
UNIVERSITÀ DEGLI STUDI DI CATANIA

DIPARTIMENTO DI MATEMATICA E INFORMATICA

DOTTORATO DI RICERCA IN MATEMATICA E INFORMATICA

XXX CICLO

DATA DEPENDENCE AND TAINT ANALYSIS TO

FOSTER SOFTWARE EVOLUTION

Andrea Francesco Fornaia

Tesi di Dottorato

Tutor: Chiar.mo Prof. Emiliano Tramontana

Coordinatore: Chiar.mo Prof. Giovanni Russo



i

To my mother and my brother

...

Special thanks go to Prof. Emiliano Tramontana and Prof. Giuseppe Pappalardo

without their patient guidance this work would have not been possible



ii

ABSTRACT

Modern software development prefers fast and frequent changes rather than a

detailed and fixed design. However, the continuous evolution of a software system

can lead to a deterioration of its structural quality, making the code harder to

understand and maintain.

This thesis presents novel approaches based on data dependence and taint

analysis to assist code inspection and automatically suggest complex refactoring

opportunities, thus achieving modularity.

Automatic tools are also proposed, which leverage API calls and data flows

between different parts of the application to automatically give insights on the

responsibility of each component. Then, these tools suggest a better decomposition

of code inside concern cohesive modules, thus enhancing code modularity.

Along with modularity, the proposed approaches and tools are effective to deal

with the issues of platform dependence and data security. On the one hand, platform

dependence can make porting difficult when spread widely on the application; on

the other hand, one may need to guarantee code robustness against data leaks.

Both issues may force the code to be modified, thus evolved.

Both these aspects related to software evolution have been addressed by using

the same concepts adopted to enhance code modularity, thus giving effective tools

helping the developer in such issues.

Furthermore, the proposed support can be used both during the development

of new software components or to analyse and improve legacy applications.



iii

Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

1 Introduction 1

1.1 The role of quality metrics . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Refactoring the code for quality improvement . . . . . . . . . . . . 3

1.3 Refactoring guided by metrics . . . . . . . . . . . . . . . . . . . . . 4

1.4 Suggest complex refactoring opportunities . . . . . . . . . . . . . . 5

1.5 The proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Published Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background and Related Work 12

2.1 Data flow and data dependence analysis . . . . . . . . . . . . . . . 13

2.2 Code portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Concern tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Automate refactoring opportunity detection . . . . . . . . . . . . . 30

2.5 Suggest Extract Method opportunities . . . . . . . . . . . . . . . . . 33

2.6 Data leak detection in Android applications . . . . . . . . . . . . . 40

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Platform Dependence and Portability assessment 45

3.1 Assessing code portability . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Limits of the traditional approaches . . . . . . . . . . . . . . . . . . 47

3.3 Taint Analysis to assess platform dependence . . . . . . . . . . . . 48

3.4 Framework implementation . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



iv

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Concern Tagging and Refactoring 63

4.1 Concern Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 DeDuCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Tagging examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Suggest Complex Refactorings 85

5.1 Assist Replace Method with Method Object . . . . . . . . . . . . . . 85

5.2 Determine fragment data dependences . . . . . . . . . . . . . . . . 88

5.3 Field Set selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Data Leak detection 114

6.1 Preventing data leak in Android applications . . . . . . . . . . . . . 115

6.2 Hybrid Taint Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3 JADAL implementation . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Conclusions 136

A Listings 138

A.1 The storageIM() method before applying the Replace Method with

Method Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.2 Refactored version of the storageIM()method by means of aMethod

Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.3 The Method Object after other two Extract Methods on compute() . 145



1

Chapter 1

Introduction

One of the most important qualities a software product must have, in order to

preserve its usefulness over time, is the ability to evolve and adapt to emerging

needs. Generally, there is a sudden need to meet new requirements by planning

and adding functionalities to the software already developed, avoiding code decay.

All activities related to the software evolution after code release are grouped

into the maintenance process. These activities are carried out to fix code errors

(corrective maintenance), to adapt existing software to new environments, such

as other execution platforms (adaptive maintenance), to add new features or to

improve performances (perfective maintenance) [92]. It is easy to understand that

the more maintainable the software itself, the cheaper the maintenance activities.

Software products are extremely complex systems whose constant evolution can

lead to a maintainability deterioration, even considering an effective initial design. It

happens that after several modifications, applied over time, the software can become

more complex, making harder for developers to understand the responsibility of

certain modules, i.e. making the code less reusable. The inability to reuse existing

modules, thus leveraging time and money investments afforded, is in most cases

due to the low quality of the internal structure of the software system, worsened

during its evolution. Therefore, it is important to assess and possibly change the

structure in order to improve modularity.

We may think that problems related to code modularity can be avoided by

spending time and efforts in a good initial design. However, on the one hand widely

adopted agile approaches [31], such as extreme programming [13] and scrum [86], are



2

software development processes in which fast and frequent changes to incorporate

new features are preferred to a detailed and fixed design. On the other hand, it

may be hard for the developer to choose how to separate the code into different

modules since the early stages of development. Therefore, even if detailed, the

initial design may be unsatisfying.

The lack of a detailed design, and the need for constant modifications to be

applied, both call for automatic tools able to monitor code quality and assist the

developer in taking it under control, also suggesting structural changes that can

improve code modularity during software development.

1.1 The role of quality metrics

To manage the complexity of a software product, we need supports to evaluate

the quality of code. In the literature, various metrics for object-oriented systems

have been proposed, helping developers to understand if the desired quality has

been achieved, for example, in terms of class coupling and cohesion. These metrics

are useful indicators of the amount of work needed to understand, modify, or

reuse classes, and help identifying those parts that need preventive maintenance

changes, i.e. changes that are intended to improve the system structure to foster

the introduction of new features.

The Chidamber and Kemerer (CK) [26] suite includes six metrics (WMC, DIT,

NOC, CBO, RFC and LCOM) based on the static object code analysis. This suite,

along with others related to object-oriented systems [18, 19], provides information

on specific class characteristics, such as complexity, cohesion, and coupling.

The class coupling measure, given especially by CBO (coupling between objects),

provides information about the dependence of a class from others in the system,

and is given by the number of distinct classes with which it interacts through

method calls or object instantiations. A high coupling value indicates a class that

is difficult to reuse due to its high dependence on other parts of the system. It

also indicates a complex class, difficult to understand and modify, and it is a clear

indication of the need for design modifications to improve modularity, thus reuse

capability.

A class has a low cohesion when its fields and methods are not well connected:



3

the LCOM metric (lack of cohesion on methods) of the CK suite was originally

defined as the difference between the number of method pairs sharing no attribute

and the number of pairs sharing at least one. Other LCOM definitions were also

given in [18] though expressing the same concept: a class has a lack of cohesion

when a few of its methods use the fields within the class.

However, this is not the only cohesion definition given so far. According to Hitz

and Montazeri, with LCOM4 [57], a class is not cohesive when its methods perform

a few reciprocal calls. The cohesion measure can also be extended by considering

the strength with which the methods interact with each other, that is, the amount

of data passed from one method to another through the call. This can be achieved

by considering either the number of parameters (according to Lee, with ICH [66])

or even the corresponding type, so given a weight to the call according to the actual

amount of exchanged bytes [79].

Usually, a low cohesion value can be a symptom of an inaccurate aggregation of

methods and features within the class. This problem can be solved, for example, by

moving some methods to other classes, or by splitting the class into smaller classes

which show a higher cohesion.

In conclusion, existing literature proved that the design quality of a program can

be measured and monitored using appropriate metrics. For each metric, guidelines

for the interpretation of measured values are given. Thus, these metrics let the

developer identify which classes need to be modified in order to improve modularity.

However, metrics alone cannot tell us how these classes can be modified without

altering the program behaviour.

1.2 Refactoring the code for quality improvement

In the literature there are several refactoring [44] techniques aiming at improving

the structure of an object system, while taking care not to alter its functionality.

The application of a refactoring technique is based on symptoms, which can be

detected on the code, known as “code smells”, e.g. finding very long methods or

duplicated code. These are essentially qualitative indicators, telling that the code

needs to be changed [44].

Refactoring techniques catalogues give guidelines and motivations, which help



4

programmers to understand in which cases there is a need for a certain refactoring

rather than another. On the one hand this makes such techniques sufficiently

general to allow contextualization in a large and significant set of cases. On the

other hand, this puts some effort on the developers, which have to choose how

and where to apply a refactoring technique. They also have to evaluate the effects

a technique will have on code quality. The effectiveness highly depends on the

developer ability to take bad smells clues and act accordingly.

For example, if two classes are highly coupled due to a method using more

features from another class than from the one it belongs to, or simply if moving a

method to another class can make responsibilities clearer, what a developer can

do is to apply the Move Method refactoring technique [44]. It consists in copying

the method body from the original class to a new method inside the class it was

closely coupled.

In case of a very long class, where too many responsibilities are put together, so

that the methods as a whole make ambiguous the actual role of the class, it could

be a good choice to apply the Extract Class refactoring technique, thus improving

the reuse of individual features [44]. This technique consists in splitting the starting

class into two distinct parts by partitioning the methods so that the role of the

single classes is clearer.

1.3 Refactoring guided by metrics

The biggest obstacle developers can encounter while refactoring their code is

certainly this: how can they understand where there is a need to apply a refactoring?

As mentioned earlier, catalogues only refer to qualitative parameters and this makes

refactoring difficult, especially in the case of large software, due to the large number

of components and complexity it can have.

On the one hand, we have seen how the metrics can be used to make consid-

erations on the design quality of individual classes, but on the other hand it is

not trivial to define how these can effectively suggest refactoring opportunities. As

a first step, metrics can assist in identifying system components that need to be

refactored.

In general, the effect of a change on some of the software components is not easy



5

to understand when dealing with a real-size system because of the high number of

components and interactions, whose quality could be influenced in some unintended

way by the refactoring action. Furthermore, taking into account that such structural

changes must preserve the behaviour of the system, applying these changes can be

cumbersome, even considering the support of some software quality metrics and a

catalogue of refactoring techniques.

Having automated tools capable of suggesting refactoring opportunities in large-

scale systems is of paramount importance, since a non-assisted developer, having

to reason on a large number of classes, may not understand where it is actually

possible to apply a refactoring without compromising the behaviour of the system.

In addition, the high number of components present in large systems makes manual

exploration of all the actual possibilities of improvement unfeasible.

However, before we can talk about modularity assessment, responsibility of

methods and classes have to be determined somehow. In fact, one of the main

problem is still characterising the code with the concern it addresses. This problem

is known as concern identification or concern tagging, that means mapping source

code elements on to human oriented concepts or programming features.

Once responsibility of each code portion has been determined, modularity can

be assessed, and e.g. refactoring techniques can be used to promote the separation

of concerns, that means moving code related to different concerns in to different

concern cohesive modules [17, 97, 107]. Separation of concerns has been addressed

in different areas of software engineering, such as in multi agent systems to separate

the algorithmic concern from the agent interaction concern [20], or in software

security engineering to separate domain code from security code, by properly

separating otherwise crosscutting security concern, thus making it easier to change

the security architecture [114].

1.4 Suggest complex refactoring opportunities

In the contributions seen so far, metrics have been used to automatically

suggest single refactoring techniques, or applying one single structural improvement

operation at a time. However, as is often the case, refactoring operations to be

made are more than one. These will be typically applied in close working sessions,



6

often in the case of new features to be added, to effectively introduce a design

pattern [45] on a set of classes, or simply to improve the modularity of the code.

In other cases, we can even have a single class or method showing a high level of

complexity so that a single refactoring operation would not be enough. For example,

let us suppose that we have a very long and complex method that needs to be split

in smaller, fine grained, and reusable methods. In this case, we will need more than

one Extract Method refactoring, which consists in moving a sequence of statements

from the original method to a new one, then replacing it with a corresponding

method call, making the code extraction transparent to original clients.

However, to let the extraction of a code portion feasible, thus preserving the

original behaviour and data flow, the developer needs to select the variables to

become input and output values for the new extracted method. This is not always

an easy task, and becomes difficult if more than one extraction for the same long

method needs to be addressed. In this case, the Replace Method with Method Object

is to be preferred, which may be considered as an extension of the Extract Method

technique [12, 44]. In this case, the whole method will be replaced with a new class,

the Method Object, which will have a field for each of the original method variable,

so that there will be no problem for variable dependencies, thus letting multiple

method extractions straightforward.

However, without any further analysis, this will lead to a class with many fields,

which in turn can hinder the class comprehension and worsen its cohesion, because

it may happen that each field will be used by a few methods, the ones that were

originally using the corresponding variable.

Despite the frequent occurrence of the need to apply more refactoring operations

in sequence, commonly the approaches seen so far focus on suggesting only one

refactoring at a time.

1.5 The proposed approach

This thesis presents several solutions to assist evolving software based on data

usage, showing how information about data dependence and data propagation

can give useful insights about different aspects concerning software modularity,

portability and robustness.



7

Data flow analysis is a statical program analysis used to compute information

about the flow of data (in terms of read and written values, like variables and

fields being used) for each program point inside the application [63]. It has an

iterative formulation that let us efficiently observe the way data are managed by a

sequence of program points, statically obtaining an approximation of the runtime

behaviour of the code over any possible program execution (e.g. regardless of

the inputs configuration). By changing the analysis formulation, i.e. information

representation, summarisation rules, and propagation algorithm, we can focus our

analysis on different properties, thus solving different data related problems.

Data flow analysis can also be used to build a model of the information trans-

mission inside the program. This is done by associating the point in a program

where a value is produced (defined) with the point at which the value may be

accessed (used). Definition-use relations, or pairs, fundamentally capture the flow

of information through a program, from input to output. Sequences of definition-

use pairs record a kind of program dependence called data dependence, which we

can use to build a data dependence graph, where program points are nodes and

definition-use relationships define edges.

Finally, taint analysis is a particular class of data flow analysis used to solve

problems that can be modelled by considering sources for tainted data that need

to be traced until they reach one of the possible sinks. This is typically performed

using graph traversal algorithms on the data dependence graph, looking for paths

connecting a source node with a sink node.

Both in the literature and industries, data flow analysis is commonly used for:

• Transforming a program for optimisation purposes. This is the classical

application of data flow analysis, since it was originally conceived in this

context.

• Determining the semantic validity of a program (e.g. prohibiting the use of

uninitialised variables or checking type correctness).

• Understanding program behaviour to support debugging, maintenance, verifi-

cation, or testing.

In this thesis, we will see how data flow analysis can be additionally used to

endorse software evolution and modularity improvement. In fact, by analysing the



8

flow of data among different parts of a software unit it is possible not only to better

statically understand its runtime behaviour, but also its role and its dependence on

the rest of the environment. Different problems concerning software evolution have

been addressed, such as:

• Assess the dependence of an application on a particular platform [43], thus

suggesting refactoring operations to reduce it;

• Automatically assign to each program point the concern it covers (concern

tagging), according to the APIs it is using and the data flow it is part of [42];

• Guarantee that sensitive data managed by Android applications will be

preserved by leakage and disclosure [7, 72].

Identifying complex refactoring opportunities had an important role in this

thesis. In fact, in all of the three cases stated above, different parts of code can

be suggested for extraction in a separate unit, such as in a new method. Code

extraction can be useful to: (i) limit the dependence on a given platform; (ii) create

concern cohesive methods; (iii) find and enclose code dealing with sensitive data in

a more policy restricted module. However, in some cases, such as with long and

complex methods, more than one extraction could be needed, making them hard

to be applied without proper assistance.

To address this problem, an approach to effectively assist a Replace Method

with Method Object refactoring technique has been also proposed. This is a novel

approach since it uses the analysis of data dependence to optimise the number of

variables to become fields in the Method Object, both guaranteeing that all original

data flows will be preserved and that a high level of cohesion for the new class will

be obtained.

To evaluate the proposed solutions on real world scenarios, tools, such as JADAL

and DeDuCT, have been implemented, demonstrating how data dependence and

taint analysis can effectively assist software evolution.

1.6 Thesis structure

In Chapter 2 all the required fundamentals for the works described in further

chapters will be discussed. The chapter is composed of different sections, starting



9

from the theory of data flow, data dependence, and taint analysis, giving the

fundamentals which were of great importance for the works presented in this thesis.

Moreover, concepts related to code portability, refactoring automation, concern

tagging and fragment extraction will be also given, along with the related work

presenting the state of the art given by the literature.

In Chapter 3 a taint analysis approach to assess code portability will be proposed,

which identifies code portions that depend on a platform due to the use of data

coming from, or further used by, platform specific APIs, thus binding the code and

hindering the code portability.

In Chapter 4 the taint analysis approach used to assess the dependence of

some code portion on platform specific APIs will be extended for automatically

attributing concern tags to each instructions according to the Java APIs they

depend on. These tags will then be used to suggest Extract Method refactoring

opportunities by finding concern cohesive code fragments that can be extracted in

separate methods, thus improving code modularity and comprehensibility.

In Chapter 5 data dependence analysis has been used to give an automatic

approach for replacing a long method with a Method Object, with the aim of

optimising the number of variables to become fields while minimising the lack of

cohesion of the resulting Method Object. This will be used along with the concern

tagger proposed in the previous chapter, finally providing an automatic tool to

find, and to effectively apply, complex refactoring opportunities by automatically

suggest a way to decompose a long method into smaller, concern cohesive parts.

In Chapter 6 a novel hybrid approach is described, which combines static and

dynamic taint analysis for detecting data leaks in Java and Android applications.

It addresses a relevant problem not only from a user point of view, i.e. to preserve

personal data from being leaked by an installed application, but also from a

developer point of view, i.e. to assess the robustness of a developed application

from data leak attempts which may be caused by exploiting some execution flows.

Finally, Chapter 7 gives the conclusions for this thesis, while Appendix A gives

three code listings that are referred by Chapter 5 to show a real world use case of

decomposing a long method into a Method Object by using the suggestions given

by the concern tagger described in Chapter 4.



10

1.7 Published Papers

Part of the work presented in this thesis is based on these co-authored papers:

• M. Mongiov̀ı, G. Giannone, A. Fornaia, G. Pappalardo, E. Tramontana:

Combining static and dynamic data flow analysis: a hybrid approach for

detecting data leaks in Java applications. Proceedings of the 30th Annual

ACM Symposium on Applied Computing (SAC), 2015.

• G. Ascia, V. Catania, R. Di Natale, A. Fornaia, M. Mongiov̀ı, S. Monteleone,

G. Pappalardo, E. Tramontana: Making Android Apps Data-Leak-Safe by

Data Flow Analysis and Code Injection. Proceedings of the 25th IEEE

International Conference on Enabling Technologies: Infrastructure for Collab-

orative Enterprises (WETICE), 2016.

• A. Fornaia, E. Tramontana: Is My Code Easy to Port? Using Taint Anal-

ysis to Evaluate and Assist Code Portability. Proceedings of the 26th

IEEE International Conference on Enabling Technologies: Infrastructure for

Collaborative Enterprises (WETICE), 2017.

• A. Fornaia, E. Tramontana: DeDuCT: a Data Dependence based Concern

Tagger for modularity analysis. Proceedings of the 41th IEEE International

Conference on Computer Software and Applications (COMPSAC), 2017.

During the three PhD years also other research areas have been addressed,

such as combinatorial software testing, workflow management systems for cloud

infrastructures, agent-oriented programming, and named entity recognition in Italian

unstructured text, co-authoring the following papers:

• G. Borowik, M. Woniak, A. Fornaia, R. Giunta, C. Napoli, G. Pappalardo,

E. Tramontana: A Software Architecture Assisting Workflow Executions on

Cloud Resources. International Journal of Electronics and Telecommuni-

cations (IJET), 2015.

• A. Calvagna, A. Fornaia, E. Tramontana: Random versus combinatorial

effectiveness in software conformance testing: a case study. Proceedings of

the 30th Annual ACM Symposium on Applied Computing (SAC), 2015.



11

• A. Fornaia, C. Napoli, G. Pappalardo, E. Tramontana: An AOP-RBPNN

approach to infer user interests and mine contents on social media. Interna-

tional Journal of the Italian Association for Artificial Intelligence (AI*IA),

IOS Press, 2016.

• A. Fornaia, C. Napoli, G. Pappalardo, E. Tramontana: Enhancing City

Transportation Services Using Cloud Support. Proceedings of the 22nd

International Conference on Information and Software Technologies (ICIST),

2016.

• D. Cantone, A. Fornaia, M. Nicolosi-Asmundo, D. Santamaria, E. Tramon-

tana: An OWL framework for rule-based recognition of places in Italian

non-structured text. Proceedings of the 2nd International Workshop on

Knowledge Discovery on the Web (KDWEB), 2016.



12

Chapter 2

Background and Related Work

In this chapter all the required fundamentals for the works described in further

chapters will be discussed. The chapter is composed of different sections, starting

from the theory of data flow, data dependence, and taint analysis in Section 2.1,

giving the fundamentals which was of grate importance for the works presented

in this thesis. In particular, taint analysis is a particular class of bot static and

dynamic data flow algorithm that are typically used to solve problems related to

data security. In this thesis, a contribute in this direction will be presented in

Chapter 6, showing how it can be used to prevent data leak in Android application.

However, in Chapter 4 and Chapter 3 taint analysis will be used in a different field,

related to the assistance of software evolution.

In Section 2.2 the problem of platform dependence assessment for the portability

measurement will be presented, giving related work both for portability metrics

and tools for platform dependence assessment. Both a novel metric and tool for

these kind of problems will be discussed in Chapter 3, where concept and tools

for taint analysis, typically used to address data security, have been used to solve

a different problem, i.e. related to software evolution. This is the same for the

the approach presented in Chapter 4, that can be see as a generalisation of the

approach used to address platform dependence and code portability.

In Section 2.3 the problem of concern tagging will be tackled, showing the

related work in the literature and a wide range of approaches that can be used

to automatically assign to each instruction the related concern. These will be

compared with the approach presented in Chapter 4, where an extension and



13

generalisation of the work proposed in Chapter 3 has been given specifically to

address concern tagging and to suggest Extract Method refactoring opportunities.

Since the final objective of this thesis is to provide an approach to automatically

suggest complex refactoring opportunities, in Section 2.4 several approaches in this

field will be presented.

In Section 2.5 the problem of program slicing and fragment extraction will

be deeply discussed, thus giving some notable examples in the literature. This

fundamentals will be of great relevance to understand the work presented in

Chapter 5, where the data dependence model introduced in Section 2.1 and the

concern tagging approach described in Chapter 4 will be used to automatically

suggest complex refactoring opportunities by means of the Replace Method with

Method Object refactoring technique, showing how a long and complex method can

be split in smaller methods for a separate class, while guaranteeing a high level of

concern cohesion of the extracted methods and a high cohesion for the obtained

class.

Finally, in Section 2.6 the problem of data leak in Android applications will be

discussed, presenting how static, dynamic and hybrid taint analysis are used in this

context, together with the related work in this wide researching area, giving the

support for the work presented in Chapter 6.

2.1 Data flow and data dependence analysis

Static data flow analysis, which can be seen as a way to simulate the program

execution, has been originally used by compilers to determine dependencies among

variables and to optimize the compiled code. For instance, the set of instructions

that are reachable from a definition, or the set of instructions in which a variable is

still alive (i.e. its value can be read by a following instruction).

Another important use is to trace the data dependence among different program

points, thus giving a code representation called data dependence graph that has been

widely used in the approaches described in further chapters, i.e. to solve problems

related to data security (see Chapter 6), portability assessment (see Chapter 3),

concern tagging (see Chapter 4), and code refactoring (see Chapter 5).

In this section some basic concepts of data flow analysis, and in particular in



14

the case of Java applications and Java bytecode, will be described, providing the

fundamentals that will be helpful in the description of the approaches described in

this thesis.

2.1.1 Code optimisation

Data flow analysis was initially used by compilers to efficiently perform code

optimisation tasks, and to date this remains its most dominant application. A

classical optimisation task performed using data flow analysis is the available

expressions analysis [80]. It is used to determine if the value of an expression can

be saved for future reuses rather than recompute it. This is possible only if we can

assure that the value of such an expression remains unchanged regardless of the

execution path from the first computation to the second one.

Liveness of variables is another classical data flow analysis that is used to

determine whether the value held in a variable may be subsequently used, in

any possible execution path [80] (i.e. it is still alive). This can be useful both

for program optimisation and bug fixing: (i) to identify useless definitions, thus

preventing the assignment of variables that will never be used; (ii) to help the

compilers in optimising the use of registers by the application, timely assigning

them to other variables when stored values are no more needed; (iii) to optimise

the use of the heap memory (in this case, we refer to the slightly different problem

of liveness of a pointer [63]) identifying when a particular memory location is no

longer used1, hence suggesting where a memory deallocation instruction can be

introduced.

2.1.2 Data dependence analysis

Other than solving optimisation problems, data flow analysis can be used to

build a model of the information transmission inside the program, i.e. by identifying

definition-use relations among the program statements.

A definition occurs in all the statements that give a value to a variable, such as

when a variable is either declared, initialised, assigned with a value, or received as

1Liveness of a pointer analysis finds also memory locations that are no longer used but still
addressed by other pointers, thus preventing the garbage collector from reclaiming them.



15

a parameter. A use occurs in all the statements whose execution extracts a value

from a variable, such as expressions, conditional statements, parameter passing, or

return statements.

To form a definition-use pair we need to find a definition clear path from

definition to use, that is, if there is a program path on which the value assigned in

the definition can reach the point of use without being overwritten (or killed) by

another assignments. This particular data flow analysis is called reaching definitions

analysis [80].

Sequences of definition-use pairs record a kind of program dependence called

data dependence, which we can use to build a data dependence graph, where program

points are nodes and definition-use relationships define edges.

2.1.3 Build the Data Dependence Graph

To perform the reaching definition analysis and build the Data Dependence

Graph (DDG) we need both the Control Flow Graph (CFG) and the information

about the variables used and defined by each program instruction. In the case of

the Java Virtual Machine (JVM) (the one we are interested in), data can be stored

in a local or member variable, or in a slot of the operand stack (the operand stack

temporarily stores data before processing them), and hence we refer to any of them

as memory cells.

Given a program P as a set of instructions, each instruction s in P reads (uses)

an input from a set U(s) of memory cells and writes (defines) the result on a

set D(s) of memory cells. A runtime execution σ of P is the ordered sequence

of instructions in P (with possible repetitions) that is executed by running P on

certain inputs.

The order of execution of instructions within a method of a program can be

described by a Control Flow Graph (CFG). A CFG is a graph where nodes are

instructions and edges are defined as follows: there is an edge (u, v) between two

nodes if v can be the successor of u in some execution2. A CFG can be built from a

program by analysing the order of instructions in the code and the possible outcome

of jump instructions. CFGs of method bodies in OO programs can be combined to

2Nodes may even be blocks of instructions that are always executed together. For simplicity,
our description considers blocks as just single instructions.



16

private static int process(int value) {

value ++;

// 0: iinc %0 1

if (value > 100000)

// 3: iload_0

// 4: ldc 100000

// 6: if_icmple #16

membSensitive = value;

// 9: iload_0

// 10: putstatic MyClass.membSensitive I (6)

// 13: goto #18

else

value = 0;

// 16: iconst_0

// 17: istore_0

return value;

// 18: iload_0

// 19: ireturn

}

Figure 2.1: An example of a method source code commented with bytecode
instructions.

0: iinc %0

18: iload_0 9: iload_03: iload_0

19: ireturn 10: putstatic6: if_icmple #16

17: istore_0

4: ldc

16: iconst_0

(a) (b)

Figure 2.2: Control Flow Graph (a) and Data Dependence Graph (b) for the
method shown in Figure 2.1.



17

build a CFG that describes the whole program. Figure 2.2(a) shows an example of

a CFG corresponding to the method whose code is listed in Figure 2.1. Comments

after each line indicate corresponding bytecode instructions. Each instruction is

linked with the subsequent instruction, however conditional jump instructions (e.g.

6:if icmple) are typically connected with more than one instruction.

The data flow in a program can be described by data dependences.

Definition 1. There is a data dependence (u, v) between two instructions u and v

if v can use (read) a value x previously defined (written) by u, hence a potential

data flow occurs between two instructions. This is possible if: (i) there exists a

path p in the CFG from u to v, and (ii) p is definition clear path for x, that is, no

other instruction w ∈ p defines (i.e. overwrites) its value.

A data dependence (u, v) refers to a set of memory cells λ(u, v) that produce

the data transfer. Data dependences can be grouped together in a Data Dependence

Graph (DDG) that describes the whole (potential) data flow in a program.

A real data flow between instructions occurring during the execution of a

program corresponds to a path traversal in the DDG. We refer to a real traversal of

an edge (at runtime) as an edge flow. This distinction will be of great importance

in Chapter 6, where static data flow analysis will be used to detect critical program

points to be monitored at runtime, then instrumenting the Android application to

let it able to detect edge flows occurred at runtime.

Figure 2.2(b) reports an example of DDG related to the code in Figure 2.1. Edges

from and to dots correspond to input parameters and return values, respectively.

Among others, there is a data dependence between 0:iinc %0 and 18:iload 0.

Indeed they both refer to the same local variable 0 (for writing and reading,

respectively) and there is a path between instructions 0 and 18 in the CFG whose

internal nodes do not modify variable 0.

2.1.4 Reaching definitions data flow analysis

Using Definition 1 it would be possible to compute definition-use pair by

searching the CFG for definition clear paths between all possible instruction pairs.

However, generally the number of paths in a graph is exponentially larger than the



18

number of nodes and edges [80]. Therefore, checking all possible individual paths

can be unbearable.

An efficient algorithm for computing reaching definitions is based on the way

reaching definitions at one node are related to the ones of predecessors in the CFG.

Suppose we want to determine the reaching definitions for node n: we indicate

with ReachIn(n) the set of definitions (x, v) reaching node n, where x is the

defined variable and v is the instruction which has defined it; we also indicate with

ReachOut(n) the set of reaching definitions (x, v) leaving node n. We can give a

definition of these two sets by means of specific data flow equations :

ReachIn(n) =
⋃

p∈pred(n)

ReachOut(p)

ReachOut(n) = ReachIn(n) \ kill(n) ∪ gen(n)

where gen(n) = {(x, n)} if variable x is defined by n, ∅ otherwise; and kill(n)

is the set of all other input definitions of variable x overwritten at n (if x is defined

by n, ∅ otherwise). In the particular case of the JVM, a typically for other stack

based languages, also the uses of stack operands kill reaching definitions for this

kind of memory cells, since once used, values are popped and removed from the

stack, thus can be considered no more available.

By means of these data flow equations, reaching definitions can be efficiently

calculated using an iterative approach: first, the reaching definitions at each node in

the CFG need to be initialised to the empty set; then, the equations are iteratively

applied until the results stabilize. Once reaching definition sets for each instruction

are calculated, data dependence can be easily computed. That is, there is a data

dependence (u, n) with every instruction u providing a reaching definition (x, u)

for variable x used by n:

(u, n) ∈ DDG ↔ (x, u) ∈ ReachIn(n) : x ∈ U(n)

Figure 2.3 shows the reaching definitions for the method listed in Figure 2.5(a),

obtained by using the iterative algorithm (only ReachOut sets are depicted for

simplicity, since ReachIn can be easily derived by the union of predecessor ones).



19

0: iinc %0
D={L0}
U={L0}

3: iload_0
D={S0}
U={L0}

 {(L0,0)}

4: ldc
D={S1}

U={}

 {(L0,0), (S0,3)}

6: if_icmple #16
D={}

U={S0, S1}

 {(L0,0), (S0,3), (S1,4)}

16: iconst_0
D={S0}

U={}

 {(L0,0)}

9: iload_0
D={S0}
U={L0}

 {(L0,0)}

17: istore_0
D={L0}
U={S0}

 {(L0,0), (S0,16)}
10: putstatic

D={M0}
U={L0}

 {(L0,0), (S0,9)}

13: goto #18
D={}
U={}

 {(L0,0), (M0,10)}

18: iload_0
D={S0}
U={L0}

 {(L0,0), (M0,10)}

19: ireturn
D={}

U={S0}

 {(L0,0), (L0,17), (M0,10), (S0,18)}

 {(L0,17)}

Figure 2.3: The Control Flow Graph, for the method shown in Figure 2.5(a),
noted with information about memory cell definitions D(s) and usages U(s) for
each instruction s (node) in the graph. Both are composed by the memory cells
involved in the method, i.e. the local register local 0 (L0) for the value variable,
the memory location M0 storing the member variable membSensitive, and the
two slots for the operand stack S0 and S1 (starting from the base).



20

For example, let us consider instruction 18:iload 0: D(18) = S0, where S0 is the

first slot of the operand stack (the base), and U(18) = L0, where L0 is the local

register in 0 position addressed by the instruction. ReachIn(18) = ReachOut(17)∪

ReachOut(13) = {(L0, 17), (L0, 0), (M0, 10)}, where M0 is the memory location

used to store member variable membSensitive. There is a data dependence with

both instruction 17 and 0 due to the use of L0; gen(18) = (S0, 18) and kill(18) =

∅, since no definitions for S0 reached the node. Therefore ReachOut(18) =

ReachIn(18) \ ∅ ∪ {(S0, 18)} = {(L0, 0), (L0, 17), (M0, 10), (S0, 18)}.

2.1.5 Dealing with Java bytecode

Dependence analysis for Java bytecode introduces some challenges [121], mainly

due to its stack-based architecture, in which stack cells store intermediate calcula-

tions and may lead to implicit data flow between instructions [89]. The implicit

stack masks the flow of data and thus makes the bytecode quite difficult to analyse:

at a given bytecode instruction s, it is not at all obvious which previous s0 produced

the stack-based inputs of s [65].

This problem has been solved by data flow analysis frameworks and data

dependence tools by storing all data, i.e. both for local, member variables and

implicit stack slots, in named abstract variables, thus making the data flow much

more obvious. For example, the key features of the Soot framework3 [65] is that it

creates a simplified three-address intermediate representation of the Java bytecode

(Jimple [106]), where each instruction is represented using statements of at most

3 local variables or constants (such as t1 := t2 + t3), thus also stack slots are

represented in these statements using named temporary variables. Also Wala4

leverages an intermediate representations to solve this problem.

The JavaPDG [89] tool for program (and data) dependence uses abstract

variables to handle the stack, but differently from Soot and Wala, it directly

analyses the Java bytecode, without the need of an intermediate representation.

This important difference motivated its adoption in the approach described in

Chapter 6. In fact, a high precision about the bytecode instruction causing a data

dependence was needed, in order to inject a monitoring component right before the

3https://sable.github.io/soot/
4http://wala.sourceforge.net/wiki/index.php/Main Page



21

execution of that specific instructions, thus avoiding the actual data leak.

Soot was used instead in Chapter 5, because it is easier to customise to perform

different kind of data flow analysis (in fact, is more a framework for data flow

analysis than a tool for data dependence), and because the bytecode precision, e.g.

provided by Java PDG, was not a requirement in this case (data dependences was

required at a Java source code level).

Both Soot and JavaPDG do not directly analyse Java source code. This is not

a limit, but a necessity for the analysis to be performed correctly and efficiently. In

fact, Java language is too complex to be analysed directly, thus requiring a lower

level representation able to simplify and linearise the code in a sequence of lower

level steps, allowing a much better performance than direct interpretation of source

code. This could be the bytecode itself (like for JavaPDG) or another intermediate

representation (like for Soot).

For example, the linearisation process made by Soot using Jimple will split up the

Java statement “int x = (f.bar(21) + a)*b” into a sequence of three-address

statements: “$i3 = virtualinvoke r2.<Foo:int bar()>(21);”, “$i4 = $i3 +

i0”, and “i2 = $i4 * i1” (where ‘$’ starting variables are used to replace stack

references, that would be made by the bytecode of that Java statement)5.

However, having a data dependence graph for the bytecode or jimple represen-

tation of a method under analysis, it can be easily converted in a DDG for the

corresponding Java source code by replacing groups of nodes, related to lower level

statements, with a node related to the corresponding Java source line, as shown in

Figure 2.4. Hence, using either Soot or JavaPDG we were able to obtain a DDG at

any required level of detail, either at a bytecode or a source code level.

2.1.6 Scopes of data dependence analysis

According to the scope of performed data flow analysis, we distinguish three

kinds of data dependence: (i) intra-method data dependences; (ii) inter-method

data dependences; and (iii) member variable data dependences.

There is an intra-method data dependence between two instructions u and v

if there is at least one path between u and v in the CFG such as a memory cell

5http://www.brics.dk/SootGuide/sootsurvivorsguide.pdf



22

Line 2Line 6

Line 5

Line 1

Line 3

0: iinc %0

3: iload_0 9: iload_018: iload_0

6: if_icmple #16

4: ldc

10: putstatic

16: iconst_0

17: istore_0

19: ireturn

Line 5

Line 6

Line 1

Line 2 Line 3

(a) (b)

Figure 2.4: (a) Data Dependence Graph obtained by performing the data flow
analysis at bytecode level. (b) Data Dependence Graph of the Java source code
obtained from (a) by grouping the bytecode instructions according to the Java
source line they come from.

(variable or operand stack) written by u is read by v without being replaced by

another instruction of the path.

An inter-method data dependence represents the flow of parameters between

caller and callee methods. Specifically, if method m1 calls method m2, for each

parameter a of m2 there is a data dependence between the instruction of m1 that

prepares a for the call and each instruction of m2 that uses a. Not always it is

possible to statically determine the invoked method. Indeed, virtual and dynamic

method calls let the runtime support choose the method to be invoked from a

list (dispatch table) that contains all the override implementations of the callee

method. In this case, the outcomes of the static analysis let us consider that data

dependences exist between the caller and each possible callee. This will ensure in

Chapter 6 that any potential data flows will be considered.

Member variable data dependences model any (inter- and intra-method) data

dependences that use member variables. Specifically, for every member variable

λ there is a data dependence between any instruction that writes to λ and any

instruction that reads from λ.

Figure 2.5 describes an example of a complete DDG. Solid lines represent intra-



23

Figure 2.5: An example of DDG. Solid lines represent intra-method data depen-
dences; dashed lines represent inter-method data dependences, whereas dotted
lines represent data dependences due to the access to member variables or global
variables.

method data dependences; dashed lines represent inter-method data dependences,

whereas dotted lines represent member variable data dependences.

2.1.7 Taint Analysis

The taint analysis is a particular class of both static [5] and dynamic [87] data

flow analysis that solves problems that can be modelled by considering sources

for tainted data that need to be traced until they reach one of the possible sinks.

While flowing from one instruction to another, instructions become tainted too,

and a trace appears that can be used for the particular analysis.

It is mainly used in the context of data security, e.g. for the data leak detection,

where we want to see if data coming from sensitive sources can flow to specific

unauthorised channels (i.e. sinks) (see Section 2.6 for further details and related

work).

In this thesis, however, taint analysis was also adapted to solve a different kind

problems, i.e. related to the software evolution, such as to automatically assess the

concern of each line in the source code to suggest refactoring opportunities (see

Chapter 4), and to automatically assess platform dependence and code portability



24

(see Chapter 3).

Therefore, taint analysis was an important concept for this thesis, together with

data dependence. Even if both belongs to the data flow analysis category, they are

used for different reasons.

• Data dependence answers questions like: which data does an instruction

depend on? Thus, on which instructions does an instruction depend due to

the data it uses?

• Taint analysis answer questions like: how do data produced by an instruction

flow inside the application due to the data propagation? Do these data reach

some points of interests into the application?

The former is used to to solve problems like determining the input and the output

variables of a code fragment, e.g. when an Extract Method refactoring technique is

used (as will be shown in Chapter 5). However, as shown in Section 2.1.3, data

dependence analysis is needed to construct the DDG, which taint analysis relies on,

thus we can say that taint analysis is an extension of the data dependence one.

The latter solves problems like determining if a sensitive data can flow to

an unauthorised channel (as will be shown in Chapter 6), to determine which

instructions depends on a particular platform due the use of data coming from, or

flowing in, platform specific APIs (as will be shown in Chapter 3), or to see how a

concern tag applied to a particular instruction can be spread to other ones due to

a cascade of data dependences (as will be shown in Chapter 4).

2.1.7.1 Static (STA) and Dynamic (DTA) Taint Analysis

Taint analysis approaches mainly differ in the way these two aspects are ad-

dressed:

• on how sources and sinks are defined: depending on the the analysis needs,

the way sources for tainted data and sinks for stopping the tainted flow may

change.

• on the timing of the analysis, whether statically or dynamically.



25

For example, to solve the problem of platform dependence assessment, in-

structions directly using platform dependent APIs will be used as sources, while

instructions performing almost common operations will be used as sinks (see Chap-

ter 3 for details). Whereas, to solve the data leak problem, instructions accessing

sensitive data will be used as sources, while instructions sending data on untrusted

channels will be used as sinks (see Chapter 6 for details).

Static Taint Analysis (STA) [5, 34, 48] consists in using a static data flow

analysis to find all possible paths connecting a source with a sink, i.e. making

the data produced by the considered sources to flow inside one of the possible

sinks. This is typically performed using graph traversal algorithms on the Data

Dependence Graph.

Dynamic Taint Analysis (DTA) [37] leverage monitoring components, which

are typically introduced by customising the execution environment, to dynamically

trace the data flow coming from a source program point until it reaches one of the

possible sinks.

Both of the taint analysis approaches have some limitations. STA is liable to

false positives, since it cannot be determined whether a data flow path causing a

possible connection between a source and a sink will ever be executed (i.e. due to

polymorphism and conditional statements). In some cases, this could be a limit,

for example, in the context of data security, we cannot be sure whether sensitive

data will actually be leaked at runtime.

DTA may introduce a considerable monitoring overhead because it usually

requires every instruction to be monitored at runtime. In Chapter 6 an Hybrid

Taint Analysis (HTA) approach will be presented, i.e. combining both static and

dynamic taint analysis to reduce the monitoring overhead at runtime by statically

selecting a minimal set of program point to be monitored, i.e. the ones involved in

a probable data leak, that is a path in the DDG from a source to a sink.

2.2 Code portability

Despite the recognised importance for the portability non-functional require-

ment, few contributions in the literature provide a way to assess assess it. Although,

different definitions of the portability requirement have been given, stated as “the



26

percentage of target dependent statements” [92] or as “how much modifying and

adapt the code to a new environment is cheaper than redevelop it” [73].

Although those definitions are general enough, they both suggest that, from a

developer point of view, the first step in assessing code portability is to identify the

program points binding the code to a specific underlying environment or solution.

Moreover, costs can be defined in terms of platform dependent instructions [74, 96],

since the more code is platform bound, the more costs need to be afforded to change

it and make the program able to interact with a different environment.

However, by only counting the program points directly interacting with a given

platform, such as using platform APIs, only an under estimation of the platform

dependent code can be given. In this section other related approach will be compared

to the one proposed in Chapter 3, which provides both a new portability metric

and a taint analysis approach to automatically assess it. The proposed approach

will consider data dependences to give a more precise and realistic evaluation of

the number of platform dependent instructions, thus extending the portability

assessment also to code not directly interacting with the platform.

2.2.1 Related work

In [2], there is a survey of portability-related concepts (dispersed throughout

the relevant standards), which describe, at varying levels of detail, the attributes of

the portability requirement at the system, software, and hardware levels. In [71],

the authors presented a survey of software architecture evaluation methods, consid-

ering several quality attributes like: performance, maintainability, testability, and

portability. Their review considered many articles, selecting a set of ten evaluation

methods. However, they conclude that none of these methods evaluated portability

explicitly. My approach proposes instead an evaluation technique that is focused

on the portability attribute.

In [96] and [74], the authors have shown how portability costs can be defined in

terms of platform dependent instructions, since the more code is platform bound,

the more costs have to be afforded to change it and make the program capable to

interact with a different environment. The approach described in Chapter 3 gives

an advanced measurement of the number of platform dependent statements, and

can then be used in conjunction with the said cost metrics.



27

In [110], the authors give a metrics suite for measuring the reusability of a

software component, based on a reusability model that includes aspects related

to the understandability, adaptability, and portability factors. They statistically

evaluated a metric assessing the portability of a software component. The statistical

findings suggest that the smaller the number of business methods in a component

without return value, the smaller the possibility of the component having external

dependence, which leads to high portability. The difference with my approach

mainly lies in the granularity and precision: while they estimate the portability at

a component level, by observing some characteristics external to the methods, we

carefully identify and properly count the platform dependent statements or lines of

code within methods.

In [67], the authors discussed the portability evaluation for executable service-

oriented processes. They stated that even if process languages are based on widely

supported open standards, such as the Web Services Business Process Execution

Language, these are only partially implemented by every platform, thus hampering

process portability and locking in their users. Hence, they provide metrics to help

the developers in assessing the costs of porting a process to another environment.

Their portability assessment of service-oriented processes is based on cost metrics.

My approach is instead more general, and can be adopted even in such a context

by simply stating the APIs to be considered as a source of platform dependence.

2.3 Concern tagging

Identifying code addressing different concerns inside a module is of paramount

importance to improve code readability e maintainability, finding opportunity for

separating code performing different tasks in different concern cohesive modules.

This problem is known as concern identification [85] or concern tagging, that means

mapping source code elements on to human oriented concepts [14] or programming

features [78].

Tagging code artefacts with descriptive keywords can be useful at different

granularity levels. Coarse grained tags are used in Service Oriented Architectures

(SOA) to classify re-usable software components, thus providing a way for brokers to

find services with similar functionalities. An effective way to obtain this high level



28

description for web services is by leveraging structured collaborative tagging [47],

i.e. by asking the community of users for annotating indexed web services with

tags describing service behaviour and interface (input and output).

Collaborative manual tagging can be useful also during software development.

Fine grained tags given inside code can effectively capture the relevant knowledge for

a software development team. For example, in [94] it was proposed an IDE plugin for

tagging code using properly formatted inline comments (with the Java annotation

style), thus enabling the collaborative annotation, navigation, and coordination

of developer activities. This can be useful to inform other developers that a code

portion has been modified because of a bug fix, or to provide a step-by-step guide

for newcomers to navigate a software library or framework.

However, for concern tagging to be effective, usually concern information need

to be added to each line inside the source code [42, 97], thus making manual tagging

as expensive as coding. Moreover, every time a line of code would be changed,

concern tags should be updated. Therefore, even if collaborative, fine grained

manual concern tagging can easily become unbearable even for small projects, thus

calling for automatic tools to support concern tagging.

In this section, several concern tagging approaches will be shown, thus comparing

them with the one proposed in Chapter 4, DeDuCT, where API accesses have been

used as concern seeds for a taint analysis approach, which will automatically assess

the responsibility of each instruction (its concern) according to the API data it

depends on.

2.3.1 Related work

Several approaches aim at concern identification. Terms like concept map-

ping [68] or feature location [35] refer to similar problems. Additionally, aspect

mining approaches aim at identifying crosscutting concerns that can be expressed as

aspects. Concern identification and aspect mining have been based on: information

retrieval [82], program execution traces [36] historical information [3], structural

program dependencies [84], and data flow analysis [98].

In [69], the fan-in metric has been used, in order to locate methods with

a high number of incoming calls (in contrast with the fan-out metric, which

counts the number of outgoing calls [56]). According to the authors, a high fan-in



29

value may indicate the presence of a crosscutting concern, that is a feature whose

implementation is spread over multiple system modules, thus difficult to isolate.

A typical example of crosscutting concern is the logging functionality: whenever

there is a need for a log, a Logger class is involved. This can happen in multiple

classes inside the program, causing the code for logging concern (functionality) to

be inevitably spread in multiple modules, reducing the chance of reusing the code.

The presence of such behaviours does not depend on an inadequacy of class design,

but from an intrinsic limit of object oriented models [64].

To overcome this limitation, a new programming paradigm, called Aspect

Oriented Programming [64], has been proposed, along with the object paradigm to

encapsulate in separate entities, called aspects, the code related to a crosscutting

concern, thus improving modularity. Different approaches have been proposed to

identify crosscutting concerns within an object system, then suggesting refactoring

opportunities by means of aspects [17, 97, 107].

In [82], the authors combine information retrieval, based on Latent Semantic

Indexing (LSI), and Formal Concept Analysis (FCA) to locate concepts in a source

code. Firstly, they create a corpus from comments and identifiers found in source

code. Then, by means of queries using terms describing the concept of interest,

(e.g., ‘print page’), a list of ranked source code elements (classes, methods, files) is

shown, according to their similarity to the query. FCA is finally used to organise

the obtained results in a concept lattice in order to ease user inspection. As for

other textual based techniques applied to source code, the main drawback is that

it relies on the naming convention, whereas the approach described in Chapter 4

relates to APIs as a more robust and reliable indicator, as suggested in [97].

In [36], given a test suite for the software under analysis, the authors’ approach

asks the developer to suggest which test cases trigger the execution of some parts

of a specific feature. Then, test execution traces are analysed to identify method

invocation patterns, and heuristics used to rank the contribution of each invoked

method to the considered feature. Like other dynamic approaches, this one highly

depends on the quality of the available test suites and execution scenarios. Moreover,

the portions of code identified as contributing to a feature are methods, hence

expecting that all the method code implements one functionality. In my approach,

by addressing each line of code instead, we have a much finer granularity, and can



30

identify which parts of a method are related to each concern.

In [3], the authors propose an history-based concern mining technique. Their

approach clusters functions, variables, types and macros that have been changed

together intentionally, thus possibly related to the same concern. The precision

of such an approach depends on the distribution of changes occurring in several

commits.

In [98], the author proposes concern identification based on data flow analysis.

A concern has been defined as the functionality needed to produce a given set of

related values. Each variable is used as a sink for a backward data flow analysis

identifying all dependent variables. As a result, a single functional concern is

outlined by means of a group of variables. Hence, the approach would suggest

that portions of code contribute to the same concern only when there is a data

dependence among variables. In contrast, in my approach we can identify portions

of code contributing to the same concern even when having different data flows.

Moreover, his approach uses data flow information to group variables related to

the same concern, but without giving clues about the concern being implemented,

other than the ones suggested by the variable names. DeDuCT provides instead

high level description of the responsibility of each instruction, according to the data

it depends on. Finally, where the author’s approach uses concern seeds as sinks for

a backward data flow analysis, DeDuCT uses them as sources for both a backward

and forward analysis.

2.4 Automate refactoring opportunity detection

In the literature there are several refactoring [44] techniques aiming at improving

the structure of an object systems, while taking care not to alter its functionality.

Each of these should be applied by the developers following these steps:

1. identify which classes seem to be appropriate for a refactoring technique to

improve modularity;

2. determine the exacts refactoring steps to be applied onto selected classes;

3. apply refactoring steps;



31

4. test that such refactoring steps have not changed the program semantic, that

is, its functional behaviour;

5. measure the effect of refactoring over the software quality, e.g. in terms of

complexity, comprehensibility and maintainability;

6. keep the consistency between the refactored code and all the other artefacts

involved in software development, such as design documents, test plans, and

so on.

However, even though refactoring catalogues detail the steps for the application

of each technique, the problem of efficiently understand where there is a need to

apply a refactoring remains. Catalogues only refer to qualitative parameters, code

smells, to detect code that need to be changes, such as looking for duplicated code,

long methods or long parameter lists [44]. This makes refactoring difficult to be

applied in the case of large software, due to the large number of components and

complexity it can have.

In this regard, one of the research areas in Software Engineering is devoted to the

development of approaches for the automatic suggestion of refactoring opportunities

in large systems, many of which make extensive use of software quality metrics.

For example, we could measure the cohesion of each individual class using the

LCOM metric, and then specify a threshold for the obtained distribution (such as

the mean, or percentiles). All classes exceeding such threshold could be identified

as affected by a lack of cohesion. As previously seen, this may be a symptom of a

class that is too complex, i.e. whose role is not well defined because of its unrelated

methods.

This can be solved by refactoring, moving some of its methods to other classes,

but the problem of choosing which ones to migrate remains. Furthermore, we have

to select the destination classes. Another possible refactoring solution is to split

the class into two distinct ones, distributing the methods in such a way as to create

well cohesive classes to be extracted (i.e. using the Extract Class refactoring) [44].

However, we still have to decide how these methods should be partitioned and how

these changes will affect the rest of the software system.

It should be emphasized, however, that while much work has been done with

regard to the definition and measurement of software quality, for which, for example,



32

several metric sets are available today, there is still much to do with techniques

to suggest opportunities for refactoring. In Chapter 5 an approach for a long

method decomposition will be discussed, which can take advantage of the DeDuCT

approach (described in Chapter 4) to refactor a long and complicated method into

smaller and concern cohesive parts.

2.4.1 Related work

In [91] authors have proposed a concept of cohesion based on the Jaccard

similarity coefficient, then used it as a measure of the distance between the elements

(attributes and methods) of a software system. Given two sets of properties, one

for each entity, this coefficient is defined as the ratio of the cardinality of their

intersection to the cardinality of their union. Considering a method as an entity,

the set of properties can be defined as the methods it calls and the fields it uses.

Considering instead a field, its property could be associated with the methods it

serves. The similarity so defined can indicate how much two methods should be

close to each other, i.e. how much would be appropriate for such methods to be in

the same class.

Using similarity as a distance function, automated clustering techniques can be

applied, so to see whether methods and attributes of the same class are in the same

cluster, being close to each other, or identifying which class should host them. These

kind of approaches can really help the developer in making his refactoring activity

effective. However, it is important to note that techniques used for automatic

refactoring suggestions may offer structural improvement opportunities in a capillary

manner, yet leaving the developer to decide whether or not to apply them.

In [76] the similarity concept just seen is used in conjunction with the LCOM

cohesion metric. In this case, when two methods show an high similarity (above a

certain threshold) while being in different classes, it is observed how the LCOM

measure can change by moving the method from the original class to the one

containing the other method. A Move Method refactoring is then suggested only if

the LCOM value of both classes will be improved.

In [79] instead, new metrics for class cohesion have been proposed, considering

the strength with which their methods interact with each other, in terms of the

number and type of parameters passed from one method to another through a call



33

(i.e. the amount of data). This information is then used to automatically suggest

Extract Class refactoring opportunities, thus providing partitions of methods

showing a high cohesion. These partitions are then extracted into separate new

classes, thus decreasing the complexity of the original one.

In [100] an approach to suggest Move Method opportunities is proposed. It

is based on the measurement of coupling between methods belonging to different

classes. However, the cohesion or complexity of the original classes has not been

considered. By combining the use of multiple metrics, thus handling simultaneously

more contrasting quality aspects, it is possible to provide refactoring solutions that

can lower, at the same time, both the lack of cohesion and the coupling between

different classes [76].

There are different models that can be used to represent a program, such as

an Abstract Syntax Tree in case you want to highlight the syntax structure of the

individual classes. To support refactoring decisions, a Software Network can also be

used, that is a graph where each node is a code entity, such as a class, an interface,

a method, or an attribute, and where a relationship between two entities can be

represented as a direct edge between the two nodes [103]. This last representation

can also be enriched by annotating the nodes with metric values, indicating, for

example, the relative cohesion or coupling level.

As shown in [16], representing a software system as a graph, it is possible to

see refactoring operations as graph transformations, where the initial state can

be described by the subgraph induced by the nodes involved in the refactoring

operation, and where the final state is identified by the subgraph been reached.

Thanks also to the quality metrics applied to each node, the improvement on quality

can also be easily evaluated.

2.5 Suggest Extract Method opportunities

Extract Method is considered as one of the most important refactoring tech-

niques, since it is often used to solve typical design problems such as Duplicated

Code, Feature Envy and especially Long Method [44]. It consists in breaking large

methods into smaller ones easier to reuse, thus improving code maintainability.

Moreover, it is usually a first step for a sequence of other refactorings, such as



34

Move Method and Extract Class, which are applicable only when long methods

have been already split into smaller pieces.

In the literature, most of the approaches about method extraction can be

grouped in mainly two different categories, based on program slicing [113] or on

fragments extraction.

The former considers the extraction of the complete computation of a given

method variable as a reusable program entity [39]. Slices are computed by find-

ing sets of directly or indirectly relevant statements based on control and data

dependencies, which are commonly obtained by statically analysing the program

dependence graph (PDG) [40] of the method. Thus, slices may possibly involve

non-contiguous statements.

The latter, also referred to block extraction, identifies sequences of contiguous

statements which can be legally extracted in a separate method, as long as the

syntactical correctness of both the original method and the extracted one is preserved

(e.g. considering an if-then-else statement, it is legal to select statements all

belonging to the same branch, but is not possible to range the selection to both of

the branches without extracting the conditional statements as a whole).

One of the main challenges tackled by program slicing is to guarantee that slice

extraction does not change the program behaviour, which can be hard, since this

kind of extraction may require some code to be duplicated or reordered. On the

contrary, by extracting a contiguous sequence of statements (a fragment), moving

it into a new method, and then replacing it with a related method call, there

is no need for code to be reordered or duplicated. This makes guaranteeing the

equivalence of program behaviour, before and after the method extraction, much

easier.

2.5.1 Compare slice and fragment extraction

To better explain the problem of slice extraction compared to fragment extraction

let us analyse a simple example. The method shown in Figure 2.6 uses the input

variable x to control the computation of two variables, a and b. Let us suppose

we want to extract all the statements that performs the complete computation of

variable a, i.e. the related program slice. This means identifying all the statements

that are used to compute its value, which are the ones on lines 2, 6 and 9, due



35

1 public void m(int x) {

2 int a = 0;

3 int b = 0;

4 while (someCondition(x)) {

5 if (someOtherCondition(x)) {

6 a += 1;

7 b += 0;

8 } else {

9 a += 0;

10 b += 1;

11 }

12 }

13 print(a,b);

14 }

Figure 2.6: A simple method used as an example to explain the differences between
slice and fragment extraction. It uses the input variable x to control the computation
of two variables, a and b.

to their data dependence. However, in order to preserve the proper computation,

some statements need to be duplicated (not simply extracted), i.e. both the while

and the if statements, due to their control dependence. Differently from the first

group of statements, we cannot simply remove the control statements, since they

are required in the original method to compute b. The final results will be the one

shown in Figure 2.7.

Code duplication is often required to perform the slice extraction. However,

in some cases this can lead to a change in the program behaviour, i.e. when we

duplicate method invocations that change the object state. Let us suppose that the

method someCondition(x) (see Figure 2.7) internally affects the object state by

updating a field to count the number of times the method is invoked. By duplicating

this method invocation we have also affected the final value of this field, thus not

preserving the original behaviour.

Another problem to be addressed is code reordering. In the previous example

(see Figure 2.7), we have moved the entire computation of variable a into a new

method, whose call has become the first statement of the original method. This

obviously has changed the order in which the statements were originally executed.

In some cases, this may also change the program behaviour. Let us slightly modify

the previous example by adding a print(a, b) invocation also in the first part of the

method (see Figure 2.8).

In this case, by placing the getA(x) method invocation before the added



36

1 public void m(int x) {

2 int a = getA(x);

3 int b = 0;

4 while (someCondition(x)) {

5 if (someOtherCondition(x)) {

6 b += 0;

7 } else {

8 b += 1;

9 }

10 }

11 print(a,b);

12 }

13

14 public void getA(int x) {

15 int a = 0;

16 while (someCondition(x)) {

17 if (someOtherCondition(x)) {

18 a += 1;

19 } else {

20 a += 0;

21 }

22 }

23 return a;

24 }

25

26 private void someCondition(int x) {

27 this.count++;

28 }

Figure 2.7: The code of method m(x) (see Figure 2.6) after the extraction of the
program slice related the computation of variable a, here extracted into method
getA(x).

1 public void m(int x) {

2 int a = 0;

3 int b = 0;

4 print(a,b); // <-- added

5 while (someCondition(x)) {

6 if (someOtherCondition(x)) {

7 a += 1;

8 b += 0;

9 } else {

10 a += 0;

11 b += 1;

12 }

13 }

14 print(a,b);

15 }

Figure 2.8: A modified version of method m(x) (see Figure 2.6). Another call to
the print(a,b) method has been added, in order to show how code reordering may
change the program behaviour after a slice extraction.



37

print(a, b), the method will not print the expected zero value for variable a, but

instead the final one. This is caused by the anti-dependence [100] between the slice

and the printing statement on line 4: an anti-dependence exists from statement A to

statement B (or statement B anti-depends on A), when statement A uses the value

of a variable that is later modified by statement B. To preserve code behaviour,

the invocation of the extracted method should be placed after statements that the

slice statements anti-depend on [100]. In fact, if we move the method invocation

after line 4, the behaviour is preserved.

While fragment extraction dose not have the code duplication and reordering

problems, it has other ones. In fact, let us suppose that instead of extracting

the program slice of variable a, we want to make the control flow more linear by

extracting the while body into a new method (lines 5-11 in the m(x) shown in

Figure 2.6), thus reducing control program complexity.

The first thing to do is to look for any variable or parameter that is used

or modified by the fragment, excluding the ones that are local in scope for the

fragment, i.e. not visible to the rest of the method. Any non-modified variable can

be passed in as parameter (input variable). Modified variables need more care. If

there is only one, it can be returned. In this case, a problem arises: since both a

and b are output variables for the fragment, i.e. they are modified inside of it and

later used by the original method, this can make the fragment extraction unfeasible,

since commonly multiple return values are commonly not allowed by programming

languages, such as Java.

A possible solution (as shown in Figure 2.9) is to make at least one of the

two variables a field, thus avoiding the need for multiple values to be returned by

the extracted method. However, it is important to note that by using fragment

extraction in this case it is not possible to separate the computation of variable

a and b into two separate methods, since the two concerns are tangled inside the

method.

2.5.2 Program slicing approaches

In [100, 101] the authors propose a slice extraction approach to automatically

identify Extract Method refactoring opportunities which are related with the

complete computation of a given variable (complete computation slice) and the



38

1 private int a;

2

3 public void m(int x) {

4 a = 0;

5 int b = 0;

6 while (someCondition(x)) {

7 b = computeAB(b);

8 }

9 print(a,b);

10 }

11

12 private computeAB(int b) {

13 if (someOtherCondition(x)) {

14 a += 1;

15 b += 0;

16 } else {

17 a += 0;

18 b += 1;

19 }

20 return b;

21 }

Figure 2.9: An example of fragment extraction (lines 5-11) for the m(x) method
shown in Figure 2.6. Since both a and b are output variables for the fragment to
be extracted, one of them needs to become a field to let the extraction feasible.

statements affecting the state of a given object (object state slice). They extended

the block-based program slicing approach proposed in [70] by a set of rules aiming

at preserving the code behaviour after slice extraction, solving the problems caused

by code duplication and code reordering described in Subection 2.5.1. To prevent

the excessive duplication of code in the original and extracted method, slices are

sorted by a duplication ratio, that is the ratio of the number of statements that

will be duplicated after the slice extraction to the total number of statements to be

extracted.

Even if smaller slices are desirable, sometimes the extraction of a full slice for a

variable can be too large, having a size comparable to the original method. This

can happen when the variable is last assigned at the end of the method, and most

of the previous statements cooperate to compute its final value. Even though this

may appear desirable in most of the cases, in case of long methods, finding a way

to split this computation is still desirable. In [1] it has been presented the concept

of fine slicing, that can produce executable and extractable slices while restricting

their scopes and sizes by specifying which data and control dependences to ignore

when computing a slice, i.e. the slice boundaries.



39

On the one hand, slice based approaches can effectively untangle code related to

the computation of different variables, even considering complex control sequences.

They are also able to extract methods showing a good concern cohesion, since

performing all the computation steps related to the definition of a specific variable.

On the other hand, the difficulty of automatically perform such an extraction while

preserving code behaviour may result in a few extraction candidates compared

with fragment-based approaches. Moreover, the problem of selecting the variables

which indicate a concern of interest remains [98]. Chapter 4 will show a data flow

analysis approach to characterise program statements with the concern they address

according to the source of the data they are using.

By definition, program slicing is useful to identify get methods, i.e. methods

providing the value for a particular variable, collecting all the instructions cooper-

ating for the related computation. However, typically it does not address the code

related to the use of that variable to perform a specific task, without performing

any other computations for the variable value. It will be shown how characterising

the data coming from platform specific APIs (Chapter 3) or concern specific APIs

(Chapter 4) is useful in order to identify the instruction that use such data to

perform respectively platform and concern related operations, thus suggesting

opportunities for code to be extracted.

2.5.3 Fragment extraction approaches

Fragment extraction approaches mainly differ in the way these two tasks are

performed: candidate selection and candidate ranking. The former refers to the way

the Extract Method candidates, i.e. block of contiguous statements, are identified.

The latter consists in ranking those candidates by means of different factors, often

variations of the minimize coupling/maximize cohesion design principles. That is,

to obtain fragments that encapsulate well-defined computations with their own

set of dependencies (high cohesion) and that are also independent of the original

method (low coupling) [90]. The highest ranked candidates are then suggested to

the developer, who can easily mark and extract them as new methods by means of

the refactoring support typically provided by modern IDEs.

Concerning candidate selection, in [90] the authors rely on a hierarchical model,

representing the block structure of the method source code, to select all possible



40

sequences of contiguous statements (fragment) satisfying three kind of precondi-

tions: syntactical preconditions, which means that the extracted code must be a

syntactically valid; behaviour-preservation preconditions, thus not leading to an

extracted method with multiple return values (as explained in Subsection 2.5.1);

quality preconditions, such as thresholds on the extraction size, e.g. avoiding

poor-quality recommendation because of its small size, or because it is too large,

thus covering almost all statements of the original method.

As ranking function, they used the Kulczynski set similarity coefficient [29],

measuring the distance between two set of dependencies: the ones used by the

candidate fragment and the ones used by the remaining statements of the method.

Dependency set for a sequence of statements have been determined by considering

used variables, types, and packages.

In [118] the authors use a candidate selection strategy that is similar to the one

seen in [90], e.g. considering only well-sized fragments, but using also blank lines as

fragments separation, since these are typically used by the developers to separate

relatively independent code portions.

They defined a ranking function to balance between benefit and cost of a

candidate fragment extraction. The cost of extraction is given by the coupling, in

terms of data, between the fragment and the rest of the method, here given by

counting how many parameters are needed by the new method (both input and

output). The benefit of the extraction is given by the reduction in the length of the

original method. All candidate fragments are sorted according to their benefit/cost

ratios in a descending order, thus suggesting the one with the highest ratio.

Independently of the way code fragments are recommended, in case of a long

method more than one extraction may be suggested. In Chapter 5 it will be shown

how to manage multiple extractions using the Replace Method with Method Object

refactoring, while optimising the number of fields to be added to the new class.

2.6 Data leak detection in Android applications

Data flow analysis, and in particular taint analysis, have been shown to be

beneficial in several applications including detecting and preventing data leaks [37,

75, 104, 123], defending against injection vulnerabilities (SQL injection, cross-site



41

scripting, shell injection etc.) [15, 28, 61, 77, 81, 83, 109, 116], and assisting in the

identification of configuration errors [8, 11, 49, 51, 76, 79, 97]. Special attention

has been given to mobile devices [5, 9, 34, 37, 48, 59, 115, 122] and to the problem

of data security and privacy.

In the context of data security, taint analysis can be performed either statically

or dynamically (see Section 2.1.7 for details). The former is sometimes referred

in the literature about data leak detection simply with Static Data Flow Analysis

(SDFA), where the latter is also known as Dynamic Data Flow Tracking (DDFT).

However, both static and dynamic taint analysis are liable to some limitations

(see Section 2.1.7). Among the widespread tools that use a static approach, such as

[53], [27], sparta6, etc., results tend to have a high rate of false positives, requiring

a further human check. As of August 2017, more than 3 Millions apps are available

on Google Play store7 therefore a manual check is unfeasible. On the other hand, a

dynamic approach [37] may introduce a substantial monitoring overhead, typically

by customising the execution environment (such as the OS), significantly reducing

the program performances, or even making the the monitoring unfeasible for small

devices.

In Chapter 6 the data leak monitoring problem [75, 104, 123] has been inves-

tigated proposing an Hybrid Taint Analysis (HTA) based approach. This takes

advantage of static taint analysis performed offline, and dynamic taint analysis,

devising a hybrid approach that selects the part of an Android app that need to

be monitored during runtime to avoid data leak. Moreover, it does not need to

customise the execution environment (i.e. the Android OS), since all the monitoring

capabilities will be automatically injected inside the Android application. These

changes will be made at the bytecode level, i.e. without any modifications of the

source code, similarly to the work in [11, 49, 51].

In this section, the taint analysis approaches will be introduced in the context of

data leak detection. We will describe both the static and the dynamic approaches

used in this field, also introducing the hybrid ones. Finally, related work on data

leak detection will be given.

6http://www.cs.washington.edu/sparta
7http://www.appbrain.com/stats/number-of-android-apps



42

2.6.1 Taint Analysis for data security

STA tools [5, 54, 99] aim at detecting the paths of executions that may propagate

data from untrusted or sensitive sources to undesirable sinks, by statically analysing

the code. Although static analysis exhaustively evaluates a program, it is prone

to produce false positives, since it is impossible to establish whether a discovered

path will ever be actually executed, and hence whether data to be protected will

reach the sink at some point.

DTA tools [37, 38] monitor the execution of a program and track the variable

that contains (in a raw or elaborated form) information coming from a given source.

Tracking can be performed by means of different approaches, including system

emulators [30, 58, 81], API modification [28], code injection [62, 83, 116] and ad-hoc

hardware [33, 95, 108]. The main disadvantage of dynamic taint analysis is that the

tracking logic introduces an overhead that significantly reduces the performances

of monitored programs.

Even though dynamic taint analysis performs better than the static one for

what concerns false positives, tools that use this approach, such as [38], [117], [111]

and [4], often require either a custom Android version that introduces low level

detection mechanisms or to modify the source code of apps to call external APIs

with the same purpose, making the analysis itself inapplicable on a large scale. For

instance, DroidScope [117] exports three tiered APIs that refer to three different

layers (hardware, OS and Dalvik VM) of an Android-based device. Specific plugins

analyse different aspects of the app to check potential information leaks.

2.6.2 Related Works

A few recent approaches combine static and dynamic analysis to overcome the

limits of both approaches. Chang et al. [25] proposed a method that combines

static and dynamic analysis for efficiently monitoring C programs. It first performs

static analysis to filter out data that need not dynamic tracking, then modifies

the C source program to add the appropriate tracking code. The tracker monitors

tainted data at byte-level granularity. Our approach is similar in spirit in that we

employ static analysis to minimize the amount of tracking code needed.

A major difference is that we target compiled Java bytecode in place of C



43

source code, hence making our approach viable when source code is unavailable.

Moreover, Java programs are intrinsically different from C programs and present

new challenges, e.g. the management of the operand stack. On the other hand,

Java has a more rigorous semantics that simplifies tracking and therefore allows

us to greatly reduce the overhead. E.g., we avoid byte-level tracking in favour of

a more efficient instruction-based tracking that implicitly tracks data flow at a

variable level.

Jee et al. [60] proposed a technique that can be used in combination with other

DDFT tools in order to reduce redundant tracking logic and thus optimizing the

target program. After a DDFT tool has introduced a tracking logic into the binaries

of a program, their tool separates the program logic from the tracking logic and

then applies known optimization techniques on the tracking logic. In contrast, our

approach generates the minimum amount of tracking code because of the reasoning

performed on the results of static analysis.

Zhang et al. [120] proposed to optimize DDFT by analyzing the documentation

and source code of APIs to find taint propagation data. They then associate the

input parameters of a function with the corresponding outputs, and determine

the APIs that need not be tracked. Their tools can be used for x86 binaries or C

programs. Our approach performs a wider spectrum optimization on both APIs

and application tracking code and makes no assumption on the behaviour of APIs.

Moreover, our tool targets Java bytecode.

In the context of Android applications, AppCaulk [88] can identify data leaks at

run-time by a dynamic taint analysis based on a code injection inside the target app.

Mobile Sandbox [93] scans permissions and manifest file during the static analysis,

while using an emulator at runtime to look for suspicious calls and network traffic.

Andrubis [112] performs static analysis on the app bytecode and the manifest file

and uses the results at runtime by performing several analyses like taint tracing,

method tracing, on both Dalvik VM and system level.

COMBdroid [32] is a security tool allowing users to enforce fine-grained policies

to prevent Android applications from starting phone calls, sending SMS messages,

and accessing web URLs without the user awareness, prompting the users to choose

whether to trust the recipient number or URL. Fine-grained polices are dynamically

defined by the user by means of a white list and a black list for recipient numbers



44

and URLs, hence letting COMBdroid to automatically take further restriction

decisions.

The monitoring behaviour is introduced in the Android application by replacing

the Activity class with a modified one, thus only requiring the application to

be instrumented instead of the Android OS. The rational is that all the data

flow related to the three considered scenarios (sending SMS messages, starting

phone calls, accessing web URLs) pass through the methods of the Activity class.

Therefore, by overriding this class it is possible to intercept these data flows from a

centralised manager.

This approach is similar to the one proposed in Chapter 6 in that both do not

require the Android OS to be customised. However, in COMBdroid data flows have

to pass through the Activity methods to be intercepted, which is an assumption

that holds for the considered scenarios, but in general data leaks may occur using

also different paths inside the application. Our approach lets the user to define

which API usages to consider as sources of sensitive data and which to consider as

sinks for untrusted destinations without making any assumption on the data path

that will connect them, thus causing the data leak.

2.7 Conclusions

In this chapter all the fundamentals and related works, to understand and

evaluate the contributions presented in further chapters, have been presented. A

great importance has been given to concepts related to data dependence, taint

analysis and refactoring, since needed to support the work presented in Chapter 5

for suggesting complex refactoring opportunities, that is the main objective of this

thesis.



45

Chapter 3

Platform Dependence and

Portability assessment

Code portability is a desirable non-functional requirement. The most estab-

lished metric evaluating it consists of counting the number of platform dependent

instructions, i.e. that use platform specific APIs. Generally, instructions using

APIs are preceded or followed by related code that e.g. prepares some input for

a call or analyses the return value. In this chapter a taint analysis approach will

be proposed, that is used to identify code portions that are related by means of

data dependence and are connected to a given platform. By considering both direct

calls to platform APIs and the data dependence, the proposed approach provides

a more precise and realistic indication of the code that should be considered in

case of platform migration. Results about the analysis of an industrial application

will be also given, thus proving the validity of proposed metric and tool for the

portability assessment.

3.1 Assessing code portability

Applications depend on an underlying platform in that they use platform specific

APIs to interact with their environment. In order to hit the heterogeneous and fast

changing market of digital devices and IT infrastructures, often application code

has to be ported to different platforms. Hence, it is important for the developers to

leverage both meaningful metrics to measure the degree of code portability, and



46

practical tools assisting them in the platform migration process, by spotting the

application points that are platform dependent.

Code portability is broadly recognised as a desirable non-functional requirement

for software products, and there are a few contributions in the literature providing

a way to assess it. The most practical and established portability metric consists

of counting the number of instructions that use types defined in platform specific

libraries or APIs [73, 92], such as e.g. method calls to access the file system or parse

an XML data stream, etc.

Further portability metrics have been proposed, stated as “the percentage of

target dependent statements” [92], and as “how much modifying and adapt the

code to a new environment is cheaper than redevelop it” [73]. The above metric

definitions suggest that the first step in assessing code portability is to identify

the program points that are bound to an underlying environment. However, the

traditional counting of program points using platform APIs would only provide

an under estimation of the real number of program points that can be affected by

changes in case of migration. Typically, API calls are followed, or preceded, by a

code portion using some supporting libraries preparing data to be passed or that

have been collected from the platform dependent method calls. Therefore, such

code portions are likely to be changed should an API interaction be removed due to

platform migration. Only by considering the relevant data dependent application

code we can have an actual indication of the code percentage that is platform

dependent.

This chapter will describe a solution aiming at assisting the developer during

the porting of an application from a platform to another. The proposed approach

considers a list of APIs that the developer denotes as platform dependent, i.e. a

set of packages, classes or methods that are used to interact with the environment

s/he wants to move from. The approach is based on data dependence [119] and

taint analysis [87] (both introduced in Section 2.1 and used in Chapter 6) to

automatically identify the program points referring such APIs, then using each

of them as a source of a data flow we can find all the other instructions that are

having a supporting role for the platform usage, and all other platform-related

connections. The resulting set of program points is the portion of the application

that has to be adapted in case of platform migration.



47

The proposed approach is innovative in that, on one hand, it leverages the

developer point of view, asking him/her to define the target APIs to consider as a

source of platform dependence. On the other hand, it automatically finds all the

lines of application code that are using target APIs or related ones. Therefore, the

approach additionally provides a tool that accordingly measures the portability

of an application, and gives exact indications on where the dependent code is.

Moreover, the said analysis can promote the use of other tools supporting a platform

migration [41] or suggesting refactoring opportunities to enhance portability [44],

e.g. by moving platform dependent code inside more concern specific modules

using appropriate design patterns, such as the Abstract Factory or Bridge [45, 79].

Furthermore, it can be used to find portions of code that being dependent on

partially trusted external types would be better confined and checked, by means

e.g. of a defensive approach, in order to improve security, privacy, robustness, etc.

3.2 Limits of the traditional approaches

The approach described in this chapter mainly consists of two steps: (i) finding

direct usages of a platform APIs that bind the code to the platform; (ii) finding the

program parts affected by data related to the use of APIs, hence propagating the

API dependence to other supporting instructions due to a chain of data dependence.

Such a propagation achieves a more accurate and realistic evaluation of the platform

dependent lines of code.

The proposed approach is more refined than other estimation methods, such

as counting the lines of code binding given APIs, or considering whole portions of

code related to a control flow path. By using data dependence we find all the lines

of code that are participating into the preparation of a call to a given API, e.g. for

setting up input parameters or the appropriate context for the call; and the lines of

code that are using the results that the API call has provided. Hence, such lines

of code are dependent on the API as if it was a call to the API itself. Ultimately,

such other lines of code would have to be changed should the call to the API be

removed. Moreover, data dependence let us find all (and only) the lines of code

having such a relation with a given API, independently of the number of lines that

can be in between the preparing code (or the code using the result) and the actual



48

call to the API.

Conversely, counting all the lines of code (e.g. in the same method) surrounding

the call to a given API would not distinguish the instructions that are unrelated to

the preparation of the call. Moreover, counting all the lines where e.g. the return

type of the API calls appear would result in including all the instructions that use

it in another context, unrelated with the given API.

3.3 Taint Analysis to assess platform dependence

Before talking about portability, we need to provide the definition of platform

that will be used for the rest of this chapter.

Definition 2. Platform (or environment) refers to the complete collection of

external components an application interacts with. This may include software

components, operating systems, hardware, remote systems or data storage.

Generally, an application has some portions of code that call platform APIs. For

an object-oriented language, such as Java, APIs refer to either classes or methods.

Our aim is to assess the dependence of an application on specific parts of the

platform, i.e. the ones involved in a given migration process. This calls for a

definition of migrating platform.

Definition 3. Given a platform and a migration process, with migrating platform

we refer to the subset of platform APIs that have to be replaced during the

migration.

For the sake of our analysis, we are only interested on classes or methods used

to interact with the migrating platform, introducing the definition of Binding Set.

Definition 4. Given a migrating platform, with Binding Set we refer to the APIs

that can be used by an application to interact with the migrating platform. This

can be defined by using elements having different granularity, such as an entire

package or group of packages (library), a single class (type) or even a single method

(operation).



49

1 Binding Set: java.nio.file.Files.newInputStream(Ljava/nio/file/Path;

2 [Ljava/nio/file/OpenOption;)Ljava/io/InputStream;

3

4 public static void useFile() throws IOException {

5 Path p = FileSystems.getDefault().getPath("dir", "f.csv"); // -1 [java.nio.file] *

6 InputStream in = Files.newInputStream(p); // source *

7 BufferedReader reader = // +2 [java.io] *

8 new BufferedReader(new InputStreamReader(in)); // +1 [java.io] *

9

10 String line = null;

11 while ((line = reader.readLine()) != null) { // +3 [java.io] *

12 // input format: id,username,income,outcome

13 String[] tokens = line.split(","); // +4 [java.lang] sink

14 String id = tokens[0]; // +5 []

15 String uname = tokens[1]; // +5 []

16 int income = Integer.parseInt(tokens[2]); // +5 [java.lang]

17 int outcome = Integer.parseInt(tokens[3]); // +5 [java.lang]

18 // process data

19 String uname_up = uname.toUpperCase(); // +6 [java.lang]

20 int balance = income - outcome; // +6 []

21 // output

22 System.out.println(id+","+uname_up+","+balance); // +6 [java.lang,java.io]

23 }

24 in.close(); // +1 [java.io] *

25

26 }

Figure 3.1: An example of platform dependence assessment: the method uses a
file based storage to access the user data. Tags have been added to show the data
dependence from the instruction directly accessing the migrating platform (line
6). Lines marked with a ‘*’ symbol are considered by the proposed approach as
platform dependent.



50

3.3.1 Tracing the data flow

Let us consider a simple use case: the left side of Figure 3.1 shows the code

of a method, dubbed useFile(). This firstly loads some data from a file, where

each line contains the bank account information for a specific user, i.e. income and

outcome. Then, it processes such data and for each user prints the balance to the

standard output. Similar portions of code can be found in many applications and

other methods on the same application can have a similar behaviour, i.e. they use

the data loaded from a file-based storage.

Now, we analyse the scenario where a change on the underlying platform has

occurred, and data have been moved from files to a database. In this case, the

developer needs to spot where the methods have to be modified, changing the data

loading code, while preserving the behaviour.

For the said example, the migrating platform will be the file-based storage, and

the Binding Set will consider the Files.newInputStream(path) as a platform

dependent API. Given such a Binding Set, a typical approach will only indicate

line 6 as platform dependent, but this is not accurate. In fact, looking at the code

we can identify mainly two parts having different concerns : lines from 5 to 11 and

line 24 are implementing the concern of loading data from an input file, which

will be modified to use a database instead; and lines from 12 to 23 (ignoring both

comments and brackets) implementing the specific application concern that we

want to preserve.

The first part of the code is actually platform dependent, and will be probably

modified during the migration process. The objective of the proposed approach is

to automatically highlight these program points, thus not limiting our platform

dependence assessment to line 6 like a traditional approach. Instead, we will use

this explicit platform dependent program point as a source of dependence that can

be extended to the surrounding lines due to their data dependence (see Definition 1

in Section 2.1), which we say having an implicit platform dependence.

Definition 5. Given a Binding Set B, a program point has an explicit platform

dependence if it directly accesses an API in B, i.e.: it (i) calls a method in B, or

(ii) a method whose return type is in B; (iii) uses a field defined in a class (type) in

B, or (iv) a field whose type is in B;



51

Definition 6. Given a program point p having an explicit platform dependence,

we say that a program point v has an implicit platform dependence if it uses

non-common and non-internal APIs to either prepare data further used by p or

to operate on data previously defined by p. That is, v is either on a backward or

forward data flow path that has source in p. We call the set of APIs (i.e. methods

and classes) used in this path Supporting Set.

An internal API is a type or method that does not belong to an external library.

Common APIs consider types like String, Integer or List, which are available

from the Java standard library and are too general to be considered platform

dependent (see Section 3.3.2 for more details).

In the useFile() method (see Figure 3.1), we can see that the explicitly

dependent instruction on line 6 uses (i.e. reads) variable p and defines (i.e. writes)

variable in. Therefore, if we trace the backward data flow from this program

point, we can see that only line 5 previously defines the path variable, using type

FileSystems from java.nio.file package. Moreover, if we trace the forward data

flow from the source, we can see that the next instructions using the in variable

are on line 24 (which closes the stream), and on line 8, where data flows in sequence

through the InputStreamReader and the BufferedReader types of java.io package.

Then, at a distance of two, in terms of code lines being traversed by data flow

(instead of control flow), we find line 7 which defines reader variable by storing

the result of the previous step. We can continue the forward data flow tracing by

following the define-use cascade of relations, giving the resulting labels shown in

Figure 3.1 (± distance [used packages]).

As a result of using data flow analysis we labelled all the lines that are data

dependent from the selected source (thirteen lines), but only some of them are

actually implicitly dependent program points. In fact, the labelled lines from 12

to 23, as we previously said, cover the application concern that the developer will

need to preserve during the platform migration. Therefore, using only a data flow

analysis without applying some stopping conditions the given results would not be

accurate.



52

3.3.2 Taint analysis algorithm

Looking at the tagged lines (from 16 to 26 in Figure 3.1), we can see that all of

them are actually using either common types, like String (13, 19) and Integer (16,

17), or array and arithmetic operations (14, 15, 20). Even though these instructions

are data dependent from the source, they cannot be related to any platform, since

they are too common. This is also true for most of the instructions that use

types defined in java.lang or java.util packages (like List or other common data

structures). Although, there could be some exceptions: line 22 uses System to

access the standard output. This is actually a common type, however in some cases

this can not be ignored, e.g. when the developer has to port the application to the

web or for batch execution. Therefore, the analysis must consider the developer

point of view to determine the contents of the Common Set.

To improve the precision of the data analysis, the idea is to stop tracing the

data flow when we encounter a source line which can not be related to any specific

platform, such as a line containing no API usages or calls to APIs defined in the

Common Set. To solve this problem we have used a taint analysis-based approach.

In Section 2.1.7 the concept of taint analysis has been introduced. It is a data

flow analysis used to solves problems where there are sources for tainted data

that need to be traced until they flow into one of the possible sinks. As shown

in Chapter 6, this particular kind of data flow analysis is typically used to solve

problems related to data security [5, 7], where we want to see if data coming from

sensitive sources can flow to specific unauthorised channels (i.e. sinks).

We can use the same approach to taint the implicit platform dependent program

points. We use each explicit dependent program point as a source, and we define

two separate classes of sinks, active and passive. The former class will always stop

the data flow on a line containing a method call to an Internal Type, i.e. a type that

is not defined in an external library. The latter class, passive, only stops the data

flow on a line containing common operations, i.e. array or arithmetical instructions

or method calls to APIs in the Common Set (see Section 3.3.4 for more details).

Using this taint analysis approach with sources and sinks so defined, in the said

useFile() method (Figure 3.1) we identify line 13 as a passive sink to be activated

(because only java.lang, i.e. a library in the Common Set, has been used) stopping

the data flow tracing. The six tainted lines (marked with a ‘*’ in the example) are



53

1 Method code ported to the target platform

2 using a database instead of files as data storage

3

4 public static void useDatabase() throws SQLException {

5 Path p = FileSystems.getDefault().getPath("input", "operations_db");

6 String db = "jdbc:derby:"+p.toAbsolutePath()+";user=u;password=p";

7 Connection conn = DriverManager.getConnection(db);

8 Statement stmt = conn.createStatement();

9

10 ResultSet row = stmt.executeQuery("SELECT * FROM OPERATIONS");

11 while (row.next()) {

12 //input format: id,username,income,outcome

13

14 String id = row.getString(1);

15 String uname = row.getString(2);

16 int income = Integer.parseInt(row.getString(3));

17 int outcome = Integer.parseInt(row.getString(4));

18 // process data

19 String uname_up = uname.toUpperCase();

20 int balance = income - outcome;

21 // output

22 System.out.println(id+","+uname_up+","+balance);

23 }

24 stmt.close();

25 conn.close();

26 }

Figure 3.2: This is the ported version of the useFile() method: useDatabase(). It
uses a database storage instead of files to store user information. All the platform
dependent lines selected by the taint analysis approach for useFile() (from line 5 to
line 11 and line 24 in Figure 3.1) have been actually modified due to the platform
migration, thus not only the line directly accessing the file based storage (line 6 in
Figure 3.1, i.e. the only one with an explicit platform dependence). This confirms
the need for considering also the implicit platform dependences in order to correctly
assess the method portability.

the ones considered as platform dependent by the output of the analysis. As a result

of the taint analysis for the said method we obtain the Supporting Set, which is com-

posed by FileSystems, BufferedReader, InputStream and InputStreamReader.

It does not consider types like String and Integer because they are listed in the

Common Set.

Figure 3.2 shows the useDatabase() method, which is the ported version of the

previous one using the database instead of files. We can see how all of the tainted

lines were actually modified due to the porting process. More lines of code were

changed, e.g. lines 13 to 17, which are the ones related to the parsing operations.

Due to the differences between the two involved platforms, we can not predict which



54

1 Find lines using either a binding or a supporting API:

2 (binding) java.nio.file.Files.newInputStream(Ljava/nio/file/Path;

3 [Ljava/nio/file/OpenOption;)Ljava/io/InputStream;

4 (supporting) InputStream, InputStreamReader, BufferedReader, FileSystems

5

6 public static void useSocket() throws IOException {

7 Socket socket = new Socket("127.0.0.1", 33333);

8 InputStream in = socket.getInputStream(); // tagged

9 BufferedReader reader = new BufferedReader( // tagged

10 new InputStreamReader(in, StandardCharsets.UTF_8)); // tagged

11 String line = null;

12 while ((line = reader.readLine()) != null) { // tagged

13 processSingleLine(line);

14 }

15 socket.close();

16 }

Figure 3.3: A method that uses supporting types InputStream and BufferedReader
but that has no dependence on the file storage platform. This is an example of how
looking for supporting type usages without considering the data dependence could
lead to false positives.

other lines could be added or modified to adopt the specific target one. Therefore,

our assessment can be seen to give the lower bound of the number of lines to be

changed, spotting the lines that the developer will have to modify to leave the

current migrating platform, independently of any target one.

3.3.3 The Supporting Set

Let us suppose that the developer knows which supporting types form the

Supporting Set (even though this can be a significant assumption in real cases),

and decides to use a traditional approach to determine which lines of code have to

be ported, i.e. searching for type usages instead of tracing the data flow. In this

way the obtained results for the useFile() method are similar to ours, however

some false positives will be detected in the useSocket(). Figure 3.3 shows the

useSocket() method, belonging to the same application as useFile(), and using

buffers to read data from a socket, which in our scenario is not part of the migrating

platform. In this scenario, a simple search for a set of types cannot correctly assess

platform dependence, since they are not related to file management, but used for

stream and buffer handling. Then, such types should be considered as platform

dependent only if they are supporting a data flow started from an access to the file



55

1 Active sinks example: Passive sinks example:

2 d = binding() S d = binding(); S

3 x = internal(d) K x = common(d) K

4 y = api(internal(d)) K y = api(common(d)) T

5 z = internal(api(d)) T,K z = common(api(d)) T

6 api(x) api(x)

7 api(y) api(y) T

8 api(z) api(z) T

Figure 3.4: Two examples showing how active and passive sinks are used to stop
the data flow (S: source, K: sink, T: tainted)

storage.

3.3.4 Active and passive sinks

In a taint analysis approach, sinks are needed to stop the data flow coming from

a data source. In our case, the flow will be stopped when we recognise that further

instructions cannot be assumed as platform dependent. Given a program point p

on source line l, we consider it:

• an active sink if it calls an API belonging to an Internal Type, i.e. a type

that is not defined in an external library;

• a passive sink if it is the last program point traversed by the current data

flow before living l, which is activated only if no other program point was

tainted on this line. Otherwise, it can be traversed by the flow.

In the first case, if the data flow tries to taint an active sink, we must always

stop our tracing. This because we cannot bind this sink and any further instruction

to any platform, since data have been processed using an internal API that we

must consider as application dependent.

In the second case, if by traversing a source line we met a common operation

but its result is immediately passed to an API not in the Common Set, we can

consider the former operation as a weak stop condition, and we should still tag this

line as platform dependent. On the other hand, if we are trying to leave a source

line composed only by common operations, we should stop our analysis since we

have probably met the starting of a code portion related to an application-specific

concern.



56

Figure 3.5: The taint analysis framework for portability assessment.

Figure 3.4 shows how active (on the left) and passive (on the right) sinks are

identified and used to stop the data flow. In the example on the left, starting from

the binding method (the source), the data flow will be stopped on line 3 and 4 since

a call to an internal() method has been reached. This also happen on line 5, but

just after the execution of an api() method, i.e. neither a common nor an internal

method. In this case, the line will be considered as tainted, and then the flow will

be stopped. In the example on the right, the flow is stopped by the common()

method call because it is the last instruction on the line (i.e. the passive sink) and

no other instruction has been tainted on the same line. On line 5 the flow is not

stopped by the common() method call, because an api() call has been reached, and

therefore tainted, on the same line. This is also true for line 4. Thus, also line 7

and 8 will be tainted by the data flow.

3.4 Framework implementation

Figure 3.5 shows the overall workflow used to implement the portability assess-

ment approach described in Section 3.3, which is also formalised in Algorithm 1.

Starting from the Java application classes, the explicit dependent program

points are identified, which will be used as sources by the taint analysis. This is



57

performed by the Explicit Dependence Finder component, which implements

the isSource(p) procedure (shown in Algorithm 1) by inspecting the bytecode of

input classes using the Byte Code Engineering Library (BCEL1). According to the

Binding Set, that is provided by the developer, for each byte code instruction the

component determines whether it is an explicit dependent program point, i.e. a

source (see the definition in Section 3.3). Dependent program points are found

when an opcode INVOKE, GETFIELD or PUTFIELD is used to directly refer a class or

method in the Binding Set.

The identified bytecode instructions are considered as sources for the second

step, that is performed by the Taint Analysis component. For each method of

the input application, it executes the taint analysis algorithm by implementing the

taintAnalysis(m) procedure shown in Algorithm 1.

To perform the analysis, a Data Dependence Graph (DDG) is needed, which

is provided by the Data Dependence Analysis component. There are several

frameworks for the static analysis of Java byte code (see Section 2.1.5), which can

produce a DDG from an application, e.g. Soot [65] or Wala2. We used instead

JavaPDG [89], a powerful tool that analyses Java bytecode to provide different

types of program dependences representations [40] (e.g. the control dependence

graph) given as a relational database. For the produced DDG, each node is a byte

code instruction and each edge is a definition-use relation. For each node, other

data are also given, such as the corresponding line position in the source file.

Having both the sources and the DDG, both the backward and the forward

taint analysis can be performed, giving as a result a list of the platform dependent

lines that can be used to tag the Java source code. To perform this last step, the

definition of a Common Set is also needed, which by default considers all the types

in java.lang and java.util packages, and which can be modified by the developer

according to the specific analysis.

1https://commons.apache.org/proper/commons-bcel/
2http://wala.sourceforge.net



58

Algorithm 1 The Taint Analysis algorithm for platform dependence assessment
Require: init()
1: B := BindingSet

2: S := ∅

Require: tainAnalysis(m)
3: for all program point p ∈ method m do

4: if isSource(p) then

5: S := S ∪ {p}
6: end if

7: end for

8: G := getDataDependenceGraph(m)
9: backwardFlowAnalysis(G,S)
10: forwardFlowAnalysis(G,S)

Require: isSource(p)
11: if isInvoke(p) then

12: if calledAPI(p) ∈ B or returnType(p) ∈ B
then

13: return true

14: end if

15: else if isFieldAccess(p) then

16: f := accessedField(p)
17: if type(f) ∈ B or belongsTo(f ,T ) | T ∈ B

then

18: return true

19: end if

20: end if

Require: isActiveSink(p)
21: if isInvoke(p) and calledAPI(p) ∈ InternalTypes

then

22: return true

23: end if

Require: isPassiveSink(p)
24: if p is the last program point on current source

line
and no program point on current flow was tainted
on this line then

25: return true

26: end if

Require: backwardFlowAnalysis(G,S)
1: G := revert(G)
2: forwardFlowAnalysis(G)

Require: forwardFlowAnalysis(G,S)
3: for all s ∈ S do

4: taint program point s
5: output program point s is platform dependent

6: V := ∅
7: Stack := ∅
8: Stack.push(s)
9: while Stack is not empty do

10: p := Stack.pop()
11: if p /∈ V then

12: V := V ∪ {p}
13: if isActiveSink(p) or isPassiveSink(p)

then

14: stop tracing current data flow
15: else

16: if isInvoke(p) and calledAPI(p) /∈
CommonSet then

17: taint program point p
18: output program point p is plat-

form dependent
19: end if

20: for all program point v adjacent to p
in G do

21: Stack.push(v)
22: end for

23: end if

24: end if

25: end while

26: end for

3.5 Experiments

Let us consider an actual portability assessment use case by analysing Clever [102],

an agent-oriented open source cloud middleware3 implemented in Java, consisting

of 33144 lines of code, 1645 methods, and 225 classes. Since it manages different

aspects of a distributed cloud infrastructures, it is based on different external

libraries, like libvirt4 to interact with the hypervisors, sedna5 to implement the

3https://github.com/clever-unime/clever-unime
4https://libvirt.org/java.html
5http://www.cfoster.net/sedna/



59

Java File
find + support + sup. taint

Document methods types analysis

HvlibVirt 7 49 127 15

ParserXML 7 18 31 11

CleverMessage 3 23 36 7

Guacamole 3 15 31 3

SensorBrain 2 5 10 5

ExecOperation 1 8 16 3

NotificationOperation 1 8 15 3

RequestInformation 1 8 17 3

ErrorResult 1 6 13 3

OperationResult 1 6 13 3

Result 1 2 10 3

ClusterCoordinator 0 3 7 0

HostCoordinator 0 2 5 0

ImageManagerAgent 0 2 2 0

DatabaseManagerAgent 0 1 1 0

VirtualizationManagerAgent 0 1 1 0

ModuleFactory 0 1 2 0

HyperVisorAgent 0 1 1 0

ServiceManagerAgent 0 1 1 0

DbSedna 0 0 5 0

VirtualizationManagerClever 0 0 1 0

HvVirtualBox 0 0 1 0

HvVMWare 0 0 11 0

Total 28 160 357 59

Table 3.1: Evaluation of the platform dependence of Clever [102] from the
org.jdom.Document type.

persistence layer with an XML database, and smack 6 to handle the communication

between the cluster nodes using the XMPP protocol. Therefore, several of its parts

manage XML data streams, e.g. to load a description file of a virtual machine, to

parse messages received from other nodes, or, simply, to load some configuration

files. To handle XML formatted text, the jdom7 library is used. For the developer

to obtain a better control on how XML documents are loaded or stored, a limited

direct use of type org.jdom.Document is desired, then we assess how many lines

of code depend on it.

In this case, the Binding Set consists of the said Document class, whereas the

Common Set is the default and consists of all the types in java.lang and java.util

packages. Table 3.1 shows the results of our taint-based approach (fifth column)

and a simple search (second column) for class Document, giving the lines directly

using it, e.g. due to an attribute access or a method call (either as the target class

6https://www.igniterealtime.org/projects/smack/
7http://www.jdom.org



60

1 public String getStringedSubTree(String element)

2 throws JDOMException, IOException {

3 String s = "";

4 Element elem = rootElement.getChild(element); *

5 Iterator lst = elem.getDescendants();

6 int i;

7 Element e = document.detachRootElement(); $ x *

8 e.removeNamespaceDeclaration(Namespace.NO_NAMESPACE); x *

9 Element e2 = e.getChild(element); x *

10 XMLOutputter xout = new XMLOutputter();

11 Format f = Format.getPrettyFormat();

12 xout.setFormat(f);

13 return ((xout.outputString(e2).replaceAll("<"+element+">", ""))

.replaceAll("</" + element + ">", "")); x *

14 }

Figure 3.6: A comparison of the tagging results given by the find Document
approach (‘$’), our taint analysis (‘x’) and the find support methods approach (‘*’).

or the return type). The simple search found 28 direct uses of Document, while

our approach found a higher number of platform dependent source lines, i.e. 59 on

twelve files.

By setting as a source for the taint analysis the lines using Document, we have

found several code lines having an Element instance returned by the sources. Hence,

when substituting Document, all the data dependent lines using Element to access

the document content have to be changed as well. For example, Figure 3.6 shows

a method in the ParserXML.java source file: only line 7 has been considered as

platform dependent by the find Document approach (results are marked with ‘$’

symbol), because it calls a method of the Document class8. By setting this line as a

source for the taint analysis approach, we have found several code lines (marked

with the ‘x’ symbol in the figure) using the Element instance returned by the

method call in line 7, thus exhibiting an implicit platform dependence.

Figure 3.7 shows the Supporting Set found during the taint analysis, which

includes all the types and methods hit by the tainting data flow. It consists of

17 methods belonging to 6 types (other than Document), i.e. 4 in jdom library

(Element, SAXBuilder, XMLOutputter and Attribute), 1 in libvirt (Domain) and 1

in java.io (StringReader). Only 4 of such 17 supporting methods show Document

in their signatures, therefore they are the only ones that would be found by searching

8Of course the search has been performed by an appropriate tool on the byte code, which
embeds for source line 7 the opcode for a method call and an indication of type Document.



61

1 java.io.StringReader

2 .<init>(Ljava/lang/String;)V

3 org.jdom.Attribute

4 .getValue()Ljava/lang/String;

5 org.jdom.Element

6 .<init>(Ljava/lang/String;)V

7 .addContent(Lorg/jdom/Content;)Lorg/jdom/Element;

8 .detach()Lorg/jdom/Content;

9 .getAttribute(Ljava/lang/String;)Lorg/jdom/Attribute;

10 .getAttributeValue(Ljava/lang/String;)Ljava/lang/String;

11 .getChild(Ljava/lang/String;)Lorg/jdom/Element;

12 .getChildren(Ljava/lang/String;)Ljava/util/List;

13 .removeNamespaceDeclaration(Lorg/jdom/Namespace;)V

14 org.jdom.input.SAXBuilder

15 .<init>()V

16 .build(Ljava/io/File;)Lorg/jdom/Document;

17 .build(Ljava/io/Reader;)Lorg/jdom/Document;

18 org.jdom.output.XMLOutputter

19 .output(Lorg/jdom/Document;Ljava/io/OutputStream;)V

20 .outputString(Lorg/jdom/Document;)Ljava/lang/String;

21 .outputString(Lorg/jdom/Element;)Ljava/lang/String;

22 org.libvirt.Domain

23 .getXMLDesc(I)Ljava/lang/String;

Figure 3.7: Supporting Set (with types and methods) found during the taint
analysis.

type Document.

By comparing the results, shown in Table 3.1, of the simple search and the

taint-based analysis, we can see that the recall in spotting platform dependent lines

has been greatly improved by the proposed approach. For evaluating precision, we

consider that a simple search is performed for the additional classes in the Supporting

Set but StringReader, since too generic and leading to many false positives. The

fourth column of Table 3.1 gives the results, and shows that the number of found

lines (357) is considerably higher than the previous two approaches. Code inspection

reveals that this is mostly due to the use of class Domain in HvlibVirt.java, which

manages configuration data for a virtual machine, however Domain is related to

Document only in a few cases, e.g. when xml files are loaded from the file system.

In other cases, found lines are only related to Element, since the ParserXML class

accesses the xml document, retrieves the content, and passes it on. In our scenario,

this behaviour will be kept unchanged.

As a final comparison let us suppose that the developer can be more precise

in giving the supporting elements to be used by the find approach, i.e. indicating

methods instead of types. Third column in Table 3.1 shows the corresponding



62

results. The number of found lines is still considerably higher than the taint-based

approach, revealing lower precision compared to ours.

In the example shown in Figure 3.6 the lines tagged by the find support methods

approach are marked with the ‘*’ symbol. We can see that line 4 has been considered

as platform dependent due to the call to getChild() method of Element class.

However, the access to Document class in line 7 (which is the source of the platform

dependence), and the access to Element class in line 4, are on two different data

flows that are not related to each other. Therefore, marking line 4 as platform

dependent would be a false positive, and we can see how this was correctly avoided

by the the proposed taint analysis approach (in fact, line 4 is not ‘x’ marked).

The above analysis can suggest a possible refactoring operation, i.e. moving the

responsibility of accessing the Document type only within ParserXML class, thus

reducing the platform dependence, using the tagged lines to easily spot the parts

to be modified.

3.6 Conclusions

In this chapter a taint analysis approach to improve platform dependence assess-

ment was proposed. Once the target APIs to consider as a platform dependence are

defined, the approach automatically inspects the static code and finds all (and only)

the data dependent code portions, independently of how far apart are these. The

efficacy of taint analysis for portability assessment was experimentally evaluated on

an industrial application, exhibiting a better accuracy than a traditional approach.



63

Chapter 4

Concern Tagging and Refactoring

Modularity of a software system can be assessed once responsibilities of each

method and class have been determined. Generally, developers attribute respon-

sibilities to methods and classes manually. This can be problematic given that

it relies on developers judgement and effort and as a result responsibilities can

be coarse-grained, and imprecise. In this chapter an approach for automatically

attributing concern tags to each instructions will be presented. The approach is

based on taint analysis to determine which code lines are related to each other

by data dependence. Moreover, indirectly Java APIs provide us the tags used to

mark code lines. The devised automatic concern tagging approach is used to find

out how responsibilities are spread over the code, and then to suggest refactoring

activities in case tangling occurs.

4.1 Concern Tagging

Generally, developers strive to achieve modularity for their object-oriented

systems, and make use of several solutions and techniques for helping them balance

their design choices. One of the main problems arising when evaluating modularity

is characterising the code portion with the concern it addresses. Some approaches

let the developer name the concern for a code portion, then provide some assistance

for modularity analysis, other approaches identify addressed concerns according to

variable names [10, 82].

Naming a concern can be cumbersome for developers, since they have to provide



64

it as fine-grained as possible, and, as for commenting code, they can pay little or

no attention to it. Of course, the more coarse-grained, i.e. a concern name given to

a method, or a class, the less useful it is to assess modularity. Moreover, such a

naming of concerns, as well as identifying concerns according to variable names,

can be as precise as the naming convention followed by developers. An automatic

and robust characterisation of each line of code with its concern would be greatly

useful, since it would unload developers of such a task. Moreover, it would made it

possible to have further automatic assessments, such as suggesting a more modular

decomposition of a method, a class, etc.

A few previous works have attempted to automatically characterise code lines

with concerns (see Section 2.2). One of the previous robust approaches is based on

the use of the APIs, which name and encapsulate the support for handling some

lower level concern [97]. However, only a portion of the lines of code, such as those

using the APIs, can be characterised so far.

This chapter will describe DeDuCT: Data Dependence based Concern Tagger,

that is an automatic approach aiming at characterising the single lines of code

with proper concern tags. This in turn provides a high level representation that

can ease code comprehension. The proposed approach is based on the list of

used APIs giving both an indication of the concerns and the concern seeds that

are then spread on the code according to data dependencies. APIs are the set

of packages, classes or methods that platforms and standard libraries provide to

support developers solving a problem related to a specific task, e.g. io operations,

string manipulation, or exception handling. Then, by using data dependence [119]

and a taint analysis [87], DeDuCT automatically identifies the lines of code related

to APIs, since each of them is used as a source of a data flow that is traced to

tag all the other instructions that have a supporting role, thus sharing the same

concern as the one indicated by the API.

As a final result, the set of concern tags given to each line of code inside a method

allows us to identify which code portions have a similar set of tags. This can be used

for further modularity analyses, such as tangling and cohesion assessments, and

for suggesting refactoring opportunities. I.e., code lines sharing a similar concern

could be refactored by using techniques, such as e.g. Extract Method to separate

concern specific code in a separate component, Code Reordering to move similar



65

1  public void initBookStore() throws IOException, SQLException {
2    Path logFilePath = FileSystems.getDefault().getPath("store","req.log"); 
3    File logFile = logFilePath.toFile();
4    reqLog = new BufferedWriter(new FileWriter(logFile));
5    Path dbPath = FileSystems.getDefault().getPath("store","store_db");
6    String absolutePath = dbPath.toAbsolutePath().toString();
7    String dburl = "jdbc:derby:" + absolutePath + ";user=usr;password=psw";
8    conn = DriverManager.getConnection(dburl);
9    int serverPort = 33333;
10   serverSocket = new ServerSocket(serverPort);
11 }

Figure 4.1: A method implementing some initialisation operations for a book store
server, such as: (i) opening a stream to a logging file (line 2 to 4); (ii) opening a
database connection (line 5 to 8); (iii) opening a socket on a specified port waiting
for incoming requests (lines 9 and 10). Even in such a short method, it is hard
to manually identify which lines belong to a specific concern, thus calling for an
automatic concern tagging assistance.

code as near as possible to ease code understanding and endorse code reuse [44], or

by resorting to other advanced separation of concern [50] or refactoring techniques.

In Section 5.4 the concern tags provided by DeDuCT will be used to drive a

long method decomposition by means of the Replace Method with Method Object

refactoring technique. Thanks to DeDuCT, concern cohesive fragments can be

automatically identified, and then given to the method decomposition approach

presented in Chapter 5, thus making the overall refactoring process fully automated.

4.2 DeDuCT

Let us consider a simple use case to describe the proposed approach that

automatically tags code lines and finds clustering. Figure 4.1 shows method

initBookStore() implementing initialisation operations for a book store server, such

as: (i) open a stream to a text file used for logging (line 2 to 4); (ii) open the

connection to a database (line 5 to 8); (iii) open a socket on a specified port to

wait for incoming requests (lines 9 and 10).

Since the method is both short and performing only initialisation operations, the

developer could be satisfied by naming for it a single concern (such as initialisation).



66

However, a more fine grained analysis, and concern attribution could improve

code readability and modularity. Actually, by identifying and separating the three

different initialisation subtasks stated above by using different, and well named,

methods, code understanding and its future reuse could be improved.

Looking at the code in Figure 4.1, we can see how difficult it could be to manually

identify which lines belong to a specific concern without any clue from the developer

(like comments or empty lines), even in such a short method. Moreover, manually

tagging with concern names each line of code quickly becomes an overwhelming task

for large applications. Therefore, our approach aims at automatically performing

the said task of concern identification.

4.2.1 Find API usages

In order to automatically deduct, i.e. extract, concern information from a

method body, firstly we give a more precise and operative definition of concern.

This can be seen as some heuristic (or rule) guiding a tagging agent and used for

concern identification. We leveraged two concern definitions, providing different

and complementary semantic information, i.e. behavioural clues, about a line of

code.

Definition 7. Instructions that happen to use the same APIs explicitly share the

same concern (first concern tagging heuristic).

To apply this heuristic on a fragment of code, we need to solve two different

problems: (i) identifying which instructions use the same APIs, and (ii) deciding

which concern the API usage suggests. Let us say, e.g., that we have two instructions

using java.lang.StringBuilder type, then we can infer that such instructions

address a concern closely related to string operations, or more generally, to the string

concern. Similarly, if we have two instructions that use java.net.ServerSocket

type, then they are dealing with a networking concern (net).

Accordingly, we use the standard Java libraries APIs as an indication of the

concerns addressed by a line of code (see [97]). Given the huge number of classes

in such APIs, they can be appropriately grouped together to define a (less specific)

concern. Of course, such a grouping has to be performed only once, and can

even simply be suggested by the packages of the Java APIs. Figure 4.2 shows an



67
API Concern

java . nio . file . FileSystems io

java . nio . file .FileSystem io

java . nio . file .Path io

java . io . File io

java . io . FileWriter io

java . io . BufferedWriter io

java . lang . String string

java . lang . StringBuilder string

java . net . ServerSocket net

java . sql .Connection persistence

Figure 4.2: The concern mapping function for the Java types used in the initBook-
Store() method.

excerpt of this API-to-concern mapping, that is limited to the types used in the

initBookStore() method. We can now provide a more formal definition used to

assign concern tags to an instruction in line with the APIs it directly uses.

Definition 8. Given a set of APIs (i.e. types) T denoted as tagging APIs, a set of

concerns C, and a concern mapping function fc : T → C, we say that a program

point explicitly covers the concern fc(t) if it directly uses the type t, i.e.: (i) calls a

method defined in t; (ii) uses a field defined in t; (iii) calls a method whose return

type is t; (iv) uses a field whose type is t.

By using the above definition, we can inspect the initBookStore() method and

find, for each line of code, which APIs are used. Then a tag can be attributed

to the code. Figure 4.3 shows the results of this inspection, associating to each

method line the related concern tags, according to the mapping function shown in

Figure 4.2.

Line 2 gathers the path to the log file, and uses three types from the APIs, i.e.

FileSystem (returned by getDefault() method of class FileSystems), FileSystems

and Path, which are all related to the io concern. Therefore, a 0:io(2) concern tag

is added, where: 0 is the distance from the source of this tag (i.e. the current line

in this case, since it directly uses io types); io is the concern; and 2 is the line

providing the tag (again, the same line in this case).

Line 3 converts the obtained path to a file reference, thus calling a method of

the Path class and using File as its return type. Both types are related to the io

concern, so 0:io(3) tag is added. Lines 4 opens a buffered stream to the log file,

and it uses two io types (BufferedWriter and FileWriter), therefore we added the



68

1  public void initBookStore() throws IOException, SQLException {
2    Path logFilePath = FileSystems.getDefault().getPath("store","req.log"); 
3    File logFile = logFilePath.toFile();
4    reqLog = new BufferedWriter(new FileWriter(logFile));
5    Path dbPath = FileSystems.getDefault().getPath("store","store_db");
6    String absolutePath = dbPath.toAbsolutePath().toString();
7    String dburl = "jdbc:derby:" + absolutePath + ";user=usr;password=psw";
8    conn = DriverManager.getConnection(dburl);
9    int serverPort = 33333;
10   serverSocket = new ServerSocket(serverPort);
11 }

Path getDefault getPath 0:io(2)

3    File logFilePath.toFile 0:io(3)

BufferedWriter FileWriter 0:io(4)

Path getDefault getPath 0:io(5)

dbPath.toAbsolutePath 0:io(6)

String  +  + 0:str(7)
getConnection 0:prs(8)

ServerSocket
0:net(10)

String toString 0:str(6)

Figure 4.3: The first step of the concern tagging approach. Lines directly using a
tagging API (i.e. a type defined in the Java Standard Library) have been tagged
with the proper concern, according to the devised concern mapping function (see
Figure 4.2).

0:io(4) concern tag. Line 5, similarly to line 2, gathers the path to the database,

thus the 0:io(5) tag is added. Similarly, we added 0:io(6) 0:str(6) to line 6 (where

str stands for string), 0:str(7) to line 7, 0:prs(8) to line 8 (where prs stands for

persistence), and 0:net(10) to line 10.

By considering the API usages we tagged all but line 9, having lines from 2 to

5 with just io concern assigned, line 6 with both io and string, line 7 with string,

line 8 with persistence, and line 10 with net.

However, while API usage tells us which category of operation is implemented,

it can not explain why. For example, though line 2 and 6 perform exactly the

same operation, i.e. defining a file path, this path will be further used for different

reasons, i.e. for io operations in the first case, and for persistence ones in the second

case. Therefore, to better understand the reason of an API call, thus the aim of the

line performing it (its concern), we need to gather information about how the data

produced by that call will be used by the other instructions inside the method, so

explaining why that particular API was called.

4.2.2 Trace data dependence

To both enhance code coverage and provide more concern information for each

line, we trace data dependence. The rational for this is suggested by the following

heuristic.



69

Definition 9. Instructions that are working on the same data implicitly share the

same concern (second concern tagging heuristic).

In the previous step (Section 4.2.1) we have found the instructions directly

using a Java API, and tagged them with a specific concern according to a provided

concern mapping function. Now, we consider each instruction as a source of a data

flow that is related to a specific concern, i.e. the one given by the tag applied to

the source instruction. Hence, a propagation algorithm is used to extend such a

concern information to the other instructions that are data dependent on this source.

To accomplish this task, we leverage a graph representation of data dependences

among instructions, i.e. the data dependence graph (see Section 2.1.3 for definitions

and details).

Given the data dependence graph and a set of sources, we use taint analysis to

define the propagation algorithm that solves the concern tagging problem. Taint

analysis [72] consists of static [5] and dynamic [87] data flow algorithms that take

sources for tainted data and trace them until they reach one of the sinks. While

flowing from one instruction to another, these become tainted. Typically, it is

used to solve data security problems [5, 7, 38], and to check data flows within the

code [43].

In Section 2.1.7 the concept of taint analysis has been introduced. It is a

particular class of data flow algorithms that take sources for tainted data and

trace them until they reach one of the sinks. While flowing from one instruction to

another, these become tainted. Typically, it is used to solve data security problems

(as shown in Chapter 6).

In this case, taint analysis is used to taint the dependent program points with a

source concern tag, taking as sources the APIs referred into code lines, and as sinks

the instructions that are a certain number of code lines far away from the source

(dependence range). Moreover, we use the undirected data dependence graph. This

enables us to consider complex data dependence situations, thus tracing both a

backward and a forward data dependence, tagging the instructions that respectively

prepare the input and use the output of the source instruction.

Figure 4.4 shows how the proposed taint analysis algorithm works, extending

the results given by the previous step (Section 4.2.1). Line 6 has been previously

tagged by the find API usage step with two concerns: io and string. These two



70

1  public void initBookStore() throws IOException, SQLException {
2    Path logFilePath = FileSystems.getDefault().getPath("store","req.log"); 
3    File logFile = logFilePath.toFile();
4    reqLog = new BufferedWriter(new FileWriter(logFile));
5    Path dbPath = FileSystems.getDefault().getPath("store","store_db");
6    String absolutePath = dbPath.toAbsolutePath().toString();
7    String dburl = "jdbc:derby:" + absolutePath + ";user=usr;password=psw";
8    conn = DriverManager.getConnection(dburl);
9    int serverPort = 33333;
10   serverSocket = new ServerSocket(serverPort);
11 }

Path getDefault getPath 0:io(2)

3    File logFilePath.toFile 0:io(3)

BufferedWriter FileWriter 0:io(4)

Path getDefault getPath 0:io(5)

dbPath.toAbsolutePath 0:io(6)

String  +  + 0:str(7)
getConnection 0:prs(8)

ServerSocket
0:net(10)

String toString 0:str(6)

1:str(6)

1:io(6)

1:str(7) 2:io(7)

1:net(10)

1:prs(8)

2:prs(7)

3:prs(6)

Figure 4.4: The second step of the concern tagging approach. By using a taint
analysis approach, all the concern tags given by the previous step (i.e. directly
accessing a Java API, thus having a ‘0’ depth value) are now used as sources for a
concern related data flow that we can trace to discover all the instructions implicitly
sharing the same concern of the source. All the concern tags having a depth value
greater then ‘0’ have been discovered using this taint analysis propagation. For
example, let us consider the concern tags generated by line 6 (highlighted by the
use of bold text): the io and str tags have been backward propagated to line 5 due
to the data dependence made by the dbPath variable, and forward propagated to
line 7 and line 8 in turn due to the absolutePath and the dburl dependence.

tags are now extended to all data dependent lines within the chosen dependence

range (here set to 4). This means revealing the instructions that are on a data

path providing the input variable dbPath and the ones on a data path that uses

absolutePath variable. For the former, we backward taint line 5 with both of

the source concern tags, adding the 1:str(6), where 1 means that it is 1 source

line distant from the source (depth), and 6 is the previous line on the data path.

However, the expected 1:io(6) is not listed, since line 5 already has an io tag with

a lower depth value. By considering the minimum depth for a specific concern we

associate the depth information to the importance of a concern for the source line:

the more a source for that concern is near in the data path, the more important

the concern will be.

Since from line 5 there are no other backward data dependent instructions, we

consider forward propagation from line 6. The absolutePath output variable is

forward used by line 7, causing the 1:io(6) tag (and not the expected 1:str(6) for

the same reasons explained in the previous example). We can continue the tainting

propagation to line 8 due to the use of the dburl variable, causing the 1:str(7) and

the 2:io(7). Since there are no other instructions on this data path, we stop the



71

1  public void initBookStore() throws IOException, SQLException {
2    Path logFilePath = FileSystems.getDefault().getPath("store","req.log"); 
3    File logFile = logFilePath.toFile();
4    reqLog = new BufferedWriter(new FileWriter(logFile));
5    Path dbPath = FileSystems.getDefault().getPath("store","store_db");
6    String absolutePath = dbPath.toAbsolutePath().toString();
7    String dburl = "jdbc:derby:" + absolutePath + ";user=usr;password=psw";
8    conn = DriverManager.getConnection(dburl);
9    int serverPort = 33333;
10   serverSocket = new ServerSocket(serverPort);
11 }

Path getDefault getPath 0:io(2)

3    File logFilePath.toFile 0:io(3)

BufferedWriter FileWriter 0:io(4)

Path getDefault getPath 0:io(5)

dbPath.toAbsolutePath 0:io(6)

String  +  + 0:str(7)
getConnection 0:prs(8)

ServerSocket
0:net(10)

String toString 0:str(6)

1:str(6)

1:io(6)

1:str(7) 2:io(7)

1:net(10)

1:prs(8)

2:prs(7)

3:prs(6)

0.00
1.00
1.00
0.45
0.85
0.86

0.00
0.80

0.79

Figure 4.5: Concern tags given by the proposed approach can be used to suggest
refactoring opportunities. Using a clustering algorithm, three blocks of source lines
having similar concern tags have been found (i.e. three different clusters): line 2 to
line 4 (C0, indicated by the orange vertical line); line 5 to line 8 (C1, indicated by
the purple vertical line); and line 9 to line 10 (C2, indicated by the red vertical
line). The identified clusters actually refer to the three different subtask performed
by the method: open the log file, open the database connection, and open the
server socket, thus automatically suggesting a method decomposition into smaller
and concern cohesive methods.

propagation for the two source tags of line 6. The tainting procedure is executed

for each source tag on each line, obtaining the final results shown in Figure 4.4.

Thanks to the high level of abstraction given by the concern tags, we can easily

understand the responsibility of a source line before actually looking at the code

itself. E.g., tags given to line 4 suggest that it is mostly dealing with io operations,

which is confirmed by the actual Java code. Line 7 performs string manipulations

using data directly given by the previous instruction, which performs io operations

(since the io has a depth of 1, and the 6th source line is the previous line), and

directly provided to a persistence related instruction. Moreover, line 8 performs

persistence operations, and uses data that directly come from a string manipulation.

It also depends on an io related instruction, having lower influence than the other

two tags according to the depth information that comes with the tag. Line 9 does

not use any API (since it has no sources), however it provides data further used for

networking operations, hence it is tagged with net.



72

4.2.3 Clustering

We investigated how the proposed tags can indicate concern cohesion for a

specific method, and further suggest refactoring opportunities, such as Extract

Methods [44]. This will be also used in Chapter 5 to automate the decomposition of

long methods. By defining a similarity function and a clustering algorithm, we can

find clusters of instructions showing a similar composite concern (i.e. consisting of

a set of concern tags given to source lines). As a similarity function, we used the

Jaccard Index J(A,B) where A and B are two sets of concern tags:

J(A,B) =
|A ∩ B|

|A ∪ B|

To give more relevance to concern tags having a lower level of depth, for a

specific set of tags, we consider each tag a number of times determined by the

weight function w(d) = 1 + (d′ − d), where d indicated the tag depth and d′ the

considered dependence range (that is set to 4 in our case). E.g. for determining the

similarity between line 7 (L7) and line 8 (L8) in Figure 4.5 the two sets are:

L7 = {stri : i = 0..4} ∪ {ioi : i = 0..3} ∪ {prsi : i = 0..3}

L8 = {prsi : i = 0..4} ∪ {stri : i = 0..3} ∪ {ioi : i = 0..2}

Then Jaccard Index is:

J(L7, L8) =
|L7 ∩ L8|

|L7 ∪ L8|
=

11

14
= 0.79

Given this similarity function, we linearly traverse the method code (from the

first to the last line) and compute the similarity index of a line with the previous

one (that is zero for the first line), using then a similarity threshold (that is 0.66

in our case) to determine whether a cluster has been formed.

Accordingly, for the above code (see Figure 4.5), we have found three blocks of

source lines having similar concern tags, i.e. three different clusters, as: line 2 to

line 4 (C0); line 5 to line 8 (C1); line 9 to line 10 (C2). More formally, we have

identified three cluster of instructions having an high level of similarity, according

to their concern tags. We can see how, in this simple example, the identified clusters



73

1  public void initBookStore() throws IOException, SQLException {
2    this.reqLog = openLogFile(); 
3    this.conn = connectToDB();
4    this.serverSocket = openServerSocket();
5  } 
6  private BufferedWriter openLogFile() throws IOException {
7    Path logFilePath = FileSystems.getDefault().getPath("store","req.log");
8    File logFile = logFilePath.toFile();
9    return new BufferedWriter(new FileWriter(logFile));
10 }
11 private Connection connectToDB() throws SQLException {
12   Path dbPath = FileSystems.getDefault().getPath("store","store_db");
13   String absolutePath = dbPath.toAbsolutePath().toString();
14   String dburl = "jdbc:derby:" + absolutePath + ";user=usr;password=psw";
15   return DriverManager.getConnection(dburl);
16 }
17 private ServerSocket openServerSocket() throws IOException {
18   int serverPort = 33333;
19   return new ServerSocket(serverPort); 
20 }

0:io(7)

0:io(8)

0:io(9)

0:io(12)

0:io(13)

0:str(14)

0:prs(15)

0:str(13)

1:str(13)

1:io(13)

1:str(14)1:str(14) 2:io(14)

1:prs(15)

2:prs(14)

3:prs(13)

0:net(19)

1:net(19)

0:prs(3)

0:io(2)

0:net(4)

0.00
0.00
0.00

0.00
1.00
1.00

0.00
0.85
0.86
0.79

0.00
0.80

Figure 4.6: Apply extract method refactoring to separate clustered concern tags
and enhance concern cohesion.

actually refer to the three different subtask performed by the method: open the log

file, open the database connection, and open the server socket. The developer can

use such cluster indications, automatically added to the source code by our tool, to

reason about the extraction of each cluster into its own method.

Figure 4.6 shows the refactored version of the use case. This was obtained

by using the Extract Method refactoring technique to each cluster suggested by

DeDuCT. Now, the refactored initBookStore() method has only three lines of code,

referring other well named, lower level methods. Running again the DeDuCT

tagging and clustering steps we have tagged and clustered it, showing that the

obtained methods have an higher concern cohesion since they all but initBookStore()

consist of one cluster.

4.3 Implementation

This section describes the overall DeDuCT framework (depicted in Figure 4.7)

used to implement the taint analysis approach for attributing concerns, and the

clustering for the concern assessment both described in Section 4.2. The first part

of the implemented framework (i.e. until the production of the concern tags list) is

similar to the one implemented for portability assessment, described in Chapter 3

(see Figure 3.5). In fact, both of them perform a bytecode analysis to identify



74

Figure 4.7: The DeDuCT framework.

usages of specific types, binding the code to a specific platform, or supporting

specific concerns by means of well known Java APIs. However, they differs in the

way the taint analysis has been defined. For example, for the portability assessment,

a notion for both active and passive sinks was required (see Section 3.3.4), while

for the concern propagation problem, sinks are instead defined using a dependence

range. Moreover, differently from the portability assessment, in this case a lot of

details are considered during the tainting propagation, e.g. the concern name and

the tag depth, which are both needed during the concern similarity assessment.

Starting from Java application classes, the API Usage Finder component iden-

tifies the program points directly using a type defined in the API list (such as

the Java APIs or any other external library that the developer thinks useful to

characterise a concern, more generally a tagging API ). This is performed according

to Definition 8, thus selecting each GETFIELD, PUTFIELD and INVOKE opcodes refer-

ring a class in the API list, then determining the related concern according to the

concern mapping function. The bytecode inspection of the input classes has been

performed using the Byte Code Engineering Library (BCEL1).

As a second step, for each method of the input application, these sources are

1https://commons.apache.org/proper/commons-bcel/



75

Table 4.1: Analysed software systems

Systems Methods
Method Body Lines

total per method
JUnit 3.7 536 1876 3.50
JUnit 4.10 1231 2819 2.29
Clever 1645 10082 6.13
Only considering methods having at least 2 lines of code
JUnit 3.7 251 1602 6.38
JUnit 4.10 464 2084 4.49
Clever 803 9260 11.53

Table 4.2: Analysed software systems

Systems
API Usage Taint Analysis

Clusters Cluster size
tagged lines per method tagged lines per method

JUnit 3.7 766 (41%) 1.43 1175 (63%) 2.19 211 3.99
JUnit 4.10 1094 (39%) 0.89 1644 (58%) 1.34 296 3.15
Clever 4680 (46%) 2.84 6483 (64%) 3.94 1184 3.86

Only considering methods having at least 2 lines of code
JUnit 3.7 674 (42%) 2.69 1055 (66%) 4.20 211 3.99
JUnit 4.10 820 (39%) 1.77 1276 (61%) 2.75 296 3.15
Clever 4489 (48%) 5.59 6291 (68%) 7.83 1184 3.86

used by the Taint Analyser component to drive the concern tag propagation

algorithm described in Section 4.2. To perform such an analysis, a data dependence

graph has been achieved by using JavaPDG [89]. Having the sources and the

undirected data dependence graph, the taint analysis can be performed, giving as a

result a list of concern tags. Finally, the Clustering Algorithm component has

been implemented to perform the computation described in Section 4.2.3.

4.4 Experiments

A few open source software systems have been analysed, showing the results of

our approach in terms of tagged lines and tags clustering.

Table 4.1 shows the main characteristics of the analysed software systems, i.e.

JUnit 3.7, JUnit 4.10 and Clever2, and the related structural metrics (the first

three rows consider all the methods, while the last three only consider the ones

having at least two lines of code). The size of the analysed systems is shown by the

2https://github.com/clever-unime



76

number of methods (second column), and the lines of code (third column). The

average number of lines per method (fourth column) has been computed to show

the granularity of methods, and given that the average size is less than or equal to

6.13 lines for all analysed systems, we can say that the methods tend to be small

enough to expect they address a single responsibility.

Table 4.2 shows the results collected by the implemented tool (also here, the

first three rows show data collected on all the methods, while the following three

rows consider only methods having at least two lines of code). The metrics collected

by our tool are as follows. The number of lines that have been automatically

tagged with at least one concern, by considering the direct APIs usage of the line,

is shown on the second column. For both JUnit versions, only the Java APIs usage

was considered. For Clever, which is a complex cloud middleware, other external

APIs have been mapped to concerns, e.g. libvirt3 (virtualisation) and smack 4

(messaging). We manage to tag between 39% and 46% lines of code (according

to the system under analysis). By using the taint-based approach, as described

in Section 4.2.2, we manage to tag all the lines of code that are related by data

dependence, and we can tag between 58% and 64% of lines (fourth column). Once

lines of code have been tagged, we determine clusters, as described in Section 4.2.3.

Only meaningful clusters were considered, i.e. counting at least two lines, the

number of clusters found are in the sixth column, while their average size in the

seventh column.

Since JUnit 3.7 is well known for its modularity, it appears that to solve a

specific problem only a few lines are needed (the average size of its method is 3.50).

This consideration seems to be confirmed by the size of the clusters suggested by

our tool, which is between 3 and 4 lines.

Table 4.3 (JUnit 3.7), Table 4.4 (JUnit 4.10), and Table 4.5 (Clever) show

cluster distribution for each method having at least 2 lines of code. In every table,

the first column shows the number of clusters found on each method, hence whether

a method has zero, one or more clusters. Zero clusters indicates that no concern

tags could be attributed to lines (as shown by the tables, not all the lines have

been given tags).

3https://libvirt.org
4https://www.igniterealtime.org/projects/smack



77

Table 4.3: Clusters distribution for JUnit 3.7

Clusters per Method
JUnit 3.7

Methods AVG(size)
method cluster

0* 285 – – –
0 114 (45%) 3.54 –
1 95 (38%) 5.59 3.89
2 26 (10%) 11.50 3.31
3 8 (3%) 13.00 3.54
4-6 8 (3%) 33.00 5.38
7+ 0 (0%) – –

* method size < 2 lines of code

Table 4.4: Clusters distribution for JUnit 4.10

Clusters per Method
JUnit 4.10

Methods AVG(size)
method cluster

0* 767 – – –
0 214 (46%) 3.45 –
1 215 (46%) 4.45 3.18
2 27 (6%) 10.07 3.02
3 6 (1%) 12.33 2.89
4-6 2 (≃0%) 21.50 3.67
7+ 0 (0%) – –

* method size < 2 lines of code

Table 4.5: Clusters distribution for Clever

Clusters per Method
Clever

Methods AVG(size)
method cluster

0* 839 – – –
0 257 (32%) 5.29 –
1 279 (35%) 7.74 4.46
2 131 (16%) 14.71 4.03
3 51 (6%) 19.92 3.75
4-6 67 (8%) 28.00 3.41
7+ 18 (2%) 51.17 3.54

* method size < 2 lines of code



78

In every table, the first row shows the number of methods having less then 2

lines of code, thus unable to contain a cluster having at least 2 lines. The other

lines refer to methods with at least two lines. For the two versions of JUnit, we can

see that several of these methods (95 in 251 for JUnit 3.7 and 215 in 464 for JUnit

4.10) have only one cluster, this is a strong indication that such methods perform

one well defined task, since all lines are data dependent and with the same set of

tags. Moreover, we can see that the average size of the cluster is similar to the

average size of the method for both of JUnit versions (70% and 71% respectively)

and a little less for Clever (58%). For JUnit 3.7, we find some methods having more

than one cluster, i.e. 26 with two clusters (10% of the number of methods with

at least two lines), while only the 6% of the methods have more than 2 clusters.

Similarly, for JUnit 4.10, we have 27 methods (6% of considered methods) with two

clusters, and 8 methods with more clusters (slightly more than 1% of methods).

Clever has 279 in 803 methods with one cluster, 131 methods with two clusters

and 136 methods with more than three clusters (8% of methods).

Generally, the more clusters per method the more opportunities of refactoring

to separate a well defined task. This is also supported by the not too small average

size of the clusters.

4.5 Tagging examples

In this section, some of the tagging and clustering results, obtained during the

experiments described in Section 4.4, are shown. The taint analysis was performed

using a maximal propagation depth of 4, while clustering used a similarity threshold

of 0.66. For each line, tags and similarity scores (with the previous line) were

added through comments directly aside the code, while clusters id are shown at

the start of the line. In Chapter 5 it will be shown how these clusters of concern

cohesive lines can be used to effectively drive a long method decomposition using

the Replace Method with Method Object refactoring technique.

Figure 4.8 shows the rerunTest() method of the TestRunner class in JUnit

3.7. It has 25 lines of code (LOC). For this method, DeDuCT found 4 clusters:

C78 (5 lines), C79 (3 lines), C81 (3 lines), and C85 (2 lines). C80, C82, C83,

and C84 are ignored, since they are all composed by a single line, thus they are



79

554 private void rerunTest(Test test) {

555 C78 if (!(test instanceof TestCase)) { // sim:0.00 2:string(554) 2:reflection(554)

556 C78 showInfo("Could not reload "+ test.toString()); // sim:0.75 0:string(556)

2:reflection(554)

557 return;

558 }

559 C78 Test reloadedTest= null; // sim:0.88 1:string(573) 2:reflection(573)

560 try {

561 C78 Class reloadedTestClass= getLoader().reload(test.getClass()); // sim:0.67

0:reflection(561) 2:string(554)

562 C78 Class[] classArgs= { String.class }; // sim:0.88 0:reflection(562) 3:string(564)

563 C79 Object[] args= new Object[]{((TestCase)test).getName()}; // sim:0.60 0:string(563)

1:reflection(565)

564 C79 Constructor constructor= reloadedTestClass.getConstructor(classArgs); // sim:0.70

0:reflection(564) 2:string(565)

565 C79 reloadedTest=(Test)constructor.newInstance(args); // sim:0.89 0:reflection(565)

1:string(563)

566 } catch(Exception e) { // untagged

567 C80 showInfo("Could not reload "+ test.toString()); // sim:0.40 0:string(567)

568 return;

569 }

570 C81 TestResult result= new TestResult(); // sim:0.25 2:reflection(571) 3:string(571)

571 C81 reloadedTest.run(result); // sim:0.71 1:reflection(565) 2:string(565)

572

573 C81 String message= reloadedTest.toString(); // sim:0.78 0:string(573) 1:reflection(565)

574 C82 if(result.wasSuccessful()) // sim:0.33 3:reflection(570) 4:string(570)

575 C83 showInfo(message+" was successful"); // sim:0.38 0:string(575) 2:reflection(573)

576 C84 else if (result.errorCount() == 1) // sim:0.38 3:reflection(570) 4:string(570)

577 C85 showStatus(message+" had an error"); // sim:0.38 0:string(577) 2:reflection(573)

578 else

579 C85 showStatus(message+" had a failure"); // sim:1.00 0:string(579) 2:reflection(573)

580 }

Figure 4.8: JUnit 3.7, class: junit.swingui.TestRunner.



80

153 protected String processArguments(String[] args) {

154 C41 String suiteName= null; // sim:0.00 2:string(170)

155 C41 for (int i= 0; i < args.length; i++) { // sim:0.75 1:string(156)

156 C41 if (args[i].equals("-noloading")) { // sim:0.80 0:string(156)

157 setLoading(false); // untagged

158 C41 } else if (args[i].equals("-nofilterstack")) { // sim:1.00 0:string(158)

159 fgFilterStack= false; // untagged

160 C41 } else if (args[i].equals("-c")) { // sim:1.00 0:string(160)

161 C42 if (args.length > i+1) // sim:0.60 2:string(155)

162 C43 suiteName= extractClassName(args[i+1]); // sim:0.60 0:string(162)

163 else

164 C44 System.out.println("Missing Test class name"); // sim:0.00 0:io(164)

165 C45 i++; // sim:0.00 1:string(156)

166 } else {

167 C45 suiteName= args[i]; // sim:0.75 2:string(155)

168 }

169 }

170 C45 return suiteName; // sim:0.75 1:string(162)

171 }

Figure 4.9: JUnit 4.10, class: junit.runner.BaseTestRunner.

not real clusters, but lines having a similarity with the surrounding ones under

the considered threshold. As we can see, all the lines from 555 to 565 are almost

concerning reflection operations, but they were split in two separate clusters because

of the similarity between lines 562 and 563. However, we can see that this is just

under the considered threshold (0.60). Therefore, even if in this iteration two

separate clusters were suggested, the developer may further decide to merge them

in a single one as a result of a more focused, less restrictive clustering iteration (i.e.

by relaxing the threshold from 0.66 to 0.60 just over this class or method).

Figure 4.9 shows the processArguments() method (17 LOC) of the BaseTestRun-

ner class in JUnit 4.10. DeDuCT found 2 clusters: C41 (7 lines), and C45 (3 lines)

(ignoring one-line clusters). As we can see, lines 157 and 159 were untagged, i.e.

not suitable for any tag to be added, due to any API usages or data dependence.

Although, these lines without tags have not caused cluster C41 to be split into

separate clusters (in fact, it goes from line 154 to line 160). This is because DeDuCT

can properly handle these situations, avoiding unnecessary split of clusters due to

isolated untagged instructions. The rational here is that: if an instruction, which

was not tagged, is surrounded above and below by two instructions with a high

similarity, it is possible that also the untagged one also shares the same concern,

yet avoiding a set of similar lines to be split because of a single, untagged, one.

This behaviour can be enabled by configuring a skip factor (typically set to 1



81

line), ignoring a certain number of untagged lines and, if the similarity of the two

surrounding ones is over the threshold, adding all of them to the same cluster. In

fact, the sim:1.00 value stated on line 158 is referred to its similarity with line 156

(i.e. skipping 157 as a single untagged line), and since it is over the threshold, the

cluster was not interrupted, thus including also the skipped line.

Figure 4.10 shows the sendFileSOC() method (40 LOC) of the ImageManager

class in Clever. Being a long method, several clusters have been suggested, some

of them having a number of lines that is over the average size of clusters for the

considered project (that is 3.86, see Table 4.2), i.e. C128 (7 lines), C129 (4 lines),

C131 (5 lines). Other smaller clusters have also been found (C126, C126, and C132

with 2 lines of code).

As we can see, even though the fragment from line 685 to line 702 is a linear and

uninterrupted sequence of instructions, i.e. without any comments or white spaces

helping the developer in identifying lines related to different tasks, DeDuCT was

automatically able to find three different sub-tasks: socket initialisation (C128 ),

data streaming (C129 ), data receiving and closing operations (C131 ).

Finally, Figure 4.11 shows another method of the ImageManager Clever class,

sendFileFTM() (47 LOC). A cluster having a big size was identified, C118 (11

lines, including the untagged line 733), other than two smaller ones, i.e. C116 (3

lines), and C123 (2 lines).

It is important to note that even if a cluster is suggested, not always it is

possible to extract it as a valid fragment, i.e. without violating syntax rules, like

splitting a conditional statement (see Section 2.5 for more details about fragment

extraction). For example, it is not possible to validly extract C116 (lines 728-730)

in a new method without violating the syntax rules, because of the condition of an

if statement was selected but without covering also its body.

We need to decide whether to extract only a part of the cluster (lines 728

an 729) or to use it as a concern seed, i.e. as a starting point for a fragment to

be extracted, and by automatically selecting surrounding lines according to the

language syntax rules. In this case, if we want to extract the entire cluster, we

need also to consider the if body, i.e. lines 731-734. In Section 5.4 a strategy for

an automatic extension of clusters, as concern seeds, into valid fragments will be

presented, showing how the clustering information given by DeDuCT can be used



82

675 private String sendFileSOC(String filePath, String destHost) {

676 try

677 {

678 C126 File f = new File(filePath); // sim:0.00 0:io(678) 1:string(685) 3:net(685)

679 C126 if (!f.exists()) // sim:0.82 0:io(679) 2:string(678) 4:net(678)

680 {

681 C127 logger.error("Can’t read VM file for sending"); // sim:0.56 0:io(681)

682 return null; // untagged

683 }

684

685 C128 logger.info("Sending " + f.getName() + " to " + destHost); // sim:0.38 0:io(685)

0:string(685) 2:net(677)

686 C128 Socket soc = new Socket(destHost, 9999); // sim:0.67 0:net(686) 1:io(692) 2:string(677)

687 C128 logger.info("Connected to " + destHost); // sim:0.67 0:io(687) 0:string(687) 2:net(677)

688 C128 byte[] data = new byte[(int) f.length()]; // sim:0.85 0:io(688) 2:string(678) 2:net(694)

689 C128 BufferedInputStream bis = new BufferedInputStream(new FileInputStream(f)); // sim:0.82

0:io(689) 2:string(678) 4:net(678)

690 C128 bis.read(data, 0, data.length); // sim:0.80 0:io(690) 3:string(689) 3:net(688)

691 C128 bis.close(); // sim:0.78 0:io(691) 3:string(689)

692 C129 DataOutputStream dos = new DataOutputStream(soc.getOutputStream()); // sim:0.58 0:net(692)

0:io(692) 3:string(686)

693 C129 dos.writeInt(data.length); // sim:0.92 0:io(693) 1:net(692) 3:string(688)

694 C129 dos.write(data, 0, data.length); // sim:1.00 0:io(694) 1:net(692) 3:string(688)

695 C129 dos.flush(); // sim:0.91 0:io(695) 1:net(692) 4:string(692)

696 C130 this.logger.info("VM file sent succesfully"); // sim:0.50 0:io(696)

697 C131 DataInputStream dis = new DataInputStream(soc.getInputStream()); // sim:0.42 0:net(697)

0:io(697) 3:string(686)

698 C131 String path = dis.readUTF(); // sim:0.83 0:io(698) 1:net(697) 4:string(697)

699 C131 dis.close(); // sim:1.00 0:io(699) 1:net(697) 4:string(697)

700 C131 dos.close(); // sim:1.00 0:io(700) 1:net(692) 4:string(692)

701 C131 soc.close(); // sim:0.67 0:net(701) 2:io(686) 3:string(686)

702 C132 return path; // sim:0.55 1:io(698) 2:net(698)

703

704 C132 } catch (UnknownHostException ex) { // sim:0.78 1:net(697) 1:io(697) 4:string(697)

705 C133 this.logger.error("Unknown Host Error sending VM file : " + ex.getMessage()); //

sim:0.26 0:io(705) 0:string(705) 0:exception(705)

706 return null; // untagged

707

708 C134 } catch (FileNotFoundException ex) { // sim:0.27 1:io(705)

709 C135 this.logger.error("File not found Error sending VM file : " + ex.getMessage()); //

sim:0.40 0:io(709) 0:string(709)

710 return null; // untagged

711

712 C136 } catch (IOException ex) { // sim:0.40 1:io(709)

713 C137 this.logger.error("IO Error sending VM file : " + ex.getMessage()); // sim:0.40

0:io(713) 0:string(713)

714 return null; // untagged

715 }

716 }

Figure 4.10: Clever, class: org.clever.HostManager.ImageManagerPlugins

.ImageManagerClever.ImageManager.



83

727 private boolean sendFileFTM(String name, String filePath, String destHost) {

728 C116 File f = new File(filePath); // sim:0.00 0:io(728) 1:xmpp(741) 1:string(729)

729 C116 System.out.println("filesize: " + f.length()); // sim:0.86 0:string(729) 0:io(729)

2:xmpp(728)

730 C116 if (!f.exists()) // sim:0.85 0:io(730) 2:xmpp(728) 2:string(728)

731 {

732 C117 logger.error("Can’t read VM file for sending"); // sim:0.45 0:io(732)

733 return false; // untagged

734 }

735

736 try

737 {

738 C118 String nick = destHost.toLowerCase() + "@" + this.conn.getServer().toLowerCase() +

"/Smack"; // sim:0.29 0:string(738) 1:xmpp(739) 1:io(739)

739 C118 System.out.println("OFT to " + nick + " from " + conn.getXMPP().getUser()); //

sim:0.87 0:xmpp(739) 0:string(739) 0:io(739)

740 C118 OutgoingFileTransfer oft = ftm.createOutgoingFileTransfer(nick); // sim:0.87

0:xmpp(740) 1:string(738) 1:io(746)

741 C118 oft.sendFile(f, name); // sim:0.92 0:xmpp(741) 1:io(728) 2:string(728)

742 C118 while (!oft.isDone()) // sim:0.92 0:xmpp(742) 2:string(740) 2:io(740)

743 {

744 C118 if (oft.getStatus().equals(Status.error)) // sim:1.00 0:xmpp(744) 2:string(740)

2:io(740)

745 {

746 C118 System.out.println("ERROR!!! " + oft.getError()); // sim:0.73 0:xmpp(746)

0:string(746) 0:io(746)

747 C118 oft.cancel(); // sim:0.73 0:xmpp(747) 2:string(740) 2:io(740)

748 return false; // untagged

749 }

750

751 C118 System.out.println(oft.getStatus()); // sim:0.85 0:xmpp(751) 0:io(751) 2:string(740)

752 C118 System.out.println(oft.getProgress()); // sim:1.00 0:xmpp(752) 0:io(752)

2:string(740)

753 C119 System.out.println("........"); // sim:0.38 0:io(753)

754 C120 Thread.sleep(1500); // sim:0.00 0:concurrency(754)

755 }

756

757 C121 if (oft.getStatus().equals(Status.complete)) // sim:0.00 0:xmpp(757) 2:string(740)

2:io(740)

758 {

759 C122 System.out.println("Transfer done"); // sim:0.23 0:io(759)

760 return true; // untagged

761 }

762

763 C123 if (oft.getStatus().equals(Status.error)) // sim:0.23 0:xmpp(763) 2:string(740)

2:io(740)

764 C123 System.out.println("Transfer failed: " + oft.getError()); // sim:0.73 0:xmpp(764)

0:string(764) 0:io(764)

765 return false; // untagged

766

767 } catch (XMPPException e) { // untagged

768 C124 System.out.println("Error sending VM image file with the FTM : " + e.getMessage()); //

sim:0.00 0:xmpp(768) 0:string(768) 0:io(768)

769 return false; // untagged

770

771 } catch (InterruptedException e) { // untagged

772 C125 System.err.println("Error sleeping during OFT : " + e.getMessage()); // sim:0.00

0:string(772) 0:exception(772) 0:io(772)

773 return false; // untagged

774 }

775 }

Figure 4.11: Clever, class: org.clever.HostManager.ImageManagerPlugins

.ImageManagerClever.ImageManager.



84

to effectively assist complex refactoring opportunities.

4.6 Conclusions

In this chapter an approach to attribute concerns names to code lines has

been presented. Such a characterisation allows us to find out whether all the code

lines in a method contribute to a single small task, therefore modularity can be

automatically assessed. Taint analysis was used to spread the initial concern seeds,

given by the standard Java libraries APIs. The approach is fully automatic and

innovative in that it uses the APIs as a source of concern identification. Then,

it finds all (and only) the data dependent code lines regardless of the number of

lines that can be in between. By analysing three industrial open source systems,

an experimental evaluation of the effectiveness of the proposed approach was also

given, showing a very high granularity of the given results, great accuracy and

effectiveness.



85

Chapter 5

Suggest Complex Refactorings

Decomposing long methods into smaller pieces is commonly carried out by

applying a sequence of Extract Methods. However, local variable usages can make

some code hard to be extracted. In the literature the Replace Method with Method

Object was proposed, which consists in moving the whole long method in a new

class, then creating a field for each variable, so letting the developer free to apply

any extraction without worrying about variable dependences. However, this can

lead to classes exhibiting low cohesion, having many fields used by a few of its

methods. Moreover, the considered fields may not correctly describe the actual

object state, making the class harder to understand.

In this chapter, data dependence analysis has been used to give an automatic

approach for replacing a method with a Method Object, with the aim of optimising

the number of variables to become fields while minimising the lack of cohesion of

the resulting Method Object. An experimental use case will be deeply described,

showing how the concern tagger proposed in Chapter 4 can be jointly used with

the approach presented in this chapter, thus providing an automatic tool to find,

and to effectively apply, complex refactoring opportunities.

5.1 Assist Replace Method with Method Object

One of the most important problems that developers have to face to improve

the modularity of their code is to decompose a long method into smaller pieces,

so that these are easier to move, comprehend, and maintain. Long methods are



86

troublesome because they often implement different concerns, which can be hard

to identify due to the complex logic they come with.

This decomposition is commonly carried out by applying the Extract Method

refactoring, which consists in moving a code portion into its own method, giving it a

name that better explains its purpose. However, even assuming that the developer

has correctly identified the code to be extracted (which is a different problem,

discussed in Chapter 4, i.e. identifying meaningful portions of codes performing a

specific task), this operation can be burdened by the use of local variables.

To move the selected code to another method, the developer needs to scan the

extracted code to find references to any variables that are local in scope to the

source method, thus determining which ones need to be passed either as input

parameters or returned as output values. The use of local variables previously

declared or further used outside the selected fragment is a data dependence between

the code to be extracted end the rest of the method. Sometimes, this dependence

can even make the extraction unfeasible, that is, when more then one output value

need to be returned. In this case is up to the developer to decide whether to make

one of these variables a field or to devise a different decomposition.

Considering that refactoring a long method usually requires more then one

fragment to be extracted, dealing with local variables can be cumbersome for the

developer without proper assistance.

In the literature [12, 44], to avoid problems dealing with variables, the Replace

Method with Method Object was proposed, which consists in moving the whole long

method in a new class, then creating a field for every declared variable. In this

way, the developer is free to apply extract method any times without worrying

about the visibility of every variable, now become fields. Decomposing the long

method into many methods in a separate object is also a good decision to ease the

extension of the method capabilities, without affecting the rest of the original class.

Although the effectiveness of this technique has been proved, replacing every

variable with a field can lead to classes exhibiting low cohesion, having many fields

used by a few of its methods.

Moreover, long methods usually convey different responsibilities, thus possibly

requiring a large number of variables to accomplish many small tasks. Therefore,

considering each of these as a field will produce a class with a large number of fields



87

which, taken as a whole, may not correctly describe the actual state of the object.

On the other hand, there is no need to replace every variable with a field, such as

the ones that appear to be used internally only in one of the methods, i.e. being

temporary variables for one of the selected decomposition.

In the following sections, we will see how it is possible to replace a method with a

Method Object while optimising the number of variables to become fields. This will

require the analysis of the data dependencies among the different decompositions

the developer has chosen, automatically suggesting, for each variable, if it has to

be considered: (i) as an input parameter for a method to be extracted; (ii) as a

return value; (iii) as an internal variable; (iv) as a field for the Method Object.

Moreover, according to the chosen decomposition, fields will be carefully selected,

identifying which combination (field set) minimises the lack of cohesion of the

resulting Method Object.

In Section 5.2 the first part of the assisting approach will be discussed, showing

how data dependencies can be used to automatically identify the role each local

variable will have, thus indicating both input parameters and possible return values

for each of the method to be extracted.

In Section 5.3 the second part of the approach will be discussed: using a

combinatorial approach, all the possible field sets are enumerated, ruling out the

ones not satisfying proper constraints imposed by the chosen decomposition. These

combinations are then ordered by a score based on the LCOM [18, 55] metric. As

a final result, the approach will suggest which variables become fields both to let

every extraction feasible (thus having only one return value) and maximise the

class cohesion.

In Section 5.4 an experimental use case will be shown. In Chapter 4 it has

been described how to automatically characterise (tag) the code with the concern

it addresses, according to used APIs and data dependence. The obtained concern

information is used to identify code fragments that can be extracted into smaller

methods, focused on a single concern. For a long method, different fragments are

commonly suggested, thus endorsing the use of Replace Method with Method Object

refactoring technique. We will see how the fragments suggested by concern tags can

be used as seeds for a set of methods to be extracted in a real world scenario, thus

showing how the joint use of both the proposed approaches can help the developer



88

in effectively decompose long methods into a cohesive Method Object.

5.2 Determine fragment data dependences

To describe how the approach works, let us consider a simple use case. Figure 5.1

shows the code for processRequest(request), which is a method of a book store

web service used to process incoming user requests. This method, as commonly

happens, was initially conceived by the developer to perform all the necessary steps

to accomplish a task, but which turned into a complex and long method (which

has 43 lines of code). Helped by the comments inside the code, we can see that the

task performed by the method can be divided into different steps: (i) parse input

request message; (ii) prepare a query for the book store database; (iii) execute the

query; (iv) parse query results; (v) send the results to the client using a socket

connection.

Let us suppose that the developer wants to split this long method into different

fragments, possibly one for each of the listed steps, providing amethod decomposition

reducing method length and complexity (such as reducing the number of loops or

other control statements that make the code harder to read).

5.2.1 Fragments selection

As described in Section 2.5, one of the main approaches to decompose a method

is by identifying fragments to be later extracted using the Extract Method refactoring

technique. A code fragment is a contiguous sequence of statements that can be

extracted without breaking syntax constraints, i.e. being a valid extraction.

To determine if a fragment can be a valid extraction, we need a hierarchical

model representing the block structure of the method source code. In this model, a

block is a sequence of contiguous statements, i.e., statements that follow a linear

control flow. Statements within a block are divided into two categories: basic

statements and complex control structures. Complex control structures include: for

statements, if-then-else, while, try-catch, do and switch statements [118]. Therefore,

to be a valid extraction, a fragment must respect these syntax constraints: (i)

selected statements are part of a single block; (ii) inside a block, only contiguous



89

1 Connection conn;

2 PrintWriter sockWriter;

3 private void processRequest(String request) throws

SQLException {

4 // Parse request message: command,text

5 String[] tokens = request.split(",");

6 String command = tokens[0];

7 String text = tokens[1];

8 // Prepare query according to command

9 String searchField = null;

10 if (command.compareTo("AU") == 0) {

11 searchField = "AUTHORS";

12 } else if (command.compareTo("TT") == 0) {

13 searchField = "TITLE";

14 } else {

15 sockWriter.println("ER,request syntax error");

16 }

17 // Execute query

18 if (searchField != null) {

19 String query = "SELECT * FROM STORE WHERE "

20 + searchField + " LIKE ’%" + text + "%’";

21 Statement stmt = conn.createStatement();

22 ResultSet row = stmt.executeQuery(query);

23 List<String> resultList = new ArrayList<String>();

24 // Parse query results

25 while (row.next()) {

26 String id = row.getString(1);

27 String authors = row.getString(2);

28 String title = row.getString(3);

29 int quantity = Integer.parseInt(row.getString(4));

30 if (quantity > 0) {

31 String result = id + ":" + authors + ":" + title;

32 resultList.add(result);

33 }

34 }

35 // Send results to the client

36 String response = getDefaultHeader(command);

37 response += getEmptyResponseSet();

38 if (resultList.size() > 0) {

39 response = getHeader(command, resultList.size());

40 for (String result : resultList)

41 response += result + ";";

42 }

43 sockWriter.println(response);

44 stmt.close();

45 }

46 }

// Parse request message: command,text

String[] tokens = request.split(",");

String command = tokens[0];

String text = tokens[1];

// Prepare query according to command

String searchField = null;

if (command.compareTo("AU") == 0) {

searchField = "AUTHORS";

} else if (command.compareTo("TT") == 0) {

searchField = "TITLE";

} else {

sockWriter.println("ER,request syntax error");

}

String query = "SELECT * FROM STORE WHERE "

+ searchField + " LIKE ’%" + text + "%’";

Statement stmt = conn.createStatement();

ResultSet row = stmt.executeQuery(query);

List<String> resultList = new ArrayList<String>();

String id = row.getString(1);

String authors = row.getString(2);

String title = row.getString(3);

int quantity = Integer.parseInt(row.getString(4));

if (quantity > 0) {

String result = id + ":" + authors + ":" + title;

resultList.add(result);

}

response = getHeader(command, resultList.size());

for (String result : resultList)

response += result + ";";

Figure 5.1: The long method that needs to be replaced with a Method Object. The
code blocks selected for extraction are also depicted.



90

statements are selected; (iii) if a statement is selected, then all statements in its

children blocks of statements are automatically selected [90].

For example, in Figure 5.1 the code block that goes from line 8 to line 16

(hereafter simply block 8-16) does not break syntax rules, since it is composed of

a sequence of (two) contiguous statements, i.e. a basic statement (line 9) and a

complete complex control structure (lines 10-16). On the contrary, fragment 9-13

cannot be extracted in a valid way, since the if-then-else complex control structure,

started at line 10, has been split. Therefore, to respect syntax rules, if a statement

is selected, then all of its children statements must be selected.

Once determined if a code fragment can be extracted, another problem is to

decide if it should be extracted to improve code quality. As a rule of thumb, if

a code portion needs a comment to understand its purpose, then it should be

extracted into a new well-named method [44]. However, to automatically select

code to be extracted different approaches have been proposed in the literature, such

as selecting the complete computation of a given variable [1, 100, 101], selecting

code loosely coupled with the rest of the method, in terms of used variables and

types [90, 118], or selecting statements related to the same or similar concern (as

shown in Chapter 4).

All the above techniques provide suggestions to let the developer select fragments,

each performing a single task. The set of fragments considered for extraction is

called method decomposition.

As shown in Figure 5.1, the chosen method decomposition is so defined:

1. Fragment 4-7: the code parsing the input request;

2. Fragment 8-16: the conditional statement selecting the searchField value

according to the command variable;

3. Fragment 19-23: the code executing prepared query;

4. Fragment 26-33: the body of the while statement, parsing each query result;

5. Fragment 39-41: the body of the if statement, preparing the response value

in case of a non-empty result set.

To apply this method decomposition, instead of using five different Extract

Method refactorings, thus adding the new method inside the original class, Replace



91

Method with Method Object refactoring technique is used. This decision may be

motivated by different factors: (i) it makes every extract method straightforward,

since every variable is replaced by a field inside the Method Object, thus avoiding

any decision about input parameters or return value to be used; (ii) every added

method and field does not mingle with the ones already present inside the original

class, thus avoiding to make the class responsibility harder to understand; (iii) the

developer may consider this decomposition as a first step for a further extension,

that will be easily applied in the context of the new Method Object.

As described in [44] (here copied for completeness), to apply a Replace Method

with Method Object the following steps need to be performed:

• create a new class (the Method Object);

• give the new class a final field as a reference to the source object (the ones

that hosted the original method);

• give it also a field for every temporary variable and parameter of the original

method;

• give the new class a constructor that takes the source object and each

parameter;

• give it a method called compute without parameters and copy the body of

the original method inside of it;

• use the source object field to refer any method and field of the original object;

• replace the old method with the one that creates the new object and calls

compute.

Following these steps, the resulting Method Object has been created and each

fragment of the devised decomposition has been extracted, without worrying about

parameters to be passed or values to be returned, because variables have become

fields. Figure 5.2 shows the final result for the compute method, which shows how

every fragment has been replaced by a method extraction. The original method

body has been replaced by the following statement: new RequestProcessor(this,

request).compute().



92

1 public class RequestProcessor {

2 BookServer bs;

3 // Connection conn; --> bs.conn

4 // PrintWriter sockWriter; --> bs.sockWriter

5

6 // All variables as fields

7 String request;

8 String [] tokens;

9 String command;

10 String text;

11 String searchField;

12 String query;

13 Statement stmt;

14 ResultSet row;

15 List<String> resultList;

16 String id;

17 String authors;

18 String title;

19 int quantity;

20 String result;

21 String response;

22

23 public RequestProcessor(BookServer source, String request) {

24 this.bs = source;

25 this.request = request;

26 }

27

28 public void compute() throws SQLException {

29 parseRequest();

30 prepareQuery();

31 // Execute query

32 if (searchField != null) {

33 executeQuery();

34 // Parse query results

35 while (row.next()) {

36 parseResults();

37 }

38 // Send results to the client

39 response = getDefaultHeader(command);

40 response += getEmptyResponseSet();

41 if (resultList.size() > 0) {

42 getResponse();

43 }

44 bs.sockWriter.println(response);

45 stmt.close();

46 }

47 }

48

49 [...]

50 }

Figure 5.2: The compute method resulting by applying the Method Object refactor-
ing, making all non-temporary variables a field (15 added fields).



93

5.2.2 Determine input, output and hidden variable sets

All the 15 variables of the original method have become fields into the Method

Object. However, most of these fields are not required to support the data flow

between the extracted methods and compute. For example, looking at the code on

Figure 5.1 in fragment 4-7 the tokens variable is declared and then used to parse

user request, but it is never used outside of this fragment. It would be better to let

it be a temporary variable internal to the respective extracted method, instead of

a field that would be accessed only by that method. Similarly, a result variable

is declared twice but with different scopes, and both are never used or referred

outside the respective fragment, i.e. fragment 26-33 and 39-41.

Similar considerations about internal, or hidden, variables can be made to

determine input and output variables for each fragment. However, we cannot simply

look for accessed and assigned variables respectively, because this will lead to false

positives and unnecessary variable sharing, due to the fact that an assigned variable

could be not used any more outside the fragment, or reassigned in another fragment.

For example, in Figure 5.1 the response variable is defined on line 36 and assigned

on line 37. Looking at fragment 39-41 it is accessed on line 41, however, there

is no need to consider it as an input variable, since the value read on line 41 is

the one assigned inside the same fragment on line 39, thus it does not depend on

the external assignment made on line 37. In a similar way, in fragment 19-23 the

variable query was defined (line 19) but never used outside the fragment, thus

there is no need for it to be considered as an output variable. However, manually

checking where a variable is referred outside a fragment and if there is an actual

data dependence can be cumbersome and time consuming for the developer, thus

error prone.

To automate this process, we used data dependence analysis. Figure 5.3 shows

the data dependence graph for processRequest() method, obtained using the Soot

framework1 [105]. Nodes, which represent the numbered method lines, are grouped

according to fragments. Every line that do not belong to any fragment, i.e. not

selected for any extraction, e.g. line 3 and 18, will be considered as belonging to

the same external fragment, yet it will not be considered for an extraction. Edges

represent a data dependence between two lines by means of a specific variable,

1https://sable.github.io/soot/



94

Fragment 26-33

Fragment 4-7

Fragment 8-16

Fragment 39-41

Fragment 19-23

3

5

request

18

25

36

37

response

43

response

38 44

6

tokens

7

tokens

command

10

command

12

command

39

command

19

text 9

searchFieldsearchField

11

searchFieldsearchField

13

searchFieldsearchField

1415

22

query

21

stmtstmt

row

26

row

27

row

28

row

29

row

23

resultList

32

resultList

resultList

40

resultList

31

id authors title

30

quantity

result

response41

responseresult

response

Figure 5.3: The data dependence graph of processRequest() (see Figure 5.1).
Nodes represent method lines, and are grouped into fragments. Each edge represents
a data dependence between two lines caused by the variable indicated by its label.
Red edges refer to external variable dependences, i.e. dependences between nodes
of different fragments. Blue edges refer to internal variable dependences, i.e.
dependences between nodes of the same fragment.



95

given as edge label.

Definition 10. Line v is data dependent on line u by means of variable x if u

accesses the value of x previously assigned by v. This is possible if (i) there exists

an execution path p in the control flow graph from u to v, and if (ii) no other

statements on p overwrite the value defined by u.

Some of these edges connect nodes belonging to different fragments (depicted

in red). Other ones connect nodes belonging to the same fragment (depicted in

blue). The former show variable dependences that need to be preserved after the

extraction, i.e. using input parameters, return values or shared object fields. The

latter indicate dependences that can be hidden inside the new method once the

fragment has been extracted. In fact, not every variable used inside a fragment

needs to be considered as input parameter, even if defined and assigned outside the

fragment.

Definition 11. Given a set of fragments, we will say that an edge (u, v) refers to

an external variable dependence if u and v do not belong to the same fragment.

Definition 12. Given a set of fragments, we will say that an edge (u, v) refers to

an internal variable dependence if u and v belong to the same fragment.

Definition 13. Given a fragment F and its induced subgraph GF in the dependence

graph, the input variable set IF is composed of every variable associated with

external variable dependence edges coming into GF .

Definition 14. Given a fragment F and its induced subgraph GF in the dependence

graph, the output variable set OF is composed of every variable associated with

external variable dependence edges going out from GF .

Definition 15. Given a fragment F , the hidden variable set HF is composed of

every variable x associated with internal variable dependence edges as long as

x /∈ IF ∪OF

For example, in fragment 19-23, query is a hidden variable, since only on the

(19,22) internal edge, while stmt is instead an output variable because both on

the (21,22) internal edge and the outgoing (21,44) external edge. Variable text



96

F1 (4-7): I={request} O={command, text} H={tokens}

F2 (8-16): I={command} O={searchField} H={}

F3 (19-23): I={searchField, text} O={stmt, row, resultList} H={query}

F4 (26-33): I={row, resultList} O={} H={id, authors, title, quantity, result}

F5 (39-41): I={resultList, command} O={response} H={result}

Original method: H={}

Figure 5.4: The I (input), O (output), and H (hidden) sets of variables found by
using a data dependence analysis.

is an output variable for fragment 4-7 and an input variable for fragment 19-23

because of the incoming (7-19) external edge. Variable searchField is an input

variable for fragment 19-23 because of (9,19), (11,19), and (13,19). Variables row

and resultList are both output variables because of the external edges going out

respectively from node 22 and 23.

Following these definitions, we have analysed the data dependence graph and

obtained the input, output, and hidden set for every fragment. Results are shown

in Figure 5.4. We can see that 7 different hidden variables (8, if we consider result

twice) are not supporting data sharing, i.e. {tokens, query, id, authors, title,

quantity, result}. All variables that are not used by any fragment are considered

as hidden inside the original method. In this use case, every variable is used by at

least one extracted fragment.

In conclusion, by applying the Replace Method with Method Object as described

in the refactoring catalogue, we would have to consider all the 15 variables of the

original method to become fields of the Method Object. However, by using the

described data dependence analysis, we found that 7 of these fields refer to hidden

variables, thus they will be used only by one of the methods. Moreover, these fields

are not useful to ease method extraction, since they are not involved in any variable

dependence. For these reasons, we can remove all the 7 hidden variables from the

object fields without being worried of changing the program behaviour, so reducing

the number of Method Object fields from 15 to 8.

5.2.3 Extend data dependence analysis

Using data dependence we were able to automatically identify input and output

variables. However, sometimes this is not enough. Let us consider the example



97

1 String v = computeVar();

2 //-- Fragment to be extracted --//

3 if (cond()) {

4 v = newValue();

5 } else {

6 doSomethingElse();

7 }

8 //------------------------------//

9 use(v)

1 /* Fragment extraction */

2 int extracted(int v) {

3 if (cond()) {

4 v = newValue();

5 } else {

6 doSomethingElse();

7 }

8 return v;

9 }

Figure 5.5: Even if v is never accessed by the fragment to be extracted (see code
on the left), it has to be considered as an input variable, due to the return v

statement that will be eventually added after the fragment extraction (see code on
the right).

shown in Figure 5.5 (left side). We want to extract fragment 3-7 from a method

and determine input and output variables to define input parameters and return

value. Only v is referred with an assignment, thus the only dependence that we can

see into the data dependence graph is between line 4 and 9. Using the approach

previously described, this fragment will have only v as an output variable and no

input variables, thus suggesting that the extracted method will have no parameters

and v as a return value. However, if the else branch is executed, the value of v will

not be overwritten, thus requiring the previous value to be returned, and should

be given as an input parameter. Figure 5.5 (right side) also shows the code of the

validly extracted method.

This problem is caused by an implicit dependence that became explicit only

after the method extraction, i.e. caused by the return v statement that will finally

use the variable while the original fragment does not. To make our approach able

to correctly behave in these situations we need to extend the static analysis with a

further step.

Definition 16. Given a fragment F and its input variable set IF and output

variable set OF , let s be the first instruction of the fragment and e a symbolic

instruction added at the end of the fragment: for each variable x ∈ OF \ IF , if there

exists a path p from s to e where x is never assigned (written), then x should be

added to IF .

In the example shown in Figure 5.5 (left side), the execution path causing the

variable v to be added to the input set is in fact the sequence: line 3, line 6, end of



98

fragment e. This analysis will be executed after the data dependence analysis to

possibly add some output variables to the input set in such situations.

5.3 Field Set selection

While hidden variable sets tell which variables are not shared among different

fragments, thus not requiring any field to be added, input and output sets tell

which input parameters or return variables will be needed in case of a method

extraction, i.e. without considering the support given by the fields added for the

Method Object refactoring.

Since we want to reduce the number of fields to be added to the Method Object,

at a first attempt the developer may decide to limit fields usage as much as possible,

thus using every input variable as a parameter, and use fields only when more

than one output variable has been found for a fragment. Choosing which one may

depend on different factors, such as the number of fragments that require it, either

as input or output variable.

In fragment 4-7, both text and command are output variables. Typically

programming languages do not allow multiple return values, thus forcing the

developer to set at least one of them as a field.

Instead of avoiding any non mandatory field, in our approach we look for the

field combination that maximise the class cohesion. This will require both a tool to

enumerate all possible combination of field candidates respecting some enumeration

rules, and a cohesion metric to evaluate the cohesion value provided for the class

by each candidate.

5.3.1 Cohesion for a Method Object

Given a method decomposition in a set of fragments D = {Fi}(i = 1, ..,m),

then the set of field candidates C is so defined.

C =
⋃

Fi∈D

IFi
∪OFi

(5.1)

To measure the class cohesion provided by a given a candidate combination



99

K = {C1, ..., Cn}, we use the LCOM metric proposed by Henderson-Sellers [55].

Consider the decomposition D = {Fi}(i = 1, ...,m), and the combination K =

{Cj}(j = 1, ..., n) of field candidates. Let µ(Cj) the number of fragments using

candidate Cj (either as an input or an output variable). LCOM for a given field

combination K is so defined.

LCOM(C1, ..., Cn) =
1
n

∑a
j=1 µ(Cj)−m

1−m
(5.2)

Figure 5.4 shows the input and output sets of all the 5 fragments (in order

F1, ..., F5). By the union of all of those sets we obtain the following candidate set.

C = {request, command, text, searchF ield, stmt, row, resultList} (5.3)

Let us suppose we want to evaluate how good for the final cohesion of the

Method Object will be choosing the candidates combination K = {text, stmt}.

D = {F1, ..., F5};K = {text, stmt};

m = 5;n = 2

µ(text) = |{F1, F3}| = 2

µ(stmt) = |{F3}| = 1

LCOM(text, stmt) =
1
2
[(µ(text)− 5) + (µ(stmt)− 5)]

1− 5
= 0.87

5.3.2 Constrained enumeration of field sets

Not every field combination is behaviour preserving. In fact, since F1 and F3

have respectively two and three output values, only one for each fragment can be

a return value, forcing the others to be a part of each combination. Therefore,

K = text, stmt is not a legal combination and needs to be ruled out. We need a

tool for a constrained enumeration of all the legal candidate combinations.

In previous works [21, 22, 23] we used ATGT [46], that is a tool for automatically



100

generating test sequences from an Abstract State Machine (ASM) specification

(using the AsmetaL2 language). Based on the Yices SMT (Satisfiability Modulo

Theories) solver3, it was conceived to support t-wise constrained combinatorial

interaction testing [24]. The ASM model is used both to describe enumeration

domains and constrains to rule out illegal combinations. It finally uses a combina-

torial approach to optimise the dimension of the resulting test suite, according to

the chosen degree of interaction [24].

In the proposed approach, the enumeration domain is composed of the set of

candidates C, while the enumeration constraints (or rules) are the followings:

1. if a fragment has more output variables, only one of them can be a variable

and the other ones must be fields;

2. if a fragment has a loop index as an input variable, it cannot become a field.

While the first is a mandatory rule, since it is needed to preserve the behaviour

of the code, the second one may be considered as optional, but it is useful to

improve code readability and object state description. Looking again at the code

of fragment 26-33 (see Figure 5.1) we can see that the body of a while statement

has been selected for the extraction. The row variable is the index of this loop,

and is necessary as an input for the selected fragment. Letting it be a field will

make the code of the compute() method harder to read, because it will not make it

explicit that the variability of the extracted fragment depends on the loop index.

Nevertheless, the most important reason is that a loop index is a temporary variable

that is only used to assist the loop statement, thus typically it is not useful to

describe the object state because of its variability.

By automatically finding (i) which fragments have more than one output variable,

and (ii) which fragments use an input variable as a loop index, we have automated

the generation of the ASM, which will be used for the constrained enumeration of

valid field combination, i.e. respecting the rules described above. In this way, the

developer only needs to provide a set of fragments as a method decomposition, and

the approach will automatically provide the field set maximising the Method Object

2http://asmeta.sourceforge.net/index.html
3http://yices.csl.sri.com



101

1 asm processRequest

2 import StandardLibrary

3 signature:

4

5 enum domain Candidate = {FLD|VAR}

6

7 dynamic monitored request : Candidate

8 dynamic monitored command : Candidate

9 dynamic monitored text : Candidate

10 dynamic monitored searchField : Candidate

11 dynamic monitored stmt : Candidate

12 dynamic monitored row : Candidate

13 dynamic monitored resultList : Candidate

14 dynamic monitored response : Candidate

15

16 definitions:

17 // F1

18 invariant inv_multiout_b1 over command,text : command=FLD or text=FLD

19

20 // F3

21 invariant inv_multiout_b3_stmt over stmt,row,resultList :

22 stmt=VAR implies row=FLD and resultList=FLD

23 invariant inv_multiout_b3_row over stmt,row,resultList :

24 row=VAR implies stmt=FLD and resultList=FLD

25 invariant inv_multiout_b3_resultList over stmt,row,resultList :

26 resultList=VAR implies stmt=FLD and row=FLD

27

28 // F4

29 invariant inv_loopindex_b4 over row : row=VAR

30

31 default init s1:

Figure 5.6: The ASM for the constrained enumeration of field sets. It was au-
tomatically generated by the analysis of the input and output sets of the given
fragments.

cohesion. Moreover, by using any automatic fragment selection approach, such as

the one proposed in Chapter 4, the refactoring process can be fully automated.

Figure 5.6 shows the ASM the obtained ASM. The advantages of using this

representation is that new rules can be easily added for future extensions of the

approach. Line 5 shows the enumeration domain for the Candidate elements (field

of variable). Line 7 to 14 list the considered candidates, i.e. all the non hidden

variables. All the other lines have been automatically generated to define the

enumeration constraints (using a set of invariants) for all of the fragments. Line

18 applies rule 1 for F1: having two output variables (command,text), at least one

of those must be a field. The same rule is applied to F3 that having more then

two output variables (stmt,row,resultList) we need an invariant for each of the

three candidates: if a candidate is set to VAR (variable) the others must be set



102

INFO - violated: 24 covered: 0 infeasible: 232

INFO - 24 test results are generated

INFO - reducing test suite

INFO - test suite has not been reduced

1 : row=VAR request=VAR response=VAR text=VAR resultList=FLD command=FLD searchField=FLD stmt=FLD

2 : row=VAR request=FLD response=VAR text=FLD resultList=FLD command=FLD searchField=FLD stmt=FLD

3 : row=VAR request=VAR response=VAR text=FLD resultList=FLD command=FLD searchField=FLD stmt=FLD

4 : row=VAR request=FLD response=FLD text=VAR resultList=FLD command=FLD searchField=VAR stmt=FLD

5 : row=VAR request=VAR response=FLD text=VAR resultList=FLD command=FLD searchField=FLD stmt=FLD

6 : row=VAR request=FLD response=FLD text=FLD resultList=FLD command=VAR searchField=VAR stmt=FLD

7 : row=VAR request=FLD response=VAR text=FLD resultList=FLD command=FLD searchField=VAR stmt=FLD

8 : row=VAR request=FLD response=VAR text=FLD resultList=FLD command=VAR searchField=FLD stmt=FLD

9 : row=VAR request=FLD response=VAR text=FLD resultList=FLD command=VAR searchField=VAR stmt=FLD

10 : row=VAR request=FLD response=VAR text=VAR resultList=FLD command=FLD searchField=VAR stmt=FLD

11 : row=VAR request=FLD response=FLD text=VAR resultList=FLD command=FLD searchField=FLD stmt=FLD

12 : row=VAR request=VAR response=VAR text=FLD resultList=FLD command=FLD searchField=VAR stmt=FLD

13 : row=VAR request=VAR response=VAR text=FLD resultList=FLD command=VAR searchField=FLD stmt=FLD

14 : row=VAR request=VAR response=FLD text=FLD resultList=FLD command=VAR searchField=FLD stmt=FLD

15 : row=VAR request=FLD response=FLD text=FLD resultList=FLD command=VAR searchField=FLD stmt=FLD

16 : row=VAR request=VAR response=VAR text=VAR resultList=FLD command=FLD searchField=VAR stmt=FLD

17 : row=VAR request=FLD response=FLD text=FLD resultList=FLD command=FLD searchField=VAR stmt=FLD

18 : row=VAR request=FLD response=FLD text=FLD resultList=FLD command=FLD searchField=FLD stmt=FLD

19 : row=VAR request=FLD response=VAR text=VAR resultList=FLD command=FLD searchField=FLD stmt=FLD

20 : row=VAR request=VAR response=FLD text=FLD resultList=FLD command=FLD searchField=VAR stmt=FLD

21 : row=VAR request=VAR response=FLD text=VAR resultList=FLD command=FLD searchField=VAR stmt=FLD

22 : row=VAR request=VAR response=VAR text=FLD resultList=FLD command=VAR searchField=VAR stmt=FLD

23 : row=VAR request=VAR response=FLD text=FLD resultList=FLD command=VAR searchField=VAR stmt=FLD

24 : row=VAR request=VAR response=FLD text=FLD resultList=FLD command=FLD searchField=FLD stmt=FLD

Figure 5.7: Legal variable and fields combinations given by ATGT.

to FLD (field). In F4 row is used as a loop index, thus requiring the rule 2 to be

applied, that is, row must be set to VAR4.

The enumerated combinations over the 8 candidates that respected the described

constraints are shown in Figure 5.7. Among all the 256 possible combinations (28)

only 24 respected the devised constrains, thus 232 of them have been ruled out.

Since we are not interested in the combinatorial optimisation provided by ATGT,

we have set a 8-wise coverage, thus as the number of the considered candidates.

For example, the first combination selected {request,text,row} as variables, and

{resultList,stmt,searchField,command} as fields. As we can see, all of these

combinations have either command or text as a field, due to the behaviour constraint

on F1. The same consideration holds for the constraint on F3. Moreover, every

combination has row as a variable due to the loop index constraint on F4.

4For more details about how to define an ASM using the AsmetaL language refer to:
http://fmse.di.unimi.it/asmeta/download/AsmetaL guide.pdf



103

Table 5.1: Legal field sets ordered by score=LCOM(fs)
Field Set score
command,resultList,stmt 0.67
command,resultList,stmt,text 0.69
command,resultList,searchField,stmt 0.69
command,resultList,searchField,stmt,text 0.70
resultList,stmt,text 0.75
command,resultList,searchField,stmt,text,request 0.75
command,resultList,stmt,text,request 0.75
command,resultList,stmt,request 0.75
command,resultList,searchField,stmt,request 0.75
command,resultList,searchField,stmt,response 0.75
command,resultList,searchField,stmt,response,text 0.75
command,resultList,stmt,response 0.75
resultList,searchField,stmt,text 0.75
command,resultList,stmt,response,text 0.75
command,resultList,searchField,stmt,response,text,request 0.79
command,resultList,stmt,response,text,request 0.79
command,resultList,searchField,stmt,response,request 0.79
command,resultList,stmt,response,request 0.80
resultList,searchField,stmt,text,request 0.80
resultList,searchField,stmt,response,text 0.80
resultList,stmt,text,request 0.81
resultList,stmt,response,text 0.81
resultList,searchField,stmt,response,text,request 0.83
resultList,stmt,response,text,request 0.85

5.3.3 Select best field set

For each of the legal combinations listed in Figure 5.7 we can use Equation 5.2

to determine the cohesion of the Method Object. Note that we limit the evaluation

of this metric to the method obtained by the extraction of the selected fragments,

thus not considering both the compute() method and the class constructor. The

LCOM values obtained for each fields set are shown in ascending order in Table 5.1.

We can see that the field set providing the lowest lack of cohesion is {command,

resultList, stmt} with a LCOM value of 0.67. Therefore, this is the preferred

combination to be used inside the Method Object. Once fields have been selected

and added to the class, the fragment extraction from the compute() method can

be easily performed using the assistance of the Extract Method refactoring tools

commonly provided by advanced IDEs. This operation will be performed without

any error of multiple output values, since thanks to our approach we have already

added necessary fields to avoid this problem. Figure 5.8 shows the final version



104

Table 5.2: Comparison of the number of fields for the resulting class using different
approaches

Field selection approach number of fields
All variables 15

Only non-hidden 8
Minimising LCOM 3

of the class after fragment extractions, using command, resultList, and stmt as

class fields.

Maximising the cohesion is not the only advantage we obtained. By preserving

the use of the right variables in the compute() method, i.e. the original method

after the fragment extraction, we better understand the data flow between the

different fragments, by the use of parameters and return values.

Another important difference is that now compute() may preserve some of the

parameters of the original method. In this way, the constructor will take only

the method parameters that were selected for describing the object state, i.e. the

selected fields. The other ones, selected as variables, will be given to the compute(),

like the request parameter in this use case.

In conclusion, using this approach we were able to automatically select only

useful fields. As summarised in Table 5.2, the traditional refactoring approach tells

us to use all variables as fields to ease method decomposition (15 fields). However,

once decided the fragments to be extracted, we can use data dependence analysis

to determine which variables are actually hidden inside the extracted method, and

reducing the number of required fields (8 fields). Moreover, not every field set

provides a high level of object cohesion. By using a constrained enumeration and

a cohesion metric we can determine the field set that provides the lowest lack of

cohesion, thus reducing again the number of required fields (3 fields).

5.4 Experiments

To assess the effectiveness of the described approach, let us consider a real world

use case, by refactoring a long method taken from the Clever cloud middleware

used for experiments in Section 4.4; ImageManager.storageIM() (the complete

method listing is shown in Appendix A.1).



105

1 public class RequestProcessor {

2 BookServer bs;

3 // Connection conn; --> bs.conn

4 // PrintWriter sockWriter; --> bs.sockWriter

5

6 // Fields selected by the tool

7 String command;

8 Statement stmt;

9 List<String> resultList;

10

11 public RequestProcessor(BookServer source) {

12 this.bs = source;

13 }

14

15 private void compute(String request) throws SQLException {

16 String text = parseQuery(request);

17 String searchField = prepareQuery();

18 // Execute query

19 if (searchField != null) {

20 ResultSet row = executeQuery(searchField, text);

21 // Parse query results

22 while (row.next()) {

23 parseResults(row);

24 }

25 // Send results to the client

26 String response = getDefaultHeader(command);

27 response += getEmptyResponseSet();

28 if (resultList.size() > 0) {

29 response = getResponse();

30 }

31 bs.sockWriter.println(response);

32 stmt.close();

33 }

34 }

35

36 [...]

37 }

Figure 5.8: The compute method of the resulting Method Object making as field
only the variables selected by our approach (3 added fields).



106

The ImageManager class has 853 LOC (lines of code). It has 18 fields and 36

methods. The sorageIM() method has 152 LOC and 134 NCNB (non comment

non blank. It has 16 local variables (17 if we consider separately the different scoped

mgr variables), 2 input parameters and no return value. It also accesses to 3 of the

18 class fields.

5.4.1 Fragment extractions guided by concern tags clusters

To extract fragments with a high concern cohesion we use the concern tagging

approach proposed in Chapter 4: DeDuCT. It leverages API usages and taint

analysis to characterise each line of code with the addressed concern, by applying

a set of concern tags. For example, a line tagged with this set of concern tag

{(0, io); (1, string); (3, persistence)} is described as a line directly using (depth=0 )

io APIs and depending on data produced by other lines by means of string and a

persistence APIs. Contiguous lines have been clustered according the similarity of

their set of tags, thus grouping together lines performing similar operations (such

related to the io) for similar purposes (such using manipulated string coming from

a persistence layer). Finding two contiguous lines having a similarity under a give

threshold (such as 0.66) determines the end of current cluster and the start of a

new one.

Information about clusters and similarity can be used by the developer to identify

fragment extraction opportunities related to concern cohesive code (Appendix A.1

also shows clustering information on each line). In sorageIM(), by using DeDuCT,

12 clusters with at least 2 lines have been found, 7 if we consider only clusters with

at least 3 lines. We will consider the latter ones in order to have bigger extracted

methods, thus more chances for hidden variables. Each of these clusters can be

used as a seed for a fragment to be extracted, i.e. it can be extended by considering

other contiguous lines. For example, a seed can be extended to extract all the

code of a conditional branch almost totally covered by a single concern cluster, to

merge contiguous clusters that are trivially working on the same object (even if for

different reasons), or simply to respect syntax constraints (see Subsection 5.2.1 for

details about syntax constraints).

In this long method, 7 clusters with at least 3 lines have been detected, thus 7

fragments will be selected and considered for extraction. Figure 5.9 shows fragment



107

10 C27:0.62 List params = new ArrayList();

11 //--------------------------------------------//

12 C28:0.50 VirtualFileSystem vfs = new VirtualFileSystem();

13 C28:1.00 vfs.setURI(vfsD);

14 C28:1.00 FileObject file_s = vfs.resolver(vfsD, vfs.getURI(), vfsD.getPath1());

15 //--------------------------------------------//

16 C29:0.43 UUID id = UUID.randomUUID();

Figure 5.9: Fragment 12-14. Replaced by the instruction: VirtualFileSystem

vfs = getVFS(vfsD).

20 } else {

21 //--------------------------------------------//

22 C32:0.58 FileContent content = file_s.getContent();

23 C32:0.77 String lastMod = "";

24 C32:0.67 if (file_s.getType().equals(FileType.FILE)) {

25 C33:0.07 DateFormat dateFormat = DateFormat.getDateTimeInstance(

26 DateFormat.MEDIUM, DateFormat.MEDIUM);

27 C34:0.33 lastMod = dateFormat.format(new Date(content

28 .getLastModifiedTime()));

29 //--------------------------------------------//

30 }

Figure 5.10: Fragment 22-28. Replaced by the instruction: FileContent content

= getContent().

12-14. In this case, no other lines but the cluster ones have been added. In each

line information about clusters and similarity with previous line has reported. For

example, line 12 has a similarity of 0.50 with the previous code line (line 10), and

since it is under the considered threshold (0,66) it has been added to another cluster

(C28).

For the second fragment shown in Figure 5.10 cluster C32 covers the condition

of an if statement. Since removing this line from the selection only two lines will

be considered for extraction (we want fragments of at least three lines), all the if

statement will be considered for extraction.

Figure 5.11 shows fragment 48-52. which has selected code that is duplicated in

different parts of the method, with a few changes. In this case, C45 has been used

as a seed (it has at least 3 lines) but it is preceded by a cluster C44 that is very

similar to the former. In fact, the similarity between bordering lines (lines 49 and

50) is just under the threshold (0.60), yet suggesting that can be both added to

the same fragment. Other 2 of the 7 fragments have been selected for the same

reason, i.e. fragment 38-42 and fragment 105-109.



108

44 } else {

45 C43:0.53 response = this.localRepository + id + "."

46 + file_s.getName().getExtension();

47 //--------------------------------------------//

48 C44:0.47 params.add("new");

49 C44:0.70 params.add(response);

50 C45:0.60 params.add(lastMod);

51 C45:0.67 params.add(content.getSize());

52 C45:0.69 params.add(lock);

53 //--------------------------------------------//

54 }

Figure 5.11: Fragment 48-52. Replaced by the instruction: setNewParams(lock,
response, content).

Cluster C52 is shown in Figure 5.12. It covers almost the entire while statement,

which internally has other nested conditional statements that make the code hard

to read. However, it cannot be extracted due to the return statement on line 95. If

a sequence of statements contain a return statement but not all possible execution

flows end in a return statement, the behaviour may not be preserved (i.e. with the

following execution sequence: line 71, line 97 ). However, return statements have a

meaning only in the context of the original method, thus it is better to avoid their

extractions. Therefore, we decide to select for extraction only the body of the if

statement on line 76.

5.4.2 Optimise Replace Method with Method Object

By using the concern tag clusters found by DeDuCT, here used as seeds, we have

found 7 fragments to be extracted, thus identifying a method decomposition that

can be applied using the Replace Method with Method Object refactoring technique.

We can now use the proposed optimising approach to select the proper variables to

become fields. Figure 5.13 shows the input, output, and hidden variable sets found

using data dependence analysis. Over the 18 variables (i.e. possible fields) 9 are

hidden variables. For example, mgr, file d, l, respLock, file d, e, id are

all variables that are not used by any fragment, thus considered as hidden inside

the original method.

The remaining 9 variables are used as candidates for becoming fields. To perform

the constrained enumeration the ASM has been produced. Three constraints will

be considered: two for multiple output variables (F1 and F2) and one for the rs



109

71 C52:0.38 while (!rs.isAfterLast()) {

72 C52:1.00 LockFile l = new LockFile();

73 C52:1.00 respLock = l.checkLock(

74 LockFile.getLockEnumType(rs.getString("lock")),

75 lock);

76 C52:1.00 if ("SI".equals(respLock)) {

77 //--------------------------------------------//

78 C52:1.00 LockFile.lockMode b1l = LockFile.getLockEnumType(rs

79 .getString("lock"));

80 C52:0.70 if (b1l.ordinal() >= lock.ordinal()) {

81 C52:0.73 params.add("notUpdate");

82 C52:0.80 params.add(rs.getString("response"));

83 } else {

84 C52:0.80 params.add("update");

85 C52:0.80 params.add(rs.getString("response"));

86 C52:0.80 params.add("");

87 C52:1.00 params.add("");

88 C52:0.90 params.add(lock);

89 C53:0.58 this.sqlite.updateElementInMap("response=’"

90 + rs.getString("response") + "’",

91 "lock=’" + LockFile.getLockType(lock)

92 + "’");

93 }

94 //--------------------------------------------//

95 C54:0.50 return params;

96 }

97 C55:0.60 rs.next();

98 }

Figure 5.12: Fragment 78-93. Replaced by the instruction: setParamsSiLock(lock,
rs).

F1 (12-14): I={vfsD} 0={vfs, file_s} H={}

F2 (22-28): I={file_s} 0={content, lastMod} H={dateFormat}

F3 (38-42): I={params, response, lastMod, lock} 0={} H={}

F4 (48-52): I={params, response, lastMod, content, lock} 0={} H={}

F5 (78-93): I={rs, lock, params} 0={} H={b1l}

F6 (105-109): I={params, response, lastMod, lock} 0={} H={}

F7 (120-124): I={params, response, lastMod, content, lock} 0={} H={}

Original method: H={mgr, file_d, l, respLock, file_d, e, id}

Figure 5.13: The I (input), O (output), and H (hidden) sets of variables found by
using a data dependence analysis.



110

1 asm storageIM

2 import StandardLibrary

3 signature:

4

5 enum domain Candidate = {FLD|VAR}

6

7 dynamic monitored vfsD : Candidate

8 dynamic monitored vfs : Candidate

9 dynamic monitored file_s : Candidate

10 dynamic monitored content : Candidate

11 dynamic monitored lastMod : Candidate

12 dynamic monitored params : Candidate

13 dynamic monitored response : Candidate

14 dynamic monitored lock : Candidate

15 dynamic monitored rs : Candidate

16

17 definitions:

18 // F1

19 invariant inv_multiout_b1 over vfs, file_s : vfs=FLD or file_s=FLD

20

21 // F2

22 invariant inv_multiout_b2 over content,lastMod : content=FLD or lastMod=FLD

23

24 // F5

25 invariant inv_loopindex_b5 over rs : rs=VAR

26

27 default init s1:

Figure 5.14: The generated ASM according to the considered constraints.

loop index (F5).

Over the 512 (29) possible field combinations only 144 satisfied the enumeration

constraints (368 were ruled out). For each of these, the LCOM value has been

given (see Table 5.3). The field combination that minimises the lack of cohesion

is {file s, params, lock, lastMod} with LCOM = 0.46, while the worst solution is

given by {vfsD, content, vfs} with LCOM = 0.89.

Identified the 4 fields to be used inside the method object, the extraction of

the 7 fragments can be performed, following the steps of the Replace Method with

Method Object refactoring technique. A new StorageIM has been created, giving

it a reference to the original ImageManager object. Instead of creating a field for

every variable, only 4 of them have been selected. A constructor has been defined,

giving it as input the reference of the source object and only one of the two original

method parameters (lock). The second one (vfsD) has been given instead to the

compute() method. This because, since lock has been selected as a field, it is a

part of the description of the new class, and therefore it is better to give it to the

constructor. For the opposite reason, since vfsD has been used as a variable, it is



111

Table 5.3: Legal field sets ordered by LCOM
Field Set LCOM
file s,params,lock,lastMod 0.46
file s,params,lock,lastMod,response 0.47
params,lock,lastMod,vfs 0.50
file s,params,lastMod,response 0.50
file s,lock,lastMod,response 0.50
file s,params,lastMod 0.50
file s,params,lock,lastMod,content,response 0.50
params,lock,lastMod,response,vfs 0.50
file s,lock,lastMod 0.50
file s,params,lock,lastMod,content 0.50

...
...

vfsD,file s,lock,content,vfs 0.77
vfsD,lastMod,vfs 0.78
vfsD,content,response,vfs 0.79
vfsD,file s,lastMod,vfs 0.79
vfsD,file s,content,response,vfs 0.80
vfsD,file s,content 0.83
file s,content,vfs 0.83
content,vfs 0.83
vfsD,file s,content,vfs 0.88
vfsD,content,vfs 0.89

Table 5.4: Comparison of the number of fields for StorageIM using different
approaches

Field selection approach number of fields
All variables 18

Only non-hidden 9
Minimising LCOM 4

required by the compute() method as an input parameter.

Table 5.4 summarises the field optimisation results. The complete listing for

the StorageIM class after the fragment extractions from compute() is show in

Appendix A.2.

5.4.3 Fragment extractions guided by code complexity

The final version of the compute() method after the fragment extractions has 76

NCNB, thus it is easier to read but still a long method. Since we have opted for the

creation of a separate class, thanks to the Method Object, we are free to make other



112

F1 (35-57): I={id, lock, content, vfs} O={} H={response, mgr, file_d}

F2 (72-87): I={id, content, lock} O={response} H={}

Figure 5.15: The I (input), O (output), and H (hidden) sets for the second step of
fragment extractions.

extractions without being worried of overwhelming the original ImageManager class.

Using concern tags we have extracted 7 methods showing an high concern cohesion.

We can now consider other indicators to find new fragments to be extracted, such

as reducing the number of nested conditional statements. The compute() method

has a maximal nesting level of 4 and we want to reduce it by one level. We have

so selected from the compute() code, shown in Appendix A.2, fragment 35-37

(i.e. a branch body of a 3-nesting level if statement, which has other two nested

conditional statements) and fragment 72-87 (to extract a 4-nesting level if-else

statement).

By using data dependence analysis we determined the input, output and hidden

set for these two new fragments (see Figure 5.15), finding that none of them has

more than one output variable, thus it is not mandatory to consider other fields

to be added. We can therefore apply the two extractions, finally obtaining a

compute() method of 38 NCNB. The final version of the StorageIM class is shown

in Appendix A.3.

Figure 5.16 shows the obtained call graph for the StorageIM class. Gray coloured

nodes represent the 7 concern cohesive method extracted using the indications

provided by DeDuCT, while white coloured ones represents the compute() and the

two method extracted to reduce the number of nested conditional statements. As

we can see, by using both of the fragment selection heuristics, and supporting them

with the use of the approach showed in this chapter, we were able to considerably

reduce the size and the complexity of the original method, moving from 134 to 38

NCNB. Thanks to DeDuCT, small, low level, concern cohesive methods have been

extracted, then grouped by higher level methods used to reduce code complexity.

Finally, thanks to our analysis, we are also sure that the selected combination of

fields is both behaviour preserving and providing a high level of class cohesion.



113

38:compute(vfsD):params

4:getVFS(vfsD):vfs

9:getContent():content

24:processInternalElement(lock, vfs, id, content)

16:setParamsSiLock(lock, rs)

18:prepareResponse(lock, id, content):response

5:setNewParams(lock, response)

5:setNewParams(lock, response, content)

5:setInsetParam(lock, response)

5:setParamSizedInsert(lock, response, content)

Figure 5.16: The call graph of the StorageIM class, showing the final method
decomposition. Each node label starts with the method NCNB size. Gray coloured
nodes are the ones extracted using concern clusters as seeds. The two, white
coloured, nodes called by compute(), are the methods extracted to reduce the
number of nested conditional statements. In this way, we have small, concern
cohesive methods at a lower level, which are then grouped in higher level methods
to reduce the code complexity of the original method. The compute() size has been
reduced from 134 to 38 NCNB.

5.5 Conclusions

In this chapter, a data dependence based approach to effectively decompose a

long method with a Method Object has been given. The approach automatically

selects the variables to become fields, in a way that the lack of cohesion of the

resulting Method Object is minimised. The proposed approach is independent from

the way the method decomposition has been given by the developer, i.e. from the

strategy used to select the code fragments to be extracted. However, we have shown

how using the concern tagger presented in Chapter 4 let us able to automatically

decompose a long method into concern cohesive pieces, thus finally giving to the

developers an effective and automatic tool to suggest and assist complex refactoring

opportunities.



114

Chapter 6

Data Leak detection

Some support is needed in order to shun the possibility that sensitive data

handled by applications are sent to improper destinations. Although applications

running on Android OS declare the accessed services, once the user accepts, the

application receives complete permissions and may use sensitive data improperly.

This is a relevant problem not only from a user point of view, i.e. to preserve

personal data from been leaked by an installed application, but also from a developer

point of view, i.e. to assess the robustness of a developed application from data

leak attempts which may be caused by exploiting particular execution flows.

Some tools have emerged to check data access and flow, either based on static or

dynamic taint analysis. However both of the approaches have limits. Static Taint

Analysis (STA) often detects false data leaks, whereas the more precise Dynamic

Taint Analysis (DTA) introduces a significant overhead in monitored applications.

In this chapter a novel Hybrid Taint Analysis (HTA) is described, which combines

static and dynamic taint analysis for detecting data leaks in Java and Android

applications. The proposed approach minimizes the overhead by computing a

minimal set of application points that need to be monitored and injects control

code on the target application.

The proposed approach is innovative in that it takes advantage of STA and then

monitors at run-time only data paths that potentially give sensitive data out, with

no loss in quality with respect to DTA. We show the feasibility of our approach by

providing a tool that is tailored to Android environment, tool-chain, libraries, and

requirements that Android applications have to satisfy. To show the validity of the



115

proposed approach, a case study on some example Android applications will be

finally discussed.

6.1 Preventing data leak in Android applications

Nowadays, we rely more and more on applications that handle sensitive data,

which can be very critical, such as health-related information or bank details, or

personal, such as address books, visited locations, etc. It is therefore an important

concern for users to make sure that their applications keep as such private data.

Users trusting an application can let it access, i.e. read or write, sensitive data,

however the same application could improperly send sensitive data to a remote

server. Therefore, users need some further assurance, e.g. from an external trusted

authority, in order to shun the possibility that what they consider sensitive data

are sent to improper destinations.

Most of the data protection is performed by defining security policies and

avoiding untrusted applications. These can prevent programs from accessing

resources, including sensitive data. However, security policies could force the user

to trade between functionality and privacy. Indeed, applications running on Android

OS have to declare their requirements in terms of accessed OS services, then the

user is presented with such a list and decides whether to use the application. Such a

mechanism falls short of the above desired assurance, since granting the application

access to sensitive data makes the user at the risk of possible unaware data leaks.

More advanced systems monitor Internet traffic and deny access to certain URLs

that are considered untrusted. However, a list of untrusted URLs is unlikely to be

exhaustive, thus still exposing to security issues, and needs to be kept up-to-date,

thus requiring a significant effort.

Some tools have emerged to check data access and flow on applications, such

as, e.g., FlowDroid [6] and TaintDroid [38]. These tools are either based on Static

Taint Analysis (STA) or Dynamic Taint Analysis (DTA) (which are particular

classes of static and dynamic data flow analysis, see Section 2.1.7 and 2.6 for more

details and fundamentals). The former brings no overhead at running time, however

can have false positives, since whether a control path leaking sensitive data will be

executed or not is unknown before running the application, whereas the latter can



116

bring a costly overhead during execution, having to monitor any access to sensitive

data and the whole flow through the destinations.

In this chapter a novel Hybrid Taint Analysis (HTA) based tool will be presented,

JADAL, for JAva DAta Leak analyser, that combines static and dynamic taint

analysis to detect data leaks in Java and Android applications. The proposed

approach achieves the precision of DTA without introducing the overhead of state-

of-the-art dynamic approaches. The underlying idea is that static analysis aids in

selecting a minimal set of program points that need to be tracked at runtime to

detect data leaks.

The proposed approach is innovative in that it takes advantage of a static analysis

and then monitors at runtime only data paths that potentially give sensitive data

out. This approach is both light at runtime and precise. Moreover, it lets users

take control on data flow analysis, and let them define which data or sources are

considered as sensitive and which destinations have to be avoided for such sensitive

data. E.g. a user could define a ban for an application organizing a to-do list to

read their geographical coordinates, another user could instead ban the application

to send their to-do list or address book to a remote service. The devised tool will

check an application according to the said defined settings.

However, looking for data leak attempts is not only useful from a user point

of view, i.e. to determine whether to trust an application to be installed, but also

from a developer point of view. In fact, data leak analysis is also important to

check the robustness of a developed application before it is released, validating its

behaviour with respect of some data security policies. The developer may want

to determine if it is possible to exploit a vulnerability in their application which

can be used to leak sensitive data. By using the proposed approach, the developer

can see if there is possible for an attacker to generate an execution flow making

sensitive data to be sent into untrusted channels, thus having an effective tool to

assess the robustness of their application from data leak attempts.

To let JADAL able to analyse Android applications, several issues related to

Android environment have been addressed. Specifically, a solution to analyse and

store results for the Android libraries, commonly used by many apps, have been

proposed. This reduces the overhead since when processing an app we need not

analyse known called libraries. As far as technical aspects are concerned, the



117

devised tool is tailored to Android environment, tool-chain, libraries, and typical

requirements that apps have to satisfy, properly integrating the provided runtime

components.

6.2 Hybrid Taint Analysis

With taint analysis, we can reduce the problem of detecting data leaks into

Android applications to the problem of detecting whether there is a data flow

between a set of program points (bytecode instructions) called sources and a set

of program points called sinks. A data leak is a data flow between an instruction

that gets sensitive data and an instruction that sends such data to an unauthorized

channel. Typical examples of sources are calls to APIs that retrieve sensitive data,

such as phone contacts or the GPS location (in a mobile phone) or the Personal

Identification Number (in a smart card). Sinks can be API calls that send data

over the Internet or display something on an output device.

In this section the overall hybrid JADAL approach, which combines static and

dynamic taint analysis for detecting data leaks in Android application, will be

described. We first describe the static taint analysis, which allows us to detect

potential data leaks and suggests points of the program that we need to monitor to

detect data leaks at run time. Then, the monitoring algorithm used to implement

the dynamic taint analysis, i.e. determining whether a data leak occurred at

runtime, will be described.

6.2.1 STA: determine points to be monitored

Given a set of program points to be used as sources (i.e. APIs that retrieve

sensitive data) and a set of program points to be used as sinks (i.e. API calls that

send data over untrusted channels), the first problem to detect all the potential

data leaks in an Android application is to determine any possible data flow from

any source to any sink, i.e. a sequence of instruction that cause the data coming

from a source to flow into a sink.

As described in Section 2.1, the data flow in a program can be described by data

dependence. Therefore, we need to construct the Data Dependece Graph (DDG)



118

of the application under analysis (see Section 2.1 for details). DDG will allow

us to track any possible data flows that involve working memory (local variables,

member variables, global variables, operand stack). To simplify exposition, we

do not consider any flows that involve external devices or storage (writing to and

reading from files, etc.). Moreover, we consider the program as sequential, and

thus we consider data flows that involve one thread only. These restrictions are not

intrinsic limitations since our method can be integrated with existing techniques for

secondary storage taint propagation [37] and inter-thread dependence tracking [52].

We take advantage of two properties of a DDG: (1) any data flow between two

instructions u and v in the program corresponds to a path between u and v in

the DDG; (2) given a path p = [v1, . . . , vk] in the DDG and an execution σ of the

program, if there is a sequence of instructions in σ that contains v1, . . . , vk in the

specified order and for every adjacent instructions (vi, vi+1) there is a data flow

between vi and vi+1, then there is a data flow between v1 and vk.

These properties tell us that we can reduce the problem of detecting data flows

between any two instructions in the program, i.e. between a source and a sink, to

the problem of checking whether in the DDG there exists a path p from the source

to the sink. The existence of such a path in the DDG needs to be accessed for all

the possible (source, sink) pairs, i.e. determining all possible data leaks.

To efficiently find all the possible data leak, we first discard from the DDG

all nodes that are not in paths between sources and sinks. To do this, we run a

Depth-first search (DFS) starting from each source and discard all nodes that are

not visited by any of the DFSs. Then we start a reverse DFS (following edges

in reverse direction) from every sink and again discard all non-visited nodes. By

removing all those unnecessary nodes, we obtain a restricted DDG (rDDG) where

every node is on a path between a source and a sink.

6.2.2 DTA: the monitoring algorithm

We can now modify the input program in order to monitor the execution of

every instruction corresponding to nodes in the rDDG, and packing the application

with a monitoring component that will look for their execution at runtime to detect

data leaks. Every time an instruction corresponding to a node in the rDDG is

detected, a monitoring component will call a procedure notifyNode(v). We also



119

Algorithm 2 Injected code for dynamic taint analysys (data flow monitoring)
Require: init()
1: ActiveFlows = ∅

Require: notifyNode(v,γ)
2: tainted=false
3: if v ∈ Sources then
4: tainted=true
5: end if

6: for all e ∈ ActiveFlows | target(e) = v

and compatibleContext(e, γ) do
7: tainted=true
8: end for

9: if tainted=true then

10: ActiveFlows = ActiveFlows ∪{(v, w, γ)|(v, w) ∈ E}
11: if v ∈ Sinks then
12: output data leak detected
13: end if

14: end if

Require: notifyIntermediate(s, γ)
15: for all e ∈ ActiveFlows |s ∈ DR(e)

and compatibleContext(e, γ) do
16: ActiveFlows = ActiveFlows \{e}
17: end for

insert a call init() at the program starts, to initialize the data structures. The

pseudo-code of such two procedures is in Algorithm 2.

Procedure init() makes a list of active edge flows empty. An active edge flow

corresponds to an edge of the DDG. There can be more than one active edge flow on

the same edge, e.g. associated to different stack frames. Every time an instruction

corresponding to a DDG node v is executed, procedure notifyNode(v, γ) is called.

Parameter γ is the current context (object reference and stack frame). notifyNode

(v, γ) checks if v is tainted (i.e. there is a data flow between a source and v). If v is

a source, then we set variable tainted to true (lines 3-5). If v is the target of some

active edge flows with compatible context (we discuss context later), then we have

found a data flow between a tainted node and v. Therefore, we set the variable

tainted to true (lines 6-8). At the end, if v has been marked as tainted, then its

outgoing edges are added to the list of active edge flows. If v is also a sink, then a

data leak is signalled.

Function “compatibleContext(γ, e)” (line 6) checks if the current context is

compatible with the context of the active edge flow e. The context is important



120

for edges that represent intra-method data dependences and member variable data

dependences. Indeed in the case of intra-method data dependences the data flow

can occur only within the same stack frame. This check is necessary because two

instructions in the same method may be executed in two different stack frames

(e.g. in recursive calls) and hence would not produce any data flow. In the case of

member variable data dependences, compatibleContext() checks if the active edge

flow refers to the current object instance (see Section 2.1.6 for more details about

the different types of data dependence).

6.2.3 Checking edge triggering

When we detect, at runtime, a data flow involving an edge e of the DDG we

say that e is triggered. Checking edge triggering is not trivial since monitoring the

two endpoints is not enough. Indeed, a target instruction s2 of a data dependence

executed after the source s1 would not necessarily result into a data flow between s1

and s2. E.g., a variable written by s1 may have been modified before s2 is executed.

We need a way to remove edge flows that are not triggered from the active edge

flow list, before s2 is notified.

Informally, we say that an edge flow (u, v, γ) is triggered at a certain point

of the execution of the input program, if instruction v is being executed and a

data flow compatible with the data dependence (u, v) is detected. Checking edge

triggering requires monitoring a set of instructions in the program (not only u and

v).

To better describe the concept, let us consider a data dependence (u, v) corre-

sponding to a global variable λ. We want to check if (u, v) is triggered during the

execution. That means we want to check if the value written on λ by u is read

by v. For this purpose, we monitor u, v and all other instructions that write on

λ. When u is executed, (u, v, γ) become an active edge flow: the value written in

λ may be read from v at some point in the future, but we cannot say that this

will happen. If at a later stage we reach another instruction that writes on λ, then

(u, v, γ) is dropped : the value written by u cannot be read by v, since it has been

replaced. Therefore, (u, v, γ) is not active any more. Otherwise, if edge (u, v) is

still active and instruction v is reached, then the edge flow is considered triggered :

we detected a data flow compatible with (u, v).



121

Figure 6.1: An example of dropping edge for an intra-method data dependence.

During the static analysis we compute the sets of dropping instructionsDR(e) for

every edge e in the restricted DDG. We then inject code into the program to receive

notification every time an instruction in DR(e) is executed. When the execution

of an instruction w ∈ DR(e) is notified, we remove every affected active edge flow

with compatible context from the active edge flow list (see notifyIntermediate()

procedure in Algorithm 2).

6.2.4 Determine Dropping Instructions

The computation of DR(e) depends on the specific case. We now describe how

to compute DR(e) (set of dropping instructions) and check the context, by means

of function compatibleContext(e, γ). These procedures depend on the kind of data

dependence represented by the edge e in the DDG.

6.2.4.1 Intra-method data dependences

To monitor if an intra-method data dependence (u, v) between u and v is dropped

we consider the set P of instruction causing the data flow involving edge (u, v). We

want to determine if the program execution leaves P with the minimum numbers of



122

Figure 6.2: An example of dropping edge for an inter-method data dependence.

monitoring instructions. To solve this problem, we will add to DR((u, v)) all nodes

that are endpoints of edges starting from P and ending in G \ P (set difference),

where G is the data dependence graph.

As an example, Figure 6.1 shows the Control Flow Graph (CFG) of a simple

method. As explained in Section 2.1.3, since instruction 0 writes on a memory cell

(a local register) that is further read by instruction 18, and there is a path π from 0

to 18 (depicted with green edges in Figure 6.1) where no other instruction overrides

the written value, then we can say that there is a data dependence from 0 to 18,

thus the edge (0, 18) will be in the DDG. Let us suppose that this edge was selected

to be a part of the restricted DDG (rDDG) (depicted with a blue edge in Figure 6.1):

to determine if edge (0, 18) is triggered, we cannot just monitoring and notify 0

and 18, because we need to be sure that all the sequence of instructions on π in

the CFG have been also executed, i.e. we stayed on the path causing the data flow

involving edge (0, 18) in the rDDG (causing the edge triggering). However, instead

of monitoring all the nodes on π, we can just notify the monitoring component

when the execution leaves the path, i.e. on instruction 16. In fact, if the node 16 is

notified at runtime, we are sure that the execution leaved path π thus causing the

data flow on the edge (0, 18) to be dropped.

A flow on an intra-method data dependence can occur only within the same stack

frame. Therefore, if e is an intra-method data dependence, compatibleContext(e, γ)

checks that the stack frame of edge flow e is the same as the one of γ.



123

Figure 6.3: An example of dropping edge for a member variable dependence.

6.2.4.2 Inter-method data dependences

Inter-method data dependences represent information flow during a call to or

the return from a method. In correspondence with a call, instructions of the caller

that prepare call parameters are connected to instructions of the callee that utilize

such parameters. If the call is static, then the inter-method data dependences

corresponding to parameter transfers are always triggered. If the call is virtual

or dynamic, then there may be more than one inter-method data dependence

starting from an instruction. Only one call among the ones considered in the

dispatching table is dispatched, therefore only one edge flow is triggered. Return

data dependencies are managed similarly. Indeed a return instruction can have

many data dependencies (one per caller) but only one of these will be dispatched.

Given a set of inter-method data dependences {(u, vi)|i = 1, . . . , k} correspond-

ing to a method call or a method return and that start from the same instruction

u, the dropping instructions are assigned for each i as DR((u, vi)) = {vj|j =

1, . . . , k; j 6= i}. That is, once we know which of the methods in the dispatching

method has been called, all the active edge flows related to the other methods in

the dispatching table are dropped (as depicted in Figure 6.2).

Note that the flow in inter-method data dependences does not depend on the con-

text. Therefore, if e is an inter-method data dependence, compatibleContext(e, γ)

returns true.

6.2.4.3 Member variable dependences

For member variable data dependences e = (u, v) on a member variable λ, if

W (λ) and R(λ) are the set of instructions that write to and read from λ, respectively,



124

then DR(e) = W (λ)\{u}. That is, if any other instruction w, different from u,

writes on the member variable λ before v can read it, the active edge flow (u, v, γ)

is dropped (as depicted in Figure 6.3).

For non-static member variable dependences (u, v) there is a data flow between

u and v only if u and v refer to the same object instance. Therefore, in this

case compatibleContext(e, γ) checks that the object instance of the context of

edge flow e is the same as the one of γ. For static member variable dependences

compatibleContext(e, γ) always returns true.

6.3 JADAL implementation

The JADAL approach described in Section 6.2 has been implemented by a set

of separate Java services, tailored with a set of third party tools that are needed,

e.g. to unpack and repack Android APK files (the Android application package),

gathered from the official Android SDK. Figure 6.4 shows the entire workflow,

that starting from the Android input application uses static analysis techniques to

identify a minimal set of points to be monitored to enable dynamic taint analysis,

i.e. the dynamic data leak detection during execution. JADAL will finally generate

a signed and executable Android package that includes the components handling

leak detection. As a result, modifications to the underneath Android OS are not

required and the data-leak self-checking application can be executed as any other

app.

As Section 6.2 described, JADAL needs both the CFG and the DDG to determine

the program points to be monitored at runtime to intercept data leak attempts.

Thus, starting from the application class files, a third part static analyser, namely

JavaPDG [89], is used to obtain a graph representation of the input application,

called Program Dependence Graph (PDG) [40] that combines CFGs and DDGs of

each class method, and uses the call graph to link them together.

The PDGs for the classes of the input application are then given to the first

JADAL component, the Inspector. This is responsible for the initialization of

the internal data used by JADAL algorithms. Since building the PDGs is a costly

operation, in terms of CPU time and memory consumption, we have to reduce

as much as possible the program parts we need to analyse each time a new input



125

Figure 6.4: The workflow of the JADAL Framework; gray elements are external
components, while white ones are internal.



126

application is given. Thus, we have to reuse as much as possible previously computed

PDGs to shorten response time of the JADAL system. Therefore, commonly used

external libraries (such as the Android SDK) are analysed by JADAL only once,

storing their computed graph representations in a PDGs Repository. Such graphs

are retrieved from the repository every time they are needed. Inspector links

together the PDGs of the internal classes (newly computed by JavaPDG) with

the external library representations (previously computed and stored into the

repository).

Once the complete PDG has been built, the Pointcut Finder runs the JADAL

statical analysis described in Section 6.2. We define a list of sources and sinks. For

example, methods that read the GPS position are considered as sources whereas

methods to send data through the network are considered as sinks. This list is

taken as input by the Pointcut Finder to determine the minimal set of program

points to be monitored. The algorithm produces both the list of pointcuts, one for

each of the selected program points, and the subgraph induced by these points,

including the restricted DDG (rDDG). Since this graph is further required to assist

the monitoring component, it is saved and staged for inclusion in the final APK as

an external asset.

The actual modification of the input application is performed by the Pointcut

Injector, that uses BCEL1 to manipulate the Java bytecode of the composing

class files. A pointcut is a program point, i.e. a bytecode instruction, where a

method call to the monitoring component need to be injected (just before the

instruction). Other than the pointcuts list, this component takes as input the class

files of the input application, as a JAR archive, and the monitoring component

that will be invoked every time a pointcut is reached at running time.

Since both JavaPDG and BCEL only work with the bytecode of a canonical

JVM (that differs from Dalvik 2), JADAL modifies the JAR class package, instead

of the DEX file (Dalvik Executable Format), of the input application. The modified

JAR produced by Pointcut Injector is converted to an Android package by an

external tool that converts the JAR output to the DEX format and inserts it

in the final APK, together with the original assets (images, datasets and other

1https://commons.apache.org/proper/commons-bcel/
2The VM used by Android OS



127

Table 6.1: Computation time for the Android SDK DDGs

.

Package Computation Time(s) Classes Methods Instructions
java.io.* 257 80 356 3969
javax.xml.* 431 54 355 1578
android.service.* 456 19 189 937
android.hardware.* 809 67 504 2896
android.telephony.* 899 33 399 2216
android.text.* 1649 141 977 5120
android.app.* 2609 130 1648 8213
java.lang 2670 135 1199 7147
android.view.* 3045 190 2480 11629
java.util.* 4333 244 2771 14393
... ... ... ... ...
Complete Android SDK >14 h 3673 30574 164555

non-code components of the input application) and the data structures created in

the previous step to support the monitoring activity. The workflow is completed

by signing the produced APK with a keypair associated to JADAL.

6.3.1 Dealing with external libraries

An input application can have several method calls to external libraries. Even

a simple Java application that manipulates string contents needs to import at least

the java.lang standard library. This is also true for the Android applications, e.g.

every time we want to popup a message using the Toast3 class of the Android

Standard Library (also called Android API ), we will have to import the related

package (i.e. the android.widget).

In this case, data can flow inside external methods; therefore, to correctly apply

the JADAL static analysis we have to consider the DDG of both the internal classes

and all the external packages that are used by the input application. This is also

necessary every time we want to consider as source and sink methods that belong

to external APIs.

This leads to three issues and considerations: (i) standard libraries are not

shipped with the Android applications (since they are part of the runtime environ-

ment), but they need to be considered; (ii) although third-part libraries (such as

the Facebook SDK4 or external Ads libraries) might be included in the analysed

3https://developer.android.com/reference/android/widget/Toast.html
4https://developers.facebook.com/docs/android



128

1 public class MainActivity extends AppCompatActivity {

2 ...

3 triggerbtn.setOnClickListener(new View.OnClickListener() {

4 @Override

5 public void onClick(View v) {

6 Location location = lm.getLastKnownLocation(LocationManager.GPS_PROVIDER);

7 double longitude = location.getLongitude();// source

8 double longitudeMod = longitude + 100;

9 UntrustedChannel.send(longitudeMod); // sink

10 }

11 });

12 ...

13 }

Figure 6.5: Java code of the callback method containing the data leak attempt.
This will be actually executed only by pressing the button inside the Activity at
runtime.

1 API.class MainActivity.class R$bool.class

2 R$drawable.class R$layout.class R$style.class

3 BuildConfig.class R$anim.class R$color.class

4 R$id.class R$mipmap.class R$styleable.class

5 MainActivity$1.class R$attr.class R$dimen.class

6 R$integer.class R$string.class R.class

Figure 6.6: List of the classes composing the input Android app. We expect that
only the MainActivity$1.class will be modified, since it is the only internal class
involved in a data leak attempt (according to selected source and sink, shown in
Figure 6.7).

app, usually only a few methods are actually called, making the static analysis of

the whole library unnecessary; (iii) both standard and third-part libraries can be

used by different applications, and we should analyse them only once.

External libraries typically have many classes and methods, hence building the

related DDGs is a resource consuming task. Table 6.1 shows the computation times

needed to build the DDGs for each of the Android SDK packages (API level 21)

using a host with two 6-core Intel(R) Xeon R© E5-2620 CPUs (2.00GHz) and 32GB

of DDR3 memory (1333 MHz). As we can see, more than fourteen hours are needed

for the whole SDK. To save computation time, JADAL uses a Repository that

can be queried with the name of the required package and returns the related PDG,

if available. While building the PDG the Inspector looks for each method call

that points to external libraries and asks the Repository to retrieve the related

representations. It then links them together with the PDG of the input application.



129

1 # sources.txt

2 android.location.Location.getLongitude()D

3

4 # sinks.txt

5 com.example.simpleapp.API.show(D)V

Figure 6.7: Content of sources and sinks file for this simple example. Both an
external (as source) and internal (as sink) method have been chosen to show the
DDG completion done by the Inspector component.

Figure 6.5 shows an excerpt of the code of a simple Android app, that we used

as a case study. The application consists of 16 classes, as showed in Figure 6.6,

We introduce a data leak attempt within the onClick() callback method of the

MainActivity class. To produce the complete PDG corresponding to the listed

method, we analyse both the bytecode of the getLastKnownLocation() method in

the LocationManager class and the getLongitude() method in the Location class,

both provided by the android.location of the Android standard library. This causes

the Inspector to query the Repository, for the missing package’s PDG.

6.3.2 Pointcut Finder

Once the complete PDG has been built by the Inspector, JADAL proceeds with

the Pointcut Finder step, which searches for candidate data flow paths linking a

source with a sink, and then provides a reduced set of application points (pointcuts)

to be monitored at runtime to avoid data leaks (as explained in Section 6.2).

First part of Figure 6.8 shows the bytecode of the callback method previously

introduced (see Figure 6.5) and Figure 6.7 shows the source and the sink we want to

use for this simple example. We consider one source from package android.location as

method Location.getLongitude()D and one sink from package com.example.simpleapp

as method UntrustedChannel.send(D)V. Both an external (as source) and internal

(as sink) method have been chosen to test the actual DDG completion with external

libraries done by the Inspector component.

The said method send() attempts a data leak, as it tries to send the GPS

longitude position (trivially modified by adding 100 to the value) on an untrusted

channel (here given by a method of the UntrustedChannel internal class). JADAL

is able to recognise this threat and provides a list of application points to be



130

1 BEFORE INJECTIONS:

2 public void onClick(android.view.View);

3 0: getstatic MainActivity.lm:LocationManager

4 3: ldc "gps"

5 5: invokevirtual LocationManager

6 8: astore_2 .getLastKnownLocation(String)Location

7 9: aload_2

8 10: invokevirtual Location.getLongitude()D

9 13: dstore_3

10 14: dload_3

11 15: ldc2_w 100.0d

12 18: dadd

13 19: dstore 5

14 21: dload 5

15 23: invokestatic UntrustedChannel.send(D)V

16 26: return

17

18 AFTER INJECTIONS:

19 public void onClick(android.view.View);

20 0: new <java.util.Random>

21 3: dup

22 4: invokespecial java.util.Random.<init>()

23 7: invokevirtual java.util.Random.nextInt()

24 10: istore %7

25 12: getstatic MainActivity.lm

26 15: ldc "gps"

27 17: invokevirtual getLastKnownLocation(String)

28 20: astore_2

29 21: aload_2

30 22: invokevirtual Location.getLongitude()D

31 25: ldc 1389

32 27: iload %7

33 29: invokestatic handler.AppObserver.handlePointcut(II)V

34 32: dstore_3

35 ...

Figure 6.8: Bytecode of the callback method before and after pointcuts injection.
LocationManager and Location belong to the android.location external package,
while UntrustedChannel to the com.example.simplapp internal package.

1 1389:com.example.simpleapp.MainActivity$1.onClick(Landroid/view/View;)V:13

2 1390:com.example.simpleapp.MainActivity$1.onClick(Landroid/view/View;)V:14

3 1392:com.example.simpleapp.MainActivity$1.onClick(Landroid/view/View;)V:18

4 1393:com.example.simpleapp.MainActivity$1.onClick(Landroid/view/View;)V:19

5 1394:com.example.simpleapp.MainActivity$1.onClick(Landroid/view/View;)V:21

Figure 6.9: Pointcuts automatically selected by the Pointcut Finder. As expected,
they are all located inside the callback method.



131

monitored at runtime (shown in Figure 6.9). Each pointcut is defined by an ID,

a method signature and an instruction offset, which refer to the method and the

bytecode instruction where the code that calls the monitoring component must be

injected. E.g., the first entry in the pointcut list (Figure 6.9) refers to the dstore 3

instruction having offset 13 in the onClick() method.

6.3.3 Pointcut Injection

For each selected pointcuts, the Pointcut Injector introduces into the byte-

code a call to the notifyNode(v, γ) method of the monitoring component (see

Algorithm 2). This requires both the pointcut ID to identify the node and some

information about the current context of the method execution. This consists in (i)

the identification of the stack context and (ii) the object reference. In the second

part of Figure 6.8 we can see how the method has been automatically modified.

The instructions from 0 to 10 generate a random number as a unique reference to

the current stack context, while the instructions from 25 to 29 are injected just

before the 1389:dstore 3 pointcut execution to notify the monitoring component

(AppObserver). The call to AppObserver gives as parameters both the pointcut id

and the stack context reference (here the object reference is not required since the

method is static).

It is worth noting that among all of the 16 classes composing the analysed

Android application (see Figure 6.6) only the MainActivity$1.class has been

modified due to pointcut injection. In fact, looking at the produced pointcut list,

shown in Figure 6.9, we can see that all of them refer to the MainActivity$1 internal

class, since it is the only one involved in a data leak attempt. This is an important

result, since only the application parts that are actually involved in a potential

data leak will be monitored at runtime, thus reducing the introduced overhead if

compared with traditional dynamic approaches.

6.3.4 Producing the final APK

One of the last steps needed to run the output application on an Android

device, is the generation of a signed APK, starting from the resources of the

original application and the data collected during the static analysis. This process



132

is performed through a script that makes use of a set of tools to: (i) reverse

engineering the Android APK file (apk-tool5); (ii) retrieve existing assets and jars

from DEX files (dex2jar); (iii) inject the data leak handling logic and the results

obtained from static analysis; (iv) create new DEX files (jar2dex ); (v) produce a

new APK (again apk-tool); (vi) sign the produced APK (jarsigner).

To enable the Runtime Pointcut Handler it is necessary to update the An-

droidManifest.xml file. This file contains data that describe the application, such as

basic information, available activities, required permissions, etc. Among the others,

section application is quite relevant: it contains definitions of components/sub-

classes. Whenever a subclass is defined, it is declared through a name attribute

that must include the full package designation. The name gives the proper context

to load the restricted DDG computed in the previous steps.

6.4 Experiments

In order to demonstrate the JADAL effectiveness, a toy app, LeakingAppAndroid,

has been built to simulate access to sensitive and unsensitive data, and stream to

authorised and unauthorised channels. We apply the JADAL tool to LeakingAppAn-

droid to detect whether there is a data leak, i.e. sensitive data sent to unauthorised

channels. Figure 6.11 (on the right) shows the user interface of the app, which has

two buttons on the top of the main activity interface, allowing the user to load

sensitive or unsensitive data, respectively, and keep them in main memory. The

user can select the output channel through the two radio buttons in the center of

the interface and then send previously loaded data to it, by using button “SEND”

in the center. If the “Authorized” channel is set, data are sent to the “Authorized

Channel” edit box right below the send button, and a sequence of password digits is

displayed (e.g. “654653”). If the “Unauthorized” channel is set, data are visualized

in the “Unauthorized Channel” edit box. A data leak occurs if the user loads

sensitive data and then sends them to the unauthorized channel.

Figure 6.10 shows the class diagram of LeakingAppAndroid. Class “App” holds

the status of the program, which comprises loaded data and output channel. The

output channel is a reference to the interface “ISend” that contains a method for

5http://ibotpeaches.github.io/Apktool/



133

Figure 6.10: Class diagram of the LeakDetectionApp.

sending data. This interface has two implementations: “SendAuthorized” and

“SendUnauthorized”. The user can switch between these two implementations

through the radio buttons in the main activity. Class “MainActivity” controls the

user interface by managing buttons and edit controls. Class “API” represents the

interface with the device, hence it contains methods for loading and sending data.

A data leak in LeakingAppAndroid corresponds to a data flow from the return

value of “loadSensitive()” to the input parameter of “sendUnauthorized()”.

Using the static analysis described in Section 6.2 JADAL setected only 5 program

points to be monitored at runtime to detect data leaks (see the table on the top-left

of Figure 6.11),

Figure 6.11 (on the bottom-left) shows a part of the LeakingAppAndroid DDG

with a potential data leak. It involves 3 vertices (4872, 5070, and 5086) and 2

edges were found in paths between the source (return value of “loadSensitive()”)

and the sink (parameter of “sendUnauthorized()”). Instruction 4872 is executed

when the user presses button “GET SENSITIVE”. It takes the return value of

loadSensitive() and writes it on the variable App.data. Instruction 5070, called

when button “SEND” is pressed, gets the value of App.data and puts it in the

operand stack to be used as a parameter for method Send() of the output channel.

Instruction 5086 loads the method parameter and passes it to sendUnauthorized().

The data leak shown in Figure 6.11 can be detected by statically analysing the

DDG of the app. However, a data leak identification by means of static analysis

does not mean that it will take place. In this case, the data leak occurs only if the

user performs a certain sequence of operations (i.e. (i) load sensitive data, (ii) select

an unauthorized channel, and (iii) send data). In general, data leaks detected by



134

Figure 6.11: A part of the DDG of LeakingAppAndroid (on the bottom-left) limited
to the 5 selected program points to be monitored at runtime (see table on the
top-left), and a screenshots of the app (on the right) showing a detected data leak.

static analysis may never occur. E.g. the app could implement a business logic that

sends sensitive data to authorized channels and non-sensitive data to unauthorized

channels, hence a false data leak would be detected by static analysis.

JADAL injected control code on LeakingAppAndroid to monitor the two edges

of the leaking path and notify a data leak when it actually occurs during runtime

(as shown on in the app screenshot in Figure 6.11). A manual verification confirmed

that a data leak is signalled if and only if it really occurs. Specifically, a data leak

is advised if the user presses “GET SENSITIVE” and then “SEND” after selecting

an unauthorized channel in the modified Android app produced by the JADAL

tool.

If the data flow is somehow broken between the source and the sink, no data

leak is notified. E.g., if the user presses “GET UNSENSITIVE” after pressing

“GET SENSITIVE and before pressing “SEND”, then no data leak is notified.



135

6.5 Conclusions

In this chapter, a novel hybrid taint analysis approach for detecting data leaks

in Android apps was proposed, which combines static and dynamic taint analysis

in order to perform reliable monitoring while introducing a low overhead in target

apps. In addition to its efficiency, the proposed approach provably detects all data

leaks that can be found by dynamic taint analysis.

An implementation of the JADAL tool was also described, showing how to

automatically modify an Android application making it “data leak aware” and

able to be run in an normal Android device (i.e. without any customisation due to

monitoring needs, which are instead embedded by JADAL inside the app).

We showed the feasibility of the approach by presenting the results obtained

on a sample Android app that simulates loading sensitive data and sending them

to an unauthorized channel. The combined taint analysis shows that JADAL can

correctly manage use cases that cannot be handled by static analysis alone, e.g. in

presence of polymorphism, and it has a low overhead since it requires monitoring

only a minimal set of program points.



136

Chapter 7

Conclusions

This thesis has presented a support to assist evolving software based on data

usage, showing how information about data dependence and propagation can give

useful insights about different aspects concerning software modularity, portability

and robustness. The devised data dependence and taint analysis approaches have

been applied on real world scenarios, demonstrating how data can give important

clues about code behaviour and responsibility, which can be used to devise automatic

tools to support software evolution.

Data dependence and taint analysis were helpful to automatically assess the

dependence on a particular platform. By proposing a taint analysis approach it was

possible to understand which instructions depend on platform specific APIs, either

explicitly or implicitly, thus proposing a portability metric that is more accurate

than traditional ones. In fact, the latter consider only explicit interactions with

the underlying platform, thus not taking into account the instructions having an

implicit platform dependence, i.e. using data coming from, or direct to, platform

APIs, which need to be considered while measuring code portability.

By extending the concept of tracing data coming from specific APIs to assert

portability, we presented DeDuCT, which is an automatic tool tagging code in-

structions with concern information. It is innovative in that it uses the APIs as a

source of concern identification. Then, it finds all (and only) the data dependent

code lines, regardless of the number of lines that can be in between, giving them

the concern tag suggested by the used APIs.

Concern tags have been used to suggest Extract Method refactoring opportunities,



137

identifying fine grained code fragments exposing a high concern cohesion, i.e.

addressing a specific task, and moving them in separate methods, thus helping in

improving code modularity.

Moreover, the provided concern tagger offered the possibility to suggest complex

refactoring opportunities, by automatically identifying a long method decomposition

into concern cohesive pieces. This was achieved by providing an automatic tool to

apply the Replace Method Method Object refactoring technique.

The approach automatically selects the variables to become fields, in a way that

the lack of cohesion of the resultingMethod Object is minimised. The effectiveness of

the proposed refactoring tools has been proved and explained by analysing real world

scenarios of long methods, whose complexities has been reduced by decomposing

the code in concern cohesive pieces, easier to understand and maintain.

Another important property addressed in this thesis was code robustness against

sensitive data disclosure. It has been shown how using a novel hybrid approach,

JADAL, combining static and dynamic taint analysis, it is possible to assist

developers in assessing if the application they developed can be exploited to leak

user data, i.e. by forcing the execution of a particular sequence of instructions

eventually leading to a data leak.

It was demonstrated how JADAL can handle situations that cannot be addressed

by using only a static approach, e.g. because of polymorphism. Moreover, dynamic

analysis overhead has been lowered by selecting only a minimal set of program

points to be monitored at runtime.

In conclusion, different aspects related to software evolution have been addressed

by leveraging similar concepts related to data dependence and taint analysis. By

means of properly devised approaches and tools, it was experimentally demonstrated

how portability, modularity and robustness can be better investigated by following

data usages and propagation inside the application.

Assisting the developers in evolving modern software systems means providing

tools which timely address design issues, hence making developers able to focus on

fast and frequent changes rather then on a detailed and fixed design. By means

of the proposed approaches, the deterioration of code structural quality can be

automatically addressed either during the development of new software components

or to analyse and improve legacy applications.



138

Appendix A

Listings

A.1 The storageIM() method before applying the

Replace Method with Method Object

1 public class ImageManager implements ImageManagerPlugin {

2 private Logger logger;

3 private SQLite sqlite;

4 private String localRepository;

5 [...]

6 public List storageIM(VFSDescription vfsD, LockFile.lockMode lock)

7 throws FileSystemException, CleverException, Exception {

8 C26:0.00 String response = "";

9 String respLock;

10 C27:0.62 List params = new ArrayList();

11 //--------------------------------------------//

12 C28:0.50 VirtualFileSystem vfs = new VirtualFileSystem();

13 C28:1.00 vfs.setURI(vfsD);

14 C28:1.00 FileObject file_s = vfs.resolver(vfsD, vfs.getURI(), vfsD.getPath1());

15 //--------------------------------------------//

16 C29:0.43 UUID id = UUID.randomUUID();

17 try {

18 C30:0.43 if (!file_s.exists()) {

19 C31:0.50 params.add(response);

20 } else {

21 //--------------------------------------------//

22 C32:0.58 FileContent content = file_s.getContent();

23 C32:0.77 String lastMod = "";

24 C32:0.67 if (file_s.getType().equals(FileType.FILE)) {

25 C33:0.07 DateFormat dateFormat = DateFormat.getDateTimeInstance(

26 DateFormat.MEDIUM, DateFormat.MEDIUM);

27 C34:0.33 lastMod = dateFormat.format(new Date(content



139

28 .getLastModifiedTime()));

29 //--------------------------------------------//

30 }

31 C35:0.35 logger.debug("element searched : " + file_s.getName().getURI());

32 C36:0.56 ResultSet rs = this.sqlite.retrieveElementsInMap(file_s

33 .getName().getURI());

34 C37:0.64 if ((!rs.isAfterLast() && !rs.isBeforeFirst())) {

35 C38:0.46 if (file_s.getType().equals(FileType.FOLDER)) {

36 C39:0.47 response = "" + this.localRepository + id;

37 //--------------------------------------------//

38 C40:0.46 params.add("new");

39 C41:0.55 params.add(response);

40 C42:0.45 params.add(lastMod);

41 C42:0.70 params.add("");

42 C42:0.90 params.add(lock);

43 //--------------------------------------------//

44 } else {

45 C43:0.53 response = this.localRepository + id + "."

46 + file_s.getName().getExtension();

47 //--------------------------------------------//

48 C44:0.47 params.add("new");

49 C44:0.70 params.add(response);

50 C45:0.60 params.add(lastMod);

51 C45:0.67 params.add(content.getSize());

52 C45:0.69 params.add(lock);

53 //--------------------------------------------//

54 }

55 C46:0.42 FileSystemManager mgr = VFS.getManager();

56 C46:1.00 FileObject file_d = mgr.resolveFile(response);

57 C47:0.58 vfs.cp(file_s, file_d);

58 C47:1.00 if (file_s.getType().equals(FileType.FOLDER)) {

59 C48:0.15 logger.debug("Image1");

60 C49:0.08 this.sqlite.insertElementAtMap(file_s.getName()

61 .getURI(), response, "", lastMod, LockFile

62 .getLockType(lock));

63 } else {

64 C50:0.08 logger.debug("Image2");

65 C51:0.08 this.sqlite.insertElementAtMap(file_s.getName()

66 .getURI(), response,

67 new Long(content.getSize()).toString(),

68 lastMod, LockFile.getLockType(lock));

69 }

70 } else {

71 C52:0.38 while (!rs.isAfterLast()) {

72 C52:1.00 LockFile l = new LockFile();

73 C52:1.00 respLock = l.checkLock(

74 LockFile.getLockEnumType(rs.getString("lock")),

75 lock);

76 C52:1.00 if ("SI".equals(respLock)) {

77 //--------------------------------------------//



140

78 C52:1.00 LockFile.lockMode b1l = LockFile.getLockEnumType(rs

79 .getString("lock"));

80 C52:0.70 if (b1l.ordinal() >= lock.ordinal()) {

81 C52:0.73 params.add("notUpdate");

82 C52:0.80 params.add(rs.getString("response"));

83 } else {

84 C52:0.80 params.add("update");

85 C52:0.80 params.add(rs.getString("response"));

86 C52:0.80 params.add("");

87 C52:1.00 params.add("");

88 C52:0.90 params.add(lock);

89 C53:0.58 this.sqlite.updateElementInMap("response=’"

90 + rs.getString("response") + "’",

91 "lock=’" + LockFile.getLockType(lock)

92 + "’");

93 }

94 //--------------------------------------------//

95 C54:0.50 return params;

96 }

97 C55:0.60 rs.next();

98 }

99 C56:0.46 if (file_s.getType().equals(FileType.FOLDER)) {

100 C57:0.47 response = this.localRepository + id;

101 C58:0.50 this.sqlite.insertElementAtMap(file_s.getName()

102 .getURI(), response, "", lastMod, LockFile

103 .getLockType(lock));

104 //--------------------------------------------//

105 C59:0.43 params.add("insert");

106 C60:0.55 params.add(response);

107 C61:0.45 params.add(lastMod);

108 C61:0.70 params.add("");

109 C61:0.90 params.add(lock);

110 //--------------------------------------------//

111 } else {

112 C62:0.53 response = this.localRepository + id + "."

113 + file_s.getName().getExtension();

114 C63:0.07 logger.debug("Image4");

115 C64:0.08 this.sqlite.insertElementAtMap(file_s.getName()

116 .getURI(), response,

117 new Long(content.getSize()).toString(),

118 lastMod, LockFile.getLockType(lock));

119 //--------------------------------------------//

120 C65:0.46 params.add("insert");

121 C65:0.70 params.add(response);

122 C66:0.60 params.add(lastMod);

123 C66:0.67 params.add(content.getSize());

124 C66:0.69 params.add(lock);

125 //--------------------------------------------//

126 }

127 C67:0.42 FileSystemManager mgr = VFS.getManager();



141

128 C67:1.00 FileObject file_d = mgr.resolveFile(response);

129 C68:0.58 vfs.cp(file_s, file_d);

130 C69:0.50 return params;

131 }

132 }

133 } catch (Exception e) {

134 C70:0.00 logger.error(e.getLocalizedMessage());

135 }

136 C71:0.00 return params;

137 }

138 [...]

139 }

A.2 Refactored version of the storageIM()method

by means of a Method Object

1 public class StorageIM {

2 private final ImageManager im;

3 //private Logger logger; --> im.logger

4 //private SQLite sqlite; --> im.sqlite

5 //private String localRepository; --> im.localRepository

6

7 // Fields selected by the tool

8 private LockFile.lockMode lock;

9 private String lastMod;

10 private List params;

11 private FileObject file_s;

12

13 public StorageIM(ImageManager source, LockFile.lockMode lock) {

14 this.im = source;

15 this.lock = lock;

16 }

17

18 public List compute(VFSDescription vfsD)

19 throws FileSystemException, CleverException, Exception {

20 String response = "";

21 String respLock;

22 /*MOD*/ params = new ArrayList();

23 /*+++*/ VirtualFileSystem vfs = getVFS(vfsD);

24 UUID id = UUID.randomUUID();

25 try {

26 if (!file_s.exists()) {

27 params.add(response);

28 } else {

29 /*+++*/ FileContent content = getContent();



142

30 /*MOD*/ im.logger.debug("element searched : " + file_s.getName().getURI());

31 /*MOD*/ ResultSet rs = im.sqlite.retrieveElementsInMap(file_s

32 .getName().getURI());

33 if ((!rs.isAfterLast() && !rs.isBeforeFirst())) {

34 //--------------------------------------------//

35 if (file_s.getType().equals(FileType.FOLDER)) {

36 response = "" + this.localRepository + id;

37 /*+++*/ setNewParams(lock, response);

38 } else {

39 /*MOD*/ response = im.localRepository + id + "."

40 + file_s.getName().getExtension();

41 /*+++*/ setNewParams(lock, response, content);

42 }

43 FileSystemManager mgr = VFS.getManager();

44 FileObject file_d = mgr.resolveFile(response);

45 vfs.cp(file_s, file_d);

46 if (file_s.getType().equals(FileType.FOLDER)) {

47 /*MOD*/ im.logger.debug("Image1");

48 /*MOD*/ im.sqlite.insertElementAtMap(file_s.getName()

49 .getURI(), response, "", lastMod, LockFile

50 .getLockType(lock));

51 } else {

52 /*MOD*/ im.logger.debug("Image2");

53 /*MOD*/ im.sqlite.insertElementAtMap(file_s.getName()

54 .getURI(), response,

55 new Long(content.getSize()).toString(),

56 lastMod, LockFile.getLockType(lock));

57 }

58 //--------------------------------------------//

59 } else {

60 while (!rs.isAfterLast()) {

61 LockFile l = new LockFile();

62 respLock = l.checkLock(

63 LockFile.getLockEnumType(rs.getString("lock")),

64 lock);

65 if ("SI".equals(respLock)) {

66 /*+++*/ setParamsSiLock(lock, rs);

67 return params;

68 }

69 rs.next();

70 }

71 //--------------------------------------------//

72 if (file_s.getType().equals(FileType.FOLDER)) {

73 /*MOD*/ response = im.localRepository + id;

74 /*MOD*/ im.sqlite.insertElementAtMap(file_s.getName()

75 .getURI(), response, "", lastMod, LockFile

76 .getLockType(lock));

77 /*+++*/ setInsetParam(lock, response);

78 } else {

79 /*MOD*/ response = im.localRepository + id + "."



143

80 + file_s.getName().getExtension();

81 /*MOD*/ im.logger.debug("Image4");

82 /*MOD*/ im.sqlite.insertElementAtMap(file_s.getName()

83 .getURI(), response,

84 new Long(content.getSize()).toString(),

85 lastMod, LockFile.getLockType(lock));

86 /*+++*/ setParamSizedInsert(lock, response, content);

87 }

88 //--------------------------------------------//

89 FileSystemManager mgr = VFS.getManager();

90 FileObject file_d = mgr.resolveFile(response);

91 vfs.cp(file_s, file_d);

92 return params;

93 }

94 }

95 } catch (Exception e) {

96 /*MOD*/ im.logger.error(e.getLocalizedMessage());

97 }

98 return params;

99 }

100

101 private void setParamSizedInsert(LockFile.lockMode lock, String response,

102 FileContent content) {

103 params.add("insert");

104 params.add(response);

105 params.add(lastMod);

106 params.add(content.getSize());

107 params.add(lock);

108 }

109

110 private void setInsetParam(LockFile.lockMode lock, String response) {

111 params.add("insert");

112 params.add(response);

113 params.add(lastMod);

114 params.add("");

115 params.add(lock);

116 }

117

118 private void setParamsSiLock(LockFile.lockMode lock, ResultSet rs)

119 throws SQLException {

120 LockFile.lockMode b1l = LockFile.getLockEnumType(rs

121 .getString("lock"));

122 if (b1l.ordinal() >= lock.ordinal()) {

123 params.add("notUpdate");

124 params.add(rs.getString("response"));

125 } else {

126 params.add("update");

127 params.add(rs.getString("response"));

128 params.add("");

129 params.add("");



144

130 params.add(lock);

131 /*MOD*/ im.sqlite.updateElementInMap("response=’"

132 + rs.getString("response") + "’",

133 "lock=’" + LockFile.getLockType(lock)

134 + "’");

135

136 }

137 }

138

139 private void setNewParams(LockFile.lockMode lock, String response,

140 FileContent content) {

141 params.add("new");

142 params.add(response);

143 params.add(lastMod);

144 params.add(content.getSize());

145 params.add(lock);

146 }

147

148 private void setNewParams(LockFile.lockMode lock, String response) {

149 params.add("new");

150 params.add(response);

151 params.add(lastMod);

152 params.add("");

153 params.add(lock);

154 }

155

156 private FileContent getContent() {

157 FileContent content = file_s.getContent();

158 /*MOD*/ lastMod = "";

159 if (file_s.getType().equals(FileType.FILE)) {

160 DateFormat dateFormat = DateFormat.getDateTimeInstance(

161 DateFormat.MEDIUM, DateFormat.MEDIUM);

162 lastMod = dateFormat.format(new Date(content

163 .getLastModifiedTime()));

164 }

165 return content;

166 }

167

168 private VirtualFileSystem getVFS(VFSDescription vfsD) {

169 VirtualFileSystem vfs = new VirtualFileSystem();

170 vfs.setURI(vfsD);

171 /*MOD*/ file_s = vfs.resolver(vfsD, vfs.getURI(), vfsD.getPath1());

172 return vfs;

173 }

174 [...]

175 }



145

A.3 The Method Object after other two Extract

Methods on compute()

1 public class StorageIM {

2 private final ImageManager im;

3 //private Logger logger; --> im.logger

4 //private SQLite sqlite; --> im.sqlite

5 //private String localRepository; --> im.localRepository

6

7 // Fields selected by the tool

8 private LockFile.lockMode lock;

9 private String lastMod;

10 private List params;

11 private FileObject file_s;

12

13 public StorageIM(ImageManager source, LockFile.lockMode lock) {

14 this.im = source;

15 this.lock = lock;

16 }

17

18 public List compute(VFSDescription vfsD)

19 throws FileSystemException, CleverException, Exception {

20 String response = "";

21 String respLock;

22 params = new ArrayList();

23 VirtualFileSystem vfs = getVFS(vfsD);

24 UUID id = UUID.randomUUID();

25 try {

26 if (!file_s.exists()) {

27 params.add(response);

28 } else {

29 FileContent content = getContent();

30 im.logger.debug("element searched : " + file_s.getName().getURI());

31 ResultSet rs = im.sqlite.retrieveElementsInMap(file_s

32 .getName().getURI());

33 if ((!rs.isAfterLast() && !rs.isBeforeFirst())) {

34 //--------------------------------------------//

35 /*+++*/ processInternalElement(lock, vfs, id, content);

36 //--------------------------------------------//

37 } else {

38 while (!rs.isAfterLast()) {

39 LockFile l = new LockFile();

40 respLock = l.checkLock(

41 LockFile.getLockEnumType(rs.getString("lock")),

42 lock);

43 if ("SI".equals(respLock)) {

44 setParamsSiLock(lock, rs);

45 return params;



146

46 }

47 rs.next();

48 }

49 //--------------------------------------------//

50 /*+++*/ response = prepareResponse(lock, id, content);

51 //--------------------------------------------//

52 FileSystemManager mgr = VFS.getManager();

53 FileObject file_d = mgr.resolveFile(response);

54 vfs.cp(file_s, file_d);

55 return params;

56 }

57 }

58 } catch (Exception e) {

59 im.logger.error(e.getLocalizedMessage());

60 }

61 return params;

62 }

63

64 private String prepareResponse(LockFile.lockMode lock, UUID id,

65 FileContent content) {

66 String response;

67 if (file_s.getType().equals(FileType.FOLDER)) {

68 response = im.localRepository + id;

69 im.sqlite.insertElementAtMap(file_s.getName()

70 .getURI(), response, "", lastMod, LockFile

71 .getLockType(lock));

72 setInsetParam(lock, response);

73 } else {

74 response = im.localRepository + id + "."

75 + file_s.getName().getExtension();

76 im.logger.debug("Image4");

77 im.sqlite.insertElementAtMap(file_s.getName()

78 .getURI(), response,

79 new Long(content.getSize()).toString(),

80 lastMod, LockFile.getLockType(lock));

81 setParamSizedInsert(lock, response, content);

82 }

83 return response;

84 }

85

86 private void processInternalElement(LockFile.lockMode lock,

87 VirtualFileSystem vfs, UUID id, FileContent content) {

88 String response;

89 if (file_s.getType().equals(FileType.FOLDER)) {

90 response = "" + im.localRepository + id;

91 setNewParams(lock, response);

92 } else {

93 response = im.localRepository + id + "."

94 + file_s.getName().getExtension();

95 setNewParams(lock, response, content);



147

96 }

97 FileSystemManager mgr = VFS.getManager();

98 FileObject file_d = mgr.resolveFile(response);

99 vfs.cp(file_s, file_d);

100 if (file_s.getType().equals(FileType.FOLDER)) {

101 im.logger.debug("Image1");

102 im.sqlite.insertElementAtMap(file_s.getName()

103 .getURI(), response, "", lastMod, LockFile

104 .getLockType(lock));

105 } else {

106 im.logger.debug("Image2");

107 im.sqlite.insertElementAtMap(file_s.getName()

108 .getURI(), response,

109 new Long(content.getSize()).toString(),

110 lastMod, LockFile.getLockType(lock));

111 }

112 }

113

114 [...]

115 }



148

Bibliography

[1] A. Abadi, R. Ettinger, and Y. A. Feldman. Fine slicing. In Fundamental

Approaches to Software Engineering: 15th International Conference, FASE

2012, Held as Part of the European Joint Conferences on Theory and Prac-

tice of Software, ETAPS 2012, Tallinn, Estonia, March 24-April 1, 2012,

Proceedings, page 471. Springer, 2012.

[2] A. Abran, K. T. Al-Sarayreh, and J. J. Cuadrado-Gallego. A standards-based

reference framework for system portability requirements. Computer Standards

& Interfaces, 35(4):380–395, 2013.

[3] B. Adams, Z. M. Jiang, and A. E. Hassan. Identifying crosscutting concerns

using historical code changes. In Proceedings of International Conference on

Software Engineering, pages 305–314. IEEE, 2010.

[4] V. Arena, V. Catania, G. La Torre, S. Monteleone, and F. Ricciato. Secure-

droid: An android security framework extension for context-aware policy

enforcement. In Proc. of IEEE International Conference on Privacy and

Security in Mobile Systems (PRISMS), pages 1–8, 2013.

[5] S. Arzt et al. Flowdroid: Precise context, flow, field, object-sensitive and

lifecycle-aware taint analysis for android apps. In Proceedings of PLDI. ACM,

2014.

[6] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,

D. Octeau, and P. McDaniel. Flowdroid: Precise context, flow, field, object-

sensitive and lifecycle-aware taint analysis for android apps. In Proc. of ACM

SIGPLAN Notices, volume 49, pages 259–269, 2014.



149

[7] G. Ascia, V. Catania, R. Di Natale, A. Fornaia, M. Mongiov̀ı, S. Monteleone,

G. Pappalardo, and E. Tramontana. Making android apps data-leak-safe by

data flow analysis and code injection. In Enabling Technologies: Infrastructure

for Collaborative Enterprises (WETICE), 2016 IEEE 25th International

Conference on, pages 205–210. IEEE, 2016.

[8] M. Attariyan and J. Flinn. Automating configuration troubleshooting with

dynamic information flow analysis. In Proceedings of OSDI, 2010.

[9] M. Backes et al. Appguard, fine-grained policy enforcement for untrusted

android applications. In Proceedings of DPM workshop, 2013.

[10] P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K. Bajracharya. A theory

of aspects as latent topics. In Proceedings of OOPSLA, volume 43, pages

543–562. ACM, 2008.

[11] F. Banno, D. Marletta, G. Pappalardo, and E. Tramontana. Tackling con-

sistency issues for runtime updating distributed systems. In Proceedings of

IPDPSW. IEEE, 2010.

[12] K. Beck. Smalltalk best practice patterns. Prentice-Hall, 1997.

[13] K. Beck. Extreme programming explained: embrace change. addison-wesley

professional, 2000.

[14] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster. Program understanding

and the concept assignment problem. Communications of the ACM, 37(5):72–

82, 1994.

[15] E. Bosman, A. Slowinska, and H. Bos. Minemu: the world’s fastest taint

tracker. In Proc. of RAID. Springer, 2011.

[16] P. Bottoni, F. Parisi-Presicce, and G. Taentzer. Coordinated distributed

diagram transformation for software evolution11partially supported by the ec

under research and training network segravis. Electronic Notes in Theoretical

Computer Science, 72(4):59–70, 2003.



150

[17] S. Breu and T. Zimmermann. Mining aspects from version history. In Auto-

mated Software Engineering, 2006. ASE’06. 21st IEEE/ACM International

Conference on, pages 221–230. IEEE, 2006.

[18] L. C. Briand, J. W. Daly, and J. Wüst. A unified framework for cohesion

measurement in object-oriented systems. Empirical Software Engineering,

3(1):65–117, 1998.

[19] L. C. Briand, J. W. Daly, and J. K. Wust. A unified framework for coupling

measurement in object-oriented systems. IEEE Transactions on software

Engineering, 25(1):91–121, 1999.

[20] G. Cabri, L. Ferrari, and L. Leonardi. Enabling mobile agents to dynami-

cally assume roles. In Proceedings of the 2003 ACM symposium on Applied

computing, pages 56–60. ACM, 2003.

[21] A. Calvagna, A. Fornaia, and E. Tramontana. Assessing the correctness of

jvm implementations. In WETICE Conference (WETICE), 2014 IEEE 23rd

International, pages 390–395. IEEE, 2014.

[22] A. Calvagna, A. Fornaia, and E. Tramontana. Combinatorial interaction

testing of a java card static verifier. In Software Testing, Verification and

Validation Workshops (ICSTW), 2014 IEEE Seventh International Conference

on, pages 84–87. IEEE, 2014.

[23] A. Calvagna, A. Fornaia, and E. Tramontana. Random versus combinatorial

effectiveness in software conformance testing: a case study. In Proceedings of

the 30th Annual ACM Symposium on Applied Computing, pages 1797–1802.

ACM, 2015.

[24] A. Calvagna and A. Gargantini. T-wise combinatorial interaction test suites

construction based on coverage inheritance. Software Testing, Verification

and Reliability, 22(7):507–526, 2012.

[25] W. Chang, B. Streiff, and C. Lin. Efficient and extensible security enforcement

using dynamic data flow analysis. In Proceedings of CCS. ACM, 2008.



151

[26] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented

design. IEEE Transactions on software engineering, 20(6):476–493, 1994.

[27] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-

application communication in android. In Proc. of International Conference

on Mobile Systems, Applications, and Services, MobiSys, pages 239–252.

ACM, 2011.

[28] E. Chin and D. Wagner. Efficient character-level taint tracking for java. In

Proceedings of workshop on Secure web services, pages 3–12. ACM, 2009.

[29] S.-S. Choi, S.-H. Cha, and C. C. Tappert. A survey of binary similarity

and distance measures. Journal of Systemics, Cybernetics and Informatics,

8(1):43–48, 2010.

[30] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum. Un-

derstanding data lifetime via whole system simulation. In Proceedings of

USENIX Security Symposium, pages 321–336, 2004.

[31] A. Cockburn. Agile software development, volume 177. Addison-Wesley

Boston, 2002.

[32] K. Cotterell, I. Welch, and A. Chen. An android security policy enforcement

tool. International Journal of Electronics and Telecommunications, 61(4):311,

2015.

[33] J. R. Crandall and F. T. Chong. Minos: Control data attack prevention

orthogonal to memory model. In Proceedings of MICRO, pages 221–232.

IEEE, 2004.

[34] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. Pios: Detecting privacy leaks

in ios applications. In Proceedings of NDSS, 2011.

[35] T. Eisenbarth, R. Koschke, and D. Simon. Locating features in source code.

IEEE Trans. on Software Engineering, 29(3):210–224, 2003.

[36] A. D. Eisenberg and K. De Volder. Dynamic feature traces: Finding features

in unfamiliar code. In Proceedings of International Conference on Software

Maintenance (ICSM), pages 337–346. IEEE, 2005.



152

[37] W. Enck et al. Taintdroid: An information-flow tracking system for realtime

privacy monitoring on smartphones. In Proceedings of OSDI, 2010.

[38] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,

P. McDaniel, and A. N. Sheth. Taintdroid: an information-flow tracking

system for realtime privacy monitoring on smartphones. ACM Transactions

on Computer Systems (TOCS), 32(2):5, 2014.

[39] R. Ettinger. Refactoring via program slicing and sliding. In Software Mainte-

nance, 2007. ICSM 2007. IEEE International Conference on, pages 505–506.

IEEE, 2007.

[40] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence

graph and its use in optimization. ACM Transactions on Programming

Languages and Systems (TOPLAS), 9(3):319–349, 1987.

[41] A. Fornaia, C. Napoli, G. Pappalardo, and E. Tramontana. An ao system for

oo-gpu programming. In Proc. of the 16th Workshop From Object to Agents

(WOA), volume 1382, Napoli, Italy, June 2015. CEUR-WS.

[42] A. Fornaia and E. Tramontana. Deduct: a data dependence based concern

tagger for modularity analysis. In Computers, Software, and Applications

(COMPSAC), 2017 IEEE 41th International Conference on. IEEE, 2017.

[43] A. Fornaia and E. Tramontana. Is my code easy to port? using taint

analysis to evaluate and assist code portability. In Enabling Technologies:

Infrastructure for Collaborative Enterprises (WETICE), 2017 IEEE 26th

International Conference on, pages 269–274. IEEE, 2017.

[44] M. Fowler and K. Beck. Refactoring: improving the design of existing code.

Addison-Wesley Professional, 1999.

[45] E. Gamma, R. Helm, R. Johnson, and R. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley. Reading, MA, 1994.

[46] A. Gargantini, E. Riccobene, and S. Rinzivillo. Using spin to generate tests

from asm specifications. In Abstract State Machines 2003, pages 263–277.

Springer, 2003.



153

[47] M. Gawinecki, G. Cabri, M. Paprzycki, and M. Ganzha. Wscolab: Structured

collaborative tagging for web service matchmaking. In WEBIST (1), pages

70–77, 2010.

[48] C. Gibler, J. Crussell, J. Erickson, and H. Chen. Androidleaks: Automatically

detecting potential privacy leaks in android applications on a large scale. In

Proceedings of TRUST. Springer, 2012.

[49] R. Giunta, G. Pappalardo, and E. Tramontana. Aspects and annotations for

controlling the roles application classes play for design patterns. In Proc. of

APSEC. IEEE, 2011.

[50] R. Giunta, G. Pappalardo, and E. Tramontana. AODP: refactoring code

to provide advanced aspect-oriented modularization of design patterns. In

Proceedings of SAC, pages 1243–1250. ACM, 2012.

[51] R. Giunta, G. Pappalardo, and E. Tramontana. Superimposing roles for

design patterns into application classes by means of aspects. In Proceedings

of ACM Symposium on Applied Computing (SAC), pages 1866–1868, March

2012.

[52] M. L. Goodstein et al. Butterfly analysis: Adapting dataflow analysis to

dynamic parallel monitoring. In Proceedings of SIGARCH Computer Archi-

tecture News, volume 38. ACM, 2010.

[53] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker: Scalable and

accurate zero-day android malware detection. In Proc. of ACM International

Conference on Mobile Systems, Applications, and Services, MobiSys, pages

281–294, 2012.

[54] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, and R. Berg. Saving

the world wide web from vulnerable javascript. In Proceedings of ISSTA.

ACM, 2011.

[55] B. Henderson-Sellers. Software metrics. Prentice Hall, Hemel Hempstaed,

UK, 1996.



154

[56] S. Henry and D. Kafura. Software structure metrics based on information

flow. IEEE transactions on Software Engineering, (5):510–518, 1981.

[57] M. Hitz and B. Montazeri. Measuring coupling and cohesion in object-oriented

systems. 1995.

[58] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand. Practical taint-

based protection using demand emulation. In Proc. of SIGOPS/EuroSys,

volume 40. ACM, 2006.

[59] S. Holavanalli et al. Flow permissions for android. In Proceedings of ASE.

IEEE/ACM, Nov. 2013.

[60] K. Jee et al. A general approach for efficiently accelerating software-based

dynamic data flow tracking on commodity hardware. In Proc. of NDSS, 2012.

[61] M. G. Kang, S. McCamant, P. Poosankam, and D. Song. Dta++: Dynamic

taint analysis with targeted control-flow propagation. In Proceedings of NDSS,

2011.

[62] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis. libdft: prac-

tical dynamic data flow tracking for commodity systems. In Proceedings of

SIGPLAN Notices/VEE, volume 47. ACM, 2012.

[63] U. Khedker, A. Sanyal, and B. Sathe. Data flow analysis: theory and practice.

CRC Press, 2009.

[64] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,

and J. Irwin. Aspect-oriented programming. In Proceedings of ECOOP, pages

220–242. Springer, 1997.

[65] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The soot framework for java

program analysis: a retrospective. In Cetus Users and Compiler Infastructure

Workshop (CETUS 2011), volume 15, page 35, 2011.

[66] Y. Lee, B. Liang, S. Wu, and F. Wang. Measuring the coupling and cohesion of

an object-oriented program based on information flow. In Proc. International

Conference on Software Quality, Maribor, Slovenia, pages 81–90, 1995.



155

[67] J. Lenhard and G. Wirtz. Portability of executable service-oriented pro-

cesses: metrics and validation. Service Oriented Computing and Applications,

10(4):391–411, 2016.

[68] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An information retrieval

approach to concept location in source code. In Proc. of Working Conf. on

Reverse Engineering, pages 214–223. IEEE, 2004.

[69] M. Marin, A. V. Deursen, and L. Moonen. Identifying crosscutting con-

cerns using fan-in analysis. ACM Transactions on Software Engineering and

Methodology (TOSEM), 17(1):3, 2007.

[70] K. Maruyama. Automated method-extraction refactoring by using block-

based slicing. In ACM SIGSOFT Software Engineering Notes, volume 26,

pages 31–40. ACM, 2001.

[71] M. Mattsson, H. Grahn, and F. Mårtensson. Software architecture evaluation

methods for performance, maintainability, testability, and portability. In

Proc. of Conf. on Quality of Software Architectures, 2006.

[72] M. Mongiov̀ı, G. Giannone, A. Fornaia, G. Pappalardo, and E. Tramontana.

Combining static and dynamic data flow analysis: a hybrid approach for

detecting data leaks in java applications. In Proc. of Symposium on Applied

Computing (SAC), pages 1573–1579. ACM, 2015.

[73] J. D. Mooney. Strategies for supporting application portability. Computer,

23(11):59–70, 1990.

[74] J. D. Mooney. Issues in the specification and measurement of software

portability. In Proc. of Conf. on Soft. Engin., 1993.

[75] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label

model. ACM TOSEM, 9(4), 2000.

[76] C. Napoli, G. Pappalardo, and E. Tramontana. Using modularity metrics to

assist move method refactoring of large systems. In Complex, Intelligent, and

Software Intensive Systems (CISIS), 2013 Seventh International Conference

on, pages 529–534. IEEE, 2013.



156

[77] J. Newsome and D. Song. Dynamic taint analysis for automatic detection,

analysis, and signature generation of exploits on commodity software. In

Proc. of NDSS, 2005.

[78] C. Nunes, A. Garcia, E. Figueiredo, and C. Lucena. Revealing mistakes in

concern mapping tasks: an experimental evaluation. In Proceedings of CSMR,

pages 101–110. IEEE, 2011.

[79] G. Pappalardo and E. Tramontana. Suggesting extract class refactoring

opportunities by measuring strength of method interactions. In Software

Engineering Conference (APSEC), 2013 20th Asia-Pacific, volume 2, pages

105–110. IEEE, 2013.

[80] M. Pezzé and M. Young. Software Testing and Analysis: Process, Principles

and Techniques. Wiley, 2008.

[81] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emulator for finger-

printing zero-day attacks for advertised honeypots with automatic signature

generation. In Proceedings of SIGOPS/EuroSys, volume 40. ACM, 2006.

[82] D. Poshyvanyk and A. Marcus. Combining formal concept analysis with

information retrieval for concept location in source code. In Proceedings of

ICPC, pages 37–48. IEEE, 2007.

[83] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu. Lift: A low-overhead

practical information flow tracking system for detecting security attacks. In

Proceedings of MICRO, pages 135–148. IEEE, 2006.

[84] M. Robillard and G. C. Murphy. Concern graphs: finding and describing con-

cerns using structural program dependencies. In Proceedings of International

Conference on Software Engineering, pages 406–416. IEEE, 2002.

[85] M. P. Robillard and G. C. Murphy. Representing concerns in source code.

Transactions on Software Engineering and Methodology (TOSEM), 16(1):3,

2007.

[86] K. Schwaber and M. Beedle. Agile software development with Scrum, volume 1.

Prentice Hall Upper Saddle River, 2002.



157

[87] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know

about dynamic taint analysis and forward symbolic execution (but might

have been afraid to ask). In Proc. of Security and privacy (SP). IEEE, 2010.

[88] J. Schtte, D. Titze, and J. M. D. Fuentes. Appcaulk: Data leak prevention

by injecting targeted taint tracking into android apps. In Proc. IEEE In-

ternational Conference on Trust, Security and Privacy in Computing and

Communications (TrustCom), pages 370–379, Sept 2014.

[89] G. Shu, B. Sun, T. A. D. Henderson, and A. Podgurski. Javapdg: A new

platform for program dependence analysis. In Proceedings of ICST, pages

408–415. IEEE, 2013.

[90] D. Silva, R. Terra, and M. T. Valente. Recommending automated extract

method refactorings. In Proceedings of the 22nd International Conference on

Program Comprehension, pages 146–156. ACM, 2014.

[91] F. Simon, F. Steinbruckner, and C. Lewerentz. Metrics based refactoring. In

Software Maintenance and Reengineering, 2001. Fifth European Conference

on, pages 30–38. IEEE, 2001.

[92] I. Sommerville. Software Engineering. Addison Wesley, 2004.

[93] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann.

Mobile-sandbox: Having a deeper look into android applications. In Proceed-

ings of ACM Symposium on Applied Computing (SAC), pages 1808–1815,

2013.

[94] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby. Shared waypoints and social

tagging to support collaboration in software development. In Proceedings

of the 2006 20th anniversary conference on Computer supported cooperative

work, pages 195–198. ACM, 2006.

[95] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program execution

via dynamic information flow tracking. In Sigplan Notices, volume 39, pages

85–96. ACM, 2004.



158

[96] F. A. Talib, D. Giannacopoulos, and A. Abran. Designing a measurement

method for the portability non-functional requirement. In Proc. of IWSM-

MENSURA. IEEE, 2013.

[97] E. Tramontana. Automatically characterising components with concerns

and reducing tangling. In Computer Software and Applications Conference

Workshops (COMPSACW), 2013 IEEE 37th Annual, pages 499–504. IEEE,

2013.

[98] M. Trifu. Using dataflow information for concern identification in object-

oriented software systems. In Proceedings of CSMR, pages 193–202. IEEE,

2008.

[99] O. Tripp et al. Andromeda: Accurate and scalable security analysis of web

applications. In Proceedings of FASE. Springer, 2013.

[100] N. Tsantalis and A. Chatzigeorgiou. Identification of extract method refac-

toring opportunities. In Software Maintenance and Reengineering, 2009.

CSMR’09. 13th European Conference on, pages 119–128. IEEE, 2009.

[101] N. Tsantalis and A. Chatzigeorgiou. Identification of extract method refac-

toring opportunities for the decomposition of methods. Journal of Systems

and Software, 84(10):1757–1782, 2011.

[102] F. Tusa, M. Paone, M. Villari, and A. Puliafito. Clever: A cloud-enabled

virtual environment. In Proceedings of ISCC, pages 477–482. IEEE, 2010.

[103] R.-G. Urma and A. Mycroft. Source-code queries with graph databaseswith

application to programming language usage and evolution. Science of Com-

puter Programming, 97:127–134, 2015.

[104] N. Vachharajani et al. Rifle: An architectural framework for user-centric

information-flow security. In Proceedings of MICRO. IEEE, 2004.

[105] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan.

Soot-a java bytecode optimization framework. In Proceedings of the 1999

conference of the Centre for Advanced Studies on Collaborative research,

page 13. IBM Press, 1999.



159

[106] R. Vallee-Rai and L. J. Hendren. Jimple: Simplifying java bytecode for

analyses and transformations. 1998.

[107] A. Van Deursen, M. Marin, and L. Moonen. Aspect mining and refactoring. In

Proceedings of the 1st International Workshop on Refactoring: Achievements,

Challenges, Effects (REFACE), with WCRE, pages 11–21, 2003.

[108] G. Venkataramani, I. Doudalis, D. Solihin, and M. Prvulovic. Flexitaint: A

programmable accelerator for dynamic taint propagation. In Proc. of HPCA.

IEEE, 2008.

[109] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna.

Cross site scripting prevention with dynamic data tainting and static analysis.

In Proc. of NDSS, 2007.

[110] H. Washizaki, H. Yamamoto, and Y. Fukazawa. A metrics suite for measuring

reusability of software components. In Proc. of Software Metrics Symposium.

IEEE, 2003.

[111] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Profiledroid: Multi-

layer profiling of android applications. In Proceedings of ACM International

Conference on Mobile Computing and Networking (Mobicom), pages 137–148,

2012.

[112] L. Weichselbaum, M. Neugschwandtner, M. Lindorfer, Y. Fratantonio,

V. van der Veen, and C. Platzer. Andrubis: Android Malware Under the

Magnifying Glass. Technical Report TRISECLAB-0414-001, Vienna Univ. of

Techn., 2014.

[113] M. Weiser. Program slicing. In Proceedings of the 5th international conference

on Software engineering, pages 439–449. IEEE Press, 1981.

[114] I. S. Welch and R. J. Stroud. Re-engineering security as a crosscutting concern.

The Computer Journal, 46(5):578–589, 2003.

[115] R. Xu, H. Säıdi, and R. Anderson. Aurasium: practical policy enforcement

for android applications. In Proceedings of USENIX Security symposium,

2012.



160

[116] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement: A

practical approach to defeat a wide range of attacks. In Proc. of USENIX

Security symposium, 2006.

[117] L. K. Yan and H. Yin. Droidscope: Seamlessly reconstructing the os and

dalvik semantic views for dynamic android malware analysis. In Proc. of

USENIX Security Symposium, 2012.

[118] L. Yang, H. Liu, and Z. Niu. Identifying fragments to be extracted from long

methods. In Software Engineering Conference, 2009. APSEC’09. Asia-Pacific,

pages 43–49. IEEE, 2009.

[119] M. Young and M. Pezze. Software Testing and Analysis: Process, Principles

and Techniques. John Wiley & Sons, 2005.

[120] R. Zhang, S. Huang, Z. Qi, and H. Guan. Static program analysis assisted

dynamic taint tracking for software vulnerability discovery. Computers &

Mathematics with Applications, 63(2):469–480, 2012.

[121] J. Zhao. Dependence analysis of java bytecode. In Computer Software

and Applications Conference, 2000. COMPSAC 2000. The 24th Annual

International, pages 486–491. IEEE, 2000.

[122] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming information-stealing

smartphone applications (on android). In Proceedings of TRUST. Springer,

2011.

[123] D. Y. Zhu et al. Tainteraser: Protecting sensitive data leaks using application-

level taint tracking. SIGOPS Operating Systems Review, 45(1):142–154,

2011.


