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Abstract

It is envisioned that 6G networks will be more a revolution than an evolution in comparison
with the previous generations, as it will represent a fully connected and intelligent network,
where heterogeneous interconnected elements are able to dynamically interact with each
other in an unplanned manner, commingling into a complex ecosystem. Wireless networks
are growing in size and in deployment density, demanding scalability and adaptability to
be part of the future network design. Furthermore, the trend is to transform networks’
architecture and service implementation. The former is shifting from a traditionally rigid
and hierarchical - hardware first - to a more flat and flexible- software first — implementation,
enabling, among other things, dynamic resource sharing and on-demand resource allocation.
The latter is related to new services and use cases with strict requirements (e.g. latency,
throughput, reliability), dynamically demanding resources on a more fine-grained level. Very
heterogeneous devices and kind of networks, such as cellular, Wi-Fi, vehicular and Internet
of Things (IoT), cannot be considered in isolation but belonging to the same ecosystem and
are interdependent, constituting subsets of a network that evolve over time in accordance with
user deployed infrastructure. Network will be not only a pipeline for transferring information
from a source to a destination, but must be modelled, analysed, and designed as a living
organism, which evolves over time and adapts to the changes in its environment, acting in
a cognitive way. To support high performances, new functions, services and to satisfy the
stringent requirement of the typical 6G applications, a key pillar aspect is the shifting of the
intelligence at the edge. It means bringing some Al features to each end node, or on clusters
of nodes, so that they can learn progressively and share what they learn with other edge nodes
to provide, collectively, new added value or optimized services. Within mobile networks,
this is handled by Multi Access Edge Computing (MEC) infrastructures that are expected
to be incorporated into future 6G networks, creating the so-called distributed and collective
edge intelligence. Edge devices become intelligent hubs able to deliver highly personalized
services directly from the edge of the network, enabling applications to perform at their best.
Considering that the edge is populated by humans and that end devices are often hand-held
ore wearable, the social aspect and human dynamics are even more central in the design of

such networks. Also, to enable a paradigm in which people are not only mere users of the
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applications and adapt to the technology but vice versa.

Starting from these premises, in this dissertation, it is proposed a complex perspective to
enable the deployment of edge intelligence in order to design innovative ICT 6G applications.
The proposed and applied methodology is interdisciplinary and bio-inspired and based on
tools belonging to several research fields: the theory of complex systems, the Evolutionary
Game Theory, Multiplex and Temporal Multiplex Networks, and the Epidemics Modelling.
This methodology is the most suited to include all the dynamical and complex features
of the future 6G networks, taking into account aspects, which are becoming even more
crucial, as the evolutionary dynamics, the emergent behaviours, the cooperation, the multiple
interactions and their interdependence, the heterogeneity and the social and human-related
aspects. The research topics of interest during the PhD period can be summarized in the

following research questions which guide the development of this thesis:

* What are the most suited tools and methodology to quantify the impact that micro-scale
structures and dynamic properties have on macro-scale performance? In what terms is

it possible to represent a 6G network as a complex system?

* What is the most appropriate approach to measure, evaluate and characterize services
and components in 6G networks?

* Is it possible to quantify the impact of human behaviour and dynamics in designing,
providing and evaluation of ICT services in a 6G scenario?

* How can edge nodes trigger cognitive and distributed decision mechanisms, adapting
themselves and learning from the environment? How can they tune their dynamics
in order to construct the connected and distributed intelligence, optimizing the use of
available resources and improving the QoS?

After a discussion about the evolution of communication networks, from 1G towards 6G,
and the need for new approaches to analysis, modeling and design; the literature related the
methodology and tools is reviewed. Then, through the chapters of the thesis, the research
questions are answered, showing both analytical and data-driven models, including new
parameters and measures able to capture, measures and combine the dynamical and complex
aspects of 6G networks, considering QoS, QoE and human-related aspects. Simulations re-
sults are shown and discussed. Finally, the conclusions summarizes the research contributions
and indicates possible future developments.
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Chapter 1

Introduction

1.1 Complexity for Edge Intelligence in 6G: An Overview

The outbreak of the COVID-19 pandemic has highlighted the crucial role embodied by
networks and digital infrastructure in keeping society running and people connected. It has
brought out, perhaps as never before, the pivotal importance of existing applications and
services such as remote working and online education and the need to invest in developing
ones like driverless vehicles, remote surgeon, unmanned delivery, smart healthcare, and
autonomous manufacturing [56]. On the basis of these premises, investments that countries
will make in research and development of telecommunications of sixth-generation (6G), in
the Internet of the Future with its infrastructures and services, will be the starting point for
the development of entire sectors of the society [3].

It is envisioned that 6G networks will be more a revolution than an evolution in comparison
with the previous generations, as it will represent a fully connected and intelligent network,
where heterogeneous interconnected elements are able to dynamically interact with each
other in an unplanned manner, commingling into a complex ecosystem [126], [119]. .
These networks will be engineered providing distributed intelligence techniques to various
and heterogeneous end nodes, enabling them to quickly adapt to new conditions in the
network and in the environment [139]. Network adaptation, resilience, and self-driving with
zero manual intervention will be key pillar aspects and it will be crucial finding a trade-off
among several factors such as capacity, power consumption, latency, complexity rescuing in
such a distributed collective intelligence in the context of multi-agent collaborative network
management [143].

For these reasons, in contrast with the previous telecommunication networks 6G networks will
present evolutionary tendency such as scaling, adaptation, resilience, self-driving structure

and flexibility. To begin with scaling the network will be associated with a tremendous
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network size including all kinds of entities, ranging from simple sensors to sophisticated
devices, and including different network scenarios as cellular, vehicular, Wi-Fi, Internet of
Things (IoT) systems, with different service capabilities and requirements. Furthermore,
interactions among these entities will be heterogeneous and result in a diverse variety of
traffic.

Next, future wireless networks will tend to have a self-configuring architecture, where each
entity cooperate with others to complete tasks, giving to the network the characteristic of
“being ad hoc”. In addition, the mobility of entities results in a complex time-variant network
structure, which requires dynamic time-space association.

Last but not least, considering that the network’s edges, even now, are populated by hand-held
mobile devices, it becomes pivotal taking into account [100] human beings themselves with
their devices (from wearable to hand-held) and, consequently, their behaviours are active
elements of the network, forming a sort of heterogeneous and aggregated things, playing an
active role in the technical aspects and in the design of the networking functions, representing
the interacting part that coexist in what can be considered as a complex socio-technical
ecosystem. With the proliferation of these hand-held mobile devices, is increasing also
the demand for a high quality of service (QoS) and quality of experience (QoE), so future
wireless networks have to support a broad range of compelling applications, with high-rate,
low-latency, low-cost and reliable information services.

In addition to these aspects, the typical and fundamental operations of these networks with
denser deployments, more base stations, countless users, as well as with new technologies
which are expected to be introduced in 6G networks (e.g. the Artificial Intelligence (AI),
Machine Learning (ML), Terahertz (THz) band communications) are further enhanced by
the trend toward softwarisation of networking functionalities. In other words, the network
architecture is shifting from a rigid and hierarchical implementation to a flat and flexible one,
leading some parts of the network architecture, traditionally static (such as base stations) to
evolve towards a more dynamic implementation where the intelligence and functionalities
are pushed at the edge.

The forth-coming generation of communication networks should be considered not only as
a simple pipelines for transferring information from a source to the destination, but also
as a source of information and data (e.g. sensor networks collect information about the
environment, vehicular networks provide information about the traffic), and able to store,
communicate, process and extract further knowledge from them.

The increase demand for resources precipitates the need for cooperation and collaboration
such that those networks cannot be considered individually but as a part of a bigger and

complex ecosystem. The network will act as a living organism which is able to evolve, time
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by time, to the changes in its environment and the key challenge is to learn how to design
such networks that can self-organize, self-adapt and optimize their interactions and functions,
in a continuous and dynamically changing manner to meet applications’ demands.

The network architecture will be user-centric and with end nodes more central than ever
and playing a key role in content diffusion, learning, computation and organization. In
this perspective, one of the revolutionary concepts for 6G networks is envisioned to be the
shifting from the concept of “connected things” or Internet of Things (10T) or Internet from
Everything to the so-called “connected intelligence” which inevitably revamp fundamental
network concepts, increase the network’s complexity and makes Edge Intelligence (EI) at
node level one of the key enabling factors [111].

In this respect, one definition of particular importance for 6G is represented by the Multi-
access Edge Computing (MEC), initiative within ETSI, [54], which acts as an enabling
technology for 6G. In this architecture, edge intelligence refers to data analysis, development
of solutions and intelligent services and functions deployed at the edge of networks where
data are generated and further utilized in order to reduce latency, costs, and security risks.
All these aspects together with the innovation strictly related to the network architecture,
which are moving from closed hierarchical or semi-hierarchical structures to open, distributed
and networked ones, represents a driver for the application of new approaches able to analyse,
model and design these systems.

The definition of complex system as “a system in which large networks of components with
no central control and simple rules of operation give rise to complex collective behavior,
sophisticated information processing, and adaptation via learning or evolution” [98], [31]
is perfectly aligned with the vision of future mobile networks and represent a useful and
effective tool capable to model the behaviour of the forthcoming 6G telecommunication
networks [126].

Complex systems theory [126] , by definition, takes into account methodologies and tools
built to analyse emerging behaviours, cooperative and collaborative dynamics among a large
interlacing number of elements, represented by nodes connected by relationships of different
kind. These nodes adopt simple actions in a distributed manner, triggering complex system-
wide patterns and behaviors; with appropriate design and management, the interaction of
elements in this way enables aggregate capability far exceeding the capabilities of a single
system’s element.

Different sciences, physics, biology, mathematics, engineering and many others, are facing
with the problem of increasing complexity, testifying the interdisciplinary nature of the
complex system analysis. Even if tools such as information theory, game theory, network

science, statistical mechanics, computational modeling, distributed optimization, are very



4 Introduction

suitable to study different system properties, none of them individually allows us to fully
comprehend a complex system. Hence, the complexity sciences are more a revolution in
methods than a theory, and the interdisciplinary is one of its characteristic aspect, for example
[37]:

» Complexity metrics are based on information theory (e.g. mutual information, entropy).
However, instead of modeling the amount of randomness in the system or the amount
of information exchanged between two system entities, complexity metrics measure
how much the behavior of system parts deviates from the behavior that is expected

from a completely random or a linear system [31].

* Network science allows us to model highly complex systems by focusing on the
modeling of interactions rather than on the individual parts and it provides a set of
tools that are helpful to understand the interdependence among the system entities. In
addition, the increasing interest for the complex systems theory and the advancements
of the recent years have showed that, in order to shed light on the complexity of
the large variety of real systems, the description in terms of single network is an
oversimplification, which represent a loss of information and is not able to capture the
network’s dynamics and patterns deriving from the simultaneous interactions of more
than just one network. On the contrary, multilayer networks distinguish different kinds
and channels of interactions between nodes through different layers. Nodes in the
network are linked to each other via multiple edges, revealing important information
about connectivity and complexity [24, 29].

* Complex systems rely on distributed decision making, which can be studied thanks
to game theory mathematical tool. Due to the heterogeneous set of agents and rules
of interaction between them it is usually impossible to describe the system with a set
of selfish agents or closed form equations. Unlike game theory approaches that rely
on strategic interactions between rational decision-makers, individual agents within a
complex system often exhibit a behavior that would not be categorized as rational, and
therefore the decision making process is not always based on the maximization of the
mathematical expectation of the cost function. To evaluate emerging dynamics from
the interactions in complex networks it is useful to introduce the Evolutionary Game
Theory mathematical framework which is applied to several fields such as economy,
biology, computer science, communication networks, security, power control issues in
wireless scenarios, distributed systems (e.g. peer-to-peer networks), artificial intelli-

gence and all those situations where elementary units (or agents) have to coordinate
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their actions to achieve a common good, as the individual strategical decisions and

behaviours affect the outcomes of others in the same environment [103, 113].

* Statistical mechanics tools allow us to study systems that are composed of a big
number of entities, in which the system behavior often depends on the chronology of
interactions rather then the current states of the individual elements. For this reason
network theory allows us to add another dimension of analysis, the time, considering
temporal networks rather then the time aggregated structure [72]. This is particular
relevant for some collective processes on top of them, such as co-evolving spreading,
diffusion phenomena, content dissemination or social contagion, for which it is useful
to resort to the classical epidemiological modes thoroughly used in network science for
social behavioural analysis, misinformation diffusion, infectious disease and emotions

spreading, which spread inter-personally like a virus [110, 124, 122].

* The huge amount of heterogeneous data generated by the devices disseminated in the
world, but also the online social platforms or the collection of event logs are means
through which reach the so-called cyber physical convergence. The application of
techniques from data analytics, infodemics [91], data mining, or sentiment analysis
allow us to retrieve such a knowledge; these data represent digital fingerprints from
which extract the behavioural pattern of humans, the topics which polarize their
attention, their degree of awareness. All these information are crucial in order to
analyse empirically the dynamics of the complex systems, also rescuing on data about
virtual interactions and physical ones in proximity networks [58].

1.2 Research Questions

This Ph.D. dissertation addresses some main research questions:

* The future 6G communication networks represent more a revolution than an evolution
of previous technologies, constituting a complex ecosystem of things and people. This
makes it necessary to introduce new approaches and tools able to take into account
new and complex aspects such as emergent dynamics, competition and cooperation,
collective behaviours, and interdependence. It becomes crucial understanding how the
local interaction rules lead to global organization/synchronization, correlating them
with certain network Key Performance Indicators (KPIs).

What are the most suited tools and methodology to quantify the impact that
micro-scale structures and dynamic properties have on macro-scale performance?
In what terms is it possible to represent a 6G network as a complex system?
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* The upcoming 6G has the ambition to introduce heterogeneous interconnected ele-
ments, dynamically interacting with each other as well as with their environment in
an unpredictable and unplanned way. A key pillar concept is pushing the intelligence
at the edge, by assigning a a key role to edge nodes in content diffusion, learning,
computation and organization. The traditional attributes applied to measure and charac-
terize communication networks such as interference, coverage, throughput, robustness
and costs are not able to describe dynamics and crucial aspects of future wireless
and mobile networks. It therefore becomes necessary to have innovative tools and
approaches to assess the QoS and characterise the nodes of a 6G network, taking into
account new, dynamic and cognitive aspects.

What is the most appropriate approach to measure, evaluate and characterize

services and components in 6G networks?

* Human beings with their behaviors and social dynamics become increasingly central in
6G networks. Not only because the edges of the network are populated by humans and
their devices, hand-held or wearable ones, but also because the idea that is spreading is
that people do not have to adapt to the technology but vice versa. In this way, human
beings and factors become an integral part of the network architecture and not just
mere users.

Is it possible to quantify the impact of human behaviour and dynamics in design-
ing, providing and evaluation of ICT services in a 6G scenario?

* Multi Access Edge Computing (MEC) infrastructures, moving the intelligence from
the central cloud to edge computing resources, are expected to be incorporated into
future 6G networks and are a key pivotal point for the so-called distributed and col-
lective edge intelligence. Edge devices become intelligent hubs able to deliver highly
personalized services directly from the edge of the network, enabling applications to
perform at their best. The idea is to bring some Al features to each node, as well as
on clusters of nodes, so that they can learn progressively and possibly share what they
learn with other similar (edge) nodes to provide, collectively, new added value services
or optimized services.

How can edge nodes trigger cognitive and distributed decision mechanisms, adapt-
ing themselves and learning from the environment? How can they tune their
dynamics in order to construct the connected and distributed intelligence, opti-
mizing the use of available resources and improving the QoS?



1.3 Methodology 7

1.3 Methodology

During my PhD period I had the possibility to focus my research methodology on an interdis-
ciplinary approach, this aspect represented a great opportunity for me because it represented
the possibility of combining fields that I thought were disconnected and belonging to different
research subjects. This allowed me to change my approach to research topics I faced, seeing
them not as individual ones but as different aspects of a unique most complex and bigger
research area.

I started my Ph.D. in Systems, Energetic, Computer and Telecommunications Engineering
driven by the interest and the desire to learn more about the issues and the methodology
I came across during my MSc thesis period. On that time, I focused on the evolutionary
dynamics of collective behaviours through the Evolutionary Game Theory in a complex
social network modelled as a multiplex network.

It was fascinating for me considering that biological systems are an inspiration for the re-
search concerning ICT development. In fact, the real world is the first example of enormous,
dynamical, heterogeneous and complex system where its organisms are able to survive,
self-organise, adapt, cooperate and evolve in a such complex environment, exploiting their
context-awareness, without a centralized control. Similarly communication networks are
becoming even more heterogeneous, dense and interconnected and the tendency is to design
them in a robust, adaptive and scalable way. The bio-inspired approach, applied to ICT, gives
the opportunity to use innovative algorithms, tools and analytical models to optimise and
improve the design and management of ICT, investing new fields such as context-awareness,
social networking, multilayer networks, evolutionary game theory, content dissemination,
smart mobility, smart healthcare, dynamic complex systems, smart platforms and services.
In particular, it was intriguing evaluating how microscopic interactions of simple self-
organised agents and their relationships have an impact on the the emergence of a collective
intelligence (for instance imitating the collective behaviours of bees and ants, e.g. swarm
intelligence) leading towards a common good for the whole system. Particularly interesting
is noting that interactions among elements are not trivial and follow recurrent and complex
patterns and that the individual interacting entities are themselves heterogeneous and complex
(e.g. human beings in social networks or nodes of future telecommunication networks). To
better understand these complex dynamics I have focused on the mathematical framework
of Evolutionary Game Theory, able to capture the underlying mechanisms and the hidden
dynamics of systems and shedding light on how and why some behaviours emerge following
a specific pattern (e.g. cooperation and competition). To deal with the complexity of social
interactions, I explored the paradigm of multilayer networks, since the presence of nodes
in multiple layers of a system is the key to understand emergent phenomena, adding an
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extra dimension of analysis and displaying what is the role both of intralayer interactions, as
in monoplex representations, and of interlayer interactions. To disclose the complexity in
co-evolving and interdependent spreading processes, to analyse the phenomenon of social
contagion and the key role that ties have in diffusion phenomena I included the tool of epi-
demiological models which find application in network science, social behavioural analysis,
content diffusion, infectious disease and emotions spreading.

My PhD research project is focused on the analysis and modelling of complex networks,
processes and dynamics allowing the design of innovative ICT services based on collective
cooperation, competition, social contagion dynamics and their interdependence. To deepen
my knowledge about the state of the art, I searched, studied and evaluated numerous scientific
contributions of related works with the aim to find new approaches, new methodologies to
develop analysis model, tools and frameworks suitable for different areas of interest to me.
In this thesis the smart city and smart healthcare applications scenarios are considered, be-
cause they represent two of the most challenging scenarios, due to their stringent constraints.
The applied methodology represent a tool to improve the urban planning through a cognitive
perspective of the city as Internet of People and Things, analysing it as a complex relational
system. This approach enables an understanding of how the dynamical changes on the
structural heterogeneity within a city can have an impact on innovative sectors which have
been actively engaged in finding solutions for sophisticated and innovative services. In this
field, for instance, crowdsensing-based applications are becoming increasingly widespread.
In this kind of applications the evaluation of human-related aspects are crucial, in fact,
human behaviour directly affects the quality of the provided final service. In the course
of reading this thesis you will see that the proposed approach makes it possible to define
innovative QoE evaluation policies based on the amount of information shared and on quality,
including aspects such as the social honesty. It will be considered a vehicular traffic moni-
toring crowdsensing application, rethoughting the design of incentive mechanisms through
a game-theoretic methodology. Experimental results, will demonstrate that the proposed
methodology, based on both quality and quantity of reports and the local or microscopic
spatio-temporal distribution of behaviours, is able to better discriminate users’ behaviours.
This multi-scale characterisation of users (both macroscale and microscale) represents a novel
research direction and paves the way for novel policies on mobile crowdsensing systems.
To give another example, in this thesis, it is proposed an understanding of the interplay
between the collective attention dynamics and the two co-evolving spreading processes as
awareness and epidemics, in consequence of the occurrence of an extraordinary event as the
ongoing COVID-19 epidemics. The findings demonstrate how the proposed modelling and

data-driven procedures, represent a complex digital observatory to detect a social network
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marker exploiting the digital traces of behaviours and connections of people. Thanks to the
proposed approach, it is possible to identify the dynamical collective patterns, social networks
markers to optimally schedule timely crisis response planning. This can improve the future
preparedness plans, risk factors assessment and actionable strategies for delaying or stopping
the spreading. This can offer more insights on human behaviours and interests leading to
an optimally management of the dissemination and the discrimination of the contents, by
including mechanisms to improve users’ cognitive ability. A possible implication for the
future can be an increasing of discriminating capacity for users to identify better information
in comparison with low-quality ones or misinformation.

Below, I sum up the issues of interest that I studied in that period and I am going to go
in the next future. The following list of keywords represents also the macro areas of this

dissertation:
* 6G Mobile Telecommunication Networks
* Multilayer and Multiplex Networks
* Social Network Analysis
* Epidemic Spreading Modeling
» Data Science
* Emerging Behaviors
* Evolutionary Game Theory
* Collective dynamics in social network
* Complex Systems and Networks
* Multi Access Edge Computing (MEC)
* Intelligent Internet of Intelligent Things
* Internet of People

In Fig. 1.1 it is summarized the mindmap followed during the PhD period, in order to faced

with the different research topics but also to organize this dissertation.
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1.4 Dissertation Outline

The structure of this Ph.D. dissertation is as follows:

* Chapter 2 summarizes the technological evolution from the 1G networks to the 6G
networks, showing the main features and challenges posed by 6G. Particular relevance
is given to the concept of edge intelligence, which is one of the key pillar concept of the
next generation of communication networks. The second part of the chapter introduces
the complex system approach and reviews the main complex network models (Random
Graphs, Scale-Free networks and Small-World networks) and their main features.

* Chapter 3 reviews the main structural properties of multilayer networks, detailing
more the multiplex networks and highlighting the motivations behind the transition
from Single- to Multi-layer Networks. The chapter introduces also the temporal
multiplex networks to shed light on the dynamics of creation and dissolution of links.
All the measures and properties of those networks are listed (node’s, layer, edge and
mesoscale properties).

* In Chapter 4 the main notions of classical game theory and the framework of Evo-
lutionary Game Theory (EGT) are presented. Together with the definition of game,
solutions, social dilemmas and replicator dynamics, the last part of the chapter is
focused on the introduction of parameters impacting the emergence of cooperation in

multiplex networks (such as homophily and critical mass).

» Chapter 5 reviews the classic epidemics models, which are used to study the diffusion
of virus, as well as the phenomenon of social contagion, the diffusion of information,
beliefs, fake news, habits and behaviors. The second part of the chapter presents
more realistic models that provide for the introduction of heterogeneity and also the

co-evolution and interdependence of several phenomena on a multiplex network.

* Chapter 6 presents a 6G node’s profiling technique based on the multiplex network,
analysis of the diffusion, the competition dynamics and the clustering techniques. The
second part of the chapter proposes a complex and dynamical approach, consisting of
several inter-operable levels and different networked attributes, to quantify the quality

of microservices for Internet of Medical Things applications.

* Chapter 7 introduces analytical and data-driven approaches to quantify the impact of
human-related factors, as homophily and heterogeneity, behaviours and dynamics. The

presented approaches aimed at designing new policies for user-centric crowdsensing
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applications and at identifying social predictive markers of awareness dynamics for

timely crisis response planning in emergency situations.

Chapter 8 proposes modelling approaches based on complex network theory to design
novel edge computing organizational aspects in 6G scenarios (smart city, smart health-
care, Web of Things), through the introduction of the multiplex social and temporal

networks, which allows us to consider proximity contacts and social aspects, and EGT.

Finally, Chapter 9 concludes this thesis by revisiting the research questions posed in
section 1.2, and summing up the main contributions of this dissertation, other than

highlighting some key aspects to be investigated in the future research.

Dissemination

In this section the publications disseminated during the PhD period are listed.

1.5.1 Journal Articles

Di Stefano, A., Scata, M., Attanasio, B., La Corte, A., Li6, P., Das, S. K. (2020). A
Novel Methodology for designing Policies in Mobile Crowdsensing Systems. Pervasive
and Mobile Computing, 67, 101230.

Scatd, M., Attanasio, B., Aiosa, G. V., La Corte, A. (2020). The dynamical interplay
of collective attention, awareness and epidemics spreading in the multiplex social
networks during COVID-19. IEEE Access, 8, 189203-189223.

Attanasio, B., La Corte, A., Scata, M. (2021). Evolutionary dynamics of MEC’s
organization in a 6G scenario through EGT and temporal multiplex social network.
ICT Express, 7(2), 138-142.

Aiosa, G. V., Attanasio, B., La Corte, A., Scatd, M. (2021). CoKnowEMe: An Edge
Evaluation Scheme for QoS of IoMT Microservices in 6G Scenario. Future Internet,
13(7), 177.

Scata, M., Attanasio, B., La Corte, A. (2021). Cognitive Profiling of Nodes in 6G
through Multiplex Social Network and Evolutionary Collective Dynamics. Future
Internet, 13(5), 135.

Attanasio B., Mazayev A., Du Plessis S., Correia N. Cognitive Load Balancing
Approach for 6G MEC Serving IoT Mashups. Mathematics. 10.1 (2022): 101.
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» Scata, M., Attanasio, B., La Corte, A. Bringing Complexity in a D2D-MEC System
with a Temporal Multiplex Social Network to monitor and control Co-evolving Spread-

ing Dynamic. IEEE Journal on Selected Areas in Communications (Submitted).

1.5.2 Conferences

* Attanasio, B., La Corte, A., Scatd, M. (2020, November). Syncing a Smart City
within an Evolutionary Dynamical Cooperative Environment. In 2020 AEIT Interna-
tional Conference of Electrical and Electronic Technologies for Automotive (AEIT
AUTOMOTIVE) (pp. 1-6). IEEE.

* Grimaldi, S., Attanasio, B., La Corte, A. (2021). A novel approach for the design of
context-aware services for social inclusion and education. Human Systems Manage-

ment, 1-12.

1.5.3 Book Chapter

 Attanasio, B., Di Stefano, A., La Corte, A., Scatd, M. (2021). Evolutionary Dynamics
and Multiplexity for Mobile Edge Computing in a Healthcare Scenario. Data Science
and Internet of Things: Research and Applications at the Intersection of DS and 10T,
21-41.

1.5.4 Other

 Attanasio B., Di Stefano A., La Corte A., Scata M. (2019). A modeling approach based
on Multiplexity and EGT for resource sharing in Fog /Cloud Computing. International
School on Data Science and IoT, Catania Italy.






Chapter 2

The Road towards 6G

Overview: The 6G has the ambition to provide new directions to deal with future network challenges.
It will address the constraints and the performance requirements of innovative applications, with
highly increasing resources demands, through innovative approaches [126]. Major challenges and
limitations of fifth-generation (5G) mobile networks arise from scenarios such as smart healthcare
and smart cities [105, 79, 147], whose applications have stringent constraints, particularly in terms of
latency, data-rate, processing, availability, global coverage and connection density. In addition, 5G
networks will not have the capacity to deliver a completely automated and intelligent network that
provides everything as a service and a completely immersive experience [41]. The proliferation of
incredibly heterogeneous devices, ranging from simple sensors to sophisticated ones and the different
network scenarios as cellular, vehicular, Wi-Fi, Internet of Things (IoT) and Internet of Everything
(IoE) systems, shapes a fully connected network of millions of people and billions of machines. In
this context, edge intelligence [111, 143, 68] will be a key enabling factor for future networks in
order to improve performances, functions and services. For this reason, it is a growing the interest for
interdisciplinary complex system approach to support the analysis, the modelling and the design of
6G systems [41, 60, 126, 119, 5, 76]. This approach will be crucial in order to introduce a key enabler

for edge intelligence, new technologies and network features.

2.1 Evolution of communication networks

During the last two decades the communication networks evolved from the first generation
networks (1G) to the fifth generation (5G) by introducing a countless number of novel ideas
aimed at meeting the stringent requirements set out [154]. The 1G analog cellular systems
appeared in the United States and Europe around the year 1980. Since then, a new generation
of mobile communications was introduced to market approximately every ten years. Around
1990 1G systems were replaced by the second generation (2G) of cellular networks and
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the Global System for Mobile Communications (GSM) achieved a great success providing
mobile voice, short texting, and low-rate data services. Later, around 2001, thanks to the
innovation in technologies represented by Code-Division Multiple Access (CDMA) the third-
generation (3G) (WCDMA, CDMA2000, and TD-SCDMA) was developed. This technology
was able to support high-speed data access with a rate of several megabits per second. In
2009 the commercial Long Term Evolution (LTE) networks were launched constituting the
fourth generation (4G) mobile broadband. The 4G networks was enhanced by innovative
technologies such as multi-input multi-output (MIMO) and orthogonal frequency-division
multiplexing (OFDM) leading to the proliferation of smart phones and fostering the mobile
Internet industry. In the early 2019, we stepped into the era of 5G communication services
which attracted, and are still attracting, an unprecedented attention from the whole society.
5G expands mobile communication services from human to things, and also from consumers
to vertical industries, enabling a wide range of services from traditional mobile broadband to
Industry 4.0, virtual reality (VR), Internet of Things (IoT), and automatic driving [76]. In
particular, in 2020, the outbreak of the COVID-19 pandemic highlights the unique role of
networks and digital infrastructure in keeping society running and people connected. The
importance of services and applications, such as online education, remote working, driverless
vehicles, remote surgeon, unmanned delivery, smart healthcare [105, 79], and autonomous
manufacturing has rapidly become pivotal. For this reason we have seen the expansion of
investments in the telecommunication field and the the proliferation of 5G in several countries
across the world. [94, 2, 56, 83, 14, 1].

Right now, although 5G deployments is still on its way across the world (see Table 2.1), the
attention of research and industry is shifting towards the 6G systems. In fact, in accordance
with [3], in the coming years the development of entire sectors of the society will depend on
the investments that countries will do in research and development of telecommunications
infrastructures and services, from edge cloud to Internet of Things and in prospect of new
network architecture towards 6G and the Internet of the future.

In this perspective, the main research topics will be focused on:

* open, disaggregated, software-based and programmable network architectures.

* the migration of distributed cloud functions, the transformation of the network into a

computing platform based on open and programmable micro-services.

* the development of control algorithms and the optimization of the network based on

artificial intelligence.

* the evolution of programmable hardware architectures for network nodes and data

centers.
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Table 2.1 Status of 5G deployment and forecast, Reprinted from: [4]
Region Operator (Number of covered cities) Launch Penetration
Rate Forecast

Australia Optus (14), Telstra (46), Vodafone (8) [83] 22/05/2019 [83] | -
Austria Al Telekom (129), Drei (Three) Austria (4), | 26/03/2019 [83] | -

Magenta Telekom (T-Mobile Austria) (28) [83]
Belgium Proximus (79) [83] 02/04/2020 [83] | -
Canada Bell (5), Rogers (4), Telus (5) [83] 15/01/2020 [83] | -
Czech Rep. | 02 (2) [83] 19/06/2020 [83] | -
Finland DNA (21), Elisa (30), Telia (8) [83] 01/07/2019 [83] | -
UE - - 29% (2025) [14]
Germany Telecom Deutschland (20), Vodafone (96) [83] | 16/07/2019 [83] | 98% (2022) [56]
Gulf Coop. | - - 73% (2026) [1]
Council
Hungary Maygar Telekom (2), Vodafone (2) [83] 17/10/2019 [83] | -
India - - 26% (2026) [1]
Ireland Eir (19), Vodafone (5) [83] 13/08/2019 [83] | -
Italy TIM (8), Vodafone (5) [83] 06/06/2019 [83] | -
Japan KDDI (15), NTT Docomo (35), Softbank (12) | 25/03/2020 [83] | -

[83]
Korea KT (85), LGU+ (85), SKT (85) [83] 03/04/2019 [83] | 90% (2026) [56]
Latin Amer- | - - 34% (2026) [1]
ica
Latvia Tele2 (2) [83] 22/01/2020 [83] | -
N-E Africa | - - 18% (2026) [1]
Netherlands | Vodafone Ziggo (50% of the Netherlands) [83] | 28/04/2020 [83] | -
New Zeland | Vodafone (4) [83] 10/12/2019 [83] | -
Norway Telenor (4), Telia (2) [83] 13/03/2020 [83] | -
North - - 84% (2026) [1]
America
N-E Asia - - 65% (2026) [1]
Poland Plus (7), T-Mobile (11) [83] 12/05/2020 [83] | -
S-E  Asia | - - 33% (2026) [1]
and Ocea-
nia
Spain Vodafone (22) [83] 15/06/2019 [83] | -
Sub- - - 7% (2026) [1]
Saharan
Africa
Sweden 3-Sweden (5), Tele2 (3), Telia (12) [83] 24/05/2020 [83] | -
Switzerland | Sunrise (384), Swisscom (90% population) | 01/04/2019 [83] | -

[83]
UK EE (80), O2 (60), Three (66 ), Vodafone (44) | 30/05/2019 [83] | -

[83]
USA AT&T (335), Sprint (9), T-Mobile (6000), Veri- | 03/04/2019 [83] | -

zon Wireless (35) [83]
World - - 12% (2024),

50% (2034) [56]
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* technology of high frequencies and new radio architectures, advanced radio technolo-
gies, antenna technologies,signal processing, and new fully wireless access network

architectures.

It is envisioned that 6G will be more a revolution than an evolution in comparison with
the previous generations, it will represent a smart compute-connect entity thanks to the
exploitation and the convergence of distributed communication, computing and storage, the
presence of heterogeneous connected big data resources, integration of sensing, localization
and controlling capabilities with Artificial. Thanks to these enabling technologies 6G is
intended as a enabler for smart society and ecosystem focusing on several challenging
research areas and supporting novel forward-looking scenarios, such as holographic-type
communications, ubiquitous intelligence, Tactile Internet, multi-sense experience, and digital
twin. It will be based on the pivotal idea of connected and pervasive intelligence derived
from the full synergy between Al, its algorithms, protocols and approaches and mobile
networks functions in order to implement highly-efficient transmission, optimization, control,
and management of resources and networks. In a nutshell, the 6G networks are envisioned
to connect everything worldwide for building a virtual digital world, where an intelligent
architecture should be required to satisfy the extreme communication requirements. The
future 6G network should be sensing-based and data-driven for near-instant, massive and
pervasive connectivity with distributed and collective intelligence. Edge intelligence, as a
result of Al and edge computing, promises to meet the potential requirements of edge big data
with its privacy concerns, but also energy, storage, and bandwidth. While edge intelligence
is envisioned to be a solution to fulfill the next generation of intelligent wireless networks,
at the same time, mobile edge computing (MEC) provide powerful computation capacity
and low-latency services for massive end devices with constrained resources. An additional
issue in dealing with the distributed edge intelligence is represented by the increasing in
complexity and heterogeneity, especially considering the time-varying channels and network
dynamics. Furthermore, the increasing number of smart devices represents a challenge for
the management of intelligent network and for the design of 6G networks, which needs liquid
self-management and a comprehensive network intelligence. The future wireless network
should be able to intelligently analyse the incoming data from the environment and take
corresponding actions properly. To give an idea of the numbers, it is forecasted that the
number of users in the 6G network will reach nearly 17 billion with 60 ZB data in storage by
2030 [R2], which is far beyond the capacity of 5G networks. [147].
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2.1.1 The new challenges of 6G

6G will enable a more pervasive variant of some use cases and applications which have
already been introduced in 5G such as 10T, Industry 4.0, virtual reality, and automatic driving
but characterized by a better Quality of Experience (QoE) and in a more cost-efficient,
energy-efficient, and resource-efficient manner. Meanwhile, it will enable also completely
new use cases and disruptive applications that cannot be supported by 5G.

A pivotal point in the design of 6G networks represents also the most challenging aspect and
it is the fact that these forthcoming technologies are expected to transform the world into a
fully connected network that will turn several concepts into reality. From this perspective,
new forward-looking ideas are emerging as the revolutionary concept of the shifting from the
“connected things” or Internet of Things (IoT) or Internet of Everything to the “connected
intelligence” at the edge of the network [126]. The idea of “connected intelligence”, through
Artificial Intelligence (AI) and Machine Learning (ML) technologies, imposes much more
stringent performance constraints, which inevitably will change fundamental network con-
cepts and will increase the complexity of the network.

The 6G requirements range from very high and reliable data rates (approximately 1 Tb/s in
many cases or 100 Gb/s in other situations) to extremely low end-to-end latency, very high
energy efficiency and different and very broad frequency bands (up to THz range). Further to
this, a peculiar feature is the integration and connection of terrestrial wireless systems with
other very heterogeneous ones, such as satellite or networked cars, networked Unmmaned
Air Vehicles (UAVs), comporting a rising in complexity. The most crucial key concepts of
6G, representing a real revolution in comparison with the previous technologies, are listed
below:

* Dynamic Topology: each user with her/his personal device, the plethora of smart
devices belonging to the IoT ecosystem but also Autonomous driving Vehicles, UAVs,
drones, satellite and radar will embody fast moving network nodes. These nodes
connect dynamically to the network which have to provide the best Quality of Service
(QoS) and the best performances. This inevitably leads to the need for new mathematics
and complex analysis and network design models.

» THz frequencies: the need of higher data rates and high spectral and energy efficiency
impose the exploitation of the THz band. Hence, “tiny cells”, with a radius of only few
meters, drive towards much denser deployments. The increasing density of deployment
makes it necessary new traffic and mobility management and new congestion control

algorithms.
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* Network Functions Virtualization (NFV) and Software Defined Networking (SDN):

both these technologies are based on virtualization and they are aimed at make it pos-
sible network design and infrastructure in software and then to implement it across
generic hardware devices and platforms. Specifically, NFV removes network forward-
ing and generic network functions from the hardware where it runs, leading to the
softwarisation of these functions; SDN divides network control functions and network

forwarding functions.

Artificial Intelligence (AI) and Machine Learning (ML): Due to their complexity,
it is expected that Al will be crucial for the successful and efficient operation of
next 6G networks. Although Al has already been used in wireless communications,
such as for channel precoding or traffic control, Al in 6G is expected to facilitate the
operation leveraging their complexity. In fact, the vast heterogeneity of applications,
users and supporting infrastructure makes it impossible to achieve any guaranteed
performance without the introduction of Al. The potential Terahertz or mmWave
channels add complexity and non-linearity to the modeling of wireless channels. A
pervasive introduction of artificial intelligence at the edge of the network is expected
to play a key role in the holistic management of communication, computation, caching

and control of resources (see Section 2.1.2).

Access Network for Backhaul Traffic: it is expected that the technologies for net-
works will require a huge increase of data making the access network for Backhaul not
able to cope with it. Free space optical communications and quantum communications
could be considered for backhaul to meet the requirements of 6G. It is envisaged the
integration of terrestrial, airborne, drones and satellite networks into a single wireless

system, by providing connectivity to hotspots and to areas with scarce infrastructure.

Moving Networks: they are a particular category of ad-hoc networks [109, 118,
58] where nodes are in movement and users demand the same level of service as a
static infrastructure. Moving networks, due to their highly volatile nature, experience
significant quality issues due to the velocity of the vehicles and the attenuation of the
radio signals that travel from the base station (BS) to the end devices. Moving devices
may also suffer from low signal quality caused by the poor macro antenna coverage
of base stations inside vehicles with metallic walls. A solution can be represented by
network densification, even if denser deployments lead to higher inter-cell interference.
Therefore, advanced algorithms, sophisticated multiantenna solutions, more advanced
signal processing techniques and aerial assisted communication can be integrated into

mobile nodes to alleviate the above mentioned problems.
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Fig. 2.1 The new usage scenarios of 6G (uMBB, ULBC, mULC)

In order to to satisfy the technical requirements of the 6G applications, in addition to the
usage scenarios which have been already defined for 5G (enhanced mobile broad-band
(eMBB), ultra-reliable low-latency communications(URLLC), and massive machine-type
communications (mMTQC)) it is essential the introduction of new ones (see Fig.2.1). The
purpose of eMBB service is to support very high peak data rates when the connections are
stable, as well as moderate rates for cell-edge users. The mMTC supports very big number
of devices which are active on demand or periodically. URLLC aim at enhance the reliability
of 5G-6G networks by supporting transmissions of small amount of data that require very
low latency and very high reliability from a specific number of devices. In addition to these,
to support high-quality on-board communications and global ubiquitous connectability, it is
important to introduce the ubiquitous MBB (uMBB). uMBB are also characterized by bigger
network capacity and transmission rate. The uMBB scenario will be the foundation of digital
twin, pervasive intelligence, enhanced on-board communications, and global ubiquitous
connectability. In addition to the KPIs applied to evaluate eMBB (such as peak data rate and
user-experienced data rate), other KPIs become critical in uMBB, i.e., mobility, coverage,
and positioning. The so-called ultra-reliable low-latency broadband communication (ULBC)
supports the application related to URLLC KPIs but also with high throughput demands (as
in the case of immersive gaming, extended reality, Tactile Internet, multi-sense experience,
and pervasive intelligence). Finally, mULC combines the characteristics of both mMTC and
URLLC, which will facilitate the deployment of massive sensors and actuators in several
scenarios [126, 60, 76].

In order to deploy these use cases, 6G systems have to meet extremely stringent requirements
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Table 2.2 6G requirements.

KPI 6G Expectations

Peak data rate up to 1Thps

User experienced data rate | 1Gbps

Latency User plane: 100 s or even 10 us

Mobility maximal speed supported of 1000km /h

Connection density 107 per km?*

Energy Efficiency 10 — 100 times better over that of 5G

Peak spectral efficiency three times higher spectral efficiency over
the 5G (30bps/Hz in the downlink and 15bps/H?z in the uplink)

Area traffic capacity 1Gbps/m*

Reliability success probability of 99.99999%

Signal bandwidth 1GHz?

Positioning accuracy cm level

Coverage the coverage will be globally ubiquitous

and will be shifted from only 2D in terrestrial

networks to 3D in a terrestrial-satellite-aerial integrated system.

in terms of latency, reliability, mobility, and security, as well as provisioning a substantial
boost of coverage, peak data rate, user experienced rate, system capacity, and connectiv-
ity density, gaining KPIs from 10 to 100 times better in comparison with 5G. The same
“connected intelligence” with Al and ML technologies, imposes much more stringent perfor-
mances, which inevitably will change fundamental network concepts and will increase the
complexity of the network. To achieve “connected intelligence” very high and reliable data
rates are required (approximately 1 Tb/s), as well as extremely low end-to-end latency, very
high energy efficiency, efficient cloud applications and different and very broad frequency
bands (up to THz range). Further to this, the integration and connection of terrestrial wireless
systems with other systems, such as satellite and networked cars, networked UAVs, etc. will
further increase the complexity and the requirements of 6G systems [76] (see Table 2.2.

In particular, some representative use cases highlight and define the need of these technical
requirements for 6G mobile networks, some of them are listed below [76]:

* Tactile Internet: It requires extremely low end-to-end latency, satisfying the 1ms of
lower reaction time in order to reach the limit of human sense. Together with high
reliability, availability, security and throughput it enables a wide range of innovative
and disruptive real-time applications. The Tactile Internet will play a urgent role in the
field of real-time monitoring and remote management as in Industry 4.0, Smart Grid,

remote robotic surgery or patient monitoring.
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* Extended Reality: Combined with augmented, virtual and mixed ones, Extended
Reality is still in its infancy. For an ideal immersion experience, higher resolution,
higher frame rate, high dynamic range and more color depth are required, which means
a bandwidth demand of over 1.6 Gbps per device. In addition to this, interactive
applications, as immersive gaming, remote surgery or remote industrial control require

also very low latency and high reliability.

* Pervasive Intelligence: The proliferation of mobile smart devices and the emergence
of new heterogeneous connected entities such as robots, smart cars, drones lead to an
increasing in computation and stringent requirements in storage, power and privacy
constraints on mobile devices. To overcome these issues 6G will offer pervasive
intelligence in an Al-as-a-Service manner by utilizing distributed computing resources
across the cloud, mobile edge, and end-devices. Pervasive, distributed and collec-
tive intelligence also facilitates time-intensive Al tasks to avoid the latency of cloud

computing when fast decisions or responsiveness are required.

* Digital Twin: it is aimed at create a detailed virtual image of a physical object, leading
to the so-called cyber-physical convergence. The virtual copy is embedded with
several information, properties and characteristics related to the real object with full
automation and intelligence. Its full deployment is expected to be realized with the

advent of 6G networks.

* Holographic-Type Communication: Remote rendering high-definition holograms
through a mobile network will bring truly immersive experience. In order to allow peo-
ple to interact with ultra-realistic objects, Holographic Communication requires high
bandwidth on the order of terabits per second with image compression. Furthermore,
ultra-low latency for true immersiveness and high-precision synchronization across

massive bundles of interrelated streams for reconstructing holograms are required.

* Multi Sense Experience: It is based on the idea that current communications focus
only on optical and acoustic media even if human beings have five senses. The involve-
ment of smell and taste can create fully immersive experiences, for instance related to
the fields of food or texture industries, and the application of tactile communication
will play a crucial role in remote surgery, remote controlling, and immersive gaming,

all these applications bring a stringent requirement on low latency.

* Global Ubiquitous Connectability: The 6G system is envisioned to make use of the

synergy of terrestrial networks, satellite constellation, and other aerial platforms to
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realize ubiquitous connectability for global uMBB users and wide-area [oT applica-
tions, also in remote, sparse and rural areas which have no access to the elementary

ICT services.

* Intelligent Transport and Logistics: For 2030 and beyond it is expected that millions
of autonomous vehicles and drones will provide a safe, efficient, and green movement
of people and goods. These connected and autonomous vehicles have stringent require-
ments for what concern latency and reliability but also the need for coordination and

context-awareness.

* Enhanced On-Board Communications: 6G is expected to be an integrated system
among terrestrial networks, satellite constellation, and other aerial platforms to pro-
vide fluid 3D coverage, offering high-quality, low-cost, and global-roaming on-broad

communication services.

For further up-to-date details on very recent 6G studies, see Table 2.3.

2.1.2 Edge Intelligence

Edge Intelligence (EI), powered by Al is considered as a key missing element in 5G net-
works and will be a key enabling factor for next 6G systems, in order to support their high
performance, new functions, new services [111, 147] and making it possible to satisfy the
stringent requirements of use cases such as URLLC (contributing to low latency) or mMTC
(providing distributed computing power).

In the last years and in many fields from academia to industry, it is growing the interest for
EI due to the proliferation of ubiquitous and heterogeneous devices, from hand-held devices
to industrial robots, which make available an increasing amount of data. In fact, the wide
multiplier of smart devices, terminals and diffusion of mobile computing and of the Internet
of Things (IoT) with its sensors are generating a huge amount of data of the order of ZB.
These devices which generate and consume data are commonly located at the edge of the
network, in near proximity of end users or monitored systems. Hence, computation need
to be shifted from centralized models based on cloud computing towards Edge Computing
(EC) which is a distributed form which moves part of the processing and data storage to
edge network nodes. In this way, storage and computing are physically and logically close to
the data providers and end users improving performance, allowing traffic and new ultra-low
latency services. The combination of EI and 6G will significantly contribute to these aspects
and to the realization of 6G usage scenarios discussed above.

In this context, it is crucial the definition of Multi-Access Edge Computing or Mobile Edge
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Table 2.3 Research works about 6G paradigm

Reference

Year

Keywords

[5]

2020

6G, wireless communications, terahertz band, intelligent communica-
tion environments, pervasive artificial intelligence, network automation,
all-spectrum reconfigurable transceivers, ambient backscatter commu-
nications, cell-free massive MIMO, Internet of NanoThings, Internet
of BioNanoThings, quantum communications.

[41]

2020

5G, 6G, artificial intelligence, automation, beyond 5G, data rate, mas-
sive connectivity, virtual reality, terahertz.

[60]

2020

6G mobile communication, 5G mobile communication, Reliability,
Wireless networks, Internet of Things, Intelligent sensors.

[68]

2021

Edge intelligence, 6G, Ultra-reliable low-latency, COVID-19, Internet
of drones, Holographic communication.

[76]

2021

6G mobile communication, Industries, Wireless communication, Wire-
less sensor networks, 5G mobile communication, Artificial intelligence,
Vehicles.

[79]

2021

Massive MIMO, holographic beamforming, Internet of everything
(IoE), Machine learning, Distributed security.

[105]

2020

Emergency Service, Healthcare, 5G Communications, 6G Commu-
nications, Wireless Communications, Internet of Things, Internet of
Everything, Vehicular Technology, Drones, Mobile Hospital, Hospital-
to-Home Services, Fire Control, Accidental Services, Natural Disaster.

[111]

2020

Computer Science - Distributed; Parallel and Cluster Computing; Arti-
ficial Intelligence; Networking and Internet Architecture.

[119]

2019

6G mobile communication, SG mobile communication, Market re-
search, Wireless communication, Sensors, Wireless sensor networks.

[126]

2020

Complex systems, complex networks, networked complex system, 6G,
wireless communications, wireless networks, mobile communication
networks, modeling.

[139]

2020

6G, AI/ML driven air interface, network localization and sensing,
cognitive spectrum sharing, sub-terahertz, RAN-Core convergence,
subnetworks, security, privacy, network as a platform.

[143]

2020

Edge Computing, Edge Intelligence, Deep Learning, Artificial Intelli-
gence, Deep Neural Networks.

[147]

2022

Artificial intelligence, 6G mobile communication, Wireless networks,
Wireless communication, Data models, Training, Task analysis.

[154]

2019

6G wireless networks, intelligent information society, intelligent 6G
networks, space exploration, Wireless sensor networks, Videos, Wire-
less networks.

[157]

2020

6G mobile communication, radio spectrum management, signal detec-
tion, synchronisation, telecommunication network reliability.
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Computing (MEC) [54] which represent a enabling technology for 5G and beyond networks.
This architecture provides that a mobile edge runs a mobile edge platform which facilitates
the applications’ executions at the edge. MEC applications and services are connected with
the cellular domain through the standardized APIs. From what concern the data analytics
El is based on the idea of the development of solutions at or near the place where data
are generated and consumed. In this way, edge intelligence allow to reduce latency, cost,
to improve security. From the network point of view, EI refers to intelligent devices and
functions deployed at the edge of the network. Therefore, it can be envisaged how the
evolution of telecommunication infrastructures towards 6G will be strictly related to Al,
moving intelligence from the central cloud to edge computing resources. In addition, this
kind of distributed intelligence is particularly necessary in those situations where machines
and human cooperate and intelligent autonomous systems are envisaged.

In order to be able to process and filter data at the edge end nodes need an increasing level of
capacity and with the development of levels of Al at the edge, it is possible give nodes some
Al features, as the ability to learn progressively from the context and share what they learn
with other edge nodes to provide, collectively, new added value services or optimized services.
Perhaps the edge devices are likely to be mobile and thus, powered with capacity-limited
batteries and storage, which is used both for computation and communication. To have no
impact on the cost of these enhanced end devices it is crucial to rely on cheaper nodes which
execute less sophisticated computations and take advantage of the cooperation with other
devices. This approach leads to a common and distributed network intelligence for the entire
system instead of pointing at a single node, enabling scalability, adaptability and resilience.
Thanks to learning algorithms on edge devices, realized using Al techniques such as rein-
forcement learning [73] and game theory [103], the nodes become able to adapt themselves
to changes in the system, altering their behaviors and acting in cooperation with the collective
aim at achieving an overall successful result for the system. To this aim it is crucial to allow
software to be "liquid" and to “flow” from one device to another. Without liquid software
as a part of the future 6G networks, the computation cannot be easily relocated after the
design time and we have to decide where to locate the intelligence at the network topology "a
priori". A solution in this sense is represented by microservices [92] able to develop modular
lightweight application components which can be individually deployed on-demand to build
the application workflow. Differently from monolithic software applications, whose modules
cannot be executed independently and are unsuitable for distributed systems, microservices
are cohesive, autonomic, replaceable and deployable independent processes interacting with
each other through standardised interfaces [34].

In addition to these aspects, novel and future 6G applications require real-time feedback to
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be effective and address challenges from the real-world scenarios, for instance in the case of
self-driving cars, traffic and logistics management systems, telepresence, virtual, augmented
or extended reality. These challenges cannot be addressed only considering a reduction of
latency and an increasing of network bandwidth but it becomes crucial considering online
learning models together with time usually spent to collect training data and to define actions.
To reduce these time intervals they are crucial efficient distributed training model, data re-
utilization and dynamic decision making based on all the knowledge available from different
models and data sources. Furthermore, a main aspect is identifying the characteristics of the
network dynamics in the design of these distributed Al algorithms. It is crucial to introduce
mechanisms to adopt continuous knowledge acquisition through continual learning methods
such as online learning and reinforcement learning.

Finally, another main goals of edge computing, and justification for its need is the maintain-
ing of the required Quality of Experience (QoE) for users, related to network connectivity
and application execution improvements, and adaptation to the dynamic environment and
user mobility. A key challenge in this direction is understanding the user context (context-
awareness) through both a large-scale analysis of user behavioural patterns and real-time
activity in the environment. Further challenges are introduced by user mobility which often

bring hand-held devices which share dynamic edge resources.

2.2 The need for new and complex approaches

Over the last few years, the analysis and modeling of networks as well as the analysis
and modeling of networked dynamical systems, has attracted considerable interdisciplinary
interest, especially in the application of the complex systems approach. In fact, mobile
communication networks, especially the forthcoming 6G are a typical example of systems
which are in continuous expansion, and characterized by an high level of interdependence
among their very heterogeneous components. The design, monitoring, modeling and control
of the behaviours of such systems represent a crucial issue to be addressed for which it is
essential the introduction of new approaches able to provide models, theories and mechanism
suitable for the future 6G networks which are moving from closed hierarchical or semi-
hierarchical structures to open and distributed, networked systems. The typical operation
of these networks with denser deployments, more base stations, countless users, as well as
the new technologies such as the Al, Tera hertz (THz) band communications, softwarisation
of networking functionalities and the dynamic orchestration of networked services render
any known traditional information theory incapable to directly model their behavior and

dynamics.
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Complex systems theory represent the most suitable tool for those systems which can be
described as [126] decentralized, non-hierarchical, dispersed, and distributed “networks”,
involving references to topic like emergence, adaptability, self-organization, evolution, adapt-
ability, resilience, robustness, decentralization, flexibility, and speed. Complexity theory
studies how patterns emerge through the interaction of many interacting elements mainly
through interrelated approaches: finding statistical properties (such as path length or degree
distribution), characterizing the structure and dynamic behavior of networked systems, build-
ing models of networks that explain and help understand how they are created and how they
evolve and then studying pattern formation and evolution. In other words, to understand how
a complex system develop its collective phenomena we must initially understand not only
the behavior of its constituent elements but also how they act together and with the external
environment.

In the design and monitoring of communication networks the network anatomy characteri-
zation is a crucial aspect to be investigated, as the structural and evolutionary properties of
networks affect their functions, unveiling the interplay between the structure of a complex
network and its dynamics. In particular, in the last few years it becomes clear that most real
communication networks, such as the Internet, the World Wide Web (WWW) or the mail
network, present similar topological properties as in the complex network structure. The main
characteristics that real communication networks have in common with complex networks
are large scale topology, decentralized/distributed resource management, heterogeneity of
constituents, relatively small average path length, high clustering coefficient, power-law
degree distribution.

In addition to these, we can consider a set of attributes to characterize communication

networks which motivate the need for a complex network perspective:

* Structural Complexity, in order to shed light on the evolutionary mechanism which
shape the topology of a network and for the design of new design models based on
theoretical foundation such as random networks, small-world networks and scale-free
networks [6, 31] which preserve the most important empirical features. The modeling
and the characterization of the network’s structure lead to a more deep knowledge about
its dynamical and functional behaviour. Furthermore, the structural complexity of a
network and its heterogeneity is influenced from both node and connection diversity.
A network can consist of various nodes which interact with each other through several
kind of links, having different weights and directions. Hence, the wiring diagram of
the network affects its functional robustness, resilience and determines the emergence

of dynamical collective behaviours like cooperation or spreading.
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* Network Evolution. The graph of a communication network can be dynamic and
change over time. This is a pivotal aspect of dynamically changing environment like
the WWW, mobile or ad-hoc networks where links are created and lost time by time.
For this reason, the evolution of a communication network correspond to the evolution
of a complex adaptive network, leading to multiple paths through which the system

evolves.

* Dynamical Complexity. The understanding of the evolutionary laws governing the
emergence of the structural properties could be based on the study of dynamical
processes of complex networks. It is crucial understanding how an enormous amount
of interacting dynamical systems (e.g., mobile user equipment (UEs), mobile nodes,
ultra-dense cells, sensor nodes, etc) will behave collectively, given their individual
non linear dynamics. Network problems such as congestion control, fault and attack
tolerance, error resilience, decentralized/ distributed operation, can be addressed based

on concepts arising from the dynamical processes of complex networks.

In order to give a more precise definition of 6G networks they can be considered as complex
adaptive systems [126] as complex because they are made up of multiple heterogeneous
interconnected elements and adaptive as they have the capacity to learn and change over time
based on experience, knowledge and context-awareness, which take into account internal
and external processes and interactions. Resorting on tools of complex adaptive networks
means being capable of considering new aspect and emerging properties which are crucial in

the analysis and design of future communication networks:

* Many interacting parts, the dynamically interconnected nodes in which act as ele-
ments of the system. These elements interact with each other and with the environment
in an unpredictable and unplanned way. From all these interactions equilibria emerge

and form patterns.

* Non linearities, the output of such a system is not proportional to its input. This
deduction is driven by the observation that we cannot predict how a system will work
by understanding the behavior of the constituent elements separately, and combining
them in a additive way.

* Evolution and Cooperation, the elements of the complex system may cooperate or
compete in different times. The emerging behaviours are primarily a consequence of its
constituent elements having different attributes and capabilities and of their links in ac-
cordance to which they can perform multiple and diverse tasks. Evolution results from

the process of creating linkages between elements so that the result will be successful
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in the environment. Hence, the essential ability of an evolutionary network is its ability
to create cooperative links leading to an overall common good in the environment.
It is crucial also considering how the interactions among individuals related to the

interactions of elements within a system which have an effect on environment changes.

Emergent Behaviour, emergent phenomena occur due to the pattern of interactions
(non-linear and decentralized) among the elements of the system over time. It is
referred to how the behavior of the system at a larger scale arises from the microscopic
structure, behavior and relationships on a finer scale. One of the main points is that
emergent behaviour are observable at a macro-level, even if they are generated by
micro-level elements.

Degeneracy, which is defined as the ability of structurally different elements to per-
form the same function yielding the same output. This is a pivotal feature of biological
systems, as an inevitable result of natural selection, increasing robustness and adapt-
ability. In other words, degeneracy enables robustness and evolution through diversity,

which is essential properties of complex systems.

Adaptability, which is the ability to adapt to external changes thanks to compensatory
internal feedback process and changes. In complex systems, the interactions among
the constituent elements are allowed to change and the actions of the adaptive unit can
affect the whole environment which, in turn, feeds information back to the adaptive
system. Therefore, adaptation can be seen as a computation emerging from the

multiplicity and recursion of simple elements or subsystems.

Self-Organization, which is the evolution of a system into a organized form, without
external control; the organization of the system results from the interactions among
its components. The dynamics of a self-organizing system are typically non-linear,
because of circular or feedback relations between the components. A complex adaptive

system is continually self-organizing through the process of emergence and feedback.

Decentralization, it is essential to provide higher level of robustness and scalability
than in centralized architectures, reducing the dependence on a few central nodes.
Decentralized systems, where each executive component makes its own decisions and
executes only these decisions, provide adaptability and intelligence as the system can

be ‘smarter’ than its constituent smartest element.

Robustness, it refers to structural or other properties of a system which allow it to

tolerate perturbations or variation (such as the removal of a node in the network) in
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its internal structure or external environment without malfunctioning or altering its

structure or dynamics.

* Resilience, it is the capacity of a system to absorb or utilize an event or a change
which pervade it, without a qualitative change in the structure of the system. When
networked systems break down or are subject to attack, problems may affect the whole
structure, disabling part of the network and the resilience is the ability to respond to

those events in a way that rectify themselves.

2.3 Complex Networks characterization

The complex networks research area has attracted interest in the last years because until
recently the term "complexity" was often misused and confused with "complicated". Actually,
although the stem of both these words refers to a system consisting of multiple parts, compli-
cated systems are understandable applying a reductionist approach and, as a consequence,
understanding the whole system is equal to understand its individual parts. On the contrary,
in complex systems understanding the individual parts is not enough to understand the system
as a whole. In order to catch and understand many aspect of our environment it is necessary
an approach that starts from the notion of multiple system parts, but focuses on understanding
the relationships between those parts, as in the complex case [102]. Traditionally science

rejected complexity due to three main principles:
* Reductionism: decomposite the knowledge of a system in its basic elements.
* Disjuction: separate the disciplines.

* Universal Determinism: the causal determinism, if the precise location and time of
every atom in the universe is known, their past and future values can be calculated

from the laws of classical mechanics.

The concept of complexity appeared in conjunction with the second law of thermodynamics
which accounts for the irreversibility of systems and the asymmetry between the future and
the past, as opposite to the perfect, ordered, and determinist traditional vision. Starting from
the principle that the whole is more than the sum of its parts, complex systems should not be
defined only considering their parts individually but also by the relationships between them.
As a result, the concept of organization becomes crucial, as the organization of system parts
results in emergent and collective dynamics.

A crucial property of these systems is that a big amount of simple units are able to trigger
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Fig. 2.2 Network modeling paradigms.

unpredictable collective phenomena because the connectedness among these simple units
make a more complex entity, which represents more that the simple sum of its part, called
network. For this reason, the network science represents the most suitable tool to highlight
the structural patterns among elements constituting a wide range of complex systems, making
it possible to deepen the analysis of the connectedness of the systems’ elements and how
they develop its collective behaviour, interacting with each other, and with the environment.
The recent progress in the characterization of complex systems, giving rise to support of
network modeling, results in the introduction and study of several network paradigms, which
are expected to be relevant for 6G [6, 31, 126] (see Fig. 2.2.

2.3.1 Random Graphs

In the past, the trend was to consider complex networks as completely random structure. This
model is based on the work of of Alfred Renyi and Paul Erdos [126, 32, 52] who for the first
time questioned the process of formation of networks. In accordance with their studies nodes
have equal probability of connecting with each other. This network paradigm is still widely
applied in many fields, especially as a benchmark or null model for empirical studies.
Random graph networks are characterized by: a low average path length, a small clustering
coefficient and a degree distribution following a Poisson distribution. The latter aspect means
that even if not all nodes are the same number of connections, most of them have a degree
fluttering around a small average value. Random networks are not highly interconnected,
therefore they are intolerant to accidental failure; more in detail, the connectedness of random
network decays steadily when nodes fail, breaking into smaller and separate graphs incapable
of communicate.
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Fig. 2.3 A Small-world network is defined as a topology between a regular lattice network
and a random network.

2.3.2 Small-World Networks

Watts and Strongatz in 1998 [142] introduced a new class of network paradigm in order
to provide a more suitable framework to study real-world complex networks. Small-world
networks are a interpolation between highly clustered regular lattices and random graphs
and they are characterized by a high degree of local clustering, a relative short average
path length, known in literature as the "six degrees of separation" property. Watts and
Strongatz considered a simple model starting from a ring lattice of finite dimension with N
nodes connected to their K adjacent neighbours and replacing the original links by random
ones with a probability 0 < p < 1; where p = 0O stay for order and p = 1 randomness (as
in Fig.2.3). They found also that small-world display enhanced signal propagation speed,
computational power and synchronizability which have implications in many real systems
like telecommunication networks where small-world connectivity’ might improve the ease
with which data diffuses through the system. The model have some limitations, for instance
it does not give information on how nodes use short links to reach remote nodes or the effect
of mobility or the robustness, efficiency or scalability of these networks. Many real world
networks such as social networks, neural networks or C.elegans show small-world behaviour
but issue derive from how apply it to engineered dynamic systems such as Mobile Ad-hoc
networks (MANETS), Wireless Sensor Networks (WSNs) or 6G networks.

2.3.3 Scale-Free Networks

In the late 1990s, researchers tried to explore and explain the functionalities and the structure
of the World Wide Web, those research efforts led to discovery that, particularly thanks to the
work of Albert and Barabasi [6] for most large networks the degree distribution significantly

deviates from a Poisson distribution. More in detail, for many real networks, including the
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WWW, the Internet or the mail network the degree distribution follows a power-law tail
p(k) ~ k=Y defining the probability of a node to have k edges.

These networks topologies were introduced as a universal paradigm of network evolution
based on network dynamics. Differently from the small-word model characterized by isolated
cluster of high interconnected nodes, scale-free network consist of highly connected hubs
holding together the network. In addition, random and small-world networks are formed by
a fixed number of nodes N randomly connected or rewired; new edges are placed randomly,
hence, the provability that two nodes are connected (or their link is rewired) does not depend
on the node’s degree. These two aspects do not correspond to most real world networks as
WWW or the Internet, therefore, the mode of Barabasi and Albert is based on tho concepts:
growth and preferential attachment. The growth is referred to the continuous addition of
new vertices and edges to the existing network, for instance the WWW grows exponentially
with the addition of new pages. Preferential attachment indicates the tendency for a new
node to have higher probability of connecting to the existing nodes with higher connectivity
(or degree), the so-called ‘rich-gets-richer’. For instance, in the web, a new page is more
likely to be added to well known and popular ones. Thus, the topology of Barabasi-Albert
networks grows by the continuous addition of new nodes starting from a small number of
nodes which increases throughout the lifetime of the network. The connection or rewiring of
the nodes considers the preferential attachment mechanism, such that heavily linked nodes
(called hubs) tend to quickly accumulate even more links, while nodes with only a few links
are unlikely to be chosen as the destination for a new link. To sum up, Scale-free networks
are characterized by a low avarage path length, a varying clustering coefficient (it decrease
as the node degree increase) and by a power law degree distribution.

For what concern the robustness against random failures, thanks to their heterogeneous
topology, in fact, when a failure occurs the likelihood that a hub be affected is almost
negligible and also in the case if such event occurs, the network will not lose its connectedness,
which is guaranteed by the presence of the other hubs. At the same time, the presence of few
hubs makes the scale-free networks more vulnerable to targeted attacks. To this extend, if
few major hubs are taken out of the network (targeted attack), it simply falls apart and is
turned into a set of isolated graphs. Therefore, it becomes crucial evaluating how many hubs

are essential for the robustness of a given network.

2.3.4 Proximity Networks

The shifting from a “rigid hierarchical - hardware first - to a more at and flexible- software
first implementation”, which is envisioned for the 6G precipitates in the need of complex
networks analytical models and tools beyond the aforementioned ones. The user mobility and
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miniaturization will be crucial in this change of paradigm, making even more relevant aspect
such as reconfigurability and adaptiveness. In accordance with recent trends mobility cannot
be applied only to the end hosts (often coupled with human behaviours) but to all the network
devices, for instance considering moving base stations on UAVs or mobile phones behaving
as base stations. In this context a paradigm which is particularly valuable is represented by
human proximity networks. These networks are a particular kind of time-varying graphs
representing the close-range proximity among human beings in a physical space. The nodes
are wired considering linked nodes that have been close to each other for some extent of
time. It could be useful empirical data about who is close to whom at what time. Proximity
networks are critical in the understanding of the spreading of disease, the efficiency of infor-
mation dissemination, device to device (D2D) communications and greedy routing processes
in ad-hoc networks where proximity creates opportunistic contacts. This aspect shed light
on the importance to undertake a Dynamic Network Analysis based on tool like Temporal
Graphs which are able to highlight crucial aspect of the current and forth-coming Dynamic
Internet [109, 58, 118, 72].

The software-based implementation of the network which promotes adaptivity and re-
configurability together with the mobility of user and intermediary nodes, make the network
dynamic in nature. This nature promotes the adoption and the development of innovative and
alternative mathematical frameworks for the analysis of complex systems, deviating from the
traditional approaches. The fields of multiplex networks, temporal networks, epidemics and
EGT, which have appeared and belongs to different research fileds, are highly relevant to the
current "dynamic" internet. These tools and their properties will be explained more in detail

in the next chapters of this thesis.






Chapter 3
Multilayer Networks

Overview: A complex system is fully described by the connectedness of its constituents and the
network representation of the nodes, belonging to them, which interact to each other via multiple links.
A standard approach for network description generally consists of analyzing the aggregate graph, that
includes all links between nodes but neglects important information, resulting in a losing knowledge
in terms of structural complexity and connectivity. In fact, the relationships and interactions between
nodes in many real-world systems can be different for relevance, context and meaning [24, 96, 29]. To
preserve the knowledge related to the different interactions in multiple layers it is crucial introducing
the multiplex dimension of the network. It enables us to better quantify information encoded in terms
of collective and emergent behaviours and in terms of spreading and diffusion. Multiplex networks, in
which nodes can be adjacent to each other, through intra-layer edges or to its counterpart on another
layer through the inter-layer ones [24, 29], represent the most suitable network structure for analyzing
the emerging dynamical patterns of spreading phenomena, depending on the nature of social ties
[122, 47]. The investigation of a multi-dimensional network representation through the multiplex
networks enable us to fully characterize the behaviour of a complex system, unveiling interesting
structural properties that helps to understand emerging phenomena. The chapter is organized as
follows, the first part highlights the limits of traditional monolayer representation, highlighting
the benefits of a multi-layer representation. Following the mathematical formulation of multilayer
networks and its particular cases, such as multiplex one that will be treated more specifically by listing

its measures and properties. Finally, the framework of temporal multiplex networks is introduced.
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3.1 The limits of the traditional Monolayer Network rep-

resentation

The immense majority of phenomena that surround us and take place within us (which influ-
ence our social relationships, transform the environment where we live, affect our biological
functioning), is the result of the emergent dynamical organization of systems involving a
multitude of elementary units (or entities) interacting with each other via somehow compli-
cated patterns [29]. The same organizational patterns characterize apparently very different
systems, ranging from data-packet traffic on the Internet to disease spreading on social
networks.

Traditionally, network studies were based on an abstraction where systems are represented as
graphs: entities or agents of the system are represented as "nodes" (or "vertices") and the
relationships among them are modelled using single, static, unweighted ‘edges’ (or ‘links’).
Self-edges or multi-edges are ignored.

Although this approach has been quite successful in the past, it represents an oversimplifi-
cation in many respects [82]. It has been shown as "network theory" is an important tool
for modelling and analysing complex systems throughout the social, biological, physical,
information and engineering sciences [29, 82] but one of the major effort of modern physics
is then providing proper and suitable representations of these systems, moving beyond sim-
ple graphs towards more rich and realistic frameworks, able to provide us a valid tool for
understanding the observed phenomena, identifying the rules and mechanisms that are lying
behind them, and possibly control and manipulate them conveniently. The reason lies on
the fact that, often, in real-word systems edges exhibit heterogeneous features: they can be
directed, have different strengths (i.e. ‘weights’) [96], exist only between nodes that belong
to different sets (e.g. bipartite networks) [99] or be active only at certain times [72].
Complex networks theory [31] involves interdisciplinary topics and exploits the available
"big data" in order to to extract the ultimate and optimal representation of the underlying
complex systems and mechanisms. The principle efforts of complex network theory are the
extraction of some generic and universal rules describing the structural properties detected
ubiquitously, and modeling the resulting emergent dynamics.

Multilayer and multiplex networks explicitly incorporate multiple channels of connectivity
and constitute the natural environment to describe systems interconnected through different
categories of connections: each channel (relationship, activity, category) is represented by
a layer and the same node or entity may have different kinds of interactions (different set
of neighbors in each layer). For instance, in the case of social networks, relationships are
of different nature and can be modelled in different layers: friendship, vicinity, kinship,
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membership of the same cultural society, partnership or coworker-ship and so on.

To shed light on the limitations of the monolayer approach, in the following three rep-
resentative examples from the real world are presented. The first case is the description
of transportation networks [29, 104] which are, intrinsically, multiplex (or multirelational
systems). In particular, considering the air transportation networks (ATN) we can resort to
two different representations. On one hand, traditional single-layer where nodes represent
airports, while links stand for direct flights between two airports. On the other hand, a
more accurate one, where different commercial airlines are mapped into different layers,
containing all the connections operated by the same company. If we want to take predictions
about the propagation of scheduled flights’ delays or the effects of such a dynamics on the
movement of passengers, the proper framework to make predictions is considering the ATN
as a multilayer networks.

The second example is borrowed by sociology. A social network is a set of people with
some pattern of interactions which take place within different groups (levels or layers) and,
therefore, they cannot be modeled using the classic complex networks models with single-
layer representations. Considering the issue of spreading information or gossip in a social
network [110] such as Facebook, we should take into account that friendships in Facebook
may result from relationships of very different origins: two users may share a friendship
as they are co-workers or because they are fans of the same football team, or because they
occasionally met during their holidays, or for any other possible motivations. Considering
the situation where a user becomes aware of an information and he/she wants to share it
with his/her Facebook’s neighborhood of friends. The user will first select a group of friends
he/she believes that may be interested to the topic of the information. Therefore, modeling
Facebook as a traditional graph and simulating classical diffusion models could conduct to
incorrect conclusions and predictions of the real dynamics of the system. On the contrary, the
best way to proceed is mapping each group to different layers and operating the spreading
process separately on each layer.

For what concern the biology [29], scientists have entirely sequenced the genome of the
Caenorhabditis elegans getting a full mapping the neural network with 281 neurons and
around 200 of connections. Neurons can be linked by a chemical link or by an ionic channel,
with completely different dynamics and, therefore, the only proper way to describe this
network is a multiplex graph with 281 nodes and two layers. In this way, each neuron can
play different roles in the two layers, distinguishing those cases in which a node is high
central in a layer and marginal in the other.

These examples explain why the last years of research in network science have been charac-

terized by more and more attempts to generalize the traditional network theory by developing
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Fig. 3.1 Multilayer Networks. Reprinted figure from [82]

(and validating) a novel framework for the study of multilayer networks. To sum up, the
multiplexity represents an extra dimension of analysis which makes it possible unveiling
non-trivial dynamics and non-trivial phenomena, through multiple channels of connectivity.
and providing the more natural description for systems in which nodes have a different set of

neighbours in each layer.

3.2 General Formalism of Multilayer Networks

Complex systems theory studies systems with many interdependent components which can
interact through many different channels. The development of this science provides inno-
vative tools to understand many different mechanisms and processes from physical, social,
engineering, information and biological sciences. Most complex networks are composed
by multiple sub-networks and layers of connectivity, and they are often open, directed,
multilevel, multicomponent, reconfigurable networks of networks, placed within dynamically
changing environments. They evolve, adapt and transform themselves in accordance with
internal and external dynamic interactions which affect the subsystems and the components
at both local and global scale.

Observing, understanding, reconstructing and predicting the multiscale and multicomponent
dynamics of these systems represent the very challenge, together with the generalization of
the "traditional" network theory and the developing of a solid formulation. A lot of work has
been done during the last years to understand the structure and dynamics of these kind of
systems [82] taking into account notions, such as networks of networks, multidimensional
networks, multilevel networks, multiplex networks, interacting networks, interdependent
networks, and many others.

In this section the general framework for multilayer networks and its properties and measures
will be discussed.

A multilayer network is a pair M = (G,C) where G = G; @ € 1,...,M is a family of (directed
or undirected, weighted or unweighted) graphs Gy = (Xg, E) Which represent the layers of
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Mand C={Eyp C XoxXpg;0,3 €1,...M;0 # B} is the set of interconnections between
nodes of different layers Go and Gg with & # f3.
The elements of C are called crossed layers, and the elements of each E, are called intralayer
connections of M in contrast with the elements of each E,g(a # f8) which are called inter-
layer connections.
The set of nodes of the layer G, will be denoted by X4 = {x¥, ...,xj‘{‘,a} and the adjacency
matrix of each layer G, will be denoted by:

Al = (a%) € RNa*Ne (3.1)
where: al‘?‘j =1if (xl‘?‘,x;?‘) € Eq, a;j = 0 otherwise; for 1 <i,j <Ngand 1 <o <M.
The interlayer adjacency matrix corresponding to E, g is the matrix:

AloBl — (a*Bij) € RNe*Np (3.2)

given by: af‘jﬁ = Lif (x7*,x;) € Egp, aij = 0 otherwise.

The projection network of M is the graph proj(M) = (Xy,Ep) where: X,, = UY_| Xq,
X = (nglEa)U(U%:w# Eqp). The adjacency matrix of proj(M) = (Xy,Eum) is
denoted by A,y [30].

In addition, a multilayer network can have any number d of aspects, and we can define a
sequence L = {La}Z: | of sets of elementary layers such that there is one set of elementary
layers L, for each aspect a (see Fig.3.1). Using the sequence of sets of elementary layers, it
is possible to construct a set of layers of the multilayer network by assembling a set of all of
the combinations of elementary layers using a Cartesian product L * ... * L; and nodes can
be absent in some of the layers [82].

In general, by exploiting this multilayer representation, we simultaneously consider:
* the links within the different groups,

* the nature of the links and the relationships between elements that may also belong to
different layers,

* the specific nodes belonging to each layer involved.

The framework of multilayer network extends different mathematical objects displaying a
multilayer network structure, such as multiplex networks, networks of networks, multidimen-
sional networks, etc. which can be represented exploiting the mathematical formulation of
multilayer networks, by only introducing some constraints.The mathematical properties of

these mathematical objects can be summerized as follows:
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Fig. 3.2 Interacting networks. Reprinted figure from [82]

* Interdependent network, a collection of different networks, corresponding to the

various layers, whose nodes are interdependent to each other. This means that there
is a interdependence of the nodes of one layer with another node, which is a control
node, belonging to a different layer [35]. These dependencies constitute constraints,
and are represented by additional edges connecting the different layers. This structure
is known as mesostructure. We can consider an interdependent (or layered) network as

a multilayer network by identifying each network with a layer.

Interconnected networks, if we consider a set of interacting networks Gy, ..., Gz, they
can be modelled as a multilayer network of L layers and whose crossed layers E, g

correspond to the interactions between networks G4 and Gﬁ [29].

Multidimensional networks, considering an edge-labeled multigraph (or multidimen-
sional network) as a triple G = (V,E, D), where V is the set of nodes, D is the set of
labels, representing the different dimensions, and E is the set of labeled edges, defined
by the triples E = (u,v,d);u,v € V;d € D. The rule is that, considered a pair of nodes
u,v €V and a label d € D, there could be only one edge (u,v,d). In the particular case
of a directed graph, the edges (u,v,d) # (v,u,d). Fixed the cardinality of D equals to
m, each pair of nodes in G can be connected by at most m possible edges. If we also
consider the weights, the edges become quadruplets (u,v,d,w), where w € R is the
weight of the relation between nodes u,v € V and labeled with d € D. Furthermore, a
multidimensional network G = (V,E, D) can be modelled as a multiplex network and,

hence, as a multilayer network by mapping each label to a layer [29].

Multilevel networks, - taking into account a graph G = (X, E), a multilevel network
is a triple (X, E,S), where S = (S1,...,S,) is a family of subgraphs (or slices) S; € S,
with §; = (X;,E;),j = 1,..., p of the network G, which is the projection network of M,
such that:

p p
X=Jx;:E=JE; (3.3)
j=1 j=1
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Fig. 3.4 Hypergraph. Reprinted figure from Ref [82]

Clearly, a multilevel network M = (X, E,S) can be seen as a multilayer network, with
layers S1,..., S, and crossed layers E, g = (x;x);x € X M Xp, and also as a multiplex
network if Xy = Xp forall 1 < o, B <p.

« Temporal networks, A temporal network (G(t))1_, can be represented as a multilayer

network with a set of layers Gy, ..., Gr, where G; = G(t), Eq g = 0 if B # ot + 1 (where

t is an integer, and not a continuous parameter) [72, 129], while crossed layers are
given by:

Eq a1 = (2,%);x € X N Xgt1 (3.4)

» Hypergraphs, A hypergraph is a pair H = (X, H ), where X is the set of nodes and H =
Hy,...,H, includes (non-empty) subsets of X, known as hyperlinks of H. Therefore,
considering a graph G = (X, E), an hyperstructure S is defined as a triple (X,E,H)
constituted of the vertex set X, the edge set E, and the hyper-edge set H. A hypergraph
can be represented as a multilayer network, defining a layer with G, a complete
graph of nodes (xi,...,x;) for each hyperlink & = (x,...,x;) € H, and the interlayer
connections are Ey g = (x,x);x € X M Xp.

* Multiplex networks, a multiplex network [24] .# is a network consisting of L layers
oo={l1,...,L} and N nodes i = {1,...,N}. It is defined as a set of L networks (or layers)
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network G, is described by the adjacency matrix, denoted by A* with elements a

Fig. 3.5 Multiplex Network. Reprinted figure from [82]

Gq = (V,Eq) characterized by a set of nodes referred to vertices V, that is the same
for each layer, whereas the set of links E changes in accordance with the layer. Each

o
ij°

where a?‘j > 0, if there is a link between i and j, al-o‘j = (0 otherwise.

— Weighted Multiplex Network, The complexity in connections, can be explored

more deeply, taking into account weighted multiplex networks [96], considering
that the interactions between nodes may have different intensity reflected by
distinct weights. Starting from these premises, the links between nodes could be
distinguished not only by the kind of interaction, but also by the weights, reflect-
ing their intensity, capacity, duration or relevance. A weighted multiplex networks
is defined as a multiplex network .# consisting of L layers a = {1,...,L} and
N nodes i = {1,...,N}. Each network G, is described by the adjacency matrix,
denoted by A* with elements af, where af; = wj; > 0, if there is a weighted link

ij° ij

between i and j with a weight w;;, otherwise af‘j =0.

3.3 Measures for multiplex networks

The vast availability of big data, the rediscovery of old data sets and the improvement of

computing capability, has highlighted the necessity to develop a new framework to represent

networks whose units interact through more than just one kind of relations. These systems

are well modelled through multiplex networks, which are characterised by the fact that all

the connections of a given type are embedded into a distinct layer.

In the next paragraphs the most basic measures to characterise the structure of multiplex

network are provided, focusing on the properties of nodes, edges, and layers [24]. The

relevance of these mathematical tools is such that the scientific interest around their appli-
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cations is growing, involving several areas: biological, social and technological systems,
social networks and telecommunication ones, epidemics and social contagions, transportation

networks and brain computing dynamics [120, 104, 7].

3.3.1 Node’s Properties

Differently from the traditional mono-layer approach, where node properties are described
by scalar variables, node features in multiplex networks are naturally described in vectorial
terms.
For instance, for each node i its total number of connections, or degree, at layer « is
expressed as follows:
N

W=;% (3.5)
and the multilayer degree: k; = {klm , ...,klm }. A node i is active on a layer « it it is connected
to at least another node at that layer, k;[o] > 0. The activity-pattern of nodes can be stored
into the node activity vector b; = {bl[-]],...,bl[.L]}, where bl[a} =1 1f a node i is active on a

a

L
layer o, b; " = 0 otherwise. The total activity B; = Y, bl‘?‘j representing the number of layers
a=1

where a node is active 0 < B; < L. It has been empirically demonstrated that many multiplex
networks from real-world are characterised by heterogeneous distributions of node activity
which could be responsible for the increased fragility of multiplex networks to random
failures [24]. The total number of connections of node i is usually called total or overlapping
degree:

L
0i =Y k (3.6)
o

while the heterogeneity of the number of neighbours of node i1 across the layers can be
measured through the multiplex participation coefficient:

Lk
P=p - L 67

0;
where P, = 1 when the links incident on node i are equally distributed across the layers, and
P, = 0 when the node is active only on one layer.
Similar information about the heterogeneity of the distribution of a node’s connections across

the layers is provided by the Shannon entropy of the normalised degree vector:

Lo o
Hi=—) (7-)In(=-) (3.8)

a=1 " i
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Fig. 3.6 Cartography of the roles of the nodes in a multilayer network in function of the
multiplex participation coefficient P; and the Z-score z(0;). Reprinted from [22].

The couple of measures (P;,0;) can be used to classify nodes via the so-called multiplex
cartography, distinguishing nodes’ roles such as multiplex hubs (high o; and high P,), focused
hubs (high o; and low P;), multiplex leaves (low o; and high P;) and focused leaves (low
o; and low P;). With respect to the multiplex participation coefficient P, it is possible to
identify three classes of nodes: focused those nodes for which 0 < P; < 1/3, mixed the nodes
having 1/3 < Pi < 2/3 and multiplex nodes with P, > 2 /3. In the cartography, instead of the
overlapping degree itself, it is considered the associated Z-score, which allows to compare
multiplex networks of different size:

2(0) = ——— 3.9)

where (0) is equal to the average overlapping degree of the nodes in the system; o, is the
corresponding standard deviation. With respect to the Z-score of their overlapping degree, it
is possible to distinguish hubs, for which z(0;) > 2, regular nodes for which z(0;) < 2. Taking
into account the multiplex participation coefficient P, of a node and its total overlapping
degree o; we can define six classes of nodes, as depicted in Fig.3.6, where each node is
represented as a point of the (P;,z(0;)) plane [22].

A node can have different roles on the different layers, which allow to define a more detailed
definition of multiplex centrality measures where the role of a node explicitly is determined

by the whole multiplex structure with all its layers. The eigenvector centrality of nodes on
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each layer « is the normalised eigenvector relative to the largest eigenvalue of:

M
Alo] Z jloBl A B] (3.10)
B=1

where I = il%B] is the influence matrix determining how the centrality of layer o depends on
the structure of layer . In alternative, the contribution of the different layers to the centrality
of the nodes can be quantified considering the varying coefficients il with ¢ = 1,...,M of

the matrix which is a convex combination of the adjacency matrices of the layers:
A=Y el (3.11)

In addition, many real-world networks have a small-world property, the usual distance
between any pair of nodes scales logarithmically with the total amount of nodes. Starting
from the assumption that not all the nodes are equally relevant in mediating paths between
other nodes (which is the main idea between the concept of node betweenness) and that the
reachability of a node might significantly depend on the interplay between different layers, the
added value, introduced my multiplexity, can be quantified thanks to the interdependence.

Ly iy

=1y

N—-14

3.12
j#i O o

where y; ; is the number of shortest paths between i and j using edges in more than one
layers, while o; ; is the total number of shortest paths between i and j. A; assumes values in
the range [0, 1] with 1 means a higher advantage for the reachability of node i provided by
the interplay of the different layers. The interdependence of multilayer system is obtained by
averaging over all nodes: A = fracINY; A;. In order to define a layer interdependence A o]
we have to take into account the total number of shortest path with at least one link on layer
a.

A noteworthy property of real-world networks is the tendency of nodes to form triangles, a
phenomenon usually known as transitivity. In single-layer networks, the amount of triangles
is typically measured by the average clustering coefficient C = ]%, Z{-\Ll C; and C; is the amount
of triads centered on node i. In the case of multiplex networks triads and triangles can extend
through the different layers, 1-triad (or I-triangle) is a triad (or triangle) using edges from |
different layers. It is possible to define two multiplex clustering coefficients to quantify the
added value provided to transitivity by the multiplex structure.

For a node i the first coefficient C; ;| is defined as the ratio between the number of 2-triangles
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with a vertex in i and the number of 1-triads centred in i, as follows:

. Yo Yara Ljime (@5, a5 al))
i1 —
(M —1) Lo k™ (k* — 1)

)

(3.13)

The second multiplex clustering coefficient C; ; is defined as the ratio between the number of

3-triangles with node i as a vertex, and the number of 2-triads centred in i. In formulas:

B Yo Za;«é(x’ Z(x”;éa,a’ Zj;éi,m;éi (al[f)]z(] ) a% ) az[q?]z)

(M - 2)206 ZOC#OC’ Zj#i,m;éi (al[i],aizi])

Cia

i (3.14)
These measures are defined respectively for M > 2 and M > 3, and they are the generalisation
of the clustering coefficient to the case of multiplex networks.

In complex weighted networks, weights can be distributed across links in a more hetero-

geneous or more uniform way. In order to evaluate this heterogeneity we can measure the

strength S l[a] and the Inverse Participation Coefficient Yi[a} of node i in layer o, which are
defined as follows [96]:
N
st =Y wi (3.15)
J#i
N
Y% =Y aj/st (3.16)
j=1
For each layer «, the strength Sl[-a] measures the sum of the weights of the links incident
upon node i in the considered layer, while the inverse participation coefficient Yi[a] evaluates

unequally the weights of the links of node i are distributed in the considered layer .
-1

(Yi[a]) € (l,kl[a]) characterizes the effective number of links of node i in layer c. If the

-1
links of i are uniformly distributed then (Yi[a}) = klM , instead if the weight of one link is

-1
much larger than the other weights (Y,M) =1

3.3.2 Layer Properties

it is possible to define the activity-vector for each layer a:
d = {(pl*  plohy (3.17)

where bl[a] 1if kl[a] > (0, and 1% — 0 otherwise. For each layer « the total layer activity
[a]

- i
N = 5\/:1 bia describes the total number of nodes with at least one connection in a layer
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a, with 0 < Nl® < N. The similarity between the activity-vectors of two layers @ and 3
can be measured through the pairwise multiplexity, equal to the fraction of nodes of the
multiplex which are active on both layers:

N
ol Bl — ]%[ Y olpP! (3.18)
i=1

Generally, 0 < Q[O‘]’[B] < 1 with Q[O‘]’[m = 1 when all nodes are active in both layers, and
Q[“Hm = 0 when no node is active on both layers.
The similarity among the patterns of activity in two layers can also be measured through the

Hamming distance, defined as:

(0B _ Li bl[a} (1- bI[B]) + bl[m (1- b,[‘a])

H
min(N1% + NIB] N)

(3.19)

H%Bl = 0 if dl®) = glo] and while H*B] = 1 when active nodes are active in only one layer.
Commonly, multiplex networks are characterised by heterogeneous distribution of pairwise
multiplexity and layer activity.

In addition, real-world multiplex networks present correlations among degrees of the same
node in the different layers of the network and this property is valid for all the node’s
properties. More in general, given two layers o and 8 of a multiplex network and a generic
node property &;, the correlation among éi[a] and ém Vs expressed by the rank correlation
coefficient:

% (R“R) (RPRI))

plal Bl —
VI (RERE R (RPIRD)?

(3.20)

g
4

the average rank. When the property considered is the degree, instead of the generic property
[a]

where R. is the rank of a node i at a layer « related to the property & and RI% = leZi Rl[a] is

&, we can define the average degree at layer 8 of a node that has a degree k% at layer o:

kIBIKl) = Y kP p(lB|led (3.21)
klB]

An increasing (or decreasing) trend of klBlkle] signal the presence of positive ( or negative)
inter-layer degree correlations between layer o and layer f3.
The inter-layer degree correlation can be quantified also by using the pairwise mutual
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information between the degree sequences of the two layers:

Pkl k[ﬁ])
[l (Bl Z ¥y piled k[mﬂog(—v
%k% P(kleT), (kIPT)

(3.22)
which is maximal when the degree sequences {kl[a]} and {kl[ﬂ ]} are perfectly correlated (or
perfectly anti-correlated), and minimal when they are uncorrelated. A crucial research issue
in the field of complex networks, and in particular multiplex networks, is to assess if the
presence of more than one interaction layer provides more information about the structure
of a system in comparison with a classical mono-layer representation. It is, particularly,
interesting quantifying how much information is lost aggregating some or all the layers
of a multiplex network to obtain a lower-dimensional representation. Many real-world
multiplex networks are not random combinations of the different layers, but their structures

are determined by hidden geometric correlations [22].

3.3.3 [Edge Properties

Thanks to the existence of multiple layers, a pair of nodes (i, j) can be linked through several
edges. Given two layers o and f3, the edge overlap of the pair i, j is defined as:

PCIRNIPNTS)
S 408
0[70]‘ ﬁ] l,] 3 L,J (323)

[ Bl — 1if i and J are connected at both o and f layers, o[ Bl /2 if they are

[ﬁ}

where o;

connected at one layer only, and o; ;" = 0 if the two nodes are not connected. For a generic

number of layers L, the edge overlap is defined as:
0ij=— Za[“] (3.24)

and this measure can be extended to the whole network:

Z 0i,j (3.25)

(N 71#1
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where the average is computed over all possible pairs of nodes. Considering the average

restricted to the pairs of nodes which share at least one edge, the definition is the following:

Y, Z]>zaloj
MZ;Z,

(3.26)
%0 Loa al’)

The multiplexity is a similar measure of edge correlations which takes values in the range
[0,1] and it is defined as:

- B
21, min(a, a)) (3.27)

B) _
T T Kl L k]

where K% and KB are the total amount of edges at layer o and 3 respectively. A dual
quantity is the so-called edge intersection index:

le ]mlna{al] 7a1[ﬁ]]7 7al[7l_4]]}

M
Z lzlj lalj

INT =M

(3.28)

which measures the probability of finding a pair of nodes that is connected by an edge on all
the L layers of the multiplex network. In conclusion, an additional characterisation of edge
correlations can be based on the conditional probability to find a link at layer o given the
presence of an edge between the same nodes at layer 3.

4P
217] l]? i,j
Zi,jai,j

P(a[.a.] a[ﬁ])

i (3.29)
If the layer B is weighted, it is possible to consider the conditional probability to have an
edge at layer o given its weights on layer . If this probability increase in function of the
weight, this is called edge reinforcement and it is the principle that a stronger link on one

layer implies a higher chance to find the same edge on another layer.

3.3.4 Mesoscale Properties

Complex networks are usually characterised by non-trivial structural patterns both at single-
node level and, more importantly, at the level of sub-graphs. Statistically significant sub-
graphs in single-layer networks are known as motifs and it has been found that a few specific
sub-graphs are over-represented in real systems compared to their abundance in equivalent
networks obtained by randomising the original graph. A first example of motif in multiplex
networks is represented by multilink that is the organisation of the edges between the same
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Nodes 1 Z 2 3 4 3 1 4

Layer 1

Layer 2

Multilink  Multilink Multilink Multilink
(1.1) (1,0) (0,1) (0,0)

Fig. 3.7 Example of all possible multilinks in a multiplex network. Figure reprinted from
[96].

pair of nodes (i, j) across the L layers. In traditional mono-layer networks two nodes can
be connected or not by a link, while in multiplex network any two nodes can be connected
in multiple ways. Two nodes are connected via a multilink, where the multilink describes
the pattern of connections between two nodes [99]. Considering the .# multiplex network,
the vector = (my,my,...,mg,....,mp), defined as a multilink, where each element m,
can assume only two possible values my = 0,1. The multiadjacency matrices A™ with
elements A; jm, and the multidegree k;", defined as [99]:

A = f[ 0(a%)me + (1— 0(a%))(1—mg)] (3.30)
T i ij a '

where 0(x) = 1, if x > 0, otherwise 8 (x) = 0. These elements allows us to evaluate if exists
a multilink between nodes i and j. In order to estimate the structural role of a node in the
multiplex network, we evaluate how many multilinks i are incident upon node i through its

multidegree measure:

N
K=Y Al (3.31)
=1

Also the I-triads and I-triangles used for the definition of node clustering coefficients are
multiplex motifs. It is possible to classify motif in three levels: the first level is constituted
by connected subgraphs distinguished in accordance with the number of nodes; at the second
level the different patterns are identified and classified on the aggregated structure; at the
third level the exact multiplex connectivity pattern is identified.

Another crucial feature of networked systems, and multiplex networks, is the trend to



3.3 Measures for multiplex networks 53

clustering of units in tightly-knit groups, forming non-trivial communities. In order to
characterise the communities structure of a multiplex network we can consider the normalised
mutual information which, given two layers o and 8 and their partitions in communities Py,
and Pg, is equal to:

M’l’li’ﬂ’N )

M,
_22521 m’BZINmm’ 10g(N—/

N
o _m (3.32)
o m M Nm/
y Mo Nulog(Jm) 4+ P Nyslog ()

NMI(Pa,Pﬁ) =

with N,,,, is the number of nodes in common between community m of partition P, and
community m of partition Pg, N;, and N, respectively the number of nodes in the two
communities m and m’. The richness of multiplex networks in comparison with single-layer
structure is reflected in its communities which cannot be obtained by considering its layers
individually. Some communities might exist only in one layer, other communities can overlap
on many layers and there are also communities existing only when the whole structure of the
multiplex network is considered. In [99] authors propose a multilink community detection
method for multiplex networks which extends link communities to the multiplex network
framework and it is based on the similarity of incident multilinks. The similarity between
two multilinks is measured by comparing the local structure of the multiplex against a local,
maximum entropy null model, describing the knowledge of the multiplex in a way that is
maximally evasive to the multi-layer structure. To construct a hierarchical clustering of
multiplex networks the similarity the similarity between incident multilinks is evaluated by
comparing simultaneously the cohesiveness and the multiplexity of their neighborhood to a
maximum entropy null model. For each pair of multilinks connecting the nodes i,k and j, s,

the similarity is defined as:
Sik.js = €0ijk + (1 — €) Oy (3.33)

This similarity is non-zero only between incident multilinks. The parameter € € (0, 1) can be
tuned depending on the role assigned to the composition of the two incident multilinks with
respect to their local neighborhood. Instead, z € (0, 1) quantifies the role of multiplexity and
represent the cost attributed to incident multilinks of different composition. o;jx = ZPiiix with

M (0] o .. .. .
Bijrs=1— Zl+ evaluates the contribution of the two incident multilinks; while o;; /x

is a measure of the contribution due to the existence of other multilinks, joining node i and
node j directly or by paths of length two excluding node k. z tunes the layer dependance of
the multilink communities. A large value of z favors communities existing only in one layer

or overlapping in different layers, while a smaller value of z allows for multilink communities



54 Multilayer Networks

of multilinks with different composition. If the multilinks between (i,k) and (j,k) have not
even a link in a common layer 8 jx = 1, corresponding to the maximum cost for multiplexity.
While if the two multilinks have same composition them B jx = 0 indicating no cost for
this configuration. o;;; stays for the contribution of paths of length one (M;;) and two M;r
between i and j passing through r with r # k:

1 —

ije = —[Mij+ Y Mij] (3.34)
H r#£k

where u = min(A;,A jr). M;; 1s a sort of modularity which measures the relevance of

the observed multilink and 1\7,]\, evaluates the significance of two non-trivial multilinks

connecting respectively node i and node j to a common node r # k.
i Bijij
Mijr = (Aij—p;; )21 8(Aqj, 1) (3.35)

Ty ﬁir ‘rm ir
Mijr = (AiAjr—py """

r

)ZPrir§ (A A1) (3.36)

where d(x,y) is the the Kronecker delta (1 for x = y and 0 otherwise); ZPirrs assigns a cost
to the paths created using different layers; it jr 18 the expectation of multilink, given by the
probability pz”. In ohter words, the parameter € is used to tune the contribution to the
similarity S;; ; coming from the composition of the two incident multilinks and the local
clustering of the multiplex network in proximity of the edge i jk. In particular, the smaller is
€, the larger is the contribution due to the local clustering of the multiplex network.

From the similarity matrix Sy j, it is possible to extract a dendrogram which puts in evidence
the hierarchical structure of this clustering approach. The dendrogram contains information
about the multiplex structure which cannot be obtained from the aggregated network. Then,
the multilink communities are determined considering an appropriate score function. In the
figure 3.8 is shown a multiplex network composed by two layers, where the links in blue
correspond to one layer and the dark pink ones to another layer, in the upper part. In the
middle there is a dedrogram f the multiplex network obtained from the multilink similarity.
And, finally, in the lowest part of the figure the the partition of the multiplex network into three
communities revealing that communities can be formed by a single (community a,b, c,d) or
multiple layers (community d, e, f) and that the nodes communities are independent on the
node activity (node d belongs to two community and is active in one layer, node g is belongs
to one community and is active in one layer). This suggests that the mesoscale organization
of multiplex networks has a rich mesoscale structure that is not captured by methods that aim
at aggregating the information on few single layers.

In order to study weighted multiplex networks we can take into account two additional
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Fig. 3.8 A two layer multiplex and its partition into multilink communities. Figure reprinted
figure from [99].

measures, for layer o and associated to multilinks i with mot > 0, the multistrengths sﬁ;
and the inverse multiparticipation ratio Y, [96]
ZagAﬁ (3.37)
J#i
N af‘-AW
via=Y (20 (3.38)

3.4 Temporal Multiplex Networks

As expressed in the previous paragraphs many systems in nature, society and technology
can be modeled as graphs of vertices connected by edges. The network structure, describing
how the graph is wired is crucial to understand, to predict and to optimize the dynamics of
dynamical systems. So far we assumed that the topology defining the network is static: the set
of nodes and links do not change over time. However, many other real networks are far from
static, their links being are not continuously active, they being created, destroyed, and rewired
at some intrinsic time scales.Examples are represented by networks of communication via

e-mail, text messages, or phone calls, where edges represent sequences of instantaneous or
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practically instantaneous contacts or the Internet [110, 137]. In other cases, edges are active
for non-negligible periods of time such as in the case of proximity patterns of inpatients at
hospitals which can be modeled by a graph where an edge between two individuals is active
during the time interval they are at the same ward.

Like the network topology, also the temporal structure of edge activation affect the dynamics
of systems which interact through the network, from disease contagion on the network of
patients to information diffusion over the network. Discussing temporal networks means
considering an additional dimension of analysis, where the times when edges are active are an
explicit element of the representation. For these reasons, it is crucial to take into account also
the temporal heterogeneity and ignoring this dimension, aggregating the contacts between
vertices to (sometimes weighted) edges, means a lack of information about the temporal
structure of contact patterns.

One of the key aspects of network theory is that the network structure strongly affect
the dynamic processes which are mediated by edges and take place on top of it. This
is particularly important for spreading processes where physical contact, social ties, or
electronic connections are the means for diffusion. The temporal inhomogeneities, together
with the fact that spreading processes have to follow the time ordering of events, have
drastic effects on the dynamics of spreading on temporal graphs and this structure can also
be exploited in controlling and preventing the spread. For such processes, the network
structure affects the speed of spreading and the extent of diffusion through the network in
accordance with short path lengths, the degree distribution, degree correlations, or community
structure and correlations between tie strengths and network topology. The edges between
vertices of temporal networks need not be transitive. For instance, considering the 3.9, in
case of static network, directed or not, if A is directly connected to B and B is directly
connected to C, then A is indirectly connected to C via a path over B. However,instead in
the case of temporal network, if the edge (A, B) is active only at a later point in time than
the edge (B,C), then A and C are disconnected, as nothing can propagate from A via B
to C. Thus, the time ordering is crucial, the timings of connections and their correlations
have effects that cannot be captured by a static network representation. Typical examples
of temporal networks are: Person to person communication, Physical Proximity and one-
ti-many information dissemination. The first one is represented by records of electronic
one-to-one communication which are particularly suitable for the temporal network approach
in the information spreading dynamics. These datasets are usually composed of lists of
messages with their source, destination and point of time or time interval. Physical Proximity
networks are composed by data about proximity patterns of human and about who is close

to whom at what time. This kind of data are important for undertandi the spreading of
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Fig. 3.9 Illustration of the reachability issue and the intransitivity of temporal networks.
Reprinted figure from [72].

ol I

Fig. 3.10 Contact sequences and interval graph. Reprinted figure from [72].

airbone viruses or information. Nowadays several platforms that allows physical proximity
measurements based on wearable badges equipped with radiofrequency identification devices
(RFID) are available such as SocioPatterns [INSERIRE REF]. One to many Information
dissemination or, in other words, the broadcast of information to anyone that might listen,
in contrast to one-to-one communication which is another type of information spreading
between humans that could benefit from a temporal network approach. The two fundamental
temporal network representations are contact sequences and interval graphs (see Fig. 3.10)
The first representation ((a) in Fig. 3.10) there is a set of N vertices V interacting with each
other at certain times, and the durations of the interactions are negligible, as a consequence,
the system can be represented by a set of C contacts, triples (i, j,¢) where i, j € V and ¢
denotes time. Equivalently, the system can be represented by V , a set of M edges (pairs of
vertices) E , and, for e € E , a non-empty set of times of contacts T, = {r1, ...,#, }. The typical
systems suitable to be represented as a contact sequence are sets of e-mails, phone calls, text
messages, where the duration of the contact is less important. In the second representation
((b) in Fig. 3.10), interval graphs, the edges are not active over a set of times but rather

over a set of intervals 7, = { (7, tll), .. (tn,1,)} where the parentheses indicate the periods of
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Fig. 3.11 Different observation levels of a Temporal Multiplex Network. Reprinted figure
from [129].

activity. Examples of systems which can be naturally modelled as interval graphs include
proximity networks (where a contact can represent that two individuals have been close to
each other for some extent of time). It can be useful to define an index function of whether a
pair of vertices is connected at a given time. This is the adjacency index a(i, j,t) = 1 if i and
J are connected at time 7 and a(i, j,t) = 0 otherwise. Interactions in real world systems (such
as in social networks) are stratified in multiple context and are subject to complex temporal
dynamics [129, 66] and the systematic study of these two features has started very recently,
thanks to the development of multiplex and time-varying networks. A temporal multiplex
network DM = M! ..., MT (see Fig. 3.11 (a)) is a sequence of multiplex networks, where
each M" with t = 1,...,T is a snapshot of the network at the time step #;, within the time
window of observation 7 [72], [129]. A multiplex network .7 is a network consisting of L
layerst = {1,...,L} and N nodes i = {1,...,N} with |[V| = N set of nodes. It is defined as a
set of L networks (or layers) G = (V, Ey) characterized by a set of nodes referred to vertices

V, that is the same for each layer, whereas the set of links £ changes according to the layer.
2,
where af‘j = 1, if there is a link between i and j, otherwise af‘j = 0 [24]. Therefore, DM is
defined by a set of quadruplets (i, j,z,/), indicating that a node i € V and a node j € V are

Each network G, is described by the adjacency matrix, denoted by A* with elements a

connected at a time ¢ € T in a layer [ € L [129]. The static graph with an edge between i
and j if and only if there is a contact between i and j is called the (time) aggregated graph
(see Fig. 3.11 (b)); the mono-layer graph in which the multiplex dimension is aggregated is
shown in Fig. 3.11 (c); the both mono layer and static aggregate graph is represented in 3.11

(d).



Chapter 4
Evolutionary Game Theory

Overview: In the previous chapters it was highlighted that the "connectedness" among elements
within complex systems is fundamental to understand the evolutionary dynamics of complex dynamics
and it was deepen how these depend strictly on two factors: the underlying structure with existing links
and the implicit interdependence between the behaviour of an individual and that of other elements
of the population. The first aspect makes it crucial the modeling through a multilayer network
approach, whose characteristics were deepened in the previous chapter 3; the second is the study of
the interconnection and the interdependence among behaviors through the Game Theory mathematical
tool. The introduction of GT and, in particular EGT, is crucial also in the evolution of future ICT and
it has already been used in synergy with edge computing and intelligence to shed light on aspects
such as learning, cooperation and connections and showing how EGT can enhance the usage of the
networking edge resources [11], in order to exploit collaboration for the creation of the so-called
"collective edge intelligence". Evolutionary games application, acting as a reinforcement learning
scheme, allows nodes with limited-rationality to select an initial strategy and apply it to a specific
network, receiving a feedback (as a payoff) from the environment. After playing a game through
many rounds, it is expected that nodes’ behaviours will be completely adjusted to the dynamically
changing environment, learning which is the most profitable behaviour for the whole system. The aim
of this chapter is to introduce the definitions of the Classical Game Theory, then declining it the case
of Evolutionary Game Theory (EGT). The main social dilemmas, their variants and the concepts of

solution will be presented.

4.1 Traditional Game Theory

The classical Game Theory was born in 1920s thanks to John Von Neumann who developed
a scientific strategic approach to be applied in the game of poker. Later, in 1944, together
with Oskar Morgensten, he decided to write the first prototypical framework of game theory
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“Theory of Games and Economic Behavior”, [141] where authors translated the human
behaviours in conflict or cooperative situations into mathematical models and they defined
the game as " any interaction between agents that is governed by a set of rules specifying
the possible moves for each participant and a set of outcomes for each possible combination
of moves.” In the early 1950s, one of the most important contributions came from the
American mathematician John F. Nash, who introduced a simple but crucial concept the
"Nash equilibrium", used for the study of negotiation between several subjects and giving the
starting point for the application of models of game theory to the most disparate areas: from
economics, political science or psychology for the study of behavior in conflict situations.
Game Theory refer, therefore, to that branch of mathematics which analyzes conflict situations
and searches for competitive or cooperative solutions through models, providing tools for the
study of individual decisions in situations where there are interactions between two or more
subjects. It is used to study those circumstances in which the outcome of an individual’s
decision depends not only on the individual choice between different options, but also on
the decisions taken by the individuals interacting with it: the choices of a subject may
affect, therefore, on the achievable results by a rival and vice versa. The purpose of these
theories is to use mathematics to describe and predict what will happen in a game as in a
real-world situation. In addition to the study of games, these theories apply these games,
theoretically formulated (strategic games), with the aim of analyzing real contexts, describing
and predicting decision-makers behaviors in conflict situations. These studies have essentially
two roles: the first one, positive, which consists in interpreting reality and trying to explain
why, in specific contexts, a decision-maker acts in one way rather than in another; the second,
prescriptive, which aims to determine which outcome will arise from the encounter between

two, or more, players.

4.1.1 Whatis a game?

A game is a model of interaction between decision makers where each one plans his actions

simultaneously. In each game there are [49]:
* A set of N participants, called players;

* Each player has at his disposal a set A; = a;1,4a;3,...,ai, of any possible actions or
strategies;

» Together with each strategy, each player receives a payoff that numerically character-
izes the player’s preference. Every player tends to maximise his payoff as much as
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Player 1

Player 2

Fig. 4.1 Extensive form for dynamic games. Reprinted figure from [50].

possible. The payoff values are generally inserted into a payoff matrix, which describes

the rules of the game

Games can be classified in single-stage (one-shot) games or repeated (iterated) games. In
the first case, games are called static and players play simultaneously, choose their actions
independently and make their choice only once, while, in the second ones, there are more
rounds, representing a certain number of repetitions of some one-shot game. Due to the
presence of many rounds players have to consider not only its current action but also its
impact of future actions of other players (for instance through reputation mechanisms). In
addition, by definition an iterated game is dynamic because a player can vary its strategy
in accordance with the payoff obtained in the previous rounds. For static games, it is used
the representation called normal form (through the payoff matrix) which specifies the list of
players, their possible strategies and payoffs resulting at each possible choice of participants.
For dynamic games it is needed a richer representation, called extensive form, where it is
specified who moves and when, what players know before moving, what they can do when
it’s their turn and what are the payoffs at the end of the game. This form of representation can
be depicted with a tree structure, as the example shown in the Fig.4.3. The top represents the
initial move of a player and the two branches that descend from it indicate the two possible
choices A or B. The node 2 represents the move played by the player 2, also it can choose
between A and B, once again represented by two links that branch off from this node. This
process leads to a final node that describes the end of the game; each final node is labeled
with a numerical value that indicates the payoff obtained by the participants. In addition,

games can be categorized according to the number of participants:
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* Two-players, to this category belong symmetrical strategic games, with two players

and two strategies.
* Multiplayer games, games with n > 2 participants.

In order to understand how players will behave, and choose their strategies we will focus
on two-player game, but the reasoning can be applied to games with any number of players.

Game Theory starts from some assumptions:

* the interacting decision makers are considered rational and they act with the aim
to maximise their payoffs according to his predictions on the strategies adopted by
the other player. This assumption combines the idea of maximising the payoff with
the idea that each player is able to select the optimal strategy. These two ideas are
both reasonable if experienced decision makers play a simple game but in complex
games player can fail and make mistakes in the choice of the strategy, and it becomes
interesting to see how players make mistakes and learn from playing the game how
adjust their strategy.

* players know all the rules and the structure of the game, that is all the possible strategies
and the related payoffs. This assumption is also applicable if we consider games with
complete information but there are a lot of situations which can be modelled with

games with incomplete information [50].
In fact, games can be further classified in:

* Games with perfect information, if all the players are aware of the possible actions and
the correspondent payoffs for each antagonist. Therefore, players know in advance all
the actions of others. Games of this type are sequential, so a participant’s choice can
actually be based on a full knowledge of the context.

* Full information games, if individuals have information about the context and choices
of opponents but do not know all their possible strategies. Participants simultaneously

decide their own move, in secret, and then play it simultaneously.

* Games with imperfect information, if at least one player does not have any information

about the possible actions and the payoff received by opponents.

4.1.2 Best Response, Dominant Strategy and Nash Equilibrium

The best response is the best choice for a player, given his belief about the choice of the
other player in a two-player game [50]. Analytically, if S is the strategy chosen by the first
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player (P;), and T is the strategy chosen by the second player (P), in the payoff matrix there
is an entry which corresponds to the pair (S,7). As aresult, P (S,7) and P»(S,T), are the
payoffs obtained by the two players. Therefore, S for P; is a best response to a strategy 7 for
P, if the payoff is at least equal to the payoff obtained by choosing another strategy s paired
with T':

Pi(S,T) > P,(S,T)VS'ofPlayerl 4.1)

Obviously, it is possible to give the symmetric definition for the player 2, and we will do
the same also for the other following definitions. In addition, there are situations in which
there may exist many strategies corresponding to the best response and this make difficult to
predict which strategy will be chosen by Player 1. Hence, we can also define the strict best
response, as follows:

Pi(S,T) > P,(S,T)VS'ofPlayerl (4.2)

There are other crucial concepts, related to the definition of best response, dominant strategy,
defined as the best response to every strategy chosen by P, and strictly dominant strategy,
defined as a strict best response to every strategy of P». The notion of a dominant strategy is
slightly weaker than the strictly dominant one, since it can be equal to another strategy as the
best choice against some opposing strategies, so there is no certainty about the strategy to be
adopted.

In absence of dominant strategies, players are likely to choose strategies which represent
best responses to each other or, in other words, supposing that each player chooses a strategy,
the pair of strategies (S,7) is a Nash equilibrium (NE) if S is a best response to 7', and vice
versa T is the best response to S. Considering a two-player game with respective payoff
matrices P4 and P, where A and B denote the two players. Indicating with Py (S, S/) the
payoff of A when A plays S and B plays S, this is the (S, S/)—entropy for P4 of the matrix Py.
A pair of strategy (Su,Sz) is a Nash equilibrium for a two-player game if no player can have
a better payoff by changing his strategy from his equilibrium strategy to another strategy
considering that his opponent keeps his equilibrium strategy. In terms of the payoffs matrices

this means that:
PA(Sa,SB) < P(Sa,SB),¥Sa: P(Sa,SB) < P(S4,SB),YSs (4.3)
Thus, a strategy Sy is a best response to a strategy Sg if:

PA(Sa,S8) < P(Sa,Sp),VSa 4.4)
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The concept of Nash Equilibrium provides a tool to find out the optimal outcome of a game,
indeed a player has not any reason or incentive to deviate from his strategy after considering
the other player’s choice, because he will not receive a higher payoff, if the other player
will not change his strategy. A game may have multiple Nash equilibria or none at all.
Nash equilibrium can be interpreted as an equilibrium in beliefs, if each player believes
that the other one will play a strategy which belongs to a Nash equilibrium, then also the
other will choose the other strategy of the equilibrium. The Nash equilibria can be found
in two ways: checking all the possible pairs of strategies and see if each one represents a
pair of best responses to each other and calculating the best response of each player to every
strategy chosen from the other player,and then find the strategies representing the mutual

best responses to each other.

4.1.3 Pareto-Optimality and Social Optimality

It is interesting to classify the outcomes of a game not only according to the strategies or at
equilibria, but also considering the concept of "social and common good" as a whole. To this
purpose, a key concept is the Pareto-optimality, according to which the choice of strategies
(one by each player) is Pareto-optimal if there is no other choice of strategies in which all
players receive payoffs at least as high, and at least one player receives a strictly higher payoff.
The basic concept of Pareto-optimality is that, even though both the players realise that there
is a better solution, it is not possible to maintain it without a binding agreement between the
two players. The second key concept is social optimality defined as follows: a choice of
strategies is a socially op-timal if it maximises the sum of the players’ payoffs. It is important
to note how socially-optimal outcomes must be Pareto-optimal, so the Pareto-optimality is a
necessary but not sufficient condition to have a social-optimality. An outcome Pareto-optimal
implies that there would be a different outcome where all payoffs were at least the same and
and one was larger, and this would be an outcome with a larger sum of payoffs. It is not a
sufficient condition, since a Pareto-optimal outcome need not be also socially optimal.

4.2 Evolutionary Game Theory

Evolutionary Game Theory (EGT) applies the basic concepts of traditional Game Theory
in those situation in which the assumption of rationality of decision-makers is relaxed
and participants do not make explicit decisions. EGT is applied to model situations in
which individuals can show different forms of behaviour (not only conscious choices), and

to consider which forms of behaviour have the ability to emerge and persist within the
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population [50]. EGT has been applied most widely in the area of evolutionary biology
and more recently also in social contexts. Evolutionary biology is based on the idea that
genes determine observable characteristics of organisms, and its fitness in the considered
environment [117]. The key concept of EGT is that many behaviours involve the interaction
of multiple organisms within a population, and the success of any one of these organisms
depends on how its behaviour interacts with that of others. As a consequence, the fitness of
an individual organism cannot be measured in isolation but it has to be evaluated taking into
account the whole population. Even if classical and evolutionary game theory differ radically
in some basic assumptions aspects such as how they consider strategic interactions, there
are some analogies between the two theories. The genetic features of an organism and the
corresponding behaviours represent its strategy in a game, its fitness corresponds to payoff,
and payoff will depend on the strategies (characteristics) of the interacting organisms. Also
idea of equilibrium formulated by Nash, matches with the the concept of evolutionarily stable
strategy (ESS) in EGT which is crucial to make predictions about the results of evolution on

a population.

4.2.1 Fitness, Diversity, Selection and Replication

These evolutionary systems such as biological, social and economic ones are made up of
entities of different nature, such as animals, genes, cells, behaviours, etc., characterized by
some common properties: diversity, selection, and replication. Diversity is that entities in the
system show dissimilarities affecting their individual fitness. Fitness is a measurable indicator
determining how a population evolves, so that entities with higher fitness tend to persist
in the population. The linkage between the fitness and the future population composition
is the selection mechanism, which represents the trend to reduce the heterogeneity of the
system, favouring the entities with higher fitness. Despite the selection mechanism, there
are some other processes that generate and preserve a certain amount of diversity and
heterogeneity in systems. For instance in biology, the diversity is generated and preserved by
genetic mutations, in economic systems by innovations, in ICT systems or social networks
by the flow of information and data through the network, which trigger modifications in
the behaviours. Strategies (which may be seen as behavioural phenotypes) are selected on
the basis of their payoff, that is the relative frequency of strategies which obtained higher
payoffs in the population will increase at the expense of those which obtained lower payoffs.
Replication can be considered as a mechanism which preserve the properties of the entities
in the system; for instance, In biological systems, replication is constituted by genetic
transmission, while in social systems, replication is represented by the imitation in the social

learning processes.
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4.2.2 Evolutionarily Stable Strategy

The study of dynamic systems begins with the identification of their stable states, not
considering the dynamics of the system explicitly, but only its rest points. In order to
determine these stable states, the Evolutionarily Stable Strategy (ESS) is an analogous notion
of Nash equilibrium in traditional game theory. It was proposed by by J. M. Smith and
R. Price in 1973 and it represents the most important concept in EGT. ESS can be defined
as a strategy that tends to persist once it is prevalent in a population. In other words, a
strategy is evolutionarily stable if a any small group of invaders using a different strategy
than the population will eventually die off over multiple generations [50]. For instance, in
biological terms, these invaders could be represented as mutants born into the population
with a different behaviour, or migrants joining the population. The definition of ESS starts
from some assumption: it is considered a system composed by a single infinite population
of individual who play a two-players sysmmetric game. futhermore, it considers only a
population where all individuals play the same strategy invaded by only one kind of mutant
strategy at a time. Indeed, this assumption of one single infinite population represents a
mean-field approximation used to match the average payoff actually obtained by a population
with the expected value of a probability distribution of payoffs. To better capture the concept
of ESS in terms of payoff, we consider a population using a strategy S and a small group of
invaders using a strategy 7', with a strictly lower fitness in comparison with the strategy of
the majority of users. As fitness means reproductive success, the population of invaders will
decrease over time and die off in the evolutionary process. The fundamental concepts related
to EGT are the following:

* The fitness of an organism in a population is the expected payoff it receives from an

interaction with a random member of the population.

A strategy T invades a strategy S at a certain level &, for some small positive number
0, if a delta fraction of the underlying population uses 7 and a 1...6 fraction of the
underlying population uses S.

* A strategy S is evolutionarily stable if there is a (small) positive number 7, such that
when any other strategy 7 invades S at any level § < v, the fitness of an organism

playing S is strictly greater than the fitness of an organism playing 7.

Therefore, the concept of an evolutionarily stable strategy can be viewed as a refinement of
the concept of a Nash equilibrium: the set of evolutionarily stable strategies S is a subset of the
set of strategies S for which (S,S) is a Nash equilibrium. It could be said that if a strategy S is

evolutionarily stable, then (S,S) is a Nash equilibrium”. The opposite direction does not hold:
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it is possible that (S, S) is a Nash equilibrium, but S is not evolutionarily stable. For what
concern the concept of strict Nash equilibrium (when the players use the same strategy which
is the unique best response) is could be viewed as a refinement of evolutionary stability: if
(S,S) is a strict Nash equilibrium, then S is evolutionarily stable. Furthermore, it is interesting
to consider how, despite the extremely close similarities between the conclusions of ESS and
Nash equilibrium, they are built on completely different underlying concepts. From one hand,
in a Nash equilibrium, we consider players choosing mutual best responses to each other’s
strategy. So it demands on the ability of the players to choose optimally and to coordinate
on strategies that are best responses to each other. On the other hand, Evolutionary stability,
supposes no intelligence or coordination from players: strategies are naturally placed into
the players, because their behaviour is encoded in their genes. ESS increases the fitness of

the more successful strategies with a higher reproductive success in the selection process.

4.2.3 Evolutionary Dynamics

Evolutionary dynamics were defined by Nowak [106] as the mathematical formulation of
evolutionary processes which population to change. Natural selection is an example of
these processes, in which genotypes (as strategies) with higher fitness tend to become more
common, while lower-fitness genotypes tend to disappear and, then mutation reintroduce
a certain grade of heterogeneity into the population. Similar processes represent cultural
evolution and social learning where people tend to imitate strategies and behaviours associated
to higher payoffs. For these reasons, EGT can be seen as a combination between game theory
(in the mathematical formulation) and evolutionary dynamics: considering a population of
agents, each of them choose a strategy; they interact with each other and earn payoff; the
concept of payoff in EGT is translated to fitness and the frequency of strategies’ adoption
changes accordingly with them: higher-payoff strategies tend to become more common,
whereas lower-payoff strategies tend to disappear. At the foundation of the evolutionary
dynamics there are the so-called replicator equations, introduced by Taylor an Jonker in
1978 [132]. Denoting with x the state of the population, that is the distribution of strategy
frequencies, and with x; the differentiable functions of time ¢, which means to assume that
the population is infinitely large, we can now postulate a law of motion for x(z). We also
assume that individual meet randomly and are involved in a game characterized by a payoff
matrix P, such that (W,); is the expected payoff for agent i using strategy S; and x” W, is the
average payoff for the population in the state x. Considering the payoff as the correspondent

concept of fitness and that the growth rate of individuals adopting a strategy s; is proportional
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to its payoff, the replicator equation is defined as follows [71]:
X = x;[(We)i —x" Wy (4.5)

where ¥; is the derivative of x; , and the x” W, exists in relation to the constraint: Yi(x)=1.
The equation 4.5 is the mathematical representation of the principle of natural selection, in
accordance with which strategies with higher fitness spread more efficiently in a population.
States x; = 1 and x; = 0 Vi # j are solutions of the equation and they are defined absorbing
states which play a key role in the system dynamics without mutations. For what concern
the solutions of the replicator dynamics equation, they represent equilibria or rest points
indicating the frequency distributions which make the second member of the equation equal
to zero: x; =0 or (Wy); = xTW, = 0,Vi = 1,...,n. These solutions are the mixed strategy
Nash equilibria of the game and Nash equilibria, themselves, are stable rest points. Therefore,
the replicator equations describe the evolutionary dynamics which lead the players to the
NE, or ESS. Each equilibrium has different attraction which makes the difference in their
selection when there are more than an equilibrium. The hypotheses underlying the replicator

equation are the following:
* population in infinitely large;

* Individuals meet randomly or play against every other one, such that the payoff of

strategy S; is proportional to the payoff averaged over the current population state x.

* There are no mutations such that the increasing or decreasing in frequency of strategies
depends only on reproduction mechanism.

* The variation of the population is proportional to the payoff difference.

The first two hypotheses are fundamental in order to derive the replicator equation, replacing
the fitness of a strategy using its mean value, with the population described in terms of
frequencies. In particular, the second assumption is related to temporal and spatial constraints
of interactions, which requires another approximation for representing the fitness of a strategy
in a population, as the expected value of fitness is no longer valid. For what concern the third
constraint mutation could be included producing the so-called replicator-mutator equation
[108]; the fourth assumption is the definition of replicator dynamics. When the hypothesis
of linearity is not included the generalised replicator equation is the following:

X = x,-[(W,-)x — XTWX] (4.6)
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Replicator dynamics are the rules in accordance to which player update their strategies
through the round of the game. These rules are classified in Innovative and Non-Innovative
in relation to their ability to introduce new strategies into the population or reintroduce the
extinct ones. Based on the speed with which they trigger the change of strategies the rules can
be classified into payoff monotonous or non-monotonous. Examples of Innovative dynamics
are:

* Best Response dynamics: In a population a small percentage of players update their
strategies, choosing the best response BR(x) to the average x strategy of the entire
population. This approach starts from the assumption that players are smart enough to

assess the current state of the entire population and respond optimally.

* Logit dynamics: constitute a generalization of Best Response dynamics in the case
of "limited rationality" (Smoothed Best Response). In accordance with these laws,
players update their strategies respecting a parameter 3, which takes into account the
level of rationality and knowledge of players, and the state of the system, or strategies
played until now. The logit update rule can be seen as a classic best response "noisy"
rule. A small value of B represents a situation in which players are subject to a loud
noise or have a very limited knowledge of the game and, consequently, choose the
strategy to play randomly; instead, a large value of B represents a situation where

participants are quite sure to play their best response.

* Fermi’s rule: At the start of the game, considering as an example a case of 2-player
2-strategy game, the player x plays a strategy S while the player y a strategy S,. The
evolution of the two strategies takes place by comparing the payoffs 7, that each player
accumulates at the end of a pair interaction with their neighbors. Next, player x tries to
impose its Sy strategy on player y with the probability W (S, — Sy)) defined by:

1

W(Sx — S ) =
Y 1+exp[—ﬂxkny]

4.7)

Where k quantifies the noise amplitude and its inverse is defined as selection intensities. If
k — 0 and 7, > 7, x will be able to impose its strategy on y.

4.2.4 Social Dilemmas for studying the Emergence of Cooperation

EGT is often applied in order to understand the emergence of cooperation in different situa-
tions, in particular among human beings. Cooperation in a competitive world could be seen

in contrast with the natural selection mechanism [112]. In the analysis of the evolution of
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Table 4.1 Payoff matrix.

C (Cooperation) | D (Defection)
C (Cooperation) | R S
D (Defection) T P

cooperation it is useful to exploit the so-called social dilemmas [75, 114, 113], which are
two-players and two-strategies games. Social dilemmas are situations in which collective
interests are at odds with private one. In fact, in social dilemmas there is a contraposition
between what is good for the entire population and what is the best strategy for the individual.
The population does best if individuals cooperate, but for each individual there is a temptation
to defect. Cooperation is an act where individuals can contribute something, at a cost to
themselves, to provide a benefit for others. In EGT, cost and benefit are measured in terms
of reproductive success. In other words, social dilemmas represent the tension between
the benefit of the individual and the social common good. The two possible strategies are
cooperation (C) or defection (D), where cooperating means contributing to the benefit of
the whole population paying a cost and defection means being selfish and not paying any
cost and relying on the cooperation of other player [47, 38]. There are different models
of social dilemmas, the iterated forms of Prisoner’s Dilemma game (PD), the Snowdrift
game (SD), the Stag-Hunt game (SH) and the Harmony game (HG). These dilemmas are
two-strategies games, with different features, as specified in the payoff matrix and players
can choose between to cooperate (C) or to defect (D): Where R represents the reward gained
by a co-operator playing against another co-operator, S is the sucker payoff obtained by a
co-operator that plays against a defector, T is the temptation payoff obtained by a defector
when he plays against a co-operator, and P represents the punishment for the mutual defection.
The selection of the matrix parameters enables the definition of several games according to
their evolutionary stability [114].

If R > Sand R > T > P the game is the HG where cooperation is its dominant strategy, results
the most cooperative game. The opposite situation, with 7 > R > P > S, is represented by the
PD which is the most challenging and stringent social dilemma in terms of cooperation where
defection dominates cooperation; 7 > R > § > P yields the SD that is an anti-coordination
game characterised by a stable equilibrium in mixed populations. Thus, we observe the coex-
istence of both strategies at equilibrium, cooperation and defection [INSERIRE FIGURA]
finally R > T > P > § corresponds to the SH [90] which is characterized by an unstable
evolutionary equilibrium with mixed populations. As in the SD case, we have the coexistence
of both strategies, even if the density of cooperation is on average lower than SD [114]. .

The payoftf matrices of the four games are illustrated in the following tables:
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(HG) SD

SH PD

(4] 1 2
T

Fig. 4.2 Representation of the stag-hunt (SH), the prisoner’s dilemma (PD) and the snowdrift
(SD) game on the two-dimensional T-S plane. The upper left quadrant represents the so-called
harmony game (HG). The latter, however, does not constitute a social dilemma because
there cooperation is always the winning strategy. The dashed green lines denotes the borders
between games, while the diagonal blue the cost-to-benefit ratio of the snowdrift game, while
the thick red line shows the span of the weak prisoner’s dilemma game having R = 1 and
P =S§=0. Reprinted figure from Ref [114]

Table 4.2 Payoff matrix of the Prisoner’s Dilemma

C (Cooperation) | D (Defection)
C (Cooperation) | b —c —c
D (Defection) b 0

Table 4.3 Payoff matrix of the Snowdrift Game

C (Cooperation) | D (Defection)
C (Cooperation) | b—c/2 b—c
D (Defection) b 0

Table 4.4 Payoff matrix of the Stag-Hunt Game

C (Cooperation) | D (Defection)
C (Cooperation) | 2b — ¢ —c
D (Defection) b 0

Table 4.5 Payoff matrix of the Harmony Game

C (Cooperation) | D (Defection)
C (Cooperation) | b —c b
D (Defection) —c 0
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Fig. 4.3 Density of cooperators in the T-S plane, considering the different social dilemmas:
HG (upper-left), (upper-right), SH (lower-left), and PD (lower-right).

4.2.5 Parameters for the emergence of cooperation in Multiplex Evolu-

tionary Game Theory

Cooperation produces a conflict between the benefit of the single decision-maker and that
one of the whole population. The reason why individuals do something for someone else,
although there is often a low probability for direct reciprocity or reward is that actions are
contagious. Only by studying the interactions inside the population it is possible to shed
light on the hidden pattern which lead to cooperation. In fact, cooperation may introduce
assortative interactions among decision-makers, transforming it to the most profitable strategy
[47]. Among human beings, there are several mechanism at the basis of the evolution of
cooperation, related to kin selection, direct reciprocity, indirect reciprocity, spatial selection

and multilevel selection.

* Direct reciprocity is related to a cost of cooperating in order to obtain a gain in the

near future.

* Indirect reciprocity involves the dependence of an individual’s actions from the previ-

ous behaviours of the others.

* Spatial selection is linked with interactions and clusters of cooperators.
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» Multilevel selection refers to competition existing between groups and between indi-

viduals.
The are other mechanisms proposed by Rand and Nowak:

* strong reciprocity refers to two individuals who reward cooperation and punish selfish-

ness even if the interactions are anonymous and without promises of future benefits.

* upstream reciprocity refers to the mechanism whereby an individual who has just

received help is more likely to help others.

* parochial altruism according to which an individual is more likely to help the members
of the group to which he belongs than those of another group.

In addition to these mechanisms, the actions of networked decision-makers could be affected
by a huge amount of other factors, among them one of the most important is the homophily.
Homophily is the principle that similarity breeds connection. In nature, this concept generate
interesting behaviours, giving shape to relationships and impacting on information sharing,
influence dynamics and so on. Following the tendency to relate with similar individual,
contact between similar individuals occurs at higher rater compared with interactions among
dissimilar. In terms of network theory, this indicates that the attributes of vertices correlate
across edges and it is known as assortative mixing. The concept of homophily is important
in the dynamics of collective action and critical mass mobilization. Furthermore, it is crucial
to distinguish between homophily, social dependence and social influence. Homophily means
that similar nodes are more likely to contact. Social dependence means that nodes exchange
resources in order to satisfy their goals. Social influence means that nodes which interact
become more similar. The concept of homophily alone is not able to explain why individuals
decide to connect or choose strategy when interact with others. For this reason, it becomes
crucial to consider multiple types of relationships between nodes, known as multiplexity. As
we have seen in 3 the multiplexity makes it possible to include several kind of interactions
and relationships, exploring and unveiling how the different ties in the various layers can
impact on the diffusion of behaviours and the emergence of collective phenomena within
a population. It is useful also taking into account other parameters such as the Critical
Mass, which refers to the minimum number able to arise a new behaviour and trigger a
collective action within a population. In order to analyse the role of the connectedness
and of the structural patterns on the emegenge of collective phenomena it is essential also
considering the coupling among the different layers of the multiplex structure through the
communicabiliy function.

Critical mass is defined as the minimum coalition min(n), such that if actors organize into
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coalitions of size equal to n, at least n people will prefer mutual cooperation to defection,
and it is calculated as follows:

min(n)s.t.{iH(Ri —T)} >n (4.8)
i=1

where n is the dimension of the overall population and min(n) is the minimum coalition
size which depends on the Heaviside function of the difference between Reward R; and
Temptation payoffs 7; respectively, evaluated considering different kind of games. In this
respect it is useful considering that the most central nodes in the network are also the most
influential, which can more easily condition the behaviours of their neighbouring nodes.

The homophily measure extended to the multiplex structure is defined through the Homophily
matrix H%, where each element hg‘y represents the homophily measure between two nodes x

and y in the layer «, calculated as:

1
he, =
Y146

(4.9)

with &,, measuring the homophily difference between two nodes x and y.

The communicability function quantifies the number of possible routes that two nodes
have to communicate with each other. The communicability between two nodes x and y in a
multiplex is given by a weighted sum of all walks from x to y as follows:

2 e k
Gy=1+.4+ %T = % = lexp(Zp +Crp)]xy (4.10)
k=0 "
where £ is the length of walks between two generic nodes x and y; the walks of k length in
the multiplex are given by the different entries of .#*; Z; represents the Hadamard product
between the homophily matrices and the adjacency matrices of the multiplex, related to the
different L layers; Cyy is a matrix describing the interlayer interaction.



Chapter 5

Epidemic Models

Overiview: In a 6G communication scenario, treated as a complex relational ecosystem, we are
interested in detecting emerging behaviours, determined by non-trivial networks of interactions. Thus,
we start from multiplexity of networked users, leveraging the heterogeneity, homophily and awareness
which represent unexplored innovative bio-inspired perspectives, typical of the complex systems and
complex networks theory applied to various scientific fields from biology to telecommunication. In
particular, it is crucial the interplay between awareness and spreading processes in fact, the more
the networked individuals are aware about the spreading content, the more they may be able to
adopt strategies to quickly disseminate or slow diffusion. It has been found the role of online social
platforms and of the nature of social ties in spreading beliefs, habits and information, emotions
and rumors, through the so-called social contagion, which spread as inter-personally as a epidemic
disease [110, 124, 122]. In this chapter, it is merely presented some of the basic elements and
notation generally used in the modeling of epidemic phenomena in order to provide the necessary
conceptual toolbox needed in the following chapters. In particular, it is focused the importance to
take into account also the aspects of heterogeneity and coevolution of different spreading phenomena

in multiplex networks.

5.1 Classical models of epidemic spreading

A pivotal concept of epidemic models is that the considered population can be divided into
different groups (or compartments) in accordance with their stage of the disease. Susceptibles
(denoted by S) are those who can contract the infection, infectious (denoted by I) those who
contracted the infection and are contagious and recovered (denoted by R) those who are
removed from the propagation process, either because they have recovered from the disease
or because they have died. In addition to these, other compartments can be included in order

to consider other possible states, such as immune individuals [137, 110].
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The aim of epidemic models is to describe the dynamical evolution of contagion process
within a population, in order to understand the evolution of the number of infected individuals
as a function of time it is useful to analyse the individual transition processes governing
the shifting of individuals from one state to another one. The simplest way consists in
considering the whole system’s population as fixed, composed by N individuals without
migrations or births.

The first model is the SIS which is two-state as only two transitions are possibles. The
first one S = I takes place when a susceptible individual has contacts with a infected one
and becomes infected himself. The second transition is / = S takes happens when the
infectious individual recovers from the disease and returns to the compartment of susceptible
individuals. This simple model starts from the assumption that the disease does not confer
the immunity and individuals can be infected over and over again. Analysing the long time
regime, the SIS model can reach a stationary state, defined the endemic state, characterized
by a constant (on average) fraction of infected individuals.

The second model is represented by the SIR where the transition I = S of the SIS is replaced
with I = R, which takes place when an infected individual recovers from a disease and
acquires a permanent immunity, or is removed from the population. In the long time
regime, the number of infected individuals tends to zero always. While the / = § and
I = R occurs spontaneously after a time interval spent fighting the disease or taking medical
treatments, and it not depends on interactions among individuals; the S = I occurs due to
the contacts between a susceptible individual with an infected one. For this reason, the
pattern of interaction among individuals becomes crucial to understand the specific features
of transitions. In a simplistic model scheme the probability of transition is assumed constant.
In a discrete time formulation, the recovered probability 1 is defined such that an individual
will recover at any time step. In a continuous-time formulation, assuming a Poisson process
U is the rate (probability per unit time) and the probability to remain infected for a time
tau follows an exponential distribution P, s(7) = pel~#%) with an average infection rate
<t>=p!
to a Markovian description of epidemic models. The definition of the probability of the

. The Poisson assumption for the processes of infection and recovery leads

transition S = I depends on many factors, such as on the nature of human interactions. The
most simple approach considers that individuals interact randomly with each other, in this
way the larger is the the number of infectious individuals among an individual’s contacts,
the higher the probability of transmission of the infection. ¢ describes the probability for a
susceptible individual to contract the infection in a single time step. In the continuous time o
is defined as a rate @ = 3 b4 where 3 depends on the particular considered disease and on the

interactions patterns of population, Ny is the number of infected individuals; f is often split
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in two terms Bk with f3 is the rate of infection per effective contacts and k is the number of
contacts.

The above mentioned models can be rephrased as a reaction-diffusion process, following this
approaches individuals can be seen as different kinds of particles which evolve according to
interaction rules, defining each transition by appropriate reaction rates. In accordance with

the reaction-diffusion formalism we can describe the SIS by the following reactions:

s+1P500 5.1)

15s (5.2)

where f is the infection rate and u is the recovery rate. The SIR model is characterized by
the reaction:

s+15 01 (5.3)
15 R (5.4)

The SIR process will asymptotically die after affecting a given fraction of population.
Other more realistic epidemic model can be defined analogously to the SIS and the SIR. the
susceptible-infected-recovered-susceptible (SIRS) model is an epidemic model incorporates
a temporal immunity:

RLs (5.5)

With 7 is the rate with which a recovered individual lose his/her immunity, making him/her
susceptible again.

Instead, the SEIR model is a variation of the SIR with the inclusion of the exposed (E) state,
where individuals have been infected but they cannot transmit it yet. Its reaction-diffusion

notation is the following:
B

S+I1B ELT (5.6)
EXL (5.7)
15 R (5.8)

The classic epidemic dynamic theories where based on taking the continuous-time limit
of difference equations for the evolution of the average number of individuals in each
compartment. This deterministic approach starts from the assumption that the individuals in
the population are well mixed and interact with each other completely at randomly; therefore,
each individual in a compartment is treated at the same way from the others in that same

compartment. Starting from this perspective, full information about the state of the epidemics
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Fig. 5.1 Diagrammatic representation of different epidemic models in terms of reaction-
diffusion processes. Boxes stand for different compartments, while the arrows represent
transitions between them.

is encoded in the total number N* of individuals in a compartment o or, analogously, the
density p% = NWOC where N is the whole population size. The time evolution of the epidemics
is described by deterministic differential equations, showing that the average change of each
compartment density is given by the product of the force of infection times and the average
population density, for SIR and SIS we have:

1

d
L —Bp'p* — pp! (5.9)
d S

-~ —Bp'pS+xp! (5.10)

where ¥ =  in the case of SIS model and )} = O for the SIR model and the forse of infection
is a = Bp’. The normalization condition for SIR is pR = 1 — p5 — p/ and for the SIS model
rhoS = 1 — p!. Cosinderig that at the early stage of the epidemic, it is generally valid the
limit p! ~ 0 we have:

d 1
L — (B! (5.11)
with solutions:
p!(t) ~ rho (0)e P11 (5.12)

which represents a key pillar concept of the classic epidemic theory and that the number of

infectious individuals grows exponentially if:

[3—,I.L>0:>R0:§>1 (5.13)

where Ry is the average number of secondary infections caused by a primary case in a

population of susceptibles. Hence, the concept of epidemic threshold: if Ry > 1 a single
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infected individual generates on average more than one secondary infectious and, therefore,
a infective agent can cause an outbreak of a finite relative size (in SIR-like models) or lead
to a steady state with a finite average density of infected individuals, corresponding to an
endemic state (in SIS-like models). If Ry < 1 the size of epidemics is small in SIR-like
models or leads to a steady state with all individuals healthy in SIS-like models. The concept
of threshold, expressed as a function of the rates of the different transitions describing the
model, is common to all epidemic models. This classic approach is deterministic and assumes
random and homogeneous mixing where each members within the same compartment is
treated similarly. However, in reality belongs to the his/her own social contact network which
diseases propagate, usually differing from that of other members in a group or compartment.
In the case of homogeneous contact network where each member has the same number
< k > of contacts the reproduction number we have Ry =< k > % The concept of epidemic
threshold is a concept similar to the phase transition in non equilibrium systems. It is an
abrupt change in the state of a system, characterized by qualitatively different properties, and
that is experienced varying a given control parameter. The transition is characterized by the
parameter p which is nonzero in one state and equal to zero in the other one. The change of
state occurs in correspondence of a particular value of the control parameter, the transition
point A., for A > A, we have p > 0, for A < A. p =0. Around A, the order parameter takes
a power-law form p; ~ (A — A, )P defining the critical exponent f,.

The homogeneous assumption considered in this section to evaluate the basic epidemic
processes may be not adequate in many real-world situations where individuals show very
heterogeneous contacts or are in contact with only a small part of the population, these
aspects may have different relevance in the spreading phenomena considered. In addition,
a wide range of social and biological contagion processes requires a knowledge about the
contact pattern structure of individuals, also because most real world systems present very
complex connectivity patterns characterized by large-scale heterogeneities.

5.1.1 The role of heterogeneity and interdependence on epidemic spread-

ing processes

The classical models considered in the previous sections can be enhanced and generalized
in order to provide a more realistic description of the diffusion phenomena, it could be
useful to introduce additional compartments or allowing new transitions between the several
compartments. These modification can be studied analytically or retrieved empirically and
may alter the evolution of epidemic on networks. For instance, in real human disease

epidemics, often, the assumption that the structure of contacts does not depend on the
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progression of the contagion is often unrealistic. In fact, the human behaviours tend to
change accordingly to the influence of the spreading processes. The induced modifications
can depend on several aspects, as different kind of information may influence the behavioural
choice: in some cases the decisions are taken in accordance with the epidemic state; in other
cases the choices are belief-based, based on the awareness or the risk perception which can
be not dependent from the actual disease diffusion. Furthermore, the changes in behaviours
may be of different kind, affecting the individual’s state (for instance through vaccination) or
the contacts’ structure (i.e. cancelling connections or creating new ones).

Another crucial aspect is that, differently from the basic modeling scheme, it could be
interesting considering the evolution of multiple epidemic processes in competition on
top of the same network, which represent a crucial scenario for studying real situations.
These epidemic processes are represented certainly by infectious diseases, which represent
the main focus of these theories, however the contagion metaphor is applicable in several
other domains, in particular in the social science field. The spreading of information,
the propagation of rumors, the adoption of behaviours are phenomena where the state of
individuals are influences by the interactions among them. Through the social contacts,
these epidemic processes can give rise to epidemic like outbreaks like fads or information
cascades, viral information diffusion online. This is a key element in most social networks,
where it is almost impossible to disentangle the agents cognitive processes shaping the
network evolution and their perception and awareness of the contagion processes. These
phenomena can be defined as complex or social contagion, detectable empirically thanks
to the unprecedented abundance of digital fingerprints, as data in online social platforms
[69]. It makes necessary new theoretical approaches to measure, model, interpret and predict
these phenomena which enhance the classical models for disease epidemics. In fact, the
transmission of information, beliefs or behaviours involves the intentionality of individuals
is relevant and it is influenced by cognitive and psychological aspects. The introduction of
these ingredients makes it possible analysing others spreading phenomena attributable to
social contagion like habits or behaviours which gives rise to collective phenomena such as
in the case of obesity, smoking, happiness or distress [57].

The final aim consists not only in understanding epidemic processes and predict their behavior
but also control their dynamics. In this sense, it is crucial investigating how coevolution of
spreading phenomena and feedback mechanisms affect the ability to control these processes.
The interdependence is a crucial aspect in diffusion and spreading processes. Networks shed
light on a wide number of interdependencies ranging from logical to infrastructural ones.
Interdependence is a major issue, for instance considering the spreading of information in

communication networks which is based on physical proximity contact pattern of individuals
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Fig. 5.2 Diagrammatic representation of awareness diffusion models in terms of reaction-
diffusion processes. Boxes stand for different compartments, while the arrows represent
transitions between them

%

Fig. 5.3 Schematic example of the coevolution of epidemic and awareness spreading on a
multiplex Network. In (a) the two processes is considered separately in different layers, while
in (b) it is considered the coevolution in the whole multiplex network.

or of the flows and traffic of mobility infrastructure. This makes it necessary the introduction
of interdependent networks, for instance in the case of information processes where different
types of social communication networks (phone, real-world, digital) coexist it is useful

rescuing on multilayer or multiplex networks.

5.2 The dynamical interplay between awareness and epi-

demic spreading in multiplex networks

As explained in the Chapter ?? many real complex systems are composed of several in-
terrelated layers of networks. In particular, multiplex networks represent the natural way
to describe social interactions that occur at different contexts or in different categories.
The different layers can support several dynamical processes, for instance in online social
networks individuals can exchange information, while in the physical network they have
contacts that can carry on the diffusion of diseases. The dynamics of exchanging information
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and of moving attention around a topic have an impact on the co-evolution of epidemic
spreading and awareness. In order to explore the complexity in these emerging dynamics of
the co-evolving and interdependent spreading processes, it is crucial to include the concept
of (complex) social contagion which, as explained in section ?? based on epidemiologi-
cal models [110], and it finds applications in network science, social behavioural analysis,
misinformation diffusion, infectious disease and emotions spreading The awareness has an
impact on the primary diffusion process changing its evolution as it makes the networked
individuals more likely to adopt strategies targeted at self-protecting [124, 122, 120] and
to slow diffusion . Since the multiplex networks constitute the most fit network structure
to study these processes, their interdependence and co-evolution [155], it is crucial to do
not separate the spreading process in the different layers, but [124, 122, 120] investigating
and quantifying the impact of the co-evolution of the two processes in all the layers of the
multiplex network (see Fig. 5.3). In addition, the multiplex networks, for its own nature,
provide a tool to investigate the impact of heterogeneity on the spreading processes.

Traditionally, the awareness spreading is studied through the "Unaware-Aware-faded" (UAF)
model where the possible transition states are: U indicating the unaware condition of nodes in
the network; A is the state in which nodes start to raise their attention on epidemic spreading,
understanding the risk associated to it; F is the state where nodes, aware of the epidemics,
tend to decrease their attention on the topic, until it completely vanishes. When a node
reaches this state, it maintains the same awareness, but it has no interest in increasing its

awareness about the phenomenon [62]. The classical UAF reaction diffusion notation is:
U—-A—=F (5.14)

with A and 0 respectively awareness rate and fading rate. In order to capture the heterogeneity
in both the spreading processes, it is useful to consider a dual heterogeneity in nodes’
susceptibility and awareness in the different layers of the multiplex network, introducing
a heterogeneous form of both the spreading models for epidemics and for awareness. For
instance if we consider the SEIR model which is the most suitable model to represent the
influenza-like illnesses we have a coevolving S"EIR and a U"AF expressed respectively
through the following reaction-diffusion notations:

SEIR= s g L AR (5.15)

UAF > U 5% A F (5.16)
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This results in a variation of the infection rate B, and the awareness rate A}, where i stays for
the single node and « indicates the layer o € 1,...M of the multiplex network.

In order to explore the dynamics of the coevolution of social (or complex) contagion and
awareness spreading on the multiplex network, it is useful to rescue on Dynamic Microscopic
Markov Chain (MMCA). In accordance to which, initially it is assigned to each node a
probability to be in one of the previous defined states. In particular, each node can be in
the states: susceptible and unaware (SU), susceptible and aware (SA), infected and aware
(IA), exposed and unaware (EU) (see Fig. 5.4). Some states are not reachable or do not exist,
such as infected and unaware (IU) and recovered and unaware (RU), due to the assumption
that if a node has been infected or recovered has experienced the disease, developing a
measure of awareness. At time step ¢ each node i can occupy one of the initial states, with
probabilities p3U (¢), p?A(t), piA(t), and pEU (¢) respectively. The probability of node i to not
being infected at time step ¢ is g;(¢):

qi(t) = (1= B,) [ T[1 — a;ipy(r) B] (5.17)
J
and r;(t) is the probability of an unaware node i staying unaware at time step ¢, defined as

follows:

ri(t) = (1= ) [ T11 —ajip (1)2,] (5.18)

J

where q;; are the elements of the adjacency matrix of each layer of the weighted multiplex
network M; (for further details see. Section??). Ei and A, respectively are the mean values of
the heterogeneous infection and awareness rate. The following MMCA equations represent
the probability of each node of being in one of the states at time step t + 1, as showed in Fig.
5.4:

piEA(r+1): 1—3)(1—r,(t))p?U(z)+ (5.19)

250" o
PR+ 1) = (1= 8)pl 1)+

(1 - i) (1 - 8)pf():

PEF(11) = O pIA(0) + Sym(1 = () (1)



84 Epidemic Models

54 FA 4

4 Y
I-g, 4 1 u

P
EU_ v (F4 - %5 EF

Fig. 5.4 Probability tree linked to the MMCA method, representing the states and the
transitions of S"EIR — U"AF model, at each time step.

In order to obtain the contagion threshold, it is necessary investigating the steady state
solution of the system constituted by the previous equations. When time t — oo, there
exists a contagion threshold B¢ for the two co-evolving processes, so that the contagion can
outbreak only if B > B¢. The contagion threshold is given by the order parameter p; and it is
defined as follows:

p{" (5.20)

”MZ

N / 1
P=xN ;Pi = N

Thus, starting from equation p{A(t + 1) (see Eq. (5.19)), at steady state we have:
pit =yl —p)(1—g)p" (5.2D)

Since around the contagion threshold f¢, the informed probability is close to zero (pllA =

n; < 1), the probabilities of being informed can be approximated as follows:
=(1-B)[1 ﬁ,Zasz] = (1-B)(1 - ) (5.22)

where:

@ = B; Y aijm, (5.23)
J
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Furthermore, close to the contagion onset the fading rate is approximately close to zero
(0 =~ 0). Considering this approximation into Eq. 5.21 and omitting higher order items, Eq.

5.21 is reduced to the following form:
un; == y(1— p)p* Bif; L aijmn; (5.24)
J

The contagion threshold is obtained starting from the following condition:

Y [v( = w)Bipitai; - Eeijni=0 (5.25)
] Bi
where 7;; are the elements of the Identity matrix. By defining the matrix H whose elements
are given by: h;; = [y(1 — 1) Bip3*]ai;, the contagion threshold B. is the value corresponding
to the largest eigenvalue of the matrix H, which is given by Amax (H) = vt/ ﬁ_j, so finally we
get: B, = YU/ Amax (H). The onset of the epidemic is the minimum value f§ satisfying the Eq.
5.25. By denoting with Apax (H) the largest eigenvalue of H, we obtain the critical point of
Be which depends explicitly on the co-evolving dynamics. Even if we consider the critical
value referred to the onset of the awareness spreading dynamics A, as a simple spreading
process, when decoupled from the epidemic, the (., A.) defines a sort of meta-critical point
for the spreading dynamics.

5.2.1 Preventive Isolation and Overlapping Awareness

In order to provide a more realistic description of the diffusion phenomena, it could be
useful to introduce additional compartments or allowing new transitions between the several
compartments.

In [122] authors consider the two interdependent coevolving processes of epidemics and
awareness in a multiplex network. In particular, the process of epidemic spreading is modelled
as a S"IR that is a variant of the classic SIR model mentioned above; with S” a heterogeneous
susceptible state which indicates the different susceptibility of each node in the multiplex
network. The awareness diffusion among the nodes of the multiplex network is modelled
as a UAF (A™) process 5.2 where A” is an additional compartments which indicates the
"overlapping awareness" related to a probability to have an additional awareness correlated
to the first epidemic phenomenon. A” is an alternative to the state F of the classical UAF
in fact a node in the state A can decide to acquire a deepen knowledge on another aspect
related to primary contagion process, obtaining an additional awareness, or to transit to

the F state, fading its attention on the topic (see Fig. 5.5). Heterogeneity and overlapping
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Fig. 5.5 Coevolution of social contagion and awareness spreading S"IR — UAF (A™). States
and transitions. Reprinted from [122].

awareness are crucial to describe a realistic spreading scenario and disentangle the complex
coevolution of the two interdependent phenomena, without ignoring the influence of other
aspects related to the contagion process. The two models are expressed through the following
reaction-diffusion equations:

SR = st P B R (5.26)

ra
UZSsASF ife=0
UAF(A™) = . (5.27)
U5 AS AT otherwise

where:

A% =yA (5.28)

B =wB+s (5.29)

with s representing the spontaneous contagion which evaluates the realistic condition to
contract the contagion regardless the interactions with other nodes in the multiplex network.
y* and y* are heterogeneous factors which define the interdependence between the two
spreading phenomena and the structural parameters.

At the first step, each node can be in the states; suscetible and unaware (SU), infected
and aware (IA), susceptible and aware (SA) with the probabilities p?U (1), pi(t), p¥(¢) as
defined in equations 5.17 and 5.18). Some states are considered not reachable or do not exist
(i.e. infected unaware (IA), infected faded (IF), susceptible overlapping aware (SA™) and
faded overlapping aware (FA™). In this case the MMCA equations are the following:
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Fig. 5.6 Probability tree linked to the MMCA method, representing the states and the
transitions of S"IR — UAF (A™ model, at each time step.

P +1) = qi()pt () + (1= ri0)) (1= 8)pY (1);
pit(e+1) = (1= qi(1))(1 = &)pp (1) + (1 — w) i (1)):
P (1) = e(1—gi(0)) (L = w)pf () + (1 — ) pP (1))
PR (04 1) = pe(1—gi(0) pi (e) + pe(1 — 8)pi (1)

(5.30)
piY(t+1) = ri(t)p (1);
pi (t+1) =81 —ri(t))p (1 )
piAt+1) = p(1-8)(1-¢€)pf(1);
pif(t+1) = udpi(1);
For what concerns the contagion threshold, the equation 5.21 becomes:
pit = (1—e)(1-q)pi" (5.31)
The equation 5.24: L
un; =~ (1—¢&)p¥BiB; L aijm, (5.32)
J
The contagion threshold is obtained starting from:
H _
Z (1 —S)ﬁlpl ajj—=t;i|N; =0 (5.33)
J Bj



88 Epidemic Models

In [124] the SIR model is enhanced in S”(i”)IR introducing the state of preventive isolation
i?. The preventive isolation represents a strategy to delay or avoid the transition into the
infected state, then choosing properly the isolation period, it allows reducing the infection
rate or avoid the transition to infected if the network has already recovered. The selection of
the nodes to be preventively isolated can depends on structural parameters, the awareness of
the nodes or the socioeconomic factors. This epidemic model is diagramatically expressed
by the reaction-diffusion notation, as follows:

E>I—>R ifw=0

S"(iP)IR = g (5.34)
sh s jp Dy g —> R otherwise

where hat B; is a heterogeneous susceptible rate which depends on structural parameters,
depending on the multiplex network representation and socio-economic factors. The process
of awareness spreading is modelled thanks to a heterogeneous UAF. As a result of the
coevolution of the two dynamical processes, each individual in the multiplex network can
only be in one of the three kinds of states: susceptible and unaware (SU), infected and
aware (Al), and susceptible and aware (SA). In Fig.5.7, the MMCA method is illustrated the
probability tree, which depicts at each time step, the possible states and their transition in
our model.The state iU does not exist since, if a node has been isolated, it cannot be in the
Unaware state (U) in fact, after being isolated preventively from the network, it knows that
it could be a potential spreader of the disease. Similarly, the state /U (Infected Unaware)
cannot exist, since an infected node will be surely aware of the epidemics. For the same
reasons, the state RU (Recovered Unaware) does not exist as it has already recovered from
an infection that it knows, then it will be surely aware of it. The probabilities to be in the

initial states are indicated by 5.17 and 5.18 and integrated with the additional:

q;(t) = (1= B [T11 — a;ip’ (1) B;] (5.35)

J
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Fig. 5.7 Probability tree linked to the MMCA method, representing the states and the
transitions of §"(i?)IR — UAF model, at each time step.

The MMCA equation are the following:

Pt (t+1) = qi(t)(1=w)pi () + (1 = ri(2)) (1 = 8)p;" (1):

piV(t+1) = ri(t)piV (¢);

1) =8(1—ri(t))(1—w)8pY (1):

PR+ 1) = [(1= ) (1= gf(6)(1 = 8)wait) + (1 = w)(1 = gi(e)]pPA(6) + (1 = w)pH (0);
)

pRA+1) =[u(—q ()01 —5)qu( +(1 S)u(1—qi(1)1p3A (1) + (1= 8)upi*(1);
(r+1) D;

PR (1) = 18 (1 — gi(0)) (t)+u5 A1)
P 1) = (1= 8)wai(0)g; ()PP (1):
I (14 1) = Swai(r) p$ + Sw(1 — ri(1)) pisU (1);

(5.36)
The contagion threshold is obtained following the same mathematical formulation of the

previous cases.






Chapter 6

Complex approach for the Cognitive
Profiling of edge nodes and Evaluation of
the QoS in 6G scenarios.

Overview: The forthcoming 6G will attempt to rewrite the communication networks’ perspective
focusing on a radical revolution in the way entities and technologies are conceived, integrated and used.
This leads to the need for innovative approaches with the aim at providing new directions to deal with
future network challenges. The complex systems could become an enabling set of tools and methods
to design a self-organized, resilient and cognitive network, suitable for many application fields, such
as digital health or smart cities living scenarios. This chapter presents a 6G node’s profiling technique
based on the introduction of the multiplex dimension to detect a structural profiling and making
also possible the analysis of the diffusion, the competition dynamics and the clustering techniques
for the community detection in order to consider also a mesoscopic point of view. In addition to
these aspects, considering that, the edge intelligence will enable the development of lightweight
applications as microservices and requires edge intelligence also for guarantee adaptability in the
service evaluation, in the second part of the chapter it is proposed a new evaluation model. This
model, called CoKnowEMe (context knowledge evaluation model), follows a complex and dynamical
approach and consists of three inter-operable levels and different networked attributes, to quantify the
quality of microservices for Internet of Medical Things applications, depending on a changeable use’s

context. !

I'The models, results and discussion presented in this chapter are shown and published in these contributions:
[4,121]
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6.1 Introduction

The designing and modelling processes of 6G network need new paradigms to move the
system from closed hierarchical structures towards open and distributed networks, including
self-organization, self-adaptation and optimization of interactions and functions of nodes.
Thus, it can be achieved through the introduction of complex systems approach as more
widely explained in Section 2.2. The 6G technology has the ambition to provide new di-
rections to deal with future network challenges. These ecosystems involve devices with
constrained resources and computational capabilities and call for novel algorithms and a
new characterization with the aim to dynamically manage lightweight and simple services,
as a microservice, in mobile scenarios [53, 157]. It will address the constraints and the
performance requirements of the applications and innovative services which need highly
increasing resources, through innovative approaches [126].

The traditional attributes applied to measure and characterize communication networks such
as interference, coverage, throughput, robustness and costs are not able to describe dynamics
and crucial aspects of future wireless and mobile networks. That is why it is growing the
interest in studying communication networks from a complex systems perspective, taking
into account methodologies and tools built to analyse emerging behaviours, cooperative and
collaborative dynamics among the elementary units of the system [126, 120, 125]. Since we
are rapidly moving from closed to open and distributed system and to a completely dynamic
topology that will be characterized by a vast heterogeneity, this requires an intelligence at
node level. The node, in a fully user-centric network architecture, plays a key role in content
diffusion, learning, computation and organization, and consequently a new characterization
and profiling is becoming necessary. Together with these aspects, the innovative 6G services
require also new innovative evaluating approaches, since they are treated, on the one hand, as
resources for providing applications and, on the other hand, as a complex network of com-
bined and virtualized elements. Based on these premises, in this thesis and in the following
chapters, we start from the definition of cognitive system as: "an autonomous system that
can perceive its environment, learn from experience, anticipate the outcome of events, act to
pursue goals, and adapt to changing circumstances"[136].

In this chapter, it is firstly presented a profiling approach which embeds, step by step, the
knowledge extracted from the introduction of the multiplex dimension, the analysis of the
dynamics of collective phenomena as diffusion and competition, applying the epidemics
spreading modelling and the EGT (see chapters 3, 4, 5 for further details), from the mesoscale
hierarchical organization of the network in communities.

Then, it is proposed an evaluation scheme, called CoKnowEMe (context Knowledge evalua-

tion model), modelled following a complex and dynamical approach targeted at the Internet
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Fig. 6.1 Multiplex representation mined from 6G subsystems. Reprinted from [121].

of Medical Things (IoMT) in 6G. This scenario is particular challenging as the healthcare
systems have to manage a wide variety of diseases, the increase of aging populations, the man-
agement of pandemics and jointly the effects of people awareness [120] and an increased
number of treatments and patients [59]. In this context edge intelligence [111, 143, 68] will
be a key enabling factor for future networks to improve performances, functions and services.
In the edge application development the distributed and complex approach will be represented
by the microservices able to develop modular lightweight application components. For both

cases, the analytical model is presented and the results obtained with the simulations are

discussed.
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6G scenarios.
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6.2 Cognitive Profiling of Nodes in 6G through Multiplex

Social Network and Evolutionary Collective Dynamics

From the mobile users and their devices (from wearable to hand-held) or the heterogeneous
smart devices that form the IoT networks to the plethora of entities of each sub-network that
constitute a 6G environment, all these entities can be represented as nodes of a multiplex
social network, as showed in Fig. 6.1.

The multiplex dimension (see sections 3.2 and 3.3 for definition and properties) offers a key
change in perspective for the structural analysis, and it represents the suitable representation
to study the emergence of complex properties of the network [24, 30]. Th 6G network is
intrinsically suitable to be modelled as a multidimensional relational systems of different
sub-networks, represented by various graphs that embed interacting elements in different
way [126]. The designing, modelling and monitoring of the behaviour of these systems will
be challenges to be addressed.

The modelling approach is depicted in Fig.6.2 and in the following sections the profiling
technique is detailed through the introduction of metrics and parameters that enables the

analysis of three different aspects, structural, collective dynamical and community-based.

6.2.1 Modelling Approach: Structural Profiling

Following the scheme presented in Fig.6.2, the multiplex social network .# represents
a 6G sub-network and it is referred to different kinds of interactions among nodes. A
node represents an aggregation of different basic units of the network (as wearable or
hand-held devices, 10T systems, etc). The multiplex network consists of a population of
N nodes and [ = I1,1,...,1); layers. Here M = 2 layers, where the layer /; is referred to a
real contact network, extracted from a real case [89], while the second one is referred to a
virtual layer following a theoretical scheme as, for example, a Scale-Free network [15] or
a Small-World network [19]. In literature, the multiplex network is defined as showed in

Chapter 3, where definitions in the case of weighted networks and definitions of structural
[l,12]
ij

participation coefficient P; are also shown. In the case of weighted multiplex networks, the

measures such as degree kf , edge overlap o , the overlapping degree o; and multiplex
latter are respectively expressed as weighted overlap ox- and weighted overlapping degree
0! [96, 24]. The weights, that can be distributed heterogeneously, are strongly correlated
with the structure [96], shedding light on the relevance of the links in a layer of the multiplex
network representation. For that reason and with the aim at embodying social aspects into

structural profiling, here, the weights links are defined as function of some key metrics, as
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follows:

wfj:h§j|awi—awj] (6.1)

where hf ; indicates the tendency to interact with similar nodes (as equals devices) or with
that ones that are in similar conditions (capacity, resources, etc.) [120, 24, 96]. Furthermore,
it is included the gap value, between i and j, of the node awareness aw. In a fixed time T in
which we observe the network and its activity, aw is defined as the awareness level of a node
i, that represents acquired knowledge on the sub-network to which it belongs, that is about
activity about task requests, as a result of a complex discovering process. For that reason, the
awareness of a node i is estimated as function of the participation coefficient P;, and the att;

attention level, as follows:

aw;li=r = awj|s=o + Zaﬁz‘p—e +PF (6.2)
T

The multiplex participation coefficient P, ponder the awareness since it measures the het-
erogeneity of the number of neighbors across the layers of each node at the edge of the
weighted link, measuring the probability of acquiring more knowledge as a result of different
interactions distributed across the layers of the multiplex network [24, 120]. The P; value is
added to incorporate the richness of the knowledge extracted from the introduced multiplex
dimension. Furthermore, the awareness can be computed as the result of the monitoring of
the attention level, traced through the analysis of the user-generated data [69, 93, 120]. Data
can be produced by devices in terms of willingness to cooperate for a set of tasks in IoT
cognitive systems or it can represent the activity of nodes produced in social media during
collective phenomena of interest, impacting on the widespread participation of networked
users, on the behaviours of each node and its interactions and decisions in the dynamical
evolution of the concerned phenomena [120]. The aforementioned multiplex network M
is shown in the Fig. 6.3. A complete list of parameters and defined metrics with its fair

meaning, referred to the structural profiling, is summarized in Table 6.1.

6.2.2 Modelling Approach: Collective Profiling

Multiplex networks representation, as showed in Fig. 6.3, constitutes the most suitable
network structure to understand and investigate on collective dynamical processes and
their complex interdependence [146]. In this second step, the attention is focused on the
key features extracted from the analysis of parameters and statistical estimators of two
interdependent and co-evolving spreading processes and the evolutionary dynamics of the

cooperation among nodes.
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Fig. 6.3 Multiplex Network Representation. Reprinted from: [121].

Table 6.1 Structural Profiling Parameters and Defined Metrics.

Structural Profiling Formalism Description
Parameters [24, 96] N Population of Nodes of the Multiplex .#
M Numbers of Layers of the Multiplex .#
Al Adjacency Matrix of the Layer /
ajj Elements of the Matrix A’
kf Degree of Node i in the Layer /
0; Overlapping Degree of Node i
w! Weighted Adjacency Matrix of the layer /
0 Weighted Overlap of edge i — j
oY Weighted Overlapping Degree of node i
sf Strength of node i in the layer [
Yl.l Inverse participation ratio of node i in the layer /
P, Participation Coefficient of the node i
H; Entropy of a node i
Defined Metrics wﬁ i Weights of interactions between i — j
hij Homophily of a pair of nodes i — j
aw; Awareness of a node i

artyr_, Attention of a node i during 7" around e
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Firstly, it is studied the spreading of two interdependent processes in the multiplex network
M, modeled as disease spreading process [122] and thought as "composed-SIR" models,
that is as an extension of the classical SIR epidemic model [137]. One process is referred
to a specific phenomenon as epidemic [120], collective attention [69] or a social contagion
[42], while the second one is related to the diffusion of the awareness on what is transmitted
through the first one [63, 122]. Heterogeneity and awareness, for each node, are included in
order to describe the impact of the diffusion and competition into the structural connectivity
and the evolutionary dynamics. Each node has a different awareness aw, representing the
acquired knowledge from an interest or participation on a collective phenomena. As a
consequence, each node, will be heterogeneously prone to join a diffusion process, since the
awareness acquired has an influence on the behaviours of nodes. For what concern the two
co-evolving spreading processes considered, the first one is based on the content shared or a
phenomena of interest. Taking into consideration the nature of the phenomena or content, and
it is expressed in terms of reaction-diffusion equations, following two different hypothesis as

indicated below as the S*IS" or S"IR spreading processes:

shis = sh P P K g (6.3)

STR=s"Pi K R (6.4)

The S"1S" can occurs when a node, based on its interactions, becomes prone to participate
to the diffusion, and after that it returns in the condition to the starting pools of nodes.
Differently, in the S"IR the last transition is replaced by the step which occurs when a
node have acquired a permanent condition and it is not available to participate again to the
diffusion. Both models are characterize by the states S” defined as "heterogeneous susceptible
state", where a node is predisposed to be involved in the spreading process [122]. The state
I indicates the condition in which a node is involved or infected, while R represents the
recovered state. As shown in Chapter 5 the probability of call off the diffusion is equals
to u, while the B* is the diffusion rate for each node i at each layer & in the multiplex
network M. The latter represents the probability that a node i in the layer « is predisposed or
susceptible to be involved in the diffusion process. Here, it is assumed that, the involvement
for a node in the network means that a node i is in the state of informed or infected. The
heterogeneous diffusion rate depends on the weighted structural connectivity through the
measures of inverse participation ratio Y'* [96] and the rate of awareness A.*, defined in Eq.
6.8.

B = kg ©35

~
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Fig. 6.4 Density of Involved Nodes i(¢) versus time ¢, on the two processes in co-evolution.
Reprinted from: [121].

Similarly, the second spreading process, focused on awareness diffusion, is diagrammatically
expressed in terms of reaction-diffusion equation also in two possible different cases, as
follows:

Uhau" = U K4Syt (6.6)

UAF U %A F 6.7)

with 7Ll-°‘ and 0, defined as transition rates. There is a difference between the rate of
awareness A for each node i at each layer « of the multiplex M and the rate of awareness
after being aware. The U" state, expresses a condition in which a node is heterogeneously
unaware while in A it is aware about the phenomena that spreads interpersonally in the
network. In the second case the state F' is introduced as the "faded state", in which a node
decreases the attention and the interest to improve its knowledge about the phenomena of

interest. The rate of awareness is expressed as follows:

A =Tl A (6.8)

with s the strength of node i in the layer ¢ of the multiplex network M [96].

Starting from the assignment of a state probability for each node i in M, to be in one
of the initial states as (SU)-(SA)-(IA), and choosing the suitable spreading models for
the co-evolution process, as indicated in Fig. 6.4 and expressed in Eq. 6.3 and 6.4, it is
added, in the profiling process, some features extracted from the analysis of the co-evolution
in the multiplex network considered. To obtain the contagion threshold it is applied the
MMCA method, investigating the steady state of the system, indicated as f3.. Following the

mathematical approach, as expressed in [120], the density of involved nodes p;:
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1 N
pr=yrr’ (6.9)
i=1

where pllA are the probabilities of being involved and aware. On this matter, it is important to
underline that, the threshold model depends on the complex dynamical interplay between
social contagion and the awareness spreading in M and the values of B that change in
accordance with the awareness state ll-a, the network structure of M, and the double het-
erogeneity expressed in § state and U state. Consequently, the aw awareness of a node as
expressed in Eq. 6.2 depends also on the 8 and A value in terms of attention which represents
the social-aware factor that varies in function of the two rates. Both processes co-evolve
modelling the sharing or participation in terms of content, interests, attention and awareness
and in terms of active or passive involvement [42, 63, 125]. Furthermore, for what concerns
the cooperative behaviours and its dynamics among nodes, which include social factors in
their aggregated nature, by introducing the game theoretical approach [48]. In the analysis of
the interdependent collective dynamics the four social dilemmas (described in Chapter 4) are
run and compared for a number of rounds such that a dynamical steady state is reached, in
order to describe not only the problem of cooperation but also its evolution. Nodes are treated
as players that, in each elementary round of the game can decide to change or maintain its
strategy, playing the game with all its neighbors in both layers of the multiplex M, in line

with the Fermi function W (S, — Sy), expressed as follows:

1
iy

W(Si—=Sj)=cnNi——5—-
1 +exp| éijl?

(6.10)

Firstly, with this function the payoff difference P; — P;, the homophily measure &y, a
communicability measure 7, and a noise factor K to evaluate the probability that a player i on
the layer [; decides to adopts the strategy S; of node j playing on the layer [, are considered
[48]. Accounting for that, at time step t, each node can occupy one state of the co-evolving
spreading processes, and considering that, ¢;(¢) represent the probability of node i not being
involved and with r;(¢) the probability of unaware node i staying unaware at the same time
step t, we include in the Fermi function the dependency from the c; factor, as defined as
follows:

_1-a
1—7’,'

6.11)

Ci

This includes the joint impact of the co-evolving spreading processes and the evolutionary

dynamics of the cooperation among nodes in the multiplex network M, assessed in the
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Table 6.2 Collective Profiling Parameters and Defined Metrics.

Collective Profiling Formalism Description
Parameters[120] sh Heterogeneous Susceptible State
1 Involved State
R Recovered State
Ut Heterogeneous Unaware State
A Aware State
F Faded State
u Probability to transit from state I to state R
0 Fading Rate
pr Density of Infected Node
Defined Metrics > Heterogeneous involvement rate
/ll-a Heterogeneous awareness rate
W(Si—S)) Fermi function
Ci Impact factor of the co-evolving processes

temporal window 7. Parameters and defined metrics of the collective dynamics aspects are

summarized in the Table 6.2.

6.2.3 Modelling Approach: Community Profiling

The whole multiplex network M can be also described via its multilink [99] with the aim at
describing a mesoscopic dimension. Every pair of nodes in .# is connected by a multilink
M= (ml[-ljl] ,ml[.?]) with /; and b, layers of the multiplex .2, with m! = al ; indicating the
set of all links connecting these nodes in the different layers [99]. If 7t = 0 there are no
interactions between the two nodes in the multiplex .#. This measure shows the basic
motif [24] that contribute to the unveiling of correlations between structure and function of a
network [21]. It is considered a weighted aggregated network G", based on the multilink
Tt ;» with the adjacency matrix A;; = 6(Y, a%] ), with 6(x) a step function [99]. For detecting
community it is introduced the multidegree kiﬁ for each node i of the population, showing
how many multilinks 7t are incident on the node i [96]. In line with the previous steps
of profiling, Two community detection methods are proposed, introducing the mesoscopic
analysis of the network. The resulting hierarchy embeds both the richness of the structure and
the collective dynamics in the cognitive profiling since each node belongs to a community
with a specific role that dynamically tunes in response to the changes in behaviours, and
social factors. Thus, the different interdependent steps of profiling are combined and two

hierarchical clustering technique are applied to the multiplex network .#, respectively a



Complex approach for the Cognitive Profiling of edge nodes and Evaluation of the QoS in
102 6G scenarios.

Table 6.3 Community Profiling Parameters and Defined Metrics.

Community Profiling Formalism Description

Parameters [96, 24] Wi j Multilink between i, j
G" Weighted Aggregated Network
Ag Elements of G
k! Multidegree of node i
Nei Number of cooperations
Ch Betweenness Centrality

Defined Metrics hci i1G Score Function for dissimilarity structure

node-based and a link-based technique. The node-based hierarchical clustering analyses a
set of dissimilarities through the application of an agglomeration method.The dissimilarity
structure is based on the distance between each pair of nodes in function of the number of
cooperations n.;, the social dilemma, the betweenness centrality c;, and the multidegree kiﬁ
[24, 99]. The dendogram is constructed via the hierarchical clustering method containing
information about the structure and based on the dissimilarity matrix. More specifically, it is
evaluated for each pair of nodes a defined score function to estimate the distance between
them, as indicated below:

hCij‘A: - . (6.12)

With this approach, each node belongs to a community with a role in the hierarchical
organization of the multiplex network .7 . Similarly, by constructing the aggregated graph
multilink-based G, it is furthermore applied a hierarchical clustering by grouping instead
the links in different communities showing a hidden mesoscale structural organization,

highlighting how nodes can belong, at the same time, to different link-based communities.

6.2.4 Performance Evaluation
Simulation Setup

Simulations have been performed considering a weighted multiplex network . as explained
in section 6.2.1. The model, the computation and the results have been made using the
programming language R and the IDE RStudio. The figures were generated thanks to the
package Plotly and Linkcomm [116], [133], [128][80]. It is considered a population N = 61

in the two layers /1, [ representing two distinct kind of weighted interactions and connectivity
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Fig. 6.5 Roles of Nodes from Structural Analysis. Reprinted from [121].

between nodes. In the first layer /; the interactions are based on the graph extracted from
a real contact network [89], while in [, it is considered a theoretical scheme for the same

population of nodes N.

Numerical Results

In the Fig. 6.5 it is displayed how the structural heterogeneity in the multiplex representation
of the networks leads to highlight several key aspects for the structural roles of nodes. For
a heterogeneous weighted multiplex network the metrics computed are the degree kl the
strength si and the overlapping degree o; as indicated in the two heath-map plots. Both
plots display metrics for the multiplex .# composed by the first layer based on real contact
network while through the second layer the case of a scale-free network (in the top-left plot)
with a small-world network (in top-right plot). For the sake of clarity, the first resulting
multiplex .# are indicated as RC — SF, and the second one as RC — SW. As showed in
Fig. 6.5, the findings exhibit two different levels of heterogeneity. Is is evident how in the
RC — SW case there is a small heterogeneity due to a high clustering and modularity, meaning
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Fig. 6.6 Roles of Nodes from Collective Dynamics Analysis. Reprinted from: [121].



6.2 Cognitive Profiling of Nodes in 6G through Multiplex Social Network and Evolutionary
Collective Dynamics 105

that there are groups of nodes more highly connected than the rest of the network with an
abundance of high degree nodes, that act as hubs of the network. Instead, in the RC — SF
case, there are few hubs in the network since it exhibits a highly heterogeneous and high
degree correlations. In the other two panels below of the Fig. 6.5 the curves correspond
to the distribution of the participation coefficient P;, in the range [0, 1], considering this
variation in function of the Z-score of the overlapping degree, z(0;). Profiling features are
extracted structurally classifying the nodes of the multiplex in three classes, focused, mixed
and multiplex nodes, putting in evidence the fitness based on the two cases RC — SF and
RC — SW, the awareness distribution of aw; and the homophily distribution of the values
h;j, in accordance with the modelling approach. These findings highlight an increasing of
the P; value in both cases (RC — SF - RC — SW), and a higher density of regular multiplex
nodes. Decreasing the homophily (from the left plot to the right plot below) the findings
exhibit a decreasing of P; for RC — SW case that has a more homogeneous distribution with a
higher density of regular mixed nodes. Differently, in the same condition, in the RC — SF the
findings show an increasing of z(0;) and a higher density in the multiplex hubs, since although
there is a higher value of homophily the structural heterogeneity of the topology produces
a more heterogeneous distribution of nodes’ roles. The Fig. 6.6 points out the profiling
features embedding a measure of how a node of the multiplex structure is involved in the
collective dynamics. The findings related to diffusion and competition dynamics are shown,
by displaying the trend of infection rate f3; in function of the awareness rate A;. The plots
show the resulting trend, in the plane A — 3, of the spreading dynamics in conjunction with
the cooperative behaviour of nodes in the multiplex M, taking into consideration the two cases
RC — SF and RC — SW, and the four social dilemmas PD-SD-HG-SH. Since the diffusion
dynamics impact on the evolutionary dynamics of cooperation it is compared the modelling
of the conflict situations with the different dilemmas. Results highlight how the increasing
of the awareness rate A;, and the consequently decreasing of infections rate f; produce an
impact on the collective cooperation dynamics. Namely, in case of social dilemmas in which
the cooperation dominates the defection as SD, HG and SH, a more homogeneous number of
cooperation for each node is more evident in the case of RC — SW. Differently, in the plot
referred to the PD game, in case of RC — SF there is a more heterogeneous distribution of
cooperative behaviour. In addition, in the PD, the increasing of A; results in a decreasing of
Bi, in both cases RC — SF and RC — SW, while in the other social dilemmas cases this impact
is stronger in RC — SW then in RC — SF. What is more, in RC — SF case and SD-HG-SH, the
decreasing of f3; with the increasing of A; is up to a specific threshold, resulting in a change
in strategy, in accordance with the Fermi function as expressed in Eq. 6.10, shedding light on
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Fig. 6.7 Roles of Nodes from Community Analysis. Reprinted from: [121].

the increased size of nodes in line with the increasing average in number of cooperation for
each node.

In Fig. 6.7 there are four panels linked to the community profiling. By defining the
dissimilarity between nodes based on Eq. 6.12 it is considered a hierarchical clustering of
nodes as showed in the (a),(b) plots of the Fig. 6.7, that respectively exhibits the dendrogram
and the graph based coloured partitions of the six different communities. The detected groups
of nodes based on a complex score function that take into consideration the structural and
collective dynamical properties, show a community connectivity lower than the multiplex
one. This unveils how the multiple interactions in the multiplex structure of each node
represent a key point in a hierarchical characterization of the nodes’ roles. In the plot (c) and
(d) (produced through the R package "linkcomm" [80]) of the Fig. 6.7, results linked to the

multilink and the link-based hierarchical clustering to reveal the richness of the network at the
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mesoscale level are showed. The panel (c¢) displays the cluster dendrogram and the sixteen
communities detected, and (d) a graph visualization of the multilink-based aggregated graph
G. This methodology sheds light on in what measure the nodes of the multiplex structure,
independently on its layer activity, can belongs to different community revealing the hidden
information extracted from the mesoscale structure organized in communities. The findings
demonstrate that since the nodes belongs to multilinks communities, on average they have
a high community activity suggesting that the network can be expanded in many layers
of different interactions. Moreover, the plot (d) of Fig. 6.7 underlines also the brokering
function of certain nodes among whose belonging to many communities (dots with multiple

colours), playing a pivotal role in the cognitive collective dynamics.

6.3 CoKnowEme: An Edge Evaluation Scheme for QoS of

IoMT Microservices in 6G Scenario

A very challenging scenario is represented by IoMT as it has the capability to interconnect
various heterogeneous entities ranging from personal devices and healthcare providers to
private companies. The advent of IoMT in a heterogeneous and dynamic environment is
mainly due to increase in use and development of connected and distributed medical devices,
leading to potential application and services that need to address several concerns. Since
a cloud of Things and IoMT produce a huge amount of data concerning consumers, it is
possible to combine services/data from one or multiple Things with services/data from
virtual resources to dynamically allocate the connected heterogeneous things that can share
resources, archives and tasks to provide services [65]. It is essential to understand what is the
quality of this kind of dynamical services which is characterized by an increasing demand
for stringent requirements as data-driven and defined by extremely low-latency, ultra-reliable,
fast and seamless wireless and mobile connectivity, including also the shift of distributed
communications, control, computing, sensing and energy, from its core to its end nodes (edge
clouds, Mobile Edge Computing (MEC), etc.).

The evaluation approach presented in this chapter is schematically displayed in Figure 6.8,
where it is shown a 6G scenario with heterogeneous sub-networks and systems and the
plethora of entities from the mobile users and their devices (from wearable to hand-held)
or the heterogeneous smart devices that form the [oT and IoMT networks. The aim of this
representation is to schematically introduce a complex approach for both IoMT services and
for the evaluation scheme, since each module can represent a resource in terms of data or

computed output, in a multilevel architecture, which exploits the opportunity introduced by
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the edge intelligence.

The evaluation model proposed is presented as a dynamic model capable of conveying
the knowledge acquired from each of the levels considered and from their combination.
Moreover, for each level, several attributes and sub-attributes have been identified as the key
aspects to be investigated with the aim of mining the knowledge referred to the different
features considered. The quantification of the outputs uses the Weighted Sum Model (WSM)
[152], in which the weight of the values of the corresponding attributes is determined by the
context of use, which plays a key role within the model as it manages how to modulate the
intensity of the attributes of each concept, increasing the effectiveness and accuracy of the
evaluation and its adaptability to the interconnection of the different elements of the [oMT
services.

The dynamical schematic evaluation model jointly with an analytical model for each level
considered is provided in the next paragraphs.

6.3.1 Architectural and Analytical Model

The evaluation model proposed in this chapter is aimed at assessing, on edge level of a 6G
scenario, the microservices of [oMT systems. As microservices are dynamically created at
the edge level, similarly the evaluation follows the same approach. The edge nodes deal
with the computing, storage, integration of heterogeneous data, the dynamical structural
organization in space and time, according to a multiplex and complex approach [11], and the
evaluation. The evaluation scheme, presented in Figure 6.8, is designed following the key
aspects of a lightweight application and in a modular way with interdependent and chained
levels. Each output, from one of the level or from a combination of more than one, can be
seen as a resource for the edge nodes that are organized to dynamically and consciously use
and reuse the available resources and also to create new ones.

This approach adds a key point in the design of the edge intelligence since in addition to
carrying out services respecting the users’ requirements, making the best use of resources,
it enables edge entities to assess the impact of the application on end user in a collective
and dynamic way, close to the user itself. In the Figure 6.9, starting from the complex
approach it is detailed the research method. Both the microservice construction and the
evaluation scheme applied to it follow the complex approach. In fact, here, the microservice
construction is considered as the result of a networked structure of resources that can change
dynamically and shape a complex graph that follows the properties of the structures that arise
in a wide array of different contexts such as technological and transportation infrastructure,
social phenomena and biological systems [110, 18].

The considered CoKnowEme architectural model is based on a three-level structure: Ac-
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Fig. 6.8 Evaluation in a 6G scenario for [oMT microservices. Reprinted from: [4]
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Fig. 6.9 Complex Approaches for Microservices and their Evaluation. Reprinted from: [4].
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Fig. 6.10 CoKnowEMe, architectural model. Reprinted from: [4].

ceptability, Usability and User Experience; each of them embraces a different aspect of
the service, always taking into consideration the context of use, as shown in Figure 6.10.
The adaptability of the model is given not only by the desired choice of versatile concepts
that are able to adapt to different fields, but also by the ability of the model itself to allow the
separate evaluation of concepts. Each level has been designed both to be used individually,
since each level corresponds to a precise concept that can be fully evaluated thanks to its set
of attributes and for the construction of a multi-conceptual evaluation. Each layer acts as a
base for the next level resulting in a set of building blocks of the entire evaluation.

The proposed model is based on the WSM [152], which is widely used for multi-criteria
analysis and allows, thanks to a composition of weights and parameters, to consider the im-
portance of each parameter in a different way. In the proposed CoKnowEMe the parameters
are the values resulting from the evaluation of individual attributes, while the weights are
determined, from time to time, in accordance with the considered use context. In this way,
the context of use determines the relevance of each attribute through the weights.

Let us assume that x(; ;) is the weight of an attribute j in context i and that w; is the value
of attribute j, calculated using the corresponding metrics, where i = [cx]1, [cx]2, . . ., [¢X]m,
which are all the possible m contexts and j = ji, jo,. .., jn, Which is all the n attributes related
to the considered concept. Therefore, X; denotes the value of the evaluation of the concept
under consideration (acceptability, usability and user experience) in a context i and it is the

weighted average of all the attributes related to the considered concept; X; is calculated as
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Fig. 6.11 Evaluation of the individual levels. Reprinted from: [4].

follows: .

Xi = Z WiXi j (6.13)
j=1

Equation 6.13 is applied at each level of the proposed architectural model and the obtained
results indicate the degree of acceptability, usability or user experience of a service to be
assessed in a given context of use. It should be noted that Equation 6.13 can be directly
applied to evaluate a single level (see Fig. 6.11), while, for an overall assessment which takes
into account all the levels, it is necessary to consider the results obtained at the previous
levels as an attribute of the next ones (see Fig.6.12). In more detail, in order to conduct a

complete assessment of the entire service, the steps to follow are:

1. considering the level of acceptability, the first, starting from the bottom, X; calculated
as expressed in Equation 6.13; this value will constitute the output of the considered

level and quantifies the acceptability degree of the service;

2. going up to the usability level, we have to consider what has been obtained at the level

of acceptability, as expressed in Equation 6.14:

n
A= Z WiX; j +X,~x,~7Xi (6.14)
=1
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Fig. 6.12 Overall Evaluation. Reprinted from: [4].

\ k . Acceptability X, = I, wix;;

\,

where j indicates all the attributes of usability. By doing so, we are able to take into
account the result obtained at the previous level, weighing it in accordance with its

relevance in the current level;

3. proceeding towards the last level, we iterate the procedure, obtaining:

n
QoSi =Y wjxij+Aixia, (6.15)
j=1

where j indicates all the attributes related to the user experience and A; takes into

account the importance of the underlying levels.

The various steps of the modelling approach and procedure allow to quantify the QoS of
an [oMT microservice, in particular, starting from the attributes set, the use context and
graph that represents the networked resources of the s microservice, it provides a way to
quantify a measure of QoS through a selection and clustering of the networked attributes and
by applying the WSM methodology. The list of symbols and the pseudocode of the model
are shown as the following Table 6.4 and Algorithm 1.

6.3.2 Performance Evaluation in a Complex Networked Scenario

The Figure 6.13, displays how a networked set of heterogeneous attributes that characterize

the module of evaluation scheme proposed can be represented as N, an interconnected popula-
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Algorithm 1 CoKnowEMe Evaluation Algorithm for [oMT Microservices. Reprinted from
[4].
INPUT: s, a IoMT Microservice; microservice graph G’ = (R, E’) with Ry set of Re-
sources, E’ set of edges; i use context; N the whole attributes population with elements
JEN.
OUTPUT: G” = (N',E") evaluation graph, with N’ set of vertices with N’ = N, UN{, U
N[,;x a merging of selected subset of attributes in function of i use context and s microser-
vice and E” set of edges; QoS; quality of service value.
PHASE 1: "'Selection and Clustering of Attributes Set''.
: INITIALIZE Acceptability Attributes Set N <— 0
: INITIALIZE Usability Attributes Set N, < (Z)
: INITIALIZE User Experience Attributes Set N,y < 0
: GET the use context i
: SET the N’ C N population of attribute.
: SET N into three clusters as the three different levels of evaluation, respectively N},
b Niy.
7: COMPUTE the values w; and the weight x;;, Vj € N ' with the use context i.
PHASE 2: ""WSM method in complex graph for QoS computation"'.
8: SET G” the Evaluation Graph as the weighted complex network graph G” = (N',E")
with N” population and E” edges, with x; ; weights of the weighted directed links.
9: GET p € P the evaluation paths in G” = (N’ E"), composed by a sequence of weighted
edges among j € N', with j € Ny or j € Nj, or j € N,y or j € NyUNj; or j € Ny UNj, U
Njx-
l(l)] COMPUTE the resulting sum of a sequence of weighted directed links that constitutes
the path p € P mined from G” = (N',E”) with weights x;;, Vj € N’ in the use context i,
with values w;, based on clusters to which nodes j of the path p belong to.
11: COMPUTE QoS; quality of service value for s € S, whose topology is expressed as
G' = (Ry,E'), with i use context.
END

ZQUI-BOJNH
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Table 6.4 List of Symbols.

Symbol | Description

S Set of IoT microservices.

G Microservices’ graph.

Ry, Set of resources.

N Attributes population.

i Use context.

X j Weight of attribute j in context i.

G" Evaluation graph.

QoS; Quality of service related to the use context i.
A Set of acceptability attributes.
. Set of usability attributes.

Ny Set of user experience attributes.

P Set of evaluation paths.

tion of node. Here, it is considered as a sample of a complex networked graph that enables us
to detect what kind of attributes in structural terms can have a key role more than another. The
procedure is based on the WSM model, weighing up the contribution of each attribute and, as
indicated in Figure 6.9, the attributes is considered capable to be interconnected through
weighted links. Thus, a sample graph, having unit link weights, is considered by varying the
size of the set of attributes jointly with the complex topology that interconnect the attributes
in the graph. The topologies considered are three: Scale-Free networks (SF), Erd6s—Rényi
networks (ER) and Small-World networks (SW) (whose charactristics are described in Chap-
ter 2). As shown in the Figure 6.13, varying the population size N, with a low value of N,
both ER and SF display a skewed distribution. By increasing the size of the attributes, ER and
SW present a more homogenized distribution, while the higher heterogeneous distribution is
in the SF topology. These findings can drive the choice of suitable topology, under specific
assumptions, and the detection of certain attributes that exhibit a role of hub in the network
structure, and therefore under conditions of particular requirements at edge level (e.g., load
balancing issue); this suggests that certain attributes cannot be excluded from the assessment.
Moreover, by considering a heterogeneous, dynamic and complex approach, in line with
the trend of the forthcoming 6G, the more realistic network structure SF is able to unveil
hidden properties and roles of nodes that can change dynamically based on use context and
environment and requirement conditions.

In addition, a performance evaluation on the quality-of-service measure is conducted, in func-
tion of the size of the attributes’ population jointly with the variation of the clustering
coefficient of the networked structure topology. To this aim, the Figure 6.14 shows that

the QoS value increases with the increasing of the attributes’ population size. The trend
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Fig. 6.13 Degree distribution of three different complex topologies of the networked structure
of attributes. Reprinted from [4].

of QoS is shown in the case of two different topologies, the scale-free and the small-world

structural network, assumed for both graphs, microservice’s graph and evaluation’s graph.

The QoS depends on theoretical distribution of the values and weights of each attribute
considered in the assumed sample. It is highlighted also the clustering coefficient by varying
the population size in both cases. The clustering coefficient is a complex metric, representing

a measure of the degree to which nodes in a graph tend to cluster together and quantifying

the abundance of connected triangles in a network (as extensively described in CHapter 3).

In the microservice graph the average clustering metric unveils the average measure for the
resources nodes of the ratio of existing links connecting a node’s neighbours to each other
to the maximum possible number of such links. This is a key value to unveil the reuse of
resources and how those nodes are connected together in groups, favouring small groups
with high inter-links or big groups with high intra-links. This can impact the choice of the

attributes’ population size to better evaluate the quality of service of a microservice composed
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Fig. 6.14 QoS in function of the population size. Reprinted from: [4].

by interconnected resources. The small-world model (blue line) generates a homogeneous
network; then the heterogeneous scale-free hypothesis (red line) and this shed light on that,
even if the increasing of population size is valuable for both structures; with more inter-links
of high value of heterogeneity as in scale-free topology, we obtain a higher level of QoS

since it corresponds to a high level of reuse of resources.

6.4 Summary Remarks

This chapter describes complex approaches, in 6G networks, for both a node profiling and an
evaluation scheme for IoMT microservices. The former allows nodes to acquire cognition
ability, as the results of processes able to disentangle grades of knowledge on their con-
nectivity and behaviours on multiple different channels by deepening into the investigation
of structural and social aspects of the network, the collective dynamics of diffusion and
competition, and the learning of belonging to various communities. The node profiling
process step-by-step allows defining different aspects extracted from a complex networks
analysis, in order to shape a profile which embeds macroscopic, microscopic, mesoscopic,
dynamical and learning properties. The proposed profiling framework describes a set of
interoperable abstract classes referred to processes which constitute a cognitive level for
nodes and community of nodes in network, also detailing metrics and parameters, theory and
analytical tools to study the coexistence of various type of interaction among nodes, and the
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interplay of collective dynamics and the mesoscale organization.

The evaluation scheme is characterized by a multilevel architecture jointly with an ana-
lytical methodology based on complex system approach, and it is composed by different
interoperable and chained modules that can assess several crucial aspects of the QoS. In
particular, The IoMT services are represented as dynamical resources organized at edge level
in a resource-oriented infrastructure enabling a self-organized connectivity and intelligent
reusability of data and resources to deliver services. In accordance with this scenario the
evaluation model is based on dynamic and adaptable features, represented, for each module,
in terms of weighted attributes and sub-attributes, that convey the knowledge mined from
the assessment analysis. Each individual evaluation layer can be used independently of the
others or jointly with the other ones in an interoperable way. The entities of IoMT at the
edge level can use the evaluation mechanism in an intelligent distributed way by enabling the
reuse of the extracted output as collective resources and data.



Chapter 7

The impact of human-related factors in
timely crisis response planning and in
designing of policies for 6G applications

Overview: 6G will allow to turn into heterogeneous, cognitive and constantly-changing connected
systems of things and people where collective behaviours and human-related factors are even more
crucial. In this viewpoint, the digital traces left by humans are useful to observe the heterogeneous
features of their attention and behaviours. Modelling the interplay between the collective attention
and the co-evolving processes of awareness diffusion, and epidemic spreading on weighted multiplex
networks is crucial to identify social network markers of interdependent collective dynamics, quanti-
fying the role of human-related factors, as homophily and heterogeneity. The attention represents a
social predictive marker of the awareness dynamics, unveiling the impact on epidemic spreading, for
a timely crisis response planning. Collective behaviours and human-related factors are also crucial
for services based on users’ contributions and incentive mechanisms, such as Mobile crowdsensing.
In this context, humans act as social sensors interacting on multiple and weighted layers related to
various services. Novel statistical estimators to measure social honesty, Quality of Information (Qol)
and users’ behavioural reputation scores based on the evolutionary dynamics are crucial to introduce
a Decision Support System (DSS) and a novel incentive mechanism by operating on the policies in
terms of users’ reputation scores, also incorporating users’ behaviours other than quality and quantity
of contributions. In both situations a data-driven approach based on the integration of different types
of data, as user-generated data, (from Twitter and Google Trends o monitor the attention shift and

from Waze for crowdsensing information) is crucial to digitally trace the human dynamics. 2

2The models, results and discussion presented in this chapter are shown and published in these contributions:
[120, 45]
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7.1 Introduction

Human beings with their devices (from wearable to hand-held) and, consequently, their
emerging behaviours and social dynamics will be increasingly central in future 6G networks,
forming a sort of heterogeneous and aggregated things and playing an active role in the
technical aspects and in the design of the networking functions, representing the interacting
part that coexist in what can be considered as a complex socio-technical ecosystem.

In this viewpoint, the social networks and communication technologies can be exploited
to achieve a systematic understanding of social collective dynamics, based on the complex
networks paradigms that integrate weighted multiplex networks mathematical representation.
They can be useful to consider the shifting of the public attention or the emergence of
collective behaviours, which can guide the situational awareness and the timing of inter-
vention strategies, impacting on emergency situations like the epidemics spreading and the
designing of policies for people-centric applications based on human voluntary participation
or contribution.

In the first part of this chapter, it is addressed the dynamical interplay of collective attention,
awareness and Epidemics Spreading in the Multiplex Social Networks during COVID-19.
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel
coronavirus, emerged in the city of Wuhan (Hubei, China) in early December of 2019, has
posed a global public interest and it has raised concerns in most people worldwide on the
future health and well-being[74][115][130]. The groups of cases of pneumonia of unknown
cause detected in Wuhan was reported to the World Health Organization (WHO) on the 31st
December 2019. Since then, besides China, cases confirmed with COVID-19 had also been
detected in many other countries and territories [55][107], thus, from the city of Wuhan that
has taken unprecedented measures in response to the outbreak, including extended school and
workplace closures, also the other countries follows these strategies through various national
responses to the pandemic, including measures such as lockdowns, quarantines, curfews and
other restrictions (stay-at-home orders, shelter-in-place orders, shutdowns/lockdowns) aimed
at preventing further spread of COVID-19. The global public attention to this issue can reflect
people’s interests and their propensity to acquire knowledge on COVID-19 with the aim at
taking precautionary actions. In fact, to understand an emergency event, it is insufficient to
rely on numerical reports based only on confirmed cases and the spatial spread [87], but it is
needed adding more information, integrating knowledge and data on people’s behaviours to
quantify other dominant variables that can influence and impact possible future outbreaks.
In this chapter, it is proposed an analytical and data-driven rigorous investigation of what
is the shape of response in terms of collective attention around a shocking and long-lasting

event in which awareness and attention, in single and collective terms, jointly develop in an
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interdependent way. It is investigated and measured which is the role and the weight of multi-
ple and heterogeneous social ties, through the introduction of the weighted multiplex network,
and the impact on the epidemic spreading. The impact of the attention and awareness on
epidemic spreading is quantified, by introducing heterogeneity, both in terms of susceptibility
and awareness, for optimally schedule effective crisis communications, facilitating timely
crisis response planning, such as the decision of a time warning and quarantine. It is crucial
to examine how the attention and the awareness arise and fade in different communities,
affected in various times, impacting and influencing behaviours and decisions.

At the same time, the widespread diffusion and adoption of mobile devices (e.g., smartphones,
tablets) with improved processing power and storage capacities, integrated with a wide vari-
ety of embedded sensors (e.g., GPS, gyroscope, camera, etc.) and the evolution of mobile
communication technologies have led to a a wide range of applications [28, 33] that are part
of the paradigm termed as Mobile Crowdsensing (MCS). MCS is a people-centric sensing
system based on human voluntary participation or contribution about some phenomena
in their surrounding environment. For example, human users with their personal mobile
devices acquire local information (e.g., geo-spatial) and share their knowledge or measures
with other users and communities in the network [28, 153, 77]. This largescale sensing
paradigm leverages the collaborative approach and contributes to measure phenomena of
mutual interest [28, 153, 145]. MCS is also an excellent example of the cyber-physical
convergence phenomenon, leading to the Internet of People (IoP) paradigm [44]. Humans
carrying mobile devices not only act as participatory or “social sensors”, gathering data,
but they also interact with the physical and cyber worlds to accomplish changes [101, 8].
Thus, the dynamics of human behaviours play a key role in better understanding the complex
behaviour of the cyber-physical-human world, putting people at the centre of this novel
IoP paradigm. However, since participating in the sensing systems may incur costs and
risks, common individuals are unwilling to participate and feed the system with their sensed
data due to the lack of sufficient incentives or pushes towards cooperation. Consuming
computational and communication resources of the personal smart devices, or privacy-related
issues concerned with the provided location information when collecting data, are only some
of these risks/costs. It becomes therefore crucial to motivate users with incentive mechanisms
[28, 153]. It is important to observe how both the number (i.e., quantity) and the accuracy
(i.e., quality) of reports assume a key role in the operational reliability of a MCS application
[28].

In this context, here, it is proposed a game-theoretic methodology (see Chapter 4) in order
to define a decision support system and the design of a novel incentive mechanism. Its

definition is based on some statistical measures, that is the Quality of Information (Qol) and
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the reputation scores of each user in the network. These estimators are derived from the evo-
lutionary dynamics of human sensing behaviours on a multi-layer social sensing framework,
also quantifying the impact of homophily, network heterogeneity and multiplexity. In both
situations, simulations results shed light on the coherence between the data-driven approach
and the proposed analytical models.

7.2 The Dynamical Interplay of Collective Attention, Aware-
ness and Epidemics Spreading in the Multiplex Social
Networks during COVID-19.

The proposed framework, showed in Fig. 7.1, is aimed at quantify the interplay between
collective attention and awareness dynamics, modelling them in two co-evolving and interde-
pendent weighted multiplex social networks. Centering the analysis around the COVID-19,
the geographical countries, represented as “communities”, are those which have encountered
the first case of COVID-19, within a fixed time window 7'. The T interval has been properly
selected to extract the relevant spreading dynamics in different countries. Each first episode
of COVID-19, officially reported in each selected geographical countries, here is stated
as “event occurrence” E., in T, with ¢;, the country belonging to the set C of counl4tries
selected. Following the data-driven and sampling approaches, presented in the Sections
7.2.3, the users, belonging to the communities, constitute the nodes which populate the first
multiplex social network .#, namely the population-based multiplex. Each layer of .#] is
referred to different kinds of interactions based on social networks relationships. For this
reason, in .7/, the interactions in the first layer between users, follow the theoretical scheme
of a scale-free network [15, 36], with a power-law dependence of the degree distribution
P(k) —k”, with the exponent y = 2 that typically satisfying values around 2 < y < 3. Instead,
the second layer of .# follows the graph network extracted from the data-driven approach,
showing virtual mined relationships for the same set of users. As detailed in the Section
7.2.3, large social networks communication by using Twitter datasets and Google Trends
are integrated and analysed. A set of keywords K is constructed mining a set H of unique
hashtags from Twitter, related to the sampled relevant users (see 7.2.3), and the set Q of
the most popular terms of searches from Google Trends, in the fixed temporal window T'.
The elements of the subset H of K, represent the nodes of the population of the second
weighted multiplex networks .#,,namely the keywords-based multiplex network. In .5,
each layer is a community-based level, and it is referred to a kind of interaction, defined as

“co-adoption” relationships, based on the combined use of keywords by any users of that
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Fig. 7.1 From Modelling to Data-driven approach. Reprinted from [120].

community representing the layer, whose social interactions are explored in the multiplex
network .#;. Following, for each weighted multiplex social networks, it is detailed the
mathematical representation, the definitions of weights, by highlighting statistical estimators
and the metrics, which impact on the co-evolution of collective awareness and attention, and
the impact on the epidemic spreading.
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7.2.1 Multiplex Social Networks Modelling

Population-based

With regards to the first weighted multiplex social network, it highlights the importance of
including multiple relationships between users, representing people of different communities
as explained in the section 7.2. The first multiplex network .#, allowing to investigate
how different network structure impact on the contagion dynamics, consists of two layers of
interactions of the same set of users, a scale free-networks and a graph extracted from the
data-driven approach. This makes us able to show a theoretical and an empirical interactions
scheme to represent and investigate two types of virtual relationships for the same set of
users. Let us consider the first weighted multiplex social network of .# layers as defined in
Chapter 3. The weights are defined as a function of the discrepancy of users awareness about
the referred topic (Aaw) of COVID-19 and homophily (hf‘j) (see Chapter 4 for the definition

of homophily), namely the tendency of interacts with similar users.

Definition 1. Weights of interactions in .#\. Referred to the first multiplex network, the

«

ij are given by:

weights denoted as w
w,‘le//fl :h,‘-xj-\Aawl+l (7.1)

where hij = 1/1+ &;; is the homophily between nodes i and j. Homophily is defined as the
tendency to associate and interact more with similar people (see Chapter 4 for the definition

, between

of homophily) and Aaw is equal to the absolute difference of awareness,
nodes i and j (see 7.2.1).

aw,-—awj

Keywords-based

With reference to the second multiplex network, it underlines the role of “keywords” as
broker for users’ involved topics. The second weighted multiplex social networks .2, is
populated with keywords as nodes, and the multiple interactions, different for each layer,
between nodes as the “co-adoption” relationships. Each layer of this multiplex network is
referred to each geographical country and the coexistence of several types of interactions
among keywords based on the collective attention of individuals mined from social networks.
Let us consider the second multiplex network of .#, layers op = {1,...,.#,} and N, nodes
i={1,...,N>}. The set of nodes is the subset H of /4 hashtags, linked to the main topic under
investigation. As explained below, in section 7.2.3, that set is created mining a set of unique
hashtags from Twitter, used by any users in the fixed temporal window 7. In T, based on a

data-driven approach, a large corpus of datasets is analysed and the collective attention is
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digitally investigated and measured. As underlined for ., .# is described by its adjacency
matrix, denoted by A* with elements a?‘j (see section 3.2 and 3.3 for further datails), and the

weights of interactions are defined as follows:

Definition 2. Weights of interactions in . Regarding to the second multiplex network, the
weights are denoted as qujl' x To mathematically define the interaction weights, since they
are based on the “co-adoption” relationships, as explained before, the concept hashtags
“co-adoption” probabilities is introduces as the relative frequencies, that are: p;‘l‘ih y which
denotes the relative frequency of using both hashtags by users belonging to the community
of the layer a of >, and p}(i as the relative frequency of using the hashtags h{*, by users
belonging to the same community. In accordance to the latter, the weights of interactions in
Mo are given by:

W;(i.hﬂ///z = Pk, (Ph; — Phy) (7.2)
where, hg with s in {1,2,...H} are hashtags elements belonging to a subset of hashtags H,
linked to COVID-19, the main topic under investigation.

Awareness and Attention Interplay

The awareness represents the acquired knowledge as a result of reasoning and understanding
and, eventually, experiencing the epidemics. To capture the linkage between awareness and
attention dynamics, which in turns impacts on the epidemics patterns, in this chapter it is
assumed that the “awareness” measure, aw;, for each node i belonging to users population of
weighted multiplex network .7, depends on structural heterogeneity, collective attention
dynamics on .#/;, and node properties [24, 96, 95]. Moreover,here, it is considered that the
awareness measure has not change according to the layers, since awareness once acquired is
the same in the different layers in which a user is involved. It can be influenced by the fading
of interests on acquiring additional and correlated awareness, or verifying if it is fact-checked
or misinformation based [122, 134]. The awareness gap between two interacting nodes in
1, impacts on the weights of links as detailed in section 7.2.1, in conjunction with the
homophily value 4;;. In fact it is crucial to include the tendency to interact with similar
people, through the introduction of homophily measure since strongly homogeneous groups
tend to prefer contents that confirm their shared beliefs, polarizing rumours or misinformation.
This phenomenon is defined as “echo chambers” effect which have a strict interplay with
the spread of misinformation [134]. In presence of misinformation and highly homophilic
clusters of users in social networks, it is very likely having fake news masqueraded as
fact-checked contents[43].
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Definition 3. Awareness Measure in .#,. Referred to the first multiplex network 1, the

awareness measure for each node i, is denoted as aw;, and it is given by:

awi,_, = (Pl - Z H,- Z up +awi_, (7.3)
heH qeQ

where P; is the multiplex participation coefficient which enable us to include the heterogeneity
of the number of neighbours of node i across the layers in #\ [24]. The Hy, represents the
Shannon entropy of the hashtags h, mined from Twitter communications, belonging to the set
H, which represents the population of nodes in ) [24, 96] (see section 3.3 for the definition
of multiplex participation coefficient and Shannon entropy), and 1 is a score, represented
by the relative search volume (RSV), associated with the Google search popularity of terms

q, elements of the subset Q extracted through Google Trends (see section 7.2.3).

7.2.2 Social Contagion Dynamics

Discussing the applicability of SEIR model in co-evolution with the UAF model for
COVID-19.

The spreading of two processes in .# is studied in co-evolution in the same multiplex
network, referred to the epidemic and the awareness spreading [124]. Deciding to not
disjoint the two processes makes it possible exploring the emerging complex dynamics
highlighting the effect of the awareness dynamics, which is marked by cognitive limitations,
on epidemic spreading, underlining also its impact on the acceptability of unprecedented
restrictive measures due to the COVID-19.

A rising number of studies explored the model to fit mathematically the transmission of
COVID-19, taking into consideration measures and strategies which reduces social mixing,
modifying both the pattern within the population and the trajectory of the epidemics. Since
the transmission is mostly driven by who interacts with whom, which can vary by age,
location, contact, the protective measures of distancing have been designed to shift the social
mixing patterns [115]. Given that, most of these limitations transform population mixing as
well as human habits and the real social connectedness, consequently it becomes crucial the
understanding to what extent the attention and the awareness in social networks can lead to
behaviours in accordance with the provided reduction strategies. For that reason, currently,
the increasing virtual connectivity [74, 43, 84], expressed in multiple layers, can marker
the realization of a collective consciousness and impacting on the COVID-19 epidemic
progression. In accordance with the recent epidemiological studies on parameters of the

outbreak and propagation [148, 86, 61, 149, 148], the susceptible-exposed-infected-recovered
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(SEIR) model [115, 148, 110] is considered in this approach as the epidemiological model for
COVID-19, analyzing it in conjunction and co-evolution with the awareness social contagion
process UAF [124], in .#}. The SEIR model is generally used to model influence-like-illness,
and it has been used to numerically analyze the evolution of the Severe Acute Respiratory
Syndrome (SARS) in different social settings [110], [148], [61]. As observed in [88], the
SEIR model fits mathematically with the nature of COVID-19 transmission. Moreover, in
line with [115, 110, 86], the Exposed state (E) is a state in which individuals have been
infected by the disease but cannot yet transmit it. Here, it is considered the assumption
that asymptomatic cases represent a minor proportion of infectiousness compared with
symptomatic cases, following the hypothesis in accordance with [115, 86]. In fact, although
the contributions of asymptomatic or sub-clinical cases represent a pivotal point, and the
question of whether such individuals are able to transmit infection remains unresolved at
the time of writing, in accordance with the choice of temporal window that, and the aim at
tracing the initial phase of rising the interest of collective attention around COVID-19, that
cases are not considered here. To analyze the co-evolving dynamics of both epidemics and
awareness spreading on .| multiplex network, the proposed model rescues on the Dynamic

Microscopic Markov Chain Approach (MMCA) (see section ??) (see section 5.1).

Co-evolving Spreading Processes

In accordance with what defined in the previous section, here it is considered the key
assumption that each node in . has a different awareness on COVID-19 as underlined
in section 7.2.1. As a consequence, each node, will be heterogeneously susceptible to the
epidemics spreading, since the awareness acquired has an influence on the behaviours of
people, improving their knowledge about epidemics. Heterogeneity and awareness are
introduced in order to describe the spreading scenario and extricate the complex co-evolution
of the interdependence, from one hand, between epidemics and awareness and, from the
other hand, between awareness and attention (see section 7.2.1). Two are the co-evolving
spreading processes analysed in the first weighted multiplex network . (see section 7.2.1).
The first process of epidemic spreading is indicated by S”EIR and the awareness spreading
process, coexisting and co-evolving with the first one, indicated as U"AF. In this model, the
awareness state is not directly correlated to the ensuring that users follow quarantine or other
physical strategies. Although an increasing of awareness can infers a good behaviour in line
with that strategical measures,influencing people to follow preventive measures as distancing
interventions [124, 122]. Here, it has been intended as a knowledge and a consciousness that
can contrast, for example, the misinformation diffusion about COVID-19. The node, in the F

state, maintain the same awareness measure, but it has no interest in increasing its acquired
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knowledge on the phenomenon linked to the referred topic. The S"EIR and U"AF models,
their reaction diffusion notations, the MMCA equations, and the epidemic thresholds have
been widely described and defined in Chapter 5. For the sake of clarity, the meaning of the
various states of the two spreading processes are explained in Table 7.1, a complete list of
symbols with its fair meaning is summarized in Table 8.3, and the Probability tree linked to
the MMCA method, representing the states and the transitions of S"EIR U"AF model.

Table 7.1 MMCA - States.

Status| Description

Sh Heterogeneous Susceptible - Those who can contract the infection with a dif-
ferent infection rate. The nodes’ heterogeneity, influenced by the awareness rate,
impacts on the probability to have a transition in exposed status.

Exposed - Those who have been infected but cannot yet transmit it.

Infected - Those who contracted the infection and are contagious.

Recovered - Those who recovered from the disease.

Heterogeneous Unaware - Those who is unaware of the epidemic, or with
minimum or wrong awareness. The probability to have a transition in Aware state
is different for each node, depending on the impact of the collective attention,
whom dynamics is analyzed in .7/, on the weights of interactions of the multiplex
network /.

A Aware - Those who is aware of epidemic, or who develop an awareness measure
based on fact-checked information. The awareness measure depends on the
collective attention on epidemics (see section 7.2.1)

F Faded - Those who tend to decrease the attention on epidemics, or the interest to
improve knowledge. The more susceptible are nodes that reach the faded state,
the more vulnerable they become.

h

Q|

7.2.3 Data-driven Approach
Characterizing Collective Attention and Awareness interplay, under COVID-19

In this model, it is proposed a data-driven approach for evaluating the complex dynamics of
co-evolving epidemics and awareness spreading, in function of the collective attention. To
this aim, in the weighted multiplex network .5, as showed in section 7.2.1, user-generated
data and searches are considered, respectively, by using a large corpus of Twitter commu-
nications datasets as listed in Table 7.3, and the most popular Google search terms, under
COVID-19. The vast communications streams and searches, which still going on, enables
us to monitor collective attention and, through the proposed framework, understand how it

manifests itself under a real-world emergency event.
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Table 7.2 List of Symbols.

Symbol |Description

T Observed Time Interval.

t; Time sub-intervals considered.

DB; Datasets collected.

C Set of locations c¢; considered

E., Event occurrence with ¢; the country belonging to C.

H Set of unique hashtags / from Twitter.

0 Set of the most popular terms of searches g from Google Trends.

K Set of keywords K = HU Q.

U Set of all users u.

N Set of Sampled users.

A% Adjacency Matrix with elements af:.

M Population-based Multiplex Network.

V4 Keywords-based Multiplex Network.

aw; Awareness of a node i in the Multiplex Network .

wﬁ‘j ., | Weights of interactions between two nodes i and j in a layer o of the Multiplex
Network .7

Wh,-,hj| .#,| Weights of interactions between two hashtags h; and h; in a layer o of the
Multiplex Network .Z,

h; Homophily between node i and node ;.

Dh; Relative frequency to use the hashtag h;.

Phih; Relative frequency to use both hashtags h;,h;.

P, Multiplex Participation Coefficient of node i in .Z.

Hj, Shannon entropy of hashtag 4 in ..

up Score associated with the RSV from GTrends.

Y Inverse Participation Ratio in the layer «.

s Strength of node i in the layer o.

0; Overlapping degree of a node i.

Zy,; Z-score of a node i.

2 Heterogeneous Infection rate.

AZ Heterogeneous Awareness rate.

o Fading rate.

Y Probability to transit from state E to state /

u Probability to transit from state / to state R

qi(t) Probability not being infected at step ¢.

ri(t) Probability not being aware at step ¢

Be Contagion Threshold.

p Density of Infected nodes.
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The whole temporal window considered T includes small ranges AtEc,. created as a conse-
quence of relevant events happened, referred to the time in which the event has been officially
reported in the ¢; geographical countries considered, as detailed in section 7.2. In particular,
seven short sub-intervals are taken into account, as listed in Table 7.4, in order to monitor
attention patterns around the first officially reported cases of COVID-19 in each geographical
country considered. Due to the observation constraints of Twitter API, in order to evaluate
a large corpus of data in a long time window, data considered are extracted from [135, 78],
whose statistics are shown in Table 7.3. These datasets were created searching for users who
have applied hashtags related to COVID-19 such as: #coronavirus, #coronavirusoutbreak,
#coronavirusPandemic, #covid19, #covid_19 [135, 78]. Each tweet in the datasets includes
textual content, the author id and nickname, the creation time, if it was in reply to another
tweet, whether it is a retweet and additional metadata. To identify all topic, all hashtags
adopted have been extracted from tweets and both original tweets and retweets have been
considered. In order to have a representation of the social network where the hashtags’
diffusion takes place and to estimate the activity of users around COVID-19 emergency, users
have been traced back, through the Twitter REST API, collecting additional information
such as locations and number of Followers. As showed in section 7.2,in this model two
interdependent weighted multiplex networks are considered in order to disclose the interplay
between epidemics and awareness spreading, based on collective attention dynamics. The
"Retweet-Mention-Reply" have been mined from a group of relevant users, that through the
sampling approach, becomes the sampled set N of unique users, population of the weighted
multiplex network .. The subset of the most relevant hashtags H represents the population
of the weighted multiplex network .75, restricting the available data to the unique hashtags
used by users in NV in all states under observation. For these two weighted multiplex networks,
the analysis is focused on the collective dynamics and interactions of the population of sam-
pled users N for .#), and hashtags belonging to the subset H for .#;. In order to examine
the attention dynamics, it is evaluated also the set Q mined from Google Trends considering
the top 25 search keywords, having the relative search volume (RSV) score greater than 0,
and in particular, among these, the related queries of searches about "COVID-19" in each
geographical country for each time interval #; in 7. The pseudo code of the sampling and
modelling approach and the social network marker detection is shown in Algorithm 2.

Sampling Approach

To construct the network’s structure of the .#; weighted multiplex network (see section
7.2.1), we consider a population of users, interacting through a scale-free network in the first

layer and a sampled weighted graph network in the second layer, mined from a selection of a
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Table 7.3 Datasets used in this study
Dataset | Period Users Tweets Volume Hashtag Volume
[135] [01-Dec-2019 -28-Feb-2020 41,914 [60,160 10,986
[78]  |01-Mar-2020 -11-Mar-2020 22,1928 (526,791 135,664
[78] 12-Mar-2020 223,187 [497,299 110,999
[78] 13-Mar-2020 569,099 [994,611 238,367
[78] 14-Mar-2020 146,960 |465,506 145,612
[78] 15-Mar-2020 245218 464,396 142,924
[78] 16-Mar-2020 251,134 [612,481 190,967
[78] 17-Mar-2020 356,262 [834,944 249,083
[78] 18-Mar-2020 220,564 [626,206 209,202
[78] 19-Mar-2020 284,981 [855,845 267,057
[78]  |20-Mar-2020 403,761 |758,621 253,082
[78]  |21-Mar-2020 393,600 |881,955 256,816
[78]  [22-Mar-2020 284,692 700,932 216,159
[78]  |23-Mar-2020 255,576 |658,225 229,724
[78]  |24-Mar-2020 297,203 [620,860 226,176
[78]  [25-Mar-2020 278,293 [684,556 245,815
[78]  |26-Mar-2020 195,235 |881,278 209,368
[78]  |27-Mar-2020 302,559 |664,120 239,108
[78]  |28-Mar-2020 271,370 [582,055 211,808
[78]  [29-Mar-2020 227,820 |564,141 204,568
[78]  |30-Mar-2020 285,320 [586,262 224,554
Table 7.4 Time windows

1 [ 12-Dec-2019 - 31-Dec-2019 |

2 |01-Jan-2020 - 15-Jan-2020 |

3 | 16-Jan-2020 - 31-Jan-2020 |

4 [01-Feb-2020 - 15-Feb-2020 |

t5 | 16-Feb-2020 - 29-Feb-2020 |

t6 |01-Mar-2020 - 15-Mar-2020 |

7 | 16-Mar-2020 - 30-Mar-2020 |
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Algorithm 2 : The Interplay of Collective Dynamics in Multiplex Social Networks

Input: Event in T (as COVID-19); Datasets collected (DB;); 0;j, i, 0,7.

Output: 4, 4>, aw;,Bc, prinT.

1: Phase 1: Sampling Approach.

Sampled Set of Users N < 0

Sampled Set of Hashtag H < 0

Sampled Set of Queries Q < 0

2: Sett; € T filtering DB; by Tweets’ creation time.

3: Vt; € T, Vu € U collect data about users through Twitter API .

4: Vt; € T, Ve collect queries through GTrends API.

5: Vt; € T and Vu € U calculate "activeness" and "connectedness" of users, considering
the number of tweets nz, of a user u and a threshold 77, the number of followers nf, of a
user u and a threshold Tr.

ifv,eT, nt, > Tr AND ng, > Tf then N = NUu.

6: Vt; € T and Vu € N retrieve Hashtags from Tweets in DB;.

7: Filter N by location, ¢, and consider H, set of retrieved Hashtags.

8: Create H=H| N H,...NH;,and Q = Q1 N Q3...N Q. from the most frequent queries
Vt,eT.

9: Mining of the "Retweet-Mention-Reply" graph of the users in NV and the ¢ "Hashtags
co-adoption" graphs of the hashtags in H.

10: Calculate the relative frequency of the hashtags in H, p;,.

11: Phase 2: Multiplexity - Social Contagion.

12: Set N as N; population of ..

13: Set the "Retweet-Mention-Reply" graph of the users in N as G- and a Scale-free
networks as G-, with G graphs of the .# with @ = 1,...,.# layers.

14: Set H as N, population of .#, multiplex network and the "Hashtags co-adoption"
graphs of the users in N as Gy—. , with G, graphs of the .#, with = 1, ..., .4, layers.
15: Vi € N; in . calculate k;, 0;, P;, Z,,.

16: Vh € H, in ./, calculate calculate kj, 05, H, and Vg € Q a score 1 for each ¢ location.

o Y.Ot

i°7i

17: Vi € Ny,in .\, calculate aw;, wjj, s
18: Calculate wy,j; in .#>.

19: Vi € Ny, in ., assign to i one of the initial states SU - SA - IA.

20: at time step #, calculate A%, B%, gi(t), ri(t).

21: MMCA method.

22: Calculate Bc,prin T.

23: Phase 3: Social Network Marker.

24: detect the emergence of the first event case E7, and Ve, detect E.,RS, SM¢, and calculate
the delays Dgegt, Demg, and Dgeg, .

25: Ve, calculate aw,, and , its growth rate +aw, (%) as the social network marker impact.
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set of interacting nodes on Twitter and based on the datasets analyzed [135],[78]. Although
a straightforward way for an understanding of attention dynamics is to gather data from as
many users as possible, it is fundamental to apply a sampling approach, to identify the most
influential users and their relationships, preserving the topological properties of the original
structure. This set of sampled users, are that more likely can trigger awareness diffusion
giving an impact on epidemic spreading. An ideal sample set should consider users with the

following features[69]:

* Activeness: the sampled set contains users who tend to tweet with hashtags linked to
COVID-19, at a relatively high frequency during the time of interest 7. Who have the
tendency to maintain a high level of interest on topic through time, presuming that
they are more likely to be active in the spreading dynamics. A user is included in the
sampled set N if has posted a number of tweets greater than a threshold 77 in each

time window #;.

» Connectedness: the sampled set includes users who tend to be actively connected with
other users showing their capability to cover a broader set of users, namely those who
actively join into the common interests of many other users. The threshold 7 of users’
number of followers is defined and only who has a "followers_count" value greater
than 7 is added to the set N of sampled users .

Evaluating both the activeness and the connectedness it is possible to select the most popular
users that are at the same time, the most active within the time period considered, avoiding

missing content or activity gaps over time.

Comparison with a null model

An interesting pivotal point is bringing together the nature of the extraordinary event, such as
the one represented by COVID-19, with the usual emerging dynamical patterns from social
networks. Without any doubt, this epidemic is not a common health emergency. In terms of
collective attention, the interest is spread over time and continues to involve the population
as a result of strategical measures and an uninterrupted updates on the data and the evolution
of spreading itself [84, 131]. To evaluate if the emerging dynamical patterns is caused by
an interplay between polarized attention and awareness on epidemics, or by a change on
individual interests dynamics, rippling with a similar shape in other cases, the observed
dynamics is compared with that one based on a null model. The null model is created for a
fixed set of users, comparable to those considered in this model, in a period of time, prior

to COVID-19, and comparable with the time interval 7', during which the same set of data
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Fig. 7.2 Awareness distribution on Multiplex Network. Reprinted from [120].

7.2.4 Performance Evaluation
Simulation Setup

Simulations have been carried out considering two weighted multiplex networks, respectively
M\ and A as explained in Sections 7.2.1 and 7.2.1. Firstly, in the .#| weighted multiplex
social network, it is considered the key role of multiple relationships among users, which
represent people of different communities, referred to the seven states considered in the
data-driven approach. In .#] the population is N = 1461 users, representing the users of the
sample extracted as showed in Section 7.2.3. In the first layer the interactions are based on the
graph network extracted from the data-driven approach, showing virtual relationships for the
sampled set of users, while in the second one the interactions follow the theoretical scheme
of a scale-free network [15, 36]. Data were collected through the Twitter API and GTrends
API. To build the model, do computation and obtain our results we used the programming
language R and the IDE RStudio. The figures were generated thanks to the package Plotly
and the software Gephi [116], [133], [128], [20].

Numerical Results

Fig. 7.2, displays how the structural heterogeneity of interactions and the heterogeneous
distribution of the awareness characterize the model, depending on the parameters of the
multiplex network, considering the features of each node regarding the two co-evolving

spreading processes around epidemics and awareness dynamics. Each node belongs to the
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Fig. 7.3 Roles of nodes. Reprinted from [120].

sampled users set extracted from the data-driven approach, and it owns a distinct awareness
measure, such a consciousness that allows to react differently to the epidemics, producing
a different susceptibility. Following the assumption of the proposed model and the data
mined, in panel (a) of Fig. 7.2 here it is highlighted the heterogeneity distribution in network
structures for the case of awareness measures based on multiplex parameters and user-
generated data mined from Twitter and Google Trends (see details in both Sections 7.2.1 and
7.2.3), in comparison with the awareness measures based on baseline statistics, as showed
in panel (b). It is notable how the multiplex network exhibits a heterogeneous distribution
of awareness measures in panel (b), as a result of a global attention distributed in various
clusters of different topics. Instead, consequently to the occurrence of an emergency event,
as COVID-19, it acts as a shaking force that polarizes the collective attention shaping the
awareness distribution in multiplex network .# into a more homogenized structure since
the nature of the event rules the choice on what to pay attention[69]. This effect produces a
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Fig. 7.4 A — B — p Phase Diagrams. Reprinted from [120].

decreasing in randomness and an increasing of a collective process. In accordance with the
assumption of the model, the awareness measures distribution acts on the interactions weights
in conjunction with the homophily measure, impacting on the heterogeneity in terms of node
susceptibility against the epidemics, and in terms of infection and awareness rate, shaping
also the structural heterogeneity of the degree distribution in the .#| weighted multiplex
network.

In each plot of Fig. 7.3, the curves correspond to the different values of the distribution of
P, the participation coefficient of node i in the weighted multiplex network .# in function
of the Z-score of the overlapping degree of the node, representing its overall importance in
terms of number of edges, with the aim at introducing a classification of nodes in terms of its
properties into the multiplex network, highlighting also the awareness distribution, showed
as size of nodes. Moreover, the panels (a)-(c)-(e) are referred to the data-driven awareness
measures, the panels (b)-(d)-(f) to the baseline statistics, and in both cases from the top to
bottom panels the homophily measures among nodes decreases [23, 24]. Representing each
node as a point in the plane P; — Z,,, by considering the multiplex participation coefficient

and the variation in function of Z,,, it is possible considering the six classes of nodes as
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GERMANY

Fig. 7.7 Collective attention and Hashtags co-adoption shifting in time intervals around
COVID-19. Reprinted from:[120]

highlight in Fig.7.3, varying homophily measures, showing the awareness distribution. In
both cases, it is observable the greatest randomness effect, in terms of awareness distribution,
in plots referred to the baseline statistics, (b)-(d)-(f). In the case of (a)-(c)-(e) plots, the more
participatory the nodes are, the more they acquire a greatest value of awareness, especially
in the case of high homophily among nodes (as showed in plot (a)), disclosing this trend
especially for regular mixed and multiplex aware nodes. Decreasing homophily values,
from (c)-(d) to (e)-(f), respectively referred to awareness data-driven and that one based on
baseline statistics, it is evident with an increasing of P; values, a heterogeneous distribution
of awareness in the plane P, — Z,,, and a higher density of hubs nodes, in focused roles with
higher awareness values. This trend is more evident in the case of awareness based on data
and it means that, decreasing the homophily, it is possible to find out a higher presence of
focused hubs, more aware in the case of awareness based on data than in baseline statistics
case, since the latter suffers the effect of attention randomness. As a result of a collective
process around an extraordinary event, in (e) plot it is shown this effect, showing how the
most aware nodes are either more participatory or more central.

Fig. 7.4 displays the phase diagram in the plane p — 8 — A, according to the co-evolving
processes of epidemics and awareness in the weighted multiplex network ., and its
interdependence with the collective attention dynamics in .#,. Both panels show how the
double heterogeneity, in terms of infection and awareness rates, allows delaying the contagion
outbreak and reducing the density of infected nodes. An increasing of awareness rate results
in a decreasing of infection rate up to a specific value of awareness rate, as showed in (a)
plot, in which the awareness measures for each node derived from the baseline statistics in a

scale-free structure. This means that the remarkable shape is due to the dependence of the
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heterogeneous susceptibility on the awareness and, when the probability of acquiring more
awareness exceed a threshold, this leads to a more probable shift in attention in correlated
topics, resulting in an increasing of p, the density of infection. Differently, in the (b) plot
of Fig. 7.4, which is referred to the case of awareness measures derived from data, that
effect vanishes due to more homogenized trend of awareness values around topic linked to
the extraordinary event occurrence, and to an increasing of awareness rate corresponds a
decreasing of the epidemics trend.

Fig. 7.5 shows the trend of infection rate in function of awareness rate, varying the homophily
value. The homophily, representing a human-related factor enables the structural investigation
of how the connections are forged in social networks. For that reason, varying its standard
deviation associated to traits, that define the similarity between a pair of nodes showing the
resulting trend in the plane A — B3, it is possible considering the two cases of the baseline
and the data-driven in reference to the awareness of the users. In the plot (a), referred to
the baseline case, by decreasing the homophily (from green curve to red curve), up to a
threshold, the increasing of awareness rate have a minor impact on the infection rate since
the population interests are distributed around different topics and the collective attention is
shaped as a more heterogenous structure. Differently, in (b), that is based on data mined from
Twitter communications under COVID-19, by increasing the awareness rate, a decreasing in
infection rate is is observable. By decreasing the homophily, the awareness impact is lower
than the baseline case, unveiling that the collective dynamics of attention and awareness is
more homogenous around the COVID-19.

Fig.7.6, summarizes the collective attention dynamics, during temporal window 7', divided
in seven-time intervals, as detailed in Table 7.4, around COVID-19. The heatmap is based
on user-generated data from Twitter communications and queries from Google Trends (see
Section 7.2.3). This plot allows for comparing different network metrics, such as tweets
volume, networks size, collective attention from Twitter and Google Trends, ranging the
different normalized values into coloured bands. The different colour shades in the bands for
each geographical state considered, in reference to each time interval, underline the changes
in time, in correlation with the red points, that indicates in which time interval falls the first
case of COVID-19 officially, reported to WHO. The grey bands point out the lack of values
on collective attention, in the range that covers #; and #,. Following the assumption of the
model, this puts in evidence that the sampled users set includes users which have a role in
the rising of collective attention and consequently in the awareness and epidemics dynamics.
For that reason, although there are collective attention data on COVID-19 in t; and #,, these
are not referred to relevant nodes in dissemination. Moreover,the red points indicate the time

in which each state goes from being observer to affected community. Thus, considering the
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tweets volume and the network size metrics, it is evident a shifting in trend after #¢, detecting
a delay of two time intervals from the time when the majority of events occurred. Focusing
on the collective attention metrics, stated for sampled set of users, the patterns of collective
dynamics is highlighted zooming the shape of reaction in response to the events occurred.
This shows a growing interest, that although it is not free from delay, follows the timing of
COVID-19 appearance.

Fig. 7.7 illustrates for each state the evolution of the collective attention, mined from
the analysis of user-generated data from Twitter communications, in different crucial time
intervals, t3, t5 and t7, that fall within the temporal window 7. The representation of the
weighted graph networks captured by the use of different co-adopted hashtags, is filtered
following the data-driven approach as underlined in Section 7.2.3. The Fig. 7.7 shows, looked
at it from top to down, the dynamical evolution of co-adoption around the topic, reflecting
the scattered attention among various co-adopted hashtags linked to COVID-19. It highlights
a quantitative measure of users’ attended topics, capturing it close to the events in #3, after
the events happened in 5, and finally, when the collective attention get up to speed up to #7.
The graph networks populate the layers of weighted multiplex networks .75, following the
assumption of our model (see Section 7.2.1), introducing quantitative dynamical statistical
parameters referred to the collective attention impacting on the dynamical behaviours of
the users in the weighted multiplex network .. This figure exhibits the rising of the
digital traces allowing for exploring the users’ interest into co-adopted various hashtags
about COVID-19, representing the willingness to expose their attention to as many people as
possible, thus, increasing the likelihood to give a boost to a collective process.

The Table 7.5 lists various information about the response time, in terms of both strategical
measures and social collective attention, the occurrence of COVID-19 cases and the awareness
reactivity to the emergency occurrence, also with the impact of a social network marker. For
the purpose of comparing the public response to the topic around COVID-19 across countries
selected, there is a comparison between the time of the cases reported to WHO for each
country and the peak response in terms of attention, from Twitter and Google Trends, as
a result of the analysis of user-generated data. The "Delay from China reported first case"
filed represents the delay of the first response of the collective attention from the China
reported first case, the "Starting lockdown-quarantine measures", which is the time when the
countries decide to start the strategical measures, and the "Delay of lockdown measures from
the reported internal cases for each country". Moreover, the introduction of the "awareness
reactivity" awr;, for a country i represents a statistical parameter which quantify a measure
of responsiveness based on information entropy H, computed on the basis of data extracted

from social media platforms considered, as Twitter and Google Trends, over the elapsed time
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Table 7.5 Response Time and Awareness Reaction Time
States | China |Internal |First Peak |First |Delay Start Delay AwarenessAwareness
Re- cases Response |Peak |from Lock- of lock-| Reactiv- | Reactivity
ported |reported |(from Re- China down down | ity (+/-) social
to to WHO |Twitter) |sponse |Reported | Measures |from marker
WHO (from | First Case first in- impact
Google |(days) ternal (growth
Trends) case rate %)
(days)
CH |31- - 13-Jan- |17-Jan-| 13 23-Jan- |23 0.93 -26%
Dec- 2020 2020 2020
2019
USA |- 23-Jan- |04-Jan- |19-Jan-|4 (19-24)- | (56- 0.70 -|+46% -
2020 2020 2020 Mar-2020|61) 0.65) +41%
UK |- 01-Feb- |13-Jan- |20-Jan-|13 23-Mar- |51 0.73 +39%
2020 2020 2020 2020
IT - 31-Jan- |13-Jan- |21-Jan-|13 9-Mar- |38 0.57 +49%
2020 2020 2020 2020
DE - 28-Jan- |13-Jan- |19-Jan-|13 23-Mar- |55 0.45 +28%
2020 2020 2020 2020
FR - 25-Jan- |13-Jan- |20-Jan-|13 17-Mar- |52 1 +22%
2020 2020 2020 2020
ES - 01-Feb- |O1-Jan- |20-Jan-|1 14-Mar- |42 0.86 +258%
2020 2020 2020 2020
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from first reported case of each country. This parameter weighs the speed at which a country
knowingly took notice of the emergency, deciding to start strategical measures, to assess
the optimal policies while minimizing the output costs of the protective strategies. High
values of awareness reactivity awr; means that there was a fast response to the emergency,
that matches high entropy of content shared in online social media platforms and collective
attention dynamics, and a high alertness impacting the timing of strategical safety measures.
Moreover, taking into consideration the elapsed time between the first peak of the collective
attention from the first reported case for each country, the awareness reactivity is obtained by
subtracting this delay from the other delays considered. As indicated in the last column, the
resulting value is expressed as an awareness reactivity growth rate. In the case of China, a
percentage in decrease of awareness reactivity due to the fact that it is the country that has the
first peak of collective attention response after its first case reported in WHO, differently from
the other countries selected. This value represents the impact on the awareness reactivity,
finding out the speeding up of the preparedness and responsiveness that would have had if it
had considered the effects of the collective attention and awareness dynamics, that is a rising
social measure of the public interest around an emergency that would soon have arrived.

The figure 7.8 shows the awr; changes and the social marker impact on its growth percentage
on the different time windows considered (see Table 7.4) in function of the collective attention
extracted from the data-driven approach. The figure graphically displays the variation of the
awr; with regards to COVID-19 based on awareness dynamics, considering the impact of the
social marker (black line) and not (red line). In particular, the figure represents a prediction of
how the awr; for each state would increase or decrease, graphically representing the impact
of the social marker, if the attention peak would have been in different time intervals. As in
cases b), ¢), d), e), f), g) in the time intervals previous respect to the first reported case, when
the states are in the condition of observer, the social marker’s effect produces an increase in
awr; and, when the states become affected, causes a decrease over time. The only exception
is represented by China (a) which is affected in the whole-time interval under investigation
and has a peak of attention that is always legging behind the first reported case to the WHO.
In this case, taking into consideration the effect of the social marker, the awr; decreases from

the first time interval.
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7.3 A Novel Methodology for Designing Policies in Mobile

Crowdsensing Systems

The considered scenario is a typical urban sensing application, where a particular urban area
is divided into multiple sensing regions. In each of these regions, there is a population of users
along with their smartphones registered to a vehicular crowdsensing application, sending
reports or alerts about specific events, such as roadblocks, incidents, road closure, etc. The
main components are therefore human users i, reports or contributions j, and spatio-temporal
windows k. As a representative application fitting our discussed system model, the real-world
dataset Waze is considered as a case study for the experimental validation of the proposed
methodology.

In the Waze dataset, events and reports provided by users are divided into spatio-temporal
windows, whose definition is based on variations in time of the day and day of the week.
Here, it is assumed that each day and time of the day defines a specific spatio-temporal
window. Human users along with their sensing behaviour contribute data in the form of
reports on the status of the traffic at different sensing regions by using smartphone-based
PS applications [28, 17, 124]. Such sensing task may be either explicit (i.e., done directly
by humans) or implicit via the sensors (e.g., sensors equipped to smartphones, wearables,
vehicles) the humans own [17]. The contributions sensed by the humans are analysed and
aggregated by the vehicular crowdsensing application to trigger and publish an event. This
facilitates better decision making in the physical space.

The proposed modelling approach, and detailed in the next paragraphs, is described in
Fig 7.9, where the first block shows the multi-layer social sensing platform from the IoP,
where layers represent the various services and, at the same time, it is defined also the
weighted multiplex social sensing among users, where weighted relationships are those
among users and layers are the various channels of social interaction. The second block is
the game-theoretic modelling where, starting from weighted social multiplex network, social
interactions between users are explored and the evolutionary dynamics of human sensing
behaviours are modelled. The emergence and sustainability of cooperation is quatified by
varying the network topologies, homophily and multiplexity. Once detected the games and
network topologies leading to the emergence and sustainability of cooperation, the Qol
and the users’ behavioural reputation scores in the network deriving from the analytical
model are analytically defined and measured. Thus, based on these statistical estimators,
the experimental validation on a real MCS application, Waze dataset, is conducted by

defining and quantifying Quality of Contribution (QoC) and composite user reputation scores.
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These measures allow defining the DSS and incentive mechanism design, measuring its

performance.

7.3.1 System Model

Table 7.6 List of Symbols.

Symbol |Description

M Number of layers.

N Nodes’ population.

S Set of strategies.

P, Payoff of node i.

0;j Homophily difference.

K Selection intensity.

ni Scaling factor.

Yi Social honesty.

N¢; Number of cooperative behaviours.
N, Number of rounds.

Nup Number of neighbours.

Qol QUality of Information.

R; Reputation Score.

QoC Quality of Contribution.

2 Truthfulness of a contribution j at time k.
RS; Composite User Reputation score.
Nagg(j) | Aggregation of reports.

RSagg(j)| Aggregation of reputation score.
UT(z) |Number of users with RS; > 0.5.
C; Confidence.

I; Incentive.

B Total budget allocated for incentives.
U Total number of users.

Let us consider a multiplex network of M layers and N nodes, as defined in section

3.2 and in section 3.3. Each node is a human user with a different contribution profile and

interacting with other users. Fig. 7.11 describes the multi-layer social sensing modelling

approach. Layers represent various services exploited by the users, and the multi-layer
interactions may affect users’ sensing behaviour, and their choice to actively and qualitatively
contribute (i.e., cooperate) to the sensing process. Thus, the proposed MCS multi-layer
modelling approach is dual: since it is both an IoP-based weighted multiplex social network,

in terms of weighted interactions between users, and a multi-layer social sensing platform, in
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Fig. 7.10 Multi-layer Social Sensing and inter-layer coupling on a Weighted Multiplex Social
Network. Reprinted from: [45].

terms of services (see Fig. 7.11). Indeed, users, while providing and sharing information
on various services (see Fig. 7.11 (a)), interact on the social multiplex network changing
their behaviour towards other users in the network and the whole MCS application (see 7.11
(b)), thus impacting on the reliability and operation of various services. The aggregated
layer conveys all the structural information contained in the multi-layer social sensing. In
Fig. 7.11 (b) we show the importance of considering the dynamic patterns of connectivity
deriving from the coupling between layers of the social multiplex network. To characterise
and measure such heterogeneity, the definition of weight for links between nodes at each
layer is based on a combined measure of eigenvector-like centrality and homophily (see 3.3
and 4).

In order to quantify and capture the social dynamics of human users’ behaviours on the social
multiplex network, it is useful to resort of evolutionary game theoretic (EGT) approach.
This allows us to obtain a multi-scale analysis of social dynamics and derive the impact of
multiplexity on the users’ sensing attitude in MCS applications. In particular, here, the focus
is on exploring the evolution of cooperation, intended as the emergence and sustainability
or resilience of cooperation on the multiplex network. For the analysis of human sensing
cooperation through EGT, it is useful exploiting different social dilemmas, the iterated forms
of the PD, the SD, the SH and the HG, with different characterisation, reflected by the specific
payoff matrix representing its rules of interactions (as showed in section 4.2.4). Cooperating
means honestly contributing and participating to the sensing task, such that human user

decides to pay a cost of providing his contribution. In order to have a high operational
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reliability in a crowdsensing application and have a robust Quality of Information (Qol),
also the other player should contribute. However, there could be users who decide to defect,
such as not paying any cost of contribution for accomplishing the task, or relying on the
contributions of others in a selfish way. In this case, if also the other player decides to defect,
the task will not be accomplished with a negative effect for both players.

To explore and quantify the evolutionary dynamics of human sensing behaviours on the
social multiplex network, it is considered the iterated forms of the above-described pairwise
social dilemmas where, at each round of the game, human users can change their strategies
or behaviours, based on imitation dynamics of the fittest strategies. The evolutionary process
is simulated in accordance with the standard Monte Carlo simulation procedure, composed
of elementary steps so that at each round a player i changes its strategy S; and adopts the
strategy S; from player j with a probability determined by the Fermi function [47]:

W(SI - Sl) = (le) (P—P;) (74)

1 +exp| 5K) ]

Therefore, a player i adopts the strategy S; of another player j in function of the payoff
difference P, — P; , and according to §;; and 1); values. §;; is the homophily difference
between two human users; if this value is small, player i is more likely to imitate the strategy
of j at each round. K is the selection intensity and quantifies the uncertainty in the strategy
adoption process and it is defined as in [47]. 1; is the scaling factor defined according to the
communicability function between layers of the multiplex structure [47]. A complete list of

symbols with its fair meaning is summarized in Table 7.6.

Statistical Measures for Designing Incentive Mechanisms - Qol and Behavioural User
Reputation Score

In order to design a novel incentive mechanism, it is necessary defining some statistical

estimators related to users’ behaviour.

Definition 4. Social honesty of node i.

B Nci
k= ZN,*Nnb (7.5)

i

where Nc¢; is the number of cooperative behaviours of node i over the N, rounds of the
game. N,y is the number of neighbours for each node i. Thus, Y; quantifies the level of
cooperativeness of each user in the network, considering its behaviour against neighbourhood

and it allows us to classify the contributors in honest. Here, ¥; € [0, 1] such that y; = 0 reflects
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a lack of cooperativeness, while y; = 1 means that a human user has been fully cooperative

with a proactive attitude towards its social community and neighbourhood.

Definition 5. Quality of Information (Qol). By averaging this measure over the population,

the overall measure of Qol in the network structure is obtained, defined as follows:
, 1
Qol =" ==} w (7.6)
i

Definition 6. Reputation Score. The aggregated measure of behavioural reputation score R;
Jfor each user i is given by the ratio between the local measure of ; for each node averaged
over the global attitude of users in the network, given by the Qol measure, so that it is defined

as follows:

%o
Y Qol
R; quantifies and relates the importance of contribution given by the user as compared with
the overall Qol in the network.

R = (7.7)

User Reputation Score in MCS scenario

The MCS in vehicular networks where the interactions between human users/vehicles
equipped with sensors have been modelled as a vehicular crowdsensing game. Each node
participates to the sensing task and chooses its strategy based on some constraints related
to sensing costs/risks and gains derived from the accomplishment of the sensing task. As
discussed earlier, both the quantity (degree of participation) and quality (accuracy of contri-
butions) of the reported events are considered in this model. They represent the contributors’
profiles and have been used as input data. Then, following the proposed game theoretic
modelling approach, the behavioural user reputation scores for each human node in the
different configurations of network structure and social dilemmas is showed in Fig 7.11. In
the figure it is evident how in the SF case, behavioural user reputation scores assume high
values, significantly higher than in the ER and SW cases. Indeed, in the ER and SW cases
scores are mainly distributed in the range between 0 and 0.4. In addition, the ER network

behaves worse than SW in terms of behavioural user reputation scores.

7.3.2 [Experimental Validation

Based on the social game-theoretic model presented below, the definition of neighbours is
extracted from Waze, assuming that neighbours are those users indirectly interacting in the

same spatio-temporal window. Furthermore, in order to distinguish the quality of reports,
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Fig. 7.11 Behavioural User Reputation scores. Reprinted from: [45].

and derive a measure of truthfulness of human user contribution, it is introduced the attribute
Report Rating, assuming that a report is of high quality (cooperation) if Report Rating is

strictly greater than the average measure of Report Rating.

Definition 7. Quality of Contribution (QoC)

The truthfulness ’L'ikj for any contribution j at time k, by modelling the problem as a
weighted regression approach, where the predictor variables are: (i) the expectation from the
opinion about a contribution and (ii) the spatial distance between the GPS-based location of
the user i’s smartphone and the cellular tower-based location. Truthfulness is a dependent
variable deriving from these two terms. From our Waze dataset, the measure of the truthful-
ness of a report corresponds to the Report Rating. The truthfulness values ’L'ikj is mapped to a
Quality of Contribution (QoC) value through the generalised linear models (GLM). Thus, by

applying the regression through the logit function on ”L'l];

Qﬁ?j =In(—L7) (7.8)

ij is defined in the range [—inf,inf] and it allows to determine whether the odds of the
contribution j is true or false. The logit function is a monotonically decreasing function
giving lower weights to Tl-kj < 0,5. In this model, it is extended the concept of QoC, which is
related to the truthfulness of a contribution, by including a human user behavioural measure

represented by the ‘social honesty’ v; of each use. It allows us to redefine the QoC as follows:

_ k

Ok — yin(— 1) (7.9)
1 1— 1k '
ij
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where Qi-‘j is obtained by multiplying the previous QoC by the ‘social honesty’ ; of each
user. By quantifying the degree of cooperation of user i in the previous rounds, it represents
a measure of local ‘reputation’ of the user i, that amplifies his QoC. Indeed, in the measure
of v, it is included the number of cooperations, weighting this value based on the number of

neighbours.

Thus, the evaluation is referred not only to the quality and to quantity of reports generated
by user i over the time, but also to the local spatio-temporal distribution or density of
cooperative reports over the overall number of reports at each window. This gives us a
measure of spatio-temporal density of cooperation, and the importance of a contribution is
inversely proportional to the density of cooperative reports: the lower is the density, the most
critical is that spatio-temporal window, and the higher is the incentive to be assigned to that
user. Moreover, ¥ entails a measure of persistence of cooperation, namely the number of
times or spatio-temporal windows where a user contributes a high quality report (i.e., Report

Rating strictly greater than the average of Report rating).

Definition 8. Composite User Reputation Score RS;. By including both the expected truthful-

k
ness Tij’

in the complex network. Aggregating the QoCs of the contributions generated by each users

and the newly defined measure of QoC derived also from users’degree of cooperation

in the network, the composite user reputation score is the following:
oo k
RS; = Z Q{?j *Djj (7.10)
k=1

where pfj is equal to 1 if the user i has generated a contribution (or report) j at time k,

otherwise it is equal to 0.

Decision Support System (DSS) and Incentive Mechanism Design

Fig. 7.12 conceptually displays a map of the various aspects of the proposed methodology.
Starting from the dynamic patterns of connectivity, the multi-layer social sensing framework,
which includes homophily, network heterogeneity and multiplex structure measures, and
the game-theoretic modelling guides choices according to human sensing behaviours. It
leads to evaluate and quantify the human-centric policies, defining a MCS space that allows
us to quantify the truthfulness measures for designing incentive mechanisms. From this, it
is obtained a Decision Support System (DSS) able to perform a decision making process
related to disbursing incentives to users based on dynamic and human-centric policies. These
policies represent a minimised set of rules extracted from both qualitative and quantitative

information and data related to human users and their behaviours. Thus, the DSS results from
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the analysis and quantification through a social game-theoretic modelling approach which
allows us to join and combine multiplexity, network heterogeneity and human-related factors
represented by homophily. As described in the section 7.3.1 the system is able to distinguish
honest from selfish and malicious users by computing their QoC and user reputation, where
the defined measures of QoC and user reputation encompass the evolution of user behaviours
in the network. Thus, both measures are inherently dynamic and derive from the evolutionary
dynamics of user sensing behaviours in the network.

The DSS must be able to decide at runtime which event among multiple reported events is
most likely to be accurate. Here, it is defined two-level DSS, based on a lightweight model.
The first level is linked to decide what type of event to publish, that is evaluating the most
likely event type that has occurred. This first decision level is required due to the presence of
contributions or reports received simultaneously in the same sensing region but related to
more than one event type. A confidence value for each reported event type j is computed
based on the relative quantity and quality support for each event type j. The second level
must determine whether to publish or drop an event. To this aim, there should exist sufficient
evidence to suggest that the most likely event has actually occurred. Based on the extent
of evidence, this decision level therefore allows us to discriminate if the publication of this
event will result in a benefit or gain. This aspect aims to prevent orchestrated fake events,
since honest reporters will not report anything in the absence of any event.

Based on the Waze dataset, it is assumed that among the reported events, the occurred
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event corresponds to the mostly reported event by only considering high-quality reports.
Let the Waze application receive reports from different users in a common spatio-temporal
window. Known the users’ reputation score from the last spatio-temporal window Ny () is
the aggregation of all these reports. RS,4,(j) is the aggregate reputation score of all users
reporting the event type j. U™ (z) denotes the total number of users with a positive reputation
score (RS; > 0,5).

Definition 9. Confidence. The overall confidence on any event type j C; using a weighted
sum of quantity and quality supporting each event type j is defined as follows:

. Nagg(j)
- Ut(z)

RSagq(J)

C; *
J Zi€U+(Z)RSugg (J)

+1(1—v)

(7.11)

Therefore, for j-th event, the first term represents the relative support for quantity, while the
second term represents the quality. The weight 0 < v < 1 is the preference factor associated
with the evidence types, and it is tuned based on available contextual spatio-temporal

information of a given type of event or risk policy.

Based on the above sections, the proposed incentive mechanism in mobile crowdsensing

applications which is inherently dynamic and fair.
Definition 10. Incentives received by user i.

RS; BxU"
j— i BxU (7.12)

Yuo, v

where B is the total budget allocated for incentives, and U is the total number of users or the
population in the system. The ratio between the reputation score of user i and the reputation
scores of all the other users showing a positive reputation score (on average behaving mostly
as cooperators in the network) represents the relative reputation of the user i in the overall
system. It acts as a discounting factor to the maximum possible incentive that any user in the
network can gain. Users with higher relative reputation scores will end up getting higher
rewards.

Incentivisation of Users

As explained before, the proposed model is based on an evolutionary game-theoretic approach
including the concepts of homophily, network structural heterogeneity For this reason, in
the definition user reputation scores and incentives, along with quality and quantity of

contribution, the social honesty of users have been included. This has led us to provide a
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Fig. 7.13 Incentives disbursement. Reprinted from: [45]

novel definition of reputation scores and incentives that focus also on social dynamics and
behavioural aspects derived from human cooperation. Indeed, this definition includes also
the number of times a user cooperates in the various windows, or behavioural persistence,
and the spatio-temporal distribution (or density) of cooperation in the different windows.
Moreover, the introduction of these two novel aspects in the design of incentive mechanisms
allow us to translate the idea of indirect reciprocity and detect the ‘super-cooperative’ users.
These users cooperate in the most critical windows and the MCS application needs to
incentivise them to preserve the operational reliability of service. The Fig. 7.13 shows
the experimental results obtained in terms of disbursement of incentives considering the
different incentive mechanisms. Specifically, following the incentive mechanism based on
quality and quantity, but without including neither persistence nor the local spatio-temporal
distribution of cooperators (see (a)), only three levels or classes of users’ incentives can be
distinguishable. By including the persistence, incentives are more differentiated (see (b)),
and the classification and distinction of users’ incentives is even more marked if it is also
consider the local spatio-temporal distribution of cooperators (see (c)). The reason is that in
(c), along with the quality and quantity of provided reports and a macroscopic measure of
persistence of cooperation over time, it is included also local and microscopic aspects. This
leads to a higher discrimination of users and a distribution expressing differences between
users both at a cooperation and social scale, that is also considering the social groups user

belong to. Thus, the proposed mechanism avoids not only incentives losses deriving from
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disbursing incentives to selfish or malicious users, but also those losses linked with a lack of
a further discrimination of users which include social network and behavioural factors, such

as persistence and the spatio-temporal distribution of cooperative behaviours.

7.4 Summary Remarks

The models proposed in this chapter have investigated a systematic methodology, resulting
from a complex modelling approach. In the first, exploiting user-generated data from the
social networks and communications technologies, the model proposes an understanding of
the interplay between the collective attention dynamics and the two co-evolving spreading
processes as awareness and epidemics, in two interdependent and heterogeneous weighted
multiplex networks, under emergency situations in consequence of the occurrence of an
extraordinary event as the ongoing COVID-19 pandemics. In the second, the proposed
methodology includes the definition of the Decision Support System (DSS) and the design
of a novel incentive mechanism, extracting rules and human-centric policies or metrics
to disburse incentives to human users. In these models, humans are considered as social
nodes that interact each other on a weighted social multiplex network, where each layer
corresponds to a distinct type of relation among them and is weighted. Both models are
also data-driven and model-driven, in fact starting from user generated data related to MCS
services or social platforms, statistical measures have been estimated and novel measures
have been defined. From a analytical perspective, the proposed model defines a class of
models, that can be adapted and refined according to specific rules and metrics. Furthermore,
by considering human-related factors, game-theoretic approach and epidemic models the
proposed methodologies aim to develop innovative ICT services, even more efficient, resilient
and adaptive. The statistical estimators and the social predictive markers derived from this
methodology are crucial in order to define new incentive mechanisms, timely crisis response
planning or DSS, making the entire system more robust and resilient, stimulating pro-social
behaviours based on collective mechanisms, such as the emergence of cooperation or the
awareness diffusion. The proposed methodologies, enclosing social dynamics, multiplexity
and human-related issues, may provide new insights in the future design of socially-aware
and human-centric systems.






Chapter 8

Cognitive MEC’s organization for
distributed and connected network
intelligence

Overview: Today, on the wake of the evolution towards 6G, the complex joining of communication
systems and socio-technical aspects of human interactions, together with the tendency to put the
intelligence at the edge of the network are gaining interest. In this viewpoint, MEC is considered as a
promising candidate to support the deployment of the 6G communication networks, which transforms
IoT devices at the end of the network into intelligent hubs which become able to deliver highly
personalized services directly from the edge of the network, providing the best possible performance
in mobile networks. In this way, it is enabled the so-called networked and distributed edge intelligence,
which is based on the cognitive and organizational aspects, the dynamical resources’ management
and on the adaptiveness of end devices. Major challenges arise from applications related to the smart
healthcare and smart city contexts, which have stringent constraints in terms of QoS in order to
provide immersive and context aware applications. In this chapter, it is proposed a modelling approach
based on complex system to design a novel organizational aspect of mobile nodes acting as MECs in
6G scenarios, through the introduction of the multiplex social and temporal networks, which allows us
to consider proximity contacts and social aspects and EGT which acts as a reinforcement learning for
end devices. In particular, the last sections of the chapter are focused on the definition and addressing
the microservices compliant load balancing (McLB) problem for end nodes, acting as MEC servers

considering the impact of the use, re-use and chaining of Web of Things resources in IoT mashups.

3The models, results and discussion presented in this chapter are shown and published in these contributions:
[9-12]
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8.1 Introduction

Driven by the increasing number of high-resource demanding mobile applications and the
shift of the intelligence at the edge of the network, MEC is considered as a promising
candidate to support the development of the next 6G of communication networks [126],
[119]. Considering that the edges are often populated by hand-held or wearable mobile
devices, it becomes pivotal the analysis of the social network dynamics of users’ behaviours.
In fact, human beings, their devices and consequently their behaviours act as active elements
of the networks, constituting a sort of heterogeneous and aggregated things interacting in
this complex socio-technical ecosystem, with a crucial role in the design of the networking
functions [100].

To deal with these key issues it becomes crucial considering artificial intelligence enhanced
end-devices acting as MECs and with the abilities of self-organization, self-adaptation
and optimization of their interactions and functions. To have no impact on their costs,
the idea is to have cheaper nodes, executing less sophisticated computations and taking
advantage of the cooperation between other devices. This approach leads to a common
and distributed intelligence for the entire network rather than of single nodes, enabling
scalability, adaptability and resilience. Thanks to learning algorithms on edge devices,
realized using reinforcement learning [73] and game theory [103], the nodes become able to
adapt themselves to changes in the system, altering their behaviours and acting in cooperation
with the collective aim at achieving an overall successful result for the system. Therefore, it is
it is crucial to allow software to be 'liquid’ and to *flow’ from one device to another, allowing
the computation is relocated after the design time and not ’a priori’. A solution in this
sense is represented by microservices [92] able to develop modular lightweight application
components which can be individually deployed on-demand. Differently from monolithic
software applications, whose modules cannot be executed independently and are unsuitable
for distributed systems, microservices are cohesive, autonomic, replaceable, and deployable
independent processes interacting with each other through standardised interfaces [34].

In this viewpoint, major challenges arise from smart cities and smart healthcare applications,
which, due to the technological developments in the ICT, have been actively engaged in
finding solutions for sophisticated and innovative services. For instance, in the field of
automotive, whose applications [13, 39], essential part of the smart city mobility, are based
on leveraging vehicular communication to collect the output of on-board city vehicle sensors,
merging them with smart city sensors and people generated-data. The challenge is to
bring the intelligence to the edge, shifting the processing and computing capabilities to the
automotive IoT devices, and considering their connectivity, on having a change in paradigm

of urban planning, treating it as a complex relational system. On the other hand, healthcare is



8.2 Evolutionary Dynamics of MEC’s Organization in a 6G scenario through EGT and
Temporal Multiplex Social Network 159

experiencing a rapid transformation from traditional approach to a distributed patient-centric
one, but there is a lack of features which insert into the systems the capability of spotting
collective behaviours, envisioning dynamics of communication networks, that represent a
key aspect to learn on how properly monitor them. Thus, to do this and, at the same time, to
collect data about their habits, social interactions, and health without obstructing their lives,
smart devices should be wearable and wireless [85].

In addition to these aspects, in order to effectively address certain needs, and on the way
towards 6G, the interest is shifting from [oT to the Web of Things (WoT) which aims at
providing a more efficient resource discovery and access mechanisms. WoT effectively
allows Things to become Web Things that are accessible via RESTful Web APIs [67].
More precisely, the idea of the WoT is to reuse and leverage widely popular Web protocols,
standards and blueprints, to make data and services offered by objects accessible to Web
developers, exposing their data and services as Web resources [? ].

The WoT is intended to enable interoperability across IoT platforms and application domains,
enabling the discovery of Things for interaction with other Things or applications. This
type of Thing exposure facilitates the creation of mashups, where services/data from one or
multiple Things are combined with virtual Web resources.

In order to plan new systems and applications, following the previous assumption, it is useful
the introduction of an innovative approach based on complex networks and evolutionary
dynamics which allows us to focus on aspects such as densification, heterogeneity and
distributed and context-aware self-organizing decision makers [119]. The multiplex network
representation can capture complexity of application scenarios, and its impact on the cognitive
organizational aspect of the MECs, resulting on a cooperative dynamical behaviour to ensure
quality of service (QoS) [26]. To this aim, the considered application scenarios will be
represented, in this chapter, resorting on interdependent weighted or temporal multiplex
networks [24], focusing on QoS performance metrics and objective cost functions.

8.2 Evolutionary Dynamics of MEC’s Organization in a
6G scenario through EGT and Temporal Multiplex So-

cial Network

In this section, it is explored how the temporal multiplex social network (see section 3.4) [72],
[24] of nodes, which represent the aggregation of user and hand-held devices acting as MEC,
can capture the real complexity of a relational system, as proposed and showed in Fig.8.1.

The attention is focused on the proximity contacts among nodes, on the social related aspects
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of interaction, and on the exploiting of opportunistic contacts based on human mobility and
proximity, for D2D [123] sharing of communications and computations resources [150].
Through Evolutionary Game Theory (EGT), aspects of learning and connections in a multi-
tiered infrastructure for the cooperation in terms of collaborative offloading and reduction of
the whole system’s blocking probability are investigated.

8.2.1 EGT for MEC’s cooperation

Data communication networks are evolving, following a common and global trend: services
and data, initially available only at remote clouds, are becoming accessible to the edges
of the network thanks to MEC [81], [103]. The main benefit of a system which employs
MEC is the possibility to enable the typical G application which are delay-sensitive and
context-aware [127],[97] reducing latency and providing high bandwidth and computing
agility in the computation offloading process [156], [144]. MEC transforms nodes into
intelligent hubs which become able to deliver highly personalized services directly from
the edge of the network, providing the best possible performance in mobile networks. For
this purpose, the analysis of cooperative dynamics conducts to task offloading schemes in
a synergistic, self organized and smart way. Cooperative schemes among MEC nodes, in
comparison with other sharing schemes such as random sharing, give better results in terms
of delays, energy consumption, and blocking probability, achieving an efficient load balance
and a better QoS [26]. EGT have already been used in synergy with MEC to shed light
on aspects of learning, cooperation and connections and showing how EGT can enhance
the usage of the networking edge resources [103], also applying collaborative offloading
schemes: a busy device can count on the collaboration of nearby idle devices to facilitate the
task execution [70]. Evolutionary games application allows to MECs with limited-rationality
to select an initial strategy and apply it to a specific network, receiving a feedback (the payoft)
from the environment. After playing a game through many rounds, it is expected that MECs’
behaviours will be completely adjusted to the dynamically changing environment, learning
which is the most profitable behaviour for the whole system.

8.2.2 Model

Taking into account the properties of temporal multiplex networks described in 3.4, to analyze
the considered scenario we resort to a temporal multiplex network D.# composed by M = 2
layers o and 3, populated by aggregated nodes of users and their hand-held devices which
act as MECs (see Fig.8.1). The layer « represents the social interactions among them and, for

the sake of simplicity, we consider that, under the time window 7' of observation, this graph
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does not have time variation. In layer 8 we have a representation of the physical proximity
interactions among nodes. We consider proximity more as a boolean condition, than as a
precise measurement of distance.

In order to explore the evolution of cooperation among aggregated nodes acting as MECs
in D.# we introduce a game theoretic-approach. In particular, we consider the Prisoner’s
Dilemma Game (PD) (see section 4.2.4 for further details). The evolutionary dynamics of
the PD have been simulated in accordance with the Monte Carlo procedure, considering
elementary rounds of the game, in which players decide to change or maintain their strategy

in accordance with the Fermi function:

1
1+exp[—3xyk ]

A player x on the layer o decides to adopts the strategy S, of node y playing on the layer 3,
taking into account the payoff difference P, — P, between the payoff P, acquired by the node
x and the payoff P, of the node y, calculated in accordance with the PD’s payoff matrix (see
section 4.2.4), the homophily measure 6y, and a communicability measure 1), which evaluates
the dependency between a player’s strategy in a layer and its related players from other layers,
quantifying the coupling between layers. K is a noise factor [48], [45]. Cooperation for
nodes in D.Z means that two MECs exchange each other computation requests when one of
them is overloaded. To quantify the role of the evolution of cooperation in the computing, it

is introduced the definition of the blocking probability.

Definition 11. Blocking Probability Py; of node i in the time step t. It is the probability to be
in the state in which the incoming requests will be dropped as they cannot be stored at the

data center of node i or forwarded to its neighbours:

N R

—W;Z Y n,R, g (8.2)

iJlR/

where kim is the multidegree of node i [99]; Rﬁ is the number of service’s requests incoming
to a neighbor j of node i; Ry, is the maximum requests’ number allowed, as k indicates the
buffer size of nodes in D.# . Tj is a threshold equal to the number of requests which node j
RiR) is the probability to be in the state where i has a number of requests
equal to its buffer size k and j has a number of requests equal to n; Tk: is the probability

is able to accept. T

of the neighborhood of j to cooperate. In fact, the interplay between a given node and a
neighbor is not only affected by their two strategies but, indirectly, also by that one of its
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other neighbors, involving the dynamics of changing strategies, as expressed in Eq. 8.2.2

and the probability to cooperate.
A complete list of symbols with its fair meaning is summarized in Table 8.1.

Table 8.1 List of Symbols.

Symbol |Description

DA Dynamical multiplex social network.

M Number of layers.

S Set of strategies.

Py Payoff gained by a node x.

0;j Homophily difference.

Nx Scaling factor.

K Selection intensity.

P1t3,~ Blocking probability of a node i in time step 7 .

kﬁ multidegree of i.

R}, Number of services’ request.

Ry Maximum request number allowed.

k Buffer size of i

T; Maximum number of requests acceptable by i.
TR R ; Probability to be in the state R;iR,,;.

TR« Probability of neighbourhood of i to cooperate.

8.2.3 Performance Evaluation
Simulation Setup

Simulations have been conducted considering the temporal multiplex network D.# con-
sisting of M = 2 layers and following the approach described in Section8.2.2 and shown in
Fig.8.1. Both the layer in D.# are composed by N = 100 nodes. The layer ¢ is modelled
considering the Scale-free network (SF) [16] as topology and the layer  simulating the
dynamic proximity network through a STERGM simulation with random edge formation and
dissolution effects. We have iterated the PD game for a number of elementary rounds equal
to the number of time steps t; =11, ..., 5, within T, in which D.Z is observed. To build the
model, do computation and obtain our results we used the programming language R and the
IDE RStudio. The findings were generated thanks to the packages and ndtv, tsna, TERGM
and igraph [116], [133].
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bility.



8.2 Evolutionary Dynamics of MEC’s Organization in a 6G scenario through EGT and
Temporal Multiplex Social Network 165

100 .

Blocking Probabilits

Ogl.l,
' TTY
AL ITYYYYY Y

Baseline

Proposed
@ zigorithm

0.00
a 5 10 15 25
Time Steps

Fig. 8.3 Comparison of blocking probability Evolution.

Numerical Results

Taking into account all the simulations’ conditions presented in Section 8.2.3, in the upper
side of Fig.8.2 is is showed the timeline of layer 8 evolution which, for each #;, represents the
variation of potential impact of service load on MECs, but also the time-varying neighborhood
with whom to cooperate to improve the capability to provide services. The introduction of
the multiplex representation allows us take into account the influence not only by neighbors
in B but also by nodes’ counterparts in the layer & in nodes’ behaviours. In each graph the
nodes’ size is proportional to its number of cooperations in t;. At the bottom of the Fig.8.2
we display both the density of cooperating nodes (in grey) in the whole population and the
global blocking probability P, of the system (in blue) versus #;; For the sake of simplicity, we
assume that the flows of service requests arrives to MECs according to a Poisson distribution
with rate of A;. The dynamics of nodes’ cooperation co-evolves with the time-variation of the
network structure and the application of the EGT leads to a general increasing of cooperators
density, over the time steps ¢;, despite of time-varying nature of interactions. EGT, acting
as a learning algorithm, gives nodes the opportunity to tune their behaviour, in accordance
with the environment and other players’ choices, with the aim of reaching the common good
for the system. The MECs benefit from their own cooperation which impacts on the global
blocking probability P, gaining higher capacity to provide services.

Furthermore, in Fig.8.3 starting from the same network hypothesis, it is computed the P,
evolution in the #; time steps by comparing a baseline case with the proposed algorithm
application. Since, in the baseline the EGT effect are excluded, in this case there is a constant

maintenance of the P, values during the time window 7. Differently, by using the proposed
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algorithm the competition dynamics jointly with the multiplex structure impact on the P,

dynamic trend, lowering its mean value and decreasing its values in time.

8.2.4 Application Scenario: Smart City

In relation to a smart city scenario, as represented in the Fig. 8.4, an innovative approach can
lead to shift the processing and computing capabilities to the automotive 10T devices, and
considering their connectivity, on having a change in paradigm of urban planning, treating
it as a complex relational system. This leads to a shift in perspective towards analytically
exploring how the multiplex network representation can capture complexity in urban patterns,
and its impact on the cognitive organizational aspect of the MECs, resulting on a cooperative
dynamical behavior to ensure quality of service (QoS) [26].

Model

A theoretical approach to evaluate the interdependence of two complex network structures
that create a dynamical and cognitive linkage between the changing layered urban scenario
and the network of MEC nodes, both represented as weighted multiplex networks, is proposed
in this section. This approach, as showed in Fig. 8.5, enable us to take into account the
dynamics, the multiple interactions in a smart city scenario and the interplay among MEC
nodes in a multi-service environment. To analyze this complex environment, we define two
interdependent weighted multiplex networks, the first urban-based multiplex network .Z
and the second MEC-based .#>. We model each layer of both weighted multiplex networks
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considering Scale-free network (SF) as topology [16].
The definition of multiplex network and its properties have been extensively listed
described in sections 3.2 and 3.3.
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and

* Urban-based multiplex network: Taking into account the multiplex network proper-

ties above-mentioned, we consider a weighted multiplex network .# where each of

the L layer corresponds to a different road user, pedestrian, cyclists, trams, cars [104].

The links among nodes represent streets, or paths, and the nodes are the intersections

among them. We assume that the city can be divided in several logical areas following

the dynamical evolution of a city which reflects the science behind the urban morphol-

ogy complexity [25], since it shapes in a hierarchy of different subcenters across many

scale, structured around key factors from the city to neighborhoods. Referred to

this

weighted multiplex networks, we define the weights of the interactions in .Z] as a

measure of the heterogeneous mobility, and the homophily between nodes, as follows:

Definition 12. Weights of interaction in .

(W) = hy k% — k9| (8.3)

i,j

where k; and k; are the degree of node i and node j respectively. Based on

the

homophily assumption presented in chapter 4, we define the h; ; as the tendency to

have a path between nodes of the same logical area of the city.
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* MEC-based multiplex network: The weighted multiplex network .# is populated

by a set of MEC nodes, and each layer of this network is referred to a different service

in which these nodes are involved. The links of .#, are weighted as follows:

Definition 13. Weights of interaction in .

(Wi = 1+|pf — pf| (8:4)
where p is the maximum processing capacity that a node assigns to an application of

the specific layer, based on requirements of services.

We introduce a game-theoretic approach to explore the evolution of cooperation in .7
and how the number of cooperative nodes has a role in the service blocking probability
[26]. We analyze different social dilemmas, the iterated forms of PD, SD, HG, SH
(section 4.2.4). Cooperating means that two MEC nodes exchange each other generic
computation requests, linked to a specific application, when one of them is temporary
overloaded [26]. In fact, if a node i, at the edge of the multiplex network .#>, decides
to work on isolation, it can use a buffer, with size k to store computation requests when
its CPU is busy. Consequently, it can have the possibility of dropping requests when
this buffer is full. However, if multiple MEC nodes can come to rescue of each others,
through cooperative behaviors of the node’s neighborhood in the multiplex network
>, dropping probabilities will be reduced, exploiting both multiplexity and EGT. We
also consider the Blocking probability as defined in Eq.8.2. For the sake of simplicity,
in this case, only a time step is considered and not its temporal evolution.

A complete list of symbols with its fair meaning is summarized in Table 8.2.

Performance Evaluation

 Simulation Setup Simulations have been conducted considering the two weighted

multiplex networks .7 and ., both consisting of M = 4 layers. The .#| multiplex
is composed by N; = 1000 nodes, and the .#, by N, = 100 nodes. To build the model,
do computation and obtain our results we used the programming language R and the
IDE RStudio. The plots were generated thanks to the packages Plotly and ggplot [116],
[133], [128], [138].

Numerical Results In the Fig. 8.6 is displayed the variation of multiplex participation
coefficient P; of nodes in the multiplex .#] in function of the Z-score of the overlapping

degree of the nodes, shedding light on the number of edges and their distribution
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Table 8.2 List of Symbols.

Symbol |Description

M Urban-based multiplex network.
M MEC-based multiplex network.
M Number of layers.

N Nodes population in .#;

N> Nodes population in .,

w’ifi.{‘ Weights of interaction in .#/)
w;-/if/z Weights of interaction in ./,
hij Homophily.

kf* Degree.

pY Maximum processing capacity assigned at the layer o.
Pgi Blocking probability.

through the layers. This represents a sort of cartography which allows us to rank the
nodes in terms of their role in the multiplex network [23], [24], as described in 3.3.
Moreover, the size of each node indicates the variation of the strength distribution. We
distinguish the case of high homophily between nodes i and j in .# (black points)
and low homophily (red points). The first case means that there is a high tendency
to have links between nodes which belong to similar logical areas in which a city
can be divided, differently from the second case in which the tendency is in having
links between nodes of different logical areas. It is evident, in the red case, the
presence of a few multiplex hubs with high strengths in conjunction with a multitude
of regular multiplex nodes, showing a more heterogeneous hierarchical structure
than the black case which in turns shows a homogeneous distribution of strengths.
This means that, the second case is likely to create a highly homophilic connected
clusters of nodes, disconnecting logical part of the city, decreasing the robustness. The
introduction of the multiplex dimension of analysis allows also to classify the nodes and
detect their roles in function of their structural properties and multiplex participation,
resulting in a systematically understanding of the hidden urban patterns, within the
considered scenario, [27] impacting on both the incoming workload for MEC nodes
[140] and their cooperative dynamics in .. In Fig.8.7 it is shown the global blocking
probability Pg; of MEC nodes in .#, in function of the number of cooperators and of
the Participation Coefficient Pl-‘/// 2. We have simulated the evolutionary dynamics of
different configurations of social dilemmas (HG, PD, SD, SH) for a number of rounds
such that a dynamical steady-state is reached. Taking into account all these aspects, we

are able to calculate the blocking probability Pp;; of the multiplex system depending
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Fig. 8.6 Role of nodes in .

on the role and each layer of interactions in which nodes are involved. Differently
from the case of a single-layer representation, in which it is considered a service at a
time, the introduction of the service-based multiplex dimension enables MEC nodes
to gain from cooperation in several services and in the different layers. A node with
high blocking probability in relation to a service can benefit from the cooperation of
other nodes in all the layers, getting the opportunity to provide also other services.
Therefore, nodes, in relation to their participation in the network, need different degree
of cooperation from neighbors to offload the incoming load and reduce the Blocking
Probability Pp;;. The dynamics of nodes’ cooperation co-evolves with the participation
of nodes in the network, which follows the environment service’s requests. Thus,
although the increasing of the Participation Coefficient Pi‘//l2 resulting on, from one
hand into an efficient involvements in more services of the MEC multiplex nodes, and
on the other hand in a increasing of blocking probability, the introduction of EGT
dynamics leads to a decreasing of Pg;; regardless of the number of incoming service’s

requests, when dynamical steady-state is reached.

8.2.5 Application Scenario: Smart Healthcare

The assumed scenario is an innovative smart (Ambient Assisted Living) AAL that provides

a multi-service environment towards patients, people with recognised frailty syndromes,
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Fig. 8.7 Blocking probability of MEC nodes in .#, (Automotive IoT devices)

leveraging the advantages related to 6G technology, mobile edge computing, and complex
networks algorithms. Data can be transmitted between devices, (such as medical devices,
IoT, hand-held devices, etc.) in short range through D2D communication. In this assumed
scenario, from one hand, patients are represented as social network nodes linked to each
other through different ties (such as real and virtual). Moreover, from this network we can
extract big data related on information diffusion, collective awareness, behavioral dynamics
and service requests. From the other hand, we have MEC, which guarantees the providing of

service in the multi-service environment.

Model

Considering that in AAL we can have different types of service requests, we represent the
MEC as nodes of a multiplex network, layered as service-based. In this multiplex network
formalization we analyze the fitness of statistical parameters which rules the cooperation of
MEC nodes, to guarantee the service requirements. The first step of the proposed modeling
procedure consists of defining a social weighted multiplex network. In the first multiplex,
each layer corresponds to a different type of social interaction between users in the AAL
(real and virtual layers). In the second multiplex, each layer corresponds to a different type of
interaction among MEC nodes, based on service type, eMBB or uRLLC. The mathematical
definition of weighted multiplex network togheter with its main properties and measures
have been provided in 3.2 and 3.3.

Definition 14. Weights of interaction in .#\. The weights are defined as function of the
discrepancy of patients awareness on its own health conditions and the homophily with other

patients:

(W) = hijlAaw;| +1 (8.5)
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Definition 15. Weights of interaction in #,. In the multiplex .#>, weights are function of p,
that represents the maximum processing capacity that a node assigns to an application of the

specific layer, based on services’ requirements:
(W) =1+ |pf* - pY| (8.6)

Since the MEC resources are limited, one key challenge, in the proposed scenario, is
offering the computing service in a multi-service environment with a low service blocking,
in order to prevent inefficiency in the deployment of computing system in the proposed AAL
scheme. For this purpose, here, the evolutionary game-theoretic approach is introduced,
by enabling cooperation between MEC nodes in the multiplex network. Different social
dilemmas are analysed: PD,HG,SH,SD (see section 4.2.4 for further details). In order to
evaluate the performance of our proposed approach, we consider the blocking probability
of the service as defined in Eq.8.2. A complete list of symbols with its fair meaning is

summarized in Table ??.

Table 8.3 List of Symbols.

Symbol |Description

M AAL-based multiplex network.

/43 MEC-based multiplex network.

Aaw;; | Awareness discrepancy between node i and j.

(w?‘j)//‘/2 Set of locations ¢; considered
N Population size in ..

N, Population size in .#,.

p Density of cooperators.

Pp; Blocking Probability.

Performance Evaluation

* Simulation Setup Simulations have been conducted taking into account the two
weighted multiplex networks . and of .#, both consisting of M = 2 layers. The .#,
is referred to the multiplex representation of patients networks in AAL with N1 = 1000
nodes, and the .#) is referred to the multiplex representation of MEC service-based
network, with N, = 100 nodes. Each layer of both weighted multiplex networks
is modeled by considering the SF network as network topology [16]. The reason
behind this choice is due, from one hand, to its ability to give a boost to spreading
collective dynamics [122] and, from the other hand, it represents the most suitable

network topology for the emergence of cooperation [46][48]. In this way, it is possible
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Fig. 8.9 Mobile Edge Computing Multiplex Network.

to investigate how such synthetic network, characterized by controlled topological
properties, allow us to derive the potential gain both in terms of behavioral dynamics
of the patients multiplex network and in terms of MEC cooperation to provide uRLLC
and eMBB services. To build the model, do computation and obtain our results we
used the programming language R and the IDE RStudio. The findings were illustrated
thanks to the packages Plotly, ggplot and igraph [116], [133], [128], [138].

Numerical Results Fig. 8.9 shows the .#| multiplex representation of patients net-
works in AAL. Notably, the choice of SF topology is induced by that SF is inherently
heterogeneous, strictly resembling real-world networks displaying a skewed statistical
distribution deriving from the preferential attachment rule [110]. Fig. 8.10 shows the
aggregate network of the multiplex representation of MEC service-based network, un-
derlining the multidegree. Fig. 8.11 displays the density plots to highlight the evolution
of cooperation based on four different social dilemmas, respectively PD, SD, HG, SH
in (a)-(b)-(c)-(d). The evolutionary dynamics have been simulated in all the different
configurations of dilemmas for a number of rounds such that a dynamical steady-state
was reached. Results confirm that SF is the most suitable network topology for the
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Fig. 8.10 Mobile Edge Computing Aggregate Network.

emergence and maintenance of the cooperation. Strikingly, HG, and secondly SD,
achieve faster the highest density of cooperators than in the other cases, PD and SH, as
expected from literature [90]. Fig. 8.12 sheds light on the impact of different social
dilemmas (PD - SD - HG - SH (see respectively (a)-(b)-(c)-(d)) and multidegree values
on the blocking probability of MEC nodes in the .#> weighted multiplex network. A
node having a high blocking probability for one service gains in capacity from the
cooperative behavior of its MEC nodes neighbours in multiplex to provide computing
for the global multiservices environment. The evolution of cooperation in the weighted
multiplex network of MEC nodes influence the probability that a service request is not
executed by either the node or the cooperative neighbouring one, and it decreases as
the number of cooperators increases. The multidegree of MEC nodes, displayed in Fig.
8.10, represents the potential impact of service load on the MEC nodes, but also the
potential neighborhood with whom to cooperate in order to provide different services.
Thus, it is able to trigger a cooperative mechanism. If a MEC node, in the weighted
multiplex network .#,, decides to work on isolation, which means that it maintains its
interactions but without cooperative approach, potentially it could reduce its blocking
probability by increasing the buffer size with a cost [26]. When there is not variation
of buffer size, for that node, the higher is its multidegree the higher is its blocking
probability, since in this case its neighbourhood, represented by the number of incident

multilinks, is large and selfish thus it can increase its temporary load peaks. The gain
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Fig. 8.11 The density of cooperation in various social dilemma, against the rounds of the
game.

of the evolution of cooperation is more striking for the nodes with high multidegree
measure as showed in Fig. 8.12. The evolution of cooperation in weighted multiplex
networks, with scale-free structure as network topology of layers, is able to uniform
the blocking probability regardless of the number of incident multilinks in a node,
when dynamical steady-state is reached.

8.3 Cognitive Load Balancing Approach for 6G MEC Serv-
ing IoT Mashups.

In this section, we propose a solution to the Mircroservices Compliant Load Balancing
(McLB) problem for IoT mashups in 6G by including the complex approach and paradigm
jointly with the multiplex dimension representation and analysis of the networks. This



8.3 Cognitive Load Balancing Approach for 6G MEC Serving loT Mashups. 177

© o © o o o
w1

Blocking Probability

20 40 60 80 00 0 v % %0 100
NCooperators 0.9

NCooperators

Blocking Probability
© oo & o o
i

=}

20¢ 40 60 “80 100 20 40 60 80 100
NCooperators NCooperators

Fig. 8.12 The impact of Evolutionary Game Theory on Blocking Probability of MEC Nodes.

approach represents a change in perspective exploring how the multiplexity can capture the
complexity in WoT mashups organizations and both the internal interdependencies, and their
impact on the cognitive organizational aspect of the IoT devices, acting as MEC nodes. The
aforementioned scenario is modelled through two interdependent and weighted multiplex
networks [24, 30, 96] , the first one referred to the WoT mashups; the second one populated
by the MEC servers whose computational load depends on the way in which the available
Web resources are organized, used and, if possible, re-used in order to provide the final
applications.

We quantify the impact that the knowledge extracted from the multiplex network representa-
tion has on engineering heuristics that guarantee load balancing and, consequently, quality of

service (QoS), minimizing an objective cost function.

8.3.1 Modelling a Distributed MEC for WoT Mashups

Taking into account the definition, properties and measures of multiplex network described
in section 3.2 and in section 3.3, the model proposed for the McLB problem consists of two
interdependent weighted multiplex networks: ., denoting a multiplex network that models
the WoT section; and .#/>, denoting a multiplex network that models the MEC section. These

networks are shown in Figure 8.13, and their role is clarified next.
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Fig. 8.13 Multiplex network interdependent model for the McLB problem.
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Smart City Mashup Scenario

IoT cameras made available in a smart city can be used by visitors, to take video/photos,
while acting alongside with other sensors (e.g., motion or smoke detectors) for security
purposes or to ensure that safety regulations are followed. Other applications may include
video analytics, location services, augmented reality, object recognition, etc. The devices
will be shared by client applications building mashups, for use by locals or anyone around
the world. Such mashups can integrate processing tasks to improve processes/services or
to create new ones. MEC can create a powerful distributed computing environment that
can be deployed to support low-latency services and IoT applications. Other scenarios, like

industrial automation, smart homes, smart vehicles, among others, are also envisaged.

Basic Definition and Assumptions

The core idea of the WoT is that Things will be exposing services and data through RESTful
APIs that other developers and devices can easily understand and use. REST is a resource-
oriented architecture where every component of a system (sensor, sampling frequency,
variable, etc) is called a resource, which can be individually addressed using a Uniform
Resource Identifier (URI) standard scheme [67]. Resources can also enforce processing or

decision tasks.

Definition 16 (Task). Resource implementing autonomous processing or decision logic on
certain inputs and returning an output value. Besides simple logic, complex processing
(eventually integrating other info; e.g., historical data) can be performed. The overall set of
different tasks is denoted by 7 .

The exposure of Thing resources facilitates the creation of mashups. In general, a mashup
is a way to compose a new service from existing services [40]. While this definition is
focused mainly on information services, recent efforts on WoT standardization by W3C
are allowing Thing resources to become part of mashups [64]. Recently, Rule resources
have been introduced to implement observe-evaluate-actuate patterns, which are required in

mashups.

Definition 17 (Rule Resource). Collection including a reference to a set of input resources, a
task, and a set of output resources where task results should be placed. It is a REST-compliant
mechanism to build observe-evaluate-actuate workflows. For a given rule %;, the set of
inputs is denoted by .9 (%;), the set of outputs by O(%;), and task by t(%;) € 7.

Note that every element of the Rule collection (inputs, task, outputs) supports CRUD

operations, which means that these can be modified on-the-fly (see [92] for more details).
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The task feeds on the set of Rule input resources, and this set can change. Each input
resource can also go through some format conversion or special treatment. The set of Rule
output resources can also change on-the-fly, and notification templates are used for format
adaptation. Rule inputs and outputs are Web resources, .# (%;) C # and O (%;) C ¥, where
W denotes the overall set of Web resources, which means that Rule inputs, task and outputs

can be hosted in different URIs and physical locations.

Definition 18 (Web Mashup). Workflow linking Web resources, which are identifiable digital,
physical or abstract entities. A mashup .%; can be seen as a set of Rule resources and,
therefore, can be denoted by S = { %1, %2, ..., %|.7, }-

Note that a Rule resource can be part of multiple mashups because there can be multiple
Rule outputs, each with its own format, for participation in different workflows.

In future MEC network architectures there will be authorized third parties, like application
developers and content providers, that will be able to use application servers integrated
at the radio access network (RAN), what causes a multi-tenancy run-time and hosting
environment for applications to emerge. Since MEC is a distributed cloud platform, breaking
a monolithic application into loosely coupled microservices can bring significant gains in
the performance, flexibility and robustness of 10T applications, as it is possible to relocate
or replicate microservices. Microservices also have the advantage of being reusable across
applications. Thus, an IoT related task can be implemented monolithically or it can be broken

down into microservices (e.g, data processing, log file or database update, etc).

Definition 19 (Microservices). Independently deployable services communicating through
a well-defined lightweight mechanism. A set of microservices serves a certain business
goal/task. The available microservices is denoted by V', and the set of microservices involved
intaskt € 7 is denoted by ¥;.

Definition 20 (Distributed MEC). Network solution providing services and computing func-
tions required by clients at the edge. The set of application servers, or data centers, is
denoted by 9. Each d € 9 provides computing resources, storage capacity, connectivity and
access to RAN information, and will be hosting microservices instances running as virtual

appliances.

In short, a microservices architecture can better ensure that applications are always on,
due to replication, while a MEC infrastructure ensures a low end-to-end latency. This kind
of architecture, together with the uncoupling of Rule collection components, provide the
key elements for edge computing to work properly. Mashups can be built independently by

the client, using a Rule-like mechanism, and processing/service tasks inside Rules can be
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moved to the MEC. Naturally, the MEC would benefit from load balancing across application
servers, which would have to take into account interdependencies among microservices,
i.e. the load on a successor microservice instance depends on the load from predecessor
microservice instances [151].

Load balancing becomes the challenge that needs to be solved and aspects like MEC
virtualization facilities and interdependencies among microservices have to considered. This
problem is defined as follows.

Definition 21 (Microservices compliant Load Balancing (McLB) problem). Given a dis-
tributed MEC serving a set of client mashups, whose tasks involve one or more microservices
instances hosted at MEC servers, plan for an adequate cooperative server MEC environment

where load balancing is ensured.

The multiplex network modelling is used to address this problem, as explained next.

Multiplex Network Modelling for McLB problem

The definition of multiplex network, together with its properties and measures have been
extensively provided in sections 3.2 and 3.3. Taking into account the multiplex network
properties, two interdependent weighted multiplex networks are proposed to model the McLLB
problem: M, denoting a multiplex network that models the WoT section; and M5, denoting
a multiplex network that models the MEC section. These networks are shown in Figure 8.13,

and their role is clarified next.

* WoT Multiplex Network
The multiplex network .7 is intended for WoT section modelling, where client
mashups are built. Therefore, its nodes represent Rule resources exposed by Things,
while its links/edges represent workflow wiring together such Rule resources. Rule
resources can be part of multiple mashups, and .#] layers are the reflection of these

structural interconnections.Thus, for a set of up and running mashups, the network

graph at layer 8, for .#), is denoted by %l;VOT = (%WOT,éagVOT), where ZW°T =
Ugeqo,.., LwOT}Yﬁ. The set . includes the Rule resources used by the mashup defined

at layer f3. Also, %/;V"T =Yy, IV°T =1, #V°T = N and (E’gVOT =&y.

A Rule resource Z; is a Web resource of a particular type, available at some URI.
As stated in Definition 18, the task performed by a Rule uses input Web resources,
denoted by .# (%;), and after performing some task the output is placed at one or more
output URIs, & (%;), which will feed into other Rules. According to [92], the overall

execution logic of the Rule resource is the following: every time a Rule input is updated,
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Fig. 8.14 Weights of interactions in .Z].

the Rule task is executed and if its state changes from False to True then notifications
are sent to the output resources. When abstracting ourselves from intermediate URIs,
it is possible to state that #; task execution is triggered by Rules that precede Rule
Z; in workflow, within the same layer or in other layers, and this influence will be
modelled as follows. For a weighted multiplex network ., it is assumed that the
relevance of a link is greater when its endpoints have greater difference in the number
of inputs. The weights of .# interactions will be the following:

Definition 22 (Interaction weights in .#1). In a weighted multiplex network .#,, the
weight of a link between endpoints %; and % ; in layer a., denoted by w%‘-,h %y is given
by:

Wh2,) M =1+ |(k, — 1) — (k%, — 1) 8.7)

where k«%’; and k%j are the degrees of #; and X% nodes in layer o, respectively.

The degree of a node is the number of interactions in layer «. Figure 8.14 illustrates
such intra-layer interaction weights. This property is useful to shape interactions
among nodes in a layer, allowing re-usability and chaining of resources to be improved.
In addition, Rule resources interact with their counterparts in other layers. This is so be-
cause Rule resource are not only chained for the creation of a specific mashup, but also
contribute to the formation of other mashups. This is captured by the interdependent
layers of multiplex network .#,.

MEC Multiplex Network
The multiplex network .7 is intended for MEC section modelling, where application
servers or data centers are placed. While the network is populated by the set of appli-

cation servers/data centers (network nodes), the layers refer to the microservices. In
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each layer, an n € N will be hosting microservices instances running as virtual appli-
ances. Multiplex representations allow us to establish relationships and to shed light
on complex interdependence between microservices with respect to load distribution,
reusability, computing capacity of hosting nodes and time involved. Therefore, links
between nodes in .#, will have weights defined as follows.

Definition 23 (Interaction weights in .#).). Referring to the weighted multiplex net-
work M, the weight of link wl‘-xj is given by:

(W) 2 = 1+ | f* — £ (8.8)

where % and f JQ‘ represent the computing capability of data centers i and j, respec-
tively, that is dedicated to microservice o. This accounts for multiple microservice

instances.

* WoT and MEC Interplay
By assuming that WoT applications can share Rules, when building their worksflows,
and that Rule tasks can be decomposed into small and light components/microservices,
it becomes possible to distribute microservices across servers. This leads to complex
interactions between MEC servers and, given the chains of resource requirements
involved, multiple levels of abstractions with complex interactions can emerge. To
capture the connection between Rule resources in .#] and microservices distributed
across servers populating .#,, the complex load for each node i in .#) is defined. This
represents the computation overhead due to the involvement of MEC nodes in the
multiplex network representation. The complex measure (b;)#2 is defined as follows:

Definition 24 (Complex involvement of server i in .Z.).

M,
y ¥ (P4

M2 . ]
b)) = (P gy ELUEN) 8.9
(bi)"> = (P) ><aZ](s,> S TR (8.9)

{jent}

where My and M, denote the number of layers in .#\ and >, respectively, while N;
denotes the set of nodes in M.

Note that (Pi)'//‘/2 in expression (8.9) is the multiplex participation coefficient of a node
i € N;, set of nodes in .#>, measuring the involvement of MEC servers’ resources

in different microservices/layers. The higher the participation coefficient, the higher
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the computation load at the server, due to the fact that the node actively participate

M,

in multiple microservices. The Y (s%)*2 is the sum of the strengths of node i,
a=1

calculated for each layer o € {1,...,M;}. This measure depends on the importance

of links, which has to do with the computing capacity difference of its nodes. The

last component of expression (8.9) is the Reuse function for Rule resources in .,
M,

where Y Y (s[-3 )1, summing the strengths of nodes in .#; over all layers 8 €

B=1{jeN}
{1,...,M}, takes into account the heterogeneity of links as a consequence of .Z’s

weights (see Section 8.3.1). A greater strength implies greater heterogeneity at Rule
resource inputs and consequently, additional loading for MEC servers in .#,. The
(P;) is the multiplex participation coefficient of node j € Ny, from the WoT-based
multiplex network .7, and it represents a measure of how Rule resources in .
are reused and chained in different mashups. The greater the multiplex participation
coefficient, the more Rules are involved in different mashups, with no additional
computation required on MEC servers. The (bi)*//‘/2 ends up measuring the commitment
of MEC node i and, therefore, the probability of opting for local computation or
offloading to neighbouring nodes. Thanks to this complex measure, an estimation is
made regarding the probability that a node in .#, will compute locally or not.

Impact on Energy and Time To measure the impact on both energy and time as-
sociated with computing that is held locally and offloaded, a cost function must be
defined. As specified in Definition 19, each task ¢ € .7 can be served by a set of
microservices #; and, for the sake of simplicity, it is assumed here that such data load
is initially distributed across microservices and MEC nodes (layers and nodes in .75,
respectively) using a hypothetical distribution that depends on the degree k.

Let x; € {0,1} denote the offloading decision for node i regarding the task t € 7.
That is, x;; = 0 if the MEC server goes for the local computation, and x;; = 1 in case of

offloading. According to such decision, the energy and time cost is defined as follows.

Definition 25 (Decision Impact on Energy and Time). The total cost associated with

decisions stored in matrix Xy, | 7| is defined by:

Ny | 7]
Cost(X) =YY (Eq+Hi) (8.10)

i=1t=1
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where Ej; is the required energy and Hj; the execution time for task t initially allocated

at node i. As operations will be performed locally or offloaded:

Ey = (1—x)EL° 4 x;; x EX (8.11)
Hiy = (1 —x)H! +x;y x HY (8.12)

whose components are defined as follows [51]:

cit X Lz

fi

where cj; is the number of CPU cycles, li; is the task load and f; is the computation

Hj¢ = , (8.13)

capacity of node i in M3,

liy c;jxl;
HY =0 8.14
where f; refers to the computation capacity of node j in >, to which the task load
is offloaded, and r; = B x In(1 + %) is the uplink rate for bandwidth Pg;, p; is the

transmission power, @y the channel noise,
ElC = v x Iy x ciy (8.15)
with v; energy per CPU cycle and, finally,

EX = pix HOY (8.16)
A complete list of symbols with its fair meaning is summarized in Table 8.4.

Performance Evaluation

* Simulation Setup
Simulations have been conducted considering a multiplex network .#; with M; =3
layers, each layer representing an IoT mashup, that models three distinct kinds of
weighted interactions and connectivity among the N; = 1000 nodes (Rule resources).
A variable population for .#,, 50 < N, < 500 nodes (MEC servers), and a variable
number for M, (microservices layers), 3 < M, <9, are assumed. Each layer of both
weighted multiplex networks has a Scale-Free (SF) network topology [16]. SF networks
are highly heterogeneous networks, characterised by a power-law degree distribution,

with high degree correlation between nodes and degree distribution having a long
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Table 8.4 List of Symbols.

Symbol |Description

/A WoT-based multiplex network.
V) MEC-based multiplex network.
N, Number of nodes in .#.
N> Number of nodes in ..
M, Number of layers in .Z].
M, Number of layers in .#,.
T set of tasks.
K Rule Resource
y/ 4 Set of Web Resources.
V4 Available microservices.
Y Microservice involved in a task ¢.
D Set of distributed MEC.
w;}i’ %, Weights of interaction in ..
k%, Degree.
o

computing capability.
wy' |, | Weights of interactions in .7,

b‘l.//‘l2 Complex involvement.

P//Z Multiplex participation coefficient.

sf‘Mz Strength.

X Cost decision matrix.

E; ; Required energy.

H; ; Required Execution time.

Ell‘;c Required energy in case of local computation.
Hf?“ Required Execution time in case of local computation.
Elo { ! Required energy in case of offloading.

Hl” jf 7 Required Execution time in case of offloading.
Phih; Relative frequency to use both hashtags £;,h;.
Cit CPU Cycles.

Lis Task load.

ri Uplink rate.

Di Transmission power.

Vi Energy per CPU.

o Channel noise.

tail. SF networks fit many real-world networks and are characterized by preferential
attachment and growth: new nodes are added to the existing ones with a probability of

attachment that is proportional to the degree of older nodes in the network. Regarding
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Fig. 8.15 Role of nodes in .#, (a) and in .# (b).

to the remaining simulation parameters, it is assumed that the size/load of tasks is in
the range [0,20], i.e. /;; € [0,20] MB, and that tasks are spread across nodes following
the hypothetical distribution described in Section 8.3.1. The energy consumption per
CPU cycle is set to v; = (0.20 x 101D Joules per cycle. For the number of CPU
cycles it is considered that there will be c¢; = 500 cycles per bit. In order to take
into account the heterogeneous computing capability of servers, a random computing
capability f; € {0.5,0.6,...,1} GHz is used. The device’s transmission power, channel
bandwidth and background noise are p; = 0.1 W, Pg; = 20 MHz and @y = —100 dBm,
respectively [51].

To build the model, perform computation and obtain results, the programming language
R and IDE RStudio is used. Figures were generated using Plotly and ggplot packages
[138], [128], [116]. Simulations ran on a personal computer with Intel(R) Core(TM)
17-8750H CPU, 8 GB RAM capacity and 2.20GHz frequency.

Numerical Results

Figure 8.15a) shows a cartography of the node roles in the multiplex network .5,
plotting for each node i the multiplex participation coefficient (Pi)‘//‘/2 versus the Z-
score (z(o,‘))/‘/2 of the total overlapping degree. Since the overlapping degree of a
node represents its overall importance in terms of number of incident edges, while the
multiplex participation coefficient gives information about the distribution of incident
edges across the layers, this cartography allows us to classify nodes merely in terms of
their structural role in the multiplex network (see [24],[23]).

In general, representing nodes as points in the P; — z(0;) plane allows to identify three
classes of nodes: i) focused, comprising the nodes for which 0 < P, < %; ii) mixed,

comprising nodes having % <P < %; iii) multiplex nodes, comprising nodes with

le-use function

50

100

150
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P, > % Regarding the Z-score of their overlapping degree, it is possible to distinguish:
i) hubs, for which z(o;) > 2; ii) regular nodes, for which z(o0;) < 2. Moreover, through
the colour of each node it is possible to show the variation of the mean strength
distribution (s;)*?? and through its size it is shown the complex involvement (b;)-%2.

A finding from such cartography is that greater values of complex involvement (bi)‘//2

can be noticed in nodes classified as regular multiplex, confirming that the multiplex
network representation is quite suitable to capture the complexity of the considered sce-
nario, where computation is shifted to the edge. These nodes are regular because they
have a low number of incident edges and multiplex as their links are well distributed
across the layers (microservices in which they are involved). This means these nodes
are involved in many microservices but their computation is not crucial for any of them.
Furthermore, we can deepen the analysis, evaluating not only the number of nodes’
incident links and their distribution across the layers but also the distribution of their
average strengths. The strength is a function of weights (see Equation 3.3 for definition
of strength) and according to Definition 23 it depends on the difference of computing
capabilities among linked MEC nodes. A poor heterogeneity in the mean strengths’
distribution (s,~>'// 2, as evidenced from the Figure 8.15a), is consistent with the scenario
in consideration in which the nodes at the edges, that carry out the computation, have
limited and not too different computation capabilities.

The complex involvement (bi)*/‘/2 represents the interplay between the two multiplex
networks .# and .#> (see Section 8.3.1) and strictly depends on the way in which
the resources are organized and reused in the Wot-based .#, represented through the
Reuse function. For this reason, Figure 8.15b) shows the cartography in the plane
P, — z(0;) for the nodes in .#]. This time, the size represents the distribution of the
average strength (s,-)“fl' , while the colour is the variation of the Reuse function. This
cartography sheds light on how the multiplex network analysis results in a deepen
understanding of the hidden organization of Web resources, their use and re-use in
IoT mashups, which impacts on the computational load of MEC nodes in .#,. In
this case, considering an SF as network topology, it is possible to see that the most
used and re-used Web resources are those classified as multiplex regular nodes. These
Web resources participate in several IoT mashups but do not present a high number of
incidents links in any of them. The nodes with lower values of Re-use function are the
most critical nodes in term of computation because are characterized by high values of
both (P,)# and (z(0;))*”' (multiplex hubs). This means that they are involved in many
IoT mashups and, at the same time, in some of them they are important in terms of

number of incident links. In addition, those with high average strength are even more
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Fig. 8.16 Cost versus nodes: a) Total cost; b) Computing time component. Punctual and
mean values are shown for three cases: local computation (in pink), offloading to neighbours
(in orange), and cognitive computing decision (in green).

critical because they introduce further heterogeneity in computation (see Definition
22). Figure 8.16a) shows the cost for the case of N»| = 300 nodes and M, = 3 layers.
Points in the graph represent the cost (energy and time) associated with nodes for the
following three cases: i) nodes always choose for local computation (orange points in
the plot); i7) nodes always decide for offloading (pink points in the plot); iii) decision
about computation is made in accordance to the values of complex involvement (b;)-#>
(referred as the cognitive case; green points in the plot). In order to provide a heuristic
(not optimal solution) to the McLB problem, in a distributed and collective way, the
mean values of costs related to the three cases are shown. From such information it is
possible to state that the cognitive case represents the most profitable approach, for the
whole system, presenting the lowest mean cost.

Figure 8.16b) indicates the trend of the computing time, and it is clear that in terms of
time the complex involvement choice is also quite convenient. This approach can be
particularly suited to those distributed and mobile network contexts, whose services
require priority and are extremely sensitive to delay.

The heatmap in Figure 8.17 displays a comparison of the total cost for the local,
offloading or cognitive computation cases. Different population sizes are used for the
multiplex network .#,, N, ranging from 50 to 500 nodes. The number of layers, M5,
also varies and M, = 3, M, =5, M, =7 and M, = 9 cases are considered. The figure
shows that the case where computation decision is taken according to the knowledge
extracted from the multiplex network representation, through the measure (b;)*#2, the
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Fig. 8.17 Sensitivity heat map for the total cost when varying the population size and number
of layers in ..

cognitive case, presents the most profitable values for the whole system. Furthermore,
as the population and the number of layers grow, this approach becomes increasingly
convenient. In particular, for M, = 9 it is possible to see that a high number of layers
means that the MEC nodes in .#, are involved in a large number of microservices,
resulting in a major computation load and cost. Increasing the population, in the
cognitive case, provides more capacity for self-organization, increasing the probability

to go for the most profitable choice in terms of cost.

8.4 Summary Remarks

In this chapter innovative approaches have been introduced. This approaches are based on
multiplex networks, proximity networks and EGT. The novelty consists in the introduction
of key features able to fully describe and capture the complexity of 6G ecosystems. These
ecosystems involve [0T, IoP or WoT platforms related to dynamically changing contexts as
smart cities or smart healthcare. Heterogeneous resources and the computation capabilities
of devices devoted to the computation must be used optimally in order to construct the
connected and distributed intelligence of the network aimed at providing end applications,

respecting their QoS, through the introduction of novel algorithms for dynamic managing of
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lightweight applications, as microservices.

The results shown and discussed in this chapter put in evidence that the multiplex representa-
tion provides and extra dimension of analysis but also an additional source of knowledge,
enabling cognitive and distributed decision mechanisms, which have an impact on the QoS
of final applications.






Chapter 9
Conclusions

In this chapter the research questions posed in the first chapter will be revisited, summarising
the main results, contributions and the underlying key aspects addressed and presented in
this Ph.D. dissertation.

9.1 Research Contributions and Questions Revisited

The main research contributions presented in this dissertation can be summarized answering

the research questions posed in section 1.2:

* What are the most suited tools and methodology to quantify the impact that

micro-scale structures and dynamic properties have on macro-scale performance?
In what terms is it possible to represent a 6G network as a complex system?
In Chapter 2 we have described the main features and challenges of the next 6G
communication networks and the need for new approaches to study, model and design
such networks. In the future 6G new and complex topics becomes even more central
as emergent behaviours, evolutionary and collective dynamics, complex interactions
and interdependence which have an impact on the macroscopic performances of 6G
systems. To study all these aspects we have to rescue on a interdisciplinary and bio-
inspired approach based on complex network theory, as discussed in chapter 2, and the
mathematical frameworks of multiplex network theory, EGT and epidemic spreading
modelling, reviewed, respectively, in chapters 3, 4, 5.

* What is the most appropriate approach to measure, evaluate and characterize
services and components in 6G networks?
In Chapter 6, we have described a node profiling process that step-by-step allows

defining different aspects extracted from a complex networks analysis, to shape a
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profile which embeds macroscopic, microscopic, mesoscopic, dynamical and learning
properties. The profiling framework describes a set of interoperable abstract classes
referred to processes which constitute a cognitive level for nodes and community of
nodes in network. Metrics and parameters, theory and analytical tools to study the
coexistence of various type of interaction among nodes, the multiplex dimension of
the network and the interplay of collective dynamics and the mesoscale organization
are detailed. In addition, in Chapter 6, we have described an evaluation scheme
for IoMT microservices, thought of as lightweight applications at edge level in a
future 6G scenario, that takes into consideration three main aspects to assess the
quality, the acceptability, the usability and the user experience, modulating the output
according to the use context. The proposed model, characterized by a multilevel
architecture jointly with an analytical methodology based on complex system approach,
is composed by different interoperable and chained modules that can assess several
aspects of the QoS. The novel approach to design the evaluation scheme follows the

similar approach of the object to be assessed thanks to the advent of the 6G paradigm.

* Isit possible to quantify the impact of human behaviour and dynamics in design-
ing, providing and evaluation of ICT services in a 6G scenario?
In Chapter 7 we have introduced two approaches, both analytical and data-driven, to
quantify the impact of human behaviours and human-related factors, such as homophily
and heterogeneity, in the design of 6G applications. The first approach is focused on the
interplay among collective attention, awareness and epidemics spreading in multiplex
social networks during COVID-19. The second one is aimed at the definition of new
policies, based on reputation score, incentive mechanisms and a DSS, for the designing
of policies and mobile crowdsensing systems. Although, the first is referred to an
healthcare scenario, the second one to urban applications, both introduce statistical
estimators and social predictive markers, such as the awareness reactivity, or the user
reputation score for one thing, that measure the impact of past, present and future
human dynamics on changing the collective dynamics, on QoS and on timely crisis
response, as in COVID-19 pandemics.

* How can edge nodes trigger cognitive and distributed decision mechanisms, adapt-
ing themselves and learning from the environment? How can they tune their
dynamics in order to construct the connected and distributed intelligence, opti-
mizing the use of available resources and improving the QoS?

In Chapter 8 we have focused on the organizational aspects of MEC severs, assuming
6G scenarios (such as smart city, smart healthcare and WoT) where the intelligence is
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shifted to the edge of the network and also the end devices (IoT devices) can act as
MEC servers. We have proposed analytical approaches based on multiplex networks,
temporal networks and EGT, allowing to focus, at the same time, on social and prox-
imity aspects, and to evaluate cooperative offloading schemes among MECs. Although
the constantly changing nature of the environment (and, as a consequence, of service’s
requests and the computation load) thanks to the additional knowledge extracted from
the multiplex dimension of analysis and to EGT, which acts as a reinforcement learning
algorithms, MECs acquire a sort of cognition and self-sustaining ability, allowing
distributed and cognitive decision mechanisms. Thereby, MEC enable the built of the

common and distributed network intelligence at the edge which is pivotal for 6G.

9.2 Concluding Remarks and Future Works

This Ph.D. dissertation has been focused on the design of innovative ICT services, based on
the deployment of edge intelligence in 6G through the introduction of an interdisciplinary
and bio-inspired approach. 6G networks are a typical example of systems which are in
continuous expansion, moving from closed hierarchical or semi-hierarchical structures to
open and distributed networked systems, characterized by a high level of interdependence
among their very heterogeneous components.

Edge Intelligence is considered as a key pillar aspect of these systems, supporting high
performances, new functions, new services and making it possible to satisfy the stringent
requirements of the typical 6G use cases. Shifting the intelligence at the edge of the network
means bringing some Al features to each end node, or on clusters of nodes, so that they can
learn progressively and share what they learn with other edge nodes to provide, collectively,
new added value or optimized services.

New topics, apparently disconnected and belonging to different research subjects, become
even more central for the design of future mobile communication networks such as social and
human related aspects, evolutionary dynamics, emergent behaviours, multiple and complex
interactions, interdependences, epidemics spreading, cooperation and so on. For all these
reasons, it is crucial the introduction of new approaches to analyse, model and design this
networks based on complex systems and on a methodology based on tools such as Multilayer
and Multiplex Networks, Evolutionary Game Theory, Epidemic Modelling, but also data
analytics, to apply data-driven approaches, collecting and mining user-generated data as
digital traces of human dynamics. The literature, properties and features of these tools have
been extensively described through the chapters of this thesis.

Furthermore, this dissertation has shown that this approach is particularly suited to include the
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dynamic and complex nature of 6G network in technical aspects but also to include social and
human aspects in the design of network and services, from mobility to attention, awareness,
or reputation. Including and evaluating all these aspects together and their co-evolution
allows to define and introduce new parameters, measures, and criteria to classify and evaluate
6G systems, their units and (micro)services, developing metrics capable of combining QoS,
QoE, and human perceptions. The multiplex representation together with the evolutionary
and reinforcement learning aspects of EGT allows us to study the organizational and learning
aspects of edge devices, with the aim at acquiring cognitive capabilities to optimize the
computation and the available and common resources, improving the QoS.

In this perspective, the interest of scientific community is shifting towards energy efficient
networks, zero energy network resource management, and green computing to meet global
sustainability. To this aim, it could be interesting, for the future, deepen the Al algorithms, as
machine learning or deep learning, which can be useful in measuring network activity and
identifying the actual requirements by analysing the acquired data and identifying trends
and patterns from them. In fact, intelligent and real-time network operations in SSNs are
facilitated using machine learning techniques which enable fast learning of rapid network
changes and dynamic user requirement. Analysing human demand and dynamics, an Al-
enhanced system can redirect the resources in real-time and turn on or off the services in
accordance with user’s demands and behaviours. In addition, with the advent of 6G and edge
intelligence, the conventional base stations functions need to be offloaded and moved to the
edge to achieve massive low latency communications. This may result in energy barriers
at the edge of the networks. In this regard, an interesting research topic to be investigated
could be the combined use of Al algorithms and 6G to the design of energy-sustainable and

cost-effective computing and communication protocols.
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