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Abstract: Chronic myeloid leukemia (CML), BCR-ABL1-positive, is classified as a myeloproliferative
characterized by Philadelphia chromosome/translocation t(9;22) and proliferating granulocytes.
Despite the clinical success of tyrosine kinase inhibitors (TKi) agents in the treatment of CML, most
patients have minimal residual disease contained in the bone marrow microenvironment, within
which stromal cells assume a pro-inflammatory phenotype that determines their transformation in
cancer-associated fibroblasts (CAF) which, in turn can play a fundamental role in resistance to therapy.
Insulin-like Growth Factor Binding Protein-6 (IGFBP-6) is expressed during tumor development,
and is involved in immune-escape and inflammation as well, providing a potential additional target
for CML therapy. Here, we aimed at investigating the role of IGFBP-6/SHH/TLR4 axis in TKi
response. We used a CML cell line, LAMA84-s, and healthy bone marrow stromal cells, HS-5,
in mono- or co-culture. The two cell lines were treated with Dasatinib and/or IGFBP-6, and the
expression of inflammatory markers was tested by qRT-PCR; furthermore, expression of IGFBP-6,
TLR4 and Gli1 were evaluated by Western blot analysis and immumocytochemistry. The results
showed that both co-culture and Dasatinib exposure induce inflammation in stromal and cancer
cells so that they modulate the expression of TLR4, and these effects were more marked following
IGFBP-6 pre-treatment suggesting that this molecule may confer resistance through the inflammatory
processes. This phenomenon was coupled with sonic hedgehog (SHH) signaling. Indeed, our data
also demonstrate that HS-5 treatment with PMO (an inducer of SHH) induces significant modulation
of TLR4 and overexpression of IGFPB-6 suggesting that the two pathways are interconnected with
each other and with the TLR-4 pathway. Finally, we demonstrated that pretreatment with IGFBP-6
and/or PMO restored LAMA-84 cell viability after treatment with Dasatinib, suggesting that both
IGFBP-6 and SHH are involved in the resistance mechanisms induced by the modulation of TLR-4,
thus indicating that the two pathways may be considered as potential therapeutic targets.

Keywords: chronic myeloid leukemia; dasatinib; IGFBP6; TLR4; mesenchymal stromal cells

1. Introduction

Chronic Myeloid Leukemia (CML) is a myeloproliferative disorder that originates in
the hematopoietic stem cell (HSC) compartment of the bone marrow and characterized by
the presence of the Philadelphia chromosome (Ph chromosome), rising by a translocation
between chromosome 9 and chromosome 22, 22 and resulting in a chimeric gene that
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codes for a protein with a constitutive tyrosine kinase activity [1–5]. The amino-terminal
portion of the ABL protein contains the SRC homology regions: SH1, SH2 and SH3. The
SH1 domain has catalytic activity, the SH2 domain has phosphotyrosine binding activity,
whereas the activity of the ABL protein is negatively regulated by the SH3 domain, the
deletion of which involves the transformation of ABL into an oncogene [5].

The BCR-ABL fusion protein is mainly involved in several cytoplasmatic signaling
pathways including MAPK (Ras-mitogen-activated protein kinase), JAK-STAT (Janus-
activated kinase) and PI3K/AKT (phosphoinositide 3-kinase) [6,7].

The development of BCR-ABL tyrosine kinase inhibitors (TKIs) has revolutionized
the therapy for CML. TKIs are highly effective in inducing remission, preventing disease
progression and prolonging patient survival during the chronic phase. However, treatment
with TKIs has some limitations such as the failure of therapy in a small subgroup of patients
resistant to this therapy, that show the persistence of leukemic stem cells (CSL) [8,9].

The tumor microenvironment (TME) is affected by the presence of various components
that form a dynamic complex including, the extracellular matrix (ECM), stromal cells,
fibroblasts, mesenchymal cells, pericytes, occasionally adipocytes, lymphatic and blood
vascular networks and immunity cells such as T and B lymphocytes, natural killer cells
and tumor-associated macrophages (TAMs). The interaction of these elements plays an
active role in the promotion of cancer progression. It is, indeed, well known that the
increased oxidative stress and acidosis observed in this context are associated with tissue
dysplasia This interaction increases the oxidative stress and acidosis and so leading to
dysplasia [10–16].

The medullary niche is the best-characterized tumor microenvironment of the bone
marrow, indeed is involved in the regulation of stem cells hematopoiesis [17,18]. In CML,
the BCR-ABL protein, with constitutive tyrosine kinase activity, transforms hematopoietic
stem cells or hematopoietic progenitor cells into CSLs, with self-renewal, proliferation, and
differentiation activities under the influence of signals from the bone marrow microenvi-
ronment. This crosstalk can make the stromal cells assume a pro-inflammatory phenotype
that determines their transformation into tumor-associated fibroblasts (CAF) that play a
fundamental role in the onset of resistance to therapy [19].

The IGF system is crucial during cell growth [20]. This system includes different
protein complexes such as IGF-I and IGF-II, and their high affinity binding proteins (IGFBP
from 1 to 6). IGFBPs exert their mitogenic actions mainly through activation of the IGF
receptor type 1 (IGF-1R); this interaction leads to the activation of pathways associated
with proliferation, including AKT and ERK which contribute to resistance to anticancer
therapies [21–23]. Among all IGFBP binding molecules studied, IGFBP-6 inhibits IGF-II
and it has activities such as proliferation, differentiation, migration, and cell survival; but it
has little or no effect on the action of IGF-I, in part due to the low affinity of IGFBP-6 for
this ligand [24–26].

The sonic hedgehog (SHH) signaling pathway is another fundamental player in the
normal development of invertebrates and vertebrates [27,28]. SHH is involved in the
maintenance of somatic stem cells and pluripotent cells, which are critical process for either
tissue repair or tumorigenesis [29–36].

Activation of SHH signaling involves three proteins: SHH, Patched (PTCH) and
Smoothened (SMO) [37]. The canonical signaling pathway begins with the binding of SHH
to its cognate receptor Patched 1 transmembrane protein (PTCH1). The activity of SMO is
constitutively repressed by PTCH1, and this inhibition is released by the binding of SHH
to PTCH1 [27].

Toll-like receptors belong to the TLR-IL-1 receptor (TIR) superfamily; they have an
external domain consisting in the recognition of pathogen-associated molecular patterns
(PAMPs) and an intracytoplasmic TIR domain that mediates the recruitment of adapter
molecules. Most TLRs are expressed on the cell surface and bind lipids and proteins (TLR1,
2, 4, 5, 6), while TLR3, 7, 8 and 9 are found at the endosome level where they are activated
following capture and internalization of pathogens and their products [38,39]. We recently
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demonstrated that IGFBP-6/SHH/TLR4 axis is implicated in alterations of the primary
myelofibrosis microenvironment and that IGFBP-6 may play a central role in activating
SHH pathway during the fibrotic process [40]. In this work we highlighted the role of
IGFBP-6/SHH/TLR4 axis in TKi response.

2. Materials and Methods
2.1. Cell Lines

The cell lines used for the experiments are LAMA84-s (ATCC CRL-3347 ™) from
chronic myeloid leukemia in the blast phase and HS-5 (ATCC CRL-11882 ™) healthy bone
marrow stromal cells. The LAMA-84 were grown in RPMI 1640 medium in which 10%
FBS and 1% penicillin / streptomycin were added, instead the HS-5 were grown in DMEM
medium also enriched with 10% FBS. and 1% penicillin/streptomycin. Co-cultures were
carried out in a 1:5 ratio (medium 1:5 DMEM high glucose/RPMI 1640) between HS-5 and
LAMA-84. After 24 h of treatment non-adherent cells (LAMA-84) were removed, whereas
HS5 were selected by their adherence to the plastic plates. Flow cytometry analysis was
performed for the evaluation of the purity of the cell (CD45+ cells for the LAMA84 and
CD45- for the HS5). Both cell lines were incubated at 37 ◦C in a humid atmosphere with 5%
CO2 [41–43]. The experiments were performed on both single cell lines and co-cultures of
stromal cells and chronic myeloid leukemia cells.

2.2. XTT Assay

XTT (Sigma) is a colorimetric assay based on the reduction of 2,3-bis (2-methoxy-4-
nitro-5-Sulfophenyl)-5-[(phenylamino) carbonyl]-2Htetrazolium ydroxide) in formazan, a
water-soluble compound of orange color directly quantifiable by the spectrophotometer.
The reduction of XTT occurs inside the cell and is operated by enzymes, therefore it
requires metabolically active cells. Cells were seeded in 96-well plates (2 × 104 cells/mL
HS-5; 1 × 105 cells/mL LAMA84) and incubated using dasatinib at a concentration of
1 nM for 48 hrs on both monoculture and co-culture cell lines. Furthermore, cell viability
was also measured after pretreatment with IGFBP-6 or purmorphamine (a smoothened
(Smo) receptor agonist and activates the Hedgehog pathway, PMO) 1 µM for 24 hrs and
subsequent treatment with dasatinib 1 nM for further 48 hrs. At the end of the incubation,
25 µL/well of XTT were added and incubated for 4 hrs. Subsequently, the absorbance
was measured at 450 nm (reference wavelength) with a Multiskan SkyHigh Microplate
Specrophotometer plate reader (Thermo Fisher Scientific, Milan, Italy).

2.3. Western Blot Analysis

Western blot analysis was performed on HS-5, LAMA-84 in monoculture and on
single cell lines that were co-cultured with each other. The cells were lysed in cold saline
phosphate buffer containing 1% of Triton X-100. The total protein content was quantized
and an equal amount of 50 µg protein for each sample is denatured for 5 min in Laemmli’s
buffer. The separation of proteins was performed by electrophoresis using a 12% polyacry-
lamide gel (Mini Protean II System, Bio-Rad, Herts, UK) followed by the electro-transfer of
proteins onto the nitrocellulose membrane. Subsequently, the membranes were blocked
using Odyssey Blocking Buffer (Licor, Milan, Italy) for one hour at room temperature. After
blocking the nonspecific sites, the membranes were washed three times with phosphate
saline buffer (PBS) for 5 min and incubated overnight at 4 ◦C with the following primary
antibodies resuspended in Odyssey Blocking Buffer: anti-IGFBP-6 (1:500, abcam), anti-β-
Actin (1:5000, abcam), anti-α-SMA (1:500, abcam). After incubation the membranes were
washed three times with 0.1% PBS with Tween for 5 min and subsequently incubated with
secondary infrared anti-mouse (Alexa Fluor 488) and anti-rabbit (Alexa Fluor 620) antibod-
ies resuspended in Odyssey Blocking Buffer for one hour. The bands were visualized using
the Odyssey Infrared Imaging Scanner instrument (Licor, Milan, Italy) and the protein
levels were quantified by densitometric analysis using the ImageJ software. Data were
normalized on β-actin expression levels [44–46].
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2.4. Immunofluorescence

Immunofluorescence was performed on cells previously fixed in 4% paraformalde-
hyde, permeated with 0.1% Triton 100X and incubated in block solution (10% normal goat
serum, NGS, 0.1% Triton 100X in PBS) for one hour at room temperature [47–49]. The
samples were incubated overnight at 4 ◦C with the following antibodies diluted in PBS:
anti-IGFBP-6 (1:100, Abcam). After incubation, the samples were washed and incubated
for one hour at room temperature with the specific secondary fluorescent antibody for each
primary antibody used. The nuclei were labeled with 4′,6-diamidino-2-phenylindole (Dapi,
1:1000, Cat#: D1306, Invitrogen) for 5 min at room temperature. The slides were mounted
using the Permafluor fluorescent mounting medium (ThermoScientific) and the digital
images were acquired using the Leica DM IRB fluorescence microscope or the Leica TCS
SP8 confocal microscope (Leica Microsystems, Buccinasco, Milano, Italy).

2.5. RT-PCR Analysis

Cellular RNA was extracted according to the Trizol protocol (Thermofisher scien-
tific) [50–52]. The cDNA was synthesized by reverse transcription of 1 µg of total RNA
using the Applied Biosystem reverse transcription kit (Foster City, CA, USA). The expres-
sion levels of IGFBP-6, SIRT1, PGC1a, TGF-β, IFNg, SHH, TLR-4 were evaluated (Table 1).
For each sample, gene expression levels were normalized using β-actin expression levels.

Table 1. Primers.

Gene of Interest Forward Primer (5′ → 3′) Reverse Primer (5′ → 3′)

SIRT1 AGGCCACGGATAGGTCCATA GTGGAGGTATTGTTTCCGGC
PGC1α ATGAAGGGTACTTTTCTGCCCC GGTCTTCACCAACCAGAGCA
TGF-β CCCAGCATCTGCAAAGCTC GTCAATGTACAGCTGCCGCA
IFNγ TGAATGTCCAACGCAAAGCA CGACCTCGAAACAGCATCTGA

IGFBP-6 CCTGCTGTTGCAGAGGAGAAT CTCTGCGGTTCACATCCTGT
SHH GCGAGATGTCTGCTGCTAGT TTACACCTCTGAGTCATCAGC
TLR4 AAGCCGAAAGGTGATTGTTG CTGAGCAGGGTCTTCTCCAC
βActin CCTTTGCCGATCCGCCG AACATGATCTGGGTCATCTTCTCGC

2.6. Statistical Analysis

Statistical analysis was performed using Prism Software using two-tailed unpaired
Student’s t test for comparison of n = 2 groups. Comparisons of n > 2 groups were per-
formed using a one-way ANOVA and Holm-Sidak’s multiple comparisons test. (Graphpad
Software Inc., California, USA, RRID: rid_000081). Data are expressed as mean± SD, unless
otherwise stated. For all statistical tests, p values < 0.05 were considered statistically signifi-
cant.

3. Results
3.1. Dasatinib Exposure Does Not Affect LAMA-84 Cell Viability in Coculture with Human
Mesenchymal Stem Cells (HS-5)

To test in vitro sensitivity to dasatinib, LAMA-84 alone or in co-culture with HS-5
cells were treated at 1 nM for 48 hrs and cell viability by using XTT assay was measured.
In particular, as shown in Figure 1A,B, the HS-5 cell proliferation rate was not affected
after dasatinib exposure compared to LAMA-84 alone (Figure 1A,B). On the contrary, by
performing XTT in LAMA-84 cocultured with HS-5, decreased cell viability appeared in
LAMA-84 cells (Figure 1C). More specifically, to evaluate which molecular pathway allows
HS-5 to be less sensitive to treatment and to investigate in depth the phenotype into which
they may be polarized alone or in coculture with LAMA-84, levels of in the SIRT1, PGC1α,
TGF-β and IFN-γ gene expression profile were measured. Surprisingly, the downregulation
of SIRT1 associated with the decreasing PGC1α trend (Figure 1D,E), suggests a potential
decrease in mitochondrial biogenesis also associated with a metabolic switch towards a
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more glycolytic one. Moreover, the increase in TGF-β and IFN-γ levels confirmed HS-5
polarization toward a pro- inflammatory CAF phenotype (Figure 1F,G).
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Figure 1. Cell viability of HS−5 (A), LAMA−84 (B) and LAMA−84 in coculture with HS−5 (C) after
treatment with 1 nM dasatinib. Relative expression of SIRT-1 (D), PGC1a (E), TGF-β (F) and INFγ
(G) in HS−5 in coculture with LAMA−84 compared to HS−5 in monoculture. * p < 0.1; ** p < 0.01;
**** p < 0.0001.

3.2. Dasatinib Increases IGFBP-6 Levels in Coculture Conditions and Pre-Treatment with IGFBP-6
Leads to Increased Cell Viability in LAMA-84 Cells

We first assessed the effects in HS-5 cells of dasatinib treatment. We finding an IGFBP-6
mRNA expression levels increase in HS-5 previously cocultured with LAMA-84 compared
to HS-5 alone and untreated cocultures (Figure 2A). Following this finding, western blot
analysis showed increased IGFBP-6 protein expression levels in HS-5 previously cocultured
with LAMA-84 (Figure 2B). Similarly, the IGFBP-6 mRNA expression profile in LAMA-84
cells was increased after coculture with HS-5 (Figure 2C). Regarding LAMA-84, it was
demonstrated a striking increase in IGFBP-6 protein expression when in coculture with
HS-5 after dasatinib treatment (Figure 2D). By performing immunofluorescence analysis, it
was confirmed that IGFBP-6 levels were higher in LAMA-84 in coculture with HS-5 than in
LAMA-84 alone (Figure 2E).
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Figure 2. Relative expression of IGFBP6 transcript (A) and protein (B) in HS−5 cells coculture with
LAMA−84 versus HS−5 monoculture after treatment with dasatinib 1 nM. Relative expression of
IGFBP6 transcript (C) and related protein (D) in LAMA−84 in coculture with HS−5 compared to
LAMA−84 in monoculture after treatment with dasatinib 1 nM. (E) Immunofluorescence analysis
of IGFBP6 (IGFBP6 in red, nucleus in blue) in LAMA−84 in coculture with HS−5 compared to
LAMA-84 in monoculture after treatment with dasatinib. * p < 0.05; ** p < 0.01; *** p < 0.001.

3.3. Pre-Treatment with IGFBP-6 Increases SHH Expression Levels in Coculture Models and
Activates TLR-4 Signalling

As shown in Figure 3A, after dasatinib exposure, SHH mRNA expression was up-
regulated both in HS-5 alone or in coculture with LAMA-84 and in LAMA-84 previously
cocultured with HS-5. These data were further confirmed measuring by qRT-PCR a SHH
mRNA upregulation in LAMA-84 cocultured with HS-5 (Figure 3B). To assess whether
the combination IGFBP-6-dasatinib had an additive effect on SHH expression, both HS-5
and LAMA-84 monocultures and HS-5 cocultured with LAMA-84 were pre-treated with
IGFBP-6 followed by dasatinib. This treatment led to an increase in SHH gene expression
levels, markedly in HS-5 previously cultured with LAMA-84 (Figure 3C), as well as in
LAMA-84 previously cultured with HS-5, especially after dasatinib exposure (Figure 3D).
By performing immunofluorescence analysis in LAMA-84 alone or cocultured with HS-5, it
was confirmed the SHH pathway activation. Indeed, Gli1 levels in LAMA-84 previously
cultured with HS-5 were increased compared to LAMA-84 alone (Figure 3E). Furthermore,
to evaluate whether dasatinib alone or in combination with IGFBP-6 may influence HS-5
phenotype, alone or in coculture with LAMA-84, western blot analysis of α-SMA protein
expression was performed in the coculture models. As a demonstration of cell conditioning,
the α-SMA protein raised expression levels under both conditions, especially in HS-5
previously cocultured with LAMA-84 pre-treated with IGFBP-6 and later with dasatinib
(Figure 3F,G). Surprisingly, TLR-4 protein expression was upregulated in HS-5 previously
cultured with LAMA-84, pre-treated with IGFBP-6 and later exposed to dasatinib. More-
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over, significantly increased TLR-4 protein levels were found in HS-5 previously cocultured
with LAMA-84 and treated with only IGFBP-6. Finally, TLR-4 overexpression was also
found in HS-5 cocultured with LAMA-84 with or without IGFBP-6 pre-treatment while
TLR-4 downregulation was found in HS-5 pre-treated with IGFBP-6 and subsequently with
dasatinib, compared to HS-5 alone treated with dasatinib only (Figure 3F–H).
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Figure 3. Relative expression of SHH transcript in HS−5 (A) and LAMA−84 (B) in coculture, with
or without 1 nM dasatinib. Relative expression of SHH transcript in HS−5 (C) and LAMA−84
(D) in coculture, with or without IGFBP6 and dasatinib 1 nM. Immunofluorescence analysis of the
expression of Gli1 in LAMA−84 in coculture with HS−5 in the presence or not of dasatinib 1 nM
(E). Relative expression of aSMA and TLR4 protein in HS−5 in coculture with LAMA−84 with or
without pretreatment with IGFBP6 compared to HS−5 in monoculture with or without pretreatment
with IGFBP6 (F–H) (* p < 0.1; ** p < 0.01; *** p < 0.001; **** p < 0.0001).

3.4. The IGFBP-6-Dasatinib Combination Treatment Increases HS-5 Inflammatory State

To evaluate the effect of dasatinib alone or in combination with IGFBP-6 on mesenchy-
mal stromal cells inflammatory state, TGF-β and IFN-γ mRNA expression levels were
evaluated. After 48 h of dasatinib exposure, HS-5 in coculture with LAMA-84 showed
TGF-β and IFN-γ mRNA upregulation compared to HS-5 alone (Figure 4A,B). Furthermore,
HS-5 previously cocultured with LAMA-84 and pre-treated with IGFBP-6 showed TGF-β
and IFN-γ mRNA increase compared to HS-5 in monoculture (Figure 4C,D).
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3.5. The IGFBP-6 + Dasatinib Combination Treatment Increases LAMA-84 Inflammatory State
and Activates TLR-4 Signalling

To evaluate whether dasatinib may also affect the LAMA-84 inflammatory state as
described for HS-5 (see above), LAMA-84 alone or in coculture with HS-5 were treated
with dasatinib at 1 nM for 48 hrs. After this time, TGF-β and IFN-γ mRNA expression
levels were measured and while TGF-β was significantly increased in LAMA-84 cocultured
with HS-5, IFN-γ levels increased in both LAMA-84 alone and in coculture with HS-5 after
dasatinib treatment (Figure 5A,B). As shown in Figure 5C, TGF-β levels were also increased
in LAMA-84 in coculture with HS-5 and IGFBP-6 pre-treated compared to LAMA-84 alone
without IGFBP-6 pre-treatment. Furthermore, IGFBP-6 + dasatinib combination treatment
results in a significant increase in IFN-γ levels in LAMA-84 alone compared to LAMA-84
treated with IGFBP-6 only (Figure 5D). In addition, TLR-4 mRNA expression levels were
higher in LAMA-84 in coculture with HS-5 treated with dasatinib than in both LAMA-
84 alone treated or not with dasatinib (Figure 5E). IGFBP-6 pre-treatment subsequent to
dasatinib treatment led to increased TLR-4 expression levels in LAMA-84 cocultured with
HS-5 compared to LAMA-84 in co-culture treated with IGFBP-6 only. Moreover, increased
TLR-4 mRNA levels were observed in LAMA-84 monoculture pre-treated with IGFBP-6
(Figure 5F). Finally, these data were confirmed by western blot analysis, showing that
TLR-4 protein expression was higher both in LAMA-84 previously cocultured with HS-5
treated with IGFBP-6 in combination or not with dasatinib compared to LAMA-84 alone or
untreated cocultures (Figure 5G).

3.6. IGFBP-6 Rescues LAMA-84 Cell Viability after Dasatinib Exposure

To evaluate the impact of IGFBP-6 and PMO on LAMA-84 cell viability, cell cultures
were pre-treated with both molecules and later treated with dasatinib. Interestingly, LAMA-
84 showed an increase in cell viability compared to LAMA-84 treated with dasatinib alone,
conferring a protective role of IGFBP-6 and PMO against dasatinib exposure (Figure 6).
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4. Discussion

The bone marrow microenvironment is a highly complex tissue, containing many
cell-type such as mesenchymal stromal cells, osteoblasts, osteoclasts, endothelial cells, and
neural cells interacting with healthy hematopoietic stem cells through different molecules
and signalling pathways [30–32,53–55]. As reported by previous studies, drug resistance
and disease progression are deeply related to the tumor microenvironment and more
specifically to the stromal counterpart [56,57]. Our experiments demonstrated that cells
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HS-5 are not affected by dasatinib treatment as compared to LAMA-84, which, in turn,
show higher sensitivity when in monoculture than in co-culture with HS-5, confirming
that the stroma could play a key role in CML dasatinib resistance. The cross-talk between
CML-LSCs and the bone marrow microenvironment is mediated by several molecules via
both paracrine and autocrine mechanisms. Among these molecules, a fundamental role
in tumor progression is played by IGFBPs. Several studies showed that IGFBPs can bind
their specific receptors and activate signalling pathways which, in turn, modulate several
cellular processes [58].

Since our data showed that co-culture between HS-5 and LAMA-84 leads to an increase
in the IGFBP-6 both mRNA and protein expression levels and that LAMA-84 cell viability
was higher after IGFBP-6 and dasatinib treatment than in LAMA-84 with dasatinib alone,
we propose that IGFBP-6 could be involved in CML cell lines’ resistance mechanisms
rescuing them from apoptosis. However, future studies will be needed to confirm our
data in other CML models. It is well known that, in several tumor types, progression and
resistance to the most common therapies are due to the pivotal role played by CAFs [59],
which in turn promote cancer cells growth and invasion through extracellular matrix soluble
factors secretion, tumor cells physical interactions, angiogenesis regulation, immunity and
metabolism regulation as well. Treatment with IGFBP-6 determines the development
of a pro-inflammatory CAF phenotype in HS-5 as demonstrated by α-SMA, FAP1 and
TGF-β protein levels increase and MMP9, MMP2, CHI3L1, and TIMP2 release into the
extracellular environment. In the last few years, Sonic-Hedgehog (SHH) signaling has been
recognized as an important pathway for promoting tumor progression and by now it is
widely recognized as a therapeutic target [60,61]. In Mammals, SHH pathway transcription
factors are associated with glioma-associated oncogene (Gli), and have three homologs,
Gli1, Gli2, and Gli3; in particular, Gli1 target genes identification allowed us to understand
the involvement of this gene in the proliferation, apoptosis, cell adhesion, angiogenesis
processes, and metastatic potential as well [27,62,63].

As previously reported, CML cells show increased SHH signaling pathways players,
making them ideal candidates for leukemia development [64]. Since SHH inhibition doesn’t
affect physiological hematopoietic stem cells and can inhibits leukemic stem cells, exposure
of CML leukemic stem cells to cyclopamine (SHH signaling inhibitor, CYC) reduces their
number and inhibits their growth [65–67].

The experiments described here, allowed us to demonstrate that IGFBP-6 trigger SHH
activation in HS-5, as suggested by the increase in Gli1 levels; moreover IGFBP-6 and SHH
in HS-5 lead to α-SMA and TGF-β increase with the subsequent MMP9, CHI3L1 and TIMP2
release into the extracellular environment, confirming that both molecules are involved
in the transformation processes of stromal cells into CAF with specific pro-inflammatory
phenotype. The data obtained so far, allowed us to speculate that both IGFBP-6 and SHH
determine HS-5 transformation into CAF and that combining dasatinib with IGFBP-6,
α-SMA levels in coculture increase and this is more marked only in HS-5 previously co-
cultured with LAMA-84 and pre-treated with IGFBP-6, this in turn suggesting the latter
contributes substantially to the activation of the CAF phenotype. Furthermore, increased
SHH levels in HS-5 are due to both co-cultures and dasatinib treatment. Interestingly,
dasatinib treatment of HS-5 previously co-cultured with LAMA-84 and treated with IGFBP-
6 showed higher SHH levels suggesting intimate relation between these two pathways.
Similarly, also LAMA-84 previously co-cultured with HS-5 showed higher SHH levels after
dasatinib treatment and this increase is highlighted by IGFBP-6 pre-treatment and later
with dasatinib. Notably, co-culture without any other treatment increases the inflammatory
state, and it may well contribute to creating an optimal environment promoting cancer
progression. Since inflammation is one of the factors involved in the tumorigenesis process,
and TLR-4 represents the most studied pathway, several authors have shown that TLR-4
activation leads to IL-8 and IL-6 increased expression in breast cancer, also associated with
VEGF and TGF-β increased expression in prostate cancer, in which their overexpression is
also very often associated with poor prognosis [68].
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5. Conclusions

This study shows that both co-culture and dasatinib administration induce an inflam-
matory state in both HS-5 and LAMA-84 cell lines, as demonstrated by TGF-β and IFN-γ
increase. Moreover, IGFBP-6 pre-treatment augments this phenomenon suggesting that
IGFBP-6 may confer resistance through the inflammatory processes activation as confirmed
by TLR-4 modulation in both HS-5 and LAMA-84 after IGFBP-6 and dasatinib treatment
(Figure 7). The same TLR-4 modulation was observed after HS-5 treatment with PMO, in
combination or not with CYC, suggesting that SHH directly modulates TLR-4. Our data
also demonstrate that HS-5 treatment with PMO induces a significant overexpression of
IGFPB-6. These findings, taken together with those previously reported that HS-5 treatment
with IGFBP-6 induces an increase in SHH demonstrate that SHH and IGFBP-6 modulate
each other. In addition, IGFBP-6 is involved in the modulation of TLR-4, as demonstrated
after HS-5 treatment with IGFBP-6, CYC, and their combination, thus suggesting that the
two pathways are interconnected with each other and with the TLR-4 pathway [40]. Finally,
IGFBP-6 and /or PMO pre-treatment, resulting in a rescue of LAMA-84 cell viability after
dasatinib treatment compared to those treated with dasatinib alone, may suggest that both
IGFBP-6 and SHH are involved in resistance mechanisms induced by TLR-4 modulation.
In conclusion, IGFBP-6 and SHH pathways may be considered as potential candidates for
therapeutic interventions and could lead to new targeted strategies, aiming to overcome
resistance to TKi, although the underlying resistance mechanisms to these drugs are not
yet fully understood and require further investigations.
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