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A B S T R A C T   

Dielectrophoresis (DEP) represents an electrokinetic approach for discriminating and separating suspended cells 
based on their intrinsic dielectric characteristics without the need for labeling procedure. A good practice, 
beyond the physical and engineering components, is the selection of a buffer that does not hinder cellular and 
biochemical parameters as well as cell recovery. In the present work the impact of four buffers on biochemical, 
morphological, and mechanical parameters was evaluated in two different cancer cell lines (Caco-2 and K562). 
Specifically, MTT ([3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]) assay along with flow 
cytometry analysis were used to evaluate the occurring changes in terms of cell viability, morphology, and 
granulocyte stress formation, all factors directly influencing DEP sorting capability. Quantitative real-time PCR 
(qRT-PCR) was instead employed to evaluate the gene expression levels of interleukin-6 (IL-6) and inducible 
nitric oxide synthase (iNOS), two well-known markers of inflammation and oxidative stress, respectively. An 
additional marker representing an index of cellular metabolic status, i.e. the expression of glyceraldehyde-3- 
phosphate dehydrogenase (GAPDH) gene, was also evaluated. Among the four buffers considered, two resul-
ted satisfactory in terms of cell viability and growth recovery (24 h), with no significant changes in cell 
morphology for up to 1 h in suspension. Of note, gene expression analysis showed that in both cell lines the 
apparently non-cytotoxic buffers significantly modulated IL-6, iNOS, and GAPDH markers, underlining the 
importance to deeply investigate the molecular and biochemical changes occurring during the analysis, even at 
apparently non-toxic conditions. The selection of a useful buffer for the separation and analysis of cells without 
labeling procedures, preserving cell status, represents a key factor for DEP analysis, giving the opportunity to 
further use cells for additional analysis.   

Introduction 

The term dielectrophoresis (DEP), coined by Pohl [1], refers to an 
effect in which a particle is carried based on its dielectric properties. 

Pohl’s early interest in this subject was sparked by an industrial need, 
specifically the challenge of removing carbon-black filler from polyvinyl 
chloride samples. Later, as reported in his seminal book [2], he focused 
his attention on the development of methodologies allowing the 

* Corresponding author at: Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy. 
E-mail address: giuseppe.caruso2@unict.it (G. Caruso).   

1 Consider that the first two should be regarded as joint first authors.  
2 Consider that the last two should be regarded as joint last authors. 

Contents lists available at ScienceDirect 

Translational Oncology 

journal homepage: www.elsevier.com/locate/tranon 

https://doi.org/10.1016/j.tranon.2022.101599 
Received 8 August 2022; Received in revised form 27 October 2022; Accepted 30 November 2022   

mailto:giuseppe.caruso2@unict.it
www.sciencedirect.com/science/journal/19365233
https://www.elsevier.com/locate/tranon
https://doi.org/10.1016/j.tranon.2022.101599
https://doi.org/10.1016/j.tranon.2022.101599
https://doi.org/10.1016/j.tranon.2022.101599
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tranon.2022.101599&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Translational Oncology 28 (2023) 101599

2

dielectrophoretic characterization and separation of bacteria as well as 
living cells. Since then the number of publications related to DEP has 
increased considerably [3–6]. DEP is thus well-established as a label-free 
process allowing the identification and manipulation of a wide range of 
particles, from inert particles to proteins and cells. DEP has been used in 
different applications such as biosensors, cell therapies, drug discovery 
[7], medical diagnostics [8], microfluidics [9], nano assembly, and 
particle filtration, just to name a few. Circulating tumor cells (CTCs) 
isolation is still challenging, mainly due to their heterogeneity and rarity 
[10]. DEP has been considered as a molecular label-independent method 
for the isolation of CTCs from the whole blood. During the last decades 
numerous research studies have been focused on the development of 
different methods for enriching and isolating CTCs through the use of 
biomarkers, such as the epithelial cell adhesion molecule (EpCAM) [11], 
as well as on the development and application of the first automated 
system (CellSearch) currently approved for clinical use by the US Food 
and Drug Administration (FDA) for CTC detection, now considered as 
the gold standard among CTC detection technologies [12]. Despite that, 
numerous studies have recently shown that a universal marker for CTC 
detection does not exist [13]. In this context, EpCAM-positive circu-
lating epithelial cells have been seen in patients with benign colon ill-
nesses [14], suggesting that they could represent a source of misleading 
“positive” results. It is also worth of mention that cancer cells can go 
through a process known as epithelial-mesenchymal transition (EMT), 
which results in the loss of epithelial markers including EpCAM and 
cytokeratin and the emergence of mesenchymal markers [15], poten-
tially leading to false “negative” results, with the additional complica-
tions that cells undergoing EMT are known to be highly aggressive and 
contribute to the development of metastases [16–18]. Based on the 
above, EpCAM cannot be considered an universal CTC detection marker. 
In this context DEP could be an innovative and useful tool, allowing 
cells’ separation based on both phenotype and membrane capacitance, 
without the need for labeling and/or modifications [19]. ApoStream™ 
currently represents the most established commercial DEP-platform 
[20] allowing for downstream enumeration and characterization of all 
CTCs from the whole blood, independently of EpCAM-based enrich-
ments. This technology uses a DEP separation scheme known as 
field-flow-fractionation (DEP-FFF) to isolate non-hematopoietic cells 
from the peripheral blood mononuclear fraction. To selectively separate 
a target cell type from a cell mixture by DEP, the field frequency is 
adjusted to where the target cells exhibit a DEP polarity of the opposite 
sense to that of the other cells in the mixture. For this so-called “DEP 
cross-over frequency” to exist, the electrical conductivity of the buffer 
solution must be much less than the effective conductivity (~1.2 S/m) of 
a cell’s interior [6]. For the ApoStream™ system the cells are suspended 
in an optimized isotonic buffer of conductivity 30 mS/m, and subjected 
to an alternating electric field gradient for a period of around 60 min 
[21]. Transfer of the cells from a physiological fluid (conductivity ~1.5 
S/m) to the DEP buffer is accomplished without centrifugation using a 
continuous flow, ion-diffusion, system [21,22]. A similar method in 
principle to this employs tangential flows of a physiological fluid and a 
9.4 mS/m DEP buffer [23]. Such procedures avoid the perceived prob-
lem [24] where, as a result of ion leakage from the cells, the buffer 
conductivity increases to the extent that adjustment of the field fre-
quency is required. The strength of the applied field strength and its 
gradient are well below the limit to introduce permanent pores in a cell 
plasma membrane [25] and the rate of fluid flow is such that the Stokes 
drag force and shear stresses acting on the cells is negligible [21]. For 
DEP procedures that employ a typical buffer and last for no longer than 
1~2 h, it is generally observed that minimal time-dependent changes 
occur in a cell’s DEP response. Based on the capability of colony for-
mation [26], fluorescent staining, and adherence morphology tests (e.g., 
[27,28]), exposure of the cells to the imposed electric field, fluid flow 
stresses, and a typical DEP buffer do not appear to reduce cell viability. 
However, in our view, the potential risk of a transient, or at worst an 
irreversible, activation/modification of the cells resulting from their 

suspension in a typical DEP buffer, has not been thoroughly investi-
gated. In the present study, we focused our attention on the possible 
stress induced by different non-physiological suspension media on 
cancer cells of different origin, namely Caco-2 and K562 cells. Our study 
included four buffers characterized by different compositions and con-
ductivities. In particular, Buffer 4, that has been already employed in a 
previous study [19], was tested in the presence or absence (Buffer 3) of a 
conductivity adjustment. The impact of buffers’ composition on cell 
viability after 1 h or 24 h of incubation was investigated by employing 
the well-known MTT ([3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide]) assay, while the changes related to cell morphology 
at the same time points were determined by cytofluorimetric analysis. 
Quantitative real-time PCR (qRT-PCR) was carried out to determine the 
modulation of the gene expression levels of specific biomarkers repre-
sentative of cells metabolism (glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH)) [29], oxidative stress (inducible nitric oxide synthase 
(iNOS)) [30] and inflammation (interleukin-6 (IL-6)) [31], with the aim 
to give a better overview of the impact of the different buffers on cell 
status. 

Materials and methods 

Materials and reagents 

All chemicals were supplied by Merck (Merck KGaA, Darmstadt, 
Germany) unless specified otherwise. All the reagents and chemicals 
used in the present study were of analytical grade. 

Buffer compositions and electric conductivity measurements 

The composition of the four buffers employed for the experiments 
along with the tested conductivity are reported in Table 1. 

Once prepared, all buffers were filtered by using a Millex Millipore 
syringe with 0.22 μm pores (Biosigma S.p.A., Cona, Italy). Buffer 1 and 
Buffer 4 conductivities were adjusted with a potassium chloride (KCl) 
solution (0.1 mM) obtaining a final conductivity of 33 mS/m (repre-
senting the most widely used [23]) that was measured with an Electric 
Conductometer DDS Digital Lab (DDS-307, Changzhou W&J Instrument 
Co., Ltd., Changzhou, Jiangsu, China). 

Cell culture, treatment protocol, and evaluation of cell viability 

Caco-2 cells (HTB-37TM; human colorectal adenocarcinoma, Amer-
ican Type Culture Collection, Manassas (ATCC), VA, USA) were grown 
in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with heat- 
inactivated FBS (10%), L-Glutamine (2 mM), penicillin-streptomycin 
(50 units-50 µg for mL) and maintained in 25 or 75 cm2 polystyrene 
cell culture flasks with a vent cap at 37 ◦C in a humidified atmosphere of 
5% CO2/95% air. K562 cells (CCL-243TM; chronic myelogenous leu-
kemia from human blood cells, ATCC) were grown in Roswell Park 
Memorial Institute (RPMI) 1640 medium supplemented with heat- 
inactivated FBS (10%), L-Glutamine (2 mM), penicillin-streptomycin 
(50 units-50 µg for mL) and maintained in 25 or 75 cm2 polystyrene 
cell culture flasks with a vent cap at 37 ◦C in a humidified atmosphere of 
5% CO2/95% air. Despite being both cancer cell lines their origin as well 
as their characteristics are very different. Caco-2 are epithelial cells 
isolated from colon tissue derived from a 72-year-old, White, male with 
colorectal adenocarcinoma, while K-562 are lymphoblast cells isolated 
from the bone marrow of a 53-year-old chronic myelogenous leukemia 
patient. Additionally, the selected cell lines are enough distant in terms 
of crossover frequency [10]. 

Twenty-four hours prior to treatment, cells were harvested, counted 
by using a C-Chip disposable hemocytometer, and seeded in 96-well 
plates at the appropriate density. Cell culture medium was then 
replaced with 100 µL of one of the four different buffers and cells were 
incubated for 1 h or 24 h. At the end of the incubation time, to evaluate 
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the effect of the different buffers on the viability of Caco-2 and K562 
cells, an MTT assay was performed as previously described [32]. 

Analysis of discrimination capacity 

In order to evaluate the ability of FlowSight® Imaging Flow Cy-
tometer (Amnis® FlowSight® Millipore, Merck KGaA, Darmstadt, Ger-
many) to discriminate cells features in buffers containing increasing 
concentrations of sodium chloride (NaCl), seven NaCl solutions (0%, 
0.3%, 0.6%, 0.9% (NaCl concentration normally used for “saline” [33]), 
1.5%, 3%, and 4%) were prepared. Caco-2 cells were incubated for 1 h at 
37 ◦C with each of the above-mentioned solutions at the end of which 
they were analyzed by using the FlowSight® Imaging Flow Cytometer, 
which quantitatively detects brightfield, darkfield, and fluorescent im-
ages with a high sensitivity. A detailed analysis of the intensity was 
achieved by using IDEAS® (Image Data Exploration and Analysis Soft-
ware), a powerful tool allowing the robust statistical analyses of images 
as well as of hundreds of morphological features (in addition to in-
tensity). The two main parameters selected and analyzed were perimeter 
and side scatter (SSC). The measurement of the SSC provides informa-
tion about the internal complexity (i.e. granularity) of a cell. 

Sample preparation protocol for flow cytometry 

Caco-2 and K562 cells were centrifuged, the supernatant was 
removed, and cells were resuspended in 300 μL of 1X PBS. One hundred 
μL of each cell suspension were added into 1.9 mL of Buffer 1, Buffer 4, 
or Minimum Essential Medium (MEM) without phenol red (control so-
lution). An aliquot of each cell suspension was taken at four different 
time points indicated as T0 (0 min), T1 (15 min), T2 (30 min), T3 (45 
min), and T4 (60 min) and analyzed in terms of Circularity, Area vs. 
Diameter, and SSC, representing parameters that are normally quickly 
modulated. The withdrawals made and the related time points are re-
ported in Supplementary Table 1. The cell suspension aliquots needed 
for qRT-PCR analysis were stored in 350 μL of Buffer RLT, part of the 
RNA extraction kit (Qiamp RNeasy Mini Kit, Qiagen, Hilden, Germany) 
and β-Mercaptethanol (1%) until used. 

Gene expression analysis by qRT-PCR 

Gene expression analysis by qRT-PCR was performed at T4 (120 min) 
and T5 (240), since significant changes in the expression of our targets, 
representative of metabolism, oxidative stress, and inflammation, are 
already detectable at these time points [29,34]. The RNA was extracted 
from the previously stored samples by using the Qiamp RNeasy Mini Kit 
following the manufacturer’s instructions. Both integrity and quantifi-
cation of the RNA were assessed by using Agilent RNA 6000 Nano Kit 
(Agilent, Santa Clara, CA, USA) on a 2100 Bioanalyzer Instrument 
(Agilent). In order to peform reverse transcription, sample amplifica-
tion, fluorescence data collection, and sample quantification, the same 
protocol as previously described was used [35,36]. The following 
QuantiTect Primer Assays (Qiagen) were used for the expression anal-
ysis of β-actin (Cat. No. QT00095431), iNOS (also known as nitric oxide 
synthase 2: Cat. No. QT00100275), IL-6 (Cat. No. QT00083720), and 
GAPDH (Cat. No. QT01658692). Additional information regarding 
QuantiTect Primer Assays employed for the gene expression analysis are 
reported in Supplementary Table 2. As a negative control, a reaction in 
the absence of cDNA (no template control, NTC) was performed. The 
relative RNA expression level for each sample was calculated using the 
well-known 2− ΔΔCT method in which the threshold cycle (CT) value of 
the gene of interest is compared to the CT value of our selected internal 
control (β-actin). qRT-PCR amplifications were performed in 
quadruplicate. Ta
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Measurement of osmolarity 

The osmolarity of both Buffer 1 and Buffer 4 was determined by 
analyzing 50 μL of each solution in a Gonotec® Osmomat® Model 030-D 
freezing point Osmometer (ELITech Group, Logan, Utah, USA). 

Statistical analysis 

In the case of qRT-PCR data, statistical analysis was performed by 
using version 8 of GraphPad Prism software. In the case of multiple 
comparisons, one-way ANOVA followed by Bonferroni’s post hoc test 
was used. Only two-tailed p-values less than 0.05 were considered sta-
tistically significant. All experiments were performed at least in tripli-
cate unless specified otherwise. 

Results 

Buffer composition differently influence the viability of Caco-2 and K562 
cells 

The effects of the four different buffers on the viability of Caco-2 and 
K562 cells at 1 h and 24 h are reported in Fig. 1. 

Buffer 1 slightly effects Caco-2 cell viability at both time points, 
giving values comparable to that observed for controls (cells grown in 
the presence of MEM) (91.9% at 1 h; 105.1% at 24 h). Buffer 2, normally 
employed for flow cytometry experiments, decreased Caco-2 cell 
viability in a time-dependent manner (79.7% at 1 h; 68.6% at 24 h), 
suggesting that cells are suffering as a consequence of the incubation 
with this buffer. A different effect was observed when employing Buffer 
3; in fact, despite the decrease in cell viability observed at 1 h (69.4%), 
cells were able to recover at 24 h, giving a value of cell viability equal to 
88.1% compared to control conditions. Interestingly, Buffer 4, showing 
the highest decrease among all the buffers used at 1 h (64.9%), did not 
affect the cell viability at 24 h, giving a value even higher (116.6%) than 
that observed in control cells, sign of a complete recovery within 24 h. 
When considering the effects of the buffer composition on the viability 
of K562 cells at 1 h, a similar decrease in cell viability (~25%) was 
observed for all the buffers tested. Differently from what observed for 
Caco-2 cells, K562 cells were unable to completely recover under the 
four experimental conditions at 24 h. The lowest cell viability decrease 
was observed for Buffer 2 (75.2% vs. control) and, once again, for Buffer 

4 (72.3% vs. control). From this set of data, we were able to select the 
buffers (1 and 4) that have the least influence on cell viability, hence 
being the most suitable for subsequent experiments. 

NaCl concentration influences both FlowSight® Imaging Flow Cytometer 
outcomes and cell size 

As previously mentioned, to evaluate the ability of FlowSight® Im-
aging Flow Cytometer to discriminate cells features in solutions con-
taining increasing concentrations of NaCl, seven NaCl solutions (0%, 
0.3%, 0.6%, 0.9%, 1.5%, 3%, and 4%) were prepared and their effects 
tested on Caco-2 cells. 

For each of the analyzed solutions, a total of 5000 events were 
recorded. The tool defines a cut-off by combining “Area” and “Diameter” 
parameters, giving two populations as an output: a population in which 
the aforementioned geometric parameters have a value that is lower 
than that of the cut-off (Area vs. Diameter –) and a population in which 
they have a value higher than that of the cut-off (Area vs. Diameter +). 
With regard to Area vs. Diameter – population, the number of cells 
included in this population increases by increasing the concentration of 
NaCl (Fig. 2A). 

This is most probably the consequence of the osmotic effect, causing 
a flow of water from the weak solution (inside the cells) to the strong 
solution (outside the cells) and leading to a reduction of cells’ size 
(Fig. 2C). This phenomenon is strengthen by the results plotted in 
Fig. 2B, showing a linear correlation between the independent variable 
“NaCl concentration” and the dependent variable “Percentage of ele-
ments in “Area vs. Diameter +” population”. The equation of the trend 
line is: y = 9.2893x + 7.4286 (R2 = 0.9712). 

Buffer composition differently influences circularity, SSC, and Area vs. 
Diameter parameters in Caco-2 and K562 cells 

Table 2 reports the measurements of circularity, SSC, and Area vs. 
Diameter in both populations (“Area vs. Diameter –“ and “Area vs. 
Diameter +”) of Caco-2 and K562 cells at different time points (from T1 
to T4). 

The same data has been plotted in the Supplementary Fig. 1. 
As reported in Table 2 and Supplementary Fig. 1, both Circularity 

and Area vs. Diameter parameters in Caco-2 cells were not affected by 
the incubation with the two buffers (1 and 4), while a different outcome 

Fig. 1. Changes in cell viability of Caco-2 and K562 cells 
in the presence of the four different buffers after 1 h and 
24 h. Data are the mean of four values and are expressed 
as the percent variation with respect to the absorbance at 
569 nm detected in cells grown in the presence of MEM 
(physiological cell culture medium; dotted line). SD =
standard deviations among the four buffers for a specific 
condition; Buffer Average = mean of the four cell viability 
(%) values (Caco-2 at 1 h and 24 h; K562 at 1 h and 24 h) 
measured for each buffer.   
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was observed in the case of MEM giving a decrease from 78.4 (T1) to 
50.6 (T2), 46.1 (T3), and finally 44.2 (T4), probably as a consequence of 
the trypsinization step required for cell detachment before the resus-
pension in one of the three solutions. With regard to SSC, this parameter 
was not affected by Buffer 4 that did not particularly affect cellular 
granularity, while this parameter increased in the presence of Buffer 1 
(T4) and decreased when the cells were resuspended in MEM (T2, T3, 
and T4). Interestingly, Buffer 1 and Buffer 4 led to the same value of SSC 
at T4, hence leading to the same level of cell granularity. As expected, 
MEM, the medium normally used for cell culture, gave SSC values lower 

compared to that observed for Buffer 1 and Buffer 4, indicating a lower 
or absent stress. 

Table 2 and Supplementary Fig. 1 also report the measurements of 
the same three parameters in K562 cells. In general, K562 cells were less 
susceptible to the solutions tested. Buffer 4 did not affect Circularity and 
SSC parameters, while a decrease of Area vs. Diameter was observed 
starting from T3. Some variations of the three parameters was measured 
at T2 and T3 in K562 cells resuspended in Buffer 1, but at T4 the 
measured values were comparable to that observed at T1, suggesting a 
transient modulation of them followed by a complete recover of the 

Fig. 2. Effects of increasing concentrations of NaCl on the ability of FlowSight® Imaging Flow Cytometer to discriminate cells features. (A) Variation of cells’ number 
in “Area vs. Diameter –” and “Area vs. Diameter +” populations as a function of NaCl concentration. (B) Variation of the percentage of elements (cells) in “Area vs. 
Diameter +” (5000 acquisitions total) as a function of NaCl concentration. (C) Effect of NaCl concentration salt on cell size. 

Table 2 
Measurements of Circularity, SSC, and Area vs. Diameter parameters at four different time points (T1 = 15 min, T2 = 30 min, T3 = 45 min, T4 = 60 min) in Caco-2 and 
K562 cells. Percentages were calculated on a total of 5000 acquisitions (cells).  

Caco-2 K562 

MEM  
T1 T2 T3 T4  T1 T2 T3 T4 

Circularity - 13.9 15.7 13.6 16.8 Circularity - 15.1 14.6 15.8 13.3 
+ 85.9 84.3 86.3 83.1 + 84.9 85.4 84.2 86.7 

SSC - 45.9 85.5 86.1 87.7 SSC - 97.6 97.8 97.5 98.1 
+ 53.5 13.1 12.7 11.6 + 2.27 2.07 2.23 1.47 

Area vs. Diameter - 17.7 44.4 48.8 51.8 Area vs. Diameter - 34.9 43.7 39.8 40.6 
+ 78.4 50.6 46.1 44.2 + 60.9 52.9 56 55.2 

Buffer 1  
T1 T2 T3 T4  T1 T2 T3 T4 

Circularity - 11.2 9.4 6.53 7.2 Circularity - 19.8 26.6 25 19.6 
+ 88.7 90.5 93.4 92.5 + 80.2 73.3 74.9 80.2 

SSC - 89 89.4 95.8 69 SSC - 94 92.6 90.3 92.5 
+ 9.73 9.3 3.57 30.2 + 1.47 1.03 2.25 1.46 

Area vs. Diameter - 17.5 19.6 8.8 13.7 Area vs. Diameter - 55.1 66.3 66.5 58.8 
+ 70.9 68.8 69.6 69.7 + 38.3 28.1 27.3 34.7 

Buffer 4  
T1 T2 T3 T4  T1 T2 T3 T4 

Circularity - 28.1 29.8 34.6 30 Circularity - 24.8 19 26.5 27 
+ 71.9 70.2 65.4 70 + 75.2 81 73.5 73 

SSC - 72.9 70.5 62.8 64.9 SSC - 98 97.7 97.9 98.1 
+ 23.8 26.1 34.4 31.4 + 1.73 2.13 1.9 1.63 

Area vs. Diameter - 64.3 67 70.8 68.2 Area vs. Diameter - 57.8 54.2 64.5 65.8 
+ 30.9 28.3 25.4 27.7 + 38.4 41.4 32.1 30.5  
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initial conditions. None of the parameters were affected by the resus-
pension of K562 cells in MEM. Illustrations of the three parameters 
evaluated for a random sample, obtained by using FlowSight® Imaging 
Flow Cytometer, are shown in Supplementary Fig. 2. 

With regard to the three parameters evaluated (Circularity, SSC, and 
Area vs. Diameter), in order to better show the differences occurring 
between the start time point (T1) and the endpoint (T4), depending on 
the solution considered (MEM, Buffer 1, and Buffer 4), the above 
described results were expressed as a percentage difference (Fig. 3). 

Fig. 3 clearly shows how Buffer 4 represents the most suitable for 
Caco-2 cells, while Buffer 1 should be selected in the case of K562 cells. 
It is worth noting that in the case of Caco-2 cells the highest percentage 
difference for both Circularity and SSC was observed when resuspending 
the cells in MEM. 

Buffer 1 and Buffer 4 differently effect the gene expression levels of 
GAPDH, iNOS, and IL-6 in Caco-2 and K562 cells 

The quantification of each RNA extracted along with the related 
integrity value (RIN) are reported in Supplementary Table 3. In order to 
better understand the impact of the different buffers on cell status, the 
modulation of the gene expression levels of GAPDH (metabolism) [29], 
iNOS (oxidative stress) [30], and IL-6 (inflammation) [31] was investi-
gated by qRT-PCR. In particular, the mRNA ratio of target gene/β-actin 
(fold increase) at T4 and T5 was compared to that observed in control 

conditions, identified as the same ratio in cells resuspended in MEM at 
T0. As shown in Fig. 4A, Buffer 1 did not alter GAPDH gene expression 
levels in Caco-2 cells at both time points, even though a trend towards 
the reduction of metabolism was observed in the case of T4. 

Buffer 1 significantly increased the expression of iNOS at T4 but, as 
observed at T5, the modulation of this gene was transient, being the gene 
expression levels at this time point comparable to that observed at T0 
(Fig. 4B). A very interesting result was observed when measuring the 
effects of Buffer 1 on IL-6 expression; in fact, as reported in Fig. 4C, 
differently from T4, Buffer 1 at T5 strongly enhanced the expression 
levels of IL-6 compared to T0. Buffer 4 significantly decreased GAPDH 
expression levels at both time points in Caco-2 cells compared to control 
conditions (Fig. 4A). In line with what observed for buffer 1 at T4, Buffer 
4 significantly increased the expression of iNOS at the same time point 
(stronger induction compared to Buffer 1), but an opposite effect was 
observed at T5, where the expression levels were even lower than that 
observed at T0 (Fig. 4B). A very signifcant induction of IL-6 gene 
expression was measured in Caco-2 cells resuspended in Buffer 4, at both 
time points (Fig. 4C). 

As observed in the case of Caco-2 cells, Buffer 1 did not alter GAPDH 
gene expression levels in K562 cells at both time points (Fig. 5A). 

Opposite results were observed when comparing the effects of Buffer 
1 on the expression of iNOS and IL-6; in fact, from one hand, Buffer 1 
significantly decreased iNOS expression levels at both time points in 
K562 cells (Fig. 5B), from another hand the same buffer strongly 

Fig. 3. Percentage (%) difference of the three parameters between the start time point (T1) and the endpoint (T4) in Caco-2 and K562 cells. Each % difference was 
calculated as follows: (Parameter value at T4 – Parameter value at T1)/100. 
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increased the expression of IL-6 at T4 and T5 (Fig. 5C). When consid-
ering the effect of Buffer 4 on K562 cells, a significant decrease in terms 
of GAPDH (Fig. 5A) and iNOS (Fig. 5B) expression levels was observed at 
both time points when compared to control conditions. An opposite 
effect, i.e. an up-regulation, was detected in the case of IL-6 at T4, while 
the longest incubation time (T5) gave results comparable to that 
observed at T0. 

Caco-2 cells are more susceptible to osmolarity changes than K562 cells 

The osmolarity of Buffer 1, determined by freezing point, was equal 
to 0.012 osmol/Kg, while that measured for Buffer 4 was 0.320 osmol/ 
Kg. As already described in literature [37,38], osmolarity represents an 
important parameter able to modulate cells features and morphological 
parameters. The lower value of osmolarity of Buffer 1 is most probably 
connected to the higher percentage of Caco-2 cells part of the “Area vs. 
Diameter +” population (Table 2). An opposite situation, according to 
the higher osmolarity, is observed in the case of Buffer 4, with a higher 

Fig. 4. Effects of the exposure to Buffer 1 or Buffer 4 for 60 min (T4) or 120 min (T5) on expression levels of targets related to (A) metabolism (GAPDH), (B) oxidative 
stress (iNOS), and (C) inflammation (IL-6) in Caco-2 cells. The abundance of each mRNA of interest was expressed relatively to the abundance of β-actin mRNA, as an 
internal control. The relative mRNA ratio of target gene/β-actin (fold increase) measured for Buffer 1 or Buffer 4 at both time points was compared to that of control 
conditions identified as cells resuspended in MEM at T0. Data are represented as means ± standard deviation (SD). *significantly different from T0, p < 0.05; 
**significantly different from T0, p < 0.01, ***significantly different from T0, p < 0.001; #significantly different from T4, p < 0.05; ##significantly different from T4, 
p < 0.01, ###significantly different from T4, p < 0.001. 
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percentage of Caco-2 cells part of the “Area vs. Diameter -” population. 
Interestingly, K562 cells are less susceptible to the changes in osmo-
larity, giving almost superimposable percentage values of “Area vs. 
Diameter +” and “Area vs. Diameter -” populations for both buffers (1 
and 4). 

Discussion 

CTCs represent biomarkers allowing the non-invasive measure of the 
evolution of tumor genotypes during treatment and disease progression, 
thus offering the possibility to obtain key biological information 
extremely important in the context of personalized medicine [39]. As 
previously mentioned, numerous current methods are based on EpCAM 
detection, even though it has been shown that it does not represent an 

Fig. 5. Effects of the exposure to Buffer 1 or Buffer 4 for 60 min (T4) or 120 min (T5) on expression levels of targets related to (A) metabolism (GAPDH), (B) oxidative 
stress (iNOS), and C) inflammation (IL-6) in K562 cells. The abundance of each mRNA of interest was expressed relatively to the abundance of β-actin mRNA, as an 
internal control. The relative mRNA ratio of target gene/β-actin (fold increase) measured for Buffer 1 or Buffer 4 at both time points was compared to that of control 
conditions identified as cells resuspended in MEM at T0. Data are represented as means ± standard deviation (SD). **significantly different from T0, p < 0.01, 
***significantly different from T0, p < 0.001; ##significantly different from T4, p < 0.01. 
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universal marker for CTCs detection, failing, for example, in the detec-
tion of carcinoma cells undergoing EMT as well as in the case of CTCs of 
mesenchymal origin [39,40]. These issues along with the fact that 
EpCAM expression has also been found in patients with benign diseases 
emphasizes the need for non-EpCAM (and, more broadly, label-free) 
approaches for the detection and isolation of CTCs. 

During the last decade, DEP, a label-free method taking advantage of 
the intrinsic dielectric properties of suspended cells, has emerged as a 
promising tool for the isolation of CTCs from the whole blood [10,41]. 
Moreover, it is important to mention that, once isolated, CTCs are viable 
and can be maintained in culture, suggesting that DEP-based methods 
could be more generally applicable than the well-known antibody-based 
affinity methods [42]. One challenge in employing any DEP device is the 
sample being separated must be transferred into an ultralow conduc-
tivity medium, which can be detrimental in retaining cells’ native 
phenotypes (e.g., alterations of biochemical, morphological, and me-
chanical parameters) for separation [43]. In fact, since during DEP 
analysis cells are suspended in a buffer, it is important to examine 
whether the selected buffer in any way damages cells or affects their 
characteristics in subsequent analytical procedures. Several research 
studies have been devoted to this matter. For example, in a study carried 
out by Becker et al., the azo dye trypan blue was used to monitor the 
survival of the erythrocytes’ population separated from leukemia cells 
[44]. In a different study, the CD34+ cells obtained by DEP enrichment 
from bone marrow and peripheral stem cell harvests were successfully 
grown [33]. It was also demonstrated that even though fibroblasts are 
exposed to DEP fields for up to three days, cells can still be grown 
without significant changes in terms of viability, motility, anchoring, or 
cell-cycle time [34]. On the other hand, it has been shown that a 1 h DEP 
treatment/manipulation can increase cell immuno-reactivity, while a 
longer time (up to 4 h) can reduce the number of viable cells [45]. 

In order to shed more light on the above described conflicting results, 
in the present work the impact of four different buffers, including the 
one normally used for flow cytometry analysis (Buffer 2) on biochem-
ical, morphological, and mechanical parameters was evaluated in two 
different cancer cell lines, Caco-2 and K562. Caco-2 were selected as a 
model of solid tumor cells [46], while K652 were selected as a model of 
liquid (blood) tumor cells [47]. 

As reported in Fig. 1, the selection of the buffer represents a key point 
for the subsequent analysis. In fact, Buffer 2, normally employed for flow 
cytometry experiments, and Buffer 3, characterized by a very high 
conductivity (296 mS/m) strongly affected cell viability, especially in 
the case of Caco-2 cells. These results are important in the light of the 
fact that: (1) CTCs are rare in the blood (1 CTC/109 blood cells) [48], 
therefore even the loss of a small number of cells can be crucial; (2) even 
if still alive, cells could undergo changes that modify the state they had 
at the time of collection from the patient. It is also worth mentioning that 
Buffer 4, the one giving the highest decrease in cell viability among all 
the buffers used at 1 h, did not affect the cell viability at 24 h, giving a 
value even higher than that observed in control cells, sign of a complete 
recovery within 24 h. A cell viability value (%) higher than that 
observed for control cells can be considered an increase in metabolic 
rate and/or proliferation rate [49], in line with cells that are trying to 
recovery from transient adverse conditions. Different factors could be 
responsible for the observed transient decrease of cell viability. The first 
thing to take into account is the change of environment, i.e. from the 
complete growing medium to one of the non-physiological suspension 
media (satisfactory even though not corresponding to the ideal condi-
tions). It can lead to transient alterations regarding the cell metabolism 
as well as the cellular structure. One of the reason why cells can tran-
siently suffer after switching the medium can be the modulation of the 
intracellular calcium (Ca2+) concentrations; in fact, it has been already 
shown that the presence of exogenous buffer is able to modify the Ca2+

transients to a variable extent depending on its proportion relative to the 
natural, intrinsic buffers [50]. Additionally, most cell culture media are 
formulated with a CO2-carbonate buffering system that is optimized for 

tissue culture CO2 partial pressure, which is higher than the typical 
ambient CO2 partial pressure. When these types of buffers are left in 
typical atmospheric conditions (e.g., “room temperature”), CO2 will 
evaporate from the medium and cause the pH of the medium to rise into 
the alkaline range, which expectedly can significantly affect cell 
viability. A third noteworthy variable relates to cooling and freezing; in 
fact, as recently described by Wolkers et al. [51], cellular membranes can 
undergo thermotropic and lyotropic phase transitions, which signifi-
cantly alter membrane permeability and barrier function. Membrane 
permeability to water and solutes could be affected by temperature (e.g., 
from 37 ◦C to RT), medium osmolality, solute type, and cell hydration 
level. If the above-mentioned factors along with other cell-specific sus-
ceptibility factors do not particularly alter cellular metabolism, cell 
growth and replication can resume even if the cells are still exposed to 
disturbing factors [52]. 

Another factor to be considered during DEP analysis is the concen-
tration of salt ions [53]. In fact, as shown in Fig. 2, the increasing con-
centrations of NaCl strongly influenced both the ability of FlowSight® 
Imaging Flow Cytometer to discriminate cells features (e.g., number of 
cells within a specific cell population) and cell size, with the 0.9% NaCl 
(normally used for “saline”) which appears to be a good compromise; 
despite that, it has been demonstrated as large-volume saline infusion in 
healthy people is able to induce hyperchloremia which in turn is asso-
ciated with metabolic acidosis, hyperkalemia, and negative protein 
balance [33], reason why the use of this highly acidic solution should be 
carefully evaluated in both preclinical and clinical settings. It is 
well-know that cancer disease represents a heterogenous pathology, the 
development of which often depends on the synergic interaction be-
tween molecular features and phenotypic context. These complex and 
altered molecular pathways are potentially different between patients, 
and in some case even in the same patient at a different stage of disease 
development [54]. One key characteristic of a tumor is the intra-tumor 
heterogeneity; the differences identified between the same tumors 
coming from different patients are referred to as “inter-tumor hetero-
geneity”, while “intra-tumor heterogeneity” refers to different tumor 
cell populations, often characterized by very different genetic and 
phenotypic profiles, within the same tumor specimen [55]. Taking into 
consideration this information, it becomes clear how the maintenance of 
the cell characteristics immediately before, during, and, in the best 
scenario, at the end of the analysis is of utmost importance. As previ-
ously mentioned, CTCs preserve primary tumor heterogeneity and 
mimic tumor properties, and may be considered a therapeutic target, 
being a component of liquid biopsy [56]. We investigated the effects of 
the buffer composition on our cell models at two levels: (1) evaluating 
Circularity, SSC, and Area vs. Diameter through flow cytometry; (2) 
measuring the expression levels of GAPDH (metabolism marker), iNOS 
(oxidative stress marker), and IL-6 (inflammation marker) by using 
qRT-PCR. The results reported in Table 2 and Supplementary Figs. 1 and 
2 highlight the importance of the selection of buffer as a consequence of 
the cell model selected. In fact, as previously described in the pertinent 
section, Buffer 4 seems to be the most suitable in the case of Caco-2 cells, 
while Buffer 1 should be selected for studies employing K562 cells. 
These results along with that reported in Figs. 4 and 5, showing that 
Buffer 1 and Buffer 4 differently, and very often significantly, affect the 
gene expression levels of GAPDH, iNOS, and IL-6 in Caco-2 and K562 
cells, underline, once again, the importance of monitoring analysis’ 
conditions on cell status. This point is crucial, since once CTCs are 
extracted from the blood of cancer patients, reculturing them give the 
opportunity to perform studies regarding phenotypic heterogeneity, 
along with the measurements of parameters related to metabolism and 
cell replication [57]. Culturing CTCs also represents a promising 
approach for identfying a pharmacological target and individualize drug 
susceptibility tests in cancer therapy [58]. 

The coupling of microfluidic-based systems to DEP has already 
shown the potential to enhance cancer cell discrimination [59,60]. The 
rapid development of fluorescent analysis techniques combined with 
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microfluidic chips have offered a widely applicable solution, including 
the possibility to monitor the production or uptake of bioactive mole-
cules, thus allowing a better understanding of cell biology, exploring cell 
heterogeneity, and enhancing the ability to detect a disease at an early 
stage [61–63]. Therefore it appears clear how microfluidics coupled to 
fluorescence can increase not only the ability to monitor cell status 
(viability, morphology, etc.) during the analysis, but also cancer cell 
discrimination, independently from the differences of membrane 
permeability and mitochondrial membrane potential between cancer 
(higher) and normal (healthy) cells [64]. In this context, Yan et al. 
developed a microfluidic DEP-active hydrophoretic sorter for particle 
and cells sorting based on size and on dielectric properties of the par-
ticles or cells of interest without any labeling [65]. By using this hybrid 
device and according to the different Re[fCM] [66] of live and dead 
Chinese Hamster Ovary cells at the medium conductivity of 0.03 S/m, it 
was possible to separate and collect the cells of interest with high sep-
aration efficiency (99.6 ± 0.2%). Still in the context of microfluidics, a 
very innovative approach able to ensure that sensitive cells are not 
subject to centrifugation for resuspension and spend minimal time 
outside of their culture media, reducing cellular stress has been recently 
published by Huang et al. [23]. The integration of this on-chip sample 
preparation platform prior to or post-DEP, in-line with on-chip moni-
toring of several factors such as the outlet sample for metrics of media 
conductivity as well as cell velocity and viability, has been proposed. A 
continuous flow microfluidic processing chamber into which the pe-
ripheral blood mononuclear cell fraction of a clinical specimen is slowly 
injected, deionized by diffusion, and then subjected to a balance of DEP, 
sedimentation and hydrodynamic lift forces has also been described 
[22]. Several additional microfluidic-based technologies taking advan-
tage of using impedance cytometry for label-free single-cell monitoring 
based on plasma membrane capacitance and apoptotic states have been 
proposed, allowing label-free separation and monitoring of live CTC 
sub-populations [67,68], strengthening the usefulness of microfluidics 
in the context of DEP. 

An additional help to improve cell sorting and monitoring cells’ 
conditions is represented by next-generation sequencing (NGS). In fact, 
the most powerful genetic tool available for mutational analysis of single 
CTCs is currently represented by the combination of NGS to whole 
genome amplification (WGA) [69]. The rapid advancement of NGS has 
resulted in a significant improvement in the molecular profiling accu-
racy, allowing non-invasive and real-time detection of novel biomarkers 
for cancer screening and dynamic disease monitoring [70]. 

Conclusions 

Cell sorting and separation have become key diagnostic, research, 
and treatment tools for personalized medicine. DEP provides a bio-
physical separation technique able to target different cell populations 
based on their phenotypes without labels, returning native cells for 
downstream analysis. One of the hardest challenges when using DEP is 
represented by the fact that the cells being separated need to be trans-
ferred form a “normal” culture medium into an ultralow conductivity 
medium, which can be detrimental for the retention of the “original” cell 
phenotypes. In the present work the impact of four buffers on 
biochemical, morphological, and mechanical parameters was evaluated 
in Caco-2 (solid tumor) and K562 (liquid tumor) cells. Among the four 
buffers considered, two (Buffer 1 and 4) were considered satisfactory in 
terms of cell viability and growth recovery (24 h), with no significant 
changes of morphology for up to 1 h in suspension. Despite that, the 
analysis of IL-6, iNOS, and GAPDH markers at gene level showed sig-
nificant variations as a consequence of the transfer of the cells from 
MEM (normal culture medium) to the DEP buffers, strengthening the 
importance to select the appropriate experimental conditions (including 
buffer selection), allowing not only the discrimination between different 
cell populations (e.g., CTCs vs. healthy cells), but also giving the op-
portunity to analyze the cells without stressing them as well as to further 

use cells for additional analysis. 
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