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Abstract
The class of good semigroups is a class of subsemigroups ofN

h , that includes the value
semigroups of rings associated to curve singularities and their blowups, and allows to
study combinatorically the properties of these rings. In this paper we give a charac-
terization of almost symmetric good subsemigroups of N

h , extending known results
in numerical semigroup theory and in one-dimensional ring theory, and we apply
these results to obtain new results on almost Gorenstein one-dimensional analytically
unramified rings.

Keywords Good semigroup · Almost-symmetry · Curve singularity · Almost
Gorenstein rings · Canonical ideal
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1 Introduction

LetN be the set of nonnegative integers; good semigroups are a class of subsemigroups
of N

h , with h ∈ N, h ≥ 1 (see the formal definition in Sect. 2). Their definition
was given in [3] in order to describe value semigroups of noetherian, analytically
unramified, one-dimensional, semilocal reduced rings, even though the properties of
these value semigroups were already studied in [4, 7–9, 14–16] (for the definitions
of analytically unramified ring and value semigroup, see Sect. 4). The class of rings
mentioned above includes the local rings arising from curve singularities (and from
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their blowups), possibly with more than one branch. However, as shown in [3], there
are good semigroups that are not value semigroups of any ring.

If S is a value subsemigroup of N
h , the integer h represents the number of branches

of the singularity. In the one-branch case, the value semigroup is a numerical semi-
group, and the algebraic properties of the ring can be translated and studied at
semigroup level. Some of the results in this direction have been proved to hold for
h > 1 as well. For instance, the numerical characterization of a one-dimensional ana-
lytically irreducible local Gorenstein domain via symmetric numerical semigroups
(see [21]) can be generalized to analytically unramified local rings (see [15] and also
[8]); analogously, the numerical characterization of the canonical module in the ana-
lytically irreducible case (see [19]) can be given also in the more general case (see
[9]).

Dealing with birational extensions of an analytically unramified ring R, one has to
work with both local and semilocal rings; this fact is well represented at semigroup
level, since it is possible to give a satisfying definition of local good semigroup that,
for value semigroups, corresponds to the local ring case. With this definition one can
show that any good semigroup is a direct product of local good semigroups that, when
S = v(R), correspond to the value semigroups of the localizations of R at its maximal
ideals (see [3]).

These factsmotivated the interest in studying good semigroups, and, since not every
good semigroup is a value semigroup of some ring, it is often necessary to work on
good semigroups in a purely combinatorial setting. Despite their name, good semi-
groups present some problems that make their study difficult: e.g. they are not finitely
generated as monoids (but, on the other hand, they can be completely determined by
a finite set of elements, see [10, 16]) and they are not closed under finite intersections.
Moreover, if we consider good ideals of good semigroups (e.g. the ideals arising as
values of ideals of the corresponding ring), this class is not closed under sums and
differences (see for instance [3, 20]). Therefore, unlike what happens for numerical
semigroups (in analogy to analytically irreducible domains), it is not easy to define
for good semigroups some concepts that translate analogous ring concepts, like the
embedding dimension and the type (see [12, 22]). Finally, when working with good
semigroups, technical problems often arise if h ≥ 3 and, for this reason, several papers
on the subject are limited to the very special case h = 2 (see e.g. [4, 11, 12, 16]).

Almost Gorenstein analytically unramified rings and almost symmetric numerical
semigroups were introduced in [6] in order to find two classes of rings and numerical
semigroups, respectively, that are close toGorenstein rings and to symmetric numerical
semigroups, in certain aspects. The notion of almost Gorenstein ring was generalized
for any one-dimensional ring in [17] and, subsequently, for rings in any dimension
admitting a canonical ideal (see [18]). Since then, almost Gorenstein rings have been
intensively studied, being a useful intermediate class between Cohen–Macaulay and
Gorenstein rings. Similarly, the notion of almost symmetric numerical semigroups
was generalized to good semigroups in [3].

A remarkable property shown in [6] for a one-dimensional analytically unramified
local ring (R,m) is that such a ring is almost Gorenstein of maximal embedding
dimension if and only if m : m is Gorenstein, and an analogous result was proved in
the same paper for numerical semigroups. These two results were the starting point
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for other similar investigations. In particular, in [17] the authors generalized the first
one for any one-dimensional Cohen–Macaulay local ring admitting a canonical ideal
and, in [13], the following more general result is proved:

Proposition [13, Proposition 3.2] Let (R,m) be a one-dimensional Cohen–Macaulay
local ring admitting a canonical ideal. Then R is a one-dimensional almost Gorenstein
ring if and only if m is a canonical ideal of m : m.

Note that an analogous result was stated in a non-noetherian setting in [1], but with
an additional hypothesis. As for numerical semigroups, the corresponding result of
the above proposition was proved in [2].

If we consider good semigroups, fewer results of this kind are known. More pre-
cisely, a partial result was proved in [12] for the case h = 2, assuming that S is a local
good semigroup of maximal embedding dimension. In this context, the main goal of
this paper is to prove the following result:

Theorem 3.4 Let h ≥ 2, let S ⊆ N
h be a local good semigroup and let M = S \ {0}

be its maximal ideal. Then S is almost symmetric if and only if M − M = {α ∈ N
h |

α + M ⊆ M} is a good semigroup and M is a canonical ideal of M − M.

Hence, after recalling in Sect. 2 the basic notions necessary to develop our argu-
ments, in Sect. 3 we give a description of the canonical ideal of M − M , assuming
it is a good semigroup (Proposition 3.3), and we use it to prove the main theorem,
together with a characterization of local almost symmetric good semigroups of max-
imal embedding dimension via M − M (Corollary 3.6). Afterwards, we generalize
these results to the non-local case and, in Sect. 4, we show how our results imply new
characterizations of almost Gorenstein analytically unramified one-dimensional local
or semilocal rings (see, e.g. Proposition 4.3).

2 Preliminaries on good semigroups

LetN be the set of nonnegative integers and let h ≥ 2 be an integer. As usual,≤ stands
for the natural partial ordering on N

h : α ≤ β if αi ≤ βi for every i = 1, . . . , h. Given
α,β ∈ N

h , the infimum of the set {α,β} (with respect to ≤) will be denoted by α ∧β.
Hence α ∧ β = (min(α1, β1), . . . ,min(αh, βh)).

A submonoid S ⊆ N
h is said to be a good semigroup if the following three properties

are satisfied:

(G1) if α,β ∈ S, then α ∧ β ∈ S;
(G2) if α,β ∈ S, α �= β and αi = βi for some i ∈ {1, . . . , h}, then there exists
δ ∈ S such that δi > αi = βi and δ j ≥ min(α j , β j ) for all j �= i (and equality
holds if α j �= β j );
(G3) there exists c ∈ N

h such that c+ N
h ⊆ S.

Notice that for h = 1, properties (G1) and (G2) become meaningless and property
(G3), for a submonoid S of N, means that S is a numerical semigroup. Hence we can
consider numerical semigroups as the good semigroups in the case h = 1.

123



L. Casabella, M. D’Anna

A relative ideal of a good semigroup S ⊆ N
h is a subset E ofZh such thatα+β ∈ E

for any α ∈ S and β ∈ E , and there is a δ ∈ S, such that δ + E ⊆ S. If E ⊆ S then we
will simply say that E is an ideal of S. A relative ideal E satisfying (G1) and (G2) is
called good ideal. Note that a relative ideal necessarily satisfies (G3), since it is closed
up to sums with elements of S. Observe that, given two relative ideals E, F of S, the
following sets are relative ideals as well:

• E + F := {α + β | α ∈ E,β ∈ F},
• E − F := {α ∈ Z

h | α + F ⊆ E}.
However, if E and F are good, it is not true in general that E + F and E − F are
good, as shown in [3, Example 2.10].

If the only element of S with a zero component is 0 = (0, 0, . . . 0), we will say
that S is local. In this case, the set M := S\{0} is a good ideal and we will call
it the maximal ideal of S. Moreover, by property (G1), a local good semigroup has
a minimum nonzero element. We will denote it by e = (e1, . . . , eh) and call it the
multiplicity vector of S.

In [3] it is proved that any good semigroup can be uniquely expressed as a direct
product of local ones, i.e. S = S1 × · · · × Sr and, denoting by Mi the maximal ideal
of Si , we will denote by J the product M1 × · · · × Mr . In this case, J is a good ideal,
that we will call the Jacobson ideal of S. Notice that any Si in this expression is a
subsemigroup of N

hi , with h1 + h2 + · · · + hr = h.
The above notations will be fixed for the rest of the paper. In addition, we will

always assume that S �= N
h .

Notice that, for any relative ideal E , it holds true that E − E is a submonoid of
N
h , not necessarily good, containing S. In particular, if S is a local good semigroup,

then S − M = M − M = {α ∈ N
h | α + M ⊆ M} is both a monoid such that

S � M − M ⊆ N
h and a relative ideal of S. The same holds, in general, for J − J .

In the next section, we will need the following lemma in order to deal with the
non-local case. Its proof is straightforward.

Lemma 2.1 Let S ⊂ N
h be a good semigroup and let S = S1 × · · · × Sr be its

representation as direct product of local good semigroups. Then J − J = (M1 −
M1) × · · · × (Mr − Mr ).

A relative ideal that plays a central role in the theory of good semigroups is the
standard canonical ideal. In order to give its definition, we need to introduce some
more notation.

Definition 2.2 Let α ∈ Z
h , i ∈ {1, . . . , h}. We define:

�i (α) := {β ∈ Z
h | αi = βi , α j < β j ∀ j �= i};

�(α) := {β ∈ Z
h | ∃ i such that αi = βi , α j < β j ∀ j �= i} = ⋃

i �i (α);
�S

i (α) := �i (α) ∩ S;
�S(α) := �(α) ∩ S.

The minimum c ∈ N
h satisfying (G3) will be called the conductor of S. We addition-

ally set γ := c − 1 (where 1 = (1, 1, . . . , 1)) and call it the Frobenius vector of S.
Observe that, by properties (G1) and (G2), �S(γ ) = ∅.
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Definition 2.3 The standard canonical ideal of S is

K (S) := {α ∈ Z
h | �S(γ − α) = ∅}.

This relative ideal was firstly defined in the local case in [9]. In [3] it was noticed that
its definition can be stated in the general case and that, if S = S1 × · · · × Sr , then
K (S) = K (S1) × · · · × K (Sr ). It is not difficult to see that K (S) is a good relative
ideal of S such that S ⊆ K (S) ⊆ N

h .

A good relative ideal K ′ of S is called canonical ideal of S if there exists x ∈ Z
h

such that K ′ = K (S) + x .
The class of canonical ideals can be characterized via a duality property that we

are going to state. This property was proved in [20] for the local case, but it can be
stated for any good semigroup, using the representation of K (S) as a direct product
of standard canonical ideals.

Lemma 2.4 [20, Theorem 5.2.7] Given a good relative ideal K ′ of S, the following
conditions are equivalent:

(i) K ′ is a canonical ideal of S;
(ii) K ′ − (K ′ − I ) = I for every good relative ideal I of S.

In the same paper, the authors proved the following key result, that, again, holds
true in the non-local case as well.

Lemma 2.5 [20, Theorem 5.2.7] If E is a good relative ideal of S, then K (S) − E is
a good relative ideal of S.

We list below three key properties of canonical ideals that will be useful in the next
section. Let K ′ be a canonical ideal of S and let E, F be two relative ideals. Then:

• E ⊆ F if and only if K ′ − F ⊆ K ′ − E ;
• E = F if and only if K ′ − F = K ′ − E ;
• K ′ − K ′ = S.

These properties can be easily deduced by Lemma 2.4, keeping in mind, as for the
third one, that K ′ −K ′ is independent of translations of K ′ and that K (S) = K (S)− S
(because K (S) is a relative ideal of S and 0 ∈ S).

An important class of good semigroups is the class of symmetric semigroups,
which corresponds to the class of Gorenstein rings, as proved in [21] for the numerical
semigroup case, and in [8, 15] for the general case.

Definition 2.6 A good semigroup S is called symmetric if, for every α ∈ N
h , α ∈ S if

and only if �S(γ − α) = ∅.

Notice that, for any good semigroup S, α ∈ S implies �S(γ − α) = ∅, but in
general the converse is not true.
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The definition of symmetry is clearly equivalent to the condition S = K (S); hence
a good semigroup S is symmetric if and only if every ideal of S is bidual (or reflexive),
i.e. S − (S − E) = E . In the non-local case, the symmetry of a good semigroup is
also equivalent to the property that every component Si of S is symmetric. This fact
was proved explicitly in [12] for the case h = 2, but the same proof holds in general.

Good semigroups are not finitely generated in general. Therefore, it is not possible
to define the embedding dimension of a local good semigroup just by generalizing the
definition given for local rings or for numerical semigroups. A definition of embedding
dimension of a local good semigroup is given in [22], but it is very technical and we
will not need to use it in this paper. In any case, keeping inmind that a one-dimensional
noetherian local ring (R,m) is of maximal embedding dimension (i.e. its embedding
dimension is the same as its multiplicity) if and only if m : m = x−1m (where x is
a minimal reduction of m) and the same holds for numerical semigroups, we can say
that a local good semigroup is of maximal embedding dimension if M − M = M − e.
Notice that this condition implies that M − M is a good semigroup (not necessarily
local). This definition is consistent with the one given in [22].

3 Almost symmetric good semigroups

3.1 The local case

Definition 3.1 Alocal good semigroup S is calledalmost symmetric if K (S)+M = M .

Notice that this is equivalent to saying that K (S)+M ⊆ M , since the reverse inclusion
always holds, because 0 ∈ K (S).

Moreover, for any local good semigroup, it holds true that M−M ⊆ K (S)∪�(γ ):
if α ∈ (M − M)\�(γ ) and α /∈ K (S), then there would exist a nonzero β ∈ �S(γ −
α); therefore α + β ∈ �S(γ ), contradiction. Notice that, in the case of numerical
semigroups, the above inclusion is reduced to M − M ⊆ K (S) ∪ {F}, where F is the
Frobenius number of S.

In [3] it is shown that almost symmetric local good semigroups can be characterized
by the equality of these two sets:

Proposition 3.2 [3, Lemma 3.5] A local good semigroup S is almost symmetric if and
only if K (S) ∪ �(γ ) = M − M.

Proposition 3.2 shows that, if S is an almost symmetric local good semigroup, then
M − M is a good relative ideal of S, because it is the union of a good relative ideal
and �(γ ). Hence, in this case, M − M is a (not necessarily local) good semigroup.

In order to prove Theorem 3.4, we firstly need the following.

Proposition 3.3 Let S be a local good semigroup, of multiplicity vector e, such that
M − M is a good semigroup. Then the standard canonical ideal of M − M is

K (M − M) = (K (S) − (M − M)) − e.
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Proof For the sake of simplicity we set T = M − M and K = K (S). Our aim is to
show that K (T ) = (K − T ) − e.

Firstly we prove that K − T is a canonical ideal of T . In fact, K − T is not only a
good relative ideal of S, but also of T , because if α, δ ∈ T = M − M and β ∈ K −T ,
we get (α + β) + δ = (α + δ) + β ∈ T + (K − T ) ⊆ K , that is α + β ∈ K − T . By
Lemmas 2.4 and 2.5, it is sufficient to show that, for every good relative ideal E of
T , it holds (K − T ) − ((K − T ) − E) = E . Using the fact that for any three relative
ideals A, B,C it holds that (A − B) − C = A − (B + C), we obtain

(K − T ) − ((K − T ) − E) = (K − T ) − (K − (T + E)).

Observe that both E and K − E are relative ideals of T . To show this for K − E , pick
α ∈ T , β ∈ K − E and δ in E . Then (α +β)+δ = β + (α +δ) ∈ (K − E)+ E ⊆ K ,
hence α + β ∈ K − E . Therefore T + E = E and T + (K − E) = K − E , and we
get

(K − T ) − (K − (T + E)) = (K − T ) − (K − E)

= K − (T + (K − E)) = K − (K − E).

Being E a good relative ideal of T ⊃ S, it is also a good relative ideal of S, therefore
K − (K − E) = E , again by Lemma 2.4.

It remains to prove that T ⊆ (K − T ) − e ⊆ N
h . As for the first inclusion,

this is equivalent to T + e ⊆ K − T . But T + e = (M − M) + e ⊆ M and
M + T = M + (M − M) ⊆ M ⊂ K ; thus T + e ⊆ M ⊆ K − T , as desired.

We prove now the second inclusion, (K − T ) − e ⊆ N
h . First of all, we show that

S−N
h ⊆ T + e. Let α ∈ S−N

h ; we have to prove that α − e ∈ T . This is equivalent
to proving that for any δ ∈ M , α − e+ δ ∈ M . But δ − e ≥ 0, i.e. δ − e ∈ N

h , hence
α + (δ − e) ∈ S. Since 0 /∈ S − N

h , because S � N
h , and α + (δ − e) ≥ α, we must

have α + δ − e ∈ M .
Finally notice that K−N

h = S−N
h : indeed, 0 ∈ K and so K+N

h = N
h ; therefore

S − N
h = (K − K ) − N

h = K − (K + N
h) = K − N

h . Hence K − N
h ⊆ T + e and

dualizing with K we obtain K − (T + e) ⊆ N
h , that is our claim. ��

We observe that the fact that K (S) − (M − M) is a canonical ideal of M − M can
be deduced by Korell et al. [20, Corollary 5.2.12], where the proof uses an explicit
computation of K − E for any relative ideal E of S. We included our proof of this
part in the above proposition, for the sake of completeness.

We now use Proposition 3.3 to prove Theorem 3.4.

Theorem 3.4 A local good semigroup S is almost symmetric if and only if M − M is
a good relative ideal of S and M − e is the standard canonical ideal of M − M.
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Proof For the sake of simplicity we set K = K (S), T = M − M and K ′ = K (T ).

(⇐) Since the inclusion T ⊆ K ∪ �(γ ) holds for every good semigroup, it is
sufficient to show that K ⊆ T . By assumption K ′ = M − e, and by Proposition
3.3 K ′ = (K − T ) − e. Hence M = K − T , that, dualizing with K , is equivalent
to K − M = K − (K − T ) = T . But since K is a relative ideal of S, we have
K ⊆ K − M = T , as desired.
(⇒) We have already noticed that S almost symmetric implies that T is good. In
order to prove the second assertion we firstly need the following:

Claim: every good relative ideal I of T is bidual as an ideal of S.
Let I be a good relative ideal of T . We have K + I ⊆ T + I = I , where the first
inclusion is true because S is almost symmetric and the second one because I is an
ideal of T . Conversely, I ⊆ K + I because 0 ∈ K . Hence

K + I = I . (1)

Now suppose that I is not bidual as ideal of S, then I � S − (S − I ) ⊆ K − (S − I ).
Dualizing with K , this is equivalent to S − I � K − I . Therefore

S − I � K − I = K − (K + I ) = (K − K ) − I = S − I

that is a contradiction. Hence the claim holds true.
We are now ready to prove that M is a canonical ideal of T . By Lemma 2.4, it

is sufficient to show that M − (M − I ) = I for every good ideal I of T . Firstly,
we show that M − I = S − I . If not, there exists an element x ∈ S − I such that
x /∈ M − I . Then x + I is an ideal of S not contained in M , i.e. x + I = S; and this
means that S is itself a relative ideal of T , a contradiction, since S � T and 0 ∈ S.
Hence M − I = S − I .

Since, by the claim, I is bidual as an ideal of S,

M − (M − I ) ⊆ S − (M − I ) = S − (S − I ) = I .

The other inclusion is always true, hence we get M−(M− I ) = I , as desired. Finally,
it is straightforward to check that T ⊆ M − e ⊆ N

h , hence M − e is the standard
canonical ideal of T . ��
Example 3.5 Let S be the semigroup represented by the black dots in the top figure;
then its standard canonical ideal K (S) is obtained by adding to S the white dots in
the same figure, and it is not difficult to check that M + K (S) ⊆ M , i.e. S is almost
symmetric. In the bottom figure, M − M is depicted with black dots and M − e is
obtained by adding the white dots to it. As prescribed by the previous theorem, M − e
is the standard canonical ideal of M − M .
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The following result was proved in [12] for the special case h = 2. We will give a
proof that holds in general, using Theorem 3.4.

Corollary 3.6 A local good semigroup S is almost symmetric of maximal embedding
dimension if and only if M − M is a symmetric good semigroup.

Proof As usual, we set K = K (S) and T = M − M .

(⇒) If S is almost symmetric, by Theorem 3.4, M − e is the standard canonical
ideal of T . Remembering that, by definition, S is ofmaximal embedding dimension
if and only if T = M − e, we get that T coincides with its standard canonical
ideal, that is equivalent to saying that T is symmetric.
(⇐) Assume that T is good and symmetric. Therefore, by Proposition 3.3, T =
K (T ) = (K −T )− e. It follows that T = K − (T + e) ⊇ K −M ⊇ K − S = K .
Hence K + M ⊆ M , which means that S is almost symmetric.

Now we can apply Theorem 3.4 to get K (T ) = M − e; therefore, since T is
symmetric, T = K (T ), i.e. M − M = M − e, that means that S is of maximal
embedding dimension. ��
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Example 3.7 Let S be the semigroup represented by the black dots in the top figure;
then M − M is the semigroup represented by the black dots in the bottom figure. In
this case, M −M coincides with M − e and it is a symmetric good semigroup. Hence,
by the previous corollary, S is almost symmetric of maximal embedding dimension.
The standard canonical ideal K (S) is obtained by adding to S the white dots in the top
figure, and it is immediately seen that K (S) ∪ �(γ ) = M − M : this is another way
to check that S is almost symmetric.
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3.2 The non-local case

If S = S1×· · ·×Sr is a non-local good semigroup, using the facts that J = M1×· · ·×
Mr , J − J = (M1 − M1) × · · · × (Mr − Mr ) and K (S) = K (S1) × · · · × K (Sr ), it is
straightforward to generalize the definitions of almost symmetry (as it has been done in
[3]) and the previous theorems. More precisely, we will say that S is almost symmetric
if its components are almost symmetric for every i = 1, . . . , r . Moreover, denoting
by ei the multiplicity vector of Si , we can state the following results. Their proofs are
straightforward since, if E, F are relative ideals of S of the form E1 × · · · × Er and
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F1 × · · · × Fr , where the supports of Ei and Fi are the same as the supports of Si ,
then E − F = (E1 − F1) × · · · × (Er − Fr ) and hence we can reduce our proofs to
the local case.

Proposition 3.8 Preserving the above notations, let S1×· · ·×Sr be a good semigroup
and let e = (e1, . . . , er) and assume that J− J is a good semigroup. Then the standard
canonical ideal of J − J is

K (J − J ) = (K (S) − (J − J )) − e.

Theorem 3.9 A good semigroup S is almost symmetric if and only if J − J is a good
relative ideal of S and J − e is the standard canonical ideal of J − J .

Corollary 3.10 A good semigroup S is almost symmetric and J − J = J − e if and
only if J − J is a symmetric good semigroup.

4 Almost Gorenstein rings

We conclude this paper by applying the previous results to noetherian, analytically
unramified, residually rational, one-dimensional, reduced, semilocal rings.

We recall that a one-dimensional, local, noetherian, reduced ring (R,m) is called
analytically unramified if itsm-adic completion is reduced. This condition is equivalent
to the property that the integral closure R of R in its total ring of fractions is a finite
R-module. If R is semilocal, we can take this equivalent condition as a definition. A
particular case of analytically unramified rings are analytically irreducible domains,
defined as one-dimensional, local, noetherian domains such that their completion is
again a domain, and this is equivalent to R being a discrete valuation ring and a finite
R-module.

As described in [3], under the aforementioned hypotheses, if R is also completewith
respect to the J (R)-adic topology (where J (R) is the Jacobson radical of R), then R
is a direct product of discrete valuation rings V1×· · ·×Vh and R ∼= Rm1 ×· · ·× Rm j ,
where m1, . . . ,m j are the maximal ideals of R (with j ≤ h; see [3, Corollary 3.2]).
Therefore an element r of R can be written as r = (r1, . . . , rh) in V1 × · · · × Vh .
When r is not a zero-divisor (i.e. ri �= 0 for every i = 1, . . . , h), then we consider
its value v(R) = (v1(r1), . . . , vh(rh)) which is a vector in N

h . Hence it is possible to
associate to R a value set v(R), that turns out to be a good subsemigroup of N

h .
If R is not complete, it is still possible to associate a value semigroup to it, and,

as proved in [9], this coincides with the value semigroup of the completion of R.
Therefore, working in the complete case is not a strong restriction. In particular, this
is the case of algebroid curves, that are one-dimensional reduced rings of the form
k[[X1, . . . Xn]]/P1 ∩ · · · ∩ Ph , where k is a field and, for any i , Pi is a prime ideal
of co-height 1. These rings appear as completions of local rings of algebraic curves
in a singular point and their study, since Zariski, is a classical tool in studying curve
singularities.

Note that the residually rational hypothesis means that all the residue fields of R
and R are isomorphic; if moreover the cardinality of these residue fields is bigger
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than h, then the connection between the ring and its value semigroup is particularly
meaningful and we will assume these two hypotheses till the end of the paper. One of
the reasons for this connection is the fact that, if I ⊆ J are two fractional ideals of
R, then the length �(J/I ) of J/I (as an R-module) can be computed from the value
ideals v(I ) and v(J ) of v(R). In particular, we will use the fact that I = J if and only
if v(I ) = v(J ) (see [9, Corollary 2.5]). We also recall that algebroid curves belong to
this class of rings and that, in this case, the integer h represents the number of branches
of the singularity.

We also notice that the representation of R ∼= Rm1 ×· · ·×Rm j immediately implies
that v(R) = v(Rm1) × · · · × v(Rm j ) is the unique representation of v(R) as a direct
product of local good semigroups. Moreover, the Jacobson radical J (R) coincides
with m1Rm1 × · · · × m j Rm j and hence v(J (R)) = J , where J is the Jacobson ideal
of v(R).

In this context, we give the following definition.

Definition 4.1 A noetherian, analytically unramified, one-dimensional, reduced local
ring is said to be almost Gorenstein if mωR = m, where ωR is a canonical ideal of R
with the property that R ⊆ ωR ⊆ R.

If R is semilocal, following again [3], we will say that R is almost Gorenstein if
Rmi is almost Gorenstein for any maximal ideal mi of R.

In the local case, in [3, Proposition 3.7] the authors proved that (R,m) is almost
Gorenstein if and only if v(R) is almost symmetric and v(m : m) = M − M (in
general, we have only the inclusion v(m : m) ⊆ M − M). Precisely, setting v(R) = S
and M = v(m), in that paper it is proved that, if R is almost Gorenstein, then v(m :
m) = M −M = K (S)∪�(γ ), and this fact implies the above statement. For the sake
of completness, we remark that in [3, Proposition 3.7], the above result is stated in
term of Cohen–Macaulay type of R and type of v(R). The definition of type of a good
semigroup can be found in [3] when M − M is good, and in [12] in the general case.
Since we will not use this definition and it is quite technical, we prefer not to recall
it here. In light of Theorem 3.4 we can further reformulate this fact in the following
way:

Corollary 4.2 Preserving the above assumptions, set S = v(R) and M = v(m). Then
(R,m) is almost Gorenstein if and only if M − e is the standard canonical ideal of
M − M and v(m : m) = M − M.

This result is not particularly useful from a computational point of view, since it is
not easy at all to determine m : m and its value semigroup. We can however restrict
ourselves to the case when R is of maximal embedding dimension. In this way, we get
a stronger result that characterizes the almost Gorenstein property for R only in terms
of v(R), without requiring the equality v(m : m) = M − M . This fact is remarkable
since there are not many characterizations of properties of rings in our class that
rely exclusively on the corresponding property of their value semigroup (apart from
the Gorenstein property which is equivalent to the symmetry of the semigroup). For
instance, beingArf or ofmaximal embedding dimension only imply the corresponding
semigroup properties (see for example [5]) and not vice versa.
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Proposition 4.3 Preserving the above assumptions, set S = v(R), M = v(m) and
assume that R is of maximal embedding dimension. The following conditions are
equivalent:

(i) (R,m) is almost Gorenstein;
(ii) M − e is a symmetric good semigroup;
(iii) S is almost symmetric.

Proof

(i) ⇔ (ii) It is well known that R is of maximal embedding dimension if and only
if m : m = mx−1, where x ∈ m is a minimal reduction of m, i.e., in
our context, an element of minimal non-zero value (that is e). Hence
v(mx−1) = M − e. Moreover, the equality m : m = mx−1 holds if and
only if mx−1 is a ring.
Applying [6, Proposition 25], we get that R is almost Gorenstein if and
only ifm : m = mx−1 is a Gorenstein ring, that implies immediately that
M − e = v(mx−1) is a symmetric good semigroup.
Conversely, if M−e is a symmetric good semigroup, since by hypothesis
mx−1 = m : m is a ring, it has to be Gorenstein, having a symmetric
value semigroup. The thesis follows again by Barucci and Fröberg [6,
Proposition 25].

(ii) ⇔ (iii) Observe that v(m : m) ⊆ M − M ⊆ M − e = v(mx−1). Combining
this with the fact that R is of maximal embedding dimension (i.e. m :
m = mx−1) implies the equality M − M = M − e, i.e. S is of maximal
embedding dimension. Applying Corollary 3.6 concludes the proof. ��

Example 4.4 The semigroup considered in Example 3.7 is the value semigroup of the
ring R = k[[x, y, z, w]]/P1 ∩ P2, where k is any field of with at least 3 elements,
P1 = (x3 − y2, z − x2, w − xy) and P2 = (x3 − y2, z, w). This fact can be seen by
considering the homomorphism k[[x, y, z, w]] → k[[t]] × k[[u]] induced by x �→
(t2, u2), y �→ (t3, u3), z �→ (t4, 0) and w �→ (t5, 0), whose kernel is P1 ∩ P2. The
ring R is of maximal embedding dimension, since also its multiplicity is 4 (i.e. the
sum of the components of the minimal non-zero value), and as explained in Example
3.7, M − e is a symmetric good semigroup. Hence R is almost Gorenstein.

In light of the above discussion on the semilocal case, we can easily generalize the
previous results.

Corollary 4.5 Let R be a one-dimensional, noetherian, analytically unramified, resid-
ually rational, reduced semilocal ring. Set S = v(R) and let J = v(J (R)) be its
Jacobson ideal. The following conditions are equivalent:

(i) R is almost Gorenstein;
(ii) J (R) is a canonical ideal of J (R) : J (R);
(iii) S is almost symmetric and v(J (R) : J (R)) = J − J ;
(iv) J is a canonical ideal of J − J and v(J (R) : J (R)) = J − J .

Proof
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(i) ⇔ (ii) By definition R is almost Gorenstein if and only if Rmi is almost
Gorenstein for every i = 1, . . . , j . By D’Anna and Strazzanti [13,
Proposition 3.2] this is equivalent to saying that mi Rmi is a canonical
ideal of (mi Rmi : mi Rmi ). Since J (R) = m1Rm1 × · · · × m j Rm j and
J (R) : J (R) = (m1Rm1 : m1Rm1) × · · · × (m j Rm j : m j Rm j ), the
thesis follows immediately.

(iii) ⇔ (iv) In both conditions it is assumed that v(J (R) : J (R)) = J − J , hence
J − J is good and the equivalence follows applying Theorem 3.9.

(i) ⇔ (iii) By Barucci et al. [3] we know that, for every i = 1, . . . , j , the ring Rmi

is almost Gorenstein if and only if Si is almost symmetric and v(mi Rmi :
mi Rmi ) = Mi − Mi . The thesis is now straightforward. ��

Like in the local case, the previous result is not very useful from a computational
point of view, but we can state a semilocal version of Proposition 4.3.

Corollary 4.6 We preserve the above notations. Let R be a one-dimensional, noethe-
rian, analytically unramified, residually rational, reduced semilocal ring. Identify R
with Rm1 × · · · × Rm j and set x = (x1, . . . , x j ), where xi is a minimal reduction of
mi Rmi (for any i = 1, . . . , j ). Set S = v(R) and let J = v(J (R)) be its Jacobson
ideal. Assume that Rmi is of maximal embedding dimension for every i = 1, . . . , j
(or, equivalently, that J (R)x−1 = J (R) : J (R)). Then the following conditions are
equivalent:

(i) R is almost Gorenstein;
(ii) J − e is a symmetric good semigroup (where e = (e1, . . . , er) and ei is the

multiplicity vector of Si = v(Rmi ).
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