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Abstract: Protein aggregation and amyloid formation are pathogenic events underlying the devel-
opment of an increasingly large number of human diseases named “proteinopathies”. Abnormal
accumulation in affected tissues of amyloid β (Aβ) peptide, islet amyloid polypeptide (IAPP), and
the prion protein, to mention a few, are involved in the occurrence of Alzheimer’s (AD), type 2
diabetes mellitus (T2DM) and prion diseases, respectively. Many reports suggest that the toxic
properties of amyloid aggregates are correlated with their ability to damage cell membranes. How-
ever, the molecular mechanisms causing toxic amyloid/membrane interactions are still far to be
completely elucidated. This review aims at describing the mutual relationships linking abnormal
protein conformational transition and self-assembly into amyloid aggregates with membrane damage.
A cross-correlated analysis of all these closely intertwined factors is thought to provide valuable
insights for a comprehensive molecular description of amyloid diseases and, in turn, the design of
effective therapies.
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1. Introduction

In the first decade of the last century, Alois Alzheimer described the presence of
“amyloid” plaques and neurofibrillary tangles (NFTs) post-mortem in the brain of a woman
suffering from cognitive decline and memory loss [1]. Historically, this is the first scientific
article which documents a case of a neurological disorder that was later generally identified
as Alzheimer’s disease (AD). Nearly 90 years after that groundbreaking report, protein
aggregates that form amyloids [2] and NFTs [3] present in AD brains have been thoroughly
described and are universally considered as diagnostic traits of this fatal neurological
disorder [4]. Indisputably, attention devoted to “amyloid” aggregation by peptides and
proteins has considerably augmented over the last two decades, transforming it from
a fascinating phenomenon associated only to a small number of proteins into a major
topic involving many disciplines ranging from biophysics and chemistry to medicine. The
mounting interest in this field is surely associated with the growing number of illnesses
related to amyloid formation [5]. Protein misfolding and amyloid aggregation are common
pathogenic mechanisms of more than 40 progressive diseases, termed protein conforma-
tional diseases (PCDs) or proteinopathies, which are the most detrimental in terms of social
and health care costs in civilized countries [6]. These disorders include AD, type II diabetes
mellitus (T2DM) and prion diseases (see Table 1) [7].

AD is a fatal, neurodegenerative disorder characterized by a progressive cognitive
decline and memory loss. It is likely the most widespread form of dementia especially
among the elderly people: 60–70% of all diagnosed cases of dementia are associated with
AD [8] and 32% of people 85 years old and older have Alzheimer’s disease [9]. T2DM is
a metabolic disease associated with hyperglycemia and insulin resistance. It is a globally
occurring disease associated with aging, a sedentary lifestyle and obesity. As of now, the
number of patients suffering from T2DM diabetes worldwide is estimated to be 463 million,
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and it is expected to grow to 700 million in less than 20 years [10]. Transmissible Spongiform
Encephalopathies (TSEs) are infectious, fatal neurodegenerative disorders sharing many
pathological aspects with Alzheimer’s disease [11,12]. In the late 1990s, occurrences of
Bovine Spongiform Encephalopathies (BSE), also known as “mad cow disease”, created
great concern regarding the safety of food supply and considerably affected the farm animal
industry [13,14]. Chronic wasting disease (CWD) infected about 15% of deer and elk in
the U.S. and Canada [15,16]. Since the early 1990s, nearly 140 patients in the U.K. have
died from variant Creutzfeldt–Jakob disease (vCJD), a human variant of TSE contracted
from bovine contaminated food [17–19]. For each disease, there is a specific associated
protein that may aggregate in a single organ or in many different tissues (systemic amyloid
diseases). The first group includes AD and prion disease, in which amyloid-β (Aβ), or prion
protein deposits, respectively, accumulate in the brain, or T2DM, which is associated with
the accumulation of IAPP in the pancreas. Conversely, in systemic amyloidosis, protein
aggregates may involve numerous organs as the heart or liver [7]. Amyloid aggregates
are usually found in the same cellular districts where the protein is produced, but they
may be also found extracellularly [7]. Although the majority of PCD cases are sporadic, in
some cases, a heritable mutation causing an aberrant misfolding and aggregation of the
protein may be at the root of a familial proteinopathy [20]. The molecular mechanisms
causing amyloid toxicity to the cells have not yet been fully elucidated, but many reports
suggest that anomalous amyloid/membrane interactions may play a crucial role in toxic
protein aggregation by catalyzing the conversion of disordered peptides into β-sheet rich
conformations [21].

Table 1. Proteins involved in the formation of amyloid deposits and related diseases.

Protein Disease

Amyloid-β peptide (Aβ) Alzheimer’s disease
Islet amyloid polypeptide (IAPP) Type 2 diabetes mellitus

α-Synuclein (αs) Parkinson’s disease
Prion protein (PrP) Prion diseases
Transthyretin (TTR) Senile systemic amyloidosis

Serum amyloid A (SAA) AA amyloidosis

In this review, we will focus on three different proteinopathies, i.e., AD, T2DM and
prion diseases, paying major attention to the role played by amyloid/membrane interaction
in the underlying pathogenic events leading to the development of the diseases.

2. Aβ Peptides

The two main isoforms of Aβ peptides are Aβ1-40 and Aβ1-42 [22]. The 40-residue
peptide, Aβ1–40, represents the most common Aβ isoform in the brain [23], while the
42-residue one, Aβ1–42, is more toxic, and its abnormal levels are typical of certain forms
of AD (Figure 1, down) [24].

Aβ peptides originate, in vivo, from larger amyloid precursor proteins (APPs) which
are integral membrane glycoproteins of 695, 714, 751, and 770 amino acids [2,25–28]. The
amyloidogenic Aβ peptide encompasses 28 residues of the extracellular and 11–15 residues
of the APPs transmembrane domain. Proteolytic processing of APP may occur in neuronal
cells, according to two different pathways, i.e., non-amyloidogenic and amyloidogenic. In
the amyloidogenic pathway, APP is initially cleaved by a β-secretase (β-site APP-cleaving
transmembrane aspartic protease, BACE 1) with the consequent release of a soluble ex-
tracellular domain (sAPPβ), and an intracellular segment that is further cleaved by the
γ-secretase to form Aβ peptides and the APP intracellular domain [29,30]. Cleavage of
APP by β- and γ-secretase occurs preferentially in cholesterol-enriched lipid rafts [31,32].
In the non-amyloidogenic pathway, α-secretase, another membrane enzyme, cleaves APP
between amino acids 16 and 17 of the Aβ peptide, thus preventing Aβ peptides generation.
This cleavage produces a neurotrophic and neuroprotective soluble peptide [33]. The
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activity of α-secretases occurs mostly in non-raft domains [34]. Aβ, when present at low
concentrations, plays a key physiological role in the central nervous system contributing
to the normal activity of the brain [35]. Aβ monomer homeostasis plays a crucial role in
the control of synaptic functions. In neurons, Aβ is involved in different stages of the
synaptic vesicle cycling (SVC) and the release of neurotransmitters [36]. Extracellular
amyloid accumulation occurs when there is an unbalance between Aβ production and
degradation [37]. Enzymatic degradation is the main mechanism for the removal of excess
Aβ from the brain [38]. Aβ clearance by proteases could occur through intra and extra-
cellular hydrolysis by brain proteases or by proteolytic removal after transport from the
brain to peripheral districts. Aβ is degraded by several metalloproteases (MPs) and it is
not clear which of them is more important for Aβ clearance in vivo [39]. Insulin-degrading
enzyme (IDE), pre-sequence peptidase (PreP), Neprilysin (NEP), endothelin converting
enzymes (ECE-1 and ECE-2), matrix metalloproteases (MMPs), angiotensin-converting
enzyme (ACE) and plasmin have been demonstrated to be able to cleave Aβ. The failure of
Aβ removal led to a significant cerebral accumulation of Aβ, which is believed to trigger
the disease process [40–42]. Aβ aggregation is considered to play a causal role in the
pathogenesis of AD [43–46], as suggested by several works evidencing its neurotoxicity
both in vitro and in vivo [42,47], and many reports point to development of aggregation
inhibitors as therapeutic agents [48–50]. Aβ peptides change their secondary structure
from random coil to β-sheet rich, highly ordered states, endowed with cytotoxic proper-
ties [51]. β-Sheet structures aggregate into oligomers, protofibrils, and finally mature fibrils
(Figure 2) with distinct morphologies [52,53]. The presence of two C-terminal hydrophobic
amino acids, i.e., isoleucine and alanine, in its primary sequence induces Aβ1-42 to have
a higher tendency to aggregate with respect to the more abundant Aβ1-40 [54]. Several
studies suggest that small-sized Aβ oligomers represent the most toxic form of the pep-
tide [55], supporting the view that intermediate aggregates rather than mature amyloid
fibrils, might be responsible for neuronal loss [56].

Figure 1. Representations of the human IAPP (top) and Aβ (bottom) sequences. The disulfide bridge
connecting residues C2 with C7 is indicated as S-S. The amyloidogenic core of IAPP, the central
hydrophobic cluster, the turn regions of Aβ, and the C- and N-terminal regions of both peptides are
highlighted in different colors.
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Figure 2. Cartoon representation of fibrillar structures of IAPP (a, pdb: 6vw2); Aβ42 (b, pdb:
2beg); and prion protein (c, pdb:6lni). Color code: blue, basic; green, polar; white, non-polar; red,
acidic residues.

3. Islet Amyloid Polypeptide (IAPP)

Islet amyloid polypeptide (IAPP) or amylin is a peptide of 37 amino acids that includes
a disulfide bridge linking residues C2 and C7 (Figure 1, up). IAPP is co-expressed and
co-secreted in pancreatic β-cells with insulin, in response to glucose intake [57]. IAPP
is initially expressed as a pre-prohormone which is cleaved by endoplasmic reticulum
(ER) peptidases, thus producing the prohormone which, in turn, is processed by the pro-
hormone convertase2 (PC2), pro-hormone convertase 1/3 (PC1/3) and carboxypeptidase E
(CPE) [58]. This process is strictly dependent on pH variations and occurs in the late Golgi
apparatus and the secretory granules [59,60].

The physiological role of IAPP is related to activate endocrine actions through β-cell
signaling [61]. IAPP and insulin are both involved in glucose homeostasis and metabolism.
As insulin regulates the transfer of glucose from the blood into tissues, IAPP is implicated
in the regulation of glucose uptake by controlling the gastric emptying [58]. Likewise, IAPP
acts as a satiety signal which controls appetite, restricts the consumption of food and, in
turn, regulates body weight [62]. Increased blood glucose levels activate a compensatory
mechanism enhancing both insulin and IAPP synthesis and secretion. However, it is possi-
ble that throughout these stressed circumstances there is an augmented risk for abnormal
pro-hormone processing, with a concomitant secretion of nonfunctional hormones. In
accordance with this scenario, TEM analysis of the intracellular amyloid deposits in mouse
and human pancreatic islets using with specific antibodies confirmed the presence of abnor-
mally processed proIAPP [63]. A malfunction of the cellular proteostasis system can ignite
IAPP misfolding and, eventually, led to the toxic accumulation of amyloid deposits in pan-
creatic β-cell [64,65]. Hyperglycemia is also known to promote a nonenzymatic glycation
of proteins forming advanced glycation end products (AGEs). Abnormal accumulation
of AGEs may interfere with normal activity of their receptor (RAGE), causing immune
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and endothelial cell failure. Notably, it has recently been evidenced that toxic aggregated
forms of IAPP may also bind and upregulate RAGE in β-cells [65]. IAPP is known to be
highly aggregative both in vitro and in vivo [66]. Moreover, when dissolved in water, IAPP
readily forms amyloid fibrils that may be observed by electron or atomic force microscopy
(Figure 2). IAPP fibrils formed in aqueous solutions do exhibit typical amyloid features
since as definite β-sheet structures are seen by spectroscopy and classic birefringence upon
staining with Congo red [67]. Likewise, an analysis of the X-ray diffraction pattern of
hIAPP fibrils indicate a cross-β organization characterized by a typical 4.7 Å meridional
signal in accordance with what observed in other amyloid fibrils [68]. Amyloid fibril
formation by IAPP was observed not only in human patients, but also in animal models.
As an example, islet samples from transgenic mice show the presence of deposits within
the β-cells. Post-mortem pancreatic tissues from T2DM patients evidenced extracellular
amyloid deposits [69]. From a comparison with data from mice models, it was ascertained
that IAPP amyloid may be formed both intracellularly and extracellularly [70].

IAPP is an intrinsically disordered protein (IDP), as it presents a broad conformational
diversity in aqueous solution: random coil, extended antiparallel β-hairpin, unstructured
with transitory α-helix conformation, mixed α-helix and short antiparallel β-sheet, and a
compact helix-coil structure [71]. Even though IAPP may explore many different confor-
mations, it predominantly adopts a random coil structure in the monomeric state. Many
Circular Dichroism (CD) and computational studies carried out on IAPP allowed a thor-
ough characterization of its various of secondary structures components. As indicated
in Figure 1, the segment S21–S29 is termed the amyloidogenic core and plays an essen-
tial role in amyloid aggregation. Conformational changes of this domain toward β-rich
structures ignite protein aggregation, fibril growth and, ultimately, toxicity. In fact, the non-
amyloidogenic rat IAPP (rIAPP) sequence differs from human IAPP (hIAPP) in 6 residues,
with 5 of them located within the amyloidogenic core, which may thus be considered
responsible for aggregation propensity of the human peptide [66,72]. Three prolines of
rIAPP (in positions 25, 28, 29) are considered as β-sheet breakers, i.e., regions which may
destabilize β-sheet secondary structure, rooting the different aggregation propensities of
hIAPP and rIAPP [73]. The C-terminal segment T30–Y37 is also considered to contribute
in IAPP fibril formation [74]. The N-terminal segment K1-S19 is implicated in the early
peptide-membrane interactions and does not significantly contributes to IAPP aggregation
in the presence of membranes [75,76]. By contrast, the segment A13-H18 plays an important
role in IAPP amyloid growth in aqueous solution [77]. The physic-chemical properties
of individual amino acid residue, including hydrophobicity, aromaticity, and electrostatic
charge, are known to play a key role in driving IAPP aggregation propensity [78]. Hence, an
understanding of the association between peptide sequence and fibrillogenicity is needed
to describe the molecular factors underlying hIAPP amyloid growth. Experiments using
hIAPP variants, including point mutations and truncated variants, have been employed to
define the role of each residue in driving hIAPP aggregation propensity. The N-terminal
region encompassing residues from 1 to 13 of hIAPP is not aggregative by itself [79] and
is believed to be placed out of the amyloid fibril core [80,81]. For this reason, many in-
vestigations have addressed the central and the C-terminal region of IAPP [82,83]. The
three positively charged amino acids Lys1, Arg11 and His18, at neutral pH make IAPP a
positively charged peptide (pI = 8.90). These positive net charges drive IAPP interactions
with negatively charged membranes, and this phenomenon is known to catalyze fibril
formation and toxicity [84–86]. However, an increase of the positive net charge in a pep-
tide may in general reduce its aggregation propensity due to electrostatic repulsion [78].
To single out the role played by positive residues on IAPP aggregation, several peptide
variants have been investigated including ∆Lys-1 [87], the mutated peptide K1E [88] and
K1I [89]. Results of those studies suggested that modifications/replacements of Lys1 have
little effects on IAPP amyloid formation in aqueous solution. However, all IAPP variant
lacking Lys1 exhibited a diminished toxicity to INS-1 β-cells thus demonstrating the role of
the N-terminal part of the peptide in driving pathogenic membrane interactions [87–89].
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The residue His18 has been also intensively studied. In fact, the pH-dependent ionization
of His18 affects IAPP aggregation [90]. The non-fibrillogenic rIAPP has an arginine residue
in this position. An R18H residue replacement generates a “humanized” peptide that
can form fibrils thus highlighting the important role played by His18 in modulating fibril
formation [91]. Several variants in which His18 is replaced by residues varying in size or
polarity formed amyloid fibrils albeit with a prolonged lag-time if compared to the parent
peptide [92,93].

Aromatic side chains are also thought to significantly affect peptide aggregation. The
role played by the three aromatic residues, i.e., Phe15, Phe23 and Tyr37, in modulating
hIAPP aggregation has been broadly studied [94–98], but their real effects on peptide aggre-
gation are still unclear. To shed light on this issue, previous studies have focused on short
IAPP segments containing Phe-15 or Phe-23, i.e., peptides IAPP12-18 (LANFLVH) [94],
IAPP20-29 (SNNFGAILSS) [66,95] and IAPP22-27 (NFGAIL) [96]. In these studies, Phe
is normally replaced by an Ala residue. Alanine is chosen because it is not aromatic,
less hydrophobic and with a lower β-sheet propensity than Phe [98]. Phe23 replacement
by an alanine on the hexapeptide NFGAIL [96] abolished amyloid formation, showing
that aromatic interactions can promote fibril growth, maybe through π-π interactions [99].
Amino acids Phe15 and Phe23 were also replaced by Ala in segments LANFLVH and
SNNFGAILSS [94,95]. Those studies revealed that an aromatic sidechain at these two
positions is not essential for amyloid growth of these two short peptides. These apparently
contradictory results demonstrate that aromatic residues driving IAPP aggregation are
sensitive to their exact position along the peptide sequence. Moreover, the length of the
segment and the residues near the Phe in question may also play a role. However, when
in the full-length peptide Phe15 and Phe23 are replaced by Ala residues the IAPP amy-
loidogenic propensity is maintained [97,98,100]. Nevertheless, substitution of aromatic
residues affected aggregation kinetics, suggesting that these residues may play a role in
the formation of the early steps of self-assembly occurring at the onset of the aggregation
process [97], likely by activating long-range interactions between them [82,100,101]. Stud-
ies addressing the role of Phe15 further demonstrated the relationship existing between
secondary structure and aggregation propensity of IAPP [97]. Phe15 replacement with
residues forming α-helices resulted in peptides characterized by a propensity to form fibrils
more rapidly [97]. This study reconciles with a proposed aggregation pathway for hIAPP,
in which the early self-assembly events require an α-helix conformation [102].

Although the disulfide bridge is not directly involved in the amyloid core structure,
still it plays a not negligible role in IAPP aggregation; as a matter of fact, its presence affects
the fibrillation kinetics [103]. The disulfide bond in hIAPP connects Cys-2 and Cys-7 form-
ing a six-residue loop which could restrain peptide structure and exclude the formation of
a β-strand conformation in this domain. To address this issue, some variants have been
created, such as the truncated peptide IAPP8-37, which lacks the disulfide bridge, and a
peptide in which the disulfide bridge has been reduced and carboxyamidomethyl (CAM)
blocked (IAPPCAM). These hIAPP variants showed that the presence of the disulfide bridge
is not essential for amyloid growth [103]. These IAPP variants aggregate more rapidly than
the parent peptide, thus showing that this N-terminal domain may inhibit hIAPP aggrega-
tion kinetics [104]. The stabilizing role of the disulfide bridge was additionally noted in an
NMR study carried out using reduced and oxidized hIAPP forms [105]. Although hIAPP
amyloid aggregates are present in patients affected by T2DM, a mechanistic link between
fibril formation and the observed toxicity has not yet firmly established. The addition of
hIAPP aggregates is clearly cytotoxic to cultured β-cells as determined by cell viability
assays including the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay. IAPP soluble oligomers, rather than mature amyloid aggregates, were found to
be the species toxic to pancreatic β-cells. Most notably, these small-sized, transient IAPP
oligomers were also shown to compromise the integrity of lipid cell membranes [106,107],
thus suggesting that an abnormal peptide/membrane interaction could be the causal
relationship between amyloid aggregation and toxicity [108].
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4. Prion Protein

Prions are a class of proteins involved in development of transmissible spongiform
encephalopathies (TSEs). TSEs are fatal neurodegenerative disorders affecting both animals
and humans. Prions exist in two isoforms containing 209 amino acids: the physiological
cellular (PrPc) and the disease-associated form (PrPSc) [109]. PrPc is a cell surface gly-
coprotein anchored to cell membranes by a glycosylphosphatidylinositol (GPI) moiety.
PrPc contains an N-terminal unstructured part and a globular portion encompassing three
α-helices [110]. The conformational transition from α-helix to β-sheet underlies conversion
of PrPc into toxic PrPSc. Circular dichroism and Fourier transform infrared spectroscopy
were used to characterize the secondary structure of both isoforms. It was found that PrPc
consists of 42% α-helix and about 3% of β-sheets, whereas PrPSc contains 43% of β-sheet
and α-helix amounted to 30% [74].

A structural alignment of PrPc sequences from different species shows a common
β1–α1–β2–α2–α3 secondary structure motif, in which the β-strands establishes an anti-
parallel β-ribbon [109]. Steered molecular dynamics simulation have shown a different
stability of the globular part of prion from different species. Two mammalian, human
(HuPrP) and Syrian hamster (ShaPrP), and two non-mammalian, chicken (ChPrP) and
turtle (TuPrP) prions were investigated. These studies have highlighted that the structure
stability decrease in the order HuPrP<ShaPrP<ChPrP<TuPrP. It can be speculated that
the scale of stability follows the scale of evolution of species. The most archaic species of
reptiles, TuPrP, is more stable than the species in which they evolved (i.e., birds) then the
mammalian hamster. The lowest stability is associated to the most evolved species, i.e.,
humans [111]. Moreover, it was evidenced that the intramolecular contacts between the
three helices play a pivotal role in the stability of Prion proteins. This finding reconciles
with X-ray investigations that report the crucial role played by hydrophobic regions of
PrP in forming the pathogenic prion isoform [110]. This region spans from positions
112 to 135 and has a high tendency to acquire a β-sheet structure (Figure 2) [112,113].
Other studies report the involvement of hydrophobic regions in the PrP conformational
transition, occurring when the PrPSc seed the pathogenic conformational transition of
PrP [110]. Solution NMR investigations have been used to determine monomeric structures
of mouse [114], Syrian hamster [115,116], murine [117] and human prion proteins [118].
The conversion process from PrPC into PrPSC is associated with the self-assembling of
monomeric units [119]. Further in vitro measurements suggested a “nucleation and growth”
aggregation model characterized by a lag phase of hours at the micro or sub-micromolar
PrP concentrations [120,121] normally found in the brain [122].

5. Biophysical Studies of Amyloid–Membrane Interactions
5.1. Model Membranes

The cell membrane is a complex system. It demarcates the boundary between a highly
ordered space (inner space cell) from the chaotic extracellular area. The cell membrane
consists of two layers with an asymmetric lipid composition. It is a two-dimensional fluid
with liquid-crystalline features (lyotropic liquid crystals) made of lipids and proteins with
high specialization, such as specific ion-channels and receptors. Besides, the cell membrane
is organized in microdomains, termed rafts, essential for the biological function of mem-
brane proteins. From this picture, we conclude that understanding fundamental lipid–lipid
and lipid–protein interactions is a complex biophysical problem with many interconnected
variables. To address all the variables of such a complex system, a “bottom-up” approach
is preferable, i.e., it is better to study and understand the properties of model systems
containing only one lipid and then add complexity to the system one step at the time, e.g.,
by adding different lipids to the membrane composition. This simplified view was first
proposed by Singer and Nicholson [123] in their “fluid mosaic” model of the membrane
where proteins are embedded in the “sea” of the lipid bilayer. The most common artificial
membranes prepared are the multi-lamellar vesicles (MLVs). MLVs are concentric multi-
bilayer vesicles having an onion-like structure. They have an average diameter ranging
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between 1 µm and 5 µm and a broad size distribution [124]. MLVs containing zwitterionic
saturated phospholipids show polymorphism in the temperature range between 10 to
50 ◦C. At low temperatures, vesicles are in the “gel” phase; phospholipid hydrocarbon
tails have all-trans configuration, low order parameter (S), and low diffusion time (DT). As
temperature increases, vesicles undergo a phase transition toward the ripple phase, a phys-
ical state characteristic of saturated acyl-phosphocholine, in which S and DT do not vary
appreciably, while the membrane surface becomes corrugated. As temperature increases, a
phase transition, named “main transition”, is observed and the liquid-crystalline phase
formed. The liquid-crystalline, or disordered, phase is characterized by a low S, a fast DT.
Lipid “rafts” are formed in the presence of unsaturated phospholipid or cholesterol, coexist
with disordered lipids, and shows a high S and a fast DT (about 1 µm2·s−1) [125–131]. Ex-
trusion of MLV suspensions through polycarbonate membranes with properly sized pores,
originate large unilamellar vesicles (LUVs). Ultrasonication of MLVs or LUVs, produce
small unilamellar vesicles (SUVs). SUVs have average dimensions ranging from 100 to
400 nm with a very narrow size distribution. SUVs show a very short curvature radius and
thus are instable and show a remarkable tendency to fuse together [132]. Giant unilamellar
vesicles (GUVs) [133] have a diameter larger than 5 µm [134], and have a curvature radius
close to zero. GUVs are useful in many biophysical studies because they can be visualized
by optical microscopy [135]. Supported lipid bilayer (SLB) are formed by deposition of
SUVs on mica or SiO2 silicon surface. SLB are used in quartz crystal microbalance (QCM-D)
and atomic force microscopy (AFM) studies. QCM-D [136] detects the mass deposition on
the crystal sensor by revealing the change of oscillation frequency of crystal [137]. As an
example, QCM-D measurements have been employed to study the interaction between
hIAPP and POPC within the lag phase [138]. AFM gives information about the topology of
protein-membranes complexes. The main advantage of AFM relies on its high resolution
on the perpendicular axis to the plane of the SLB (of the order of nm) but a poor resolution
in the XY plane where the SLB lies. Another attractive aspect of AFM is the possibility
to compare mechanical force measurements with a computational strategy called steered
molecular dynamics (SMD) and therefore obtain atomistic information concerning the
stability of the investigated system. Black lipid membranes (BLM) consist of a phospho-
lipid bilayer film deposited across a 1 mm hole in a solid plate between two solution
compartments [139]. This model is normally used to detect membrane pore formation
consequent to protein interaction by measuring the conductance of solution in the two
compartments. Nano disks (nDk) are disk-shaped nanoparticles containing a phospholipid
bilayer surrounded by an amphipathic belt made of synthetic polymers. Polymers bind to
the lipid bilayer interface, driven by the hydrophobic effect. Polymers have the significant
advantage of being able to extract membrane proteins from their native environment. Due
to their shape, they have significant advantages in NMR experiments [140–143]. Figure 3
reports a schematic representation of mostly used model membranes.

Figure 3. Schematic representation of model membranes commonly used in biophysical studies
addressing amyloid–membrane interaction.



Biophysica 2021, 1 145

5.2. Mechanisms of Amyloid-Mediated Membrane Damage

Many in vitro studies have shown that several amyloidogenic peptides become struc-
tured upon binding to membrane surfaces, and that small-sized intermediates play a
significant role in amyloid-mediated membrane damage and toxicity [144,145]. Three main
membrane damage models have been proposed [146].

(i) Generation of stable transmembrane protein pores. The interaction of amyloidogenic
protein, in its monomeric or oligomeric forms, with the membrane lipid bilayer led to
the formation of pores which act as non-specific ion channels. It was reported that Aβ

peptide, after interaction with lipid membranes, can form calcium-permeable chan-
nels that were suggested to induce cell death [147]. Consistently with this “channel
hypothesis”, formation of calcium channels by Aβ depends on the presence of anionic
lipids and is favored by acidic solutions. Moreover, it was also demonstrated that
calcium permeable channels are reversibly blocked by zinc ions and small molecules
like Congo Red [148]. It has also been reported that IAPP oligomers are able to
form pore-like structures in the membrane resulting in pro-apoptotic Ca2+ dysregula-
tion [149,150]. Of note, similar mechanisms have been reported for α-synuclein and
PrP oligomers [151,152].

(ii) Membrane destabilization via a “carpet model”. According to this model, the inter-
action of prefibrillar species with the lipid bilayer surface results in an asymmetric
pressure between both layers. Relaxation of this pressure, proximal or distal to the pro-
tein, is accompanied by leakage of small molecule, leading to membrane damage [153].
Carpeting could lead to the detergent like mechanism of membrane disruption.

(iii) Removal of lipid components from the bilayer by a detergent-like mechanism. The
asymmetric pressure generated by peptides carpeting of membrane surface could
lead to the removal of lipid from one or both the leaflets of the membrane. Removal
of the outer leaflet may result in a transient membrane thinning, allowing the leakage
of small molecules. Alternatively, removal from both leaflets results in the formation
of a hole.

These three models are not mutually exclusive, and they may cooperate in triggering
membrane damage (Figure 4). Indeed, recent studies have shown that membrane disrup-
tion induced by hIAPP and by Aβ may be described as a two-step process [154,155]. The
first step occurs after the insertion of monomeric or oligomeric species inside the membrane
hydrophobic core and leads to the formation of heterogeneous ion channels. The second
step, which is independent of the first one, is related to fiber growth on the membrane
surface, followed by membrane disruption through a detergent-like mechanism. Several
factors have been suggested to regulate the mechanism of membrane disruption induced
by amyloidogenic peptides. Lipid composition could regulate interaction between peptides
and membrane surface. It has been shown, for example, that the affinity of Aβ peptides for
membranes is increased in the presence of gangliosides [156] and negatively charged phos-
phatidylserine (PS) membranes [157–159]. IAPP–membrane interactions were investigated
by using different model lipid membrane systems. It was shown that high concentrations of
cholesterol, in non-raft model membranes, do not affect IAPP fibril growth kinetics but sig-
nificantly reduce pore formation. On the contrary, cholesterol enhances both fiber and pore
formation in raft-like model membranes [160]. Metal ions could also address membrane
disruption process towards one or the other mechanism. In particular, Ca2+ ions promote
lipid phase segregation by clustering negatively charged lipids on the membrane/water
interface [161], and affect many membrane properties including the structure of membrane
domains, and vesicles fusion. It was demonstrated that Ca2+ ions may promote the interac-
tion of hIAPP with the hydrophobic core of PS-enriched membranes [162] and favor lipid
loss via a detergent-like mechanism [163]. Moreover, it was recently demonstrated that
the presence of free, non-vesicular phospholipids may promote insertion of hIAPP into
membrane bilayer leading to pore formation [164]. Further biophysical and in silico studies
revealed that this mechanism of membrane poration is common to other amyloidogenic
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(e.g., Aβ) peptides. Based on these results, some of us proposed the “lipid chaperone”
hypothesis as an additional mechanism of amyloid-mediated membrane poration [165].

Figure 4. Representation of the different amyloid-mediated membrane disruption mechanisms.
Arrows indicate the passage of ions across the amyloid pore.

6. Membrane-Bound Amyloids
6.1. Aβ/Membrane Complexes

Lipids are essential components of neuron membranes. Since APP processing by α-,
β-, and γ-secretases occurs within the lipid bilayer, membrane components are believed
to participate in the regulation of Aβ levels. In addition, accumulating evidence suggests
abnormal lipid levels in the AD brain, indicating that aberrant interactions of Aβ amyloid
with the membrane may play a significant role in AD pathogenesis [166,167]. Aβ may
interact with membranes in different ways and modify their biophysical properties [168].
Aβ peptide may insert into the lipid hydrocarbon core generating a pore-like channel
or may be placed (and aggregate) over the membrane surface [167]. Independently of
the type of interaction, membrane-bound Aβ may damage neurons, worsen synaptic
signaling, and eventually lead to apoptosis [167]. Interestingly, just as the membrane
can affect Aβ fibril growth, peptide insertion may alter the physic-chemical properties of
the membrane. Aβ peptide/membrane interactions are driven by both electrostatic and
hydrophobic forces which cooperatively catalyze amyloid growth on the membrane surface.
Zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid increases the
Aβ fibril formation kinetics if compared to water [169]. Likewise, negatively charged
phospholipids, such as 1,2-Dimyristoyl-sn-glycero-3-phosphorylglycerol (DMPG), speed
up amyloid growth [170].

Amyloid growth on the membrane surface can affect the structure of the lipid bi-
layer [171]. As an example, Aβ insertion into the hydrocarbon core of 1-hexadecanoyl-
2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine (POPE)-rich membranes causes
remarkable changes into bilayer curvature [172]. Cholesterol is known to enhance the
rate of fibril formation in membranes by accelerating Aβ nucleation [173]. Gangliosides
catalyze Aβ oligomerization in neuronal membranes: in fact, Aβ binds ganglioside GM1 in
lipid-raft membrane [174]. Of note, Aβ fibrils formed in GM1-enriched membranes were
found to be more toxic than the fibrils growth in aqueous solution [175]. Cell-free experi-
ments carried out using neuron-mimicking total lipid brain extract (TLBE) vesicles have
shown that Aβ fibril growth is not significantly faster in pure water [176,177]. An accepted
hypothesis indicates that alterations in lipid bilayer owing to Aβ interactions may induce
toxicity through molecular mechanisms mainly steered by electrostatic forces, in analogy
to the well-known action of antimicrobial peptides [166]. Small-sized, soluble Aβ amyloid
aggregates with neurotoxic activity were first described by Lambert et al. and were named
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“Aβ-Derived Diffusible Ligands” (ADDLs) [178]. Aβ oligomers are highly heterogeneous in
size, morphology, and toxicity. Currently, many membrane active Aβ oligomers have been
reported such as dimeric [179–185], trimeric [179,180,184,186], tetrameric [180,183,184],
pentameric [182,184], hexameric [183,184,186,187], decameric [183], dodecameric [186,187]
and 24-meric assemblies [188–190]. Small-sized Aβ assemblies are normally short-lived
and with a globular morphology. Their β-sheet content increases with their size, leading
eventually to the formation of protofibrils. However, the relationship linking Aβ oligomers
toxicity with their morphology is still a highly debated issue: it seems that toxicity increases
with the oligomers size reaching a maximum for to dodecameric assemblies. Membrane-
embedded Aβ oligomers characterized by a β-sheet annular structure have been reported
to form pores in lipid bilayer and to trigger cytotoxic processes [191,192].

6.2. IAPP–Membrane Interactions

Biophysical experiments addressing IAPP amyloid growth and pore formation in
model membranes with different lipid composition including DOPC, POPC, sphingomyelin,
negatively charged phospholipids (POPS) and cholesterol, have demonstrated that zwit-
terionic phospholipids have a poor impact on amyloid growth but promote pore forma-
tion [193–197]. Cholesterol, when present in lipid membranes reduces IAPP pores and
fibrils formation [198]. Concerning the role played by lipid vesicles in managing IAPP intra-
and extra-cellular trafficking, some authors have investigated the interaction between IAPP,
and exosomes obtained from T2DM patients and healthy people as a control. Exosomes
from healthy subjects inhibited the formation of IAPP fibril growth. By contrast, exosomes
extracted from diabetic individuals had no effect on fibril formation. Lipid composition
of exosomes is believed to steer interactions with IAPP. In fact, differently from neuronal
exosomes, no anionic lipids were found in exosomes from pancreatic tissues [199]. It is
widely accepted that anionic phospholipids catalyze fibrillogenesis. However, additional
experimental data are needed to propose more accurate models depicting the role of ex-
osomes in IAPP amyloidogenesis and diabetes development. Molecular simulations of
membrane-bound hIAPP from different species have been carried out [200–202] including
the non-toxic, non-amyloidogenic rIAPP [203]. Molecular dynamics (MD) simulations
revealed short-lived α-helical and β-sheet structures throughout IAPP adsorption onto an
anionic POPG (palmitoyl oleoyl phosphatidylglycerol) surface of a lipid bilayer [201]. Mem-
brane adsorbed IAPP monomers produced bending of the bilayer. HIAPP interaction with
zwitterionic POPC (phosphatidylcholine) bilayer was investigated by MD simulations, and
kinetics measurements of dye release from LUVs [164]. Both simulations and experiments
demonstrated that IAPP insertion into zwitterionic membranes is assisted by non-vesicular
lipids that are present in solution at their critical micellar concentration (cmc). Other
authors have adopted coupled coarse-grained/umbrella sampling molecular dynamics
simulations to investigate the interactions of hIAPP with ganglioside-rich membranes [200].
These simulations indicate that hIAPP locate in ganglioside-rich membrane regions due
to electrostatic interactions promoting adhesion of cationic hIAPP peptides with anionic
gangliosides. The three positively charged amino acids K1, R11 and H18 located in the
N-terminal domain of IAPP are known to play a major role in driving interactions with
negatively charged membranes [65].

6.3. Prion–Membrane Interactions

Many reports suggest that small soluble and transient oligomeric aggregates, due to
their high propensity to associate with membranes, are the most active agent in driving amy-
loid toxicity. From these observations on IAPP, Aβ and other amyloids stemmed the “toxic
oligomers hypothesis”. This hypothesis was also extended to prion proteins [204–206]. Elec-
trophysiology experiments have shown an increased conductance in membranes containing
zwitterionic 1,2-diphytanoyl-sn-glycero-3-phosphocholine interacting with PrP(90–231) by
pore formation [207]. Measurements on negatively charged phospholipid interaction with
human prion amyloidogenic fragment PrP(185–206) described the formation of channel



Biophysica 2021, 1 148

but not of fibrils [208]. Studies on the PrP(180–193) fragment suggest hydrophobicity as
the major driving force in protein interaction with membranes [209,210]. Additionally,
PrP(106–126) and huPrP60-91 showed a noticeable tendency to penetrate the lipid bilayer
with an associated conformational transition toward a β-sheet structure affected by the
presence of metal ions. Copper ions favor fragment insertion, whereas zinc ions inhibit
fragment transfer from the aqueous phase to the bilayer [211,212]. This finding suggests
that, in the transfer PrP from the aqueous phase to the bilayer core, the electrostatic force
cannot be overlooked. Additionally, some reports show that binding of PrP to artificial
membrane depends on the type of lipid [213] and follows the decreasing order of affinity
POPG > DPPC > rafts [214].

7. Conclusions

Current knowledge concerning the harmful role played by fibril-forming proteins
on the structural integrity of plasma membranes suggests that it may be considered a
key mechanism at the root of amyloid toxicity. Two distinct mechanisms have emerged
over the past 20 years as the most reliable models to describe toxic amyloid–membrane
interactions. According to the “channel hypothesis” amyloid peptides may self-assemble
into toroidal structures that porate membranes through a mechanism resembling the
activity of antimicrobial peptides. On the other hand, in the “detergent-like” mechanism,
amyloid fibrils growing on the membrane surface are believed to extract lipid molecules
from the bilayer. Each of these two mechanisms has been alternatively invoked to describe
the effects observed by different self-assembling peptides in the presence of either artificial
or natural membranes. However, despite the multitude of biophysical data gathered so far
in this area, the very nature of toxic lipid/peptide complexes remains elusive. More recently,
some of us have proposed a “lipid chaperone” hypothesis: non-vesicular lipids dispersed
in the aqueous phase may facilitate peptide insertion within the lipid bilayer. This model,
albeit extensively investigated by biophysical experiments, still needs to be verified in
living cells. Because of the difficulties in obtaining stable crystalline amyloid/membrane
samples, computational methods offer an unvaluable tool to describe amyloid/membrane
structures at an atomistic level of detail. Indeed, details concerning the real nature of
amyloid/membrane assemblies is of utmost importance due to the clinical implications in
the development of new drugs aimed at interfering with membrane disruption by amyloids.
In fact, when membrane damage is mediated by amyloid pores, such pathogenic effect
may be alleviated by specific channel blockers designed to seal the amyloid pores. On the
contrary, when nonspecific mechanisms occur, preventing membrane disruption would
require different approaches focusing on the inhibition of amyloid growth and binding
onto the membrane surface. In conclusion, a better knowledge of the molecular steps
involved in the cascade of events at the roots of amyloid toxicity is expected to boost the
research aimed at the design of molecules that can inhibit either protein aggregation or
membrane disruption. Parallel computational and experimental investigations performed
on even more sophisticated models will hopefully fill this gap and allow a to counteract
amyloid toxicity.
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