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Effect of dilute impurities on short graphene
Josephson junctions
Francesco M. D. Pellegrino 1,2,3,4✉, Giuseppe Falci1,2,3,4 & Elisabetta Paladino 1,2,3,4

Despite the structural simplicity of graphene, its mechanical and electronic remarkable

properties make this material a credible starting point for new technologies across a wide

range of fields. The recent realizations of graphene-based hybrid systems, such as Josephson

junctions, make graphene a promising a platform for new generations of devices for topo-

logical quantum computing and quantum sensing. To this aim, accurate control of the

electronic properties of graphene Josephson junctions in the presence of disorder is essential.

Here, we study the effect of a dilute homogeneous spatial distribution of non-magnetic

impurities on the equilibrium supercurrent sustained by a ballistic graphene Josephson

junction in the short junction limit. Within the Dirac-Bogoliubov-de Gennes approach and

modeling impurities by the Anderson model we derive the supercurrent and its equilibrium

power spectrum. We find a modification of the current-phase relation with a reduction of the

skewness induced by disorder, and a nonmonotonic temperature dependence of the critical

current. The potentialities of the supercurrent power spectrum for accurate spectroscopy of

the hybridized Andreev bound states-impurities spectrum are highlighted. In the low tem-

perature limit, the supercurrent zero frequency thermal noise directly probes the spectral

function at the Fermi energy.
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The future of quantum technologies lies in hybrid systems
achieving multitasking potentialities by combining different
physical components with complementary functionalities1,2.

In particular, devices based on hybrid Josephson junctions (JJs) have
opened up new possibilities to engineer noise protected qubits being
at the same time easily tunable via electrical ports3. Gate tunable
superconducting qubits, so-called gatemons, have been successfully
implemented with semiconducting nanowires4,5, InAs JJs6–8, 2D
materials9, van der Waals heterostructures10 and graphene11,12.
Their promising characteristics are reduced dissipative losses,
crosstalk and compatibility with high magnetic fields13,14. An
exciting perspective is creating fault-tolerant topological qubits based
on Majorana zero modes 15,16. A fundamental step towards these
achievements has been the realization of high-quality graphene
superconductor heterostructures with clean interfaces obtained by
encapsulating graphene in hexagonal boron nitride (hBN) with one-
dimensional edge contacts to superconducting leads17–19. These
heterostructures show ballistic transport of Cooper pairs over
micron-scale lengths, gate-tunable supercurrents that persist at large
parallel magnetic fields 20–22, and different features of 2D Andreev
physics23–25. In addition, the extremely low specific-heat of gra-
phene embedded in hBN allowed the realization of high sensitive
graphene Josephson Junction (GJJ) based microwave bolometers
enabling circuit quantum electrodynamics applications26,27. Single
near-infrared photon detection has also been proven by coupling
photons to localized surface plasmons of a GJJ which can be readily
integrated into future JJ-based computing architectures as a high-
speed, low-power optical interconnects28. GJJ is an excellent plat-
form to realize exotic quantum states, recently long-lived Floquet-
Andreev states have been generated by applying continuous
microwave light without significant heating29.

The unifying microscopic description of the Josephson effect in
these heterostructures results from proximity effect and con-
structive interference between Andreev processes at the two N/S
interfaces leading to coherent electron-hole superpositions, known
as Andreev bound states (ABSs). In the short junction regime, the
current-phase relation (CPR) resulting from the phase-dependence
of the ABSs spectrum and density of states, differs from the
sinusoidal CPR of tunnel JJs30,31 showing a skewness intrinsically
related to the microscopic characteristics of the junctions as the
number of transmitting channels and their transparency, and
dependent on gate voltage and temperature32,33. Recently, con-
comitant measurements of CPR and Andreev bound state spec-
trum in a highly transmissive InAs JJ6 highlighted the potentialities
of hybrid planar JJ as sensors of fundamental phenomena occur-
ring in heterostructures. Tunneling spectroscopy measurements in
GJJ revealed the possible presence of microscopic quantum dots
weakly coupled to the proximitized graphene, that behave as
energy filters in tunneling process12,34. Whether these impurities
may influence the supercurrent of GJJ has not been yet established.
On the other side it has been predicted that carrier density fluc-
tuations of the graphene channel due carrier traps in the nearby
substrate35,36 may induce critical current fluctuations with 1/f
spectrum37–39. An alternative mechanism, related to variation of
the proximity induced gap in the graphene junction fabricated
using hBN encapsulation, has been reported40.

In this work, motivated by these observations, we investigate the
effect of a dilute ensemble of non-magnetic localized impurities on
the equilibrium supercurrent in a ballistic GJJ, employing an ana-
lytical approach based on the Dirac-Bogoliubov-de Gennes model41.
In particular, we focus on the short channel limit30, where the
junction length is much smaller than the coherence length of the
superconductors. Impurities are modeled by the Anderson model42,
which has been used to study the effect of adatoms on the graphene
electron system43–47. Muñoz et al.48 have recently investigated, using
a self-consistent tight-binding approach, the influence of ripples49,50

and localized defects, described as Lifshitz impurities51, on an
intermediate length GJJ, where multiple ABSs occur at zero tem-
perature. A Lifshitz impurity modifies the on-site energy at its
location in the corresponding tight-binding Hamiltonian. In the
dilute limit this type of disorder introduces a finite width to the
Andreev peaks in the density of states, in agreement with the results
obtained for a generic SNS junction with quasiclassical methods52.
Contrary to the Lifshitz model, the Anderson model includes the
possibility of electron transfer from the host to some energy level
that belongs to the adsorbed atom46.

We derive the CPR of the disordered GJJ and demonstrate that
dilute impurities are responsible for a peculiar forward skewness
effect accompanied by the reduction of the critical current. Both
quantities display a characteristic nonmonotonic temperature
dependence rooted in the hybridized ABS-impurities energies. These
results are complemented by the derivation of supercurrent power
spectrum which allows to perform spectroscopy of impurity levels
with energies close to the Fermi energy. In the static limit and at very
low temperatures, the supercurrent noise displays a linear tempera-
ture dependence, resembling thermal noise, with a slope related to
energy distribution of the impurity states. These results highlight the
potentialities of short GJJ as highly sensitive detectors of microscopic
defects spectral characteristics via measurements of the supercurrent
and its thermal equilibrium noise.

Results and discussion
Model. The system considered in this work, schematically shown
in Fig. 1, consists of a graphene layer (gray) partially covered by
two superconducting electrodes (yellow), and deposited on a
substrate (blue). We model the GJJ in the ballistic regime within
the Dirac-Bogoliubov-de Gennes (D-BdG) approach, where
superconducting metal stripes induce very large doping and
superconductivity by proximity effect in the underlying graphene
layer 41,53–56. The D-BdG Hamiltonian reads

ĤD�BdG ¼ ∑
ζ¼±

Z
d2rΨ̂

y
ζ ðrÞHD�BdGΨ̂ζ ðrÞ ; ð1Þ

where ζ= ± denotes the sum over the valley indices and

HD�BdG ¼ τz UðrÞ1σ þ
_vD
i

ð∂xσx þ ∂yσyÞ
� �

þ τx1σReΔðrÞ � τy1σImΔðrÞ ;
ð2Þ

Ψ̂þðrÞ ¼ ½ψ̂y
A;K;"ðrÞ; ψ̂y

B;K;"ðrÞ; ψ̂A;K 0;#ðrÞ; ψ̂B;K 0;#ðrÞ�
y
; ð3Þ

Ψ̂�ðrÞ ¼ ½�ψ̂y
B;K 0;"ðrÞ; ψ̂y

A;K 0;"ðrÞ;�ψ̂B;K;#ðrÞ; ψ̂A;K;#ðrÞ�
y
; ð4Þ

vD ~ c/300 is the Fermi velocity in monolayer graphene (c is the
speed of light), the identity 1σ and the set of Pauli matrices

Fig. 1 Schematic of the device. From bottom to top there are a substrate
(blue), a monolayer graphene (gray) and two superconducting electrodes
(yellow). The uncovered gray region represents the stripe in normal phase
and yellow sides are the regions covered by superconductors. Here, L
represents the junction channel, Lx is the lateral size of each
superconducting electrode, and W is the length of the device along the
invariant direction.
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{σx, σy, σz} act on the (A and B) sublattice subspace. The identity
1τ and {τx, τy, τz} act on the electron-hole pair subspace. We
approximate the superconductive order parameter and the scalar
potential by a step-like profile, i.e.

ΔðrÞ ¼ Θðjxj � L=2ÞΔ0e
iϕ0ðxÞ ; ð5Þ

ϕ0ðxÞ ¼ ΘðxÞϕR þ Θð�xÞϕL ; ð6Þ

UðrÞ ¼ �μ0ΘðL=2� jxjÞ � U0Θðjxj � L=2Þ ; ð7Þ
where Θ(x) is the Heaviside step function, and U0≫ ∣μ0∣.

Andreev bound states. We are interested in the short junction
limit W≪ ξ ~ ℏvD/Δ0, where ξ is the superconducting coherence
length. In general, the spectrum of the D-BdG Hamiltonian
consists of Andreev bound states (ABSs) and a continuum of
eigenstates. The ABSs are subgap eigenstates, ∣E∣ < Δ0, and they
are sensitive to the phase difference between the superconductive
sides, ϕ= ϕR− ϕL. They are spatially localized in the central
normal phase region, while in the superconductive regions an
evanescent tail is present. On the other hand, eigenstates corre-
sponding to the continuum spectrum with eigenergies above the
gap, ∣E∣ > Δ0, are spatially delocalized along the entire device57,58.
In the short junction limit, eigenstates with energies above the
gap do not depend on the phase difference ϕ, thus only ABSs
carry the Josephson equilibrium supercurrent. In this work, we
neglect the continuum, focusing on the low-energy properties of
the GJJs. We project the D-BdG Hamiltonian ĤD�BdG onto the
subspace spanned by the ABSs by the projector P̂A, defining
the Andreev Hamiltonian as ĤA ¼ P̂AĤD�BdGP̂A. For a given
value of the phase difference ϕ, we express the Andreev Hamil-
tonian as

ĤA ¼ ∑
ζ¼±

∑
k
ϵðk; ϕÞΣ̂z

ζ ;k ; ð8Þ

where Σ̂
z
ζ ;k ¼ γ̂yþ;ζ;kγ̂þ;ζ;k � γ̂y�;ζ;kγ̂�;ζ ;k, γ̂j;ζ;k represents the fer-

mionic ABS operator labeled by the subband index j= ± which
denotes if the eigenenergy is below or above the Fermi level, the
valley index ζ= ± , and the y− component of the momentum k,
that is a conserved quantity because the GJJ is invariant along the
y direction. The ABSs of the subband which lays below (above)
the Fermi level are called lower (upper) ABSs. Each pair of valley
index ζ and momentum k identifies a two-level system with
energy splitting 2ϵ(k, ϕ), independent of the valley index and
given by

ϵðk; ϕÞ ¼ Δ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� τðkÞsin2ðϕ=2Þ

q
; ð9Þ

where τðkÞ ¼ ðk2F � k2Þ=½k2F � k2cos2ðL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � k2

q
Þ� is the normal

state transmission probability, and kF= μ0/(ℏvD) is the Fermi
wavenumber41. Within the subspace spanned by the ABSs, we
express the Andreev current operator as

ÎA ¼� eΔ2
0

_
∑
ζ¼±

∑
k

τðkÞ
ϵðk; ϕÞ sinðϕ=2Þ½cosðϕ=2ÞΣ̂

z
ζ ;k

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� τðkÞ

p
sinðϕ=2ÞΣ̂x

ζ;k� ;
ð10Þ

where the operators Σ̂
z
ζ;k and Σ̂

x
ζ;k ¼ γ̂yþ;ζ;kγ̂�;ζ ;k þ γ̂y�;ζ;kγ̂þ;ζ ;k are

respectively diagonal and off-diagonal in the subband index j.
The diagonal term is related to the supercurrents sustained by the
respective ABSs, while the off-diagonal term is mainly responsible
for current fuctuations59. We note that the supercurrent is sup-
pressed in case of total reflection τ(k)→ 0, and the off-diagonal
matrix elements of ÎA become negligible for total transmission

τ(k)→ 1. (See Supplementary Note 1 for the wavefunctions sol-
ving the stationary D-BdG equation for the subgap ABSs and
derivation of ÎA)

Dilute impurities. We model the dilute ensemble of impurities
by the Anderson model42, which has been conveniently applied to
describe the effect of disorder in other graphene based
devices43–46. To start with, we consider ND identical impurities,
which respect the time reversal symmetry

ĤD ¼ ∑
ND

d¼1
Φ̂

y
dϵ0τzΦ̂d ; ð11Þ

where Φ̂d ¼ ½̂cyd;"; ĉd;#�
y
. The electron tunneling between Andreev

states and impurities states is expressed by a potential V̂D ¼
V̂ þ V̂y

of the following general form (see Supplementary Note 2)

V̂ ¼ ∑
ND

d¼1
∑
ζ¼±

Z
d2rΦ̂

y
dVd;ζ ðrÞΨ̂ζ ðrÞ ; ð12Þ

and

Vd;þðrÞ ¼
vA;dðrÞ vB;dðrÞ 0 0

0 0 �v�A;dðrÞ �v�B;dðrÞ

" #
; ð13Þ

Vd;�ðrÞ ¼
�v�B;dðrÞ v�A;dðrÞ 0 0

0 0 vB;dðrÞ �vA;dðrÞ

" #
: ð14Þ

The complete Hamiltonian of ABSs and impurities can be written
in compact form by the following block decomposition

Ĥtot ¼ ĤA P̂AV̂
y

V̂P̂A ĤD

" #
: ð15Þ

We emphasize that the diagonal blocks ĤA and ĤD act onto two
different subspaces, the ABSs and impurities subspaces respec-
tively. The off-diagonal blocks connect the two subspaces. The
effect of disorder enters in the Green’s function

ĜtotðΩÞ ¼ ðΩ� ĤtotÞ
�1

: ð16Þ
By exploiting the block decomposition of the total Hamiltonian in
Eq. (15), it is easy to express the block of the ABS’s Green’s
function as follows

ĜðΩÞ ¼ P̂AĜtotðΩÞP̂A ¼ ½Ω� Ĥeff �
�1

; ð17Þ
where the effective Hamiltonian including the disordered
ensemble of impurities reads

Ĥeff ¼ ĤA þ P̂AV̂
yðΩ� ĤDÞ

�1V̂P̂A ; ð18Þ
and

V̂yðΩ� ĤDÞ
�1V̂ ¼

Z
d2r

Z
d2r0 ∑

ζ;ζ 0
∑
ND

d¼1
Ψ̂

y
ζ ðrÞVy

d;ζ ðrÞ

Ω

Ω2 � ϵ20
1τ þ

ϵ0
Ω2 � ϵ20

τz

� �
Vd;ζ 0 ðr0ÞΨ̂ζ 0 ðr0Þ ;

ð19Þ
for details see Supplementary Note 3.

Starting from a tight-binding description, and assuming that a
generic impurity placed at rd in correspondence of a carbon site,
acts on the electron system in graphene at atomic scale60, the
matrix elements of the short-range interaction potential, which
appear in Eqs. (13)-(14), read

vα;dðrÞ ¼ t0
ffiffiffiffiffi
Ac

p
½mdδα;A þ ð1�mdÞδα;B�e�i2π3 ndδðr � rdÞ ; ð20Þ
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where t0 is a tunneling amplitude, md (nd) is an index taking the
values {0, 1} ({− 1, 0, 1}), and Ac ¼ 3

ffiffiffi
3

p
a2=2 is the area of a unit

cell61. The md index is related to the presence of the A/B
sublattices, while nd index is a consequence of the hexagonal
symmetry of the lattice (technical details on the microscopic
treatment of the impurities are in Supplementary Note 2). We
assume a random distribution of the impurities positions rd, and
of the indices (md, nd), this justifies the approximation of
homogeneity ∑d � ½ND=ð12LxWÞ�∑md

∑nd

R
d2rd , which gives

V̂yðΩ� ĤDÞ
�1V̂ ¼ nDt

2
0

2
∑
ζ¼±

Z
d2rΨ̂

y
ζ ðrÞ

Ω

Ω2 � ϵ20
1τ þ

ϵ0
Ω2 � ϵ20

τz

� �
Ψ̂ζ ðrÞ ;

ð21Þ

where nD=ND/N, and N= 2WLx/Ac. By projecting this effective
potential, Eq. (21), onto the subspace spanned by the ABSs we
obtain

P̂AV̂
yðΩ� ĤDÞ

�1V̂P̂A ¼ nDt
2
0Ω

2ðΩ2 � ϵ20Þ
∑
ζ¼±

∑
k
Σ̂
0
ζ ;k ; ð22Þ

where Σ̂
0
ζ ;k ¼ γ̂yþ;ζ ;kγ̂þ;ζ;k þ γ̂y�;ζ ;kγ̂�;ζ;k. Note that, if Anderson

impurities are replaced with defects described by localized
electrostatic δ-potentials51, within the homogeneity approximation,

one finds a potential of the form / ∑ζ¼±

R
d2rΨ̂

y
ζ ðrÞτzΨ̂ζ ðrÞ.

Projecting this potential onto the subspace spanned by the ABSs,
one obtains that these defects have no effect on the ABSs.

If, instead of identical Anderson impurities, we consider a set
of impurities with a distribution of energies ρimp(ϵ)=∑l(ND,l/
Nimp)δ(ϵ− ϵl), where Nimp=∑lND,l is the total number of
impurities, the effective Andreev Hamiltonian takes the form

Ĥeff ¼ ĤA þ nimpt
2
0uðΩÞ
2

∑
ζ¼±

∑
k
Σ̂
0
ζ ;k ; ð23Þ

where u(Ω)=Ω∫dϵρimp(ϵ)/(Ω2− ϵ2), and nimp=Nimp/N. Here,
for simplicity the tunneling amplitude t0 between ABSs and all
types of impurities is approximated by a constant, independent of
the type of impurity. We emphasize that, due to the symmetries
of the Hamiltonian, each pair of ABSs hybridizes independently
with impurities states and the short-range interaction does not
induce mixing of the upper and lower ABSs. In the following
sections we will investigate how the spectral features of the
entangled system enter the equilibrium supercurrent and its
fluctuations.

Equilibrium supercurrent. The equilibrium supercurrent sus-
tained by the GJJ in the short junction regime in the presence of a
dilute distribution of impurities takes the following form

IðϕÞ ¼ ÎA
� � ¼ � 4e

_

Z
dΩ
2π

∑
j¼±

∑
k
j
∂ϵðk; ϕÞ

∂ϕ
nFðΩÞAð j; k;ΩÞ ;

ð24Þ
where nFðΩÞ ¼ f1þ exp½Ω=ðkBTÞ�g�1, and

Að j; k;ΩÞ ¼ �2Im j; ζ ; kjĜtotðΩþ i0þÞjj; ζ ; k
D E

¼ �2Im j; ζ ; kjĜðΩþ i0þÞjj; ζ ; k
D E

¼ �2Im½Ωþ i0þ � jϵðk; ϕÞ � nimpt
2
0uðΩþ i0þÞ��1

ð25Þ
is the spectral function, the last term accounts for coupling to the
impurities. In the following, we will consider a Lorentzian dis-
tribution of their energies ρimpðϵÞ ¼ ðγ=πÞ=½ðϵ� ϵ0Þ2 þ γ2�, which

gives uðΩÞ ¼ ðΩþ iγÞ=½ðΩþ iγÞ2 � ϵ20�. There is no dependence
on the valley index ζ which introduces a degeneracy factor 2
(details of the equilibrium Green’s functions formalism are given
in Supplementary Note 4). In the CPR, the subband index j in
front of ABSs eigenenergies ∂ϵ(k, ϕ)/∂ϕ is responsible for the
opposite directions of the supercurrent carried by the two ABSs of
each pair, for any value of the y-component of the wavevector.
For sake of simplicity, in the following discussion we set the
central energy of the impurities at the Fermi energy, i.e. ϵ0= 0.
Under this condition the spectral function reads

Að j; k;ΩÞ ¼ � 2Im Ωþ i0þ � jεðk; ϕÞ � nimpt
2
0

Ωþ iγ

" #�1

¼� 2Im
1

Ω�Ωþ;jðk; ϕÞ
Ωþ;jðk; ϕÞ þ iγ

Ωþ;jðk; ϕÞ � Ω�;jðk; ϕÞ
þ 1

Ω�Ω�;jðk; ϕÞ

"

´
Ω�;jðk; ϕÞ þ iγ

Ω�;jðk; ϕÞ � Ωþ;jðk; ϕÞ

#
;

ð26Þ
which has two complex poles

Ωλ;jðk; ϕÞ ¼
jϵðk; ϕÞ � iγ

2
þ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jϵðk; ϕÞ þ iγ

2

� �2

þ nimpt
2
0

2

s
; ð27Þ

with λ= ± . Symmetry properties and dependence of these com-
plex energies on the system’s physical parameters influence fun-
damentally the CPR. Here we discuss these properties in detail.
Since the system is electron-hole symmetric, the poles in Eq. (27)
have the following properties ReΩλ;jðk; ϕÞ ¼ �ReΩ�λ;�jðk; ϕÞ, and
sgn½ReΩλ;jðk; ϕÞ� ¼ λ. In addition, Ωλ,j(k, ϕ) are even function of k,
since the k dependence originates from the transmission prob-
ability τ(k), see Eqs. (27) and (9). The dependence on the impu-
rities parameters, in the dilute regime nimpt

2
0=Δ

2
0 � 1, is as follows.

The two poles ReΩ�;�ðk; ϕÞ and ReΩþ;þðk; ϕÞ are close to ener-
gies− ϵ(k, ϕ) and+ ϵ(k, ϕ) of the ABS of the clean GJJ, for any
value of the doping level μ0. Instead, ReΩþ;�ðk; ϕÞ and
ReΩ�;þðk; ϕÞ are close to the central energy ϵ0 of the impurities
energy distribution which we have fixed at the Fermi energy. The
width of the impurities energies distribution, γ > 0, determines the
finite lifetime of the resonances at ReΩλ;jðk; ϕÞ. For any γ, the
hybridization between the ABSs and the impurity states is stronger
in correspondence of the component k such that τ(k) ~ 1. Indeed,
in proximity of the total transmission, the dispersion relation
ϵ(k, ϕ) moves close to the Fermi energy, where the distribution
ρimp(ϵ) is centered. In the limiting case γ→∞, for given j and k,
the spectral function tends to a single Dirac delta function at the
ABSs energies, i.e. A( j, k,Ω)→− 2πδ(Ω− jϵ(k, ϕ)), corresponding
to the clean GJJ. Figure 2a sketches a couple of subgap levels ± ϵ(
k, ϕ) for a generic y-component of the wavevector k and super-
conductive phase difference ϕ, in the clean limit (γ→∞). Gray
(black) level represents the lower (upper) ABSs, gray (black) hor-
izontal arrow indicates the direction of the corresponding super-
current contributions. The Fermi-Dirac distribution on the
left-hand side of Fig. 2a evidences that at low temperatures,
kBT≪Δ0, only the lower ABS is occupied thus only its super-
current contribution is active. In the opposite limit γ→ 0+,
the poles in Eq. (27) reduce to the exact eigenenergies of the
total Hamiltonian Ĥtot, namely Ωλ;jðk; ϕÞ ! jϵðk; ϕÞ=2þ
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðk; ϕÞ2=4þ nimpt

2
0=2

q
. The poles labeled by λ=− (λ=+ ) lay

energetically below (above) the Fermi energy. For given j and k, the
spectral function becomes a weighted sum of two Dirac delta
functions centered at those eigenenergies, A( j, k,Ω)→− 2π∑λ=

±δ(Ω−Ωλ,j(k, ϕ))Ωλ,j(k, ϕ)/[Ωλ,j(k, ϕ)−Ω−λ,j(k, ϕ)]. Figure 2b

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-01042-7

4 COMMUNICATIONS PHYSICS |           (2022) 5:265 | https://doi.org/10.1038/s42005-022-01042-7 | www.nature.com/commsphys

www.nature.com/commsphys


shows the four subgap levels for γ→ 0+, for a generic y-compo-
nent of the wavevector k and superconductive phase difference ϕ.
Here, the states associated with the gray (black) levels Ωλ,− (Ωλ,+)
labeled by the subband index j=− ( j=+ ) have a finite overlap on
the lower (upper) and zero overlap on the upper (lower) ABSs of the
clean GJJ, and they carry a supercurrent contribution∝− ∂ϵ(k, ϕ)/∂ϕ
(∝ ∂ϵ(k, ϕ)/∂ϕ). By comparing the Fermi-Dirac distribution at low
temperature, kBT≪Δ0, with the structure of levels, one sees that the
occupied states are those labeled by (λ=− , j=− ) and (λ=− ,
j=+ ). They have finite overlap with the lower and upper ABS
respectively. Therefore, they carry supercurrent contributions in
opposite directions. In other words, the presence of impurities acti-
vates the supercurrent contribution of the upper ABS also at zero
temperature, reducing the total supercurrent contribution for each k.
This compensating effect on the supercurrent is largest when the

hybridization is maximal, namely for k such that τ(k) ~ 1. Figure 3a, b
show the CPR at zero temperature, obtained by using Eq. (24), with
nimpt

2
0=Δ0 ¼ 0:1, for different values of γ, at zero doping, μ0= 0

(Fig. 3a) and at the finite doping level μ0= 5ℏvD/L (Fig. 3b). In both
cases we observe that in the clean limit (γ→∞) the CPR shows the
largest skewness and critical current. For finite values of γ, the
hybridization between the ABSs and the impurities sets in. As a
consequence, both skewness and critical current reduce. This effect
can explained by observing that the modes mainly affected by the
presence of disorder are the high transparent ones, τ(k) ~ 1. These
modes are also the ones largely responsible for skewness of the clean
GJJ giving a supercurrent contribution/ ∂ϵðk; ϕÞ=∂ϕ � Δ0 sinðϕ=2Þ,
whereas modes with low transparency imply the standard sinusoidal
dependence / sinðϕÞ. The phase difference where the supercurrent is

(a) (b)

Fig. 2 Scheme of the subgap levels for a generic y-component of the wavevector k, and superconductive phase difference ϕ. a The clean limit (γ→∞),
where the effect of the impurities vanishes. Gray (black) level represent the lower (upper) Andreev bound state (ABS), the gray (black) horizontal arrow
sketches the direction of the supercurrent contribution∝− ∂ϵ(k, ϕ)/∂ϕ (∝ ∂ϵ(k, ϕ)/∂ϕ), and the red vertical dashed arrow denotes the possible transition.
On the left side, there is the Fermi-Dirac distribution at low temperature, kBT≪Δ0, which shows that lower (upper) ABS is occupied (empty). b The limit
γ→ 0+. Gray (black) levels Ωλ,− (Ωλ,+) are associated to states which have a finite overlap on the lower (upper) ABSs of the clean graphene Josephson
Junction (GJJ), and zero overlap on the upper (lower) ABSs of the clean GJJ. The colored vertical arrows represent the possible transitions between two
subgap levels, arrows represented with the same color correspond to the same transition energy. On the left side, there is the Fermi-Dirac distribution at
low temperature, by comparing this with the vertical transitions, one can infer that the transitions between ABSs labeled with opposite j indices and
identical λ indices (green dashed lines) are suppressed by the Pauli blocking.

Fig. 3 Current-phase relation at zero temperature. Here, the impurity density is set at nimpt
2
0=Δ

2
0 ¼ 0:1. Panels a and b show the supercurrent as a function

of the phase ϕ in units of I�c ¼ eΔ0W=ð_LÞ, and the Fermi energy is set at μ0= 0 and μ0= 5ħvD/L, respectively. In both panels one has γ→ 0+ (black
dashed lines) γ= 10−2Δ0 (yellow solid lines), γ= 10−1Δ0 (red solid lines), γ=Δ0 (green solid lines), γ= 10Δ0 (blue solid lines), γ→∞ (cyan dashed lines,
i.e. the clean limit). The dotted gray vertical line denotes ϕ*, which is the superconductive phase difference such that Iðϕ�Þ ¼ max

ϕ
IðϕÞ in the clean GJJ, in

particular ϕ*= 0.63π for μ0= 0, and ϕ*= 0.68π for μ0= 5ħvD/L. Panels c and d show supercurrent I(ϕ*) (red solid line), at zero temperature, as a function
of γ, and the Fermi energy is set at μ0= 0 and μ0= 5ħvD/L, respectively. In panels c and d, the horizontal lines refer to two limiting cases: I(ϕ*), at zero
temperature, in the clean limit (horizontal cyan dashed line) and in the presence of single-energy impurities (horizontal black dashed line), i.e. γ→ 0+.
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maximal ϕmax, depends on γ and on the doping level μ0. In particular,
we denote with ϕ* the value in the clean limit ϕ� ¼ limγ!1ϕmax. The
effect of the impurities energy distribution, γ, on the maximal
supercurrent is illustrated in Fig. 3c, d where we plot the supercurrent
evaluated at ϕ=ϕ*, for two different values of the doping. In both
cases we observe a monotonic increase of the supercurrent with
increasing γ, the supercurrent is minimal for the Dirac delta energy
distribution, i.e. γ→ 0+.

According to the D-BdG theory, the critical current in short
ballistic GJJ decreases monotonically with temperature41. Whereas
this qualitative trend has been observed in recent experiments,
smaller values of the critical current than one at zero temperature
accompanied by unexplained irregularities have also been
reported22,32,33,62. Similar discrepancies have been observed also
for the temperature dependence of the skewness33. Here, we discuss
the temperature dependence of the critical current and skewness
resulting from the hybridization of ABSs with impurities which
provide an alternative mechanism for the reported deviations.
Figure 4 shows the critical current, panels a) and b), and the
skewness defined as S ¼ 2ϕmax=π � 1, panels c) and d), as a
function of temperature (solid lines), compared with the respective
values at zero temperature (horizontal dashed lines). Figure 4a, c
refer to the undoped case, while Fig. 4b, d refer to the doped case
with μ0= 5ℏvD/L. The temperature dependencies in the clean limit,
γ→∞, derive form the thermal population of pairs of ABSs
carrying opposite supercurrents inducing a monotonic decrease of
the critical current with temperature (cyan lines). Moreover, for any
given phase difference ϕ, thermal activation of the upper Andreev
levels is mainly effective for wavevector components k correspond-
ing to large transmission τ(k), since the corresponding energies
ϵ(k, ϕ) are closer to the Fermi energy. These modes are also
responsible for the forward skewness of the CPR. Therefore, in the
clean limit, S diminishes with increasing temperature, as shown in
Fig. 4c and d) (cyan lines). Instead the presence of single-energy
impurities (black lines), i.e. γ→ 0+, both the critical current and
skewness display a nonmonotonic temperature dependence. This
behavior can be understood considering the thermal population of
hybridized Andreev-impurities energies sketched in Fig. 2b. For
small temperatures kBT≲nimpt

2
0=Δ0 the only levels above the Fermi

energy which become populated are levels (λ=+ , j=− ). They
carry a supercurrent in the same direction of the dominant
contribution due to the lowest hybridized level (λ=− , j=− ),
while it is opposite to the contribution of the level (λ=− , j=+ ).
In other words, the thermal activation of supercurrent contributions
of the hybridized levels (λ=+ , j=− ) suppresses the effect of the
disorder and induces an increase both of the critical current and
the forward-skewness. For larger temperatures, such that
nimpt

2
0=Δ0<kBT<Δ0, for each k, the supercurrent contributions of

the levels (λ=− , j=+ ) and (λ=+ , j=− ) are comparable and
cancel each other. On the other side the population of the topmost
level (λ=+ , j=+ ) becomes significant and contributes with a
supercurrent summing up to the one due to the hybridized ground
state. As a consequence, the thermal trend becomes one observed in
the clean limit (cyan lines). At these range of temperatures, critical
current and skewness are decreasing. Finally, the red line in Fig. 4
shows the temperature dependence of the critical current and the
skewness in the presence of a finite width γ=Δ0/10, which are
qualitatively similar to the case with a single-energy (cyan lines), but
the finite width γ � nimpt

2
0=Δ0, makes the increasing dependencies

of the temperature less visible. Thus hybridization between ABSs
and impurities originates smaller critical current and skewness than
the clean limit expectation based on the BdG theory, but
nonmonotonic temperature dependence.

Supercurrent noise. A convenient quantity to identify spectral
features of the hybridized system is the supercurrent noise
spectrum. As a difference with the CPR, which reflects the overall
effect of the hybridized system, the supercurrent noise spectrum
directly probes the possible absorption/emission frequencies
because of the fluctuation-dissipation theorem 63. In particular,
for ω > 0, SðωÞ gives the absorption spectrum. Therefore, the
supercurrent power spectrum can be used for a spectroscopic
analysis of the source of disorder. For fixed phase difference ϕ, the
equilibrium supercurrent fluctuations are expressed by noise
power spectral density

SðωÞ ¼
Z 1

�1
dteiωt ½ĥIAðtÞ̂IAð0Þi � hÎAðtÞiĥIAð0Þi� ; ð28Þ

Fig. 4 Critical current and skewness S as a function temperature. a, b The critical current, in units of I�c , and the Fermi energy is set at μ0= 0 and
μ0= 5ħvD/L, respectively. Panels c and d show the skewness, and the Fermi energy is set at μ0= 0 and μ0= 5ħvD/L, respectively. For both quantities, the
temperature dependence is displayed in solid line, and compared with the respective value at zero temperature (horizontal dashed line). In all panels, one
has γ→ 0+ (black lines), γ= 10−1Δ0 (red lines), γ→∞ (cyan lines), the temperature dependence of the order parameter Δ0 is neglected, and the impurity
density is set at nimpt

2
0=Δ

2
0 ¼ 0:1.
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where 〈⋯ 〉 denotes the thermal equilibrium average of the
entire system and the Andreev current operator ÎA defined in Eq.
(10). After algebraic manipulations (shown in detail in Supple-
mentary Note 4), we obtain

SðωÞ ¼ _ ∑
j¼± ;j0¼ ±

∑
ζ¼±

∑
k

Z
dΩ
2π

nFðΩÞ½1� nFðΩþ _ωÞ�j j; ζ ; kĵIAjj0; ζ ; k
� �j2

´Að j; k;ΩÞAð j0; k;Ωþ _ωÞ ;
ð29Þ

where the spectral function is given by Eq. (25). Figure 5a, b show
SðωÞ evaluated at ϕ= ϕ* for zero and finite doping and different
widths γ of the impurities energy distribution, at T= 10−2Δ0/kB.
In the clean limit, spectral features are present only in the fre-
quency domain 2Δ0j cosðϕ�=2Þj≤ _ω≤ 2Δ0 (gray-shaded region).
The first qualitative feature of the presence of the dilute impu-
rities is the appearance of additional spectral features at smaller
frequencies (white region).

The supercurrent power spectrum can be explained in terms
of the transitions indicated in the scheme of Fig. 2b. For a generic
y-component of the wavevector k, there are four possible energies
indicated by the colored dashed vertical arrows. The transition
with largest energy (red dashed arrow) links the levels labeled by
(λ=− , j=− ) and (λ=+ , j=+ ), the transition energy lays in
the interval Δ0 < ℏω < 2Δ0. The two levels involved collapse
respectively to the lower and upper Andreev level by turning off
the interaction, t0→ 0. The transitions at intermediate energies,
i.e. ℏω≲ Δ0, can be classified in two types, the first one is
(λ=− , j)→ (λ=+ , j) (blue dashed) and the second one
(λ, j=− )→ (λ, j=+ ) (green dashed). The latter class of
transitions (green dashed) are strongly suppressed by the Pauli
blocking. Finally, there is a class of very low energy transitions,
ℏω≪ Δ0, (orange dashed) between the levels (λ=+ , j=− ) and
(λ=− , j=+ ). By turning off the interaction these two states
have no overlap with the ABSs, so they do not contribute to the
supercurrent.

In order to understand the origin of the main features of the
supercurrent power spectrum, we first focus on the case with
γ→ 0+. Here, for any generic ϕ, the supercurrent power
spectrum shows several square root divergences, each singular-
ity occurs at an energy ℏω that corresponds to an extremum of
the energy difference between the two subgap levels involved in
the transition Ωλ;jðk; ϕÞ �Ωλ0;j0 ðk; ϕÞ. Since ∂Ωλ,j(k, ϕ)/∂k=
(∂Ωλ,j(k, ϕ)/∂τ(k))(∂τ(k)/∂k), the extrema of Ωλ;jðk; ϕÞ �
Ωλ0;j0 ðk; ϕÞ occur at the wavenumber k where also the transmis-
sion probability τ(k) is extreme. In fact τ(k) is a bounded even
function (0 ≤ τ(k) ≤ 1), which takes its maximum value τ(k)= 1

(total transmission), for k= 0 (Klein tunneling) and for k ¼
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � ðπnÞ2=L2

q
(stationary wave condition). The number of

wavevector component k which fulfills the stationary wave
condition is 2Int(kFL/π), and it depends on the doping level μ0.
In correspondence of the values of k which give total
transmission the energy differences are equal to
Ωλ;jð0; ϕÞ � Ωλ0;j0 ð0; ϕÞ. In between the 2Int(kFL/π)+ 1 values
of k where τ(k)= 1, the transmission probability τ(k) takes
2Int(kFL/π) local minima for k values solving the transcendental

equation k2F sinðL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � k2

q
Þ ¼ Lk2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � k2

q
cosðL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � k2

q
Þ,

such that ∣k∣ < kF. By analyzing the supercurrent power
spectrum SðωÞ, we see that if the two subgap levels involved
(λ, j) and ðλ0; j0Þ are such that j0 ¼ j then square root divergences
may appear in correspondence of both a global maximum and a
local minimum of the transmission probability. Thus, there are
Int(kFL/π) square root divergences associated with the minima
and a further square root divergence associated with total
transmission. On the other hand, if the two subgap levels
involved are (λ, j) and ðλ0; j0Þ such that j0 ¼ �j then the square
root divergences appear in correspondence only of a local
minimum of the transmission probability, since the matrix
element j; ζ ; kĵIAj � j; ζ; k

� �
vanishes for k such that τ(k)= 1,

independently of the valley index ζ. Thus, for j0 ¼ �j there are

Fig. 5 Supercurrent power spectrum. Panels (a) and (b) show SðωÞ, in units of eI�c at ϕ= ϕ*, as a function of frequency ω, and the Fermi energy is set at
μ0= 0 and μ0= 5ħvD/L, respectively. In both panels a and b, one has T= 10−2Δ0/kB, nimpt

2
0=Δ

2
0 ¼ 0:1, γ= 0+ (black lines) γ= 10−2Δ0 (yellow lines),

γ= 10−1Δ0 (red lines), γ=Δ0 (green lines), γ= 10Δ0 (blue lines), and γ=∞ (cyan lines). The shaded region is the frequency domain where the
supercurrent power spectrum is non-zero in a clean GJJ. Panels c and d show the static supercurrent power spectrum Sð0Þ, in units of eI�c at ϕ= ϕ*, as a
function of temperature, in a log-log scale, and the Fermi energy is set at μ0= 0 and μ0= 5ħvD/L, respectively. In both panels c and d, one has γ= 10−2Δ0

(yellow circles), γ= 10−1Δ0 (red circles), γ=Δ0 (green circles), γ= 10Δ0 (blue circles), each colored solid line represents the corresponding low-
temperature linear behavior by Eq. (30). The temperature dependence of the order parameter Δ0 is neglected, and the impurity density is set at
nimpt

2
0=Δ

2
0 ¼ 0:1.
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Int(kFL/π) square root divergences. At a finite γ > 0, the exact
levels described above are replaced by resonances with a finite
lifetime, see Eq. (27). The square root divergences become
resonances and the supercurrent power spectrum is a regular
function of the frequency. For γ→∞, the levels (λ=− , j=− )
and (λ=+ , j=+ ) collapse to the Andreev levels of the clean
GJJ that have an infinite lifetime, whereas the levels (λ=− ,
j=+ ) and (λ=+ , j=− ) become ill-defined resonances with a
vanishing lifetime. For γ≫ Δ0, the supercurrent power spectrum
tends to the profile of a clean GJJ (see cyan lines in Fig. 5a,b),
where there is no signal in the low-frequency domain ℏω ≲ Δ0

(see white regions in Fig. 5a, b). In Fig. 5a, which refers to
the undoped case, one sees that for γ→ 0+ (black line)
the supercurrent power spectrum shows a single square
root divergence placed at the intermediate energy

_ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
0cos

2ðϕ�Þ þ 2nimpt
2
0

q
� 0:71Δ0, while in the clean limit

γ→∞ (cyan line) the supercurrent power spectrum is a smooth
function. The case of finite doping is shown in Fig. 5b, where
μ0= 5ℏvD/L. In the limiting case γ→ 0+ (black line) the
supercurrent power spectrum shows four square root diver-
gences. In particular, there is a divergence in the shaded region

_ω ¼ ϵð�k; ϕ�Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð�k; ϕ�Þ2 þ 2nimpt

2
0

q
� 1:43Δ0 (where the value

�k � 2:9=L solves the transcendental equation shown above),
there are two divergences in the intermediate energies, i.e.

_ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð�k; ϕ�Þ2 þ 2nimpt

2
0

q
� 0:78Δ0 and _ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
0cos

2ðϕ�Þ þ 2nimpt
2
0

q
�

0:71Δ0, and a further square root divergence appears at low

energy _ω ¼ �ϵð�k; ϕ�Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð�k; ϕ�Þ2 þ 2nimpt

2
0

q
� 0:14Δ0. In the

clean limit γ→∞ (cyan line), only the square root divergence
in shaded region holds, and it is red-shifted at
_ω ¼ 2ϵð�k; ϕ�Þ � 1:29Δ0.

We note that, because of disorder, the zero frequency current
noise reduces to the linear thermal noise behavior for sufficiently
small temperatures. The slope of the linear dependence can be
related to the impurity energy distribution. Indeed, the limit
kBT≪ γ, Δ0, one has

Sð0Þ ¼ _ ∑
j¼± ;j0¼±

∑
ζ¼±

∑
k

Z
dΩ
2π

1

4cosh2ð Ω
2kBT

Þ j j; ζ ; kĵIAjj0; ζ; k
� �j2

´Aðj; k;ΩÞAðj0; k;ΩÞ

� _

2π
∑

j¼± ;j0¼±
∑
ζ¼±

∑
k
j j; ζ ; kĵIAjj0; ζ ; k
� �j2Aðj; k; 0ÞAðj0; k; 0Þ

" #
kBT

¼ sin2ðϕ=2Þ 8πe2Δ2
0

_
∑
k
B

τðkÞ
π

ðnimpt
2
0Þ=ð2γÞ

ϵ2ðk; ϕÞ þ ðnimpt
2
0Þ2=ð2γÞ2

" #2( )
kBT ;

ð30Þ
where we have approximated 1=½4cosh2ð Ω

2kBT
Þ� ! kBTδðΩÞ. We

have assumed that any spectral function A( j, k,Ω) is smooth, thus
it can be approximated as Að j; k; 0Þ ¼ ðnimpt

2
0=γÞ=½ϵ2ðk; ϕÞþ

ðnimpt
2
0Þ2=ð2γÞ2�. Note that the slope of the linear temperature

behavior depends on the width γ, in particular it vanishes in both
limits γ→ 0+ and γ→∞. The dependence on γ of Sð0Þ is shown
in Fig. 5c, d for zero and finite doping, respectively.

Conclusion
In this work we have investigated the modifications of the
Andreev spectrum in a short ballistic GJJ due to the hybridization
with a dilute set of non-magnetic impurities homogeneously
distributed below the entire device. The ABSs are described by a
D-BdG model. Within this formalism, we considered a set of
impurities described by the Anderson model, and with a

Lorentzian distribution of energies about the Fermi energy with a
width γ. We remark that our analytic formalism can be readily
applied also to other distributions of impurity energy levels. Here,
we have obtained that, both with undoped and doped normal
region, for any value of the energy width γ, the dilute ensemble of
impurities causes a reduction of the critical current and, more
prominently, of the skewness the current-phase relation. In an
impurity-free GJJ the current phase relation is skewed by very
high transmittance channels30,41. Here, we found that exactly
these ABSs, labeled by k such that τ(k) ~ 1, are mainly hybridized
with the impurity levels. This phenomenon leads to a reduction of
the supercurrent contributions that induce the skewness of the
CPR. Moreover, we found that thermal excitations can inhibit this
mechanism due to the population of higher energy hybridized
ABS-impurity states carrying opposite supercurrent. This deter-
mines a counterintuitive increase of both the critical current and
the skewness around a range of low temperatures, such that
kBT � t20nimp=Δ0. Within our formalism, we have also derived the
power spectrum of the supercurrent both with undoped and
doped normal region. This quantity turns out to be a powerful
spectroscopic tool of the hybridized spectrum. In particular, for
an impurity-free GJJ, we find a low-frequency domain,
0≤ω< 2Δ0j cosðϕ=2Þj=_, where the power spectrum of the
supercurrent is vanishing, and it is tunable by the superconductive
phase difference ϕ. Because of the hybridization of the ABSs with
impurity levels, resonances appear in the low-frequency region
whose position and number have been predicted. Moreover, we
have connected all the peaks of the power spectrum to features of
the transmittance probability τ(k). Finally, we have seen that at
very low temperatures (kBT≪ Δ0, γ), the power spectrum of the
supercurrent displays a linear dependence on the temperature,
with a slope related to the spectral weight at the Fermi level, which
vanishes both for γ→ 0+ and γ→∞. These results highlight the
extraordinary potentialities of the supercurrent in a GJJ and its
equilibrium noise as probes of impurities accidentally present
even in clean van der Waals heterostructures. Future work will be
devoted to study the effect of Anderson impurities on GJJ in the
long and intermediate junction limits, by taking into account the
Andreev continuum which cannot be disregarded.

Methods
The integration above has been performed with Python numerical routines, in
particular we have used the free and open-source library Scipy64.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.
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