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Abstract

Environmental monitoring is a territory control technique essential in preventing
destructive natural phenomena. The fragile conditions of the topographical reliefs,
the extreme climatic conditions and the increasing pollution of the hydrosphere and
lithosphere accelerate terrestrial areas’ degradation. These phenomena are greatly
affected by the anthropic action that amplifies their characteristics, contributing
to the precariousness of the living conditions of terrestrial biomes.

The upheavals of the terrestrial lithosphere brought about by extreme events
due to endogenous (volcanic eruptions and earthquakes) and exogenous (floods,
tsunamis, landslides) phenomena, fit examples. In this context, adopting strate-
gies capable of mitigating the effects produced on the environment and predicting
extreme natural events in advance is of great importance. In both cases, these
techniques have a twofold objective: to reduce the loss of human life and preserve
natural resources.

The works included in this thesis show different approaches focused on specific
cases. We aim for alternative proposals that make it possible to reduce the existing
gap in the prevention and monitoring of natural phenomena. The prevention of
seismic events based on precursory phenomena currently has a high degree of uncer-
tainty. The proposed approach is based on the threshold values of each precursor
related to paroxysmal seismic or volcanic events and could significantly increase
their reliability. Moreover, in satellite imagery-based environmental monitoring,
some steps are usually performed through the GUI of Geographic Information
System (GIS) applications. More advanced technologies should be included to au-
tomate as much as possible the analysis. This work proposed a fully automated
strategy to monitor urban sprawl and heat fields in the Etna volcano and to evalu-
ate their evolution in space and time. Extensive experiments on images depicting
the areas of several cities have shown the reliability of the proposed approach and

tools.
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Chapter 1

Introduction

Environmental monitoring can have different purposes, however the main objec-
tive is always to protect human and natural resources from events that could
compromise their integrity. There is currently no model capable of predicting
earthquakes effectively in the seismic field [1, 2, 3]. Over the years, the forecasts
have not been satisfactory, and the results have shown large deviations from those
expected, deduced from the modifications undergone in the precursor parameters
(seismic swarms, ground deformations, radon gas emissions, volcanic tremor, etc.).
Similar behaviour was also had in the volcanic field [4, 5]. The study suggested a
possible interpretation to explain the results that do not comply with the seismic
and volcanic forecasts. An integrated analysis of all available precursors based on
Boolean constructs could provide more reliable results than those based on single
precursors.

Monitoring can also be performed passively, without using precursor phenom-
ena and sensors that measure their variations in space and time. The proposed
method involves using satellite images and analysis techniques through image pro-
cessing. In this way, it is possible to quantify the size of green areas within urban
centres, providing crucial information on the evolution of urban sprawl. This phe-
nomenon, due to an irrational expansion of urban areas at the expense of green
spaces, is an indicator of city healthiness and quality of life.

Monitoring of some environmental phenomena can be done through an au-



tomated analysis of variations in space and time. The same image processing
techniques used previously can be applied to image swarms to evaluate the varia-
tions of specific parameters (green and urban surfaces, soil temperature) occurring
in a specific time interval. This technique allows us to interpret, qualitatively and
quantitatively, the evolution of some natural phenomena both in the medium-long
term (urban sprawl) and in the short term (variation of heat cells in volcanic
areas, etc.). Each of these adopted techniques requires performances that allow
significant amounts of information to be processed in a reasonable time.

Strategies based on refactoring the parts of code with greater computational
complexity, refactoring to microservices with external parallelization of specific
containers and hybridization of imperative programming with functional matrix
constructs are some solutions adopted for this purpose.

The following sections introduce the salient features of the topics covered by

the work carried out in the three-year doctorate and their structuring.

1.1 A novel approach for the forecast of seismic
and volcanic events

The forecast of imminent seismic or volcanic events can drastically reduce the
loss of human life by alerting the inhabitants living in the surrounding areas.
Seismic Early Warning (SEW) based on the acquisition-transmission of the main
seismic precursors (seismic swarms, soil temperature and deformation, radon gas
emissions, etc.) [6, 7], implemented on efficient software infrastructure can help
reduce the time required to forecast high-intensity seismic and volcanic events.
By exploiting the considerable amount of data acquired by the sensors, it is
also possible to simulate some typical scenarios that are a prelude to an earthquake
or a volcanic eruption, for example, by predicting the path of a lava flow [8] or the
energy released by a possible event. In this context, parallel computing on GPU

8, 9, 10] allows the processing of large amounts of data in a relatively short time,



compared to the traditional CPU-based approach, with undoubted advantages
for decision-making timing in the event of possible earthquakes or catastrophic
eruptions. One of the purposes of this work is to help reduce the gap in seismic and
volcanic forecast by creating innovative algorithms based on Boolean expressions
and using GIS techniques supported by the analysis of satellite images. The first
approach is based on the data provided by some geophysical parameters called
seismic and volcanic precursors.

When a disastrous earthquake is about to occur in a specific territory, there
are a series of anomalies that alter the pre-existing natural balances. Seismic
swarms, ground deformation, bright flashes, emissions of various gas types (radon,
CO2,etc.), changes in the composition and flow rate groundwater are just some
physical-chemical perturbations induced by the growing stress condition borne by
the crustal masses. Dilatancy theory and asperity or barrier model allow us to
interpret the dynamic mechanisms to which the seismic precursors are due: the
development of a network of cracks and the sliding of areas with less mechanical
resistance are in agreement with seismic, mechanical and geochemical anomalies
that occur before to high magnitude earthquakes. In areas with high seismic
risk, constant monitoring of geophysical parameters is frequent, carried out using
different types of sensors.

The MAS (Multi-Agent System) model is one of the most suitable choices
for efficiently implementing a seismic alert system, based on the interpretation of
experimental data obtained from the sensor network. Using this type of approach,
a Seismic Early Warning (SEW) has been created that according to the data
acquired by the sensors and through the activities carried out by agent clusters,
define the risk of seismic events having magnitude at least six. The SEW system
aims to interpret, in real-time, the variations of an adequate number of seismic
precursors for specific threshold values, calculated statistically. The integrated
and complementary analysis of them, using several specific Boolean expressions,
assesses the contribution provided by each parameter for computing the level of

risk, divided into soft, medium and hard. The model has been tested with data



gathered in New Zealand, a nation with a high seismic and volcanic risk which

offers free access to some seismic precursors.

1.2 Urban sprawl control by image processing

The irregular and uncontrolled expansion of urbanized areas, defined as urban
sprawl [11, 12, 13, 14, 15], is one of the main environmental challenges that have
significant impacts on the quality of life and economic performance of cities. As
a result, there is an abandonment of agricultural activities and urban sprawl into
agricultural land, sometimes of high quality [16, 17]. In contrast to this common
trend, several cities around the world have promoted different policies to manage
the growth of urban areas and protect natural and agricultural areas [18, 19]. An
example is the USA, where green regulation has become a fundamental factor for
the management of urban spaces, involving both public and private ownership [20,
21].

In this context the delimitation of green areas from urban ones is a funda-
mental operation for a correct estimate of green spaces within cities. Specific GIS
applications assist users in the tracing of boundaries and the calculation of lengths
and areas. However, when using such techniques, the main limitation concerns
the analysis of irregularly shaped areas. For them, tracing outlines that over-
lap the original ones is performed manually, hence difficult, error prone and time
consuming.

We propose a novel approach that is automatically performed by means of a
Python-based application to recognize boundaries and compute the main geometric
parameters of urban and green areas. Such operations are based on new algorithms
that give an innovative character to the entire application tested in Kamakura
and Acireale territories. The first is a Japanese city that embodies the “City
Country Fingers” design pattern characterized by extensive intersections between
the vegetation from the peripheral areas and the urban centre. Their complexity

and irregularity are a proper testbed to evaluate the behavior of the application



in the presence of irregular areas.

Unlike the previous case, in the Acireale city, the country fingers have a mainly
two-dimensional development with the corresponding city fingers surrounded by
agricultural land mostly used for the cultivation of citrus fruits (oranges, tangerines
and lemons) and low-stemmed plants (vine). The progradation of this type of
vegetation cover does not present any structural recursion with country fingers

that develop linearly toward the urban center.

1.3 Space-time analysis of natural phenomena

Natural phenomena, both extreme and low-medium entities, show variable char-
acteristics in space and time. In some cases, it is essential to study the variations
that occurred in a given time interval. The rate at which specific parameters vary
can provide helpful information on the evolution of the phenomenon in progress
and the degree of risk to which the territory in question is subject.

In the seismic and volcanic fields, the space-time increase of some geophysical
parameters is evaluated through in situ measurements. In other cases where the
evolution of natural phenomena is influenced by anthropogenic activity, it is nec-
essary to use other methods to get an idea of how they vary in space and time.
An example is represented by the phenomenon of urban sprawl, which we talked
about in the previous section and directly impacts cities’ livability. Another natu-
ral phenomenon which offers significant points of interest is the analysis of thermal
anomalies in volcanic areas, which has been treated as an application example of
the adopted method.

A technique that is well suited to both purely natural phenomena and those
influenced by human activity is represented by monitoring using satellite images.
Analyzing a set of them relating to a specific time interval allows us to trace the
changes that occurred in that time frame and a particular sector of the earth’s
crust. An analysis of this type is of particular importance in the GIS field as

it allows, in an automated way and in very few instants of time, to define the



conditions of the territory under different aspects (seismic, volcanic, hydrographic,
environmental, etc.).

Our proposal, therefore, concerns a powerful multitasking approach capable of
monitoring natural phenomena and those related to the sustainable development

of the territory.

1.4 Code refactoring to improve the performance
of GIS applications

The current monolithic applications have limitations in performing single or mul-
tiple images at increasing resolution. The temporal study of some phenomena may
require processing applied to a swarm of them. We mainly refer to the geospa-
tial analysis applied to urban agglomerations to evaluate the decrease in green
spaces or similar phenomena that require comparing satellite imagery relating to
different periods. The study of the desertification process is another example
that necessitates the simultaneous processing of image swarms. The algorithms
performed during processing require adequate computational resources, especially
those that have to scan, pixel by pixel, the entire image or calculate the maximum
and minimum values of x for the same y and vice versa [22]. Therefore, improving
performance to large input loads or single images of medium-high resolution is
necessary.

In this case, many architectural and implementation choices must be made
innovatively and strategically for optimal problem resolution. The external paral-
lelization of containers and the exchange of data through an asynchronous messag-
ing system requires their "ad hoc” use. The transformation of the initial monolithic
system into a microservices one makes possible some types of analysis in different
fields (urban planning and geophysics, to name a few) that were previously not
possible for the time required. Performance analysis and evaluation of flexibility

and portability can give valuable indications of the best compatibility between the



two systems.

1.5 Thesis structure

Chapter 2 discusses a new algorithm for implementing a seismic-volcanic warning
system. It comprises different sections, starting from the theoretical background
of Seismic Early Warning, framework and implementation details and hardware
and software architecture. The experiment was carried out on the territory of
New Zealand, which due to its particular geodynamic position, was chosen as a
case study. The availability of the data, represented by earthquakes and ground
deformations, made it possible to test the method’s reliability.

Chapter 3 concerns environmental monitoring through image processing tech-
niques applied to satellite imagery. This way, automated analysis is carried out to
reach significant results described in the different sections. Labelling boundaries
and surfaces and parameterizing green and urban areas are the two main phases
that allow qualitative and quantitative monitoring. The data obtained from the
geospatial analysis allowed us to perform queries in JSON format to extract helpful
information from the green and urban areas.

In Chapter 4, the previous techniques used to perform the parameterization
of green and urban areas have been extended to a swarm of images. The main
purpose is to carry out a space-time analysis that allows us to obtain, in various
steps, a map of the gradients of both areas in different urban centres. The method’s
reliability has been tested on two Japanese cities, Kamakura and Ohata, which
represent an excellent testbed due to the articulation of the urban green.

Chapter 5 describes the techniques applied to obtain the refactoring of the orig-
inal application. The main strategies adopted are: rewriting portions of code from
imperative to functional syntax, implementing the original monolithic application
in microservices, and parallelizing containerized algorithms.

Finally, Chapter 6 provides the conclusion of the thesis, and the following

sections concern the lists of figures and tables, and the bibliographic references



used within the document.

1.6 Published papers

Part of the work presented in this thesis is based on the following co-authored

papers:

e R. Spina, A. Fornaia, E. Tramontana: VSEW: an early warning system for
volcanic and seismic events. Proceedings of IEEE International Conference

on Smart Computing, SMARTCOMP, 2020.

e R. Spina, A. Fornaia, E. Tramontana: An Farly Warning System for Seis-
mic Fvents based on the Multi-Agent Model. Proceedings of the WOA
Workshop ”From Objects to Agents”, 2020.

e R. Spina, E. Tramontana: An Image-Processing Approach for Computing
the Size of Green Areas in Cities. Proceedings of the 9th ACM Inter-
national Conference on Computer and Communications Management (IC-

CCM), 2021.

e R. Spina, E. Tramontana: An automated classification system for urban areas
matching the ‘city country fingers’ pattern: the cases of Kamakura (Japan)
and Acireale (Italy) cities. Journal of Urban Ecology, Oxford Univer-
sity Press, Volume 7, Issue 1, 2021.

e A. Fornaia, S. La Torre, G. Pappalardo, R. Spina, E. Tramontana: A nowvel
approach for geospatial analysis in raster mode based on microservices and

data streaming In review.

e R. Spina, E. Tramontana: An example of GIS applications to perform a

spatio-temporal analysis of a swarm of satellite imagery. Advanced draft.



Chapter 2

The seismic and volcanic early warning

systems

2.1 Approach

In areas with high seismic risk, the mainshock is preceded, in time intervals vary-
ing from days to years, by the so-called “foreshock”, swarms of seismic events that
can prelude to the breakage or reactivation of the discontinuity surfaces (faults)
present in the earth’s crust that generate the main event (mainshock). Often, areas
with high seismic risk are embedded in one or more active volcanoes, as in the case
of the Pacific “Ring of Fire” in which about 90% of the world’s earthquakes occur.
High intensity seismic and volcanic events are generally preceded by significant
variations of the physical-chemical parameters, which indicate potential instabil-
ity of the territory. In some ”asymptomatic” cases, the seismic or volcanic event is
not however preceded by important anomalies of the geophysical precursors. The
main seismic precursors are represented by the emission of radon gas, soil defor-
mation, soil temperature and the geomagnetic and gravitational anomalies related
respectively to the variations of the magnetic and gravimetric field before an event
of a certain intensity. In the volcanic field, the main precursors are represented
by volcanic tremor, a seismic signal of weak intensity induced by vibrations due

to the rise of magma, soil deformation, thermography, concentration of volcanic
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Figure 2.1: The USGS measures the activity level of a volcano with several different
types of instruments. This graphic represents types of volcano monitoring in the
corners, with associated methods used in italics (Credit: Lisa Faust, USGS).

gases and presence of seismic swarms that can give valuable information on the
opening of new volcanic vents (Figure 2.1). In addition to terrestrial detection,
satellite imagery also allow us to observe and obtain useful information on the
evolution of some precursor phenomena: thermal anomalies, volcanic plumes and
soil deformations.

Overall, the precursor phenomena generate an enormous amount of data ac-
quired by the respective sensors, which require an adequate structuring of the
software for their management. The MAS (Multi-Agent System) model is one
of the most suitable choices for efficiently implementing a seismic alert system,
based on the interpretation of experimental data obtained from the sensor network.
Software applications based on MAOP (Multi-Agent Oriented Programming) are
widely used in various fields and have taken on an increasingly important role
thanks to the use of artificial intelligence (Al) techniques [23, 24, 25].

The adoption of centralized methods presents intrinsic difficulties due to the
growing complexity of the systems, the dimensions of which continue to increase:
in this context, the architectural solutions proposed by the MAS (Multi-Agent Sys-
tem) offer different advantages and a good solution for the modelling of complex

distributed systems [25, 26, 27]. One of the fundamental characteristics of the MAS
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paradigm is the interaction between agents, independent and autonomous software
modules that perform specific propaedeutics activities for the development of one
or more system functions. The innumerable properties that distinguish the agents
(communication, persistence, reactivity, proactivity, etc.) make them potentially
suitable for monitoring natural phenomena, especially those capable of producing
catastrophic events. The different activities required by a seismic early warning
system, summarized in the acquisition, interpretation and formatting of geophys-
ical data with the addition of real-time user assistance, make the MAS model one
of the most appropriate systems for real-time monitoring of precursor parameters
(seismic swarms, ground deformation, soil temperature, radon gas emission, etc.)

aimed at predicting earthquakes potentially destructive.

2.2 Related Work

Monitoring procedures of geophysical parameters, in seismic and volcanic areas,
still require human intervention which often involves significant delays between
the occurrence of an eruption and notifications being dispatched. A group of
scientists presented the first examples of operational early-warning for volcanic
eruptions based on automatic and unsupervised algorithm. The system consists of
an infrasound array that identifies and automatically transmits to the authorities,
in real time, the imminent occurrence of an explosive eruption [28]. Other alert
systems have been created using different techniques and algorithms [29, 30, 31].

Different geophysical parameters have been used for several years to predict
earthquakes and eruptions with contrasting results. The use of radon-thoron iso-
tope pair is considered a new opportunity for earthquake forecasting: unusually
large 2°Rn peaks (the decay product of radium-226) were observed only in Febru-
ary 2011, preceding the 2011 M 9.0 Tohoku-Oki Earthquake [32]. Soil temperature
and seismic swarms have also proven, on several occasions, to be reliable precur-
sors of seismic [6], [7] and volcanic events [33], [34]. A promising technology, used

for seismic precursors, is represented by the InSAR satellite techniques for the
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analysis of soil deformations which allowed the detection, three years before the
2009 earthquake in the Aquila city, of an extensive subsidence of the soil (up to
15 cm) and a post-earthquake lift of about 12 cm [35].[6], [7] and volcanic events
[33], [34]. A promising technology, used for seismic precursors, is represented by
the InSAR satellite techniques for the analysis of soil deformations which allowed
the detection, three years before the 2009 earthquake in the Aquila city, of an
extensive subsidence of the soil (up to 15 cm) and a post-earthquake lift of about
12 cm [35].

Many applications that combine artificial intelligence and MAS technologies,
in various sectors, have been developed: some examples are represented by the
new opportunities created respectively for traffic control at intersections [23], for
monitoring and improving the cloud performance and security [24], or for alerting
people about crowded destinations [36]. In the last years, a group of scientists
presented a Multi-Agent System paradigm and discuss how it can be used to design
intelligent and distributed systems [25]. Next, a decentralized approach of MAS
has been developed using a distributed simulation kernel to solve partitioning,
load balancing and interest management problems in an integrated, transparent
and adaptive manner [26].

Different works have been produced on the implementation of multi-agent sys-
tems relating to coordination and rescue in the stages following the occurrence of
a high-intensity seismic event. A multi-agent system for the evacuation of peo-
ple in immediate post-emergency situations has been implemented for the city of
lasi (Romania) [37]. A series of simulators using a MAS architecture, following the
damage caused by the 1999 earthquakes in Turkey and Pakistan in 2005, have been
developed: damage, victims and other auxiliary simulators [38]. A Disaster Man-
agement System (DMS) developed with the multi-agent model has been proposed
to adequately manage a multi-risk situation consisting of two or more disasters
occur at the same time, such as, for example, the combination of earthquake and
tsunami [39)].

Other systems for the management of the pre-post seismic phases have been

12



developed by the authors in various ways: (i) through a Seismic and Volcanic
Early Warning System in the Etna area based on specific threshold values for each
geophysical precursor [40]; (ii) with an approach based on the coupling of multi-
agent systems and intelligent systems (cellular automata) for simulation on rescue
in the event of an earthquake disaster [41]; (iii) through simulations of various
post-seismic evacuation scenarios for people using a multi-agent system [42]; (iv)
integrating GIS with multi-agent seismic disaster simulations to investigate factors

significantly affecting rescue efforts, and to clarify countermeasures for saving lives

[43].

2.3 Theoretical Background of the Seismic Early
Warning

2.3.1 The barrier and asperity models

Forecasting of high-magnitude seismic events has as its foundation some theories
that, since the last century, have been proposed by various authors to explain the
phenomena that determine earthquakes.

Dilatancy theory [44] foresees that before an earthquake the seismogenic area
is subject to an increase in stress with an expansion of the crustal volume due to a
substantial cracking of the rocks. Consequently, the rocks undergo a variation of
their physical characteristics and from the external regions, the fluids are attracted
by this extensive fracturing phenomenon. Both the gases and the liquids circulat-
ing within the crustal volume change their paths and upon contact with different
rocks and/or fluids change their geochemical composition. The interpretation of
the phenomena that prelude and follow an earthquake is the basis of what is pro-
posed by Aki (1979) and Kanamori (1981) called respectively barrier model and
asperity model.

In the barrier model [45, 46] it is assumed that, before the earthquake, the

stress on the fault is uniform. The earthquake is produced by the sliding of the
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weakest area, while the most resistant area (barrier) is opposed to dislocation. In
this way, there is an increase in barrier stress. Consequently, after the earthquake,
the barrier may be affected by seismic (aftershock) or aseismic sliding episodes.

The asperity model [45, 46] considers that the sliding that generates the earth-
quake concerns the most resistant area, i.e. the asperity. Before the mainshock,
the stress on the fault is not uniform because aseismic sliding and preliminary
shocks (foreshock) have reduced stress in the weakest areas of the fault, concen-
trating it on asperities. When stress reaches a critical value, the asperity yields
giving rise to the earthquake.

The three models agree with the physico-chemical anomalies related to the
extensive fracture affecting the seismogenic area (seismic precursors) and with the
long sequences of earthquakes preceding (foreshock) and subsequent (aftershock)

at the mainshock, providing a valid interpretative key.

2.3.2 Statistical basis

Within each seismic zone, there are one or more seismogenic structures (faults)
which, with their displacement, can produce the vibrations that generate the earth-
quake. Sequences of seismic events that, in some cases, may prelude to a major
magnitude earthquake (mainshock) are called seismic swarms. Every single event
(foreshock) belonging to the sequence often occurs a short time from the previous
one.

Suppose we consider all the seismic swarms that in the past have given rise to
mainshocks of medium-high magnitude (above 6) which, about to the characteris-
tics of the territory concerned, can produce serious damage to people and things.
We denote with Sp, S, 53 three classes of seismic swarms (SS) which as a final
result gave an earthquake of magnitude M,, > 6 and with (P, S1), (P, S2), (P,
S3), the ordered pairs where P corresponds to the number of S elements and S to
the arithmetic mean for each class 57, S, S3. The average of the averages for the

three classes of seismic swarms that prelude to an earthquake of Magnitude M,
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will be given by:
3

SSt=%> P, (1)
=1
N:P1+P2+P3. (2)

The SS7, value obtained corresponds to the most probable value for seismic
swarms with My < 6 for that specific seismogenic structure, and therefore a thresh-
old value for the mainshock of magnitude M, > 6.

The same procedure is performed for geophysical precursors for which a consis-
tent database of measurements is available. Consequently, three further threshold
values (RCry, GDrp, and STry, ) will be obtained referring respectively to Radon
Concentration (RC'), Ground Deformation (GD) and Soil Temperature (ST") for
earthquakes with M,, > 6. The four previously threshold values (7},) will be asso-

ciated with the respective standard deviations (o) expressed by:

o=\ (3)

and the achievement of the threshold value (7},) will occur when:

[Mw + Uw]ﬂ[SSTh + O'Th]:@. (4)

where M, represents the average magnitude of the current seismic swarm and
o, the standard deviation associated with it. In real conditions in presence of an
extensive seismic swarm (S5), the system will calculate the average magnitude
value (SS) of the seismic sequence in progress and the other three seismic precur-
sors (RC, GD and ST). In the next step, it will compare the mean value of the

four precursors with the respective threshold values.
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2.3.3 Boolean expressions based on precursor phenomena

The definition of the alarm level is based on the evaluation of a series of Boolean ex-
pressions and conditional instructions, arranged in sequence, which allows defining
the type of alarm based on the number of precursor parameters that have reached
or exceeded the threshold value, going from hard (all variables are true) to soft
(only two variables have exceeded the threshold value). Among the four Boolean
variables, SS (Seismic Swarm) has a fundamental role in defining any alarm level:
if(SSANRCANGD AST)
return ”hard”;
else if(SSA((RCANGD)V (RCAST)V (GD A ST))) (5)
return "medium”;
elseif(SSA(RCVGDVST))
return ”soft”.
In particular, the signal will be set to hard if the expression (SSARCANGD AST)
returns true which occurs when all the parameters have exceeded their respective
threshold values. The other two levels, medium and soft, will trigger if three or
two precursor respectively exceed their threshold values.

The creation of a volcanic alert system follows the seismic methodology, but
with some important differences: (i) it is possible to estimate the threshold val-
ues for several geophysical parameters for which reference databases are available
(volcanic tremor, concentration of magmatic gases, soil deformation, soil temper-
ature). Through the acquisition of thermal infrared satellite imagery, carried out
on a daily basis, it is possible to obtain information on the thermal contrast be-
tween contiguous areas of the volcano. This technique is of particular importance
because, in correspondence with thermal anomalies, it is possible to evaluate the
possible rise of magmatic bodies and identify potential areas where new vents may
open; (ii) use the data relating to volcanic earthquakes to calculate the thresh-
old value for all the seismic swarms that led to the opening of a volcanic mouth.

In this way it is possible, similarly to the previous case, to define an alarm type
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(hard, soft and medium) linked to the evaluation of Boolean expressions based on

the threshold values of the five previously mentioned precursors.

2.4 Framework and implementation details

2.4.1 Software Architecture

The software architecture is based on Angular, a Single Page Application (SPA)
that allows to efficiently manage the interactions between the components present
inside the system, given by the following list:

(i) The main component (Component) i.e. the container of all the other compo-
nents, centralizing all the main information. It stores the seismic and geophysical
parameters (interacting with a proper database) previously computed on a sta-
tistical basis. The data are stored in arrays of objects made up of pairs [string,
number| and triads [string, string, number] with the first and last elements consist-
ing of particular keys. In the first object the first key indicates the seismic swarm
code and the second one if the seismic swarm is open or closed (0 or 1). The last
object consists of one triads with the first key indicating the swarm code, the sec-
ond key if the seismic swarm is open, closed or inactive (0, 1 or -1) and the third
key contains the average magnitude value of the seismic swarm. The intermediate
objects are made up of pairs containing the swarm code and the magnitude value.
Here is a practical example:

seismicSwarmDatabase = |

{swarm: 754" state: 0} // beginning
{swarm: ”7S4”, M: 2.5} // registration 1
{swarm: ”7S4”, M: 2.8} // registration 2 (6)

{swarm: "S4”, state: 1, M,,: 2.7} // end
]
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There are also a series of data structures in which the threshold values of seismic
swarms and geophysical precursors and the corresponding standard deviations will
be stored.

(ii) Component GraphicTools provides the service for formatting and displaying
data, from the respective databases, in graphs and tables.

(iii) Component UpdateData periodically checks the Web pages relating to each
of the components listed above for any updates of the published data. We briefly
describe the activities that the UpdateData component performs regarding the up-
dating of seismic data and soil temperature.

The UpdateData component establishes a connection with the web page that pub-
lishes the earthquake list, downloads the page to the local computer, parsers the
page and extracts the updates that are stored in the container (main component)
in an array of objects, named with the date of the current day.

The searchSwarm() method starts and searches for the most recent seismic events
that have occurred in the past 24 hours, and transfers them to an array of objects.
The last object of the swarm that closes the sequence is marked with 1 so that
the array can expand in the presence of a new seismic sequence. At this point, the
calcAverage Value() method checks whether the foreshocks of that sequence have
ended with a mainshock.

If this happened in the third key of the last object it will be written 1, otherwise
it will be written -1 to exclude the seismic swarm from the threshold magnitude
(6).

The component for updating the soil temperature (UpdateData) periodically
checks whether there is an update in the specific URL that will eventually be
downloaded locally. The resulting image will then be divided into several areas
and the temperature values calculated for each surface will be inserted into an
array of objects. Each of them will contain a pair of keys (Area, Temperature)
whose values correspond to the identifier of the area and the respective temper-
ature value. Similarly to the previous case, at the end of the seismic swarm the

array will be closed by inserting the value 1 in correspondence with the last object
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of the sequence. Three specific methods, present in the main component, will cal-
culate the necessary parameters (average, threshold and standard deviation) for
the correct operation of the Early Warning System. Each of these values will be
stored in the corresponding object arrays.
(iv) Component DefineAlert, by means of a set of Boolean expressions, compares
the respective threshold values with the average values of seismic swarm sequences
and geophysical parameters, establishing whether to launch a soft, medium or
hard alarm, or avoids sending an alert. The emitSignal() method will take care
of producing an acoustic-luminous signal if all the geophysical parameters present
in the Boolean expressions assume a true value, that is, when they have exceeded
their threshold values. The intensity of both signals will be proportional to the
deviation between the threshold value and the current average value of the pre-
CUrsors:

| Th — Myl (7)
The graphic button, present in the interface, will activate simultaneously with a
beep signal through a typescript timer whose intensity will be increased or de-
creased according to the value assumed by the expression (5).
(v) A component that deals with the promulgation (DispatchAlert) of the alarm
via email, sms, social networks (Facebook, Twitter), instant messaging (Telegram,

WhatsApp).

2.4.2 Relationships and interactions between components

The class diagram in Figure 2.2 shows the structure of each component and its
dependencies. In the Component class, the main container of the application, in
addition to the seismic and eruption databases, there are several data structures
such as earthquakeThreshold and eruptionThreshold consisting of objects of type
{string, number, number} that respectively represent the level of magnitude, the
threshold value and the relative standard deviation. The main component also con-

sists of other methods, which take as input one of the arrays and through specific
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algorithms calculate the necessary parameters (average, threshold and standard
deviation) for the Early Warning System. The addSwarm() and addData() allow
us to extend the database of seismic and volcanic precursors databases by adding
new seismic swarms and experimental measurements by sensors and satellite.

The sequence diagram in Figure 2.3 shows the life cycle and the interactions
between its components. The main Component, at specific time intervals for the
different parameters, performs a call to the UpdateData component through the
parserSeismicData() method and the other two related methods (extractSeismic-
Data() and searchSwarm()): at the end of the execution, the control flow is re-
turned to the main Component and thanks to the data binding the UpdateData
component dynamically changes the fields of the GraphicTools component which
refreshes the graphic updating it to new data. In an array of objects {string,
string} there are web addresses through which it is possible to access updated
data for all the geophysical components considered (seismic swarm and seismic
and volcanic precursors).

The main Component, at the same time, uses the data extracted from the web
page and through a series of methods nested within cale Threshold() calculates the
main parameters required: the execution of the first method has only been re-
ported in the sequence diagram to improve the readability of the diagram. At the
end of the processing, the main Component performs a call to the compareSeismic-
Threshold() method of the DefineAlert component which deals with comparing the
average values of the seismic swarm and the other recently measured parameters
with the corresponding threshold values (with the associated standard deviations)
to establish the alarm level. Subsequently, a call is made to alarmLevel(), a method
nested in it, in which there are a series of Boolean expressions allow us to define
the level of alert.

Finally, the DispatchAlarm component will take care of managing any alarm
disclosure through the set of methods shown in the diagram (sendMail(), sendSo-
cialNetwork(), ...).
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Figure 2.3: Sequence diagram
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2.5 Hardware and software architecture

2.5.1 Sensor networks

A fundamental prerequisite for the implementation of a Seismic Early Warning
(SEW) is the presence, in the seismic territory, of a capillary network of seismome-
ters and GPS sensors, recently replaced by GNSS (Global Navigation Satellite
System). By this acronym we mean a constellation of satellites that, by sending
a signal from space, allow specific receivers to determine their geographical co-
ordinates (longitude, latitude and altitude) on any point on the earth’s surface:
any ground deformation, before, simultaneously or after a seismic event, will be
highlighted by deviations from the original positions.

The test of the system, carried out in the Experiments section, was based
on the available datasets, i.e. Seismic Swarms and Ground Deformation. Ad-
ditional precursor parameters, in seismic areas where they are available, could
significantly improve the results obtainable from SEW: concentration of Radon,
C'O,, Arsenic and Iron, soil temperature are some of the many precursors that
give significant anomalies before a destructive earthquake. The sensors network,
arranged optimally for the seismogenic structures, must guarantee monitoring of
the precursor parameters with measurements carried out continuously through
a Repeater-Gateway transmission system, as in the case of ground deformation,
earthquakes and soil temperature. For other precursors (Radon, Iron, CO, and

Arsenic) the data acquisition can take place directly with on-site sampling. Figure
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2.4 shows the acquisition-transmission scheme of the wireless network, consisting
of three main components: the gateway, the repeater, and the end devices [47].
GNSS receivers, seismometers and geochemical sensors acquire the experimental
data and send them to a repeater which amplifies the signal strength to be trans-
mitted to the gateway, equipped with an internet connection, which routes them
to the respective servers of the data processing center. And from this moment on,
software agents come into play, carrying out a series of sub-activities to achieve

the final goal corresponding to the definition of the current alert level.

2.5.2 Overall Structure of the Software System

After talking about the internal structure of the application, let’s now consider the
external one that we use the agents to carry out a series of operations concerning
the transfer of data acquired from the sensors and all other activities related to
the SEW.

The main features of the Multi-Agent System is based on some assumptions:
(i) no agent can solve a problem on his own but must make use of the collaboration
of the others to achieve the intended purpose; (ii) each agent differs from the others
in the properties that distinguish it and the tasks it can perform; (iii) agents are
divided and associated in a congregation, i.e. groupings of them that perform a
series of semantically similar tasks.

With reference to the third point, we can consider that each group of agents
acts in parallel and independently from the others, even if they share the same
final objective. E.g., the cluster of agents SS (Seismic Swarm) acts in parallel with
the clusters GD (Ground Deformation), RC (Radon Concentration) and ST (Soil
Temperature): each group carries out similar activities to determine if there is
an overlap between your current experimental data range and that of the corre-
sponding threshold value, expressed by the relation (4). The interpretation of the
data obtained from the n agent clusters and the definition of the alert level is the

exclusive relevance of agent A. To verify that no malfunctions have occurred, a
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group of three demon agents (X7, X, and X3), periodically and alternately, checks
whether the state of A is consistent, by sending it a message to which a response
must follow. In case of no-confirmation, the role of the main agent will be assigned
to one of the two ” A substitutes” (A; or As) who will assume the same functions
performed by A.

The detail of the interactions between the agents relating to different clusters

is described in the following section.

2.5.3 Collaborative interaction between agents

The description of the interactions in the SEW system is based on the assumptions
the MAS implementation concerns earthquakes with a magnitude greater than
six and each agent is characterized by its internal state, that is, by variables
and data structures which, at a given instant, contain specific values. Agents

are server-side back-end components queried by the front-end. The system, still
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under development, uses Java Agent Development Framework (JADE), a network-
oriented framework that guarantees very efficient communication. The example
shown refers to the geophysical parameter ”Seismic Swarm”, but the actions and
operations carried out can also be considered substantially equivalent for the other
geophysical parameters.

Collaboration and exchange of information can be summarized with the fol-
lowing activities, distributed over a series of agents: (i) download of experimental
data from the corresponding servers where they have been stored by the sensor
network; (ii) filtering according to certain rules that establish whether they are
suitable for registration or not; (iii) analysis of current data and comparison with
statistically calculated threshold values; (iv) establish if the alarm level must be
updated defining its criticality; (v) formatting and display of data to be presented
to the user; (vi) notification of a warning to a select group of scientists on any
existing critical problems.

Figure 2.5 highlights the different roles assumed by agents By, C, Dy, belong-
ing to the same group of agents, while A belongs to a hierarchically higher level.
Every 10 minutes agent A sends a notification to agent B; that queries the inter-
nal server for the latest updates on seismic events occurred in that source area.
In case of a positive response, it sends a message to agent C; which includes the
magnitude (M,,), the hypocenter (H,) and the date/hour (D) in which the seismic
event occurred. Received the message, the agent '} compares the data received
with those of the previous earthquake, stored in its internal state: the earthquake
will be entered in the seismic swarm database only if it has M,, > 1 and occurred
within 24 hours from the previous one, otherwise it is discarded. If the earthquake
is inserted in the current seismic sequence, ' sends a notification signal to agent
D; which activates and checks the earthquake frequency (Fg) in its own state in
the last seven days, with the specifications defined previously (hypocenter, mag-
nitude). If the frequency is sufficiently high (e.g. Fg > 5 earthquakes/day), D,
calculates the average magnitude and the associated o for the current seismic se-

quence and compares it with the corresponding threshold value. In case it reaches
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Figure 2.6: A mockup of the SEW dashboard

or exceeds the threshold value, D; updates the value of M, in the database and
sends a message to agent A, whose evaluation will take into account the frequency
of the seismic swarm in the last days.

Next, based on the result obtained from the Boolean expression (5), it will
decide whether to activate an alarming level and of which type (soft, medium
or hard), sending a notification to the E and F agents, “specialized” in user
assistance. In particular, the F agent will update the table and the respective
graphs (histograms, box-and-whisker diagrams, etc.), while the F' agent will send,
via e-mail, a report to a small group of scientists. The document, created in an
automated way, will report the experimental data that determined the activation of
the specific alert level. At the end of the activity cycle, the clusters of agents listen

for new notifications that can re-trigger the sequence of activities listed above.
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Figure 2.7: Scheme of the subduction area (Kermadec Trench) and the transform
zone (Alpine fault) with the relative displacement speeds of the Pacific plate in
collision with the Australian plate. (Credit: Mikenorton via Creative Commons
https://commons.wikimedia.org/w/index.php?curid=10735284)

2.5.4 User assistance

Within the MAS, the purpose of Agents E and F is to assist users for the inter-
pretation of experimental data and the notification of system status information
documents. There are two degrees of access with level 2 users (scientists) who
have more rights than level 1 (normal user). The main activities carried out by
agent E can be summarized in: i) facilitating the interpretation of experimental
data, showing them in real-time in the form of graphs and tables; ii) make them
available in various formats, via download, for further research activities. At the

end of the activity cycle, carried out by the various clusters of agents, which aim
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at determining the alert level, A transmits the updates that have occurred: upon
receipt of the notification, agent E is activated instantly by refreshing the SEW
dashboard, which will show updated graphs and tables of each seismic precursor.
A mockup of the SEW interface, currently under development, is shown in Figure
2.6. For both user levels, there is a button pointing to the precursor databases
which contains recent and historical experimental data. Through a multiple-choice
menu, it is possible to select one of the following possible formats: JSON, CSV
and KML. When the user clicks on the “download” button, reactively and accord-
ing to the selected choice, Agent E will take care of data extraction, formatting
according to the selected format and starting the download process.

At the same time, Agent F creates a report in pdf to be sent via e-mail to a
small group of scientists whose e-mail addresses have been stored. The document
will be sent only in the presence of a hard level alarm and will present several
standard fields: (i) the geographical coordinates of the area in which the seismic
swarm occurred and the hypocentral depth; (ii) the frequency of earthquakes in
the last two days; (iii) the average values and the relative standard deviation of the
seismic precursors; (iv) further technical information on the instrumentation used,
the seismogenic structure affected by the seismic swarm, etc. The information
reported in the document have been extracted from the databases and system
variables in which they are stored and assembled in a specific template, used for
the realization of the report. In the case of the other alarm levels, no notification
will be sent to the scientists, however it will always be possible to access an updated
report, once a day, directly from the dashboard whose access is limited to level 2

users only.
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2.6 Case study: New Zealand, a land with high
seismic and volcanic risk

New Zealand is a region characterized by a high seismic and volcanic risk due to
the presence of a fair number of active volcanoes and the particular geodynamic
location, in the collision zone between the Australian Plate and Pacific Plates.
For this reason, the area is covered by a dense network of sensors, some of which
have only recently been operating, which allow continuous monitoring of different
seismic and volcanic precursors. The data are made available to users through the
GeoNet project (Geological hazard information for New Zealand) at the following

URL: https://www.geonet.org.nz.

2.6.1 Seismotectonic overview

Within the GeoNet Quake Search section, New Zealand is divided into 10 seismic
regions, from Auckland & Northland to Wellington & Marlborough. The intense
tectonic and seismic activity is attributable to the presence of the Alpine fault,
a large dextral transform structure, which crosses the southern part and marks
the contact between the Pacific and the Australian plate. In the eastern off-shore
area of the north island, the Pacific plate dips below the Australian plate: the
phenomenon of subduction continues also at the Cook Strait and is the cause of
deep earthquakes and the presence of active volcanism in the island of North.
There are also a series of active secondary faults kinetically connected with the
Alpine one, like Marlborough fault system, a set of four major faults which transfer

displacement between Alpine fault and the Kermadec Trench (see Figure 2.7).

2.6.2 Experiments

The network of seismometers and GPS/GNSS sensors is well developed and rep-

resents a good way to test the seismic alert system. Each seismic region is covered
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by a fair number of GPS/GNSS stations for the measurement of the ground defor-
mation, even if for some stations the operativeness has occurred only in the last
years and for others, the first registrations are from 1999. Of the three components
that relate to displacement from the initial position (east, north, and up) only the
up component was taken into consideration, relative to the vertical displacements
of the ground. And this because the other two components, east and north, are
mainly attributable to the displacement of the two plates.

The seismic data available on the “GeoNet Quake Search” page of the geonet
web site were filtered by geographic coordinates, region and depth and downloaded
in CSV format: the threshold value and the relative standard deviation were then
calculated for two high magnitude seismic events. To download the data relating to
the ground deformation, the GeoNet API was used, which allows the experimental
data to be downloaded quickly, using special queries carried out in GET mode.

The SEW test was performed on the northern segment of the Marlborough
fault system of the Wellington & Marlborough seismic region. The GPS/GNSS
stations used for the calculation of the threshold values are those closest to the
seismogenic structure analyzed, in which experimental data were available from
2004.

Seismic events occurred on 2013-07-21 and 2016-11-14 were considered, respec-
tively of M, = 6.5 and M,, = 6.2. Only two mainshocks have been considered,
although they are made up of more than 600 seismic events in total, because
catastrophic earthquakes of high magnitude, over the last twenty years, are quite
limited in number.

For the ground deformation, the registrations made up to four months before
the mainshock was considered and the threshold values for each of the three sta-
tions were obtained using the data relating to the two seismic events of 2013 and
2016.

In reality, by restricting the datasets to one month before the seismic event,
the variation in the values obtained for the three stations is negligible and falls

within the order of a tenth of a millimetre.
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Seismic swarms Mp,s M Nge

2013-07-21 6.5 24 340
2016-11-14 6.2 2.0 290

Threshold value: 2.2
Standard deviation: 0.2
Total number of seismic events: 630

Table 2.1: Seismic swarms before the mainshock on the Marlborough fault
system

The 2013-08-16 earthquake of M,, = 6.5 was used to test the correspondence
between seismic swarms in progress and statistically calculated threshold values.
A further test was performed on the seismic swarm of May 2018 which as a final

result did not give a mainshock.

2.6.3 Results

The data of the seismic swarms relating to earthquakes occurred on 2013-07-21
and 2016-11-14 are shown in Table 2.1: M, indicates the magnitude value of
the mainshock. The threshold value obtained for the northern segment of the
Marlborough fault system is of 2.2 4+ 0.2. Table 2.2 shows the threshold values
(T,) and the respective standard deviations (), expressed in centimetres, relating
to the 2013 and 2016 earthquakes for the three stations CMBL, WITH and KAIK.
All stations are characterized by negative ground displacements which denote land
subsidence before the mainshock.
The 2013-08-16 earthquake of M,, = 6.5, which occurred about a month later
after the strong earthquake of July 2013, was used as a sequence to test the system.
Figure 2.6 shows one of the seismic swarms, in the Marlborough fault system,
which preceded the mainshock: we can see the alignment of the hypocenters along
a preferential direction that corresponds to the direction of development of the

fault system that generated it (see Marlborough fault system of Figure 2.7).
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GPS/GNSS Stations Th(em) o(cm) Np,

CMBL -29 4.1 400
WITH -4.6 0.8 400
KAIK -17.2 0.4 400

Total number of measurements: 1200

Table 2.2: Ground deformation before the mainshock on the Marlborough
fault system

Seismic Swarm CMBL WITH KAIK
GD* - -246+35 -494+03 -16.8+04
GD** - 94.7 £ 0.5 9.4+ 0.5 57.6 £ 0.5
M,* 23404 - - -
M,** 23407 - - -

Table 2.3: Test 2013-08-16 earthquake* and seismic swarm™* on May 2018

Table 2.3 reports the average magnitude value and the relative standard devi-
ation of the seismic swarm before the mainshock which is in the range of 2.3+0.4.
The fields relating to the three ground deformation measuring stations show the
values GD =+ 044. It can be seen that in all stations the intervals of the ground
deformation in progress fall within the intervals of the threshold values T}, + o.
Hence, condition (4) is verified for both seismic precursors (SS and GD):

([My & 0,]N[SSTh £ o]# OA(GD + 03g)N[GDry + o ]# 0)  (6)
The evaluation of the Boolean expression for ground deformation corresponds to
a logical AND between the three GNSS/GPS stations:
(CMBL) N (WITH) N (KAIK). (7)
Figure 2.8 shows that in the three stations considered, before the event of

August 2013, the ground deformation intervals intersects that of the respective
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threshold values and therefore, according to the final result, the evaluation of
the GD parameter returns true. A similar result is also obtained for the seismic
swarm parameter with an almost complete overlap between the confidence interval
in progress and that relating to the threshold value.

Table 2.3 also shows the results of the seismic swarm of May 2018 (about 115
foreshocks), indicated as two asterisks, which affected the same fault system. It
can be observed that although the average value of the seismic swarm falls within
the confidence interval of the respective threshold value, the expression (7) returns
false because this does not happen for the ground deformation which has an inverse

(positive) sign with respect to the corresponding (negative) threshold values.

2.7 Conclusions

With the integrated analysis, we aim to simultaneously analyze the experimental
data of the physico-chemical precursors for which an adequate network of sensors is
available. Acting in a complementary way means considering the results obtained
by each parameter not disjoint from the others but which contribute, in different
ways, to the achievement of the final objective. The innovation of the proposed
model lies precisely in these short and simple concepts and the final evaluation of
Boolean expressions made up of representative variables of each precursor allows
each of them to make their contribution. In this way, it is possible to assess whether
the transformation that a seismic territory is undergoing is on average attributable
to those that occurred in the past in the periods preceding earthquakes of equal
magnitude (M, > 6).

According to the theory of dilatancy and asperity, the transformations that
a territory undergoes before a strong seismic event produce ground deformations
which, by fracturing, generates foreshock and catalyzes fluids from the surround-
ing areas, making their geochemical properties vary. If we consider that the entity
of the deformations depends on the mechanical characteristics of the rocks present

in each seismogenic area, we can consider that before each “characteristic earth-
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Figure 2.8: Comparison between the ranges of the data in progress and the thresh-
old values for the ground deformation and the seismic swarms related to the August
2013 earthquake. Note that in all cases there is an overlap of the intervals.

quake” [45], physico-chemical anomalies, on average similar to those that occurred
in the past, can be generated. The multi-agent structure greatly facilitates the pro-
cess of acquiring and processing experimental data carried out in parallel by the
agent clusters, each of which deals with a specific precursor. Two further agents,
specialized in user assistance, take care of adequately formatting diagrams, tables
and reports to be presented to users or sent to specific scientific groups to alert
them of any critical states.

The results of the M,, = 6.5 earthquake test of 2013-08-16 on one of the seismic
regions of New Zealand show an extensive overlap of the ranges [M,, &+ o, and
[GD + 044 of both precursors with their respective confidence intervals of the
threshold values and only small parts of the left interval are external to them. The
ground deformation indicates that the areas surrounding the seismogenic struc-

ture undergo pronounced subsidence in the period before the seismic event. The
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choice of this datasets is due to the possibility of using both seismic swarms and
ground deformations starting from 2004, a combination not possible for surface
earthquakes in the other seismic regions of New Zealand.

Conversely, the seismic swarm of May 2018, which affected the same area,
shows that even if the seismic swarms in progress meet the threshold intervals, the
deformation values in the three stations are largely outside the intervals [GDpy, +
ow): the absence of the mainshock is therefore in agreement with the result of the
expression (7) which returns false. The results, therefore, confirm that a forecast
based on a fair number of precursors can be a good solution for the implementation

of a seismic alert system.
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Chapter 3

Urban sprawl monitoring using image

processing

3.1 Application Domain

The existence of green areas within urban centers is one of the main factors that
improve the livability of cities. There are numerous benefits that the presence of
vegetation cover produces both in the environmental and social fields: (i) aesthetic-
ornamental function, regulation of the microclimate and expression of productivity
[48]; (ii) influence on local air quality both directly and indirectly by altering the
surrounding atmosphere and conditioning of local weather [49, 50]; (iii) the social,
cultural and aesthetic functions offered by the open city spaces allow socialization,
recreation and leisure in the open air [51]; (iv) open spaces favor social interactions
between people, environmental education for children and promote a compatible
relationship between humans and nature and consequently create urban sustain-
ability [52].

The importance of green oases within cities had already been highlighted, in
1977, by the architect Christopher Alexander who had developed a series of design
patterns [53], including ”City Country Fingers”, which involves the development
of extensive prolongation of country land to the urban center. In several cities,

especially in Japan, it is possible to recognize the imprint of urban development
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based on country fingers. This term refers to extensive urban intersections of
agricultural land or wooded hills which, from the peripheral areas, penetrate the
city. Inside them, there are urban windows, called city fingers, whose development
direction is opposite to those of the country fingers.

A parameter commonly used to identify vegetation, distinguishing the degree
of vitality, is the NDVI (Normalized Difference Vegetation Index), an indicator of
the greenness of the biomes [54]. This parameter is calculated using the satellite
datasets belonging to the Red (0.630— 0.680 pm) and Near Infrared (0.845-0.885
pum) band, characterized by wavelengths that show a remarkable reflectance con-
trast. The principle according to which the vegetation tends to completely absorb
the red and to almost completely reflect the wavelengths of the near infrared is
the basis of the distinction between vegetation and anthropogenic constructions.

In order to quantify the contribution that green areas provide, it would be de-
sired to evaluate the density of vegetation per unit of urban area. The quantitative
analysis of urban green, expressed through some parameters such as area, density
and length of the green bodies, has to be based on an automatic and correct la-
beling of the vegetation present within the urban center. This type of analysis
is a valuable contribution in territorial planning studies and for the definition of
policies to contrast the uncontrolled expansion of urban areas, defined as urban
sprawl. The tools commonly used for the qualitative and quantitative assessment
of vegetation cover in urban areas or entire regions are represented by GIS soft-
ware systems which, through the analysis of the input satellite images, calculate
the type of vegetation by dividing it into classes.

In such tools, however, user intervention is required. By means of the provided
GUIs [55, 56], the user traces the vector limits of separation between the different
themes. The geometric parameters’ determination of the green bodies is also
calculated manually by using measuring tools on the lengths and the areas. Then,
SQL- based queries allow the user to extrapolate different characteristics from the
context. Recurring examples are represented by the filtering of green spaces with

an area below a certain threshold value, the display of neighborhoods characterized
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by the highest and lowest density of vegetation, the filtering of urban areas closest
to the major green areas, etc.

In this chapter we present an innovative approach that allows users to achieve
the same results without the aid of GIS software systems and classic Landsat
and Sentinel images or other paid suppliers of satellite images. Image processing
techniques were used, implemented with the Python programming language and
applied to high-resolution Google Earth images. The final goal is to demonstrate
that a novel approach based solely on image processing techniques makes it possible
to efficiently automate a series of activities, having execution times of the order of
a few hundred seconds.

In addition to the classic activities of labeling, tracing the boundaries of sep-
aration of urban and green areas, calculation of areas, lengths and densities, we
aim to implement queries that extract significant information from data stored in
JSON files, with techniques similar to those of classic GIS applications. In addition
to the city of Acireale the Python application was tested on the city of Kamakura,
in Japan, one of the urban areas that shows a strong correspondence to the ” City

Country Fingers” design pattern.

3.2 Related Work

The calculation of the green areas within a territory is a prerequisite for several
purposes, including the reduction of desertification risk and contrast urban sprawl.
The quantification of the desertification risk in a given region is related to the com-
parison between the vegetation cover existing in different periods. An example is
represented by the Churu district of Western Rajasthan, where long-term moni-
toring based on the NDVT time trend was carried out, which confirmed that some
parts of the Churu district are subject to climate-induced desertification processes
[57].

Some studies have highlighted a primary role, in the genesis of desertification

phenomena, of land cover factors attributing a marginal weight to geomorpho-
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logical factors [58]; while, in other cases, human activities, related to ecological
recovery projects, represented the main causes [59].

The evaluation of green spaces within urban areas is also a topic of primary
interest for environmental [48] and social [49, 50] reasons. Monitoring the relation-
ship between urban and green areas during the phases of city expansion makes it
possible to avoid an irrational development of urban centers, a phenomenon that
is increasingly frequent in various countries of the world.

In recent decades there has been a renewed interest in urban sprawl and one
of the reasons is the use of new technologies to measure the phenomenon based
on digital cartography and georeferenced information [60]. The analysis of the
vegetation cover present in a territory is preceded by the raster phase of carto-
graphic labeling in which a classification is carried out by distinguishing green
spaces from urban ones [61]. The latter is followed by a set of vector operations,
generally carried out using GIS applications with a graphic interface, which can
be summarized as follows: (i) tracing the boundaries between urban and green
areas; (ii) calculating the main geometric parameters of each theme (area, width
and length); (iii) SQL query execution [62, 63]. In some cases, urban green space
analysis is performed using high-resolution images downloaded from Google Earth
Pro, often used in conjunction with GIS applications [62, 64].

Software systems, such as GIS, assist the above activities but are manually
carried out by users. The proposed approach overcomes such manual and cumber-
some operations using automatic boundary recognition based on innovative image
processing techniques applied to satellite images. Another technique that could
achieve similar results is edge recognition. This technique is based on mathemati-
cal functions to identify areas of the image with an abrupt change in brightness. It
has been applied in different images and for various purposes: (i) in face recogni-
tion for extracting edge maps from facial images under noisy [65]; (ii) for GIS-based
detection of grain boundaries in deformed rocks from images of thin-section [66];
(iii) to detect edges from human being’s X-Ray images based on Gaussian filter

and statistical range [67]; (iv) for vehicle detection using edge-based candidate
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generation and appearance-based classification [68]; (v) to identify the minutiae
in the fingerprints, as minutiae matching is the widely used fingerprint detection
and verification method [69].

In my initial work, an existing edge recognition algorithm was firstly adopted,
however it did not produce encouraging results due to the application domain’s
peculiarity. The green areas’ different gradations due to their typology and vigour
degree and the presence of shadows due to the trees’ foliage generate classification
errors by identifying false urban areas within the green ones. Similarly, manufac-
tured structures with reflectance values similar to vegetation create fictitious green
areas within the urban perimeter. These factors alter the results by compromising
the two themes’ correct territorial labelling.

Artificial intelligence techniques based on Computer Vision have produced re-
liable results for various contexts: (i) Object Detection to identify all the entities
in the image [70, 71]; (ii) image classification based on the content analysis by
attributing a recognition label to the objects present in it (cat, car, people, etc.)
(71, 72, 73, 74]; (iii) Face Recognition to identify the faces of people present in
an image [71, 75, 76, 74]; (iv) Action Recognition to identify spatiotemporal re-
lationships between entities within the image and to identify specific actions [77,
78, 79]; (v) Image Segmentation to analyze in detail the image previously divided
into specific areas [80, 81, 82, 83].

Although Computer Vision algorithms can interpret each element of the image
through advanced operations, the applicability of these techniques based on neural
networks depends on the problem to be solved. A series of tests to be performed
on a representative prototype of the image to be analyzed would make it possible
to establish in advance the correspondence between the expected results and those
obtained at the end of the processing.

Nevertheless, an approach based on neural networks requires a large dataset
to reliably carry out the training phase, which, at present, is not available. The
absence of similar applications developed in the past justifies the gap in datasets

for labelling urban spaces. Furthermore, based on the previous considerations
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expressed for the edge recognition technique, the presence of false positives within
green and urban areas would significantly penalize this phase, even in the presence
of significant datasets. The unsatisfactory results obtained in the initial phase of
experimentation led us to consider a more robust deterministic approach, based
on tuning the RGB values and capable of minimizing the critical issues otherwise

encountered when using a Machine Learning approach.

3.3 Approach

The operational choices were based on a novel approach, using high-resolution
images directly downloaded from Google Earth, with a spatial resolution of 2.5 m.
This solution was deliberately used instead of the classic Landsat and/or Sentinel
satellite images which, supported by GIS applications, would have facilitated the
data analysis process. The choice of using a pure image processing approach, based
solely on the PIL and OpenCV2 libraries of the Python programming language,
has allowed us to implement complex techniques on RGB images. In this way,
important geometrical parameters have been obtained with undoubted advantages
on flexibility and versatility using digital techniques.

The first step is to download the RGB image, via Google Earth, e.g. of the
Kamakura and Acireale city center, in high-resolution (2502 x 2607 pixels). From
the first image a portion of 500 x 441 pixels has been cut, referring to some
country fingers near the center of the cities. This let us simplify the analysis and
the display of the results, and to reduce the execution time required for scanning
the image pixels. A JSON file has been implemented for setting variables and
processing resolution to enable or disable some tools and parameters calculation
such as processing grid, area and length calculation, etc. The program, executed
on the image mentioned above using the PIL library, lets us extract the RGB values

of each pixel and perform a series of other operations described in the following.
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Figure 3.1: Labeling and boundary detection on a reduced prototype of Kamakura
city (Maps Data: Google, SIO, NOAA, U.S. Navy, NGA,GEBCO).

3.4 Processing phases

3.4.1 Surfaces labelling and boundary tracing

The first operation was the labelling of the map, carried out on a prototype image
to assess, first, the correctness of the choices adopted. The distinction between
urban and green areas was made by means of an algorithm based on the get-
pixel function (PIL library) which, for each pair of coordinates (x,y) returns the
RGB values of the pixel. The threshold values of the three channels needed to
discriminate against the two themes (urban area and green area) covered by the
classification were then established.

The approach used was based on the acquisition of RGB values, for each of the
two themes, in different parts of the image, calculating the average value for each
of the three channels. We then proceeded to assign to each mean value a range of
variation, then verifying, visually, the correspondence with the original image and
adjusting the values in the case of divergence. The aim was to adopt a simplified
approach limited to only two themes.

The mapping of the two themes was done on new files of the same size as the
original one, loaded into the primary memory for the subsequent processing phases.
Both files take on the meaning of layers, as they can be processed separately and

merged into a single image or file, necessary to distinguish the boundaries between
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the two themes. This last operation was carried out by the mergelmages function
whose code is shown in Figure B of the Code Snippets appendix. The boundary
that delimits urban areas from green ones is an element that belongs to both.
For defining the two portions, i.e. green and urban, it is necessary to operate
separately because in the same map they would be partially overlapped making it
difficult to distinguish them.

At the end of this first processing phase, the green image layer will be obtained,
characterized by the green color corresponding to the only mapped theme (vege-
tation). Instead the urban area will not be associated with any color (indicated
with none) and will be displayed in black. Symmetrically the urban image layer,
where the only mapped theme corresponding to the urban area is shown in light
gray.

The mapping of the image was performed using a square tile of 4x4 pixel
resolution. Considering that the spatial resolution is 2.5 meters, at each processing
step an area of 100 m? is analyzed. During the analysis of each layer, to determine
whether the specific theme or the absence of color is dominant within each mobile
tile, the implemented calcPercent function deals with counting for each color the
number of pixels within the tile and, if the percentage of one color is greater than
50%, the entire tile is colored with that specific dominant theme or otherwise
with none color. The processing carried out by the mobile tile takes place for
the entire image. Then, the pixels inside the tile are used to color the image
by means of the PIL putpixel function. The path followed in the three years of
PhD had the environment and the natural phenomena as a common denominator.
Living in a healthy environment and minimizing the risks due to endogenous and
exogenous phenomena are the main objectives of environmental monitoring. The
surplus of collected data available at different spatial and temporal resolutions
and their sharing lead to different analysis opportunities from past ones. These
advantages are offered by satellite images which in recent years have proved to
be a complementary tool to in situ analyzes of physico-chemical parameters to

interpret the evolution of natural events. However, the result’s quality depends
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on the proposed solutions to describe the phenomenon correctly. An essential role
concern the techniques used, which, in addition to extracting critical information,
must also operate efficiently. Further restructuring phases have transformed from
the original monolithic architecture to the microservices one, adopting a Kafka-
based streaming platform for data exchange between containers. In some cases, it is
essential to study the variations that occurred in a given time interval. The rate at
which specific parameters vary can provide helpful information on the evolution of
the phenomenon in progress and the degree of risk to which the territory in question
is subject. These tasks are performed through the windowMobile function assisted
by the built-in ones (imageLabeling, pixelCount, colorArea and calcPercent). The
development of some of them is shown in Figure G.

The main steps of image labelling are shown in Figure 3.1. From the left: the
mobile tile in the sampling phase; the tile at the end of the processing colored with
the prevailing green theme; the detection boundary phase on the original image;
and finally, the image after processing.

The next step was to trace the boundary in both layers. For this purpose,
drawVerticalBoundary and drawHorizontalBoundary functions have been imple-
mented to deal with the vertical and horizontal parts of boundaries respectively.
The algorithm scans the entire image, i.e. the pixels per rows and columns. Every
time there is a transition from green to black or vice versa, the intermediate pixel
is colored yellow, both for horizontal and vertical scanning. The result will be a
series of yellow lines that perfectly delimit the green areas from the black ones
(Figure 3.1, right part). By executing the same procedure for the layer urban im-
age we will also get the boundaries that separate the urban areas from the black

ones, which represent those without a theme.

3.4.2 Boundary classification

The preliminary activity for classifying the boundaries was the red colouring of

the image perimeter by acquiring the coordinates of each of these points. The next
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countourCol="White"
while(actualCoordinate!=initialCoordinate) and (actualColor!=color["Red"])\
and (previousCoordinate!=actualCoordinate):
previousCoordinate=actualCoordinate
if img_1.getpixel((x+1,y+1))==color["Yellow"]:
ile img_1.getpixel((x+1,y+1))==color["Yellow"] and (actualCoordinate!=initialCoordinate)\
and (actualColor!=color["Red"]):
y+=1
actualCoordinate=(x,y)
actualColor=img_1.getpixel(actualCoordinate)
lenghtBoundary+=1
index+=1
img_1.putpixel(actualCoordinate,color[countourCol])
copyCoordAsJSON (boundaryCoord, actualCoordinate, number,index)
f img_1.getpixel((x,y+1))==color["Yellow"]:
> img_1.getpixel((x,y+1))==color[“Yellow"] and (actualCoordinate!=initialCoordinate)\
and (actualColor!=color["Red"]):
X+=1
actualCoordinate=(x,y)
actualColor=img_1.getpixel(actualCoordinate)
lenghtBoundary+=1
index+=1
img_1.putpixel(actualCoordinate,color[countourCol])
copyCoordAsJSON (boundaryCoord, actualCoordinate, number, index)

Figure 3.2: Description of the followBoundary algorithm.

step has been performed by defineGreenUrbanUnits and followBoundary functions
(see Code Snippets Figure A and Figure D). The first scans the entire image and
checks the pixel color. If the color is the same as the boundary, the pixel is colored
white and the coordinate (x,y) is inserted in the file coordinates.json. The color
changing is essential to prevent it from retracing the same path during processing.
Next, the followBoundary function is executed, consisting of a main while loop
with a series of additional loops nested inside. The main cycle gives the exit
condition that will occur when one of the three conditions is true: (i) if the initial
coordinate is equal to the final coordinate, which occurs when the boundary closes;
(ii) when the current color is red, that is, the coordinate corresponds to that of a
border; (iii) when the initial coordinate corresponds to the previous one.

The while cycles nested within the main one check each of the eight positions
around the current pixel: if in one of these positions there is a pixel of the same

color of the boundary (yellow), control will move to it and its coordinates will be
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inserted in the JSON file. E.g., if the current coordinate is (x,y) and the check is
for the pixel (x,y+1), then until a yellow pixel is in it the cycle will be repeated.
Figure 3.2 shows, in yellow, the boundary that separates the vegetation (in green)
from the absence of color (in black); in white the visited boundary. The left image
shows that coordinate (x+1,y+1) is recognized as belonging to the boundary. The
right image shows that the loop of the previous position exits and the while relative
to the coordinate (x,y+1) is entered, which writes the coordinate to the JSON file
and colors the coordinate in white. The corresponding code is also shown.

The additional exit conditions from the secondary while will be equal to the
first two main cycle conditions. Ultimately, the eight secondary while cycles check
all possible positions where the boundary may be at each iteration. The white
coloring of each boundary pixel allowed for immediate feedback on the correctness
of the operation, i.e. the algorithm reliability is proven if the boundary changes
from yellow to white. During the execution of the algorithm, a JSON file was
generated, called boundary_parameters.json, reporting for each boundary: (i) type
of area, distinguished in " Urban Area” or ”Green Area”; (ii) area value, in pixels
and square meters; (iii) boundary length, in pixels and meters; (iv) length and
width of the unit, in pixels and meters; (v) the pair of coordinates (x,y) of each
boundary point; (vi) initial boundary coordinate; (vii) final boundary coordinate
corresponding to the last pixel before closing.

Once the points of each boundary have been obtained, and given a distinct
number in the JSON files, the geometrical parameters of the areas, have been

calculated.

3.4.3 Parameterization of green and urban areas

After distinguishing green areas from urban ones during the first labelling phase,
the next step concerns calculating the main geometric parameters. We estimate
the length and width of the boundaries and the area enclosed within them. A series

of algorithms characterized by different computational complexity have carried out
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Figure 3.3: Some techniques used to calculate the length, width, and area of green
and urban bodies. Each small square represents a pixel, and its size has been
intentionally exaggerated

these tasks. Table 3.1 shows the various functions and their execution times. The
calcXMaxOrMin and calcYMaxOrMin algorithms have the lowest performance at
the resolution of 2502 x 2607 pixels.

Let us now examine the characteristics of each algorithm. The caleXMaxOrMin
function for each y coordinate value of the boundary points calculates the minimum
and maximum value of x. It stores them in a particular field of the JSON file.
This procedure is necessary because, in irregularly shaped boundaries, the limit
can present some curvatures, interrupting the surface continuity. In this case,
it occurs that for every y, there are several values of x, and only two of them
will be the extreme points of boundary. Figure F shows a code snapshot of the
calcXMaxOrMin function.

The central image of Figure 3.3 shows a green area contained within an urban
agglomeration (in black). In the upper part, the boundary colored in white has
a winding morphology and tends to fold inside the surface. It can see that X,,;,
and X,,q, represent the horizontal extremes of the limit for each value of y. In
yellow, the pair of abscissas (x1,z3) although they have the same y value as the

corresponding X,,;, and X,,., values, represent internal points due to the indenta-
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tion of the boundary. Also, the pair (x3,z4) contained in the interval [X,in, Xmaz)
corresponds to the abscissas of the boundary that delimits an urban area nested
inside the green body. It is possible to make similar considerations for the Y,
and Y, values, representing the vertical boundary extremes for each x. To obtain
the length and width of each boundary is necessary to calculate X4, — X;nin and
Yinae — Ymin length segments for each y and x of the limit. The estimate of the
two dimensions will correspond to their maximum values:

Width; = maz;(Xmae — Xomin) Yy € B

Length; = maz;(Yimae — Ymin) YV € B

where B corresponds to the set of points of the i, boundary.

In images 3.3a-c, the length and width are shown respectively for regular and
irregular shape boundary. Figure 3.3d shows the two dimensions for the urban
body contained within the green one calculated through the calcWidthAndLength
function: a code snapshot is shown in the Figure C.

To calculate the area subtended by each green or urban body must be counted
the pixels between the pairs of values (X,in, Xmaz) for each y of the boundary.
The areas nested within the main one will be excluded from the count during the
horizontal lines scanning. Repeating the same procedure for each horizontal line
obtains the total number of pixels inside the urban or green body. Multiplying this
value by the area of each pixel, i.e. spatial resolution raised to the second power,
we will obtain the surface subtended by that specific boundary. The pseudocode
of the Calc Area algorithm is shown in the Figure E.

Figure 3.3b illustrates the pixels count, highlighted in red, between the extreme
values X,,;, and X,,,.. Note that the coloring stops for those present in the interval
[x1, 29 due to the boundary indentation. The same applies to the pixels between
the x3 and x4 values, belonging to the urban area nested within the green one.
Figure 3.3c shows the count conclusion of the internal pixels, entirely colored in
red, whose value will correspond to the area of the green body. Similarly, figure
3.3d illustrates the count performed in the urban area included within the main

boundary.
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Figure 3.4: Two examples of classification of urban areas relating to the ‘City
Country Fingers’ pattern. In case (a), there is no adherence to the pattern: the
agricultural lands surround the city and have no intersections with it. In (b),
there is maximum adherence to the pattern (ideal case): fingers of the countryside
branch off from all four cardinal points and penetrate the inner city

3.5 Experiments

3.5.1 Green spaces in the areas of Kamakura and Acireale

Classifying urban areas by considering intersections with country spaces from pe-
ripheral areas can be considered an efficient method to define the livability of a
medium-large city. Having access to rural areas intercalated within cities allows
us to improve the quality of life of the inhabitants: one of the main advantages
is the possibility of the frequent contact with nature without having to undertake
prolonged and stressful journeys when they are in remote areas.

In several cities, especially in Japan, it is possible to recognize the imprint of
urban development based on country fingers. This term refers to extensive urban
intersections of agricultural land or wooded hills which, from the peripheral areas,
penetrate the city. Inside them, there are urban windows, called city fingers, whose
development direction is opposite to those of the country fingers.

The concept introduced by Christopher Alexander in 1977, on which the ‘City
Country Fingers’ pattern was developed, was based on an ideal situation with
the urban area intersected by country fingers from all directions and prograding

toward the city center (Figure 3.4-b).

49



Algorithms Execution Time (sec) Resolution (pixel)
windowMobile 18.66 2502 x 2607
defineGreenUrbanUnits 11.06 2502 X 2607
calcWidthAndLength 0.37 2502 x 2607
calcArea 23.11 2502 x 2607
calcXMaxOrMin 31.77 2502 x 2607
calcYMaxOrMin 30.97 2502 x 2607
mergelmages 5.29 2502 x 2607

Whole application 320.69 2502 x 2607

Whole application 693.76 3753 x 3911

Table 3.1: Execution times of some algorithms of the application. Performance
for the entire application, at different resolutions, is shown in the last two rows of
the table.

To recognize and analyze, in an automated way, these particular structures, a
Python-based application was created. Starting from the original high-resolution
image of Google Earth, a complete analysis was performed, labeling and delimiting
urban and vegetational areas and extrapolating the main geometric parameters of
the country and city fingers.

In the analyzed cities, two main morphologies relating to the country fingers
consisting of wooded reliefs and agricultural land were recognized. The first fre-
quently present a three-dimensional development with fractal-like geometry that
recursively tends to reproduce itself. In this way, various branches of the main
country finger are generated, within which smaller city fingers, organized hierar-
chically, develop (Figure 3.5 below). The latter has a planar development and a
linear structure with a hierarchical organization of the country and city fingers

practically absent (Figure 3.5 above).
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3.5.2 Results

The functions implementation of the table 3.1 is reported in the Code Snippets
section. The results show a good agreement between the original map and the one
obtained at the end of the processing. This correspondence concerns the bound-
aries tracing, the labelling of the areas, and the geometric parameter’s consistency
extracted for each area and boundary. The images in figure 3.5 confirm the veracity
of the previous statements.

The execution times for several algorithms and for the entire application are
shown in Table 3.1, and the last row shows performance when increasing the
resolution. It shows a non-linear variation of the execution time. For the larger
image, calcWidthAndLength function performs the best as the processing simply
uses the coordinate pairs of the boundaries. As expected, calceXMaxOrMin and

calcYMaxOrMin functions have increased execution times.

3.5.3 Filtering through JSON query

The last step of the geospatial analysis concerns the queries execution, applied on
data from the previous phases, stored in a JSON file. Several queries based on
JSON files have been implemented, which contain all the boundaries coordinates
and the maximum and minimum values (xmin, xmax, ymin, ymax) for each dif-
ferent y and x. We report and analyze one of the most significant: filtering out
the green areas of small size which, in relation to the need to highlight the ” City
Country Fingers” pattern, can represent e.g. an area belonging to some family,
such as a garden, hence not a part of a finger, etc. They use techniques described
above to select and colour areas and boundaries, highlight green and urban bod-
ies with specific values or ranges of surface, length, or width, and so on. Figure
3.6 shows the results of the initial processing phase and those of some queries.
Images 3.6a and 3.6b show the original satellite imagery and the labelling results
of green and urban areas (in black). Image 3.6¢ views the query result selecting

green and urban areas with a surface between 100 and 400 pixels. The two themes
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After Processing

TEEE

City and Country Fingers

ACIREALE

KAMAKURA

Figure 3.5: The results of the image processing of the Acireale and Kamakura
cities. In the figures on the left the original image, in the central ones the result
after the processing phase and in the figures on the right of the country and city
fingers for both places indicated by letters and numbers. The vegetation is shown
in green and the urban center in transparent gray

are colored, respectively, with blue and red colors. The last query (image 3.6d)
removes the green and urban areas of small size that can represent a noise for cer-
tain types of analysis. The coloring of the entire area and the boundary, with the
same color black as the urban area, will be carried out by means of the putpixel
function. Additional queries have been implemented. These are just some of the
many information that can be extracted, by performing queries.

Figure 3.7 shows a snapshot of the query_1 executed on the JSON file: after
loading the boundary_coord (list of coordinates) file, areas that are less than 200
pixels are removed. The number of iterations will depend on the size of xmax (or

xmin) of the selected boundary. The coloring of the entire area and the boundary,
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' €. Query 1 - d. Query 2

Figure 3.6: Some queries in JSON format. a. Original Google Earth image with
a spatial resolution of 2.5 meters (Maps Data: Google, SIO, NOAA, U.S. Navy,
NGA, GEBCO); b. Labelling of the urban and green areas; c. Query 1: highlight-
ing of the urban and green areas with a surface between 100 and 400 pixels; d.
Query 2: removing noise from the image b.

with the same color gray as the urban area, will be carried out by means of
the putpixel function. Additional queries have been implemented. Specifically,
query_2 returns the total surfaces covered by green areas and urban areas through
the union of the respective individual areas. Finally, query_3 (not present in figure
3.7) colours in red all the green areas between 200 m? and 400 m?. These are just
some of the many data that can be extracted, by performing queries, from the

final image obtained by merging the two layers.
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def jsonQuery(img,boundary_coord,color):
query_l=True
query_2=False
for j in range(1,len(boundary_coord)):
if query_1:
if boundary_coord[f"Boundary_{j}"1["Area"]['Type of Area'l]=='Green_Area'\
and boundary_coord[ f"Boundary_{j}"J["Area"]["pixel"]<200:
#area
for i in range(l,len(boundary_coord[f"Boundary_ {Jj}"1["X_max"]1)):
x1= boundary_coord[ f"Boundary_{3j}"I["X_min"I[F"x_{i}"]
x2= boundary_coord[ f"Boundary_ {3i}"I["X_max"J[T"x_{i}"]
img["main_image"].putpixel((x1,x2), color["Gray"])
#boundary
for k in range(1,len(boundary_coord[f"Boundary_{j}"1["Peoints"])):
(x,y)=boundary_coord[ f"Boundary_{j}"1["Points"I[f"p_{k}"]
img["main_image"].putpixel((x,y), color["Gray"])
if query_2:
if boundary_coord[f"Boundary_{j}"1["Area"]['Type of Area'l=='Green_Area':
areal["Total_Green_Area"]+= boundary_coord[f"Boundary_{j}"1["Area"]["m"2"]
if boundary_coord[f"Boundary_{j}"1["Area"]['Type of Area'l=='Urban_Area':
areal["Total_Urban_Area"]+= boundary_coord[f"Boundary_{j}"1["Area"]["m"2"]

Figure 3.7: A snapshot of some JSON queries

3.6 Conclusions

An approach, and a corresponding Python application, was proposed to auto-
mate many operations usually performed manually by using a GIS. The tracing of
the boundaries that separate classes of different pixels and the calculation of the
main geometric parameters of the different thematic units are the main operations
implemented. The semantics of the proposed algorithms have an innovative char-
acter. The boundary detection between different types of terrain or between urban
areas and vegetation, and the calculation of lengths and areas has required, up to
now, the direct intervention of the user. Applications based on three-dimensional
satellite images, or the most important GIS software such as ArcGIS or QGIS,
have specific tools to draw boundaries and calculate areas. In irregularly shaped
surfaces, the use of such manual tools has obvious limits in the correct evaluation
of the contours and areas. The proposed techniques let us improve the reliability
of the results obtained in the presence of irregular shapes.

In the initial step of software implementation, a comparison was made with
standard techniques (edge recognition and machine learning), carrying out some

tests based on the algorithms available in the literature. The attempts were aimed
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at evaluating their correspondence for the application. However, the results ob-
tained on a prototype of the small-size image (500x400 pixels) showed unsatis-
factory results. The characteristics of both approaches do not meet the analysis
requirements needed by the application. The extreme variability of the house
colours that characterize an urban area shows clear limits in applying the edge
detection technique or the neural network-based approach. Green areas in which
there is a transition from zones of greater vigour to those characterized by dry
vegetation, shaded areas within green spaces or green buildings or infrastructures
are all factors that can lead to false positives, i.e. recognition of urban surfaces in-
stead of green ones or vice versa. These problems of the GIS application’s context
lead to final results that differ from the pre-established ones based on a binary
classification aimed at quantifying green and urban areas.

The GIS application has been tested on high-resolution Google Earth images.
However, simple tuning can also be adapted to types of images with different
formats, resolutions and types of input data.

In conclusion, the obtained results confirmed the reliability of the proposed
approach. They are a contribution of new ideas and an example of the development
of algorithms capable of abstracting the application from the subjectivity of the

freehand techniques used by the user.
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Chapter 4

Image swarm processing for the

evolution of natural phenomena

4.1 Introduction

Analyzing a set of images relating to a specific part of the territory in a given
time interval can represent a powerful technique for different purposes. In various
sectors, it is often necessary to know the variations a given phenomenon has in
space and time. A privileged field for this type of analysis is the scientific one.

Monitoring natural phenomena is crucial to understanding their short and
medium-term behaviour. For this purpose, an application has been implemented
which can autonomously detect variations in the same area and in one or more
pre-established time intervals. There are two fundamental prerequisites for this
analysis: (i) the variations must be assessed quantitatively; (ii) the processing to
obtain the gradient maps must be done efficiently.

In the first case, determining the main geometric parameters is fundamental
for correctly interpreting the phenomenon’s evolution. For example, if we want to
get the thermal gradient map of a volcanic area, we need to calculate the areas,
boundaries, length and width of each heat cell. Optimizing the performance of
the image swarm processing phases is a further factor that can affect its reliability,

that is, the system’s ability to behave according to the previously established
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specifications.

Before the execution to identify the real variations of the swarm of images, sev-
eral simulations were performed on multiple images relating to the two Japanese
cities of Kamakura and Ohata. Boundary labelling, area calculation and some
queries proved to be the most critical and costly steps. The maps obtained from
the partial and total processing of the swarm made it possible to get helpful infor-

mation relating to the phenomenon of uncontrolled urban sprawl.

4.2 Related Work

The swarm analysis of satellite images has been used in the scientific field to extract
meaningful information. Frequently, in the massive processing of satellite images,
a strong parallelization of some components of the application is chosen to increase
its performance. Multiple image processing has been related to different contexts
and purposes: (i) using an automated workflow to extract information related
to smallholder farming [84]; (ii) implementing a fully automatic image processing
chain that carries out all processing steps by switching from sensor-corrected op-
tical images (level 1) to web-delivered map-ready images and products without
operator’s intervention. This automated workflow aims to respond to the growing
need for automatic and fast processing of satellite images [85]; (iii) developing a
new approach to distributed processing of considerable amounts of satellite images,
using HIPI as an alternative to manipulating them. Adding the new tiff format to
the HIPI framework helps preserve information and massively process and analyze
satellite images for faster results than traditional remote sensing [86]; (iv) building
a high-performance system for processing a large daily volume of Chinese satellite
images (approximately 1,500 scenes or 1 TB per day) in a timely manner and
generating geometrically accurate orthorectified products [87].

These approaches based on massive processing aim to carry out their activities
faster than those performed on single images [85, 86, 87, 88]. In addition to

paying particular attention to performance, our proposal has a highly innovative
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implication compared to previous approaches based on image swarms. Interpreting
the evolution of some natural phenomena through their variations in time and
space is the cardinal point on which the primary interest of the application is
focused. The contribution provided by the complementary analysis of different
time versions of the same place makes it possible to extrapolate the changes that
occurred within a specific time interval. At the same time, the spatial analysis
makes it possible to highlight the changes undergone by portions of the surface
that outline the spatial evolution with which the phenomenon tends to spread in
distinct parts of the territory.

The innovative nature of the research is related to the absence of previous
works that use the massive processing of satellite images as a key to interpreting

natural phenomena to trace their space-time evolution.

4.3 Environmental monitoring techniques

The environmental monitoring can be carried out directly or indirectly. Direct
monitoring is carried out with in situ measurements by means of sensors that
allow the detection of specific environmental parameters. The type of such devices
depends on the natural phenomenon to be monitored. Thus, in the seismic and
volcanic field, sensors are used to measure earthquakes [89], ground deformation
[90], ground temperature [91, 92|, etc. Generally the sensors are placed in stations
of measurements located in different areas of the volcano or fault area, using in
some cases an [OT-based transceiver plugged onto the development board and an
embedded 3-d axis accelerometer [93].

Other types of sensor-based environmental monitoring is represented by mea-
surements to control the quality of water [94, 95] and air [96, 97], essential factors
for improving the quality of life in cities and contrasting of pollution which may
lead to the onset of disease in the resident populations. Further forms of monitor-
ing of physical parameters concern electromagnetic [98, 99] and noise [100, 101]

pollution, which involve similar health risks.
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Natural phenomena can be controlled in an alternative way than monitoring
physical-chemical parameters performed directly on site. Depending on the case,
the analysis is applied to satellite images with higher or lower resolution. This
way, GUI or image processing techniques evaluate the variations generated by a
specific natural phenomenon in a time interval and a given area. The variations
are obtained by measuring lengths and areas using special graphic tools in the GIS
software. This analysis allows us to understand the velocity with which the natural
phenomenon evolves and the extent of the changes undergone by the different
portions of the territory over time. This technique is applied in various fields in the
scientific world: (i) unsupervised monitoring vegetation [102]; (ii) retrieval of land
surface temperature [103, 104]; (iii) prediction of upwelling events in the coastal
areas [105]; (iv) monitoring spatio-temporal changes of terrestrial ecosystem [106];
(v) environmental monitoring of the city [107]; (vi) environmental monitoring of
submarine volcanoes [108].

One of the advantages of the satellite interpretation method is economical [109,
110]. The data analysis requires only image availability, which, based on the phe-
nomenon, can also be performed on lower-resolution representations. Otherwise,
carrying out the in situ detection of physical and geophysical parameters requires
chemical analysis, reagents and vast sensor networks, which need considerable costs
and time [111, 112].

In some cases, the two types of surveys are performed jointly: the punctual
and discrete measurements performed on-site are integrated with the evaluations
deduced from the interpretation of the aerial images. This dual approach makes
it possible to constrain better the results obtained from applying a single method

[113, 114, 115].
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4.4 Controlled Experiment: urban sprawl in the
Ohata and Kamakura cities

Experiments were conducted to test the method’s reliability, which, through elabo-
rating a set of images, aims to acquire helpful information to interpret the evolution
of some natural phenomena.

The Ohata and Kamakura Japanese cities were chosen for their conformation
of the urban greenery, according to the ”City Country Fingers” pattern illustrated
in the previous chapter (Figure 3.4). The complexity of the boundaries between
green and urban areas due to frequent intersections is a proper testbed for the
application.

The method illustrated in the next section is based on the simulation of the
green and urban variations that occurred in a specific time interval and a given
area. The fundamental purpose of this preliminary elaboration is to evaluate
whether the system, as it has currently been implemented, provides correct results
concerning two main issues. They can be summarized in: (i) identification of the
different green and urban areas; (ii) their quantitative evaluation (length, width
and surface).

In other words, inserting portions of urban and green areas whose size and loca-
tion we have previously established within a starting image lets us know whether
the results obtained at the end of the processing are consistent with the initial
ones. The same result would not have been obtained if we had used satellite im-
ages of the same area relating to different periods to estimate the variations that
occurred in a specific time interval. In this case, the processing would have been
aimed at recognizing real variations, which, unlike the simulated ones, cannot be

compared with the starting ones.
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Figure 4.1: Some simulations referring to a hypothetical four-year period from 2016
to 2020. Green and urban additions in Kamakura and Ohata cities are delimited
in red and yellow.
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4.4.1 Methods

The method simulates processing a set of images relating to the same area and
different periods. We considered a five-element compute swarm at 1213x1069 pixel
resolution for both the cities of Ohata and Kamakura. By virtually introducing
increases of urban and green regions in each image belonging to the swarm, we
want to verify the application’s capability to highlight them in a qualitative and
quantitative way. The processing that allows the evaluation of the differences
between green and urban areas is performed on the maps obtained at the end
of the surface labelling process. First, a series of transformations of the original
images were carried out to make them suitable for the set purposes. Each image
belonging to the swarm has been named with the date of the acquisition in the
following format: years-month-day.png.

Let us now consider the application of the method in Kamakura city. The first
element of the swarm, named 2016-07-15.png, corresponds to the initial image,
relating to the time ¢, to which no modification has been applied. In the following,
from 2017-07-10.png to 2020-07-22.png, portions of green and urban areas have
been introduced. The graphic editing made it possible to copy-paste these two
types of surfaces into the same map.

Figure 4.1 shows the process applied to the swarm: the first element (image
a) corresponds to the initial image at time to, in which no graphic modification
has been used. In the following images, we can see the parts delimited in red
(green areas) and yellow (urban areas) fictitiously inserted within them. The
former corresponds to an increase in green spaces in the urban centre to improve
livability conditions. On the contrary, the addition of urban areas to the detriment
of green ones denotes a worsening of the healthiness of the urban centre. To verify
the sensitivity of the software to identify the variations of surfaces of different sizes,
from very small (a few pixels) to very large (hundreds-thousands of pixels) areas
have been inserted. Similar considerations should be applied to the method used

for the city of Ohata, in which the preliminary phase of inserting the portions of
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c. 2018-2020 d. 2017-2020 T

Figure 4.2: Results of the queries applied to the gradients of green
(in red) and urban (in yellow) areas performed in the Ohata city.

green and urban areas are illustrated in the images in Figure 4.1, from g to n.
The final results of the swarm processing were stored in specific fields of a
JSON database for the subsequent phases concerning the execution of queries and

their formatting and visualization in graphs and reports.

4.4.2 Results

Figures 4.3 and 4.2 show the results obtained at the end of the two simulations
performed for Kamakura and Ohata cities. Compared to Figure 4.1, all areas
included in each image of the temporal range 2016-2020 were correctly identified.
Notice that in most of the urban and green areas added to the image, extensive
fragmentations are evident and, in some cases, holes that interrupt their continuity.
Exceptions are some urban (yellow) and vegetal (red) areas in the four images of

the 4.2 figure. This effect is not a software bug but highlights its correct execution
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c. 2020 d. 2017-2020

Figure 4.3: Results of the queries applied to the gradients of green

(in red) and urban (in yellow) areas performed in the Kamakura
city.

in highlighting the spatio-temporal variations.

There is a simple reason to explain the gaps in green and urban surfaces. The
fragmentations in a yellow area are due to the portions of vegetation inside the
urban appendage overlapping the image. The superimposition of a green area on
a similar surface does not give any variation and not is, therefore, indicated by the
yellow colouring of the respective pixels. The same goes for the green appendages
that cover the pre-existing urban areas. In this case, the holes interrupt the red
surfaces (variation from the urban area to the green area), denoting the presence
of urban portions in the green surfaces pasted in the main image.

For both cities, the previously inserted green and urban areas have been cor-
rectly identified, and their tracing precisely reflects the initial position shown in

the original figure (4.1). Furthermore, the calcArea function has made it possible
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to calculate the surfaces of the new boundaries correlated to the variations that
have occurred in one or more years. Their value, net of fragmentations due to the
previously mentioned reasons, corresponds perfectly to what they originally had.

The operating procedure used to obtain each map with the relative variations
and one or more years was divided into several steps. First, the calculation of
the variations of the green and urban surfaces between the initial image (year
2016) and the following one (year 2017) was carried out. Subsequently, the same
procedure was iterated until the last image of the swarm was reached, according
to the following relationship: year;_; — year;. During the swarm processing, the
surface gradients and the corresponding areas’ length and width have been inserted
in a JSON file. Based on these data and through queries, it was possible to create
specific maps based on the variations relating to one or more years. By merging
the data relating to one or more observation periods, it is possible to observe the
gradients relating to a single year (Figure 4.3a-c and 4.2a), two years (Figure 4.3b
and 4.2b), three years (Figure 4.2¢) or the entire four-year period covered by the
swarm (Figure 4.3d and 4.2d).

The algorithm in Figure 4.4 allows us to do what was described above and has
been applied to the Ohata city dataset to obtain the results shown in Figure 4.2.
The years on which to carry out the processing are established in advance by the
user through the lists [ist Years_index with 0 <index< 5 in which it is possible to
insert single years or combinations between them. On the other hand, the filename
list allows us to identify which period the saved images refer to at the end of
processing. The drawGradientData function then allows us to create the maps
based on the combinations of years previously established. Finally, the drawArea
and drawBoundaries functions will trace the areas and boundaries of the surface
gradients found in the time interval considered. The possibility of combining the
data obtained from different observation periods has also made it possible to carry
out a more accurate analysis through graphs and reports, illustrated in the next

section.
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1 ENABLED = True

2 DISABLED = False

3

4 def runQueries(gCoord,col, input_path,output_path,w,h):

5 listYears_1=["2017"]

6 listYears_2=["2018","2019"]

7 listYears_3=["2018","2019","2020"]

8 listYears_4=["2017","2018","2019","2020"]

9 filename=["2017", "2018-2019", "2018-2020", "2017-2020"]

10 drawGradientData(listYears_1,filename[0],gCoord,col,w,h,output_path,ENABLED)
11 drawGradientData(listYears_2,filename[1],gCoord,col,w,h,output_path, ENABLED)
12 drawGradientData(listYears_3,filename[2],gCoord,col,w,h,output_path,ENABLED)
13 drawGradientData(listYears_4,filename[3],gCoord,col,w,h,output_path,ENABLED)
14

15 def drawGradientData(listYears, fname,gCoord,col,w,h,out_path, flag):

16 ''"'"Colour all urban and green areas with different colours.'''

17 if flag == DISABLED:

18 return

19 img=Image.open(f"{out_path}/background.png")
20 fillColor=col["White"]
21 for k in range(len(gCoord)):
22 year=gCoord [f"Boundary_{k}"] ["Date"]["year"]
23 if year in listYears:
24 fillColor=selectArea(gCoord,col,k)
25 drawAreas(gCoord, img, col, fillColor, k)
26 drawBoundaries(gCoord, img, col, fillColor, k)
27 img.show()
28 JsonHelper.savelmage(img, out_path, f"gradient_{fname}.png", 'png")
29

Figure 4.4: A snapshot of the queries getting after the swarm processing and
applied to the new areas.

4.5 Real Case: analysis of thermal fields in the
volcanic area of Etna

The method for the spatio-temporal analysis of natural phenomena relating to one
or more portions of the territory has been applied to the Etna area, located in the
southeastern sector of Sicily in Italy. The Etna volcano, formed about 700,000
years ago, has alternated explosive and eruptive activity and is still active. The
objective is to verify, through the analysis of a swarm of images, the behaviour of
heat zones, which significantly increase before and during volcanic events.
Knowing the areas of the volcano subjected to more significant heating, espe-
cially during paroxysmal events, can give valuable information to understand the
internal dynamics of Etna. Areas with higher thermal values may indicate the

rise of magmatic bodies or the mobilization of considerable amounts of magmatic
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Figure 4.5: Paroxysmal eruptive activity of Etna in December 2015, taken from
the West. Photo by Veronica Testa.

gases. A fully automated approach has replaced the repetitive work of processing
each image with GIS software. We refer in particular to the following activities: (i)
entering the values present in the metadata files; (ii) calculation of the parameters
required to obtain the soil temperature; (ii) cropping of the part of the image to
be processed. The developed application only requires users to download satellite
images and metadata files.

The processing was applied to a set of images relating to the period from
November 2015 to May 2016. The choice is related to the sequence of paroxysmal
events with eruptive columns of the order of kilometers, which occurred in the first

week of December 2015 (Figure 4.5), as described in the next section.
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4.5.1 The Etna eruption of December 2, 2015

The paroxysmal event of 2 December 2015 is among the most violent of Etna
in the last twenty years. After a progressive intensification in the evening, the
eruptive activity of Etna culminated in the early hours of 3 December in a short
but very violent paroxysm, with high lava fountains and an eruptive column several
kilometers high. The excellent weather conditions made it possible to observe the
event.

The peak of the paroxysm occurred between approximately 02:20 and 03:10
UTC when a sustained lava fountain reached heights of well over 1 km. The cloud
of pyroclastic material was moved northeast by the wind, causing ash fallout in
towns such as Linguaglossa, Francavilla di Sicilia, Milazzo, Messina and Reggio
Calabria. At dawn, the eruptive activity had substantially ceased, even if some
weak ash emissions still occurred [116].

The previous description of the event of 3 December 2015 represents a summary
of the press release issued by National Institute of Geophysics and Volcanology
(INGV) on the morning of 3 December at 9:00.

Three more paroxysmal activities occurred in the following days up to Decem-
ber 9. From 10 to December 31, further Strombolian activity of modest magni-
tude mainly concerned the New Southeast Crater (NSEC). Since January 2016,
the eruptive activity of Etna has remained at very low levels. The period of stasis,
which lasted several months, was interrupted by a new eruptive sequence, from 17
to May 26 2016, with the opening of two explosive vents at the base of the North-
east crater (NEC). On May 21, from 3:40 to 8:00, a third paroxysmal episode
occurred, and a modest lava flow came out of a fracture on the southeastern side
of the crater. In the following days, a series of Strombolian activities alternated
and ended on the night of May 26. Subsequently, the volcano showed low activity
in mid-July, when weak ash emissions were observed from the eruptive vent that

opened in November 2015 [116].
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4.5.2 Methods

Landsat 8 and Landsat 9 product data acquired by both the Operational Land
Imager (OLI) and Thermal Infrared Sensor (TIRS) are delivered in 16-bit unsigned
integer format [117]. The imagery’s spatial resolution equals 30 meters, allowing
an optimal representation of the variations of the heat fields relating to the entire
volcanic building, whose surface is approximately 1,200 km?. During the swarm
image processing, the DNs of each pixel was converted from the original values,
representing the amount of energy detected by the satellite, into Land Surface
Temperature (Tp) in degrees Celsius. This procedure was carried out in three
steps.

In the first phase, the Landsat Level-1 data has been converted to the Top
Of Atmosphere (TOA) spectral radiance using the radiance rescaling factors in
the MTL file. The formula to convert each DN (indicated with Qcal) into TOA
spectral radiance (L) is as follows:

Ly = MLQcal + AL (1)

where M L and AL are the multiplicative and additive factors the MTL metadata
file provides. The second step concerns the conversion of the Thermal band data
from spectral radiance (Ly) to the top of atmosphere brightness temperature in

Celsius degree (Troa):

Troa = —H2— — 273.15 (2)
In <L_)\ + 1)
where K1 and K2 are the thermal constants retrieved in the MTL file.
The last step concerns the passage from the brightness temperature (Trp4) to

the Land Surface Temperature (75) with the following relationship [118]:

_ T
= [14—()\ * Tzfi)*ln(e)} )
where:
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o =hxc/s=14,388 um K
h = 6.626 * 10731J s (Planck’s constant)

wavelength of emitted radiance

s = 1.38 x 10723J/ K (Boltzmann constant)

c = 2.998 x 10® m/s (velocity of light)

o < NDVI—NDVI,,., )2
~\NDVI,.,.— NDVI,..

To take account of the local temperature existing at the time of acquisition of
the satellite image, for each sampling date, the value of the average temperature
(TonLocar), in degrees Celsius, measured in the locality was subtracted from that
read from the sensor (Trpa). Generally, the air temperature can be considered
with a negligible error, equal to that from the ground [119]. In this way, the value
obtained from the difference Troa — Tinrocar @llows us to obtain the temperature
increase per day of the soil cleaned by solar heating. The air temperature data
were obtained from the historical archive of the 3Bmeteo meteorological portal
[120].

The values obtained with the previous formula, suitably grouped into classes at
intervals of 10°C, make it possible to classify areas characterized by homogeneous
temperature intervals. The values of the different heat cells have been reported
in a table for each satellite image. It shows the surface area covered, in square
kilometers, by each type of thermal cell. This elaboration, therefore, makes it
possible to evaluate the thermal field induced by the underlying gases relative to

a specific date.

4.5.3 Results

The images in Figure 4.6 show the results obtained from the processing of the
heat fields relating to the activities of December 2015 and the end of May 2016.
The first image on the top left concerns the situation of the volcano in 2015-11-17,
about two weeks before the paroxysmal event of 2015-12-02. Intense deep heat

fluxes concentrated mainly on the southeastern slope of the volcano can be seen,
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Figure 4.6: Heatmaps of the Etna volcano in the November 2015 - May 2016
period.

interrupting the snow cover located in yellow in the central part of the image. On
the contrary, the following image, acquired on 2015-12-03 (GTM time: 09:36:10),
shows reduced heat areas with lower gradients than the previous ones. The follow-
ing image acquired on 2015-12-19 shows a rise in energy levels, according to the
continuation of explosive activity from 10 to December 30 2015, as reported in the
previous section.

The two images at the bottom left (2016-02-05) and in the centre (2016-02-21)
show limited heat fields of minor magnitude. In both situations, the continuity of
the snow cover, coloured yellow as it is at a temperature below 0°C, is interrupted
by sporadic cells of endogenous heat. Also, in this case, the consistency of the heat
fields is in agreement with the reports provided by INGV [116], which indicate a
standstill from January to May 17 2016.

Finally, the last image on the right shows high heat levels on both sides of the
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Threshold = 20 °C Threshold = 25 °C Threshold = 30 °C

Figure 4.7: Frequency map of heat anomalies from November 2015 to May 2016
and for different threshold temperature values. The areas coloured in light red
correspond to a frequency of five occurrences, while the ones in dark red to six.

volcano, with peaks corresponding to the entire eastern side of the volcano. The
date and time of image acquisition (2016-05-27, GTM time: 09:35:40) indicate a
snapshot of the volcano taken a few hours after the end of the eruptive sequence,
which occurred from 17 to May 26 2016 (Figure 4.6).

One way to check which areas warmed up more frequently during the analyzed
period is shown in Figure 4.7. To obtain the three frequency maps respectively for
temperatures higher than 20 °C, 25 °C and 30 °C from the six processed images,
the pixels that had temperatures higher than those indicated above and absolute
frequency values of 5 (in light red) and 6 (dark red) has been filtered. The three
images show that the surfaces of the thermal anomalies tend to decrease as the
threshold values move to higher levels.

The images show that the areas most subject to thermal anomalies are those af-
fected by tectonic structures (faults, extensional fractures, and eruptive fractures).
Furthermore, the areas subject to heating are concentrated on the eastern flank,
while on the other slopes, there is no trace of thermal anomalies in this specific
case. This is in accordance with the well-known instability of the eastern slope
sliding towards the opposite marine areas, dissected by the tectonic structures that

spread from the Ionian to the continental areas. Using a more extensive dataset,
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acquisition date TEMPERATURE CLASSES (°C)

10°- 20° 20°- 30° 30°- 40° 40°- 50° >50°
2015-11-17 259.79 63.50 4.23
2015-12-03 190.51 7.34 0.37 0.10 0.38
2015-12-19 102.85 9.33 0.05 0.02 0.01
2016-02-05 22.11
2016-02-21 254.62 30.86 1.03
2016-05-27 0.20 163.06 156.79 24.55

Table 4.1: Table of the heat areas expressed in square kilometers for each temper-
ature class and image. The temperature values are reported in degrees Celsius.

this innovative approach can be a useful tool for identifying the potentially most
dangerous areas in which deep magmatic gases are channelling towards the surface.

The table 4.1 shows the values, in square kilometers, of the heat areas relating
to the medium-high temperature classes. Overall there is an increase in heat
anomalies in the period prior to the paroxysmal activity (2015-11-17 acquisition
date) or after the event itself (2016-05-27 acquisition date) except in the case of
the paroxysm of 2015-12-02. In all other cases, there is a decrease in the heat cell
surfaces. For the interpretation of the variability of the heat fields shown in the

4.1 table, see the Conclusions section.

4.6 Formatting and displaying JSON data

At the end of the image swarm processing, the acquired data were structured in
textual and graphic form for each new green or urban area. The textual docu-
ments (reports) contain only the data necessary to define the phenomenon, leav-
ing out some superfluous information. An example is given by the boundary and
area coordinates relating to each theme which, for this type of representation, are
not necessary. Both datasets, essential for the realization of the previous 4.3-4.2

queries, are not considered of any use in this phase, which has the purpose of im-
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REPORT GRADIENT URBAN AND GREEN AREAS - CITY OF OHATA REPORT GRADIENT URBAN AND GREEN AREAS - CITY OF OHATA

Boundary ID: 1 | Date: 2017-67-10 | Area { Type of Area: Green_Area; pixel: 2; Boundary ID: 3 | Date: 2017-07-18 | Area { Type of Area: Green_Area; pixel: 7690;

m~2: 5.0 } | Width { Coordinates: (760, 199),(763, 199); pixel: 1; meters: 2.5 } m*2: 19225.0 } | Width { Coordinates: (753, 218),(834, 218); pixel: 79; meters:

| Length { Coordinates: (761, 198),(761, 201); pixel: 1; meters: 2.5 } | 197.5 } | Length { Coordinates: (780, 202),(780, 330); pixel: 126; meters: 315.0 }
|

Boundary ID: 2 | Date: 2017-07-10 | Area { Type of Area: Green_Area; pixel: 1;

m2: 2.5 } | Width { Coordinates: (759, 202),(759, 202); pixel: 1; meters: 2.5 } Boundary ID: 4 | Date: 2017-07-10 | Area { Type of Area: Green_Area; pixel: 2091;

| Length { Coordinates: (202, 759),(202, 759); pixel: 1; meters: 2.5 } | m~2: 5227.5 } | Width { Coordinates: (759, 460),(795, 460); pixel: 34; meters:

85.0 } | Length { Coordinates: (773, 431),(773, 507); pixel: 74; meters: 185.0 } |
Boundary ID: 3 | Date: 2017-07-10 | Area { Type of Area: Green_Area; pixel: 7690;
m~2: 19225.0 } | Width { Coordinates: (753, 218),(834, 218); pixel: 79; meters: Boundary ID: 5 | Date: 2017-07-10 | Area { Type of Area: Green_Area; pixel: 1322;
197.5 ) | Length { Coordinates: (780, 202),(780, 330); pixel: 126; meters: m*2: 3305.0 } | Width { Coordinates: (1005, 653),(1035, 653); pixel: 28; meters:

315.0 70.0 } | Length { Coordinates: (1026, 614),(1026, 675); pixel: 59; meters: 147.5 }

|
Boundary m 4 | Date: 2017-07-10 | Area { Type of Area: Green Area; pixel: 2091;
5227.5 } | Width { Coordinates: (759, 460),(795, 460); pixel: 34; meters: Boundary ID: 10 | Date: 2018-07-12 | Area { Type of Area: Green_Area; pixel: 2555;
as 0} | Length { Coordinates: (773, 431),(773, 507); pixel: 74; meters: 185.0 ) m~2: 6387.5 } | Width { Coordinates: (515, 38),(618, 38); pixel: 101; meters:
| 252.5 } | Length { Coordinates: (590, 29),(598, 58); pixel: 27; meters: 67.5 } |

Boundary ID: 5 | Date: 2017-07-10 | Area { Type of Area: Green_Area; pixel: 1322; Boundary ID: 11 | Date: 2018-07-12 | Area { Type of Area: Green_Area; pixel:

m2: 3305.0 } | Width { Coordinates: (1005, 653),(1035, 653); pixel: 28; meters: 10171; m"2: 25427.5 } | Width { Coordinates: (660, 116),(836, 116); pixel: 174;
70.0 } | Length { Coordinates: (1026, 614),(1026, 675); pixel: 59; meters: meters: 435.0 } | Length { Coordinates: (720, 47),(720, 142); pixel: 93; meters:
147.5 } | 2325} |
Boundary ID: 6 | Date: 2017-07-10 | Area { Type of Area: Urban_Area; pixel: 1288; Boundary ID: 15 | Date: 2018-07-12 | Area { Type of Area: Green_Area; pixel: 2043;
m~2: 3220.0 } | Width { Coordinates: (188, 241),(231, 241); pixel: 41; meters: m~2: 5107.5 } | Width { Coordinates: (380, 262),(414, 262); pixel: 32; meters:
102.5 } | Length { Coordinates: (219, 216),(219, 253); pixel: 35; meters: 87.5 } 80.0 } | Length { Coordinates: (395, 227),(395, 307); pixel: 78; meters: 195.0 } |
|

Boundary ID: 21 | Date: 2019-07-22 | Area { Type of Area: Green_Area; pixel: 2819;
Boundary 10: 7 | Date: 2017-07-10 | Area { Type of Area: Urban_Area; pixel: 5846; m"2: 7047.5 } | Width { Coordinates: (458, 600),(552, 600); pixel: 92; meters:

m"2: 14615.@ } | Width { Coordinates: (19, 31@),(75, 310); pixel: 54; meters: 230.0 } | Length { Coordinates: (498, 576),(498, 616); pixel: 38; meters: 95.0 } |
135.0 } | Length { Coordinates: (38, 225),(38, 382); pixel: 155; meters: 387.5 }
| Boundary ID: 27 | Date: 2020-07-22 | Area { Type of Area: Green_Area; pixel: 1155;
m~2: 2887.5 } | Width { Coordinates: (439, 220),(469, 220); pixel: 28; meters:

Boundary ID: 8 | Date: 2017-07-10 | Area { Type of Area: Urban_Area; pixel: 16; 70.0 } | Length { Coordinates: (461, 184),(461, 237); pixel: 51; meters: 127.5 } |

m~2: 40.0 } | Width { Coordinates: (70, 244),(77, 244); pixel: 5; meters: 12.5 }

| Length { Coordinates: (73, 242),(73, 247); pixel: 3; meters: 7.5 } | Boundary ID: 28 | Date: 2020-07-22 | Area { Type of Area: Green_Area; pixel: 2874;
m~2: 7185.0 } | Width { Coordinates: (1011, 273),(1088, 273); pixel: 75; meters:

Boundary ID: 9 | Date: 2017-07-10 | Area { Type of Area: Urban_Area; pixel: 7; 187.5 ) | Length { Coordinates: (1040, 247),(1040, 289) pixel: 40; meters:

m*2; 17.5 } | Width { Coordinates: (73, 271),(77, 271); pixel: 2; meters: 5.0 } | 100.0 } |

Length { Coordinates: (75, 270),(75, 276); pixel: 4; meters: 10.0 } |

T ————

a. Full report b. Query result

Figure 4.8: Two types of reports are obtained at the end of processing: (a) a
complete report which contains the data of all the new boundaries identified in
the image; (b) report showing data filtered by a query based on certain conditions
(green areas with surfaces greater than 1000 pixels).

plementing graphics and textual queries. Figure 4.8a shows the complete report,
which contains the results of the changes that occurred from 2016 to 2020. The new
boundaries obtained in this time range are thirty four in total, even if the figure, for
obvious reasons of space, shows only the first nine. The data formatting according
to the predefined fields was done through the functions createReports, fillFields
and getParameters imported from the graphs_and_reports.py module. The default
report structure contains fields showing the corresponding values obtained during
processing. They include: (i) the ID of the boundary; (ii) the acquisition date of
each image belonging to the swarm; (iii) the type of area (green or urban) and
its extension in pixels and square meters; (iv) the initial and final coordinates of
the boundaries” width and length and their measurement expressed in pixels and
meters.

In boundaries one, two and nine, the variations are minimal; in boundary two,
they reach the value of an area pixel. These low values show that the application

can recognize tiny variations (about 2.5 m?) corresponding to private green areas
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Figure 4.9: Bar chart of Ohata and Kamakura cities. The images above show
the variations, for each year, of the green and urban areas. In those below, a
cross-comparison is made between the two cities in the intervals 2016-2020 and
2018-2019.

(gardens), individual buildings or urban infrastructure portions.

Figure 4.8b shows the result obtained at the end of the query, which selects
all the green areas developed in the period 2016-2020, with a surface greater than
1000 pixels. In this case, the report is generated by the queryReport function in
four phases: (i) access to the JSON database where the new green and urban areas
are stored; (ii) selection of all green areas with a surface exceeding 1000 pixels;
(iii) data structuring according to the predefined fields of the report through the
createReports function assisted by the embedded routines; (iv) saving the report

in txt format.

5



4.7 Data interpretation through graphs

Simultaneously with structuring the data in reports, the same was used to build
graphs of various types. Based on the Matplotlib system library, a set of functions
packaged in the graphs.py library have been implemented. In the specific case, bar
graphs were used, which made it possible to interpret the evolution of green and
urban areas in the two cities used for the simulated analysis.

The top images of Figure 4.9 show the increases in green and urban areas
for each year starting from 2016-2017 to 2018-2019. In the images below, a cross-
comparison was made between the Kamakura and Ohata cities in the time interval
2016-2020 (left side) and 2018-2019 (right side). Although it is a simulation based
on non-real data, the considerations that can be extrapolated from the graph
analysis show interesting insights.

The surface increments (AS), expressed in square hectometres, referred to each
year in 2016-2020, show different behaviour for the two cities considered. Both
show a widespread development of the urban sprawl phenomenon in the years
2018-2019 and 2019-2020, in which there is a substantial increase in urban areas
to the detriment of green areas.

A simple way to obtain the overall variation of green areas concerning urban
ones (AA) is given by the difference AA = AU - AG, where AU corresponds to the
increase in urban spaces and AG in the green ones. Based on the previous formula,
the urban areas’ total increase (or green areas’ total decrease) for Ohata city equals
12,368.75 m? in 2019 and 28,800 m? in 2020. In Kamakura city, the overall increase
in urban areas reached 13,650 m? in 2019 and 12,056.25 m? in the following year.
In addition to comparing the variations of the green and urban areas of the same
city, temporal correlations were carried out between different cities to monitor the
phenomenon of urban sprawl. The two graphs at the bottom of the 4.9 figure
show the results obtained. In the four-year time interval included in the 2016-
2020 period in both cities, there was an overall increase in green areas equal to

20,875 m? (Ohata) and 8,856.25 m? (Kamakura). Instead, in the years 2018-2019,
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there was an opposite trend: although the city of Ohata had a marked vivacity
in the construction field (93,612.5 m?), the development interventions of the green
areas compensated for the previous gap resulting even in excess (24,993.75 m?)
compared to the urban green existing prior to this period. The city of Kamakura,
on the other hand, had the opposite behaviour: reduced increase in urban areas
(25,118.75 m?) but little attention to sustainable development (13,100 m?), with
urban areas increasing (12,018.75 m?) compared to those prior to the two years

2018-2019.

4.8 Conclusions

Analyzing the spatio-temporal variations that a natural phenomenon produces on
a given territory is a fundamental technique for environmental monitoring. This
work proposes an alternative method integrable with previous ones, based on in
situ sampling of physical parameters and analyzing satellite images using GIS [121].
The swarm processing of five satellite images aims to highlight, in qualitative and
quantitative terms, the variations that occurred in a pre-established time interval.

The analyzed phenomenon concerns the evolution of urban sprawl in two
Japanese cities, Ohata and Kamakura, which have different conformation of green
spaces. The first has a predominantly two-dimensional development with agricul-
tural land and urban meadows. In contrast, the green areas in Kamakura have a
three-dimensional articulation made up above all wooded hills.

A simulation was carried out by inserting, in both cities, portions of green and
urban areas in the four years following 2016. In this way, it was possible to verify
the reliability of the results by knowing in advance the variations simulated from
2016 to 2020. The results show that the application cannot only ideally locate
the previously added areas but also accurately calculates the values of the surfaces
and their development in width and length.

Furthermore, unlike traditional GIS, the execution does not require operator

intervention until the final step, in which the results are presented in graphs and
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reports. The interpretation of the data in graphical and structured form makes it
possible to deduce essential considerations on the evolution of urban sprawl rela-
tive to both unitary time frames and cumulative intervals (2016-2020 years). The
ability to query data saved in JSON format allows us to obtain additional informa-
tion compared to traditional GIS analyses performed on satellite images’ temporal
snapshots. Further potential related to this analysis is highlighting variations in
different cities induced by local or global phenomena.

At the local level, negative variations in green spaces can be determined by
natural phenomena (landslides and spontaneous fires) developed within the city.
Even anthropic factors, such as building speculation, can significantly reduce urban
green space over the years. Policies oriented towards sustainable development
can instead generate positive increases in vegetation. Comparisons between the
same city or contiguous urban areas over several years can confirm the matrix
of these variations. Significant changes in the balance between green and urban
areas in different cities worldwide can be related to global phenomena that affect
large planet areas, such as pandemics and desertification. Also, in this case, the
comparative analysis of image swarms can highlight the global nature of these
variations.

The previous techniques have been applied to a real case to define, qualitatively
and quantitatively, the variations of the heat fields of the Etna volcano during
paroxysmal volcanic activities. The objective is to evaluate the potential and the
applicability of the techniques used to different natural phenomena.

The results obtained at the end of the processing allow us to interpret the vari-
ation trend of the heat fields during the two paroxysmal phenomena of December
2 2015, and the eruptive sequence of 17-26 May 2016. Heatmaps of Figure 4.6
show variable heat fields before and after the two paroxysmal events.

The paroxysmal event of December 2 2015, one of the most violent of Etna in
the last twenty years, was preceded by high energy levels, as shown by the image
from 2015-11-17, where the intense heating is mainly localized on the eastern side

of the volcano. Conversely, the following image acquired a few hours after the
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paroxysmal event on the morning of December 3, shows a significant decrease in
energy with significantly reduced heat areas compared to the previous ones. This
phenomenon can be explained by a temporary depletion of energy confined to
superficial levels due to the explosive paroxysm of the previous night.

According to the press releases by INGV [116], from 10 to December 31, other
explosive activities occurred in correspondence with the New Southeast Crater
(NSEC). Based on the previous sources, the 2015-12-19 image confirms that sig-
nificant portions of the volcano are still subject to warming. In the same way,
the following two images (2016-02-05 and 2016-02-21) confirm the period of stasis
and slow recharge of the volcano, which since January 2016 has remained at low
levels[116]. They show low energy levels with reduced heat cells set up on small
portions of the volcano’s eastern flank. The latest image acquired a few hours after
the end of the eruptive sequence, from 17 to May 26 2016, shows very high energy
levels, with heat fields extending to significant portions of the volcano. The pre-
vious observations are confirmed by the data provided by the table 4.1: the areas
of heat show significant increases before and after the two paroxysmal events of
December 2015 and May 2016, with a maximum found in the image sampled after
the eruptive sequence of May 2016 (2016-05-27). In this case, in addition to the
considerable amounts of volcano areas subject to thermal increases, there is a shift
of the maximum surface values towards the higher temperature classes (20°-30°,
30°-40° and 40°-50°). Similarly, from January to May 2016, the heat fields re-
mained at low levels, with a minimum found on 2016-02-05 with only 22.11 square
kilometers of areas affected by heating belonging to class 10-20°C. In perspective,
the proposed method is reliable for tracing the evolution of a wide range of natural
phenomena and providing an interpretative key for analysing the mechanisms in

progress.
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Chapter 5

Refactoring techniques for the GIS

application

5.1 Introduction

In recent years, Geographic Information Systems (GIS) had a growing diffusion and
considerable technological development. The ease of use of their software interfaces
allows different data such as roads, buildings, and vegetation to be shown on a
map and related to each other (Figure 5.1). GIS software for studies involving
geospatial analysis applied to bitmap images requires a preliminary tracing of the
boundaries that delimit the different areas on the map [55, 56]. The operations are
carried out with freehand tools (point, line, polygon), moving the analysis from
the raster domain to the vector one [122]. This transposition is necessary since the
different raster operators present in GIS systems provide good support for spatial
analysis [123] but do not represent an alternative procedure to the vector one. After
drawing the boundaries, the classic vector approach requires considerable work:
joining the surfaces that overlap or share a common boundary in a single area is
necessary. In the ArcGIS application, the Dissolve Boundary tool is responsible for
performing this task to optimize the geometry of the boundaries. Then it proceeds
with the surface labelling and the calculation of the main geometric parameters

(length, width, and area), storing them in the table that contains the values of
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Figure 5.1: The concept of Geographic Information Systems (GIS). Illustration
courtesy U.S. Government Accountability Office.

each vector shape. It is possible to add additional parameters obtained through the
typical operations of spatial analysis to structured data: (i) use of buffers, i.e. areas
that cover a given distance from a point, line or area feature, to perform a series of
operations on the elements present inside them; (ii) interpolation of points relating
to specific measurements to predict the values assumed in correspondence with
new positions; (iii) application of set operations (union, intersection, difference) to
highlight common characteristics between layers of the same type and not.

After these operations, there is a correspondence between the initial vector
shapes and different datasets available for subsequent analysis based on SQL
queries. They allow us to search and select subsets of features to extract help-
ful information from the image. The workflow just described raises a question: is
it possible to perform spatial analysis directly in the raster domain without any
vector transposition? Moreover, is it conceivable an automated procedure capable
of carrying out a complete parameterization of the territory without any external

intervention?
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Recent solutions proposed to calculate geometric parameters (length, width,
and area) of urban and green surfaces present within cities have confirmed both
questions [124, 22]. The two types of areas were distinguished and delimited,
starting from an input raster image. Next, through innovative algorithms, the
geometric parameters of each green and urban body were calculated. Finally,
on the obtained datasets, queries were performed in JSON format. This fully
automated procedure is a helpful tool in the sustainable planning of a territory in
which it is necessary to distinguish urban areas from green ones and calculate the
different parameters.

In the proposed case study, the test was performed in two representative ar-
eas: Kamakura in Japan and Acireale in Italy [124]. The choice was due to the
morphological characteristics of the two sites: the articulated and complex devel-
opment of the green boundaries of Kamakura is the exact opposite of the simple
and linear one of Acireale. In the first case, green spaces consist of wooded hills
that develop in branched morphologies within the urban area. In the second case,
however, they mainly consist of two-dimensional agricultural fields with regular
geometric shapes. This structural contrast seems adequate to reveal the potential
of the application in different conditions of complexity. The results confirmed the
software’s good adaptability to different environmental situations, avoiding the
overfitting phenomena [124].

However, the current monolithic application has limitations in performing sin-
gle or multiple images at increasing resolution. The temporal study of some phe-
nomena may require processing applied to a swarm of them. We mainly refer to
the geospatial analysis applied to urban agglomerations to evaluate the decrease
in green spaces or similar phenomena that require a comparison between satellite
imagery relating to different periods. The study of the desertification process is
another example that necessitates the simultaneous processing of image swarmes.
The algorithms performed during processing require adequate computational re-
sources, especially those that have to scan, pixel by pixel, the entire image or

calculate the maximum and minimum values of x for the same y and vice versa
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[22]. Therefore, improving performance to large input loads or single images of
medium-high resolution is necessary.

The work aims to create a system capable of efficiently processing a swarm of
images to monitor and interpret the evolution of particular natural phenomena.
The method is based on comparing images of different periods to evaluate the
changes that have occurred, in space and time, in a specific area. In this case,
the method’s novelty and significance are closely related to the challenge between
the traditional monolithic system and the microservices one. It is not a trivial ap-
plication of the microservices technique. Many architectural and implementation
choices are made innovatively and strategically for optimal problem resolution.
The external parallelization of containers and the exchange of data through an
asynchronous messaging system requires their ”ad hoc” use.

The transformation of the initial monolithic system into a microservices one
makes possible some types of analysis in different fields (urban planning and geo-
physics, just to name a few) that were previously not possible for the time required.
Performance analysis and evaluation of flexibility and portability can give valuable

indications of the best compatibility between the two systems.

5.2 Related Work

Geospatial analysis is a set of methods and technologies that can extract informa-
tion from geographic data. The application of these analysis concerns many fields
and different purposes: (i) to understand the space-time dynamics of COVID-19,
an essential factor for its mitigation, as it helps clarify the scope and impact of the
pandemic and can aid community decision-making, planning and action [125] (ii) to
analyze the equity of access to community goods and services through a GIS-based
network analysis in combination with the statistical analysis of socio-economic
data [126]; (iii) to support exploration and analysis within complex geospatial
environmental data through the GCPC (Geo-Coordinated Parallel Coordinates)

[127]; (iv) with a set of GIS indicators to evaluate accessibility to greenspaces for
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sustainable planning in a dense urban context such as the city of Catania [128];
(v) aggregating the geographical areal data into hierarchical clusters based on the
spatial similarity measured by distance to explore the global features and detailed
characteristics [79]; (vi) applying geospatial technology in the field of geosciences
to define the relationship between lithology and tectonic structures and create the
lithological and structural maps for the metamorphic complex of Sinai [129].

The classic approach to the geospatial analysis of a given territory consists
of a set of vector operations, usually carried out using GIS applications with a
graphical interface and described as follow: (i) trace the boundaries between the
different surfaces; (ii) calculation of the main geometric parameters of each theme
(area, width, and length); (iii) SQL query execution [62, 63, 130, 131]. But this
type of analysis, based on the use of freehand tools, creates a series of errors,
like inherent or source error and operational or introduced error [132, 133] which
produce different effects [134, 135] and propagate in the geospatial modelling phase
[132, 136].

Another strategy to make the information contained within raster maps more
accessible and usable is to extract the characteristics of interest and convert them
into geospatial vector data [137]. These operations were performed by scanning
maps in the past, but currently, the main GIS software has tools capable of con-
verting from raster to vector and vice versa. However, these operations have some
consequences: (i) vector-to-raster conversion is a process accompanied with errors
[138, 139], classified into predicted errors before rasterization and actual errors af-
ter that [140]; (ii) for the raster-to-vector conversion, there are several commercial
software but usually require human intervention except on simple cases [141]. The
errors introduced are represented by the aliasing effects, the shift and superposition
effects and the texture and text effects [142].

The freehand tracing of the geometric features (polygons, lines, points) and
the raster-vector conversion involves introducing errors that reverberate in the
subsequent spatial analysis. One way to avoid these errors and speed up the

required tasks is to perform modelling and spatial analysis directly in the raster
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domain, without any transposition or conversion in the vector field.

Some recent technologies, such as those based on microservices, allow it to
move from traditional monolithic implementations to those based on independent
components [143] which run each application process as a service. Switching be-
tween these two architectural styles brings benefits in terms of performance [144],
scalability [145, 146], fault tolerance [146], and more isolation of the software com-
ponents [68].

Also, in the field of GIS, various applications have followed this development
trend. One field of application is risk analysis in the transport of hazardous ma-
terials, where a QGIS-based GIS microservice combines, in a map, information on
the vehicle position with further data [147]. Many sectors apply similar architec-
tures for several scopes: (i) the GIS application service of the electricity business
where the microservices optimization combines the architecture advantages with
the grid business. This approach allows overcoming the intrinsic limitations of the
traditional single application system [88]; (ii) a specialized web-GIS based on a
microservice architecture that provides analytical control of the disturbed compo-
nent of geomagnetic field variations [148]; (iii) an IoT Smart City platform based
on a microservices architecture that includes, among others, the Services that ex-
pose the District Information Models based on the data models of the Territorial

Information Systems (GIS) [149].

5.3 Approach

The refactoring activity aims at preparing the application for a “migration” to-
wards a microservices-oriented architecture. This activity made it possible to max-
imize the reuse of the parts of code in common between the various algorithms,
providing greater modularity to the initialization (JSON file) and image loading
phases.

The inclusion of helper modules allowed better management and isolation of

components. The main components are: (i) JsonHelper for the management, ex-
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traction and use of data stored in the JSON files provided as input; (ii) ColorHelper
for color management and actual coloring of green-urban areas and boundaries;
(iii) ImageHelper for loading and representing the output image based on the Pil-
low library; (iv) ProfilingHelper for profiling and measuring the performance of
the application.

Another component introduced is the command module that acts as an or-
chestrator between the various phases that the application performs. The next
phase of migrating to the microservices architecture used Docker to implement
microservices and Apache Kafka to manage data streaming over a pipeline. We
now explain the main concepts and functionalities of these technologies. Small in-
dependent services that communicate with each other through well-defined APIs
constitute a microservices architecture. The benefits are the ability to scale and de-
velop applications quickly and easily. Additional factors that make this approach
preferable relate to flexibility, ease of deployment and resilience.

A monolithic architecture consists of a single indivisible block, based on three
main components: a client-side user interface, a server-side application, and a
database. Due to its rigidity, making changes becomes difficult and time-consuming
for the entire system. Instead, in the microservices architecture, there is a system
fragmentation in many isolated and independent units that carry out each process
as a service. They allow scaling and developing applications faster and easier by
adding new features and improving existing ones. There are two primary ways to
enable data sharing between containers, based on synchronous and asynchronous
techniques. The first method allows data sharing through programming inter-
faces (API). The asynchronous way involves data replication in an intermediate
archive managed by an event streaming platform, like Apache Kafka. In this case,
the services transmit their data to the system to subsequently share them with

others.
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5.4 Code Optimization Strategies

Processing satellite imagery can require a considerable amount of computational
resources, especially considering image swarms needed to estimate the potential
territory changes in a given time interval.

Therefore, we put forward a solution based on microservices in order to increase
the throughput of the previous monolithic solution. The classic code restructuring
solution was initially adopted to reduce computational complexity. During this
phase, significant portions were rewritten with functional syntax to improve the
readability of the code, producing a hybrid imperative-functional implementation.

The final microservices architecture supports parallelisation and uses a producer-
consumer messaging system to exchange and synchronise data. We analyse the
performance when considering the three main factors: input load, image resolu-
tion and architecture-related overhead, and show the scenarios where a balance

between them can be found.

5.5 Refactoring from imperative to functional pro-
gramming

Different algorithms were modified before porting to microservices to improve their
performance and solve problems. The goal was to eliminate redundancies, stream-
lining some parts of the code through functional programming constructs. In par-
ticular, the algorithms for calculating geometric parameters (calceWidthAndLength
and calcArea) have been rewritten. The hybrid implementation, with functional
constructs within the imperative ones, was focused on exploiting potential based
on iterators, closures and the MapReduce paradigm. The latter is mainly used in
Big Data applications where processing is performed on large amounts of data and
is suitable for processing based on multiple images.

The iterators allow iterating a sequence of data in lazy mode through the next
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1 def calcWidth(bC, i, j,X_MinMax,maxV,minV, img, lstW,s):

2 widthValues=0

3 w=list(map(lambda x_1,x_2: (x_1[0],x_2[0],abs(x_1[0]-x_2[0]),x_1[1]1), maxV,minV))
4 w_lst=list(map(lambda x_3: x_3[2],w)) #list that contain all y
5 max_W= max(w_1st)

6 m=next((z for z, ¢ in enumerate(w) if c[2] == max_W), None)

7 " (Xmin, Xmax,Width,y) """

8 widthValues=w[m]

9 1stW.append( (f"Boundary_{j}",max_W))

10 X_MinMax.append( [f"Boundary_{j}", (minV[@],maxV[len(maxV)-1])1)
11 JsonHelper.geometricParametersAsJSON(img,bC, i, j,widthvalues)
12

13

14 def calcArea(bCoord,cl,img,col,endBoundary, lstX,px_area, LstArea,k):
15 x_1=c1[0]

16 if len(x_1)!=0:

17 1stX.append(len(x_1))

18 if endBoundary==True and len(1lstX)!=0:

19 px_area=reduce(lambda a,b: a+b,lstX)

20 JsonHelper.setValuesArea(bCoord, lstArea, px_area, img, k)
21

Figure 5.2: Hybrid implementation of the calcWidth and calcArea functions with
imperative and functional syntax.

function, which, in our case, helps determine the maximum values of the length and
width of the boundaries. The map function has been used on various occasions: (i)
to extract the coordinates (x, y) of a particular colour present in the image; (ii) to
count or colour specific pixels. In other cases, the reduce instruction is associated
with the map function to calculate the area subtended by each boundary. Closures
were used to set queries: the ability to dynamically generate new functions allows
us to format the report fields that summarize, quantitatively and qualitatively, the
characteristics of urban and green areas.

The 5.2 figure shows two examples of the map and reduce functions application
for calculating the width and area of the boundaries. Both use the lambda function,
which allows us to declare simple functions more compactly in the body of the
main program. The map function in line 3 takes as input the lists containing the
maximum and minimum values of x for each y. The output is a list containing
the quadruples (Xmin, Xmax, abs (Xmax-Xmin), y). In line 4, the map function
extracts from the previous list its third value and inserts it in a new list. This

value is equal to the length of the segments Xmax-Xmin, which will be used in the
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Figure 5.3: Black box diagram which describes the overall framework of refactoring
to microservices

Boundaries

subsequent processing phases.
Finally, in line 19, the reduce function sum each element of the IstX list to its
next. This process repeated for each horizontal row allows us to obtain the value

of the area of the specific boundary.

5.6 Microservice Pipeline Framework

The application refactoring has been carried out using a pipeline of microservices.
Figure 5.3 shows the context in which the “Microservices Pipeline” is inserted. The
preprocessing phase concerns tasks such as labelling and the boundary recognition
that separate green areas from urban ones, carried out without any refactoring.
These operations are preparatory to acquiring the coordinates and their classifica-
tion by ID. In the post-processing phase, illustrated on the right side of figure 5.3,
the acquired numerical data are stored in a JSON file, and the queries performed

during processing are saved in raster format.

5.6.1 Internal Framework

The following two diagrams describe the processing steps inside the black box.

In Figure 5.4, each pipeline element corresponds with an algorithm phase. The
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Figure 5.4: Microservices workflow

CalcXMax, CalcXMin, CalcYMax, and CalcYMin containers are independent and
parallelised to obtain significant performance. The input data are given to each
processing phase, sharing their output with the next merge step. The results are
unified and made available for subsequent processing steps.

The choreographic approach adopted solves the problems of dependence and
latency of the system that penalises the orchestration. This model uses a publish-
subscribe system: producers publish messages, and consumers consume or pull
that data.

Figure 5.5 illustrates the microservices pipeline and the interactions between
them. The architecture of the microservices choreographic model is composed of
the following components: Start, Init, CalcXMax, CalcXMin, CalcYMax, Cal-
cYMin, Merge, Calc_ WL, Calc_Area and PrintQuery. Processing begins with the

Start microservice, which triggers the processing pipeline. The processing phase
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Figure 5.5: Microservices Pipeline.

will use the Data Transfer Object (DTO) generated by the previous service, which
contains the paths to the preprocessing files on the shared volume. This first phase
ends by sending the DTO via message on the Kafka queue to the INIT-PHASE
topic.

The recurring reason for the subsequent processing stages concerns the transfer
of the DTO to the specific Kafka queues that serve as a communication channel for
the different microservices. Each of them pull and push the modified DTO in the
respective queues, except for the CALC FASE-1 that performs in a parallel way
the CalcXMax, CalcXMin, CalcYMax and CalcYMin microservices. In this case,
processing differs from the previous ones for two reasons: (i) the four containers
share the same input and output queues; (ii) a microservice which merges the
output set received into a single file is necessary.

The last step of the pipeline concerns the queries processing, which generates
the output images (Figure 3.6 c-d). This process concludes the cycle of activi-
ties carried out in serial-parallel mode by the processing pipeline and individual
microservices.

The subsequent post-processing phase will save them with the numerical data

in local memory.
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a. Main subsets of the set of image points b. Further subdivisions into subsets

Figure 5.6: Representation of the coordinate sets related to the image. (a) The
set image points (I) coincide with the one containing the points of the whole area
(set A). Subset B contains all points relating to boundaries. B4 corresponds to
the complementary set of A in B (A — B), i.e. only the points of the areas inside
the boundaries. (b) Subdivision of sets B and B, into proper subsets.

5.6.2 Computational Complexity

Computational complexity defines the resources needed for solving a problem char-
acterized by a specific input in terms of time and memory. Evaluating the Big-O
function for each algorithm is necessary to define the time complexity of the mi-
croservices pipeline. During these operations, the constant values of the execution
time typical of primitive operations performed with limited machine language in-
structions have been neglected. We refer to arithmetic and logical operations,
value assignments and comparisons, access to individual elements of a data struc-
ture and execution flow control operations (return, continue, break). Instructions
of this kind require a constant time O(1) which does not depend on the input size.

Analyzing the input that characterizes the main algorithms is a fundamental

factor for understanding the procedures used to calculate time complexity.
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Algorithm 1 Calc_Area algorithm

Input: bCoord #Dictionary of the boundary coordinates
Output: nothing

T T = T = T e S = S S
NS TRy 2o

18:
19:

Function Calc_Area():
prArea < 0
color Area < ""Green”
n < len(bCoord)
fork=1ton do
m < len(bCoord[k][ X min])
if bCoord|k|["Type of Area’| == "GreenArea” then
color Area < "Green”
else
color Area < " Black”
end if
for j=1tom do
Pmin < bCoord[k][ X min][J]
DPmaz < bCoord[k|[ Xmaz][j]
pxrArea < calcPxArea()
end for
bCoord|k][" Area(pizel)”]| «+ pxArea
prArea < 0
end for

Algorithm 2 calcPzArea algorithm

Input: colorArea, prArea, pmin, Pmaz
Output: prArea

1:

© 0P TR L

ot
e

Function calcPxArea():
T1 < Pmin [0]
T2 < DPmazx [U]
for z1 to zo do #t=x9— 11
if getpizel(xy + 1,y1) == color Area then
prArea < prArea + 1
end if
end for
return prArea

Figure 5.7: Pseudocode of the Calc_Area algorithm and the built-in calcPxArea function.
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Analysis of the sets of boundaries and areas

At the end of the processing phase, the output file, in JSON format, will contain
the n boundaries and the areas subtended by each of them relating to green and
urban spaces.

Figure 5.6 a shows the sets of points, or image pixels, identified by a pair of
coordinates (x, y). The set of the image points (I) coincides with the set of those
belonging to the territory surface (A), so A is an improper subset of I, that is:
ACINAZ I
Conversely, the set of boundary points (B) is a proper subset of I (or A) expressed
by the following relation:

BCA < d(z,y) € B N Y(x1,11) € B:(z1,1n1) € A N 3Z,9) € A:
(2,7) & B

As shown in Figure 5.6 b, A and B derive from the unions of the respective

subsets according to the following relations:

BysD A UAUA;s....UA, AN BD B UByUB;....UB,,.

Since all boundary points are also included in the occupied surface, the union be-
tween the area inside the boundary (A;) and the boundary itself (B;) will give the
total area (Ar;) of the specific green or urban space. Therefore, for all n bound-
aries acquired during the processing phase, we will have the following:

A D AU B

Apy D Ay U By

ATn D) An U B,
The set of points in the image (I), which coincides with the points of the entire
territory surface (A), will be given by the union between the previous subsets:

A=1D A UAr U AU . Ap,
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calcPxArea Function:
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Calc_Area Algorithm:
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Figure 5.8: Calculation of the time complexity for the Calc_Area algorithm and
its built-in function calcPxArea, in basic number of steps.

Temporal Complexity Analysis

Table 5.1 shows the temporal complexity estimated for each algorithm. The great-
est temporal complexity concerns the algorithm for calculating the area. Figure
6 shows the pseudocode of the Calc_Area algorithm and the built-in function cal-
cPxArea. The latter is responsible for calculating the number of pixels for each
horizontal line within the boundary.
Overall there are two nested loops inside the main one. The master of size
n scans the boundaries within the list (Algorithm 1, row 5), while the second of
variable size m (Algorithm 1, row 12), analyzes the data of the X,,;, list, with
Length (X,in) equal to Length (X,,4,). The two pairs of values relating to X,
(1, y1) and X0 (72, yo) are sent to the function calcPxArea, which has another
cycle of dimension t = x5 - 7 inside (Algorithm 2, row 5). Through this iteration,
the function counts all the horizontal pixels between the values of the coordinates
xr1 and z9. The process is repeated for all horizontal lines that correspond to the
surface bounded by the boundary.
To calculate the complexity, we must consider the three cycles just described.
The first is repeated n times, equal to the number of green and urban boundaries

identified on the map. In the second loop, there are m iterations, which corresponds
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to the length of the list X4 or X,.;, since, for the same boundary, they both
have the same number of elements. Finally, the number of comparisons carried
out by the third cycle within the built-in function calcPxArea is equal, for each of
the m rows and for the same value of y, to the t difference between the maximum
value of x5 and the minimum value zq, i.e. t = 29 - 1.

Figure 5.8 shows the procedure adopted for calculating the complexity of the
Calc_Area algorithm in number of basic steps. In the upper part, the time com-
plexity of the calcPxArea function is obtained by considering: (i) three external
assignments; (ii) one assignment, t+1 comparisons and t increments (for loop);
(iii) t internal comparisons and a return statement. The temporal complexity for
the built-in function is expressed by: 6 + 3t.

The above value is used to calculate the C'alc_Area complexity, which is called
within the for loop for m times. The final result of the complexity in number of
fundamental steps is expressed by:

5+ 8n +4nm + ;nmt2 + ?nmt.

The passage to the asymptotic complexity allows defining the upper limit of the
number of iterations, expressed by the following relation: O(n m t?).

Similar behaviour to the above characterizes the printQuery microservice where
the highlightsAreas function has the greatest time complexity, using the same tech-
nique described above to colour specific filtered areas based on size and type. As
shown in Table 5.1, all the other algorithms have lower complexity. In particular,
CalcXYMax-Min indicates the grouping of the four algorithms caleXMax, cal-
c¢XMin, calcYMax and calcYMin. Each of them, with equal temporal complexity,
consists of two for loops and a while loop. Their asymptotic complexity is given
by: O(n m t).

The O(n) complexity of the algorithm relating to the Start microservice takes
into account the size of the number n of images of the swarm processed by the
pipeline.

Finally, the temporal complexity of the entire pipeline will be equals to the maxi-

mum complexity of the microservices included in it: O(n m t?).
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Microservices Temporal Complexity
Start O(n)

Init 0(1)
CalcXYMax-Min Onmt)

Calc W-L O(nm)
Merge O(n)
Calc Area Onmt)
PrintQuery Onm t?)
Full pipeline Onmt)

Table 5.1: Temporal complexity of the microservices pipeline

5.7 Experiment and Results

The refactoring concerns an application in which performed the spatial analysis in
the raster domain. The aim is to create an automated system capable of distin-
guishing green and urban areas, calculating their main geometric parameters and
querying the corresponding raster data model. A series of algorithms characterized
by different computational complexity have carried out these tasks [22].

Figure 3.1 shows the various functions and their execution times. The calcX-
MaxOrMin and calcYMaxOrMin algorithms have the lowest performance at the
resolution of 2502 x 2607 pixels. The refactoring and parallelization of these com-
ponents aim to speed up the application and ensure some aspects such as isolation
and scalability. The microservices implementation has been extended to the cal-
cWidthAndLength and calcArea functions and to queries that have a functional
dependency on the previous algorithms.

The realization of the pipeline profiling made it possible to evaluate the perfor-

mance of refactoring to microservices, calculating the execution times for the entire
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MONOLITHIC MICROSERVICES

Algorithms
1213X1069 2416X2129 4255X3750 1213X1070 2416X2130 4255X3751
calcXYMax-Min ~ 13.014 51.672 153.864 8.957 31.322 88.518
calcWL-Area 4,081 13.284 35.894 7.271 25.061 76.577
printQuery 0.64 1.341 2.168 1.857 6.228 15.889
whole 18.702 68.798 197.115 24.666 78.616 214.384
application

Table 5.2: Execution times of the main algorithms for Monolithic and Microservice
architecture at different resolutions. Performances are expressed in seconds and
resolutions in pixels.

Number of images Monolithic Microservices Deviations
1 18.784 23.201 -4.417
2 36.994 37.622 -0.628
3 55.317 46.632 8.685
4 74.764 59.532 15.232
5 94.486 72.158 22.328

Table 5.3: Performance for the monolithic and microservice implementation of dif-
ferent image streams at resolution 1213X1069 pixel. The last column corresponds
to the difference in execution times between the two architecture. Performances
are expressed in seconds.
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application and each running microservice. Profiling the pipeline means calculat-
ing the difference between the current timestamp and the session_ID generated by
the Init microservice.

The work was based on a series of tests carried out on different images relat-
ing to the same area of Kamakura. From a reference figure of 1213X1069 pixels,
another four were extracted with the same resolution, translated by 200 pixels
concerning the four cardinal points. The offset attributed to each image aimed to
simulate a variable execution context to evaluate any deviations in the applica-
tion of the algorithms. The results obtained were compared with each other and
reported in tables and graphs.

Refactoring the monolithic version of the application also produced some per-
formance advantages over the original implementation, as shown in Table 5.3. Each
run on swarms and single images was performed five times to obtain averaged ex-
perimental data. Monolithic and microservices application performance tests were
performed on a MacBook Pro (13-inch, 2018, Four Thunderlbolt 3 Ports) PC,
with the following characteristics: (i) MacOS Big Sur Version 11.1; (ii) 2.3 GHz
Quad-Core Intel Core i5 processor; (iii) Intel Iris Plus Graphics 655 1536 MB; (iv)
RAM memory 8 GB 2133 MHz LPDDRS3.

Table 5.2 shows the execution times for the different algorithms, while Fig-
ures 5.9 c-d-e show the variation trend at the different resolutions. Note that
the caleXMax, calcXMin, calcYMax, calcYMin algorithms, globally referred to as
calcXYMax-Min, show a more significant performance advantage for the container
architecture than the classic monolithic one, raising as the resolution of the image
increases. Conversely, the monolithic application performs better than microser-
vices for the algorithms that calculate the length, width and area subtended by the
boundaries, collectively defined as calcWL-Area. As can be seen from the graphs,
minor variations occur in the algorithm that executes the queries (printQuery).

Graph of Figure 5.9 a shows the behaviour of the two types of architectures
in a growing image stream. The monolithic approach, albeit limited, shows better

performance than the microservices one, up to two input images. The reversal
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trend occurs for additional input loads: the microservice implementation shows
performance with more significant increases. Figure 5.9 b analyzes the differences
between the execution times of the monolithic architecture and the microservices
one. As shown from the numerical data shown in Table 5.3, this difference tends
to diverge increasingly as the number of input images increases, reaching the value
of about 22 seconds for a swarm of five images.

The algorithms had consistent behaviour for each element belonging to the
swarm. In the previous query applied to the reference image (Figure 3.6 d), small
green and urban areas were filtered. A similar effect was obtained in the other
images without significant deviations from the initial behaviour.

Finally, an integration test allowed checking whether the changes introduced
following the refactoring process to microservices have altered the correct func-
tioning of the application. This type of test verifies the functional correctness in
the interaction between multiple modules. Integration tests usually refer to an
application workflow. It checks the correct behaviour of each object and the re-
lationships with the other components of the application. The output produced
by running the application before making any code changes is considered a refer-
ence image (source image). Verification compares the new output image produced
with the source one after applying a pHash function to both. If the two results
are the same, the test is declared passed; otherwise, failure. The integration test
results confirmed the absence of any bugs or regressions introduced by refactoring

to microservices.

5.8 Interpretation of Experimental Data

The estimate of execution times performed on the original monolithic version
showed that the greatest execution times are related to the functions that cal-
culate the maximum and minimum values of X and Y and to the algorithm that
computes the area (Table 3.1). There is a functional dependence between them:

calculating the surface, length and width of green and urban bodies presuppose the
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Figure 5.9: Graphs of monolithic and microservices architecture execution times of sin-
gle and multiple images at different resolutions. (a) Comparison between monolithic and
microservices architecture, at 1213X1069 pixels resolution, for increasing image inputs.
(b) Trend of the difference between the two types of architectures related to the previous
graph. Execution times of different algorithms implemented by monolithic and microser-
vices architectures and different resolutions: (c) 1213x1069 pixels; (d) 2416x2129 pixels;
(e) 4255x3750 pixels; (f) whole application.
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availability of the values calculated by the calcXMaxOrMin and calcYMaxOrMin
algorithms.

The strategy to make the application more efficient involves parallelising the
calcXMaxOrMin and calcY MaxOrMin functions, whose code has been fragmented
into the four corresponding algorithms. In this way, each of them is responsible
for calculating a single set of maximum or minimum values of X/Y through the
calceXMax, calcXMin, calcYMax, calcYMin functions, which are contained within
the corresponding microservices.

The architecture manages an external parallelisation of the four containers
with a further microservice (Merge) that coordinates the results and inserts them
in the queue relating to the MERGE-PHASE topic. As shown in Table 3.1, the
calcWidthAndLength function execution time is negligible compared to the algo-
rithm that calculates the area. For this reason, it was decided not to carry out a
further parallelisation of the two algorithms that deal with the parameterisation
of the green and urban units: their execution times have in any case been grouped
together in a single item called calcWL-Area.

Computational complexity was quantified in O(n m t?) for the entire pipeline.
However, in the worst case, we must consider that the three variables have limited
inputs in medium-high resolution images. In particular, the n and m variables
depend on the number of boundaries identified within the territory. In other words,
both are related to the greater or lesser articulation of green spaces within urban
areas. As seen from Figure 5.6, the n variable corresponds to the boundaries set’s
cardinality (|B|). Furthermore, the m parameter is also correlated to the same
set and is equal to half of the total cardinality (@) of set B. Each m boundary
corresponds to the size of the Xmax or Xmin lists, that is, to half of the points of
the same boundary. Finally, the quadratic term ¢ has the width (w) of the whole
image as its maximum value, whose order of magnitude is of the thousands of
pixels.

The graphs and tables analysis highlights that the entire application’s per-

formance is conditioned by the resolution and volume of images processed. The
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performance is lower or equal than the monolithic one, up to two inputs with
resolution 1213X1069 pixels. Additional images involve a clear performance ad-
vantage for the containerized implementation, reaching a significant difference for
a swarm of five inputs (Figure 5.9 a-b). Conversely, Table 5.3 shows that, as the
image resolution increases, the monolithic architecture is more efficient than the
microservices one, which reaches a gap of about 15 seconds for image processing
at 4255X3750 pixel resolution.

The previous conflicting results lead to additional considerations. For a limited
number of inputs (up to two images), the overhead associated with the microser-
vices implementation makes the monolithic approach preferable to the latter. This
is due to the own nature of architectures based on interactions between containers
that introduce overhead related to a higher workload for operations, deployment,
and monitoring. As services communicate, the resulting high number of remote
calls can lead to higher network latency and processing costs. Furthermore, each
microservices has to deal with several cross-cutting concerns like logging, metrics,

health checks, externalized configuration, etc. [150].

5.9 Conclusions

In GIS applications, the results obtained with freehand tools are strongly affected
by the operator’s subjectivity and make it almost impossible to reach a high level of
precision, as manually tracing outlines is difficult and time-consuming. Currently,
a widely used procedure consists of firstly converting images from vector to raster,
since the latter are more apt to get geospatial analysis in urban areas, and they
allow adopting simplified procedures and reducing execution times.

We have presented the development of a geospatial analysis tool for raster im-
ages, doing without the vector techniques adopted by other main GIS software
systems. The design of the tool was centered around a microservice architecture
with special care to performance tuning. For each microservice, the main respon-

sibility was chosen to ensure efficiency, isolation, and independence of the software
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components. For all the microservices to work, the initial phase is about com-
puting the main geometric parameters of the different areas in an image, i.e. the
minimum and maximum values for each x and y of the boundary. In the prelim-
inary monolithic implementation, the algorithms for computing such parameters
have the greatest computational complexity.

A parallelization strategy was adopted to improve the performance, with the
simultaneous execution of four functions (calceXMax, calcXMin, calcYMax and
calcYMin) globally referred to as calcXYMax-Min. The results obtained show
better performances of the containerized version, compared to the monolithic one,
for processing more than two input images. The opposite behaviour has been
observed for single or multiple inputs at higher resolutions, as the monolithic
architecture shows the shortest execution times. The contrasting behaviour related
to the input load and processed images resolution seems to be determined by the
performance of the calcArea and printQuery algorithms, which negatively affect
the entire tool. This is also confirmed by the estimated time complexity for the
microservices pipeline, with the respective algorithms showing the worst results
(O(n m t%)).

The computational gain of the caleXYMax-Min functions and the respective
containers is due to the external parallelization, which reduces their execution
time. Accordingly, the microservices solution is advantageous when processing
multiple lower-resolution input images despite the more overhead. Conversely,
the sequential execution of the Calc_ZWL and Calc_Area containers is due to the
negligible execution times of the calceWidthAndLength algorithm whose parallel
containerized version would not provide any gains. Therefore, unlike the previous
case, it is not possible to increase the workload to balance the overhead due to
the microservice architecture. This has been observed for both single and multiple
medium-high resolution images.

The analysis of the work leads to further conclusive considerations for possi-
ble future developments of the application, both in terms of additional features

and potential performance improvements. Regarding the first point, the current
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software recognizes two types of surfaces corresponding to green and urban areas.
Further implementations could extend the scope to more themes and to differ-
ent purposes. An example could be the classification and parameterization of the
volcanic, sedimentary and metamorphic rocks in specific areas. Other possible
applications could concern the analysis of space-time variations of some natural
phenomena through creating monothematic maps divided into value classes. Ex-
amples of these techniques involve calculating the dimensions of the heat cells in
volcanic areas and evaluating the vigour degree of the surfaces covered by vegeta-
tion in rural areas. These types of analyzes applied to image swarms relating to
specific time intervals allow us to define the evolution of volcanic and desertifica-
tion phenomena in progress.

Potential margins for performance improvement can also be obtained through
the internal parallelization of some software components. The MapReduce paradigm
and Machine Learning techniques could be helpful tools to ensure greater linearity
and readability of the code and extend recognition and automated parameteriza-

tion to several different themes.
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Chapter 6

Conclusions

The path followed in the three years of PhD work had the environment and the
related natural phenomena as a common denominator. Living in a healthy envi-
ronment and minimizing the risks due to endogenous and exogenous phenomena
are the main objectives of environmental monitoring.

The abundance of collected data characterised by different spatial and tem-
poral resolutions and the ability to make such data easily available to many re-
searchers leads to different and much more advanced analysis opportunities from
past ones. These advantages are offered by satellite images which in recent years
have proved to be a complementary tool to in situ analyzes to interpret natural
events. However, the result’s quality depends on the proposed solutions to describe
the phenomenon correctly. An essential role is that of the techniques used, which,
in addition to extracting critical information, must also operate efficiently.

The activities carried out were aimed at defining innovative methods, based
on direct and indirect monitoring of environmental parameters, capable of con-
tributing to the reduction of risks in the volcanic and seismic fields and controlling
the phenomenon of urban sprawl in cities. An alternative model to the previ-
ous early warning systems for high-intensity seismic and volcanic phenomena has
been proposed. Generally, their implementation is based on monitoring the main
geophysical precursors represented by Volcanic Tremor, Seismic Swarms, Ground

Temperature, Ground Deformation and Radon Concentration. Abnormal values
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of one or more of them give a pre-alarm to the apparatus responsible for managing
population risk events. In several cases, however, the increase in values has not
been accompanied by the paroxysmal event.

Our approach was based on some simple considerations: the difficulty in pre-
dicting natural phenomena depends on their complexity due to the numerous vari-
ables involved. A technique that could prove effective in predicting paroxysmal
natural events should consider the single contribution of each precursor and their
interactions. Consequently, each parameter can condition the values of the others.

Suppose, as an example, that in a specific area there is a sudden seismic swarm
of considerable intensity due to an intense surface fracturing phenomenon. The
increase of this precursor involves a cascading effect on all the others; the fluids at-
tract from the surrounding areas produce: (i) a greater intensity of outgassing; (ii)
an increase in the concentration of radon gas; (iii) an increase in ground tempera-
ture due to upwelling of deep gases; (iv) a possible increase in ground deformation
due to the action of surface fluids which reduce the mechanical strength of the
rocks. All these correlated events produce interactions between the precursors,
increasing their values.

To take these factors into account, statistical analyzes of past paroxysmal
events were carried out in order to define, for each precursor, a threshold value
for triggering the destructive event. Using specific Boolean functions, in which
the main geophysical precursors and the respective threshold values appear, it is
possible to take into account the contributions of each of them.

The results obtained for New Zealand, although restricted to only two precur-
sors (seismic swarms and ground deformation) seem to confirm the initial hypoth-
esis.

An effective solution was developed during the PhD work to advance the tools
for environmental monitoring through satellite images. The GIS software system,
implemented in Python, has been applied to different cities (Acireale, Kamakura
and Ohata) to qualitatively and quantitatively monitor the urban sprawl phe-

nomenon. The development of specific algorithms that distinguish green and ur-
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ban areas during the labelling phase and calculate geometric parameters (length,
width and area) enabled us to process a swarm of images. The processing results
confirmed the method’s potential by simulating increases in green and urban ar-
eas in the hypothetical period between 2016 and 2020. The ability to trace the
space-time evolution of specific portions of the territory in pre-set time intervals
makes this innovative technique applicable to a wide range of natural phenomena.

The method application to a real case aims to test and refine the techniques
previously used in the simulated case. The study of the variability of the heat
areas in the periods concomitant to the two paroxysmal events of December 2015
and May 2016 was performed with a guided analysis to verify the consistency of
the results.

Based on the INGV [116] press releases and the qualitative and quantitative
feedback through Figure 4.6 and the Table 4.1, some considerations have been
done. The heat fields show a marked variability attributable to three main cases:
(i) before a paroxysmal event, thermal anomalies tend to extend considerably and
move towards higher temperature classes; (ii) after the end of the event, a period
of stasis with the heat cells that follow an opposite trend to the previous one
(reduction of their surface and shift to lower temperature classes); (iii) in the
event of violent paroxysmal activity of extraordinary intensity (December 2, 2015)
there is a timely decrease in surface energy levels and an equally fast recharging
phase signalled by a rapid rise in the intensity of the heat fields found in the image
of December 19, 2015.

Ultimately, comparing the reports and the graphic and textual data confirmed
the analysis’s reliability using the GIS application.

Particular attention was also given to the code’s readability and efficiency.
Several parts of the GIS application have been optimized by refactoring the most
computationally expensive portions to improve their execution times. Further
restructuring phases have transformed the original monolithic architecture to the
microservices one, adopting a Kafka-based streaming platform for data exchange

between containers. Several portions of the code have been rewritten, adopting the
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MapReduce instructions and the lambda function to improve the code’s linearity

and readability.
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Code Snippets

countourCol="White"
while(actualCoordinate!=initialCoordinate) and (actualColor!=color["Red"])\
and (previousCoordinate!=actualCoordinate):
previousCoordinate=actualCoordinate
if img_1.getpixel((x+1,y+1))==color["Yellow"]:
while img_1.getpixel((x+1,y+1))==color["Yellow"] and (actualCoordinate!=initialCoordinate)\
and (actualColor!=color["Red"]):
y+=1
actualCoordinate=(x,y)
actualColor=img_1.getpixel(actualCoordinate)
lenghtBoundary+=1
index+=1
img_1.putpixel(actualCoordinate,color[countourCol])
copyCoordAsJSON (boundaryCoord, actualCoordinate, number, index)
elif img_1.getpixel((x,y+1))==color["Yellow"]:
while img_1.getpixel((x,y+1))==color["Yellow"] and (actualCoordinate!=initialCoordinate)\
and (actualColor!=color["Red"]):
X+=1
actualCoordinate=(x,y)
actualColor=img_1.getpixel(actualCoordinate)
lenghtBoundary+=1
index+=1
img_1.putpixel(actualCoordinate,color[countourCol])
copyCoordAsJSON(boundaryCoord, actualCoordinate, number, index)

Figure A: The followBoundary algorithm.

def mergeImages(img, imgPoints,bndCoord,color,contour):

imgDraw=ImageDraw.Draw(img["main_image"])

dim=len(imgPoints["Image"] ["Points"])

print("Load main image....")

for i in range(2,dim):
area,pair_1,pair_2=imgPoints ["Image"] ["Points"] [f"p_{i}"]
drawTheme(area,color,pair_1,pair_2)

print("Load boundary....")

for k in range(1,len(bndCoord)):
for t in range(1,bndCoord|[f"Boundary_{k}"]["NumberOfPoints"]+1):

drawBoundary(img, bndCoord, color, contour,k, t)

W o0 ~N O U s W KN

b
)

=
N

Figure B: The mergelmages algorithm.
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1 def calcWidthAndLength(bC, X_MaxMin, Y_MaxMin, 1st_XMin, lst_XMax, img, lstL, lstW, col, bMap,flag,val_1):
2 print("Calculate the maximum and minimum value of X for each Yusussus ")
3 if flag==0:
4 first=0
5 dim=1en(bC)
6 else:
7 first=val 1-1
8 dim=val_1
9 1st_1,1st_2,1st_3 = JsonHelper.initList()
10 1st_MaxMin =[]
11 for j in range(first,dim):
12 JsonHelper. buildMaxMinXYAsJSON(bC, j)
13 t = len(bC[f"Boundary_{j}"]1["Points"])
14 for i in range(t):
15 points = bC[f"Boundary_{j}"]["Points"]
16 1st = ((points[f"'p_{i}"1[0], points[f"p_{i}"]1[11))
17 if i == 0:
18 1st_1 = [lst]
19 else:
20 1st_1.append(lst)
21 1st_MaxMin = getValues(bC, lst_1, lst_MaxMin, X_MaxMin, Y_MaxMin, lst_XMin, lst_XMax, j, img,
22 lstL, 1stW)
23 JsonHelper.saveMaxMinXY(bC, lst_MaxMin, j)
24 1st_2.append(lst_3)
25
Figure C: The calcWidthAndLength Algorithm
1 def defineGreenUrbanUnits(img,typeOfImage, bCoord, lstArea, col, flag, val_1):
2 dim=0
3 green = 0
4 urban = 0
5 if flag==0:
6 first=0
7 dim = len(bCoord)
8 else:
9 first=val_1-1
10 dim=val_1
11 typeOfArea = ""
12 for k in range(first,dim):
13 if flag!=1:
14 JsonHelper.boundaryAreaPointsAsJSON(1stArea, k, 0)
15 for m in range(len(bCoord[f"Boundary_{k}"1["X_max"])):
16 x1,x2 = JsonHelper.setXMax(bCoord, k,m)
17 x3,x4 = JsonHelper.setXMin(bCoord, k,m)
18 if typeOfImage.getpixel((x1-1, x2)) == col["Green"]:
19 green += 1
20 elif typeOfImage.getpixel((x1-1, x2)) == col["Black"]:
21 urban += 1
22 if x3+1 < img["width"] and typeOfImage.getpixel((x3+1, x4)) == col["Green"]:
23 green += 1
24 elif x3+1 < img["width"] and typeOfImage.getpixel((x3+1, x4)) == col["Black"]:
25 urban += 1
26 if green > urban:
27 typeOfArea = "Green_Area"
28 else:
29 typeOfArea = "Urban_Area"
30 JsonHelper.setTypeOfArea(bCoord, lstArea, typeOfArea, k)
31 green,urban = resetVariables(green,urban)
32

Figure D: The defineGreenUrbanUnits Algorithm
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Algorithm 1 Calc_Area algorithm

Input: bCoord #Dictionary of the boundary coordinates
Output: nothing

1: Function Calc_Area():
2: prArea < 0
3: colorArea < "Green”
4: n + len(bCoord)
5. for k=1ton do
6: m < len(bCoord[k][Xmin])
7: if bCoord[k|["Type of Area’] == "GreenArea” then
8: color Area < "Green”
9: else
10: color Area < " Black”
11: end if
12: for j=1tom do
13: Prmin < bCOOT‘d[]C] [szn] [j]
14: Pmaz < bCoord[k|[Xmaz][7]
15: prArea < calcPrArea()
16: end for
17: bCoord[k|[" Area(pizel)"”] < pxArea
18: prArea < 0
19: end for

Algorithm 2 calcPxArea algorithm
Input: colorArea, prArea, Pmin, Pmax
Output: prArea
1: Function calcPxArea():
T1 ¢ Prmin 0]
T2 < Pmax [0]
for z; to zo do #1=x9— 19
if getpizel(xy + 1,y1) == colorArea then
prArea <+ prArea + 1
end if
end for
return prArea

R B A S

—
e

Figure E: Pseudocode of the Calc_Area algorithm and the built-in calcPxArea function.
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1 v def calcXMaxOrMin(boundaryCoord,xType):

2 print("Calculate",xType,"...cus. ")

3 dim_1=1len(boundaryCoord)

4 ~ for j in range(1,dim_1):

5 k=1

6 t=1

7 boundaryCoord [f"Boundary_{j}"]1 [xTypel= {}

8 dim_2=boundaryCoord [f"Boundary_{j}"] ["NumberOfPoints"]

9 v for i in range(1,dim_2+1):

10 Xx,y=setPoint(boundaryCoord,j,i)

11 ~v if il=1:

12 t=k

13 v if k>2:

14 ~ while y!=boundaryCoord[f"Boundary_{j}"] [xTypel [f'x_{t-1}"]1[1]:
15 t-=1

16 v if t<=2:

17 break

18 if (y==boundaryCoord[f"Boundary_{j}"] [xType] [f'x_{t-1}"1[1]):
19 setXType(boundaryCoord, xType, j,t)

20 v else:

21 boundaryCoord [f"'Boundary_{j}"] [xTypel [f"x_{k}"1=(x,y)
22 k+=1

23 v else:

24 boundaryCoord [f"Boundary_{j}"] [xType] [f"x_{t}"]I=(x,y)

25 k+=1

26

Figure F: The calcXMaxOrMin algorithm.

1 def windowMobile(img,x,y,color, range_x, range_y,sgArea):

2 area=imagelLabeling(img,x,y,color, range_x,range_y,sqArea)
3 colorArea(x,y,color[areal, img, "main_image", range_x, range_y)
4 return area

5

6 def imageLabeling(image,x_1,y_1,col,r_x,r_y,squareArea):

7 green=0

8 black=0

9 y_2=2
10 x_2=2
11 x_a,x_b=r_x
12 y_a,y_b=r_y
13 for x_2 in range(x_a,x_b):#x_a,x_b
14 for y_2 in range(y_a,y_b):#y a,y b
15 if x_2<image["width"] and y_2<image["height"]:
16 green,black=pixelCount(image,x_2,y_2,green,black)
17 area=calcPercent(image,x_2,y_2,squareArea,green,black)
18 return area
19

Figure G: The windowMobile algorithm and its built-in imageLabeling function.
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1 def calcWidth(bC, i, j,X_MinMax,maxV,minV, img, lstW,s):

2 widthValues=0

3 w=list(map(lambda x_1,x_2: (x_1[0],x_2[0],abs(x_1[0]-x_2[0]),x_1[1]1), maxV,minV))
4 w_lst=list(map(lambda x_3: x_3[2],w)) #list that contain all y
5 max_W= max(w_1st)

6 m=next((z for z, ¢ in enumerate(w) if c[2] == max_W), None)

7 " (Xmin, Xmax,Width,y) """

8 widthValues=w[m]

9 1stW.append( (f"Boundary_{j}",max_W))

10 X_MinMax.append( [f"Boundary_{j}", (minV[@],maxV[len(maxV)-1])1)
11 JsonHelper.geometricParametersAsJSON(img,bC, i, j,widthvalues)
12

13

14 def calcArea(bCoord,cl,img,col,endBoundary, lstX,px_area, LstArea,k):
15 x_1=c1[0]

16 if len(x_1)!=0:

17 1stX.append(len(x_1))

18 if endBoundary==True and len(1lstX)!=0:

19 px_area=reduce(lambda a,b: a+b, lstX)

20 JsonHelper.setValuesArea(bCoord, lstArea, px_area, img, k)
21

Figure H: Functional implementation of the calcWidth and calcArea functions.

def jsonQuery(img,boundary_coord,color):
query_1=True
query_2=False
for j in range(l,len(boundary_coord)):
1if query_1:
if boundary_coord[f"Boundary_{j}"1["Area"]1['Type of Area'l=='Green_Area'\
and boundary_coord[f"Boundary_{j}"]1["Area"]["pixel"]1<200:
#area
for 1 in range(1,len(boundary_coord[f"Boundary_ {j}"1["X_max"]1)):
x1= boundary_coord[f"Boundary_{3}"I["X_min"I[f"x_{i}"]
x2= boundary_coord[ f"Boundary_ {J}" J["X_max"J[f"x_{i}"]
img["main_image"].putpixel((x1,x2), color["Gray"])
#boundary
for k in range(1,len(boundary_coord[f"Boundary {j}"1["Points"])):
(x,y)=boundary_coord[f"Boundary_{j}"]J["Points"I[f"p_{k}"]
img["main_image"].putpixel((x,y), color["Gray"])
1T query_2:
if boundary_coord[f"Boundary_{j}"1["Area"]['Type of Area']=='Green_Area':
areal["Total_Green_Area"]+= boundary_coord[f"Boundary_{j}"]1["Area"1["m"2"]
if boundary_coord[f"Boundary_{j}"]1["Area"]['Type of Area'l]=='Urban_Area':
area["Total_Urban_Area"]+= boundary_coord[f"Boundary_{j}"]["Area"]["m"*2"]

Figure I: A snapshot of some JSON queries
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1 ENABLED = True

2 DISABLED = False

3

4 def runQueries(gCoord,col, input_path,output_path,w,h):

5 listYears_1=["2017"]

6 listYears_2=["2018","2019"]

7 listYears_3=["2018","2019","2020"]

8 listYears_4=["2017","2018","2019","2020"]

9 filename=["2017", "2018-2019", "2018-2020", "2017-2020"]
10 drawGradientData(listYears_1,filename[@],gCoord,col,w,h,output_path, ENABLED)
11 drawGradientData(listYears_2,filename[1],gCoord,col,w,h,output_path, ENABLED)
12 drawGradientData(listYears_3,filename[2],gCoord,col,w,h,output_path, ENABLED)
13 drawGradientData(listYears_4,filename[3],gCoord,col,w,h,output_path, ENABLED)
14
15 def drawGradientData(listYears, fname,gCoord,col,w,h,out_path,flag):

16 '"'"Colour all urban and green areas with different colours.'''

17 if flag == DISABLED:

18 return

19 img=Image.open(f"{out_path}/background.png")

20 fillColor=col["White"]

21 for k in range(len(gCoord)):

22 year=gCoord[f"Boundary_{k}"] ["Date"] ["year"]

23 if year in listYears:

24 fillColor=selectArea(gCoord,col,k)

25 drawAreas(gCoord, img, col,fillColor, k)

26 drawBoundaries(gCoord, img,col, fillColor,k)

27 img.show()

28 JsonHelper.savelmage(img,out_path, f'gradient_{fname}.png", 'png"')

29

Figure L: Queries obtained after swarm processing and applied to new areas.
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