professional communities ever since the path-breaking paper by Lemke and

Howson [150] and the seminal work by Herbert Scarf [236] in the mid-1960’s and

early 1970’s. The initial impetus for research on computing equilibria came from

the need to empirically analyze general equilibrium theory and to apply this theory

to study problems of taxation, unemployment, etc. In recent years, the growth of

experimental economics and the use of sophisticated strategic planning models by

industry has revitalized the need for efficient methods to analyze and numerically

solve models of economic and game theoretic equilibria.

A.2 Nash equilibrium problem

A Nash equilibrium is an action profile 𝑎∗ with the property that no player 𝑖 can

do better by choosing an action different from 𝑎∗
𝑖

, given that every other player

𝑗 adheres to 𝑎∗
𝑗

. In the idealized setting in which the players in any given play

of the game are drawn randomly from a collection of populations, a Nash equi-

librium corresponds to a steady state. If, whenever the game is played, the action

profile is the same Nash equilibrium 𝑎∗, then no player has a reason to choose

any action different from her component of 𝑎∗; there is no pressure on the action

profile to change. Expressed differently, a Nash equilibrium embodies a stable

“social norm”: if everyone else adheres to it, no individual wishes to deviate from

it. The second component of the theory of Nash equilibrium is that the players’

beliefs about each other’s actions are correct implies, in particular, two players’

beliefs about a third player’s action are the same. For this reason, the condition

is sometimes said to be that the players’ “expectations are coordinated”. The sit-

uations to which I wish to apply the theory of Nash equilibrium do not in general

correspond exactly to the idealized setting described above. For example, in some
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cases the players do not have much experience with the game; in others they do

not view each play of the game in isolation. Whether or not the notion of Nash

equilibrium is appropriate in any given situation is a matter of judgment. In some

cases, a poor fit with the idealized setting may be mitigated by other considera-

tions. For example, inexperienced players may be able to draw conclusions about

their opponents’ likely actions from their experience in other situations, or from

other sources. Ultimately, the test of the appropriateness of the notion of Nash

equilibrium is whether it gives us insights into the problem at hand. With the aid

of an additional piece of notation, I can state the definition of a Nash equilibrium

precisely. Let a be an action profile, in which the action of each player 𝑖 is 𝑎𝑖.

Let 𝑎′
𝑖

be any action of player 𝑖 (either equal to 𝑎𝑖, or different from it). Then

(𝑎′
𝑖
, 𝑎−𝑖) denotes the action profile in which every player 𝑗 except 𝑖 chooses her

action 𝑎 𝑗 as specified by 𝑎, whereas player 𝑖 chooses 𝑎′
𝑖
. (The −𝑖 subscript on

a stands for “except 𝑖”.) That is, (𝑎′
𝑖
, 𝑎−𝑖) is the action profile in which all the

players other than 𝑖 adhere to 𝑎 while 𝑖 “deviates” to 𝑎′
𝑖
. (If 𝑎′

𝑖
= 𝑎𝑖 then of course

(𝑎′
𝑖
, 𝑎−𝑖) = (𝑎𝑖, 𝑎−𝑖) = 𝑎. Using this notation, I can restate the condition for an

action profile 𝑎∗ to be a Nash equilibrium: no player 𝑖 has any action 𝑎𝑖 for which

she prefers (𝑎𝑖, 𝑎∗) to 𝑎∗. Equivalently, for every player 𝑖 and every action 𝑎𝑖 of

player 𝑖, the action profile 𝑎∗ is at least as good for player 𝑖 as the action profile

(𝑎𝑖, 𝑎∗−𝑖).

Definition A.2.1 (Nash equilibrium of strategic game with ordinal preferences).

The action profile 𝑎∗ in a strategic game with ordinal preferences is a Nash

equilibrium if, for every player 𝑖 and every action 𝑎𝑖 of player 𝑖, 𝑎∗ is at least as

good according to player 𝑖’s preferences as the action profile (𝑎𝑖, 𝑎∗−𝑖) in which

player 𝑖 chooses 𝑎𝑖 while every other player 𝑗 chooses 𝑎∗
𝑗

. Equivalently, for every
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player 𝑖,

𝑢𝑖 (𝑎∗) ≥ 𝑢𝑖 (𝑎𝑖, 𝑎∗−𝑖) (A.1)

for every action ai of player 𝑖, where 𝑢𝑖 is a payoff function that represents player

𝑖’s preferences.

This definition implies neither that a strategic game necessarily has a Nash equi-

librium, nor that it has at most one. Examples in the next section show that some

games have a single Nash equilibrium, some possess no Nash equilibrium, and

others have many Nash equilibria. The definition of a Nash equilibrium is designed

to model a steady state among experienced players. An alternative approach to

understanding players’ actions in strategic games assumes that the players know

each others’ preferences, and considers what each player can deduce about the

other players’ actions from their rationality and their knowledge of each other’s

rationality.

A.2.1 Generalized Nash equilibrium problem

The Generalized Nash equilibrium problem (GNEP for short) is an important

model that has its roots in the economic sciences but is being fruitfully used in many

different fields. Although the GNEP is a model that has been used actively in many

fields in the past 50 years, it is only since the mid 1990s that research on this topic

gained momentum. The GNEP lies at the intersection of many different disciplines

(e.g. economics, engineering, mathematics, computer science, and sometimes

researchers in different fields worked independently and unaware of existing results.

As I already mentioned, many researchers from different fields worked on the

GNEP, and this explains why this problem has a number of different names in

the literature including pseudo-game, social equilibrium problem, equilibrium
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programming, coupled constraint equilibrium problem, and abstract economy. I

will stick to the term generalized Nash equilibrium problem that seems the favorite

one by researchers in recent years.

Formally, the GNEP consists of N players, each player a controlling the variables

𝑥a ∈ R𝑛a . I denote by 𝑥 the vector formed by all these decision variables:

x =

©«
𝑥1

...

𝑥𝑁

ª®®®®®¬
(A.2)

which has dimension 𝑛 :=
∑𝑁
a=1 𝑛a , and by x−a the vector formed by all the players’

decision variables except those of player a = 1. To emphasize the ath player’s

variables within x, I sometimes write (𝑥a, x−a) instead of x. Note that this is still

the vector 𝑥 = (𝑥1, . . . , 𝑥a, . . . 𝑥𝑁 ) and that, in particular, the notation (𝑥a, x−a)

does not mean that the block components of x are reordered in such a way that 𝑥a

becomes the first block. Each player has an objective function \a : R𝑛 → R that

depends on both his own variables 𝑥a as well as on the variables x−a of all other

players. This mapping \a is often called the utility function of player a, sometimes

also the payoff function or loss function, depending on the particular application

in which the GNEP arises.

Furthermore, each player’s strategy must belong to a set 𝑋a (x−a) ⊆ R𝑛a that

depends on the rival players’ strategies and that I call the feasible set or strategy

space of player a.

The aim of player a, given the other players’ strategies x−a, is to choose a strategy

𝑥a that solves the minimization problem

minimize𝑥a \a (𝑥a, x−a) subject to 𝑥a ∈ 𝑋a (x−a). (A.3)
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For any x−a, the solution set of problem (A.2.1) is denoted by 𝑆a (x−a)

Definition A.2.2. The GNE is the problem of finding a vector 𝑥 such that

𝑥a ∈ 𝑆a (x−a) ∀a = 1, . . . , 𝑁,

or equivalently,

\a (𝑥a, x̄−a) ≤ \a (𝑥a, x̄−a). (A.4)

Such a point 𝑥 is called a (generalized Nash) equilibrium or, more simply, a solution

of the GNE.

A point 𝑥 is therefore an equilibrium if no player can decrease his objective function

by changing unilaterally 𝑥a to any other feasible point. If I denote by 𝑆(x) the set

𝑆(x) :=
∏𝑁
a=1 𝑆a (x−a),I see that I can say that 𝑥 is a solution if 𝑥 ∈ 𝑆(𝑥), i.e. if

𝑥 is a fixed point of the point-to-set mapping 𝑆. If the feasible sets 𝑋a (x−a) do

not depend on the rival players’ strategies, so I have 𝑋a (x−a) = 𝑋a for some set

𝑋a ⊆ R𝑛a ∀a = 1, . . . , 𝑁 , the GNE reduces to the standard Nash equilibrium

problem (NEP for short), cf. definition A.2.1

A.3 The Variational Inequality Problem

Definition A.3.1. The finite - dimensional variational inequality problem,𝑉𝐼 (𝐹,K),

is to determine a vector 𝑥∗ ∈ K ⊆ R𝑛, such that

𝐹 (𝑥∗)𝑇 · (𝑥 − 𝑥∗) ≥ 0

or, equivalently,

⟨𝐹 (𝑥∗)𝑇 , 𝑥 − 𝑥∗⟩ ≥ 0,∀𝑥 ∈ K (A.5)

where 𝐹 is a given continuous function from K to R𝑛, K is a given closed convex

set, and ⟨·, ·⟩ denotes the inner product in 𝑛 dimensional Euclidean space.
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Figure A.1: Geometric interpretation of variational inequality problem

In geometric terms, the variational inequality (A.5) states that 𝐹 (𝑥∗)𝑇 is “orthogo-

nal” to the feasible setK at the point 𝑥∗. This formulation, as shall be demonstrated,

is particularly convenient because it allows for a unified treatment of equilibrium

problems and optimization problems.

Indeed, many mathematical problems can be formulated as variational inequality

problems, and several examples applicable to equilibrium analysis follow.

A.3.1 Systems of Equations

Many classical economic equilibrium problems have been formulated as systems

of equations, since market clearing conditions necessarily equate the total supply

with the total demand. In terms of a variational inequality problem, the formulation

of a system of equations is as follows.

Proposition A.3.1. Let K = R𝑛 and let 𝐹 : R𝑛 → R𝑛 be a given function. A vector

𝑥∗ ∈ R𝑛 solves 𝑉𝐼 (𝐹,R𝑛) if and only if 𝐹 (𝑥∗) = 0.



286 Literature Review/Preliminaries

Proof. If 𝐹 (𝑥∗) = 0, then inequality (A.5) holds with equality. Conversely, if 𝑥∗

satisfies (A.5), let 𝑥 = 𝑥∗ − 𝐹 (𝑥∗), which implies that 𝐹 (𝑥∗)𝑇 · (−𝐹 (𝑥∗)) ≥ 0, or

−||𝐹 (𝑥∗) | |2 ≥ 0 and, therefore, 𝐹 (𝑥∗) = 0. □

Note that systems of equations, however, preclude the introduction of inequalities,

which may be needed, for example, in the case of nonnegativity assumptions on

certain variables such as prices.

A.3.2 Optimization Problems

An optimization problem is characterized by its specific objective function that

is to be maximized or minimized, depending upon the problem and, in the case

of a constrained problem, a given set of constraints. Possible objective functions

include expressions representing profits, costs, market share, portfolio risk, etc.

Possible constraints include those that represent limited budgets or resources, non-

negativity constraints on the variables, conservation equations, etc. Typically, an

optimization problem consists of a single objective function. Both unconstrained

and constrained optimization problems can be formulated as variational inequality

problems. The subsequent two propositions and theorem identify the relationship

between an optimization problem and a variational inequality problem.

Proposition A.3.2. Let 𝑥∗ be a solution to the optimization problem:

Minimize 𝑓 (𝑥) (A.6)

subject to: 𝑥 ∈ K,

where 𝑓 is continuously differentiable and K is closed and convex. Then 𝑥∗ is a

solution of the variational inequality problem:

∇ 𝑓 (𝑥∗)𝑇 · (𝑥 − 𝑥∗) ≥ 0,∀𝑥 ∈ K (A.7)
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Proof. Let 𝜙(𝑡) = 𝑓 (𝑥∗ + 𝑡 (𝑥 − 𝑥∗)), ∀𝑡 ∈ [0, 1]. Since 𝜙(𝑡) achieves its minimum

at 𝑡 = 0, 0 ≤ 𝜙′(0) = ∇ 𝑓 (𝑥∗)𝑇 · (𝑥 − 𝑥∗), that is, 𝑥∗ is a solution of (7.4). □

Proposition A.3.3. If 𝑓 (𝑥) is a convex function and 𝑥∗ is a solution to𝑉𝐼 (∇ 𝑓 ,K),

then 𝑥∗ is a solution to the optimization problem (A.6).

Proof. Since 𝑓 (𝑥) is convex,

𝑓 (𝑥) ≥ 𝑓 (𝑥∗) + ∇ 𝑓 (𝑥∗)𝑇 · (𝑥 − 𝑥∗),∀𝑥 ∈ K. (A.8)

But ∇ 𝑓 (𝑥∗)𝑇 · (𝑥 − 𝑥∗) ≥ 0, since 𝑥∗ is a solution to 𝑉𝐼 (∇ 𝑓 ,K). Therefore, from

(7.5) one concludes that 𝑓 (𝑥) ≥ 𝑓 (𝑥∗),∀𝑥 ∈ K, that is, 𝑥∗ is a minimum point of

the mathematical programming problem (A.6). □

If the feasible set K = R𝑛, then the unconstrained optimization problem is also

a variational inequality problem. On the other hand, in the case where a certain

symmetry condition holds, the variational inequality problem can be reformulated

as an optimization problem. In other words, in the case that the variational

inequality formulation of the equilibrium conditions underlying a specific problem

is characterized by a function with a symmetric Jacobian, then the solution of the

equilibrium conditions and the solution of a particular optimization problem are

one and the same. I first introduce the following definition and then fix this

relationship in a theorem.

Definition A.3.2. An 𝑛× 𝑛 matrix 𝑀 (𝑥), whose elements 𝑚𝑖 𝑗 (𝑥); 𝑖 = 1, . . . , 𝑛; 𝑗 =

1, . . . , 𝑛, are functions defined on the set 𝑆 ⊂ R𝑛, is said to be positive semidefinite

on 𝑆 if 𝑣𝑇𝑀 (𝑥)𝑣 ≥ 0,∀𝑣 ∈ R𝑛, 𝑥 ∈ 𝑆. It is said to be positive definite on 𝑆 if

𝑣𝑇𝑀 (𝑥)𝑣 > 0,∀𝑣 ≠ 0, 𝑣 ∈ R𝑛, 𝑥 ∈ 𝑆. It is said to be strongly positive definite on

𝑆 if 𝑣𝑇𝑀 (𝑥)𝑣 ≥ 𝛼 | |𝑣 | |2, for some 𝛼 > 0,∀𝑣 ∈ R𝑛, 𝑥 ∈ 𝑆.
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Note that if 𝛾(𝑥) is the smallest eigenvalue, which is necessarily real, of the

symmetric part of 𝑀 (𝑥), that is, 1
2 [𝑀 (𝑥) + 𝑀 (𝑥)

𝑇 ], then it follows that

• 𝑀 (𝑥) is positive semidefinite on 𝑆 if and only if 𝛾(𝑥) ≥ 0,∀𝑥 ∈ 𝑆;

• 𝑀 (𝑥) is positive definite on 𝑆 if and only if 𝛾(𝑥) > 0,∀𝑥 ∈ 𝑆;

• 𝑀 (𝑥) is strongly positive definite on 𝑆 if and only if 𝛾(𝑥) ≥ 𝛼 > 0,∀𝑥 ∈ 𝑆.

Theorem A.3.1. Assume that 𝐹 (𝑥) is continuously differentiable on K and that

the Jacobian matrix:

∇𝐹 (𝑥) =



𝜕𝐹1
𝜕𝑥1

. . .
𝜕𝐹1
𝜕𝑥𝑛

...
. . .

...

𝜕𝐹𝑛
𝜕𝑥1

. . .
𝜕𝐹𝑛
𝜕𝑥𝑛


is symmetric and positive semidefinite. Then there is a real-valued convex function

𝑓 : K → R satisfying ∇ 𝑓 (𝑥) = 𝐹 (𝑥) with 𝑥∗ the solution of 𝑉𝐼 (𝐹,K) also being

the solution of the mathematical programming problem:

Minimize 𝑓 (𝑥)

subject to: 𝑥 ∈ K,

Proof. Under the symmetry assumption it follows from Green’s Theorem that

𝑓 (𝑥) =
∫

𝐹 (𝑥)𝑇𝑑𝑥,

where
∫

is a line integral. The conclusion follows from Proposition A.3.3. □

Hence, although the variational inequality problem encompasses the optimiza-

tion problem, a variational inequality problem can be reformulated as a convex

optimization problem, only when the symmetry condition and the positive semidef-

initeness condition hold. The variational inequality, therefore, is the more general

problem in that it can also handle a function 𝐹 (𝑥) with an asymmetric Jacobian.
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A.3.3 Complementarity Problems

The variational inequality problem also contains the complementarity problem as

a special case. Complementarity problems are defined on the nonnegative orthant.

Let R𝑛+ denote the nonnegative orthant in R𝑛, and let 𝐹 : R𝑛 → R𝑛. The nonlinear

complementarity problem over R𝑛+ is a system of equations and inequalities stated

as: Find 𝑥∗ ≥ 0 such that

𝐹 (𝑥∗) ≥ 0 and 𝐹 (𝑥∗)𝑇 · 𝑥∗ = 0. (A.9)

Whenever the mapping 𝐹 is affine, that is, whenever 𝐹 (𝑥) = 𝑀𝑥 + 𝑏, where 𝑀 is

an 𝑛 × 𝑛 matrix and 𝑏 an 𝑛 × 1 vector, problem (A.9) is then known as the linear

complementarity problem.

The relationship between the complementarity problem and the variational in-

equality problem is as follows.

Proposition A.3.4. 𝑉𝐼 (𝐹,R𝑛+) and 𝐹 (𝑥∗) ≥ 0, 𝐹 (𝑥∗)𝑇 · 𝑥∗ = 0 have precisely the

same solutions, if any.

Proof. First, it is established that if 𝑥∗ satisfies 𝑉𝐼 (𝐹,R𝑛+), then it also satisfies the

complementarity problem (A.9). Substituting 𝑥 = 𝑥∗ + 𝑒𝑖 into 𝑉𝐼 (𝐹,R𝑛+), where

𝑒𝑖 denotes the n-dimensional vector with 1 in the i-th location and 0, elsewhere,

one concludes that 𝐹𝑖 (𝑥∗) ≥ 0, and 𝐹 (𝑥∗) ≥ 0.

Substituting now 𝑥 = 2𝑥∗ into the variational inequality, one obtains

𝐹 (𝑥∗)𝑇 · (𝑥∗) ≥ 0. (A.10)

Substituting then 𝑥 = 0 into the variational inequality, one obtains

𝐹 (𝑥∗)𝑇 · (−𝑥∗) ≥ 0 (A.11)
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and together imply that

𝐹 (𝑥∗)𝑇 · 𝑥∗ = 0.

Conversely, if 𝑥∗ satisfies the complementarity problem, then

𝐹 (𝑥∗)𝑇 · (𝑥 − 𝑥∗) ≥ 0

since 𝑥 ∈ R𝑛+ and 𝐹 (𝑥∗) ≥ 0. □

A.3.4 Fixed Point Problems

Fixed point theory has been used to formulate, analyze, and compute solutions

to economic equilibrium problems. The relationship between the variational

inequality problem and a fixed point problem can be made through the use of

a projection operator. First, the projection operator is defined.

Lemma A.3.1. Let K be a closed convex set in R𝑛. Then for each 𝑥 ∈ R𝑛, there is

a unique point 𝑦 ∈ K, such that

| |𝑥 − 𝑦 | | ≤ | |𝑥 − 𝑧 | |,∀𝑧 ∈ K, (A.12)

and 𝑦 is known as the orthogonal projection of 𝑥 on the set K with respect to the

Euclidean norm, that is,

𝑦 = PK𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛| |𝑥 − 𝑧 | |, 𝑧 ∈ K. (A.13)

Proof. Let 𝑥 be fixed and let𝑤 ∈ K. Minimizing | |𝑥−𝑧 | | over all 𝑧 ∈ K is equivalent

to minimizing the same function over all 𝑧 ∈ K such that | |𝑥 − 𝑧 | | ≤ | |𝑥 − 𝑤 | |,

which is a compact set. The function 𝑔 defined by 𝑔(𝑧) = | |𝑥 − 𝑧 | |2 is continuous.

Existence of a minimizing 𝑦 follows because a continuous function on a compact

set always attains its minimum. To prove that 𝑦 is unique, observe that the square



A.3. The Variational Inequality Problem 291

Figure A.2: The projection 𝑦 of 𝑥 on the set K

of the Euclidean norm is a strictly convex function. Hence, 𝑔 is strictly convex

and its minimum is unique. □

Theorem A.3.2. Let K be a closed convex set. Then 𝑦 = PK𝑥 if and only if

𝑦𝑇 · (𝑧 − 𝑦) ≥ 𝑥𝑇 · (𝑧 − 𝑦),∀𝑧 ∈ K,

or

(𝑦 − 𝑥)𝑇 · (𝑧 − 𝑦) ≥ 0,∀𝑧 ∈ K. (A.14)

Proof. Note that 𝑦 = PK𝑥 is the minimizer of 𝑔(𝑧) over all 𝑧 ∈ K. Since

∇𝑔(𝑧) = 2(𝑧− 𝑥), the result follows from the optimality conditions for constrained

optimization problems. □

A property of the projection operator which is useful both in qualitative analysis

of equilibria and their computation is now presented.
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(a) (b)

Figure A.3: Geometric interpretation of ⟨(𝑦−𝑥)𝑇 , 𝑧−𝑦⟩ ≥ 0, for 𝑦 = PK𝑥, 𝑦 ≠ PK𝑥

Corollary A.3.1. Let K be a closed convex set. Then the projection operator PK

is nonexpansive, that is

| |PK𝑥 − PK𝑥′| | ≤ | |𝑥 − 𝑥′| |,∀𝑥, 𝑥′ ∈ R𝑛. (A.15)

Proof. Given 𝑥, 𝑥′ ∈ R𝑛, let 𝑦 = PK𝑥 and 𝑦′ = PK𝑥′. Then from Theorem 2.4.1

note that for

𝑦 ∈ K : 𝑦𝑇 · (𝑧 − 𝑦) ≥ 𝑥𝑇 · (𝑧 − 𝑦),∀𝑧 ∈ K (A.16)

𝑦′ ∈ K : 𝑦′𝑇 · (𝑧 − 𝑦) ≥ 𝑥𝑇 · (𝑧 − 𝑦′),∀𝑧 ∈ K, (A.17)

Setting 𝑧 = 𝑦′ in (A.16) and 𝑧 = 𝑦 in (A.17) and adding the resultant inequalities,

one obtains:

| |𝑦 − 𝑦′| |2 = (𝑦 − 𝑦′)𝑇 · (𝑦 − 𝑦′) ≤ (𝑥 − 𝑥′)𝑇 · (𝑦 − 𝑦′) ≤ ||𝑥 − 𝑥′| | · | |𝑦 − 𝑦′| |

by an application of the Schwarz inequality. Hence,

| |𝑦 − 𝑦′| | ≤ | |𝑥 − 𝑥′| |.
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□

The relationship between a variational inequality and a fixed point problem is as

follows.

Theorem A.3.3. Assume that K is closed and convex. Then 𝑥∗ ∈ K is a solution

of the variational inequality problem 𝑉𝐼 (𝐹,K) if and only if for any 𝛾 > 0, 𝑥∗ is a

fixed point of the map

PK𝑥(𝐼 − 𝛾𝐹) : K→ K,

that is,

𝑥∗ = PK𝑥(𝑥∗ − 𝛾𝐹 (𝑥∗)). (A.18)

Proof. Suppose that 𝑥∗ is a solution of the variational inequality, i.e.,

𝐹 (𝑥∗)𝑇 · (𝑥 − 𝑥∗) ≥ 0,∀𝑥 ∈ K.

Multiplying the above inequality by −𝛾 < 0, and adding 𝑥∗𝑇 · (𝑥− 𝑥∗) to both sides

of the resulting inequality, one obtains

𝑥∗𝑇 · (𝑥 − 𝑥∗) ≥ [𝑥∗ − 𝛾 + 𝐹 (𝑥∗)]𝑇 · (𝑥 − 𝑥∗),∀𝑥 ∈ K.

From Theorem A.3.2 one concludes that

𝑥∗ = PK(𝑥∗ − 𝛾𝐹 (𝑥∗)).

Conversely, if 𝑥∗ = PK(𝑥∗ − 𝛾𝐹 (𝑥∗)), for 𝛾 > 0, then

𝑥∗𝑇 · (𝑥 − 𝑥∗) ≥ (𝑥∗ − 𝛾𝐹 (𝑥∗))𝑇 · (𝑥 − 𝑥∗),∀𝑥 ∈ K,

and, therefore,

𝐹 (𝑥∗)𝑇 · (𝑦 − 𝑥∗) ≥ 0,∀𝑦 ∈ K.

□
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A.3.5 Basic Existence and Uniqueness Results

Variational inequality theory is also a powerful tool in the qualitative analysis of

equilibria. I now provide conditions for existence and uniqueness of solutions to

𝑉𝐼 (𝐹,K) are provided. Existence of a solution to a variational inequality prob-

lem follows from continuity of the function 𝐹 entering the variational inequality,

provided that the feasible set K is compact. Indeed, I have the following:

Theorem A.3.4. (Existence Under Compactness and Continuity)

If K is a compact convex set and 𝐹 (𝑥) is continuous on K, then the variational

inequality problem admits at least one solution 𝑥∗.

Proof. According to Brouwer’s Fixed Point Theorem, given a map P : K → K,

with P continuous, there is at least one 𝑥∗ ∈ K, such that 𝑥∗ = P𝑥∗. Observe that

since PK and (𝐼 − 𝛾𝐹) are each continuous, PK(𝐼 − 𝛾𝐹) is also continuous. The

conclusion follows from compactness of K and Theorem A.3.3. □

In the case of an unbounded feasible set K, Brouwer’s Fixed Point Theorem is no

longer applicable; the existence of a solution to a variational inequality problem

can, nevertheless, be established under the subsequent condition. Let 𝐵𝑅 (0) denote

a closed ball with radius R centered at 0 and let K𝑅 = K ∩ 𝐵𝑅 (0). K𝑅 is then

bounded. Let 𝑉𝐼𝑅 denote the variational inequality problem:

Determine 𝑥𝑅∗ ∈ K𝑅, such that

𝐹 (𝑥𝑅∗)𝑇 · (𝑦 − 𝑥𝑅∗) ≥ 0,∀𝑦 ∈ K𝑅 .

I now state:

Theorem A.3.5. 𝑉𝐼 (𝐹,K) admits a solution if and only if there exists an 𝑅 > 0

and a solution of 𝑉𝐼𝑅, 𝑥𝑅∗, such that | |𝑥𝑅∗ | | < 𝑅.
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Although | |𝑥𝑅∗ | | < 𝑅 may be difficult to check, one may be able to identify an

appropriate 𝑅 based on the particular application.

Existence of a solution to a variational inequality problem may also be established

under the coercivity condition, as in the subsequent corollary.

Corollary A.3.2. (Existence Under Coercivity)

Suppose that F(x) satisfies the coercivity condition

(𝐹 (𝑥) − 𝐹 (𝑥0))𝑇 · (𝑥 − 𝑥0)
| |𝑥 − 𝑥0 | |

→ ∞ (A.19)

as | |𝑥 | | → ∞ for 𝑥 ∈ K and for some 𝑥0 ∈ K. Then𝑉𝐼 (𝐹,K) always has a solution.

Corollary A.3.3. Suppose that 𝑥∗ is a solution of 𝑉𝐼 (𝐹,K) and 𝑥∗ ∈ K0, the

interior of K. Then 𝐹 (𝑥∗) = 0.

Qualitative properties of existence and uniqueness become easily obtainable under

certain monotonicity conditions. First I outline the definitions and then present

the results.

Definition A.3.3. (Monotonicity)

𝐹 (𝑥) is monotone on K if

[𝐹 (𝑥1) − 𝐹 (𝑥2)]𝑇 · (𝑥1 − 𝑥2) ≥ 0, ∀𝑥1, 𝑥2 ∈ K.

Definition A.3.4. (Strict Monotonicity)

𝐹 (𝑥) is strictly monotone on K if

[𝐹 (𝑥1) − 𝐹 (𝑥2)]𝑇 · (𝑥1 − 𝑥2) > 0, ∀𝑥1, 𝑥2 ∈ K, 𝑥1 ≠ 𝑥2.

Definition A.3.5. (Strong Monotonicity)

𝐹 (𝑥) is strongly monotone on K if for some 𝛼 > 0

[𝐹 (𝑥1) − 𝐹 (𝑥2)]𝑇 · (𝑥1 − 𝑥2) ≥ 𝛼 | |𝑥1 − 𝑥2 | |2, ∀𝑥1, 𝑥2 ∈ K.
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Definition A.3.6. (Lipschitz continuity)

𝐹 (𝑥) is Lipschitz continous on K if there exists an 𝐿 > 0 such that

| |𝐹 (𝑥1) − 𝐹 (𝑥2) | | ≤ 𝐿 | |𝑥1 − 𝑥2 | |, ∀𝑥1, 𝑥2 ∈ K.

A uniqueness result is presented in the subsequent theorem.

Theorem A.3.6. (Uniqueness)

Suppose that 𝐹 (𝑥) is strictly monotone on K. Then the solution is unique, if one

exists.

Proof. Suppose that 𝑥1 and 𝑥∗ are both solutions and 𝑥1 ≠ 𝑥∗. Then since both 𝑥1

and 𝑥∗ are solutions, they must satisfy:

𝐹 (𝑥1)𝑇 · (𝑥′ − 𝑥1) ≥ 0,∀𝑥′ ∈ K (A.20)

𝐹 (𝑥∗)𝑇 · (𝑥′ − 𝑥∗) ≥ 0,∀𝑥′ ∈ K (A.21)

After substituting 𝑥∗ for 𝑥′ in (A.20) and 𝑥1 for 𝑥′ in (A.21) and adding the resulting

inequalities, one obtains:

[𝐹 (𝑥1) − 𝐹 (𝑥∗)]𝑇 · (𝑥∗ − 𝑥1) ≥ 0. (A.22)

But inequality (A.22) is in contradiction to the definition of strict monotonicity.

Hence, 𝑥1 = 𝑥∗. □

Monotonicity is closely related to positive definiteness.

Theorem A.3.7. Suppose that 𝐹 (𝑥) is continuously differentiable on K and the

Jacobian matrix

∇𝐹 (𝑥) =



𝜕𝐹1
𝜕𝑥1

. . .
𝜕𝐹1
𝜕𝑥𝑛

...
. . .

...

𝜕𝐹𝑛
𝜕𝑥1

. . .
𝜕𝐹𝑛
𝜕𝑥𝑛
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which need not be symmetric, is positive semidefinite (positive definite). Then 𝐹 (𝑥)

is monotone (strictly monotone).

Proposition A.3.5. Assume that 𝐹 (𝑥) is continuously differentiable on K and that

∇𝐹 (𝑥) is strongly positive definite. Then 𝐹 (𝑥) is strongly monotone.

One obtains a stronger result in the special case where 𝐹 (𝑥) is linear.

Corollary A.3.4. Suppose that 𝐹 (𝑥) = 𝑀𝑥 + 𝑏, where 𝑀 is an 𝑛 × 𝑛 matrix and b

is a constant vector in R𝑛. The function 𝐹 is monotone if and only if 𝑀 is positive

semidefinite. 𝐹 is strongly monotone if and only if 𝑀 is positive definite.

Proposition A.3.6. Assume that 𝐹 : K → R𝑛 is continuously differentiable at 𝑥.

Then 𝐹 (𝑥) is locally strictly (strongly) monotone at 𝑥 if ∇𝐹 (𝑥) is positive definite

(strongly positive definite), that is,

𝑣𝑇𝐹 (𝑥)𝑣 > 0,∀𝑣 ∈ R𝑛, 𝑣 ≠ 0,

𝑣𝑇∇𝐹 (𝑥)𝑣 ≥ 𝛼 | |𝑣 | |2, for some 𝛼 > 0,∀𝑣 ∈ R𝑛.

The following theorem provides a condition under which both existence and

uniqueness of the solution to the variational inequality problem are guaranteed.

Here no assumption on the compactness of the feasible set K is made.

Theorem A.3.8. Assume that 𝐹 (𝑥) is strongly monotone. Then there exists pre-

cisely one solution 𝑥∗ to 𝑉𝐼 (𝐹,K).

Proof. Existence follows from the fact that strong monotonicity implies coercivity,

whereas uniqueness follows from the fact that strong monotonicity implies strict

monotonicity. □
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Hence, in the case of an unbounded feasible set K, strong monotonicity of the

function 𝐹 guarantees both existence and uniqueness. If K is compact, then exis-

tence is guaranteed if 𝐹 is continuous, and only the strict monotonicity condition

needs to hold for uniqueness to be guaranteed.

Assume now that 𝐹 (𝑥) is both strongly monotone and Lipschitz continuous. Then

the projection PK [𝑥 − 𝛾𝐹 (𝑥)] is a contraction with respect to 𝑥, that is, I have the

following:

Theorem A.3.9. Fix 0 < 𝛾 ≤ 𝛼

𝐿2 where 𝛼 and 𝐿 are the constants appearing,

respectively, in the strong monotonicity and the Lipschitz continuity condition

definitions. Then

| |PK(𝑥 − 𝛾𝐹 (𝑥)) − PK(𝑦 − 𝛾𝐹 (𝑦)) | | ≤ 𝛽 | |𝑥 − 𝑦 | |

for all 𝑥, 𝑦 ∈ K, where

(1 − 𝛾𝛼) 1
2 ≤ 𝛽 < 1.

An immediate consequence of Theorem A.3.9 and the Banach Fixed Point Theorem

is:

Corollary A.3.5. The operator PK(𝑥 − 𝛾𝐹 (𝑥)) has a unique fixed point 𝑥∗.

A.3.6 Stability and Sensitivity Analysis

Important issues in the qualitative analysis of equilibrium patterns are the stability

and sensitivity of solutions when the problem is subjected to perturbations in the

data.

The following theorem establishes that a small change in the function 𝐹 entering

the variational inequality induces a small change in the resulting solution pattern.

Denote the original function by 𝐹 with solution 𝑥 to 𝑉𝐼 (𝐹,K) and the perturbed
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function by 𝐹∗ with solution 𝑥∗ to 𝑉𝐼 (𝐹∗,K).

Assume that the strong monotonicity condition on 𝐹 holds. Then one has:

Theorem A.3.10. Let 𝛼 be the positive constant in the definition of strong mono-

tonicity. Then

| |𝑥∗ − 𝑥 | | ≤ 1
𝛼
| |𝐹∗(𝑥∗) − 𝐹 (𝑥∗) | |. (A.23)

Proof. The vectors 𝑥 and 𝑥∗ must satisfy the variational inequalities

𝐹 (𝑥)𝑇 · (𝑥′ − 𝑥) ≥ 0,∀𝑥′ ∈ K (A.24)

𝐹 (𝑥∗)𝑇 · (𝑥′ − 𝑥∗) ≥ 0,∀𝑥′ ∈ K (A.25)

Rewriting (A.24) for 𝑥′ = 𝑥∗ and (A.25) for 𝑥′ = 𝑥, and then adding the resulting

inequalities, one obtains

[𝐹∗(𝑥∗) − 𝐹 (𝑥)]𝑇 · (𝑥∗ − 𝑥) ≤ 0. (A.26)

or

[𝐹∗(𝑥∗) − 𝐹 (𝑥) + 𝐹 (𝑥∗) − 𝐹 (𝑥∗)]𝑇 · (𝑥∗ − 𝑥) ≤ 0. (A.27)

Using then the monotonicity condition, (A.27) yields

[𝐹∗(𝑥∗) − 𝐹 (𝑥)∗]𝑇 · (𝑥 − 𝑥∗) ≥ [𝐹 (𝑥) − 𝐹 (𝑥∗)]𝑇 · (𝑥 − 𝑥∗) ≥ 𝛼 | |𝑥 − 𝑥∗ | |2. (A.28)

By virtue of the Schwartz inequality, (A.28) gives

𝛼 | |𝑥∗ − 𝑥 | |2 ≤ ||𝐹∗(𝑥∗) − 𝐹 (𝑥∗) | | · | |𝑥∗ − 𝑥 | |,

from which A.23 follows. □
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A.4 Projected Dynamical Systems

A plethora of equilibrium problems, including network equilibrium problems, can

be uniformly formulated and studied as finite-dimensional variational inequality

problems.

Indeed, it was precisely the traffic network equilibrium problem, as stated by

Smith (1979), and identified by Dafermos (1980) to be a variational inequality

problem, that gave birth to the ensuing research activity in variational inequality

theory and applications in transportation science, regional science, operations re-

search/management science, and, more recently, in economics.

Finite-dimensional variational inequality theory by itself, however, provides no

framework for the study of the dynamics of competitive systems. Rather, it cap-

tures the system at its equilibrium state and, hence, the focus of this tool is static

in nature.

Dupuis and Nagurney (1993) proved that, given a variational inequality problem,

there is a naturally associated dynamical system, the stationary points of which

correspond precisely to the solutions of the variational inequality problem. This

association was first noted by Dupuis and Ishii (1991).

This dynamical system, first referred to as a projected dynamical system by Zhang

and Nagurney (1995), is non-classical in that its right-hand side, which is a projec-

tion operator, is discontinuous. The discontinuities arise because of the constraints

underlying the variational inequality problem modeling the application in ques-

tion. Hence, classical dynamical systems theory is no longer applicable.

Nevertheless, as demonstrated rigorously in Dupuis and Nagurney (1993), a pro-

jected dynamical system may be studied through the use of the Skorokhod Problem
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(1961), a tool originally introduced for the study of stochastic differential equa-

tions with a reflecting boundary condition. Existence and uniqueness of a solution

path, which is essential for the dynamical system to provide a reasonable model,

were also established therein. One of the notable features of this tool, whose

rigorous theoretical foundations were laid in Dupuis and Nagurney (1993), is its

relationship to the variational inequality problem.

Projected dynamical systems theory, however, goes further than finite-dimensional

variational inequality theory in that it extends the static study of equilibrium states

by introducing an additional time dimension in order to allow for the analysis of

disequilibrium behavior that precedes the equilibrium.

In particular, I associate with a given variational inequality problem, a nonclassical

dynamical system, called a projected dynamical system. The projected dynamical

system is interesting both as a dynamical model for the system whose equilibrium

behavior is described by the variational inequality, and, also, because its set of

stationary points coincides with the set of solutions to a variational inequality

problem. In this framework, the feasibility constraints in the variational inequality

problem correspond to discontinuities in the right-hand side of the differential

equation, which is a projection operator. Consequently, the projected dynamical

system is not amenable to analysis via the classical theory of dynamical systems.

I present the definition of a projected dynamical system, which evolves within

a constraint set K. Its stationary points are identified with the solutions to the

corresponding variational inequality problem with the same constraint set.

I then state in a theorem the fundamental properties of such a projected dynamical

system in regards to the existence and uniqueness of solution paths to the governing

ordinary differential equation. We, subsequently, provide an interpretation of the
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ordinary differential equation that defines the projected dynamical system, along

with a description of how the solutions may be expected to behave.

For additional qualitative results, in particular, stability analysis results, see Nagur-

ney and Zhang (1996). For a discussion of the general iterative scheme and proof

of convergence, see Dupuis and Nagurney (1993).

A.4.1 The Variational Inequality Problem and PDS

As I have shown, the variational inequality (A.5) has been used to formulate a

plethora of equilibrium problems ranging from traffic network equilibrium prob-

lems to spatial oligopolistic market equilibrium problems.

Finite-dimensional variational inequality theory, however, provides no framework

for studying the underlying dynamics of systems, since it considers only equilib-

rium solutions in its formulation. Hence, in a sense, it provides a static repre-

sentation of a system at its steady state. One would, therefore, like a theoretical

framework that permits one to study a system not only at its equilibrium point, but

also in a dynamical setting.

The definition of a projected dynamical system (PDS) is given with respect to

a closed convex set K, which is usually the constraint set underlying a particular

application, such as, for example, network equilibrium problems, and a vector field

F whose domain contains K.

As noted in Dupuis and Nagurney (1993), (see, [78]), it is expected that such

projected dynamical systems will provide mathematically convenient approxima-

tions to more realistic dynamical models that might be used to describe non-static

behavior.

The relationship between a projected dynamical system and its associated vari-
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ational inequality problem with the same constraint set is then highlighted. For

completeness, I also recall the fundamental properties of existence and uniqueness

of the solution to the ordinary differential equation (ODE) that defines such a

projected dynamical system.

A.4.2 Theoretical preliminaries of PDS

I recall some typical concepts of convex analysis (see, for instance, [120, 188]),

and confine my attention to the Euclidean space. Let Ω ⊆ R𝑛 be a non-empty,

closed and convex set, the tangent cone to Ω at 𝑥, 𝑇Ω(𝑥), is defined by

𝑇Ω(𝑥) = ∪ℎ>0(Ω − 𝑥)/ℎ,

and the normal cone to Ω at 𝑥, 𝑁Ω(𝑥), is defined by

𝑁Ω(𝑥) = {𝑣 ∈ R𝑛 : ⟨𝑣, 𝑦 − 𝑥⟩ ≤ 0,∀𝑦 ∈ Ω}.

If Ω ⊆ R𝑛 is a polyhedral set, namely,

Ω = {𝑥 : ⟨𝑎𝑖, 𝑥⟩ ≤ 𝛼𝑖, 𝑖 = 1, . . . , 𝑚},

where 𝑎𝑖 ∈ R𝑛 and 𝛼𝑖 ∈ R, ∀𝑖, then it results

𝑁Ω(𝑥) = {𝑦1𝑎1 + . . . , 𝑦𝑚𝑎𝑚 |𝑦𝑖 ≥ 0, 𝑖 ∈ 𝐼 (𝑥), 𝑦𝑖 = 0,∀𝑖 ∉ 𝐼 (𝑥)},

𝐼 (𝑥) = {𝑖 : ⟨𝑎𝑖, 𝑥⟩ = 𝛼𝑖}.

If 𝐶 = 𝐶1 × · · · × 𝐶𝑚 for closed sets 𝐶𝑖 ∈ R𝑛𝑖 , 𝑛𝑖 ∈ N for all 𝑖, then at any

𝑥 = (𝑥1, . . . , 𝑥𝑚) with 𝑥𝑖 ∈ 𝐶𝑖, I have

𝑁𝐶 (𝑥) = 𝑁𝐶1 (𝑥1) × · · · × 𝑁𝐶𝑚 (𝑥𝑚).
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Let us introduce the projection operator 𝑃Ω : R𝑛 → Ω, where 𝑃Ω(𝑣) is such that

∥𝑃Ω(𝑧) − 𝑧∥ = inf
𝑦∈Ω
∥𝑦 − 𝑧∥.

I also consider the operator

ΠΩ : Ω × R𝑛 → R𝑛,

defined by the directional derivative

ΠΩ(𝑥, 𝑣) = lim
𝑡→0

𝑃Ω(𝑥 + 𝑡𝑣) − 𝑥
𝑡

.

Thus, ΠΩ(𝑥, 𝑣) = 𝑃𝑇Ω (𝑥)𝑣, namely, ΠΩ(𝑥, 𝑣) is the metric projection of 𝑣 onto the

tangent cone to Ω at 𝑥. In addition, as in [40] and references therein, there exists

𝑛 ∈ 𝑁Ω(𝑥) such that

𝑣 = ΠΩ(𝑥, 𝑣) + 𝑛. (A.29)

Following [72, 164], a projected dynamical system (PDS) is an ordinary differential

equation of the form

¤𝑥 = ΠΩ(𝑥,−𝜑(𝑥)), (A.30)

where 𝜑 : Ω → R𝑛 is a given vector field. A solution to (A.30) is a function

𝑥 : [0,∞) → Ω that is absolutely continuous and satisfies

¤𝑥(𝑡) = ΠΩ(𝑥(𝑡),−𝜑(𝑥(𝑡))),

except for a set of Lebesgue measure zero.

The problem is complemented by the initial condition 𝑥(0) = 𝑥0 ∈ Ω. Problem

(A.30) is a non standard ordinary differential equation, where the right-hand side

is related to the projection operator, and thus, is discontinuous on the boundary of
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Ω. I also note that a solution of the dynamical system belongs to the constraint

set Ω. A vector 𝑥∗ is an equilibrium point or stationary point of the projected

dynamical system if 𝑥∗ satisfies

ΠΩ(𝑥∗,−𝜑(𝑥∗)) = 0.

This means that once the projected dynamical system reaches 𝑥∗ at some time

𝑡 ≥ 0, it will remain at 𝑥∗ for all future times.

An important feature of projected dynamical systems is that the set of stationary

points coincides with the set of solutions of the finite-dimensional and time-

independent variational inequality (see, [78])

⟨𝜑(𝑥∗), 𝑥 − 𝑥∗⟩ ≥ 0, ∀𝑥 ∈ Ω.

Moreover, problem (A.30) is equivalent to

¤𝑥 = 𝑃𝑇Ω (𝑧)
(
− 𝜑(𝑥)

)
.

Due to (A.29), the initial value problem

¤𝑥 = ΠΩ(𝑥,−𝜑(𝑥)), 𝑥(0) = 𝑥0 ∈ Ω (A.31)

consists in finding the solution of minimal norm to the initial condition 𝑥(0) =

𝑥0 ∈ Ω and the differential variational inequality

¤𝑥(𝑡) ∈ −
(
𝑁Ω(𝑥(𝑡)) + 𝜑(𝑥(𝑡))

)
. (A.32)

The above problem is, in turn, equivalent to finding the solution of minimal norm

to the initial condition 𝑥(0) = 𝑥0 ∈ Ω and the projected variational inequality

¤𝑥(𝑡) ∈ 𝑃𝑇Ω (𝑥(𝑡))
(
− 𝜑(𝑥(𝑡))

)
.

The following result gives the existence of PDS (see, [78]).
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Theorem A.4.1. Let Ω ⊂ R𝑛 be a polyhedron. Suppose that 𝑥0 ∈ Ω, and assume

that 𝜑 : Ω→ R𝑛 is a vector field with linear growth, namely, there exists 𝑀 > 0 so

that for all 𝑥 ∈ Ω, ∥𝜑(𝑥)∥ ≤ 𝑀 (1 + ∥𝑥∥). Then, the initial value problem (A.31)

has unique absolutely continuous solution on the interval [0,∞[.

I note that Lipschitz continuity implies the linear growth assumption and, hence, it

is a sufficient condition for the existence of a unique solution to projected dynamical

systems.

A.4.3 Stability of solutions

In this section, I focus my attention on the stability of solutions under perturbations;

see [40, 164, 156]. In the theory of PDS, monotonicity concept and its extensions

are connected to stability. In fact, monotonicity describes the behavior of perturbed

equilibria and show the existence of periodic cycles.

I consider variational inequality (1.10) and the associated projected dynamical

system

¤𝑥 = ΠΩ(𝑥,−𝜑(𝑥)), 𝑥(0) = 𝑥0 ∈ Ω (A.33)

In the following, 𝐵(𝑥∗, 𝛿) denotes the open ball centered at 𝑥∗ with radius 𝛿.

Definition A.4.1. Let 𝑥∗ be a critical point of (A.33).

• 𝑥∗ is called monotone attractor if there exists 𝛿 > 0 such that, for every

solution 𝑥(𝑡) with 𝑥(0) ∈ 𝐵(𝑥∗, 𝛿) ∩ Ω, ∥𝑥(𝑡) − 𝑥∗∥ is a non increasing

function of 𝑡.

• 𝑥∗ is a strictly monotone attractor if ∥𝑥(𝑡) − 𝑥∗∥ is decreasing to 0 in 𝑡.
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• 𝑥∗ is a strictly global monotone attractor if the above property holds for any

solution 𝑥(𝑡) such that 𝑥(0) ∈ Ω.

• 𝑥∗ is exponentially stable if the solutions starting from points close to 𝑥∗

are convergent to 𝑥∗ with exponential rate, namely, if there is 𝛿 > 0 and

two constants 𝑏 > 0 and 𝐶 > 0 such that for every solution 𝑥(𝑡), with

𝑥(0) ∈ 𝐵(𝑥∗, 𝛿) ∩Ω, it results

∥𝑥(𝑡) − 𝑥∗∥ ≤ 𝐶∥𝑥(0) − 𝑥∗∥𝑒−𝑏𝑡 , ∀𝑡 ≥ 0.

• 𝑥∗ is globally exponentially stable if the above property holds for all solutions

𝑥(𝑡) such that 𝑥(0) ∈ Ω.
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[18] G. Barbarosoǧlu and Y. Arda. “A two-stage stochastic programming frame-

work for transportation planning in disaster response”. In: Journal of the

operational research society 55.1 (2004), pp. 43–53.

[19] E. Battegazzorre, A. Bottino, M. Domaneschi, and G. P. Cimellaro. “Ide-

alCity: A hybrid approach to seismic evacuation modeling”. In: Advances

in Engineering Software 153 (2021), p. 102956. doi: 10 . 1016 / j .

advengsoft.2020.102956.

[20] V. Bayram and H. Yaman. “A stochastic programming approach for shelter

location and evacuation planning”. In: RAIRO-Operations Research 52.3

(2018), pp. 779–805.

[21] T. Bektas. “The multiple traveling salesman problem: an overview of for-

mulations and solution procedures”. In: omega 34.3 (2006), pp. 209–219.

[22] P. Beraldi, M. Bruni, and D. Conforti. “A solution approach for two-stage

stochastic nonlinear mixed integer programs”. In: Algorithmic Operations

Research 4.1 (2009), pp. 76–85.

[23] I. Berrada, J. Ferland, and P. Michelon. “A multi-objective approach to

nurse scheduling with both hard and soft constraints”. In: Socio-Economic

Planning Sciences 30 (1996), pp. 183–193.
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[57] P. Daniele, S. Giuffrè, G. Idone, and A. Maugeri. “Infinite dimensional du-

ality and applications”. In: Mathematische Annalen 339.1 (2007), pp. 221–

239.

https://doi.org/10.1007/s10878-006-9036-2


318 Bibliography
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