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Abstract: Today’s healthcare facilities require new digital tools to cope with the rapidly increasing
demand for technology that can support healthcare operators. The advancement of technology is
leading to the pervasive use of IoT devices in daily life, capable of acquiring biomedical and biometric
parameters, and providing an opportunity to activate new tools for the medical community. Digital
twins (DTs) are a form of technology that are gaining more prominence in these scenarios. Many
scientific research papers in the literature are combining artificial intelligence (AI) with DTs. In this
work, we propose a case study including a proof of concept based on microservices, the heart DT, for
the evaluation of electrocardiogram (ECG) signals by means of an artificial intelligence component.
In addition, a higher-level platform is presented and described for the complete management and
monitoring of cardiac pathologies. The overall goal is to provide a system that can facilitate the
patient–doctor relationship, improve medical treatment times, and reduce costs.

Keywords: digital twin; heart pathologies; smart healthcare; IoT sensors; microservices; deep learning

1. Introduction

Modern healthcare faces several challenges due to the increasing demand for health-
care services. This demand is driven by the growing volume of patient data, the continu-
ously evolving technological capabilities, and the need for rapid and efficient healthcare
processes and systems.

According to a 2019 study [1], over the last decade, the healthcare information technol-
ogy market has significantly expanded along with the focus on remote health-monitoring
techniques adopting wearable devices, usually defined as IoT health sensors, connected to
the internet. This growth trend is further highlighted by the recent health crisis caused by
COVID-19. In fact, further studies [2] predict that the wearable medical devices market
will be worth USD 50 billion by 2026.

Smart healthcare is the term that identifies the set of modern technologies and ap-
proaches used to address healthcare challenges.

Platforms that allow for the collection of medical data are considered to be essential
components of smart healthcare, and they are used to develop end-user solutions, such as
web or mobile applications.

The main implementation aspects that the new intelligent health services platforms
must guarantee are:

• Data acquisition: the way in which medical data is acquired from various IoT sensors;
• Data storage: innovative methodologies for long-term storage of all medical data from

various patients which allows for immediate and resilient access to the information;
• Data processing: algorithms that allow for validation and real-time data prediction

through the use of machine learning techniques;
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• Data sharing and visualization: creation of dynamic dashboards that optimize the
use of previously processed information and allow sharing the information with
other systems.

The currently available tools are effective for processing data, but lack homogeneous
infrastructural organization, which may provide a centralized solution to the encountered
issues. An efficient system may reduce costs and improve services by minimizing errors [3].

In this paper, we propose the use of digital twins (DTs) to solve various problems; in
particular, we use DT technology in the classification of cardiac pathologies through the
ECG signals. The main objectives, which also represent the novelty of this paper compared
to the state of the art described in Section 2, are as follows:

• The implementation of a case study including a proof-of-concept of a heart DT based
on microservices architecture characterized by an artificial intelligence component
(studied and presented in [4,5]) is provided;

• The proposed heart DT architecture collects several input signals, such as ECG signal,
blood pressure, pulse, and blood oxygen saturation. In particular, real-time ECG data
recorded by a smartwatch is analyzed and validated through an inference process on
a pre-trained model;

• An extension of this study, a higher-level platform for disease management and
monitoring is presented, in particular we focused on a specific cardiac pathology,
i.e., ACS.

The rest of the paper is structured as follows: Section 2 provides an overview of
the state of the art regarding DT-based systems applied to healthcare, with particular
attention to cardiovascular diseases analyzed through ECG signals. The architecture and
implementation of the heart DT is described in Section 3. The setup description of the heart
DT is conducted in Section 4. This section outlines the structure of an ECG signal, the pre-
trained network model with a dataset containing normal ECG signals and those affected by
cardiac pathologies, the real-time ECG signal acquisition system, and the obtained results.
In Section 5, a higher-level platform is contextualized, which allows for the integration of
different DTs, each for a specific organ, defined as Organ DT, to classify a specific pathology.
Section 6 provides an example on how the platform can be utilized to address a particular
cardiac pathology. Finally, Section 7, the comparison of the research present in the state of
the art and the heart DT proposed in this paper has been provided.

2. Related Work

The concept of DTs have been investigated in different fields of research for several
years now. However, they are currently gaining increasing importance, and were the
third-highest trending technology in 2020 according to the IEEE Computer Society [6].

The key elements of DTs are the physical component, the digital component, and the
communication link between them, involving bidirectional communication to keep the two
mirror elements constantly updated. The digital counterpart is the element that allows to
increase the capabilities of a normal physical object or system by adding, for example, an
AI component.

In general, DTs are employed in many sectors, including the manufacturing industry [7,8],
and in energy production [9,10], agriculture [11], transportation [12], and many others [13,14].
Due to their multiple application possibilities and their ability to improve the efficiency
and effectiveness of processes and systems, it is expected that their use will be sustained in
the future.

Particular attention is paid to the application of this technology in the healthcare
field [15–17]. It is considered that by applying such technology it is possible to provide
doctors with a valuable tool to analyze data in real time, monitor patients’ conditions, and
prevent possible diseases by correlating the obtained information with AI techniques [18,19].

In the medical field, DTs can be used to simulate the behavior of organs, tissues,
or parts of the human body [20]. These models can be used to improve the current
understanding of diseases, predict possible complications, and develop new therapies. For
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example, a DT that replicates the cardiovascular system can be used to simulate synthetic
photoplethysmogram (PPG) data to evaluate blood flow and pressure, as well as to predict
possible obstructions and arteriosclerosis [21], thus assisting doctors in making decisions
concerning the most suitable treatment for the patient.

Another example of the use of DTs in medicine concerns the design of customized
prostheses and medical devices [22]. DTs can also be used for simulations of complex
surgical procedures [23], analysis of medical device performance, and disease prevention
through the collection and analysis of patient data.

The use of DTs in the medical field is not only aimed at the services provided by the
healthcare facility, but also to optimize the structure itself, as described by Karakra et al. [24],
where a tool is proposed to evaluate the efficiency of healthcare services in real time using
predictive analysis. There are other papers that focus on assisting the elderly [25] and
systems for detecting ischemic heart disease (IHD) [26]. Finally, some papers aim at
analyzing healthcare assistance based on the metaverse [27].

Among the various application contexts discussed, extensive studies have focused on
the use of DTs in the cardiac field, which is also the subject of the current research. In fact,
it is well known that there are some pathologies, such as myocardial infarction, which—if
properly monitored—could decrease the mortality rate [28].

As proposed by Gillette et al. [29] cardiac digital twins (CDTs) may be used as
digital replicas of patients’ hearts, thus assisting in clinical decision making and testing of
new therapies.

A study proposed by Bodin et al. [30] focuses on the use of computer graphics to
visualize the electrical activity of the heart using a voxel representation of a 3D heart model
and a spring voxel as a unit volume. The paper also discusses the process of voxelization
and the use of mathematical models for visualization based on the Aliev–Panfilov model.
The possibility of presenting ischemic myocardial damage using the developed model is
also considered.

Similarly, a study proposed by Martinez-Velazquez et al. [26] describes the architecture
referred to as the cardio twin, designed to detect IHD and prevent heart problems such
as ischemia and stroke. The technology uses a classification algorithm, known as the
convolutional neural network (CNN), trained on data from the “PTB Diagnostic ECG
Database” in Physio Bank. Each patient data sample was divided into 2.5 s windows for
training, and the model achieved an accuracy of 85.77%. The platform was designed to
operate entirely at the edge of the network in a possible future.

The study proposed by Elayan et al. [31] implements a DT framework for intelligent
healthcare systems by monitoring patient’s health status and constructing an ECG cardiac
rhythm-classification model to diagnose heart diseases and detect heart problems. The
proposed framework integrates DTs with the healthcare sector, thus improving health-
care processes and contributing to creating a complete and scalable intelligent healthcare
ecosystem with the aim of promoting health, increasing life expectancy, reducing healthcare
costs, and addressing many healthcare problems and challenges. In addition, an ECG
signal classifier is implemented based on various machine learning (ML) and deep learning
(DL) techniques for continuous monitoring and detecting cardiac anomalies. Experimental
results show that DL-based systems (CNN and long short-term memory, LSTM) offer
better performance, and about 96–97% accuracy, than techniques based on ML (multilayer
perceptron (MLP), support vector classification (SVC), logistic regression (LR)).

Comparing the state of the art with real-life scenarios, the authors put forward the
following two key objectives:

The first objective of this study is to create an infrastructure for the heart DT capable of
operating with real-time data acquired from wearable devices such as smartwatches. These
smart devices provide us with data related to blood oxygen saturation, blood pressure,
ECG, pulse, etc. In particular, this study focuses on the verification and validation of ECG
data, provided by smartwatch, using DL techniques. An inference will be made on the data
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using a pretrained neural network model with a dataset containing ECG signals related to
various cardiac pathologies.

The second objective is to place this approach in a broader context, in which the
patient’s health will be entirely monitored using different types of DTs, each characterizing
a specific organ.

3. Heart DT
3.1. Heart DT Architecture and Implementation

The creation of a heart DT involves the presence of various functional components
both in the digital and real world. The implementation of such a system requires the use of
technologies capable of making the entire system scalable, dynamic, and resilient. For this
reason, a modular approach was chosen, dividing the workflow into functional blocks.

The enabling technology combines microservices, which natively possess characteris-
tics that perfectly fit with the requirements of the heart DT architecture, such as scalability,
robustness, and isolation.

The following technologies were used for the development of the architecture:
Docker [32] as the execution environment for microservices, while Kubernetes [33] was
chosen for their orchestration.

The functional blocks for the implementation of the proposed architecture with the
corresponding software applications are described below.

Figure 1 provides a block representation of the proposed system.

Figure 1. Heart DT architecture.

The blocks described are, furthermore, all independent of each other and are activated
when an underlying block sends and schedules possible actions. Such a structure allows
for the creation of a dynamic and scalable heart DT that can host a large volume of data
and can interact with other elements. The workflow of the entire system is illustrated in
Section 3.2.

• Connector:
The connector block is responsible for establishing connections with the physical
world, allowing bidirectional data transfer. It is necessary to ensure connectivity
with various communication protocols such as HTTP, MQTT, etc., and guarantee
the safety of communications so as not to invalidate data and adapt the data format
to the platform. The platform is designed to have a single endpoint, i.e., a single
IP address that all sensors point to. There are proxy policies in place that allow
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for discrimination of the respective connector based on the path. If communication
requires higher level of security, such as control of actuators, VPN tunnels will be
established within the connector block to ensure the highest level of security. This
architecture respects all principles of GDPR. This block consists of two PODs (PODs
are the smallest deployable units of computing that you can create and manage in
Kubernetes, https://kubernetes.io/docs/concepts/workloads/pods/, accessed on
19 April 2023) that establish the connection with the outside world. In particular, there
may be a POD that implements a REST API server for the acquisition of biomedical
data from the physical world, and a second POD that passes this information to
the higher-level blocks. In this scenario, since the implementation in the physical
world is not expected, we do not find any POD that schedules commands to any
actuators. SERVICES are configured to expose services outside the Kubernetes cluster
via NodePort.

• Data Acquisition:
The data acquisition block is responsible for acquiring the data, it filters and prepro-
cesses the data before storage. At the implementation level, there is a need to manage
various PODs for filtering and preprocessing raw data. In particular, the first POD
is set up to communicate with the connector block, the second POD performs data
resampling, and the third POD extracts a specific time window. At the end of these
processes, the data is sent to the database in a specific previously defined format.

• Storage:
The storage block contains a database that stores the acquired data. This is useful
because many applications need to have a significant amount of historical data for
better analysis. This block contains three PODs: the first POD runs a database instance
(such as mysql), the second POD performs queries such as inserting and extracting data
from it, whereas the third POD communicates with the other blocks. Implementing
this block requires configuring a Volumemounts to ensure data consistency in the
event of an abnormal system shutdown.

• Agent:
The agent block is the main element responsible for starting (according to specific
policies) the inference process to validate the data extracted from the database. Further-
more, once the output from the validation is obtained, it is used to send commands to
the physical world or share the information with other elements. The implementation
of this block requires the development of various PODs: a POD that manages the time
and schedule of all operations, a POD that extracts data from the database, a POD
that passes this information to the AI process block, and a POD that interacts with the
policy and implementation blocks.

• AI process:
The AI process block is responsible for validating the real-time data previously cap-
tured through the inference process. At the implementation level, this block consists
of a POD that receives data from the agent and another POD that performs inference
and returns the result. The latter POD contains the trained neural network model.

• Policy:
The policy block is responsible for defining the boundaries that the processed data and
information must have, specifying the limits within which it is or is not possible to
pass certain information, thus avoiding modifying certain parameters beyond certain
thresholds.
This block consists of a POD containing a descriptor, listing all the information-sharing
policies and thresholds for implementing actions, through actuators, in the real world.

• Implementation:
The implementation block is responsible for executing, with the authorization of the
policy block, the corrective actions suggested by the agent or other DTs to the actuators.
The implementation block also manages connections with actuation devices operating
in the physical world, and adapts the information from higher-level components to

https://kubernetes.io/docs/concepts/workloads/pods/
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the physical devices. The implementation takes place through a POD that defines
specific operations and commands to be scheduled in real devices; for this reason, its
implementation depends on specific cases.

• Sharing:
The sharing block allows the sending and receiving of information from other elements,
particularly by exposing a REST API server. This provides an endpoint through which
it is possible to contact and be contacted for data and information exchange. This
block consists of a POD that implements a REST API server to expose communication
interfaces to other objects.

3.2. Heart DT Workflow

The architecture introduced above, illustrated in Figure 2, describes the follow-
ing workflow.

Data from IoT sensors, such as ECG, pressure, and pulse, are acquired and sent to
the connector (1), which forwards them to the data acquisition stage (2). The latter, after
performing normalization operations, inserts the filtered data into the database (3). The
agent block, at certain fixed periods set during the configuration phase, start the validation
process: specifically, the previously input data are extracted from the database (4) and
passed to the AI process block (5), which perform inference on it.

As a result of this last process, certain actions are decided upon, but these are first
screened by the policy block (6). Once consent is obtained from the policy block, information
can be shared with other elements through the sharing block (7) or commands can be
scheduled to the physical world through the Implementation block (7). The latter interacts
with the Connector block (8) to forward the command to the actual device (9).

Figure 2. Heart DT workflow.

4. Testbed Setup of Heart DT

In this section, the authors use the architecture introduced in Section 3.1 to implement
the heart DT based on ECG signals. The authors selected a smartwatch capable of recording
ECG signals instead of specific medical devices to ensure ease in taking measurements. The
proof of concept was carried out by identifying two healthy subjects (normal heartbeats),
a man and a woman, and recording their ECGs. The subjects were given two identical
smartwatches, namely two Samsung Galaxy Watch 5, with an ECG signal-sampling rate of
500 samples per second. The authors denominated the two observed subjects as Patient A
and Patient B.

Section 4.1 provides a brief description of the structure of the ECG signal. The neural
network model used to perform real-time data inference is described in detail in Section 4.2.
Finally, Section 4.3 assesses the overall performance of the inference process.

4.1. ECG Signal Background

ECG represents the electrical activity of the heart during its regular operation. Figure 3
shows the most significant elements of an ECG signal.
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• The P wave is the first wave that occurs in the ECG cycle and represents atrial depo-
larization, commonly referred to as “atrial contraction”;

• The T wave represents ventricular depolarization or more commonly denominated
“ventricular relaxation”;

• The Q, R, and S waves form the so-called QRS complex that represents ventricular contraction.

Figure 3. Single ECG signal.

Commonly, ECG is used to diagnose heart diseases [34].
In the literature, there are public datasets containing ECG signals of normal beats and

beats related to different types of heart pathologies. Thus, Section 4.2 illustrates the dataset
used for training the neural network.

4.2. ECG Datasets and Pre-Trained CNN Model Description

The dataset used for training the neural network was derived from the combination
of two public datasets: the MIT-BIH Arrhythmia Dataset [35,36] and the MIT-BIH Atrial
Fibrillation Dataset [37]. The first dataset contains ECG recordings of 47 subjects for a
total of 48 ECG recordings each lasting 30 min. The recordings refer to different types of
cardiac pathologies: normal sinus rhythm (N), paced rhythm (P), atrial fibrillation (AFIB),
ventricular bigeminy (B), and sinus bradycardia (SBR). The recordings were digitized at
360 samples per second over a range of ±10 mV.

The second dataset consists of 25 ECG recordings of subjects with atrial fibrillation, in
particular, AFIB, AFL, J (AV junctional rhythm), and N (used to indicate all other rhythms).
Each recording has a duration of 10 h, and the signals were sampled at 250 samples within
an interval of ±10 mV.

The combination of the two datasets is performed by preanalyzing the data, since the
recordings, for each dataset, were made at a different sampling frequency ( fs). Therefore,
to combine the data, the original sequences were resampled at a frequency of fs = 1 kHz.

Regarding the heart disease classes, the only class that the two datasets have in
common is AFIB. To combine the two datasets uniformly, the N class related to MIT-BIH
atrial fibrillation and the AFIB class related to MIT-BIH arrhythmia was removed altogether.

Thus, the resulting classes from the combination of the two datasets are the following:

• N: normal sinus rhythm;
• P: paced rhythm;
• AFIB: atrial fibrillation
• B: ventricular bigemy;
• SBR: sinus bradycardia;
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• AFL: atrial flutter;
• J: junctional rhythm.

Figure 4 illustrates examples of two-second ECG recordings of each pathology.

Figure 4. ECG signal related to: (a) normal sinus rhythm and different type of diseases such as
(b) paced rhythm; (c) atrial fibrillation; (d) ventricular bigemy; (e) sinus bradycardia; (f) atrial flutter;
(g) junctional rhythm.

Subsequently, to train the neural network, each ECG recording is divided into 2 s segments
for each class. Considering that a resampling of the ECG sequences has been performed, the
input of the neural network consists of 2 s segments (equivalent to 2000 samples).

The number of 2 s ECG sequences for each class is as follows:

• N class, with 31,570 ECG recordings;
• P class, with 3608 ECG recordings;
• B class, with 1804 ECG recordings;
• SBR class, with 902 ECG recordings;
• AFIB class, with 150,157 ECG recordings;
• AFL class, with 2932 ECG recordings;
• J class, with 164 ECG recordings.

For the data, 70% (learning dataset) is used as input to the network for training, while
the remaining 30% (testing dataset) is used to test the accuracy of the previously trained
model. The architecture of the CNN network used in this study is detailed in the papers
by Avanzato et al. [4,5]. This network consists of 5 layers, and for each hidden layer, the
network includes a 1D convolution layer, batch normalization, RELU layers, and pooling
layers. For the output layer, we also have the softmax layer. Once extracted, the ECG
recordings are sent to the CNN network for classification of cardiovascular diseases (CVDs)
into the seven previously defined classes. The resulting model, which performs well as
illustrated by Avanzato et al. [5], can be used for inference on real ECG data recorded from
any type of wearable IoT sensor, after a short preanalysis of the data.

4.3. ECG Data Acquisition and Results

As previously mentioned, in order to validate the model described in Section 4.2,
real ECG recordings were acquired using two identical smartwatches with an ECG signal
sampling frequency of 500 samples per second. The recording campaign was carried out
on 2 healthy subjects (normal heartbeats) for a total of 4 recordings, each lasting 30 s.

For each patient, an instance of heart DT is executed. Once the data is acquired,
the data acquisition block performs a filtering and preprocessing phase of the data. In
particular, a resampling of the ECG signal is performed at a sampling frequency of
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fs = 1000 Hz to match the recorded signal to the signals that constitute the network model
(introduced in Section 4.2). Subsequently, each recording is divided into 2 s long sequences.

The two heart DTs, one for each patient, perform the inference process in the AI
process block with data from the smartwatches of the two patients.

The trends in Figure 5 show that the classification accuracy in the “Normal” class for
Patient A and Patient B improves as the analysis window (Wa [s]) changes. In fact, this
window is obtained using a post-processing filter called the “Recurrence Filter” [38]. Using
the latter, the obtained accuracy reaches 100% after about 24 s.

Figure 5. Classification accuracy in the “Normal” class for Patient A and Patient B as the analysis
window changes.

5. Organ DT Integration for Pathology Monitoring

As previously stated, DTs can virtualize the doctor–patient relationship, allowing
remote patient monitoring using real-time data and artificial intelligence to predict the
course of the disease.

The approach discussed in Section 3 can be replicated to implement other organs as
well, as suggested by Lombardo et al. [39]. The implementation of a DT for each organ
would provide the healthcare industry with additional tools for monitoring a pathology
that involves the analysis and correlation of physiopathological information related to
multiple organs of a single patient.

Furthermore, the DTs placed in a single platform can communicate with each other
and exchange information concerning a particular pathology: if necessary, DTs may be
aggregated differently to tackle the particular pathology.

Figure 6 shows the architecture of the suggested platform.
The platform, hereinafter referred to as pathology DTs monitoring platform (PDMP),

introduces a new type of a DT that is responsible for collecting and analyzing physiological
data from various organs in order to represent a specific pathology, the pathology DT.

In the Figure 6, the physical layer (PL) includes all healthcare data-acquisition devices,
such as blood pressure monitors, heart rate monitors, ECG systems, digital medical records,
etc. Moreover, it also includes devices that allow for active interaction with the surrounding
physical environment, such as, for example, insulin pump systems.
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Figure 6. Healthcare DT platform.

The virtual layer (VL) is composed of all the hardware and software components that
create the digital twin of the object in question. Two macro objects can be distinguished:

• Patients: As previously introduced, a patient is represented by various organ DTs that
cooperate with each other and exchange information with the pathology DTs. The
organ DT has full control over its corresponding real organ. Its main tasks are both to
predict abnormal behaviors that the real organ may encounter and to act on the organ
by commanding the related actuators. On the other hand, the pathology DT, having
a broader perspective and obtaining more information from individual organ DTs,
can operate at a higher level by monitoring specific diseases and preventing future
problems. They do not directly act on the real world but rather contact organ DTs
to make changes in the physical world. Both types of DTs require the presence of
an AI component, residing in the AI process block, for efficient monitoring. Many
approaches, such as CNN algorithms, require AI to be trained on specific datasets
to provide the most robust and accurate model possible. AI techniques, including
dataset training and model creation, are performed in the AI services to achieve greater
platform flexibility.

• AI services: correspond to the section where different AI algorithms reside. This
includes several instances, as each AI may require different datasets and processing
techniques. The idea is to have many active AI algorithms, which, after completing all
the training phases, can return the models. Whenever the organ DTs and pathology
DTs need to perform a data-validation process, such as through an inference process,
the AI process block downloads the appropriate previously trained model from the
reference AI instance. In this way, the data insertion, dataset training, and real-time
data-verification phases are completed independently of each other. If the dataset is
increased/varied with new data, a neural network retraining is performed within the
AI instance. This operation can be carried out without interrupting the execution of
the organ DTs and pathology DTs, which continue to monitor the patient.

In addition to the macro objects, we also determine all the interfaces that are used for
communication between the various objects present on the PDMP. In particular, these include:

• PL-ODT: an interface that connects the physical world with the virtual world and
allows bidirectional communication between them. All sensor detection data and all
directives to actuators pass through this interface.

• ODT-PDT: an interface that connects organ DTs with pathology DTs and allows
bidirectional communication between them. This interface conveys all the information
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that the various DTs must exchange with each other, such as anomalies recorded by
an organ that need to be communicated to pathologies, or any actions that pathologies
schedule for organs.

• ODT-AII: an interface that connects DTs with AI instances, allowing DTs to down-
load previously trained models. This interface is used when a DT needs to update
the model.

6. Organ DT Integration for Cardiac Disease Monitoring

CVDs, such as ACS, are the leading cause of death in the western world and account for
the majority of healthcare expenditure due to hospitalization, drugs, and outpatient services.
To minimize these costs, the government is promoting digitization in the healthcare sector
and DTs constitute a potential solution [40].

In this context, the PDMP platform could be used in scenarios where it is necessary to
both carry out a large-scale monitoring campaign and organize/collect a large amount of
data from several acute coronary syndrome (ACS) patients. Another use case is related to
the management of the postoperative phase where constant patient monitoring is necessary.
It can be managed remotely, reducing the length of stay in the healthcare facility and, at the
same time, reducing the posthospitalization costs.

The authors consider ACS pathology as a relevant case for the implementation of
PDMP. In order to model a patient affected by ACS associated with a myocardial infarction,
a doctor needs to evaluate information related to the patient’s health in a more general
context, which takes into account information concerning the condition of other organs,
such as the liver and pancreas, in the case the patient is affected by high cholesterol and/or
diabetes mellitus, respectively. Moreover, the course of the heart disease requires regular
monitoring of the lungs and blood oxygenation.

For this reason, in addition to the heart DT introduced in Section 3, other organ DTs,
including lung DT, have to be implemented in the platform.

In particular, a lung DT is to be implemented similarly to a heart DT, but the imple-
mentation differs mainly in two aspects: the first concerns the nature of the data, which in
this case are the saturation values, SpO2, recorded by the smartwatch, while the second
difference concerns the AI process block, which no longer implements inference logic for
data validation, but threshold algorithms are adopted for the validation of SpO2 values.

Figure 7 shows the previously introduced elements within the platform.
The threshold values [41] we have implemented in the Lung DT for classifying SpO2

values are:

• Threshold 1 [optimal]: SpO2 ≥ 96%;
• Threshold 2 [possible oxygenation problems]: 93% ≤ SpO2 ≤ 96%;
• Threshold 3 [insufficient oxygenation]: 90% ≤ SpO2 ≤ 92%;
• Threshold 4 [severe oxygen deficiency]: SpO2 ≤ 90%.

In addition to the various organ DTs, according to the PDMP it is necessary to develop
an ACS DT which represents the cardiac pathology that affects the patient. The DT block
characterizing the ACS DT is the related AI process, which, in this case, implements
multivariate AI algorithms considering data of a different nature. Along with the two organ
DTs (heart DT and lung DT) and the Pathology DT, in the AI SERVICES layer we have three
AI instances, one for each DT, responsible for training and releasing their respective models.

As shown in Figure 8, the heart DT and the lung DT assess the previously acquired data
according to their respective algorithms. Whenever an anomaly is detected, it is notified
to the ACS DT. The latter acquires data from the DTs of the connected organs and applies
multivariate AI algorithms to assess data by correlating different types of information.
Based on the result of this evaluation, the ACS DT determines whether it is necessary to
activate an ALERT, such as notifying the doctor, or to continue normal monitoring.
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Figure 7. ACS DT platform.

Figure 8. ACS platform workflow.

7. Discussion

In this section we will discuss and compare the state-of-the-art research on the topic
and the heart DT proposed in this paper.

Table 1 shows a comparison between our study and state of the art literature concern-
ing the use of DTs in healthcare, and DTs that exploit ECG signals to characterize the heart
(function, pathology, activity, etc.). In particular, the table compares the technology used,
the tasks the research papers address, challenges, and performance in terms of accuracy.
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Table 1. Comparison with the state of the art.

Ref. Technology Used Task Challenge Systems’ Accuracy [%]

[26] DT, IoT, ML-DL,
edge computing Detect IHD Implementing the

structure in the edge 85.77

[29] DT, DL, multi-label image
segmentation Replicas of patients’ hearts Three limitation -

[30] DT, Voxel, 3D Model
3D visualization of

electrical activity of the
heart

Visualization of the
condition of the heart -

[31] DT, IoT, ML-DL Heart disease recognition
Real-time data link and

integrates the model in the
framework

96–96

Our method DT, IoT, DL Heart disease recognition Data acquired from only
one organ 82.5–100

Although all papers referred to in Table 1 pertain to the cardiac field, most of the papers
differentiate from our study in the “Task” section. The only study we could compare our study
with is by Elayan et al. [31]. The comparison shows that our approach involves the use of
real-time ECG data (acquired from a smartwatch) and offers higher performance accuracy in
terms of the classification of ECG signals. In addition, we have introduced the platform in step
two to extend the treatment of patient health monitoring via additional data from other organs.

8. Conclusions

In this paper, the authors focused on the application of DT technology in the healthcare
sector. The study is divided into two parts. The first part introduces the creation of a Heart
DT, which is a dynamic and highly customizable system that can acquire, process, and
analyze vital data from sensors in the physical world. With its ability to communicate and
interact with other elements, the heart DT can play a key role in monitoring and treating
cardiac conditions, promoting better health care and patient wellbeing. The heart DT was
developed using microservice-based logic and is run in a Kubernetes environment. The
structure of the heart DT consists of several modules that process real-time data from the
smartwatches. Before being used for data validation, the acquired ECG signals undergo
processing and preprocessing. Within the heart DT, specifically in the AI process block, a
pre-trained model is instantiated on a dataset containing ECG signals related to various
heart diseases. The heart DT uses this model to perform inferences on the data in real
time. The performance results obtained are very good; in fact, the classification accuracy of
the ECG signals, recorded by two different users, offer performances ranging from 82.5%
to 100%, even when postprocessing filters are applied. Given the excellent results, in the
second part, we further devised a higher-level platform that would use the previously
implemented approach to manage a patient’s health more efficiently. The idea that we
propose, but do not implement, is to have a distributed system of DTs divided into two
levels; that is, multiple instances of DTs that can communicate and collaborate with each
other to manage a more complex disease in its entirety. To this end, we have introduced
pathology DTs, representative of the patient’s diseases. The structure of the platform
envisages that DTs of the various organs are at a lower level, while DTs representing the
diseases are at a higher level. Finally, a practical example of implementing the platform to
manage ACS patients was described. The main limitations of this study relate to:

• Not having developed but only idealized the PDMP platform, as it will be explored
more in detail in our future work;

• Characterizing the heart only with ECG signals; in a future study it may be possible to
characterize the heart by adding other parameters or combining outputs from various
artificial intelligence algorithms;
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• The necessity to expand the dataset we perform inference with, by including record-
ings from subjects with possible pathology. In addition, we will also extend the tests
by considering data from other organs in order to validate the overall platform.

It is considered that the future work may involve extending the platform with other
organs and pathologies and integrating it with several actuation devices present in the
physical world.
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ACS Acute coronary syndrome
AFIB Atrial fibrillation
AI Artificial intelligence
AII Artificial intelligence instance
AFL Atrial flutter
B Ventricular bigeminy
CNN Convolutional neural network
CDT Cardiac digital twin
CVD Cardiovascular disease
DL Deep learning
DTs Digital twins
ECG Electrocardiogram
HTTP Hypertext transfer protocol
IHD Ischemic heart disease
IoT Internet of Things
J Junctional rhythm
LR Logistic regration
LSTM Long short-term memory
ML Machine learning
MLP Multilayer perceptron
MQTT Message-queuing telemetry transport
N Normal sinus rhythm
ODT Organ digital twin
P Paced rhythm
PDT Pathology digital twin
PDMP Pathology DTs monitoring platform
PL Physical layer
PPG Photoplethysmogram
SBR Sinus bradycardia
SVC Support vector classification
VL Virtual layer
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