
Università degli Studi di Catania

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI

DIPARTIMENTO DI MATEMATICA E INFORMATICA

DOTTORATO DI RICERCA IN MATEMATICA E INFORMATICA

XXXII CICLO

ITN MODCOMPSHOCK

All-Mach Number Solvers for the
Euler Equations and the

Saint-Venant-Exner Model

STAVROS AVGERINOS

Supervisor
PROF. GIOVANNI RUSSO

November 2019

https://www.unict.it/
http://modcompshock.eu/




Στην αγαπημένη μου Δήμητρα





Abstract
We propose a simple second order semi-implicit scheme for the numerical
solution of Euler equation of gas dynamics and the Exner model. The pro-
posed scheme overpass the classical acoustic CFL restriction on the timestep.
The core idea is that explicit differential operators in space relative to con-
vective or material speeds are discretized by local Lax-Friedrics fluxes and
the linear implicit operators, pertaining to acoustic waves or surface waves
for the Exner model, are discretized by central differences. We run a series
of tests in one and two dimension and we compare our results with classical
configurations. New original tests are introduced in order to highlight all
the aspects of the proposed scheme.
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Chapter 1

Introduction

Numerical methods for the solution of hyperbolic systems of conservation
laws has been a very active field of research in the last decades. Several very
effective schemes are nowadays treated in textbooks which became a classic
on the topic [78, 114, 48]. Because of the hyperbolic nature, all such systems
develop waves that propagate at finite speeds. If one wants to accurately
compute all the waves in a hyperbolic system, then one has to resolve all
the space and time scales that characterize it. Most schemes devoted to the
numerical solution of such systems are obtained by explicit time discretisa-
tion, and the time step has to satisfy a stability condition, known as CFL
condition, which states that the time step should be limited by the space
step divided by the fastest wave speed (times a constant of order 1). Usually
such a restriction is not a problem: because of the hyperbolic nature of the
system, if the order of accuracy is the same in space and time, accuracy re-
striction and stability restrictions are almost the same, and the system is not
stiff. There are, however, cases in which some of the waves are not partic-
ularly relevant and one is not interested in resolving them. Let us consider
as a prototype model the classical Euler equations of compressible gas dy-
namics. In the low Mach number regimes, it may happen that the acoustic
waves carry a negligible amount of energy, and one is mainly interested in
accurately capturing the motion of the fluid. In such a case the system be-
comes stiff: classical CFL condition on the time step is determined by the
acoustic waves which have a negligible influence on the solution, but which
deeply affect the efficiency of the method itself.

Another difficulty arising with standard Godunov-type schemes for low-
Mach flows is that the amount of numerical viscosity on the slow waves
introduced by upwind-type discretisation of the system would heavily de-
grade the accuracy. An account of the latter effect is analyzed in [41], where
the relevance of centering pressure gradients in the limit of small Mach num-
ber is emphasized.
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Chapter 1. Introduction

In order to overcome the drawback of the stiffness, one has to resort to im-
plicit strategies for time discretisation, which avoid the acoustic CFL restric-
tion and allow the use of a much large time step. Naive implementation of
implicit schemes for the solution of the Euler equations presents however
two kinds of problems. First, classical upwind discretisation (say Godunov
methods based on exact or approximate Riemann solvers) are highly non-
linear and very difficult to solve implicitly. Second, the implicit version of
classical schemes may introduce an excessive numerical dissipation on the
slow wave, resulting in loss of accuracy. Investigation of the effect on fully
implicit schemes (and preconditioning techniques adopted to cure the large
numerical diffusion) are discussed for example in [117] and in [85], both in-
spired by an early work of Turkel [115]. In both cases, a modification to the
absolute value of the Roe matrix is proposed by a suitable preconditioner
that avoids excessive numerical diffusion of upwind-type discretisation at
very low Mach.

Several techniques have been devised to treat problems in the low Mach
number regimes, that alleviate both drawbacks. Paper [22] is certainly one of
the first work in where staggered semi-implicit schemes have been adopted
to solve transient compressible gas flows (although the equations were not
written in conservative form, hence unable to deal with shock waves). An-
other example of an early paper that makes use of semi-implicit scheme for
low Mach problem is is given by [71].

However, some of such techniques have been explicitly designed to treat
low Mach number regimes, and are based on low Mach number asymp-
totics ([70], [69]). There are cases in which the Mach number can change by
several orders of magnitude. The biggest challenges come from gas dynamic
problems in astrophysics, where the range of scales of virtually all parame-
ters vary over many orders of magnitude. An adaptive low Mach number
scheme, based on a non conservative formulation, has been developed with
the purpose of tackling complex gas dynamics problems in astrophysics (see
[90] and references therein). When Mach number is very low the flow does
not develop shock discontinuities, and the conservation form of the schemes
is not mandatory. When Mach number is not small, then shock disconti-
nuities may form. In such a cases it is necessary to resort to conservative
schemes (see for example [85] for other astrophysical applications).

Some hyperbolic systems other than gas dynamics may be affected by the
stiffness due to a large range of wave speed. In magneto-hydrodynamics,
for example, fast magneto acoustic waves may be much faster than Alfvén
waves, and in case they carry very little energy, they do not need to be re-
solved. A pioneering paper in this direction was written by Harned and
Kerner [55], who proposed a semi-implicit method for compressible MHD,
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Chapter 1. Introduction

which was able to filter out fast magneto-acoustic waves, so that the restric-
tion on the time step was due to the much slower Alfvén waves.

Other physical systems, still in the context of gas dynamics, are affected by
drastic changes of the sound speed. Such large variations may be due to
geometrical effects, as for example in the case of the nozzle flow or to het-
erogeneity of the media. Air-water systems, for example, are characterized
by density ratio of three orders of magnitude, while the ratio of sound speed
is about five. Waves in heterogeneous solid materials may travel at very
different speeds, depending on the local stiffness of the medium. The mo-
tivation for the construction of effective all Mach number solver is twofold:
on one hand it is relevant to accurately simulate waves in heterogeneous
materials without small time step restriction suffered by explicit schemes,
on the other hand such simulations can be adopted as a tool to validate ho-
mogenized models, which at a more macroscopic scale can be described as a
homogeneous medium with different mechanical properties. For example,
in air-water flows, for a range of values of the void fraction, the measured
sound speed is lower than both water and air sound speed [34].

Motivated by the above arguments, several researchers have devoted a lot
of effort in the development of all Mach number solvers for gas dynamics.
An early all Mach number scheme has been described in [59]. The method
is based on a MAC-type staggered discretisation in space. A conservative
scheme is stabilized by a pressure-correction technique. The method is ap-
plied to several one and two dimensional problems, although no numerical
convergence studies are reported.

Another attempt in this direction is presented in [73], where the authors
adopt a pressure stabilization technique to be able to go beyond the clas-
sical CFL restriction. The technique works well for moderate Mach number,
but is not specifically designed to deal with very small Mach numbers.

A different stabilization technique has been proposed by Kadioglu and col-
laborators [66]. Here the authors present a stabilization method based on
an implicit step (on the primitive variables) which is performed after a sec-
ond order explicit prediction. The technique is successfully applied to sin-
gle fluid as well as multi-fluid test cases. Related methods by the same au-
thor have been developed in [65], where an IMEX strategy has been adopted
to solve hydrodynamical problems with non linear heat conduction, and in
[67], where the implicit-explicit schemes in time have been used in the con-
text of radiation hydrodynamics.

Paper [74] deals with a pressure implicit scheme, which allows the use of
larger CFL numbers than classical explicit schemes. Here the authors adopt
a pressure stabilization technique to be able to go beyond the classical CFL

3
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restriction. The technique works well for moderate Mach number, but is not
specifically designed to deal with very small Mach numbers.

In an impressive sequence of papers and conference proceedings, [31, 28,
30, 29, 27], F. Coquel and collaborators proposed a semi-implicit strategy,
coupled with a multi resolution approach, for the numerical solution of hy-
perbolic systems of conservation laws with very well separated wave propa-
gation speeds. In particular, they considered application to fluid mixtures, in
which the propagation speed of acoustic waves, often carrying a negligible
amount of energy, is much larger than the speed of the material wave trav-
eling at the fluid velocity. The basic framework is set in [31]. The method is
first explained in the context of linear hyperbolic systems. The eigenvalues
are sorted and it is assumed that there is a clear separation between slow
and fast waves. The Jacobian matrix is split into a slow and fast compo-
nent, using the characteristic decomposition. The flux at cell boundaries is
consequently split into a slow and fast term. The fast term is treated im-
plicitly, while the slow one is treated explicitly. The approach is then gen-
eralized to the quasilinear case, making use of Roe-type approximation of
flux difference. This allows to construct a simple semi-implicit formulation
by leaving the Roe matrix of the fast waves at the previous time step, while
only the field is computed at the new time step, leading to a linearly implicit
scheme. The effectiveness of the approach is further improved by adopting
spatial multi resolution: given a multi scale expansion of the numerical solu-
tion, the finest scale is maintained locally only where needed, while coarser
scales are adaptively adopted in smoother regions, with a great savings in
computational time. Different schemes, still adopting implicit-explicit time
differentiation to filter out fast waves, are considered in [28], where a sort
of arbitrary Lagrangian-Eulerian scheme is constructed: a fractional time
step strategy is composed by an implicit Lagrangian step, which filters out
acoustic waves, and an explicit Eulerian step, which takes into account the
contribution of slow waves. The main application is still on a model for the
evolution of gas-oil mixture. In order to simplify the treatment of a general
equation of state, a relaxation method is adopted (which of course satisfies
the Chen-Levermore-Liu sub-characteristic condition [23]). The problem of
developing an adaptive (local) time step strategy is considered in the pro-
ceedings [30], and fully exploited in [29]. In [27], the authors further refine
the technique, thus producing a positivity preserving, entropic semi-implicit
scheme for Euler-like equations. The approach developed by Coquel and
collaborators is certainly valuable, although it may be quite involved to be
efficiently implemented for more complex, multidimensional situations.

A different approach has been adopted by Munz and collaborators, start-
ing from the low Mach number asymptotic of Kleinerman and Majda. In
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Chapter 1. Introduction

[87], the authors develop a very effective semi-implicit method which can be
viewed as a generalization of a compressible solver to weakly compressible
flows. The method is based on the asymptotic behavior of the Euler equation
for low Mach number. Two pressures are defined, a thermodynamic one,
which is essentially constant in space, and a dynamic one, which accounts
for fluid motion. The method is based on a discretization of the system writ-
ten in primitive variables. The approach, designed for low Mach flow, can-
not be directly used when compressive effects are more pronounced. In a
subsequent paper [94], Park and Munz extend the method, still using the
pressure as basic unknown in place of the energy, but now they adopt a
conservative formulation, thus being able to capture shocks when the Mach
number is not so small. Several space discretizations as well as time dis-
cretization strategies are discussed, which allow to obtain second order ac-
curacy in space and time. In addition, the paper contains a nice overview of
other works on low Mach number flow.

More recently, the approach of Park and Munz has been extended to general
equations of state [43], rewriting the method of Casulli and Greenspan of
[22] in fully conservative form.

In [51] and in [40] the authors explore the construction of an all Mach-number
finite volume scheme for the isentropic Euler and Navier-Stokes equations.
In both cases, the approach consists in a sort of hyperbolic splitting, obtained
by adding and subtracting a gradient-type term to the momentum equation.
Such a term is an approximation of the pressure gradient, and is treated
implicitly, while the (relatively small) difference with the physical pressure
gradient is treated explicitly. The authors show the asymptotic preserving
(AP) property of the schemes: when the Mach number approaches zero the
schemes become a consistent and stable discretization of the incompressible
Euler and Navier-Stokes equations. In a more recent paper, Cordier et al.[32]
extend the technique to the full Euler and Navier-Stokes equations. In paper
[38] a different approach has been adopted for the construction of asymp-
totic preserving schemes for the gas dynamics. The authors perform a gauge
decomposition of the momentum density into a solenoidal and irrotational
field. They show that this corresponds to a sort of micro-macro decompo-
sition, in which the macroscopic variable describe the slow material wave,
while the fast variable accounts for the fast acoustic waves. They apply their
technique to isentropic and full Euler and Navier-Stokes, as well as to the
isentropic Navier-Stokes-Poisson system.

A systematic description of the flux vector splitting approach is also de-
scribed in [113]: the flux is split in two terms, one of which is treated explic-
itly and the other implicitly. Several splittings are considered and compared.
A slightly different technique, still based on flux splitting, is adopted in [89].
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Semi-implicit schemes have been proposed and adopted for a wide range
of problems, and obtained by different techniques. In a quite remarkable re-
cent paper by Dumbser et al [42] the authors develop a pressure-based semi-
implicit finite volume solver for the equations of compressible ideal, vis-
cous, and resistive magnetohydrodynamics. In addition to be conservative
for mass, momentum and total energy, the scheme preserves the divergence-
free property of the magnetic field at a discrete level. Following the approach
proposed by Casulli, the implicit part is pressure-based, therefore the nonlin-
earity of the implicit step appears only on the diagonal. The method appears
particularly suited for low Mach-number problems. Several additional refer-
ences to other semi-implicit schemes available in the literature can be found
in the references.

All Mach number solvers are particularly useful in the context of multifluid
flow, where the sound speed may change by orders of magnitude. Here we
mention the paper by Fusnet and Popinet [46], which deals with the simula-
tion of bubble dynamics, or the paper by Jemison et al [62], which presents
a semi-implicit scheme exactly preserving mass, momentum, and energy in
a multifluid context. A very robust method for multiphase flow has been
presented in [1], where a relaxation scheme has been used to be able to treat
very general equations of state, which are able to models at the same time
solids and fluids. The generality of the technique, however, comes at the cost
of doubling the number of equations, therefore increasing the computational
cost in some cases.

In the first part of this thesis we built a semi-implicit scheme for the Euler
equation in gas dynamics which is linearly implicit in the acoustic waves,
eliminating the acoustic CFL restriction, and does not introduce excessive
numerical dissipation at low Mach number, thus providing accurate solution
in such regimes. The timestep is determined from the material waves. We
show with a series of tests, in one and two dimensions, that the scheme can
capture efficiently even material and acoustic waves when the acoustic CFL
condition is obeyed. The computational time is dramatically decreased and
thus the numerical dissipation is much more less, compared with the explicit
schemes. One and two dimensional schemes are presented accompanied by
several numerical tests.

On the second part of the thesis, motivated from the nature of the Exner
model and the analogy with the isentropic Euler equations, we built a semi-
implicit scheme for the Exner model which deals with the sedimentation.
In such cases when one is interested only for the evolution of the sediment
for long runtimes, our scheme provides an extremely accurate dissipation-
free solution. The computational time in incomparable with the runtime of
the explicit schemes. Still, if one is interested for the surface water waves,
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Chapter 1. Introduction

with the classical CFL condition the scheme is able to capture accurately
also this kind of waves. Schemes for one and two dimensions are presented
accompanied by the corresponding numerical tests.
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Chapter 2

Euler Equations

In this chapter we want to end up to the Euler equations by using the sim-
plest assumptions. Our goal is to derive the Euler equations in the conserva-
tion form by using the conservation laws of mass, momentum and energy.
These equations are used to describe the fluids motion such as gases or liq-
uids.

In order to describe the derivation of the equations, let us consider a region
D ⊆ Rd filled with a fluid. Let x ∈ D be a point in the region D and consider
a particle of fluid at the position x at time t.

FIGURE 2.1: Motion of a fluid particle in the domain D.

2.1 Conservation of Mass

The first quantity we would like to introduce is the density ρ(x, t) which is
defined as the mass per unit volume and it can be written as:

8



Chapter 2. Euler Equations

ρ(x, t) = lim
∆V→0

∆m
∆V

. (2.1)

Now, for each time t we assume that the fluid has a well defined mass den-
sity ρ(x, t) such as, if W is an arbitrary subregion of D the mass of fluid in
the subregion W is given by:

m(W, t) =
∫

W
ρ(x, t)dV, (2.2)

where dV is the volume element of W.

By assuming that the subregion W is fixed and does not change with time,
we calculate the derivative with respect to time of Equation (2.2) and we
obtain:

∂

∂t
m(W, t) =

∂

∂t

∫
W

ρ(x, t)dV. (2.3)

We denote the boundary of the fixed volume W by ∂W and we assume that
is smooth. Moreover, we denote by n = nxi + nyj + nzk the outward unit
normal vector defined at each point of ∂W, i, j, k the unit basis vectors and
respectively nx, ny, nz the components of the vector at the x, y and z direction.
The volume flow rate across the surface ∂W for each unit area is u · n and
respectively the mass flow is ρu · n.

FIGURE 2.2: Mass flow through the boundary ∂W and the unit
normal vector n.
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Chapter 2. Euler Equations

According to the principle of conservation of mass: the rate of increase of
mass in the volume W is equal with the rate that mass crosses the boundary
∂W at the opposite direction of the outward normal vector, thus:

∂

∂t

∫
W

ρ(x, t)dV = −
∫

∂W
ρu · ndA, (2.4)

where dA is the surface element of ∂W.

By using the assumption that the subregion W is fixed and does not change
with time, Equation (2.4) becomes:

∫
W

∂ρ

∂t
(x, t)dV = −

∫
∂W

ρu · ndA, (2.5)

which is the integral form of the law of conservation of mass.

By using the Divergence theorem to the right hand side of the (2.5), we ob-
tain:

∫
W

(
∂ρ

∂t
+∇ · (ρu)

)
dV = 0. (2.6)

Because the control volume W was arbitrary the integral vanishes and we
obtain:

∂ρ

∂t
+∇ · (m) = 0, (2.7)

where m = ρu stands for the momentum. Equation (2.7) is the differential
form of the conservation of mass written in conservative form.

2.2 Momentum Equation

Let us consider again an arbitrary volume W of the region D. The forces
acting on the fluid are separated to external volume forces per unit volume
and the surface forces:

F =
∫

W
fdV +

∫
∂W

σndA (2.8)

Under the assumption that f = 0 and that the fluid is inviscid, i.e. σ = −pI
where p stands for the pressure, we get:
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F = −
∫

∂W
pndA. (2.9)

By using the Divergence theorem we obtain:

F = −
∫

∂W
pndA

= −
∫

∂W
p(nxi + nyj + nzk)dA

= −
(∫

∂W
pnxdA

)
i−
(∫

∂W
pnydA

)
j−
(∫

∂W
pnzdA

)
k

= −
(∫

W

∂p
∂x

dV
)

i−
(∫

W

∂p
∂y

dV
)

j−
(∫

W

∂p
∂z

dV
)

k

= −
∫

W

(
∂p
∂x

i +
∂p
∂y

j +
∂p
∂z

k
)

dV = −
∫

W
∇pdV

(2.10)

Thus, the force per unit volume is −∇p on any particle of the fluid ma-
terial. In order to use the Newton’s second law, we must first define the
acceleration of a moving fluid particle. This is done with the so-called mate-
rial derivative, where the rate of the velocity of a given fluid particle which
moves in the total fluid is:

Du
Dt

=
∂u
∂t

+ u · ∇u. (2.11)

By using Newton’s second law we obtain the differential form of the mo-
mentum equation:

ρ
∂u
∂t

+ ρu · ∇u = −∇p. (2.12)

In order to write the momentum equation in the conservation form we have
to compute the derivative:

∂(ρu)
∂t

= ρ
∂u
∂t

+ u
∂ρ

∂t
. (2.13)

Substituting the term ρ(∂u/∂t) on the Equation (2.12) by making use the
Equation (2.13) we obtain:
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∂(ρu)
∂t
− u

∂ρ

∂t
+ ρu · ∇u = −∇p. (2.14)

Recalling the Equation (2.7) we substitute the term ∂ρ/∂t in Equation (2.14)
and we obtain:

∂(ρu)
∂t

+ u∇ · (ρu) + ρu · ∇u = −∇p⇔

∂m
∂t

+∇ ·
(

m⊗m
ρ

+ pI
)
= 0,

(2.15)

which is the momentum equation written in the conservation form.

2.3 Energy Equation

Again we consider a control volume W of the domain D. We want to com-
pute the total energy in this volume. By applying the first thermodynamics
principle one gets:

∆ETOT = δQ + δL. (2.16)

We denote:

δQ =

(
−
∫

∂W
q · ndA

)
dt, (2.17)

where q · ndA is the heat that flows inside to the control volume W per unit
mass by crossing the surface of the volume.

The second term in Equation (2.17) is defined:

δL =

(∫
W

ρf · udV +
∫

∂W
σu · ndA

)
dt (2.18)

where the first term is the work of surface forces and the second term is the
work of body forces.

Using the the same assumption as before, that the the external forces are
equal to zero and taking into account that for Euler equations the heat con-
duction is zero we obtain the total energy per unit volume:

12
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∫
W

EdV =
∫

∂W
σu · ndA. (2.19)

Using the assumption that the fluid is inviscid the stress tensor is equals:
σ = −pI. Thus the Equation (2.19) becomes:

∫
W

EdV = −
∫

∂W
pu · ndA. (2.20)

We compute the derivative with respect to time of the total Energy and we
obtain:

d
dt

∫
W

EdV =
∫

W

∂E
∂t

dV +
∫

∂W
Eu · ndA. (2.21)

Combining Equations (2.20) and (2.21) and by using the divergence theorem
we obtain:

∫
W

∂E
∂t

dV +
∫

W
∇ · (Eu)dV =

∫
W
∇ · (pu)dV. (2.22)

The choice of the volume W was arbitrary, so the equation (2.22) is valid for
each control volume W. Thus we obtain the Energy equation written in the
conservative form:

∂E
∂t

+∇ · ((E + p)u) = 0. (2.23)

Now, we introduce the total enthalpy h = (E + p)/ρ. Plugging the expres-
sion for the enthalpy in the Equation (2.23) we obtain the equation written
in terms of enthalpy:

∂E
∂t

+∇ · (hm) = 0. (2.24)

2.4 Equation of State

Let us now compute the total energy of a compressible fluid:

E = EKIN + EINT, (2.25)
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where EKIN is the kinetic energy density correlated with the control volume
which equals:

EKIN =
1
2

ρu2. (2.26)

Moreover, EINT is the internal energy per unit volume of the fluid which
stands for:

EINT = ρe (2.27)

where e is the internal energy per unit mass. For an ideal gas the specific in-
ternal energy is a function of temperature. Thus, the internal energy equals:

e = CVT (2.28)

where CV the specific heat at constant volume. The specific heat constants
for constant pressure and constant volume processes for an ideal gas are
correlated to the gas constant R for a given gas such as:

CP = CV + R. (2.29)

Thus, combining the Equations (2.26), (2.27) and (2.28) we obtain an expres-
sion for the the internal energy of the gas where:

EINT = ρCVT = ρ
CV

Cp − CV
RT = ρ

1
1− γ

p
ρ
=

p
γ− 1

, (2.30)

where γ =
Cp
CV

is the polytropic gas constant. Finally, in order to compute the
total energy we have to sum the kinetic energy and the internal energy. By
substituting the kinetic and the internal energy terms in the Equation (2.25)
by the terms from the Equations (2.26) and (2.30) we obtain the equation of
state (EOS) for a perfect gas:

E =
1
2

ρu2 +
p

γ− 1
. (2.31)

With this equation introduced the system of differential equations now is
closed by adding this liner correlation between the pressure and the energy
variables. For a detailed derivation of the Euler equations see [25].
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2.5 Hyperbolicity

The Euler equations in one dimension can be written in the following form:



∂ρ

∂t
+

∂m
∂x

= 0,

∂m
∂t

+
∂

∂x
(mu + p) = 0,

∂E
∂t

+
∂

∂x
(hm) = 0.

(2.32)

The system is closed with the equation of state for a perfect gas, where:

E =
1
2

ρu2 +
p

γ− 1
. (2.33)

For the sake of simplicity we are going to build the scheme using just this
equation of state, but it is straightforward that any equation of state can be
used specifically for the explicit schemes.

Let us now write the System (2.32), using the primitive variables, in the fol-
lowing form:

Wt + A(W)Wx = 0, (2.34)

where:

W =

ρ
u
p

 , A(W) =

 u ρ 0
0 u 1/ρ
0 ρa2 u


where a =

√
γp
ρ is the sound speed.

The eigenvalues of the matrix A can be computed easily and one gets three
distinct eigenvalues λk:

λ1 = u− a, λ2 = u, λ3 = u + a (2.35)

These eigenvalues are real, thus the System (2.32) is hyperbolic. Moreover,
these eigenvalues are the speeds at which information propagates for the
fluid equations. Since A = A(W) the System (2.32) is called quasi-linear.
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2.6 Incompressible Euler Equations

Let us now present the rescaled (non-dimensionalised) compressible Euler
equations:



∂ρ

∂t
+∇ · (m) = 0,

∂m
∂t

+∇ ·
(

m⊗m
ρ

)
+

1
ε2∇p = 0,

∂E
∂t

+∇ · (hm) = 0,

(2.36)

where ε stands for the dimensionless reference Mach number. The system is
closed with the suitable scaled equation of state, where:

p = (γ− 1)
(

E− ε2

2
ρu2
)

. (2.37)

Let us now consider an asymptotic expansion ansatz for the following vari-
ables:

p(x, t) = p0(x, t) + εp1(x, t) + ε2p2(x, t) + · · ·
u(x, t) = u0(x, t) + εu1(x, t) + · · ·
E(x, t) = E0(x, t) + εE1(x, t) + · · ·

(2.38)

Plugging this expansion in the momentum equation of (2.36) and consider-
ing terms O(1/ε) and O(1/ε2), we obtain that:

∇p0 = ∇p1 = 0. (2.39)

This leads to the conjecture that pressure must be constant in space up to
order ε. Thus from (2.38) we obtain:

p(x, t) = p0(t) + ε2p2(x, t) + · · · (2.40)

that allows only temporal variations.

The expansion in Mach number is also applied to the equation of state,
where:

p0 = (γ− 1)E0 (2.41)

Plugging the relation (2.39) and (2.41) into the equation for the energy from
(2.36), by taking the O(1) terms, one writes:
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
ρt +∇ · (ρu0) = 0,
(ρu0)t +∇ · (ρu0 ⊗ u0) +∇p2 = 0,

∇ · u0 = − 1
γp0(t)

dp0

dt
.

(2.42)

Under the assumption that we use periodic boundary conditions, i.e.:∫
Ω
∇ · u0dx = 0,

we integrate the last equation of (2.42) and we obtain dp0/dt = 0. This leads
to the deduction that the pressure p0 = p∗ is constant and thus we get that
∇ · u0 = 0.

Using these relations, the density equation becomes:

ρt + u0 · ∇ρ = 0. (2.43)

This means that in the limit case where ε = 0 the density will be advected
along the particle paths and if it’s constant at the initial time, it should re-
main constant at any time.

We impose that ρ(x, 0) = ρ∗(x), where ρ∗ is a strictly positive function such
that ρ∗ = O(1). Using well-prepared initial conditions where:


ρ(x, 0) = ρ∗(x) + ε2ρ2(x),

p(x, 0) = p∗ + ε2p2(x),
∇ · u(x, 0) = u0(x) +O(ε).

(2.44)

we obtain, at low Mach number (ε → 0), with ∇ · u0 = 0, the solution
(ρ, u, p) of the compressible Euler system (2.36) converges to the solution of
the incompressible Euler system:


ρt + u · ∇ρ = 0,
ρ (ut + (u · ∇u) +∇p2 = 0,
∇ · u = 0,
p = (γ− 1)E = p∗.

(2.45)
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where
p2 = lim

ε→0

1
ε2 (p− p∗)

This is implicitly defined by the constraint ∇ · u = 0 and explicitly given by
the equation:

− ∆p2 = ρ0∇2(u⊗ u). (2.46)

Compressible Euler equations converge to incompressible equations when
the Mach number becomes small. This was the motivation for building an
all Mach number semi-implicit scheme. When the Mach number is of order
one, modern shock capturing methods are able to capture shocks and other
complex structures with high numerical resolutions. A difficulty in the con-
struction such schemes consists in the different nature of the equations and
then in different numerical techniques traditionally used for solving them:
methods for compressible Euler is usually based on a conservative form,
explicit schemes in time and non-linear reconstruction, while the methods
for Euler incompressible are usually based on a non-conservative formula-
tion, on the implicit treatment of the pressure and on reconstructions which
are often linear. In Chapter 4 we present a semi-implicit all Mach number
scheme but first we have to present some well known techniques from the
literature.
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Chapter 3

Explicit Scheme
for 1D Euler Equations

In this chapter we present an explicit numerical method in order to build
the required background for the derivation of the semi-implicit scheme. We
present a first order finite volume scheme in space and time. The purpose
of this chapter is to present some well known techniques we used for the
development of our scheme. More details concerning finite volume scheme
can be found at the following classical books [111, 112, 6, 78, 79, 101].

We adopt a collocated grid for the spatial discretization which is more com-
mon in finite volumes for compressible flows. The choice of this grid also
reduces the implementation complexity, specifically in modern distributed
memory machine architectures.

3.1 Upwind Scheme

Standard centered difference in space and forward Euler in time gives a
numerical scheme that converges only under the restriction ∆t = O(∆x2),
which is not natural for hyperbolic problems. One can show that using three
level Runge-Kutta time discretization coupled with centered difference leads
to a scheme which is stable for c∆t < K∆x, where K is a constant that de-
pends on the scheme. On the other hand, it is possible to combine space and
time discretization, and obtain one level scheme (in time) which are stable.
The upwind scheme uses a first order approximation of the space derivative.

For the scalar conservation law:

ut + c ux = 0,
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upwinding time discretization is obtained by discretizing the space deriva-
tives as follows:

∂u
∂x

∣∣∣∣
xi

≈


ui − ui−1

∆x
if c ≥ 0

ui+1 − ui

∆x
if c < 0

First order upwinding is obtained by explicit Euler and first order upwind
space discretization1 :

un+1
i − un

i
∆t

+ c
un

i − un
i−1

∆x
= 0 if c ≥ 0,

un+1
i − un

i
∆t

+ c
un

i+1 − un
i

∆x
= 0 if c < 0.

The scheme can be written in a compact form as:

un+1
i = un

i − c+
∆t
∆x

(un
i − un

i−1)− c−
∆t
∆x

(un
i+1 − un

i )

where
c+ = max(c, 0) c− = min(c, 0)

For a linear system one has:

∂u
∂t

+ A
∂u
∂x

= 0, A ∈ Rm×m, u ∈ Rm (3.1)

where u(x, t) ∈ Rm is the unknown vector field and it is not clear where to
apply right or left difference.

Upwind schemes for a linear system can be constructed by diagonalizing the
system. Let Q be the matrix formed by the m independent right eigenvectors
of A and Λ the diagonal matrix containing the corresponding eigenvalues.
Then one has

A Q = Q Λ (3.2)

The diagonalization is always possible if we assume that the system is hyper-
bolic. Let us express the vector field u as a linear combination of eigenvectors
of A:

u = Qv v ∈ Rm (3.3)

1For the moment we do not specify the range of the cell index i, which depends also on
the boundary conditions and on the order of accuracy of the method
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Then, substituting into (3.1) one has

∂v
∂t

+ Λ
∂v
∂x

= 0. (3.4)

This means that the equations decouple, and one can apply the upwind
scheme to each scalar equation of system (3.4),

vn+1
i = vn

i −
∆t
∆x
[
Λ+(vn

i − vn
i−1) + Λ−(vn

i+1 − vn
i )
]

(3.5)

where
Λ+ = diag ((λ1)+, . . . , (λm)+)

Λ− = diag ((λ1)−, . . . , (λm)−)

and λk, k = 1, . . . , m denotes the eigenvalues of A.
Using transformation (3.3) to go back to the original variable u one has the
upwind scheme for u in the form

un+1
i = un

i −
∆t
∆x
(

A+(un
i − un

i−1) + A−(un
i+1 − un

i )
)

with
A+ = QΛ+Q−1 A− = QΛ−Q−1

What is the restriction on the time step? The restriction is that for all eigen-
values λk, condition

|λk|
∆t
∆x
≤ 1 k = 1, . . . , m

has to be satisfied. This condition can be written in the form

ρ(A)
∆t
∆x
≤ 1

where
ρ(A) ≡ max

1≤k≤m
|λk(A)|

denotes the spectral radius of matrix A, i.e. the maximum eigenvalue of the
matrix (in absolute value).

The geometric interpretation of the stability condition is the following. For
each eigenvalue λk one uses left or right difference on the characteristic vari-
able according to whether λk > 0 or λk < 0. The characteristic emanating
back from point (xi, tn+1) will intercept the line t = tn at a point which lies
between xi−1 and xi (if λk > 0) or between xi and xi+1 if (if λk < 0).
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This condition is a particular case of a more general stability condition for
systems, known as CFL condition, which states that a necessary condition
for stability is that the analytical domain of dependence of a given grid point
has to be contained by the numerical domain of dependence. Using the same
argument of the diagonalization, one can show that stability condition for
Lax-Friedrichs and Lax-Wendroff scheme is also:

ρ(A)
∆t
∆x
≤ 1

3.2 The Riemann problem

How can one generalize upwind schemes to nonlinear conservation laws?
A popular method, that can be considered the ancestor of many modern
schemes for the numerical approximation of conservative laws, is the Go-
dunov method. This method is based on the solution of the Riemann prob-
lem.

A Riemann problem is an initial value problem for which the initial data is
piecewise constant:

∂u
∂t

+
∂ f
∂x

= 0,

u(x, 0) =
{

ul, x < 0,
ur, x > 0

The solution of the Riemann problem is known for several hyperbolic sys-
tems of conservation laws with great relevance in the applications, as is the
case of gas dynamics (see, for example, [78]). The solution to the Riemann
problem centered at the origin is a similarity solution that depends on x/t ,
u = u(x/t; ul, ur). In many cases, however, its solution is not available an-
alytically, or it is quite expensive to compute. In such cases one uses either
approximate Riemann solvers, or schemes that do not require the solution to
the Riemann problem. For the moment we shall assume that we know the
solution of the Riemann problem.

3.3 Godunov Scheme

Let us assume that at time tn we know an approximation of the cell average,
{ūn

i }, and that the solution is a piecewise constant function:

u(x, tn) '∑
i

ūn
i χi(x) (3.6)
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where

χi(x) =
{

1 x ∈ [xi−1/2, xi+1/2]
0 otherwise

For short later times the field vector u(x, t) will be the solution of several
Riemann problems, centered in xi+1/2.

Let us integrate the conservation law in the cell Ii × [tn, tn+1]. Then one has:

ūn+1
i = ūn

i −
1

∆x

∫ tn+1

tn
[ f (u(xi+1/2, t))− f (u(xi−1/2, t))] dt (3.7)

Now if the Riemann fan do not interact (which is obtained if the time step
∆t satisfies a suitable CFL condition) then the function u(xi+1/2, t) can be
obtained from the solution of the Riemann problem with states ui and ui+1
across the interface:

u(xi+1/2, t) = u∗(0; ūi, ūi+1) =: u∗(ūi, ūi+1)

This quantity does not depend on time, and therefore Eq.(3.7) becomes

ūn+1
i = ūn

i −
∆t
∆x

[ f (u∗(ūi, ūi+1))− f (u∗(ūi−1, ūi))] (3.8)

If the function u(x, tn) is really a piecewise constant function, then Equation
(3.8) gives the correct average of the solution at time tn+1. In order to pro-
ceed from time tn+1 to time tn+2 applying the same technique, one has to
approximate the solution at time tn+1 as a piecewise constant function. It is
essentially this projection that introduces the approximation.

When applied to a linear system, Godunov scheme reduces to first order
upwind. To see this, let us consider an interface, let us say at xi+1/2, and let
us write

ūi+1/2 = ūi+1 − ūi = ∑
k

α
(i+1/2)
k rk

where rk are the right eigenvectors of matrix A that defines the linear flux:

f (u) = A u

Then the solution of the Riemann problem can be written as

u∗(ūi, ūi+1) = ūi + ∑
λk<0

α
(i+1/2)
k rk

= ūi+1 − ∑
λk>0

α
(i+1/2)
k rk
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since the contribution to the jump with λk < 0 will propagate to the left, and
the contribution with λk > 0 will propagate to the right.
Substituting this expression into (3.8) one has

ūn+1
i = ūn

i −
∆t
∆x

[
A

(
ūi + ∑

λk<0
α
(i+1/2)
k rk

)
− A

(
ūi + ∑

λk>0
α
(i−1/2)
k rk

)]

= ūn
i −

∆t
∆x

[
∑

λk<0
α
(i+1/2)
k λkrk + ∑

λk>0
α
(i−1/2)
k λkrk

]

Multiplying by Q−1, and considering that Q−1rk = ek, one has

vn+1
i = vn

i −
∆t
∆x

[
∑

λk<0
λk(v

(k)
i+1 − v(k)i )ek + ∑

λk>0
λk(v

(k)
i − v(k)i−1)ek

]

where ūn
i = Q vn

i , vi being characteristic variables, α
(i+1/2)
k = v(k)i+1 − v(k)i ,

and ek is the k-th column of the m×m identity matrix. This relation can be
written as

vn+1
i = vn

i −
∆t
∆x

(Λ−(vi+1 − vi) + Λ+(vi − vi−1)) ,

which is the same as Eq.(3.5).

Godunov scheme is therefore first order accurate in space and time. The
Godunov method is based on the solution of the Riemann problem, which
makes it expensive to use in many circumstances. Several approximate Rie-
mann solvers have been developed, that make Godunov methods more ef-
ficient. The most popular is the one derived by Phil Roe [99]. Another ap-
proximate Riemann solver has been proposed by Harten, Lax and Van Leer
[57]. For more details concerning the Riemann solvers we refer the reader to
the books by LeVeque [78, 79].

3.4 Finite Volume Scheme

Higher order extension of the Godunov method can be obtained by several
techniques. One is to use a more accurate reconstruction of the function
from cell averages, such as, for example, a piecewise linear function, and
then solve the generalized Riemann problem.

A second alternative is to use a semidiscrete scheme of the following form.
In a finite volume scheme, the basic unknown is the cell average ūj. We have
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seen that the solution u(x, t) satisfies the equation:

d < u >i

dt
+

f (u(xi+1/2, t))− f (u(xi−1/2, t))
h

= 0

where:
< u >i≡

1
h

∫
Ii

u(x, t) dt

.

First order (in space) semidiscrete schemes can be obtained using Fi+1/2 =
F(ūi, ūi+1) in place of f (u(xi+1/2, t)):

dūi

dt
= −F(ūi, ūi+1)− F(ūi−1, ūi)

h
.

A scheme based on this formula, however, is restricted to first order accu-
racy.

3.4.1 High Order Finite Volume Discretization

Higher order schemes are obtained by using a piecewise polynomial recon-
struction in each cell, and evaluating the numerical flux on the two sides of
the interface.

dūi

dt
= −

F(u−i+1/2, u+
i+1/2)− F(u−i−1/2, u+

i−1/2)

h
, (3.9)

where F(u−, u+) can be, for example, the flux function defining a Godunov
scheme F(u−, u+) = f (u∗(u−, u+)), or some other numerical flux function,
and the values u+

i+1/2, u−i+1/2 are obtained by a suitable reconstruction from
cell averages.

A second order scheme constructed by using a piecewise linear reconstruc-
tion is obtained as follows. Given {un

i }, compute a piecewise linear recon-
struction

L(x) = ∑
i

Li(x)χi(x)

with Li = ūi + u′i(x− xi).

The quantity u′i is a suitable (first order) approximation of the space deriva-
tive of the profile u(x) at xi.

The numerical approximation of the first derivative is a very important point,
since the accuracy and TVD properties of the scheme depend on it. If, for
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example, one uses standard central difference, then the reconstructed piece-
wise linear function will have spurious extrema, and its total variation will
be larger that the total variation of the discrete data.

In order to prevent the formation of spurious extrema, the derivative has to
be reconstructed by a suitable limiter.

Minmod Flux Limiter

The simplest one is the so called minmod limiter [98], defined as:

minmod (a1, a2, a3) =

 sgn(a1)
3

min
i=1
|ai|, if all ai have the same sign,

0, otherwise.

For the computation of the reconstruction of the derivative, using the min-
mod limiter, one writes:

u′i = minmod
(

θ
ui+1 − ui

∆x
,

ui+1 − ui−1

2∆x
, θ

ui − ui−1

∆x

)
, (3.10)

where the parameter θ ∈ [1, 2] is a smoothness indicator.

...
x
i

x
i-1

x
i-2

x
i+2

x
i+1

...

x
i+1/2

+-

FIGURE 3.1: Reconstruction using the minmod flux limiter
with θ = 1 on each cell interface.
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3.4.2 Numerical Flux Function

There are many options that one can use for the definition of the numeri-
cal flux function. One of the original ideas, concerning the finite volumes
schemes, was built from Godunov when he proposed an ingenious way to
compute the numerical flux. Godunov defined a Riemann problem at each
cell interface xi+1/2 and thus the flux function (for scalar cases) is defined as
follows:

Fi+1/2 =


min

ui≤w≤ui+1
f (w), if un

i ≤ un
i+1

max
ui+1≤w≤ui

f (w), if un
i > un

i+1.
(3.11)

Another option for the numerical flux is the Lax-Friedrichs numerical flux
function where:

Fi+1/2 =
1
2
[

f (un
i ) + f

(
un

i+1
)]
− ∆t

2∆x
[
un

i+1 − un
i
]

. (3.12)

However the parameter ∆x
2∆t may introduce a large amount of numerical dif-

fusion. For this reason a most sophisticated version of the Lax-Friedrichs
flux function is introduced, the so-called local Lax-Friedrichs flux function
(also called Rusanov flux), where:

Fi+1/2 =
1
2
[

f (un
i ) + f

(
un

i+1
)]
− αi+1/2

2
[
un

i+1 − un
i
]

(3.13)

The choice of the parameter α is crucial for the stability of the scheme and
the efficiency. In the classical explicit schemes the parameter is computed as
the locally determined maximum value between the cells i and i + 1 of the
wave speeds and is given by:

αi+1/2 = max (|ui|+ ai, |ui+1|+ ai+1) , (3.14)

where a =
√

γp
ρ is the sound speed.

Several other numerical flux functions can be obtained by approximate Rie-
mann solvers, such as the Roe solver [98] of the HLL solver [57]. For an
account of several approximate solvers and numerical flux functions see, for
example, the book by LeVeque [78].
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xixi-1 xi+1

t
n

t
n+1

FIGURE 3.2: Integration over a finite volume on a collocated
grid.

3.5 Discretization in Time

Here we would like to introduce some well known time discretization tech-
niques.

Now, we want to introduce another family of time integration numerical
techniques that we need for the development of the semi-implicit scheme.

For a scalar conservation law:

ut + ux = 0,

we introduce a compact form by assuming a suitable spatial discretization
for the derivatives in space:


dU
dt

(t) = H (U(t)) , ∀t ≥ t0

U (t0) = U0.
(3.15)

Here U stands for the discrete approximation of u andH for the approxima-
tion of −∂ f (u)/∂x achieved by a suitable spatial discretization.

3.5.1 Runge-Kutta Schemes

Once the system of PDE’s has been reduced to a system of ODE’s, it may
be solved numerically by some standard ODE solver, for example, Runge-
Kutta.

Apply to the initial value problem (3.15) an explicit Runge-Kutta scheme
with s stages:
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Un+1 = Un + ∆t
s

∑
i=1

biK(i). (3.16)

The K(i) are called Runge-Kutta fluxes and are defined by:

K(i) = H(U(i)) with U(1) = Un, i = 1, · · · , s, (3.17)

where the U(i) will be called intermediate values, and, for an explicit scheme,
are given by:

U(i) = Un + ∆t
i−1

∑
j=1

aijK(j), i = 1, · · · , s− 1. (3.18)

The matrix A =
(
ai,j
)

, and the vector b define uniquely the RK scheme. With
the present notation, A is a s× s lower triangular matrix, with zero elements
on the diagonal.

SSP Schemes

When constructing numerical schemes for conservation laws, one has to
take a great care in order to avoid spurious numerical oscillations arising
near discontinuities of the solution. This is avoided by a suitable choice of
space discretization and time discretization. Solution of scalar conservation
equations, and equations with a dissipative source have some norm that de-
creases in time. It would be desirable that such property is maintained at a
discrete level by the numerical method.

Definition: A sequence {Un} is said to be strongly stable in a given norm
‖ · ‖ provided that

∥∥Un+1
∥∥ ≤ ‖Un‖ for all n ≥ 0. The most commonly

used norms are the TV-norm and the infinity norm. A numerical scheme
that maintains strong stability at discrete level is called Strong Stability Pre-
serving (SSP).

Here we review some basic facts about RK-SSP schemes. First, it has been
shown [50] under fairly general conditions that high order SSP schemes are
necessarily explicit. Second, observe that a generic explicit RK scheme can
be written as:
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U(0) = Un,

U(i) =
i−1

∑
j=0

(
αijU(j) + ∆tβijL(U(j))

)
, i = 1, . . . , s,

Un+1 = U(s),

(3.19)

where αij ≥ 0 and αij = 0 only if βij = 0. This representation of RK schemes
(which is not unique) can be converted to a standard Butcher form in a
straightforward manner. Observe that for consistency, one has ∑i−1

j=0 αij = 1.
It follows that if the scheme can be written in the form (3.19) with non-
negative coefficients βi,j then it is a convex combination of Forward Euler
steps, with step sizes βij/αij∆t. A consequence of this is that if Forward Eu-
ler is SSP for ∆t ≤ ∆t∗, then the RK scheme is also SSP for ∆t ≤ c∆t∗, with
c = minij

(
αij/βij

)
[107].

The constant c is a measure of the efficiency of the SSP-RK scheme, there-
fore for the applications it is important to have c as large as possible. For a
detailed description of optimal SSP schemes and their properties see [104].

TVD Runge-Kutta

To achieve higher order accuracy in the discretization in time, one can use
Total Variation Diminishing (TVD) Runge-Kutta (RK) methods [108, 107, 78].
These methods guarantee that the total variation of the solution does not
increase, i.e. no new extrema are generated. Below we consider 1st order
and 2nd order TVD RK.

• 1st order,

The 1st order TVD RK is identical to forward Euler and 1st order RK. It is
given by:

Un+1 −Un

∆t
= H(Un) (3.20)

• 2nd order,

The 2nd order TVD RK method is also known as 2nd order RK and Heun’s
predictor-corrector method.

First, an Euler step is taken to advance the solution to time tn + ∆t :
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U(1) −Un

∆t
= H(Un), (3.21)

followed by a second Euler step:

U(2) −Un

∆t
= H(U(1)), (3.22)

followed by an averaging step:

Un+1 =
U(1) + U(2)

2
. (3.23)

that takes a convex combination of the initial data and the result of two Euler
steps. The final averaging step produces the second order accurate TVD
approximation to U at time tn + ∆t.

Higher order TVD RK schemes there exist but there are beyond the scope of
this thesis. For a detailed description we refer the reader to [108, 107, 49]

Projection method

Let us now recall the incompressible Euler equations from Chapter 2. As-
suming, without loss of generality, that the density is constant and equal to
one, one writes:

ut + u · ∇u +∇p = 0
∇ · u = 0. (3.24)

This system models the flow of an inviscid, incompressible fluid with con-
stant density. The vector-valued function u(x, t) is the velocity of the fluid
and the scalar-valued function p(x, t) is the pressure.

Using the standard techniques for the numerical solution of differential equa-
tions, one would probably think of (3.24) as some kind of heat equation and
try the simplest possible scheme in time, namely an explicit forward step:

un+1 − un

∆t
= −un · ∇un −∇pn (3.25)

where ∆t is the timestep and n denotes the time level. The equation can
be trivially solved for un+1, after having introduced, e.g., finite elements,
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finite differences, finite volumes, or spectral methods to discretize the spatial
operators.

However, the fundamental problem with this approach is that the new ve-
locity un+1 does not, in general, satisfy the equation∇ · un+1 6= 0. Moreover,
there is no natural computation of pn+1.

A possible remedy is to introduce a pressure at pn+1, which leaves two un-
knowns, un+1 and pn+1, and hence requires a simultaneous solution of both
the incompressible Euler equations:


un+1 − un

∆t
= −un · ∇un −∇pn+1

∇ · un+1 = 0.
(3.26)

More implicitness of the velocity terms can easily be introduced. One can,
for example, try a semi-implicit approach, based on a Backward Euler scheme,
using an old velocity (as a linearization technique) in the convective term
u · ∇u.

However, this scheme are highly inefficient since it requires, at each time
step, the solution of (3.26) which is coupled system for un+1, pn+1. This is
precisely the reason for proposing the projection method, as a numerical
device to decouple the computation of un+1and pn+1 [24].

Instead of simultaneously satisfying the momentum equation and the in-
compressibility constraint, projection method proceeds by first ignoring the
incompressibility constraint, compute an intermediate velocity field u∗ us-
ing the momentum equation and then project u∗ back to the space of incom-
pressible vector fields to obtain un+1and pn+1. The actual realization of this
procedure for the first order scheme can be summarized as :

• First we compute an intermediate velocity, u∗, explicitly using the mo-
mentum equation by ignoring the pressure gradient term:

u∗ − un

∆t
= −un · ∇un. (3.27)

• In the second half of the algorithm, the projection step, we correct the
intermediate velocity to obtain the final solution of the time step un+1:


un+1 − u∗

∆t
= −un · ∇un −∇pn+1

∇ · un+1 = 0.
(3.28)
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Alternatively a fully implicit approach can be obtained using a backward
Euler scheme for (3.24) where the convective term u · ∇u is evaluated as
un+1 · ∇un+1, leads to a nonlinear equation in un+1.

For the moment it is sufficient to describe the aforementioned techniques for
treating implicity the stiff terms of the incompressible Euler equations. This
technique it is crucial for the derivation of the semi-implicit scheme that we
will describe later in Chapter 4.

3.6 Boundary Conditions

Now we introduce the different kind of boundary conditions that we use in
order to perform the numerical tests. The method that we are using is the
ghost cell method. First we present the transmissive boundary conditions.
Such conditions are used in some tests when we have pulses and we want
to monitor the acoustic wave and the material wave separately without in-
teraction for a short time. On the other hand, reflective boundary conditions
are used when we want to preserve all the quantities since nothing exits the
computational domain. In the case of reflective boundary conditions large
runtimes can be used and check the results after many interactions between
the two types of waves. The same property also exists in the final set of
boundary conditions the so-called periodic. These artificial conditions are
used only for computational purpose. In these case, whatever exits from the
one side of the computational domain enters from the other side and thus
all the quantities are preserved. Usually these boundary conditions are used
for very long runtimes tests.

Let us now describe the technical details about how to implement such bound-
ary conditions. Assume that the discretization consists by N uniform cells.
Because of the use of the collocated grid the values of the solutions are ob-
tained at the cell centers i.e., the numerical solution Un

i is computed at the
center of the cell i which in 1D has coordinates xi. In order to introduce
the boundary conditions at the edges of the grid, we extend the grid from
N cells to N + 2 cells by adding on cell at each edge. These extra cells are
called ghost cells and their presence is indispensable for the implementation
of the boundary conditions. Defining the values U1 and UN+2 at the ghost
cells, we can choose what type of boundary conditions we want to use.

3.6.1 Transmissive Boundary Conditions

Assume that U is the vector of the numerical solution of the Euler equations
in 1D, where U = (ρ, m, E)T. In the case of transmissive boundary conditions
the values at the ghost cells are the following:
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FIGURE 3.3: Grid setup.

U1 = U2 ⇔

 ρ1
m1
E1

 =

 ρ2
m2
E2

 , (3.29)

UN+2 = UN+1 ⇔

 ρN+2
mN+2
EN+2

 =

 ρN+1
mN+1
EN+1

 . (3.30)
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FIGURE 3.4: Transmissive boundary conditions.

3.6.2 Reflective Boundary Conditions

Using the same notation as before, we introduce the reflective boundary con-
ditions or wall boundary conditions. In this case the ghost cell values are
computed as the transmissive boundary conditions case with the exception
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of the momentum quantity which receives the neighbor value but with mi-
nus sing, i.e.:

 ρ1
m1
E1

 =

 ρ2
−m2

E2

 ,

 ρN+2
mN+2
EN+2

 =

 ρN+1
−mN+1

EN+1

 . (3.31)

3.6.3 Periodic Boundary Conditions

Finally we may use periodic boundary conditions for sake of simplicity in
some tests. In some cases when we want to check the stability of the scheme
by using stationary solutions we use periodic boundary conditions. The
implementation is straightforward where by using the same notation one
writes:

U1 = UN+1 ⇔

 ρ1
m1
E1

 =

 ρN+1
mN+1
EN+1

 , (3.32)

UN+2 = U2 ⇔

 ρN+2
mN+2
EN+2

 =

 ρ2
m2
E2

 . (3.33)
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FIGURE 3.5: Periodic boundary conditions.
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Chapter 4

Semi-Implicit Scheme
for 1D Euler Equations

Numerical methods for the solution of hyperbolic systems of conservation
laws has been a very active field of research in the last decades. Several very
effective schemes are nowadays treated in textbooks which became a classic
on the topic [78, 114, 48]. Because of the hyperbolic nature, all such systems
develop waves that propagate at finite speeds. If one wants to accurately
compute all the waves in a hyperbolic system, then one has to resolve all the
space and time scales of the system. Most schemes devoted to the numeri-
cal solution of such systems are obtained by explicit time discretization, and
the time step has to satisfy a stability condition, known as CFL condition.
Usually such a restriction is not a problem: because of the hyperbolic nature
of the system, if the order of accuracy is the same in space and time, accu-
racy restriction and stability restrictions are almost the same, and the system
is not stiff. There are, however, cases in which some of the waves are not
particularly relevant and one is not interested in resolving them. Let us con-
sider as a prototype model the classical Euler equations of compressible gas
dynamics. In the low Mach number regimes, it may happen that the acous-
tic waves carry a negligible amount of energy, and one is mainly interested
in accurately capturing the motion of the fluid. In this chapter we propose
propose a simple second order accurate scheme for the numerical solution
of Euler equation of gas dynamics that are (linearly) implicit in the acoustic
waves, eliminating the acoustic CFL restriction on the time step. The general
idea is that explicit differential operators in space relative to convective or
material speeds are discretized by local Lax-Friedrics fluxes and the linear
implicit operators, pertaining to acoustic waves, are discretized by central
differences. First we present the first order scheme in space and time. We
adopt a collocated grid for the spatial discretization which is more common
in finite volumes for compressible flows. The choice of this grid also reduces
the implementation complexity, specifically in modern distributed memory
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machine architectures.

Let us now introduce the Euler equations in one dimension which come from
the equations derived in Chapter 2:



∂ρ

∂t
+

∂m
∂x

= 0,

∂m
∂t

+
∂

∂x
(mu + p) = 0,

∂E
∂t

+
∂

∂x
(hm) = 0.

(4.1)

The equation of state for a perfect gas stands for:

E =
1
2

ρu2 +
p

γ− 1
. (4.2)

Here, we use this equation of state in order to derive our scheme, but the
scheme can be easily adapted to a more general equation of state. It’s straight-
forward that we can use, with minor changes, any equation of state where
the energy and the pressure terms are linearly correlated but also more gen-
eral equations of state.

The idea of the proposed scheme is to treat with two different ways the
waves of the system. More specifically, we choose to treat the acoustic waves
implicitly, while the material waves explicitly. The terms that describe mate-
rial waves will be with some sort of an upwind discretization in space while
the terms which are responsible for the acoustic waves will be discretized in
space with central difference.

The System of equations (4.1) has the structure of a quasi linear hyperbolic
system of conservation laws and it can be written in the following form:

∂W
∂t

= −∂F (W)

∂x
, (4.3)

where W = (ρ, m, E)T and F = (m, mu + p, hm).

Now we can rewrite the system in a compact form, assuming that we ap-
proximate the spatial derivatives that appear in the system by suitable dis-
crete operators, as follows:
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
dU
dt

(t) = H (UE(t), UI(t)) , ∀t ≥ t0

U (t0) = U0.
(4.4)

We denote by U the discrete approximation of W which can be splitted into
two parts. The first part is the non-stiff part which is correlated with the
material waves and thus we treat it with an explicit way, so-called UE. The
second part is the stiff one corresponding with the acoustic waves, so we
choose to treat these terms implicitly and we name them UI . Finally, H de-
notes the the approximation of the right hand side of Equation (4.3) which is
going to be described in detail later.

4.1 1st Order Discretization in Time

In order to obtain a first order scheme, first we have to discretize the gov-
erning equations in time. To achieve this we discretize the time derivative
of (4.4) using backward differences over a time step ∆t, thus the first-order
accurate temporal discretization is given by:

Un+1 −Un

∆t
= H

(
Un, Un+1

)
, (4.5)

where n + 1 denotes the value at the next time step t + ∆t. Now we have to
describe the spatial discretization of the termH

(
Un, Un+1).

4.2 1st Order Discretization in Space

Let us now present the semi-implicit scheme derived from the implicit treat-
ment of the pressure term in the momentum equation. Combining the semi-
discrete form of Equation (4.5) and the System of equations (4.1) we have the
fully discrete form of the numerical scheme.

We discretize the System (4.1) at a time interval [tn, tn+1]:


ρn+1 = ρn − ∆tD̂x (mn) , (4.6a)

mn+1 = mn − ∆tD̂x (mnun)− ∆tDx(pn+1), (4.6b)

En+1 = En − ∆tDx(hnmn+1), (4.6c)
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where with D̂x we denote the upwind discrete derivative given by

D̂x(Fi) =
Fi+1/2 − Fi−1/2

∆x
. (4.7)

Here we choose to use the local Lax-Friedrichs flux function (for more details
see Section 3.4) for the finite volume derivatives, where:

Fi+1/2 =
1
2
[
F (Un

i ) +F
(
Un

i+1
)]
− αi+1/2

2
[
Un

i+1 −Un
i
]

(4.8)

In classical explicit schemes it is a bound on the maximum wave speeds, and
is given by

αj+1/2 = max(|uj|+ aj, |uj+1|+ aj+1),

where a2 = γp/ρ denotes the square of the sound speed. In our case, since
the acoustic waves are treated implicitly, we use α proportional to the ma-
terial speed. We expect that for very low Mach number, α ≈ |u| should be
sufficient, while for Mach number larger than one, the speed of sound is
bounded by the fluid speed. For this reason, we choose

αj+1/2 = max(|uj|, |uj+1|), (4.9)

On the other hand, Dx will be computed with a centred scheme:

Dx(Fi) =
F (Ui+1/2)−F (Ui−1/2)

∆x
. (4.10)

In practice, F j(Ui−1/2) will be approximated by (F j(Ui−1) + F j(Ui))/2,
therefore Equation (4.10) becomes the classical centred approximation of the
first derivative.

4.3 Pressure Splitting

Let us now recall the discretization of the Euler equations, i.e. System (4.6).
This technique was originally proposed in our recent published paper [5]. In
order to substitute the pressure term pn+1 in Equation (4.6b), we recall the
Equation of state for a perfect gas in one dimension:

pn+1 = (γ− 1)
(

En+1 − mnun

2

)
. (4.11)
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We choose to treat implicitly the Energy term while the kinetic energy part
of the equation of state is computed explicitly.

Plugging Equation (4.11) into Equation (4.6b) we obtain:

mn+1 = mn −
(

3− γ

2

)
∆tD̂x (mnun)︸ ︷︷ ︸

m∗

−(γ− 1)∆tDx(En+1), (4.12)

where we denote with m∗ the terms that are treated explicitly.

Substituting the term mn+1 by using the Equation (4.12) on the Equation
(4.6c) one gets:

En+1 = En − ∆tD̂x (hnm∗)︸ ︷︷ ︸
E∗

+(γ− 1)∆t2Dx

(
hnDx

(
En+1

))
, (4.13)

where with E∗ we denote the explicit part which is also the right hand side of
the linear system whose the solution gives the energy at the new time n + 1.

On a cell i of a collocated grid, one can write the fully discrete expression
which occurs from the Equation (4.13) as follows:

En+1
i = E∗i + (γ− 1)

∆t2

∆x2

(
hn

i+1/2

(
En+1

i+1 − En+1
i

)
− hn

i−1/2

(
En+1

i − En+1
i−1

))
(4.14)

Writing the Equation (4.14) in the form of a linear system of equations one
gets:

En+1
i−1 (−chi−1/2) + En+1

i (1 + c(hi−1/2 + hi+1/2)) + En+1
i+1 (−chi+1/2) = E∗i , (4.15)

where the parameter c = (γ − 1)∆t2/∆x2, under the assumption that the
grid is uniform. This is a tridiagonal sparse linear system of equations (see
Figure 4.1) that can be solved in order to obtain the solution. The litera-
ture concerning the solution of such systems is very rich and one can find
plethora of methods (iterative methods, direct solvers etc.).
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(a) Reflective BC. (b) Periodic BC.

FIGURE 4.1: Sparsity pattern of the matrix that occurs from the
implicit terms at the energy equation.

4.4 Extension to Second Order

In order to derive second order accurate scheme we use for the finite vol-
ume approximations, namely D̂x, the MUSCL scheme equipped with the θ-
minmod limiter which are described in detain in Section 3.4. For the centred
derivatives, in order to obtain a second order accurate in space derivative,
we use the following approximation:

Dx (Dx(F (Ui))) =
F (Ui+1)− 2F (Ui) +F (Ui−1)

∆x2 . (4.16)

Finally for the time derivatives we use the implicit-explicit Runge-Kutta
method which is described below in Subsection 4.4.1.

This combination of the conservative linear reconstruction technique and
the implicit-explicit Runge-Kutta scheme is expandable to higher order (for
the case of Euler equations of isentropic gas dynamics see [19]). By using a
higher order non-oscillatory reconstruction for the finite volume derivatives
and higher order central space discretization for the stiff terms combined
with an appropriate Runge-Kutta scheme one can achieve higher order semi-
implicit schemes.

4.4.1 2nd Order Discretization in Time

Until now the proposed schemes are second order accurate in space but still
first order accurate in time. In order to achieve second order of accuracy also
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in the time domain, we use an implicit-explicit Runge-Kutta method which
was originally proposed in [11].

After the system is discretized in space with the aforementioned technique,
we can write it as a set of ordinary differential equations for a vector U(t) ∈
RNm, where N is the number of cells for the space discretization and m the
numbers of equations. With the objective to solve this system of ODE’s we
use an implicit-explicit Runge-Kutta scheme. An s-stage implicit-explicit
Runge-Kutta method can be represented, by adopting the usual notation,
with the following double Butcher tableaux:

ĉ Â

b̂>
c A

b>
, (4.17)

where Â, A ∈ Ms,s(R) and the coefficients ĉ, c, b̂, b ∈ Rs. In the case of non-
autonomous systems the coefficients ĉ and c are related with the matrices Â
and A as follows:

ĉi = ∑
j

âij, ci = ∑
j

aij (4.18)

where i and j are the row and the column indices respectively.

Let us now describe in detail the Butcher tableaux we are using in order
to obtain second order accuracy in time. The matrices Â and A are lower
triangular and specifically the matrix Â has all the diagonal elements equal
to zero. Moreover, in this particular IMEX-RK scheme we have b̂ = b. Thus,
the detailed form of the tableaux is:

0 0 0
ĉ ĉ 0

1− β β

β β 0
1 1− β β

1− β β
, (4.19)

where we choose β = 1− 1/
√

2 which is value is the root of the polynomial
β2 − 2β + 1/2 = 0 and ĉ = 1/(2β). This IMEX-RK method is a combination
of a second order Runge-Kutta method, for the explicit part, and an L-stable
second order singly diagonal stiffly accurate Runge-Kutta method (SDIRK)
for the implicit part, and the combination is called LSDIRK2.

Let us now describe the algorithm that is the outcome of the proposed Runge-
Kutta method. Assume that the numerical solution Un is known at the
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timestep n and we want to compute the numerical solution Un+1 at the
timestep n + 1. First we have to compute the stage values:

U(i)
E = Un + ∆t

i−1

∑
j=1

âijH
(

U(j)
E , U(j)

I

)
, (4.20)

U(i)
I = U(i)

∗ + (∆t)aiiH
(

U(i)
E , U(i)

I

)
, (4.21)

where i = 1 . . . s. We denote by U(i)
∗ , at each stage i, the following:

U(i)
∗ = Un + ∆t

i−1

∑
j=1

aijH
(

U(j)
E , U(j)

I

)
. (4.22)

There is a major advantage concerning the proposed scheme. The only step
that requires implicit calculation is at the Equation (4.21) in order to compute
the value of U(i)

I . After the aforementioned evaluations the solution at the
new timestep n + 1 is computed as follows:

Un+1 = Un + ∆t
s

∑
j=1

biH
(

U(i)
E , U(i)

I

)
. (4.23)

In order to simplify the implementation procedure we can rewrite the calcu-
lations needed at the Runge-Kutta method steps as follows. We define:

UI = S (U∗, UE, ∆t) , (4.24)

where S is the function (solver) which returns the first order in time solution
of the following problem:

UI = U∗ + ∆tH (UE, UI) . (4.25)

Using this notation the two-step (s = 2) method can be summarized in the
following equations:
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U(1)
I = S(Un, Un, β∆t), (4.26)

U(2)
E =

(
1− ĉ

β

)
Un +

ĉ
β

U(1)
I , (4.27)

U(2)
∗ =

2β− 1
β

Un +
1− β

β
U(1)

I , (4.28)

U(2)
I = S(U(2)

∗ , U(2)
E , β∆t). (4.29)

Finally we obtain the second order in time and space solution at the new
timestep n + 1 where Un+1 = U(2)

I .
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Numerical Tests
for 1D Euler Equations

In this chapter we perform multiple tests but first we have to introduce some
useful numbers. The Mach number stands for M = u0/c0 where u0 is the
fluid typical velocity and a the typical speed of sound in the medium:

a =

√
γp
ρ

. (5.1)

The typical CFL number or acoustic CFL number creates a condition which
states that the time step should be limited by the space step divided by the
fastest wave speed. Thus the timestep ∆t is defined:

∆t = CFL
∆x

max |u|+ a
(5.2)

For classical schemes the classical CFL restriction states that the CFL number
is less than one. In the case of the semi-implicit scheme we can overpass this
restriction. The only condition that we have to obey is that the material CFL
number must be less than one. The timestep ∆t by using the material CFL
number is defined as follows:

∆t = CFLIM
∆x

max |u| (5.3)

First, we run the classical tests of Sod shock tube and Lax shock tube in order
to verify the shock capturing ability of the proposed scheme for intermediate
values of Mach numbers. The use of CFL numbers bigger than one for these
test is forbidden and this is not the scope of these runs. The purpose of the
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shock tests is to check our scheme in terms of robustness and stability in
classical cases which are well known from the literature.

Afterwards, we present a test case with a stronger shock in order to check the
robustness of the semi-implicit scheme. Again, the acoustic CFL condition is
obeyed due to the fact of the presence of a shock.

Then we run a test with two colliding acoustic pulses in order to check the
capability of the scheme to filtering out the acoustic waves. Bu using the clas-
sical definition of Courant number where CFL = (∆t max(|u|+ a))/∆x we
show that the proposed scheme for small CFL numbers captures the acoustic
waves, while using greater than one CFL numbers it filters them out.

Another test with material and acoustic waves is presented. In this test we
manipulate two waves, an acoustic pulse and a material wave, and we com-
pare the results with variable CFL numbers in order to show how one can
benefit form this scheme if is not interested in the acoustic waves.

5.1 Sod Shock Tube

This is a classical shock tube test where the domain is [0, 1] and is discretized
with 100 equal cells. The final time for this test is T = 0.168. Initially the
discontinuity is placed at x = 0.5 with the initial conditions at the left and
the right respectively:

ρ
u
p


L

=

1
0
1

 ,

ρ
u
p


R

=

0.125
0

0.1

 .

We compare our semi-implicit scheme with an explicit scheme equipped
with local Lax-Friedrichs flux. The Mach number for this test is M ' 1.
In Figure 5.1 we compare the density profiles for first and second order ac-
curate schemes. We observe, as in velocity plot (see Figure 5.2) and pressure
plot (see Figure 5.3), that the two solutions are almost indistinguishable.

In this test the results are obtained, in both cases (explicit and semi-implicit),
with CFL = 0.5. We perform a series of classical tests in order to check the
scheme for robustness even if we don’t gain any performance improvement,
in term of acceleration of the computations by using bigger CFL numbers.
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(b) Second Order.

FIGURE 5.1: Density profiles for Sod shock tube test at the final
time t = 0.168, with N = 100 and CFL = 0.5 for explicit and

semi-implicit.
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(b) Second Order.

FIGURE 5.2: Velocity profiles for Sod shock tube test at the final
time t = 0.168, with N = 100 and CFL = 0.5 for explicit and

semi-implicit.
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(b) Second Order.

FIGURE 5.3: Pressure profiles for Sod shock tube test at the
final time t = 0.168, with N = 100 and CFL = 0.5 for explicit

and semi-implicit.

5.2 Lax Shock Tube

Now we perform another classical well known numerical test. The initial
conditions are defined by using the Sod shock tube notation where initially
the discontinuity is place at x = 0.5 and the corresponding initials conditions
to the left and the right are given:

ρ
u
p


L

=

 0.445
0.6989
3.5277

 ,

ρ
u
p


R

=

 0.5
0

0.5710

 .

The domain here is [0, 1] and now we discretize with a uniform grid that con-
sists of 200 cells. It’s a test same as the Sod shock tube but with a stronger
shock while the Mach numbers remain at same order M ' 1. Here we
use CFL = 0.5 and again are not seeking for better performance by us-
ing greater than one CFL numbers, but we just want to compare our semi-
implicit scheme results with well known from the literature examples.

The difference in the computation time between the two run tests (explicit
and semi-implicit) is negligible due to the fact that the size of the system
that the semi-implicit scheme requires to solve is very small. Thus, even
with the same CFL numbers, if we are comparing the explicit with semi-
implicit scheme using small discretizations, the computation time is roughly
the same.
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(b) Second Order.

FIGURE 5.4: Density profiles for Lax shock tube test at the final
time t = 0.168, with N = 200 and CFL = 0.5 for explicit and

semi-implicit.
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FIGURE 5.5: Velocity profiles for Lax shock tube test at the final
time t = 0.168, with N = 200 and CFL = 0.5 for explicit and

semi-implicit.
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FIGURE 5.6: Pressure profiles for Lax shock tube test at the
final time t = 0.168, with N = 200 and CFL = 0.5 for explicit

and semi-implicit.

5.3 High Mach Tube

Let us now perform an extreme test in order to check the robustness of the
scheme. In this case we initialize the tube with the discontinuity placed at
x = 0.5 on the domain [0, 1] and the following initial conditions to the left
and the right respectively:

ρ
u
p


L

=

 10
2000
500

 ,

ρ
u
p


R

=

 20
0

500

 .

We run this test with CFL = 0.5 on a uniform grid with 200 cells, for both
schemes , explicit and semi-implicit, and the final time is T = 1.75e-4.

We observe a good agreement between the explicit and semi-implicit solu-
tions. A better resolution is obtained by the semi-implicit scheme specifically
in the density profile (See Figure 5.7a).

5.4 Acoustic Pulses

This test case is adopted from [32]. With this test we want to check the abil-
ity of the proposed scheme, in low Mach regimes, to filter out the acoustic
waves when a material CFL condition is adopted rather than an acoustic.
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FIGURE 5.7: Second order density and velocity profiles for
High Mach tube test at t = 1.75e-4, with N = 200 and

CFL = 0.5 for explicit and semi-implicit.
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In order to initialize this test we have to use a rescaled version of the equa-
tions. To do that we introduce the parameter ε which stands for the ratio
between the fluid velocity and the thermal speed:

ε =
u0√
p0/ρ0

= M
√

γ (5.4)

We rewrite the System of equation (2.32) by using the rescaling parameter ε
and we obtain: 

∂ρ

∂t
+

∂m
∂x

= 0,

∂m
∂t

+
∂

∂x
(mu) +

1
ε2

∂p
∂x

= 0,

∂E
∂t

+
∂

∂x
(hm) = 0.

(5.5)

The system is closed with the equation of state where also the rescaling pa-
rameter ε appears, where:

E =
ε2

2
ρu2 +

p
γ− 1

. (5.6)

We choose to use the parameter ε instead of the Mach number in order to
present the same numerical test with same notation as in the literature.

The length of the domain for this test is L. It depend on the parameter ε
and it is symmetrically split −L/2 = −1/ε and L/2 = 1/ε. Using the
aforementioned notation, the initial conditions are:

ρ0 = 0.955, ρ1 = 2, ρ = ρ0 + 0.5ρ1ε

(
1− cos

2πx
L

)
,

u0 = 2
√

γ, u = −0.5 sgn(x)u0

(
1− cos

2πx
L

)
,

p0 = 1, p1 = 2 p = p0 + 0.5p1ε

(
1− cos

2πx
L

)
.

We run this test with second order accurate schemes, using two values of the
parameter ε in order to present two regimes of Mach numbers and we adopt
acoustic CFL numbers notation.
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5.4.1 ε = 1/11

Here we choose ε = 1/11 and we plot the pressure profiles with two dif-
ferent CFL numbers. We compare an explicit solution, equipped with the
Lax–Friedrichs flux, obtained with 1600 cells, with the semi-implicit scheme
solution obtained with 400 cells.

We observe on Figure 5.8 that for CFL= 0.5 the two solutions are indistin-
guishable for the intermediate and the final time of the test.

Similar result we obtain on Figure 5.9 where we adopt an acoustic CFL num-
ber equal to 4 for the semi-implicit scheme which corresponds to material
CFL equal to 0.7 As expected, for intermediate values of Mach numbers the
solution is well captured even if the classical acoustic CFL condition is over-
passed.
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(a) Pressure at t = 0.815.
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FIGURE 5.8: Pressure profiles with ε = 1/11 and CFL= 0.5 for
both schemes, with N = 400 for the semi-implicit scheme and

N = 1600 for the explicit scheme.
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(b) Pressure at t = 1.63.

FIGURE 5.9: Pressure profiles with ε = 1/11, CFL= 0.5 and
N = 1600 for the explicit scheme and CFL= 4 for the semi-

implicit scheme with N = 400.

5.4.2 ε = 1/1000

Here, we run the same test but in the low-Mach regime. We compare the
same solution as before and we observe that if we obey the acoustic CFL
restriction for the semi-implicit scheme (CFL=0.5), the solution is well cap-
tured (see Figure 5.10).

On the other hand if we use an acoustic CFL number equal to 100 for the
semi-implicit scheme, we expect that the acoustic waves will be filtered out
which is the result that we obtain in Figure 5.11.
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FIGURE 5.10: Pressure profiles with ε = 1/1000 and CFL= 0.5
for both schemes, with N = 400 for the semi-implicit scheme

and N = 1600 for the explicit scheme.
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FIGURE 5.11: Pressure profiles with ε = 1/1000, CFL= 0.5
and N = 1600 for the explicit scheme and CFL= 100 for the

semi-implicit scheme with N = 400.
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5.5 Material and Acoustic Waves

This test is proposed in order to prove that the scheme captures the material
waves very accurately even if we use large CFL numbers. If one is interested
only in the material waves we observe that it is better to use a large CFL
number and filter out the acoustic waves. When using smaller CFL numbers,
numerical diffusion occurs which results to a less accurate solution.

The domain in this test is [0, 4] and by choosing ρ0, u0 and p0, we can com-
pute the initial soundspeed a0 =

√
γ

p0
ρ0

and initialize the test case as follows:

a = a0 +

(
γ− 1

2

)
β1a0 exp

(
(x− 0.5)2

0.02

)
ρ = ρ0

(
a
a0

) 2
γ−1

+ β2 exp
(
(x− 1.5)2

0.02

)
u = u0 + β1a0 exp

(
(x− 0.5)2

0.02

)
p = p0

(
a
a0

) 2γ
γ−1

where β1 and β2 are two parameters with which we manipulate the acoustic
and the material waves. In the case where β1 = 0 and β2 6= 0 we have a
purely material wave and respectively when β1 6= 0 and β2 = 0 we introduce
a purely acoustic wave.

5.5.1 Convergence Test

In this test we run two different cases where first we introduce a purely
acoustic wave and then a purely material wave in order to check the con-
vergence of the proposed semi-implicit scheme.

For the acoustic pulse we initialize the test by setting ρ0 = 1, u0 = 0.08 and
p0 = 1 while the regulating parameters are β1 = 0.1 and β2 = 0. The final
time is T = 0.2 in order to compute the order off accuracy before a shock
forms. We plot in Figure 5.12a the CFL numbers we use (in a range that we
obey the material CFL restriction) versus the logarithmic error. We observe
that for very small CFL numbers the numerical diffusion increases the error.
As expected for a purely acoustic wave, when we overpass the acoustic CFL
restriction the error increases and the optimal CFL number for this case is
close to one.
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On the other hand for the purely material wave we set ρ0 = 1, u0 = 0.5 and
p0 = 1 while the regulating parameters are set to β1 = 0 and β2 = 0.1. The fi-
nal time is T = 1 and we plot the same data (see Figure 5.12b) as the acoustic
case. Note here that after the acoustic CFL condition is overpassed the error
remains almost the same as long as we obey the material CFL condition.
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FIGURE 5.12: CFL number versus the logarithmic error of the
acoustic and material cases.

5.5.2 Material and Acoustic Waves

For this case we set ρ0 = 1, u0 = 0.08 and p0 = 1. We compute the initial
soundspeed a0 =

√
γ

p0
ρ0

where γ = 1.4 and the test case in initialized as
follows:

Here we initialize the test by setting ρ0 = 1, u0 = 0.08, p0 = 1 and γ =
1.4. The parameters which manipulate the waves are regulated to β1 =
0.1 and β2 = 1 in order to introduce both types of waves in the same
setup. We use periodic boundary condition and we set the final time T =
13.25 in order for the acoustic pulse to return to its initial position after ap-
proximately four full periods. In Figure 5.13 we plot the initial conditions
and in Figure 5.14 we compare the solution obtained from the semi-implicit
scheme with a solution obtained from an explicit F-V scheme in very fine
mesh.
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FIGURE 5.13: Material and acoustic waves initial conditions.
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FIGURE 5.14: Material and acoustic waves solution at t=13.25
with N = 3200 for the explicit scheme and N = 320 grid points

for the solution obtained with the semi-implicit scheme.

5.5.3 Stiffened Gas

The same test is performed but here we use the Noble-Abel stiffened gas
equation of state [76] in order to check the efficiency of the semi implicit
scheme even in extreme cases with stiffened gas. Such equation of state is
given by:

p = (γ− 1)(E− ρu2

2
)− γp∞. (5.7)

where p∞ is a stiffness parameter, and for p∞ = 0 one recovers the ideal gas
case.
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Again, the domain for this test is [0, 4] and we set ρ0 = 1, u0 = 0.08 and
p0 = 1. Here the initial sound speed is computed as follows:

a0 =

√
γ

p0 + p∞

ρ0
,

where γ = 1.4, p∞ = 103 and the test is initialized as before (Subsection
5.5.2), except for the pressure that is written as:

p = (p0 + p∞)

(
a
a0

) 2γ
γ−1

− p∞.

We initialize the test by keeping the same values for β1 = 0.1 and β2 = 1
in order to introduce both types of waves and we use periodic boundary con-
dition. The final time here is T = 0.42 in the same philosophy as before i.e.
the acoustic pulse to return to its initial position after four full periods. As
before, we observe in Figure 5.16a that the scheme, when large CFL numbers
are used, preserves the material waves but it doesn’t captures accurately the
acoustic waves. This can be seen in the pressure plot Figure 5.16b, that a
small CFL number leads to a more accurate solution concerning the acoustic
wave.
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FIGURE 5.15: Initial conditions of material and acoustic waves
with p∞ .
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FIGURE 5.16: Material and acoustic waves solution at t=0.42
with N = 3200 for the explicit scheme and N = 320 grid points

for the solution obtained with the semi-implicit scheme.
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Chapter 6

Explicit Scheme
for 2D Euler Equations

In this chapter we present an explicit scheme for Euler equations in two
dimensions. First, we present a first order accurate in space finite volume
scheme.

Recalling the Euler equations in vector form in two dimensions from Chap-
ter 2 we have:



∂ρ

∂t
+∇ ·m = 0,

∂m
∂t

+∇ ·
(

m⊗m
ρ

)
+∇p = 0,

∂E
∂t

+∇ · (hm) = 0,

(6.1)

where m = (m, n) stands for the vector form of the momentum in the x and
y direction receptively.

The system is closed with the Equation of state in two dimensions:

p = (γ− 1)
(

E− ρ

2

(
u2 + v2

))
, (6.2)

where u = m/ρ and v = n/ρ are the velocities in x and y direction.

In order to discretize the System (6.1), we have to write it in scalar form
where:
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

∂ρ

∂t
+

∂m

∂x
+

∂n

∂y
= 0,

∂m

∂t
+

∂

∂x
(mu) +

∂

∂y
(mv) +

∂p
∂x

= 0,

∂n

∂t
+

∂

∂x
(nu) +

∂

∂y
(nv) +

∂p
∂y

= 0,

∂E
∂t

+
∂

∂x
(hm) +

∂

∂y
(hn) = 0.

(6.3)

Using this notation we can define now the numerical discretization in space.
The differences that occur from 1D are just in the fluxes.

6.1 1st Order Discretization in Time

Following the same procedure and notation as Section (3.5) we can write the
semi discrete form of the System (6.3) as follows:

Un+1 −Un

∆t
= H(Un). (6.4)

Now we obtained a first order accurate in time domain scheme. The next
step is to describe the numerical discretization in space domain.

6.2 Finite Volume Scheme

Assume that the problem is defined in a square domain [a, b] × [a, b]. Dis-
cretizing the System (6.3) at a time interval [tn, tn+1] one gets:


ρn+1 = ρn − ∆tD̂x(m

n)− ∆tD̂y(n
n), (6.5a)

mn+1 = mn − ∆tD̂x(m
nun)− ∆tD̂y(m

nvn)− ∆tD̂x(pn), (6.5b)

nn+1 = nn − ∆tD̂x(n
nun)− ∆tD̂y(n

nvn)− ∆tD̂y(pn), (6.5c)

En+1 = En − ∆tD̂x(hnmn)− ∆tD̂y(hnnn). (6.5d)

where D̂x and D̂y stand for the finite volume approximation of the spatial
derivatives in x and y direction respectively. We shall now define the com-
putation of such terms.
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6.2.1 Definition of D̂

On a collocated grid in 2D we use a pair of indices i, j, where we denote with
i the index of the cells on the discretization on y and with j on x respectively.

We compute D̂x as the flux derivative that is discretized as the difference
of the numerical fluxes between two adjacent cells on the x direction, i.e.
i, j + 1/2 and i, j− 1/2, as:

D̂x(Fi,j) =
Fi,j+1/2 − Fi,j−1/2

∆x
, (6.6)

where ∆x is the discretization step corresponding to the x direction.

Respectively D̂y stands for the finite volume flux derivative, which is com-
puted now as the difference of the numerical fluxes between two adjacent
cell at the y direction, meaning i + 1/2, j and i− 1/2, j, where:

D̂y(Fi,j) =
Fi+1/2,j − Fi−1/2,j

∆y
, (6.7)

where again ∆y stands for the discretization step in y. In the case where the
grid is uniform we have ∆x = ∆y.

6.3 Boundary Conditions

Let us now introduce how we implement the different types of boundary
conditions in 2D. Assume that we use a N × N grid. We extend the grid in
both directions, thus the dimension becomes N + 2×N + 2. Now we have in
every side a column-row of ghost cells. This procedure is depicted in Figure
6.1.

After the ghost cells are introduced, we can initialize the test cases using a
range of boundary conditions. As in 1D we have several types of boundary
conditions. The reason we use different kinds of BC is explained in detail at
Section 3.6.

6.3.1 Transmissive Boundary Conditions

First we present the transmissive case in two dimensions where then values
at the ghost columns are:
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FIGURE 6.1: 2D grid setup with ghost cells (N = 4).


ρi,1
mi,1
ni,1
Ei,1

 =


ρi,2
mi,2
ni,2
Ei,2

 ,


ρi,N+2
mi,N+2
ni,N+2
Ei,N+2

 =


ρi,N+1
mi,N+1
ni,N+1
Ei,N+1

 , i = 2 . . . N + 1, (6.8)

while at the ghost rows:


ρ1,j
m1,j
n1,j
E1,j

 =


ρ2,j
m2,j
n2,j
E2,j

 ,


ρN+2,j
mN+2,j
nN+2,j
EN+2,j

 =


ρN+1,j
mN+1,j
nN+1,j
EN+1,j

 , j = 2 . . . N + 1. (6.9)
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FIGURE 6.2: Transmissive boundary conditions in 2D where
N = 4.

6.3.2 Reflective Boundary Conditions

Another possibility is to use reflective boundary conditions. In some cases a
mixture of boundary conditions can be used and for this reason we present
in detail all the kinds of boundary conditions. In the case of reflective bound-
ary conditions all the values are still the same as the transmissive case except
from the momentum which takes the opposite sign, i.e. the ghost columns
are computed like:


ρi,1
mi,1
ni,1
Ei,1

 =


ρi,2
−mi,2
−ni,2
Ei,2

 ,


ρi,N+2
mi,N+2
ni,N+2
Ei,N+2

 =


ρi,N+1
−mi,N+1
−ni,N+1
Ei,N+1

 , i = 2 . . . N + 1,

(6.10)

while the rows like:
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
ρ1,j
m1,j
n1,j
E1,j

 =


ρ2,j
−m2,j
−n2,j
E2,j

 ,


ρN+2,j
mN+2,j
nN+2,j
EN+2,j

 =


ρN+1,j
−mN+1,j
−nN+1,j
EN+1,j

 , j = 2 . . . N + 1.

(6.11)

6.3.3 Periodic Boundary Conditions

Finally, in some test we use artificial periodic boundary conditions. In order
to initialize the test we calculate the values at the ghost cells as follows. We
assume periodic boundary conditions in both directions, thus concerning
the x direction we set the ghost columns values as follows:


ρi,1
mi,1
ni,1
Ei,1

 =


ρi,N+1
mi,N+1
ni,N+1
Ei,N+1

 ,


ρi,N+2
mi,N+2
ni,N+2
Ei,N+2

 =


ρi,2
mi,2
ni,2
Ei,2

 , i = 2 . . . N + 1, (6.12)

where respectively for the y direction we set the ghost rows values as:


ρ1,j
m1,j
n1,j
E1,j

 =


ρN+1,j
mN+1,j
nN+1,j
EN+1,j

 ,


ρN+2,j
mN+2,j
nN+2,j
EN+2,j

 =


ρ2,j
m2,j
n2,j
E2,j

 , j = 2 . . . N + 1. (6.13)
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Chapter 7

Semi-Implicit Scheme
for 2D Euler Equations

In this chapter we present the semi-implicit scheme for the two dimensional
Euler equations. After we presented all the needed tools for the derivation
of this scheme we are going to explain in detail the semi-implicit technique.
Let us now recall from Chapter 2 the Euler equations in two dimensions:



∂ρ

∂t
+∇ ·m = 0,

∂m
∂t

+∇ ·
(

m⊗m
ρ

)
+∇p = 0,

∂E
∂t

+∇ · (hm) = 0,

(7.1)

where m = (m, n) stands for the vector form of the momentum in the x and
y direction with u = m/ρ and v = n/ρ the corresponding velocities.

The system is closed with the Equation of state in two dimensions:

p = (γ− 1)
(

E− ρ

2

(
u2 + v2

))
. (7.2)

Again, we can use a wide range of equations of state where the pressure
and the energy are linearly related. Moreover, we can extend the scheme
for more general equations of state using the appropriate linearization tech-
niques.

7.1 1st Order Discretization in Time

Let us now rewrite the System (7.1) in the following form:
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

∂ρ

∂t
+

∂m

∂x
+

∂n

∂y
= 0,

∂m

∂t
+

∂

∂x
(mu + p) +

∂

∂y
(mv) = 0,

∂n

∂t
+

∂

∂x
(nu) +

∂

∂y
(nv + p) = 0,

∂E
∂t

+
∂

∂x
(hm) +

∂

∂y
(hn) = 0.

(7.3)

The System of equations (7.3) has the structure of a quasi linear hyperbolic
system of conservation laws and it can be written in the following form:

∂W
∂t

= −∂F (W)

∂x
− ∂G(W)

∂y
, (7.4)

where W = (ρ,m, n, E)T,F = (m,mu + p, nu, hm) and G = (n,mv, nv + p, hn).

Using the same technique as 1D we can rewrite the System (7.3) in the fol-
lowing semi-discrete form:


dU
dt

(t) = H (UE(t), UI(t)) , ∀t ≥ t0

U (t0) = U0.
(7.5)

In the same philosophy as 1D, we denote by U the discrete approximation
of W which can be splitted into two parts. The first part is the non-stiff part
which is correlated with the material waves and thus we treat it with an
explicit way, so-called UE. The second part is the stiff one corresponding
with the acoustic waves, so we choose to treat these terms implicitly and we
name them UI . Finally, H denotes the the approximation of the right hand
side of Equation (7.4).

In order to achieve a first order in time scheme we discretize the time deriva-
tive of (7.5) using backward differences over a time step ∆t, thus the first-
order accurate temporal discretization is given by:

Un+1 −Un

∆t
= H

(
Un, Un+1

)
, (7.6)

where n+ 1 denotes the value at the next time step t+∆t. Now we are going
to describe the spatial discretization of the termH

(
Un, Un+1).
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7.2 1st Order Discretization in Space

In the same philosophy as 1D we choose to treat implicitly the pressure terms
at the momentum equations. Using the semi-discrete form of Equation (7.5)
and the System (7.1) we discretize the system at a time interval [tn, tn+1] and
we obtain:


ρn+1 = ρn − ∆tD̂x(m

n)− ∆tD̂y(n
n), (7.7a)

mn+1 = mn − ∆tD̂x(m
nun)− ∆tD̂y(m

nvn)− ∆tDx(pn+1), (7.7b)

nn+1 = nn − ∆tD̂x(n
nun)− ∆tD̂y(n

nvn)− ∆tDy(pn+1), (7.7c)

En+1 = En − ∆tDx(hnmn+1)− ∆tDy(hnnn+1), (7.7d)

where D̂ stands for the finite volume computed derivatives and D for the
centred.

Again we use for the finite volume derivatives the local Lax-Friedrichs flux
function which for x direction stands for:

Fi,j+1/2 =
1
2

[
F
(

Un
i,j

)
+F

(
Un

i,j+1

)]
−

αi,j+1/2

2

[
Un

i,j+1 −Un
i,j

]
, (7.8)

while for y direction:

Fi+1/2,j =
1
2

[
F
(

Un
i,j

)
+F

(
Un

i+1,j

)]
−

αi+1/2,j

2

[
Un

i+1,j −Un
i,j

]
. (7.9)

Now we have to define the local viscosity terms.

7.2.1 Definition of D

Let us now describe the computation of the terms that are treated with a
centred approximation. Such terms are occur when we solve at the energy
equation using the pressure splitting technique. The only term that we are
interested to use this approximation is the second order derivative of the
energy term. Thus, in the same philosophy as 1D one obtains:

Dx
(

Dx(F (Ui,j))
)
=
F
(
Ui,j+1

)
− 2F

(
Ui,j
)
+F

(
Ui,j−1

)
∆x2 , (7.10)

69



Chapter 7. Semi-Implicit Scheme for 2D Euler Equations

which is the second order derivative on the x direction and second order
accurate. Respectively for the y direction we get:

Dy
(

Dy(F (Ui,j))
)
=
F
(
Ui+1,j

)
− 2F

(
Ui,j
)
+F

(
Ui+1,j

)
∆y2 , (7.11)

Because of the implicit treatment of the acoustic waves we can regulate the
parameter α proportional to the material velocity in the low Mach number
regime. Moreover for high Mach cases the, the soundspeed is bounded by
the fluid velocity, thus is enough to choose the parameter for x and y direc-
tion respectively:

αi,j+1/2 = max
(∣∣ui,j

∣∣ ,
∣∣ui,j+1

∣∣) ,

αi+1/2,j = max
(∣∣ui,j

∣∣ ,
∣∣ui+1,j

∣∣) ,
(7.12)

7.3 Pressure Splitting

In the same philosophy as Section 4.3 we choose to treat with an implicit
way the pressure terms. After we discretize the System (7.1) between a time
tn and a time tn+1 we make use of the equation of state (7.2), where

pn+1 = (γ− 1)
(
En+1 − 1

2
((mnun + nnvn)

)
, (7.13)

and we substitute this expression in Equations (7.7b) and (7.7c). We choose
to treat implicitly the energy term and upwind the rest. Thus, we obtain:

mn+1 = mn −
(

3− γ

2

)
∆tD̂x(m

nun)−
(

1− γ

2

)
∆tD̂x(n

nvn)

−∆tD̂y(m
nvn)− (γ− 1)∆tDx(En+1),

(7.14)

nn+1 = nn −
(

3− γ

2

)
∆tD̂y(n

nvn)−
(

1− γ

2

)
∆tD̂y(m

nun)

−∆tD̂x(n
nun)− (γ− 1)∆tDy(En+1).

(7.15)

For sake of simplicity, we denote:

m∗ = mn −
(

3− γ

2

)
∆tD̂x(m

nun)−
(

1− γ

2

)
∆tD̂x(n

nvn)− ∆tD̂y(m
nvn), (7.16)
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and respectively

n∗ = nn −
(

3− γ

2

)
∆tD̂y(n

nvn)−
(

1− γ

2

)
∆tD̂y(m

nun)− ∆tD̂x(n
nun). (7.17)

Using this notation the Equations (7.14) and (7.15) become:

mn+1 = m∗ − (γ− 1)∆tDx(En+1), (7.18)

nn+1 = n∗ − (γ− 1)∆tDy(En+1). (7.19)

Plugging these expressions in the Equation for the Energy (7.7d) one obtains:

En+1 = En − ∆tD̂x(hnm∗) + (γ− 1)∆t2Dx(hnDx(En+1))

−∆tD̂y(hnn∗) + (γ− 1)∆t2Dy(hnDy(En+1)).
(7.20)

Posing E∗ = En − ∆tD̂x(hnm∗)− ∆tD̂y(hnn∗) the Equation (7.20) becomes:

En+1 = E∗ + (γ− 1)∆t2Dx(hnDx(En+1)) + (γ− 1)∆t2Dy(hnDy(En+1)). (7.21)

Now we can solve this system in order to compute En+1 and then plug it in
the momentum equations to compute mn+1 and nn+1.

7.3.1 Extension to 2nd Order

Again we are using the same techniques described in Section 3.4.1. The only
difference that occurs naturally is that the same procedure must be done for
both dimensions in order to compute the reconstructed values for the fluxes.
Apart from this detail, the rest procedure still the same as before.

In order to achieve second order accuracy in the time domain, we use the
same technique as 1D described in 4.4.1. The implementation it’s straight-
forward without any difference from 1D. We choose this approximation be-
cause it’s efficient and easily implementable.
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Chapter 8

Numerical Tests
for 2D Euler Equations

In this chapter we perform multiple tests in order to check the robustness
the accuracy and the convergence of the proposed 2D scheme. First we in-
troduce some useful quantities. The timestep by using the so-called acoustic
CFL number in two dimension is define as:

∆t = CFL
∆x

max(|u|+ a) + max(|v|+ a)
, (8.1)

where a stands for the soundspeed:

a =

√
γp
ρ

. (8.2)

In some tests a modified version of the classical acoustic CFL number is
needed, so we introduce a new quantity namely the material CFL number (
notation CFLIM) where the timestep is computed as:

∆t = CFLIM
∆x

max |u|+ max |v| (8.3)

At the beginning we run some classical Riemann problems. The scope of
these tests is to reproduce some well-known results from the literature, when
we obey the classical acoustic CFL condition. Moreover we run an original
test where we compare the 2D scheme with the 1D by initializing a classical
Sod shock tube in two dimensions on the counter diagonal of the domain.
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8.1 Sod Shock Tube

This test shows that the scheme is able to work on a wide range of Mach
numbers. We compare the 2D scheme with the 1D scheme by doing the
following. We choose a square domain Ω = [0,

√
0.5] × [0,

√
0.5]. In order

to initialize the test, we place the discontinuity along the main diagonal,
thus the domain is divided into the upper and lower part and the initial
conditions ( with index U and L respectively, Figure 8.1) are:


ρ
u
v
p


U

=


1
0
0
1

 ,


ρ
u
v
p


L

=


0.125

0
0

0.1

 .

U

Discontinuity

FIGURE 8.1: Initial conditions of Sod shock tube in 2D.

Then we keep as solution the vector that contains the N elements of the
counter diagonal of the N × N solution matrix obtained by the 2D method
(Figure 8.2). This test is performed in order to compare in a quantitatively
way the solutions obtained with the 1D and 2D code. We adjust the CFL
number in such a way that the timestep in both cases is the same (0.7 for the
2D scheme). We observe that the 2D code is much more accurate even if we
use half of the points per direction we are using in the 1D computation. In
figures 8.3a and 8.3b we see the comparison between the two schemes.
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FIGURE 8.2: Density 2D plot at T = 0.168 and the solution
vector we keep in order to compare with the 1D case.

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1D

2D

D
e
n
s
it
y

x

(a) 1D(400pts.) vs 2D(200 pts.).

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1D

2D

D
e
n
s
it
y

x

(b) 1D(800pts.) vs 2D(400 pts.).

FIGURE 8.3: Sod shock tube. Comparison between 1D and 2D
code with CFL = 0.7.
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8.2 Riemann Tests

These tests are adopted from [72]. These tests are not low mach and the
purpose of these runs is to check the ability of the proposed scheme to cap-
ture shocks like an explicit scheme. We run four different cases which are
composed either of rarefaction waves or shock waves or a mixture of them.
Comparing quantitatively our results we observe a great agreement with
the results from the literature. In order to initialize the 2D Riemann cases we
have to split the domain in equal quarters. With this in mind we write the
initial conditions :

(ρ, u, v, p) =



(ρ1, u1, v1, p1) , x > 0.5, y > 0.5

(ρ2, u2, v2, p2) , x < 0.5, y > 0.5

(ρ3, u3, v3, p3) , x < 0.5, y < 0.5

(ρ4, u4, v4, p4) , x > 0.5, y < 0.5

(8.4)

8.2.1 Four Forward Rarefaction Waves

First we run a test with four forward rarefaction waves. We use N = 200
with an acoustic CFL number equal to 0.5. We observe the same ripples as
the literature at the final time T = 0.2 (Figures 8.4b and 8.5b. Using the
aforementioned notation, the initial conditions are:


ρ
u
v
p


2

=


0.5197
−0.7259

0
0.4

 ,


ρ
u
v
p


1

=


1
0
0
1

 ,


ρ
u
v
p


3

=


0.1072
−0.7259
−1.4045
0.0439

 ,


ρ
u
v
p


4

=


0.2579

0
−1.4045

0.15

 .
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(a) Initial conditions. (b) Solution at final time T = 0.2.

FIGURE 8.4: Density surfs for the four rarefaction waves test
case computed with N = 200 and CFL = 0.5.
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(a) Solution at the time T = 0.1.
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(b) Solution at final time T = 0.2.

FIGURE 8.5: Density contour plots for the four rarefaction
waves test case computed with N = 200 and CFL = 0.5.
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8.2.2 Two Forward and Two Backward Rarefaction Waves

Now we run a similar test case with the only difference that the two rarefac-
tion waves are moving forward. Again we use N = 200 with an acoustic
CFL number equal to 0.5. The initial conditions are:


ρ
u
v
p


2

=


0.5197
−0.7259

0
0.4

 ,


ρ
u
v
p


1

=


1
0
0
1

 ,


ρ
u
v
p


3

=


1

−0.7259
−0.7259

1

 ,


ρ
u
v
p


4

=


0.5197

0
−0.7259

0.4

 .

(a) Initial conditions. (b) Solution at final time T = 0.2.

FIGURE 8.6: Density surfs for the two forward and two back-
ward rarefaction waves test case computed with N = 200 and

CFL = 0.5.
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(a) Solution at the time T = 0.1.
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(b) Solution at final time T = 0.2.

FIGURE 8.7: Density contour plots for the two forward and two
backward rarefaction waves test case computed with N = 200

and CFL = 0.5.

8.2.3 Four Backward Shock Waves

Afterwards, we run a test case which is combined of four shock waves. We
use the same points and CFL number with the difference that the final time
for this test is T = 0.3. Again, we observe a good quantitative agreement
with the results from the literature.


ρ
u
v
p


2

=


0.5323
1.206

0
0.3

 ,


ρ
u
v
p


1

=


1.5
0
0

1.5

 ,


ρ
u
v
p


3

=


0.138
1.206
1.206
0.029

 ,


ρ
u
v
p


4

=


0.5323

0
1.206
0.3

 .
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(a) Initial conditions. (b) Solution at final time T = 0.3.

FIGURE 8.8: Density surfs for the four backward shock waves
test case computed with N = 200 and CFL = 0.5.
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(a) Solution at the time T = 0.15.
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(b) Solution at final time T = 0.3.

FIGURE 8.9: Density contour plots for the four backward shock
waves test case computed with N = 200 and CFL = 0.5.
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8.2.4 Two Forward and Two Backward Shock Waves

Now we run the last test of this Riemann test cases series. This test is con-
sisted of two forward shock waves and two backward. The parameters still
the same, i.e. N = 200 and the CFL number is regulated to 0.5 while the final
time now is T = 0.25. We observe great agreement with the literature for all
the Riemann test cases. The initial conditions for this case are:


ρ
u
v
p


2

=


0.5065
0.8939

0
0.35

 ,


ρ
u
v
p


1

=


1.1
0
0

1.1

 ,


ρ
u
v
p


3

=


1.1

0.8939
0.8939

1.1

 ,


ρ
u
v
p


4

=


0.5065

0
0.8939
0.35

 .

(a) Initial conditions. (b) Solution at final time T = 0.2.

FIGURE 8.10: Density surfs for the two forward and two back-
ward shock waves test case computed with N = 200 and

CFL = 0.5.
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(a) Solution at the time T = 0.1.
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(b) Solution at final time T = 0.2.

FIGURE 8.11: Density contour plots for the two forward and
two backward shock waves test case computed with N = 200

and CFL = 0.5.

8.3 Gresho Vortex

In this test we apply our scheme to the Gresho vortex problem. This is done
in order to check the capability of the semi-implicit scheme to deal with very
low Mach number problems with very little numerical diffusion. The Gresho
vortex is a stationary solution of the Euler equations. We run the test with
different values of Mach number M = 0.1, 0.01, 0.001 in order to compare the
results of the numerical scheme with the initial conditions. To perform this
test we assume a square domain Ω = [−0.5, 0.5]× [−0.5, 0.5] and we center
the vortex to (x, y) = (0, 0). The initial conditions of the problem in polar
coordinates are given by:

(
uφ(r), p(r)

)
=



(
5r, p0 +

25
2 r2) , 0 ≤ r < 0.2,(

2− 5r, p0 +
25
2 r2 + 4(1− 5r− ln(0.2) + ln(r)

)
, 0.2 ≤ r < 0.4,

(0, p0 − 2 + 4 ln(2)) , 0.4 ≤ r.

where p0 = ρ/γM2 and the density is constant ρ = 1 in the whole domain.
We introduce a modified CFL number called CFLIM and we calculate the
timestep as follows:
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∆t = CFLIM
∆x

max |u|+ max |v| . (8.5)

The CFLIM number used for this test is 0.15 which corresponds to CFL = 170
for M = 0.001. In Figures 8.12 and 8.13 we plot the pressure profiles at
the center of the domain in both directions. We observe that the scheme
preserves the stationary solution for a wide range of Mach numbers.
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FIGURE 8.12: Pressure Profiles, M = 0.1 at T = 0.4π (320pts).
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FIGURE 8.13: Pressure Profiles, M = 0.001 at T = 0.4π
(320pts).

We perform a convergence test by computing the so-called EOC (experimen-
tal order of convergence). In order to compute the EOC we use as reference
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(a) Initial Conditions. (b) Final T = 0.4π.

FIGURE 8.14: Pseudocontour plot of pressure, M = 0.1 at T =
0.4π (320pts).

(a) Initial Conditions. (b) Final T = 0.4π.

FIGURE 8.15: Pseudocontour plot of pressure, M = 0.001 at
T = 0.4π (320pts).
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solution the initial conditions of the problem. Thus we calculate the error by
using the following formula:

eN =
||UN −UI ||L1

||UI ||L1
, (8.6)

where UN is the numerical solution calculated on a grid with N × N points
and UI is the initial condition of the problem taken as a reference solution.
Then the EOC is calculated:

EOC := log2

(
eN

e2N

)
(8.7)

Pressure errors and the corresponding EOC for the Gresho vortex test are
presented in table 8.1. We observe that for moderate to very low Mach num-
ber the convergence rate is close to second order, which is the formal order
of the scheme. On the other hand, for intermediate values of the Mach num-
ber an order reduction is observed. The phenomenon of order reduction is
typical of IMEX schemes applied to stiff problems, and has been analyzed
in the context of hyperbolic systems with relaxation in several papers [17,
15]. In Figure 8.16 we plot the evolution of the kinetic energy EKin(t), nor-
malized with respect to the initial value EKin(0), for two different meshes
40× 40 (dotted line) and 80× 80 (cross line) with CFLIM = 0.25. For each
mesh we use all the values of M = 10−1, 10−2, 10−3 and we observe that
the lines are indistinguishable. Finally, in Figure 8.17 we plot the percent-
age loss of the total kinetic energy at the final time. Here we use different
CFLIM numbers and we observe that the energy loss percent remains almost
constant for each mesh regardless of the M and the CFLIM number that we
choose.

N
M=0.1 (T = 0.4π) M=0.01 (T = 0.4π) M=0.001 (T = 0.4π)

L1 error L1 order L1 error L1 order L1 error L1 order
40 1.95e-04 - 3.38e-06 - 1.35e-07 -
80 5.50e-05 1.8277 3.80e-07 3.1549 3.72e-09 5.1851

160 1.77e-05 1.6380 1.21e-07 1.6455 1.03e-09 1.8525
320 4.24e-06 2.0586 7.97e-08 0.6079 2.75e-10 1.9018

TABLE 8.1: Convergence table for the Gresho vortex.

84



Chapter 8. Numerical Tests for 2D Euler Equations

0 0.2 0.4 0.6 0.8 1 1.2

t

0.97

0.975

0.98

0.985

0.99

0.995

1

E
 /

 E
0

FIGURE 8.16: Evolution of the total Kinetic energy normalized
with respect to the initial Kinetic energy. The dotted line is for
the 40× 40 grid and the cross line is for the 80× 80 grid. We

use M = 10−1, 10−2, 10−3 for both meshes.
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FIGURE 8.17: Percentage loss of the total Kinetic energy at the
final time T = 0.4π for CFLIM = 0.15 . . . 0.45 numbers. The
star points are for the 40× 40 grid and the cross points are for
the 80× 80 grid. We use M = 10−1 (blue points) and M = 10−3

(red points) for both meshes.

8.4 Double Vortex Sheet

Here we compare the result of the scheme to an accurate solution of incom-
pressible Euler equations. This test was used before in some recent publica-
tions [18, 19, 5]. We use the same Low Mach number scaling for the equa-
tions as [18] and we introduce a parameter ε which is a global Mach number.
System (6.1) becomes:



∂ρ

∂t
+∇ ·m = 0,

∂m
∂t

+∇ ·
(

m⊗m
ρ

)
+

1
ε2∇p = 0,

∂E
∂t

+∇ · (hm) = 0,

(8.8)
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where the enthalpy stands for:

h =
(E + p)

ρ
(8.9)

and the equation of state (6.2) becomes:

p = (γ− 1)
(

E− ε2

2
ρ(u2 + v2)

)
. (8.10)

The accurate reference solution is obtained by a Fourier-spectral method ap-
plied to incompressible Euler equations in the vorticity-stream function for-
mulation. For more details we refer the reader to Appendix A.

The vorticity:

ω =
∂v
∂x
− ∂u

∂y
, (8.11)

is initialized as follows:

ω(x, y, 0) =


δ cos x− 1

σ
sech2((y− π/2)/σ)), y ≤ π,

δ cos x− 1
σ

sech2((3π/2− y)/σ)), y > π,

where δ = 0.05 and σ = π/15.

The density and the pressure for this test are set equal to 1 on the whole do-
main and we assume periodic boundary conditions. The final time is T = 6,
the CFLIM number is 0.35, corresponding to CFL = 8.5 (ε = 0.1), and as ref-
erence solution (Figure 8.18f) we consider a very accurate solution obtained
by Fourier spectral discretization in space and a fourth order Runge-Kutta
method in time.

By comparing the reference solution with the solution obtained with the 2D
scheme for the compressible Euler equations with exactly the same initial
conditions as the incompressible case (Figure 8.18e), we observe that for
small values of ε there is a qualitative agreement.

In Figure 8.19 we show the behavior of the L1 norm as the difference between
the velocities of the numerical solution of the compressible Euler equations
and a reference solution of the incompressible Euler equations obtained by
the aforementioned spectral method in a very fine grid. For this test we use
σ = π/10 and the final time is T = 1.
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(a) Initial Conditions T = 0. (b) Numerical solution at T = 3.

(c) Numerical solution at T = 4. (d) Numerical solution at T = 5.

(e) Numerical solution at T = 6. (f) Reference Solution.

FIGURE 8.18: Pseudo contour plot of Evolution of the Vortex
Dipole with ε = 0.0001 obtained on a 256× 256 grid and com-

parison at the final time with the reference solution
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The discrepancy between the two solutions is due to two causes: first, we are
solving two different equations, compressible and incompressible Euler, so
there is a difference between the two solutions, that we shall call modeling
error which vanishes as the Mach number approaches zero. A second source
of error is due to the finite size of the grid in space and time. We call this dis-
cretization error. For a coarse grid and relatively small Mach number, the
discretization error is dominant, is almost independent of the Mach num-
ber, and decreases as the grid is refined, showing a second order accuracy in
space and time. For fine enough meshes, the error saturates to an approxi-
mately constant value, which does no longer depend on the grid, but only
on the Mach number, the modeling error.
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FIGURE 8.19: L1 norm of the difference between the solution
obtained by the 2D compressible Euler equations scheme and
a reference solution of the incompressible Euler equations ob-
tained by Fourier-spectral method and fourth order Runge-
Kutta, as a function of the number of grid points per direction,

for various Mach numbers.
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Conclusions for Euler Equations

We propose a novel all Mach number scheme for gas dynamics. The gen-
eral idea is that explicit differential operators in space relative to convec-
tive or material speeds are discretized upwind. The linear implicit opera-
tors, pertaining to acoustic waves, are discretized by central differences. We
have compared the results of such schemes on a series of one-dimensional
test problems including classical shock tube tests in one and two dimen-
sions. Also we have considered low-mach number acoustic wave propaga-
tion tests, Riemann tests, Gresho vortex and shear flow in the incompressible
limit. We found that there is no scheme that outperforms the others over the
whole Mach number range. In contrast, there exist implicit schemes that
are robust enough to work in all regimes. Furthermore, for low-mach num-
ber flows, implicit schemes are far more accurate and efficient compared to
explicit ones for given precision.
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Chapter 10

Shallow Water Equations

At the second part of this thesis we are dealing with the shallow water
equations and by extension with the Exner model. Our motivation occurs
from the multiscale nature of the Exner model. In some cases when one
is interested for the evolution of the sediment and being indifferent for the
fully resolved water waves, by using the our scheme is able to use larger
timesteps overpassing the classical CFL restriction. This has multiple ad-
vantages, starting from the efficiency of the scheme where the computa-
tional time is dramatically reduced. Moreover, numerical diffusion occurs
when one uses explicit schemes and in the case of Exner model this affects
the solution of the sediment. Here we manage to reduce the numerical dif-
fusion on the solution by making less computations compared to an explicit
scheme for a given runtime. In this Chapter we describe the derivation of the
shallow water equations. In order to do this we must first derive the Navier-
Stokes equations from the conservation laws. Then under certain assump-
tions and by following a procedure we derive the shallow water equations
(for more details see [109]).

10.1 Conservation of Mass

By following the same procedure done in Section 2.1 we have:

∂ρ

∂t
+∇ · (m) = 0, (10.1)

where m = ρu stands for the momentum.
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10.2 Conservation of Linear Momentum

Let us now consider the linear momentum balance over a control volume W
in the integral form:

∂

∂t

∫
W

ρudV = −
∫

∂W
(ρu)u · ndA +

∫
W

ρbdV +
∫

∂W
TndA (10.2)

where b is the body force density per unit mass acting on the fluid, T is the
Cauchy stress tensor and n the normal outward vector defined at each point
of ∂W.

Using Gauss theorem we rewrite the Equation 10.2 in the following form:

∂

∂t

∫
W

ρudV +
∫

W
∇ · (ρu⊗ u)dV −

∫
W

ρbdV −
∫

W
∇ · TdV = 0. (10.3)

Under the assumption that the subregion W is fixed and does not change
with time, Equation 10.3 becomes:

∫
W

(
∂

∂t
(ρu) +∇ · (ρu⊗ u)− ρb−∇ · T

)
dV = 0. (10.4)

Because the control volume W was arbitrary the integral vanishes and we
obtain:

∂

∂t
(ρu) +∇ · (ρu⊗ u)− ρb−∇ · T = 0. (10.5)

In order to derive Navier-Stokes equations we assume that the density of
fluid does not depends on pressure. Moreover the salinity of the fluid and
the temperature are constant throughout the whole domain. Under these
assumption we obtain that the fluid is incompressible and thus:


∇ · u = 0
∂

∂t
ρu +∇ · (ρu⊗ u) = ρb +∇ · T

(10.6)

Assuming that the fluid is Newtonian and that the body forces are essentially
the gravity the System (10.6) becomes:
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
∇ · u = 0
∂

∂t
ρu +∇ · (ρu⊗ u + pI) = ρgk

(10.7)

Let us write now the System (10.7) in a simplified form where the equation
of the mass conservation becomes:

∂

∂x
u +

∂

∂y
v +

∂

∂z
w = 0, (10.8)

and the conservation of momentum:

∂

∂t
(ρu) +

∂

∂x
(ρu2) +

∂

∂y
(ρuv) +

∂

∂z
(ρuw) = −∂p

∂x
(10.9a)

∂

∂t
(ρv) +

∂

∂x
(ρuv) +

∂

∂y
(ρv2) +

∂

∂z
(ρvw) = −∂p

∂y
(10.9b)

∂

∂t
(ρw) +

∂

∂x
(ρuw) +

∂

∂y
(ρvw) +

∂

∂z
(ρw2) = −∂p

∂z
− g (10.9c)

FIGURE 10.1: Water column
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Due to the main condition for shallow-water model is that the horizontal
length-scale far exceed the vertical length-scale, many terms in Eq. (3) can
be neglected in such it reduces to the simple hydrostatic balance:

Now we assume that the horizontal wavelength-scale far exceed the vertical
length-scale and the Equation (10.9c) becomes:

∂

∂t
(ρw) = −∂p

∂z
− ρg (10.10)

Then we neglect vertical accelerations (i.e. is like a boundary layer method)
and the Equation (10.10) reduces to the simple hydrostatic balance:

− ∂p
∂z
− ρg = 0⇔ ∂p

∂z
= −ρg. (10.11)

Integrating the Equation (10.11) on gets:

p = ρg(h− H − z) + p0. (10.12)

The vertical pressure gradients are almost hydrostatic ans the horizontal gra-
dients are computed as:

∂p
∂x

=− ρg
∂

∂x
(h− H) (10.13a)

∂p
∂y

=− ρg
∂

∂y
(h− H). (10.13b)

Substituting the pressure terms in System (10.9) by using the Equations (10.13)
we obtain:

∂

∂t
(u) +

∂

∂x
(u2) +

∂

∂y
(uv) +

∂

∂z
(uw) = −g

∂

∂x
(h− H) (10.14a)

∂

∂t
(v) +

∂

∂x
(uv) +

∂

∂y
(v2) +

∂

∂z
(vw) = −g

∂

∂y
(h− H). (10.14b)

Now under the main assumption of the SWE, that horizontal scales are much
larger than vertical scales, we integrate the Equation (10.8) and we obtain:
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∂

∂t
h +

∂

∂x
(hu) +

∂

∂y
(hv) = 0. (10.15)

Finally we can write the shallow water equations in two dimensions:



∂h
∂t

+
∂

∂x
(hu) +

∂

∂y
(hv) = 0,

∂

∂t
(hu) +

∂

∂x
(hu2 +

1
2

gh2) +
∂

∂y
(huv) = −gh

∂b
∂x

,

∂

∂t
(hv) +

∂

∂x
(huv) +

∂

∂y
(hv2 +

1
2

gh2) = −gh
∂b
∂y

.

(10.16)

In order to derive the one dimensional model, we set the derivatives with
respect to y equal to zero and the velocity v = 0. Thus we obtain:

∂h
∂t

+
∂

∂x
(hu) = 0,

∂

∂t
(hu) +

∂

∂x
(hu2 +

1
2

gh2) = −gh
∂b
∂x

.
(10.17)

10.3 Exner Model 1D

Let us now introduce the Exner model [44]. In order to describe the evolution
of the sediment in a channel we use the shallow water equations but we add
an extra equation for the sediment transport. This equation is the so-called
Exner equation which stands for:

(zb)t + (qb)x = 0, (10.18)

where zb is the height of the sediment layer and qb is the solid transport
discharge parameter which for now is computed using the Grass model:

qb = ξ Agu‖u‖m−1 (10.19)

where 1 ≤ m ≤ 4, 0 < Ag < 1 and ξ = 1/ (1− ρ0) where ρ0 is the porosity
of the sediment layer.

This equation gives an extra term at the shallow water equations which is
nothing more than an extra bedload term. Adding this term we can rewrite
the System (10.16) in the following form:
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

∂h
∂t

+
∂

∂x
(hu) = 0,

∂

∂t
(hu) +

∂

∂x
(hu2 +

1
2

gh2) = −gh
∂b
∂x

,

∂

∂t
(zb) +

∂

∂x
(qb) = 0.

(10.20)

10.4 Hyperbolicity for Exner Model 1D

Let us now proceed to the following analysis which was initially proposed
in [92] and [95]. Additional articles which they deal with the hyperbolicity
of the Exner mode are [33] and [36] We write the PDE System (11.10), by
assuming for the sake of simplicity that the bottom topography is flat (bx =
0), in the following non conservative form:

Wt + A(W)Wx = 0, (10.21)

where:

W =

 h
q
zb

 , A(W) =

 0 1 0
gh− u2 2u gh

α β 0


where α = ∂qb

∂h and β = ∂qb
∂q .

The system (11.10) is strictly hyperbolic if and only if, the characteristic poly-
nomial:

pλ(λ) = −λ
(
(u− λ)2 − gh

)
+ gh(βλ + α)

has three distinct roots such as λ1 < λ2 < λ3.

The motivation for the derivation of the semi-implicit scheme was the na-
ture of the system. Such eigenvalues represent the wavespeeds of the sys-
tem. This multiscale nature of the equations inspired us to propose a semi-
implicit scheme for the Exner model. By assuming that the interaction be-
tween the water and the sediment is weak, we are looking for the eigen-
value whose value is closer to zero. The wavespeed of the sediment is much
smaller compared with the wavespeed of the water, therefore we assume
that the corresponding eigenvalue for the sediment transport is the inter-
mediate root λ2 which is closer to zero. This analysis is essential in order
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to minimize the numerical diffusion effect and optimize our scheme. Clas-
sical approaches for the numerical viscosity terms lead to a very diffusive
solution for the sediment.

10.5 Exner Model 2D

Let us now describe he Exner model in two dimensions. The philosophy
is the same as one dimension with the difference that extra terms occur in
two dimensions. First we introduce the Exner equation for the sediment
evolution:

(zb)t + (qb,x)x +
(
qb,y
)

y = 0, (10.22)

where zb is the height of the sediment layer and qbx, qby are the solid trans-
port discharge parameters which are computed using the Grass model:

qb,x = ξAgu
(

u2 + v2
)m−1

2 , (10.23a)

qb,y = ξ Agv
(

u2 + v2
)m−1

2 . (10.23b)

where 1 ≤ m ≤ 4, 0 < Ag < 1 and ξ = 1/ (1− ρ0) where ρ0 is the porosity
of the sediment layer.

Recalling the shallow water equations in two dimensions, one write the
Exner model:



∂h
∂t

+
∂

∂x
(hu) +

∂

∂y
(hv) = 0,

∂

∂t
(hu) +

∂

∂x
(hu2 +

1
2

gh2) +
∂

∂y
(huv) = −gh

∂b
∂x

,

∂

∂t
(hv) +

∂

∂x
(huv) +

∂

∂y
(hv2 +

1
2

gh2) = −gh
∂b
∂y

,

∂h
∂t

(zb) +
∂

∂x
(qb,x) +

∂

∂y
(
qb,y
)
= 0.

(10.24)
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10.6 Hyperbolicity for Exner Model 2D

Let us now do the same analysis as 1D for the eigenvalues of the system. The
scope of this analysis is to identify the eigenvalues that are connected with
the sediment evolution, because such values are very useful at the derivation
of he semi-implicit scheme.

By assuming that the bottom topography is flat, the system (13.1) can be
written in the following form:

Wt + A1(W)Wx + A2(W)Wy = 0,

where

W =


h
m
n
zb

 , A1(W) =


0 1 0 0

gh− u2 2u 0 gh
−uv v u 0

α β1 β2 0

 ,

A2(W) =


0 0 1 0
−uv v u 0

gh− v2 0 2v gh
γ δ1 δ2 0

 .

Moreover α =
∂qb,x

∂h , β1 =
∂qb,x
∂m and β2 =

∂qb,x
∂n . Respectively, γ =

∂qb,y
∂h , δ1 =

∂qb,y
∂m and δ2 =

∂qb,y
∂n .

Given an unitary vector n = (n1, n2) we define:

A(n) = A1n1 + A2n2 (10.25)

The system (13.1) is hyperbolic if for all unit vector n, the matrix A(n) has
real eigenvalues and a complete set of eigenvectors [37].

In the case where n = (1, 0) the characteristic polynomial is defined:

pλ(λ, n) = −λ
(
(u− λ)2 − gh

)
+ gh(β1λ + α + β2v)

while for n = (0, 1) one writes:

pµ(µ, n) = −µ
(
(v− µ)2 − gh

)
+ gh(δ2µ + α + δ1u)
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The eigenvalues λ2 and µ2 are directly connected with the evolution of the
sediment. These eigenvalues, later at the derivation of the semi-implicit
scheme, are going to be used as viscosity parameters for the LLF fluxes.
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Chapter 11

Semi-implicit Scheme
for 1D Exner Model

In this chapter we present the semi-implicit scheme for the one dimensional
shallow water equations. First we want to present a new technique which
we are using. Keeping in mind the approximations described in in Chapter
3, we want to introduce a new reconstruction for the computation of the
finite volume derivative that we use for the sediment evolution.

11.1 CWENO Reconstruction

Let us now describe the procedure of the CWENO reconstruction [80, 82, 81].
Our goal is to reconstruct the cell averages. First we introduce the meaning
of the optimal polynomial on a cell j where:

Pj(x) = POPT,j(x), (11.1)

where POPT,j(x) is the parabola that interpolates the cell averages un
j−1, un

j , un
j+1

in the cell Ij :=
[
xj−1/2, xj+1/2

]
where xj = jh.

The polynomial is computed as follows:

POPT,j(x) = un
j + u′j

(
x− xj

)
+

1
2

u′′j
(
x− xj

)2 , (11.2)

where:
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un
j = un

j −
1

24

(
un

j+1 − 2un
j + un

j−1

)
,

u′j =
un

j+1 − un
j−1

2∆x
,

u′′j =
un

j−1 − 2un
j + un

j+1

∆x2 .

(11.3)

Moreover smoothness indicators are introduced in order to capture discon-
tinuities. For this reason the methodology constructs an ENO interpolant as
a convex combination of polynomials which are based on different stencils.
For this reason, in the cell j one writes:

Pj(x) = ∑
i

wj
i P

j
i (x), ∑

i
wj

i = 1, wi ≥ 0, i ∈ {L, C, R} (11.4)

where PR and PL are linear functions made from the interpolation on the
right and the left stencil respectively and PC is a quadratic polynomial.

The polynomials PR and PL are defined as:

PR(x) = un
j +

un
j+1 − un

j

∆x
(
x− xj

)
,

PL(x) = un
j +

un
j − un

j−1

∆x
(
x− xj

)
.

(11.5)

Finally the centered polynomial PC is defined as:

POPT(x) = CLPL(x) + CRPR(x) + CCPC(x), ∑
i

Ci = 1, i ∈ {L, C, R}.

(11.6)

The choice of the coefficients Ci must be symmetric in order to provide the
desired accuracy, i.e. in [80] the authors suggest that CL = CR = 1/4. Using
these coefficients the centered polynomial is computed:

PC(x) = 2POPT(x)− 1
2
(PR(x) + PL(x)) (11.7)

Now we have to define the weights, where:
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wi =
αi

∑k αk
, αi =

Ci

(ε + ISi)
p , i, k ∈ {L, C, R}. (11.8)

Finally smoothness indicators ISi are introduced which are responsible for
detecting discontinuities and are defined as:

ISL =
(

un
j − un

j−1

)2
,

ISR =
(

un
j+1 − un

j

)2
,

ISC =
13
3

(
un

j+1 − 2un
j + un

j−1

)2
+

1
4

(
un

j+1 − un
j−1

)2
.

(11.9)

Using the aforementioned techniques we recall the Exner model in one di-
mension where:



∂h
∂t

+
∂

∂x
(hu) = 0,

∂

∂t
(hu) +

∂

∂x
(hu2 +

1
2

gh2) = −gh
∂b
∂x

,

∂

∂t
(zb) +

∂

∂x
(qb) = 0.

(11.10)

For the computation of the solid transport discharge term qb we use the
Grass model where:

qb = ξAgu‖u‖m−1 (11.11)

.

11.2 1st Order Discretization in Time

Let us discretize now the governing equations in time. We use backward
differences over a time step ∆t, thus the first-order accurate temporal dis-
cretization is given by:

Un+1 −Un

∆t
= H

(
Un, Un+1

)
, (11.12)

where n + 1 denotes the value at the next time step t + ∆t. Now we have to
describe the spatial discretization of the termH

(
Un, Un+1).

102
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11.3 1st Order Discretization in Space

Now we introduce a scheme derived from an implicit treatment of the sur-
face water waves, while the slow wave corresponding to sediment evolution
is treated explicitly.

We introduce a new variable (see Figure 11.1).

η = h + b + zb, (11.13)

and combining (11.10) and (11.13) we obtain a new system:

∂η

∂t
+

∂

∂x
(q + qb) = 0

∂q
∂t

+
∂

∂x
(qu) + gh

(
∂η

∂x

)
= 0

∂

∂t
(zb) +

∂

∂x
(qb) = 0.

(11.14)

FIGURE 11.1: Water column with sediment layer

We denote by D̂x the derivative that is treated explicitly using finite volume
approximation and Dx the centred derivative. Then we discretize the system
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(11.14) at a time interval [tn, tn+1]:
ηn+1 = ηn − ∆tDx(qn

b )− ∆tDx(qn+1) (11.15a)

qn+1 = qn − ∆tD̂x(qnun)− ∆t(ghn)Dx(η
n+1) (11.15b)

zn+1
b = zn

b − ∆tD̂x(qn
b ). (11.15c)

Writing the Equation (11.15b) in the following form:

qn+1 = qn − ∆tD̂x(qnun)︸ ︷︷ ︸
q∗

−∆t(ghn)Dx(η
n+1). (11.16)

Plugging (11.16) to (11.15a) we derive:

ηn+1 = ηn − ∆tDx(qn
b )− ∆tDx(q∗)︸ ︷︷ ︸
η∗

+g∆t2Dx(hnDx(η
n+1)). (11.17)

Posing for the sake of simplicity k = g
(

∆t
∆x

)2
we obtain from (11.17):

ηn+1
j

(
1 + k(hj+1/2 + hj−1/2)

)
− ηn+1

j−1

(
khj−1/2

)
− ηn+1

j+1

(
khj+1/2

)
= η∗j . (11.18)

This in an invertible linear system which can be solved to find ηn+1. After-
wards, qn+1 can be computed from (11.15b). The quantity zn+1

b is computed
explicitly from (11.15c) by using LLF scheme.

Here the key element is to find the appropriate value of numerical viscosity
in the LLF flux. We are seeking for a value such as the numerical diffusion to
be the least possible and the stability of the scheme is not affected. Using the
analysis from 10.4 we are seeking for the intermediate eigenvalue λ2, which
is closer to zero, in order to be used as the numerical viscosity in the LLF flux.
This root can be found easily by a root finding algorithm (Newton’s method
etc.) and used as the numerical viscosity parameter for the corresponding
equation i.e. the sediment transport. Finally, hn+1 can be computed from
(11.13).
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11.4 Second order

In order to obtain a second order scheme in space we use a second order
piecewise conservative linear reconstruction for the finite volume approx-
imated derivative in the momentum equation, a third order CWENO re-
construction [levy_puppo_russo_1999] for the transport discharge term and
classical three point central scheme for the rest. Second order in time is
achieved through an implicit-explicit Runge-Kutta scheme initially proposed
in [11]. Higher order extension can be done by using higher order recon-
struction and higher order Runge-Kutta methods. On the other hand the
nature of the semi-implicit scheme, where some derivatives are computed
using centred approximations, may lead to some problems. An extension
of the grid might bee needed for such cases. Fore the moment we limit
ourselves to second order accuracy while we are using a CWENO3 recon-
struction for the sediment in order to reduce the diffusion on this term. This
third order reconstruction does not affect the efficiency and the speed of the
computations because the gain that we achieve from the bigger timesteps is
much bigger than this reconstruction step.
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Numerical Tests
for 1D Exner Model

In these tests we check the ability of the scheme to compute the solution ef-
ficiently and fast. Our goal is to use a CFL number greater than one in order
to reduce the computation time. To achieve the maximum CFL number, we
have to avoid some small disturbances at the beginning of the test which
can restrict us to smaller CFL numbers. To achieve that we do the follow-
ing procedure. We assume that the sediment layer is fixed bathymetry and
then we solve an explicit scheme with a very small CFL number until the
system reaches a stationary solution. Finally, we use this solution as initial
conditions for the semi implicit scheme.

In Figure 12.1a we have an original dummy set of initial conditions. By
treating the sediment as bottom topography we initialize an explicit scheme.
Once the explicit scheme reaches a stationary state we use this solution as
initial condition for the semi implicit scheme 12.1b. We observe the differ-
ence at the water surface that makes the set of initial conditions appropriate
in order to use higher CFL numbers while we avoid the small disturbances.

12.1 Transport of parabolic sediment layer

The domain here is [0, 1000] and is discretized with 200 points. We initialize
the test setting η = 10, q = 10, b = 0 and

zb =

{
0.1 + sin2

(
π(x−300)

200

)
, 300 ≤ x ≤ 500

0.1, otherwise.

The Grass model parameters are set to Ag = 0.001, mg = 3 and ρ0 = 0.4.
CFL number is regulated to 7.5 corresponding to a material CFL of 0.77. The
results shown at Figure 12.2 are obtained at the final time.
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FIGURE 12.1: Initialization procedure for the semi implicit
scheme in order to use higher CFL numbers.
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FIGURE 12.2: Parabolic sediment layer test results at the final
time t = 238000.

We observe at the Figures 12.3 and 12.4 that the solution of the proposed
semi implicit scheme introduces less dissipation compared with the explicit
scheme. Moreover, the computational time is incomparable i.e. the semi im-
plicit scheme computes the solution 22 time faster than the explicit scheme.
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FIGURE 12.3: Explicit scheme with CFL= 0.3 vs the Semi im-
plicit scheme with CFL= 7.5. at the final time evaluated with

200 points.
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FIGURE 12.4: Explicit scheme with CFL= 0.3 vs the Semi im-
plicit scheme with CFL= 7.5. at the final time evaluated with

400 points.
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Chapter 13

Semi-implicit Scheme
for 2D Exner Model

We recall the Exner model in 2D, where:

∂h
∂t

+
∂m

∂x
+

∂n

∂y
= 0, (13.1a)

∂m

∂t
+

∂

∂x
(mu +

1
2

gh2) +
∂

∂y
(mv) = −gh

∂b
∂x

, (13.1b)

∂n

∂t
+

∂

∂x
(nu) +

∂

∂y
(nv +

1
2

gh2) = −gh
∂b
∂y

, (13.1c)

∂h
∂t

(zb) +
∂

∂x
(qb,x) +

∂

∂y
(
qb,y
)
= 0. (13.1d)

where h is the water height, m and n are the water discharges in the x and y
direction respectively. Moreover, u = m

h and v = n
h are the velocities, b is the

bottom topography (bt = 0).

Finally, zb is the height of the sediment layer and qb,x,qb,y are the solid trans-
port discharge parameters which are computed using the Grass model:

qb,x = ξ Agu
(

u2 + v2
)m−1

2 (13.2)

qb,y = ξ Agv
(

u2 + v2
)m−1

2 (13.3)

where 1 ≤ m ≤ 4, 0 < Ag < 1 and ξ = 1/(1− ρ0) where ρ0 is the porosity
of the sediment layer.
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13.1 CWENO Reconstruction

Now we want to describe a well known reconstruction technique, which was
first introduced in [levy_puppo_russo_1999], in order to derive the semi-
implicit scheme for the Exner model. We use the same procedures described
in Chapter 6 for the water column height and the momentum terms, while
for the sediment evolution equation we introduce a new reconstruction pro-
cedure in two dimensions. Using the same notation as Section 11.1 we can
write the reconstruction on a cell i, j as:

Pi,j(x, y) = ∑
k

wi,j
k Pi,j

k (x, y), k ∈ {NE, NW, SE, SW, C}, (13.4)

where ∑
k

wi,j
k = 1.

We denote with PNE, PNW, PSE, and PSW the one sided linear reconstructions
while with PC the centered quadratic reconstruction.

FIGURE 13.1: CWENO reconstruction 2D stencil.

The four linear one-sided reconstructions are given by:
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PNE(x, y) = un
i,j +

un
i+1,j − un

i,j

∆x
(x− xi) +

un
i,j+1 − un

i,j

∆y
(
y− yj

)
PNW(x, y) = un

i,j +
un

i,j − un
i−1,j

∆x
(x− xi) +

un
i,j+1 − un

i,j

∆y
(
y− yj

)
PSW(x, y) = un

i,j +
un

i,j − un
i−1,j

∆x
(x− xi) +

un
i,j − un

i,j−1

∆y
(
y− yj

)
PSE(x, y) = un

i,j +
un

i+1,j − un
i,j

∆x
(x− xi) +

un
i,j − un

i,j−1

∆y
(
y− yj

)
.

(13.5)

Then the centred polynomial is defined such as:

POPT(x, y) = ∑
k

CkPk(x, y), k ∈ {NE, NW, SE, SW, C}, (13.6)

where ∑
k

Ck = 1.

Now we define the optimal polynomial which is computed as follows:

POPT(x, y) = un
i,j + u′i,j (x− xi) + u ′i,j

(
y− yj

)
+ u′ ′i,j (x− xi)

(
y− yj

)
+

1
2

u′′i,j (x− xi)
2 +

1
2

u ′′i,j
(
y− yj

)2 (13.7)

where:

un
i,j = ui,j −

1
24

(
(∆x)2u′′i,j + (∆y)2u ′′i,j

)
u′i,j =

un
i+1,j − un

i−1,j

2∆x
, u ′i,j =

un
i,j+1 − un

i,j−1

2∆y

u′′i,j =
un

i+1,j − 2un
i,j + un

i−1,j

∆x2 , u ′′i,j =
un

i,j+1 − 2un
i,j + un

i,j−1

∆y2

u′ ′i,j =
un

i+1,j+1 + un
i−1,j−1 − un

i+1,j−1 − un
i−1,j+1

4∆x∆y
.

(13.8)

A possible choice of the parameters CK in order to achieve a third-order re-
construction for the quarter cell-averages is CNE = CNW = CSW = CSE =
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1/8 and finally CC = 1/2. Using these constants and the Equation 13.6 one
writes the central polynomial as follows:

PC(x, y) = 2POPT(x, y)− 1
4
[PNE(x, y) + PNW(x, y) + PSW(x, y) + PSE(x, y)]

(13.9)

Now we define the weight where:

wi,j
k =

α
i,j
k

∑l α
i,j
l

, α
i,j
k =

Ci,j
k(

ε + ISi,j
k

)p , k, l ∈ {NE, NW, SE, SW, C}. (13.10)

At the end we have to compute the smoothness indicators which are respon-
sible for the manipulation of the discontinuities. Assuming that ∆x = ∆y =
h one writes for the four one-sided linear reconstructions:

ISk = h2
[(

û′
)2

+
(
û′
)2
]

, (13.11)

while for the centered polynomial:

ISC = h2
[(

u′
)2

+
(
u ′
)2
]
+

h4

3

[
13
(
u′′
)2

+ 14
(
u′ ′
)2

+ 13
(
u ′′
)2
]

. (13.12)

Now in the same philosophy as before, we introduce a new variable, namely:

η = h + b + zb, (13.13)

and combining (13.1) and (13.13) we obtain a new system:

∂η

∂t
+

∂

∂x
(m+ qb,x) +

∂

∂y
(n+ qb,y) = 0,

∂m

∂t
+

∂

∂x
(mu) +

∂

∂y
(mv) + gh

(
∂η

∂x

)
= 0,

∂n

∂t
+

∂

∂y
(nv) +

∂

∂x
(nu) + gh

(
∂η

∂y

)
= 0,

∂h
∂t

(zb) +
∂

∂x
(qb,x) +

∂

∂y
(
qb,y
)
= 0.

(13.14)
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13.2 1st Order Discretization in Time

Recalling the first order discretization in time from Section 3.5 we write the
System (13.14)

Un+1 −Un

∆t
= H

(
Un, Un+1

)
, (13.15)

where n+ 1 denotes the value at the next time step t+∆t. Now we are going
to describe the spatial discretization of the termH

(
Un, Un+1).

13.3 1st Order Discretization in Space

Here we follow the same procedure as Chapter 11 in order to obtain a first
order semi implicit scheme. In the same philosophy, we treat implicitly the
fast surface water waves while the sediment which has a much smaller wave
speed explicitly. By using the same notation where D̂x is the derivative that
is treated explicitly using finite volume approximation and Dx the centred
derivative. By discretizing the system (13.14) at a time interval [tn, tn+1] we
obtain: 

ηn+1 = ηn − ∆tDx(qn
b,x) + ∆tDy(qn

b,y)

− ∆tDx(m
n+1)− ∆tDy(n

n+1)
(13.16a)

mn+1 = mn − ∆tD̂x(m
nun)− ∆tD̂y(m

nvn)

− ∆t(ghn)Dx(η
n+1)

(13.16b)

nn+1 = nn − ∆tD̂y(n
nvn)− ∆tD̂x(n

nun)

− ∆t(ghn)Dy(η
n+1)

(13.16c)

zn+1
b = zn

b − ∆tD̂x(qn
b,x)− ∆tD̂y(qn

b,y). (13.16d)

Plugging (13.16b) and (13.16c) to (13.16a) we derive:

ηn+1 = ηn − ∆tDx(qn
b,x)− ∆tDy(qn

b,y)

− ∆tDx(m
∗) + g∆t2Dx(hnDx(η

n+1))

− ∆tDy(n
∗) + g∆t2Dy(hnDy(η

n+1)),

(13.17)

where

m∗ = mn − ∆tD̂x(m
nun)− ∆tD̂y(m

nvn),

n∗ = nn − ∆tD̂y(n
nvn)− ∆tD̂x(n

nun).
(13.18)
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By posing

η∗ = ηn − ∆tDx(qn
b,x)− ∆tDy(qn

b,y)− ∆tDx(m
∗)− ∆tDy(n

∗)

and by substituting kx = g
(

∆t
∆x

)2
and ky = g

(
∆t
∆y

)2
we obtain from (13.17):

ηn+1
i,j

(
1 + kx(hi,j+1/2 + hi,j−1/2) + ky(hi+1/2,j + hi−1/2,j)

)
−ηn+1

i,j−1

(
kxhi,j−1/2

)
− ηn+1

i,j+1

(
kxhi,j+1/2

)
−ηn+1

i−1,j
(
kyhi−1/2,j

)
− ηn+1

i+1,j
(
kyhi+1/2,j

)
= η∗j .

(13.19)

This is a system of linear equations that can be solved in order to find ηn+1.
Then, mn+1 and nn+1 are computed from (13.16b) and (13.16c) respectively.
Moreover, the sediment evolution is computed explicitly from (13.16d).

Again, we are seeking for the appropriate viscosity parameters in the LLF
fluxes that we use for the sediment evolution. The purpose of this scheme is
to capture accurately the evolution of the sediment when the interaction is
small. For this reason we assume that he corresponding numerical viscosity
terms for the LLF fluxes in the x and y dimension are the eigenvalues closer
to zero, i.e. λ2 and µ2 (see Section 10.6), due to the fact that the wave speed
of the sediment is very small.

In order to compute these eigenvalues, we use an iterative root finding algo-
rithm (for example Newton method). When we obtain the requested numer-
ical viscosity terms, we compute the evolution of the sediment from (13.16d).
Finally, hn+1 can be computed from (13.13).

13.4 Second order

Here, in order to achieve second order in space we use the same procedure.
For the FV numerical approximation we use a piece-wise conservative linear
reconstruction with minmod flux limiter. Moreover, because the scheme is
mainly focused on the sediment evolution, we use a third order CWENO
reconstruction just for the derivatives in (13.16d). Second order in time is
achieved by using the same implicit-explicit Runge-Kutta scheme from [11].
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Numerical Tests
for 2D Exner Model

In these tests we are checking our scheme in 2D. Again, in order to achieve
the maximum CFL number that can be used for each test, we choose to ini-
tialize the tests by assuming that the sediment is not moving. We set the bot-
tom topography as the sum of the sediment layer and the real bathymetry
and we initialize the explicit solver. Once the explicit scheme reaches a sta-
tionary state we use this solution as initial conditions for the semi implicit
scheme.

14.1 2D transport of parabolic sediment layer

This test is adopted from [37]. We use this test in order to compare the re-
sults obtain in the 1D case with 2D. We initialize this test by extending the
parabolic shape of the sediment layer shown previously on Chapter 12.1
across the y axis. The same procedure can be done also in x axis, but for
sake of simplicity we just present this case. The domain here is the square
[0, 1000]× [0, 1000] and it’s discretized with 10,000 finite volumes while the
final time is T = 238000. We set the total water column height η = 10 and the
bottom topography equal to zero. We initialize the flow by setting m = 10
and n = 0. Finally we set:

zb =

{
0.1 + sin2

(
π(x−300)

200

)
, 200 ≤ x ≤ 300

0.1, otherwise.

After the initialization with the explicit scheme we obtain the initial condi-
tions for the semi implicit scheme depicted in Figure 14.1. The Grass param-
eters that we used for this test are Ag = 0.001, mg = 3 and ρ0 = 0.4. CFL
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number is regulated to 10 corresponding to a material CFL of 0.55. The re-
sults at the final time T = 238000. By comparing the 1D with the 2D scheme,
we observe at Figure 14.3 that evolution of the sediment and the water col-
umn height are almost indistinguishable.

(a) Sediment (b) Surface

FIGURE 14.1: 2D parabolic sediment layer initial conditions.

(a) Sediment (b) Surface

FIGURE 14.2: 2D parabolic sediment layer test results at the
final time t = 238000.
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FIGURE 14.3: 1D vs. 2D parabolic sediment layer test results
at the final time t = 238000.

14.2 Conical dune

This test was initially proposed in [60]. It’s purely 2D test which can be
initialized with various values of Ag in order the check the ability of the
proposed scheme on capturing the sediment evolution accurately even if
the water and the sediment interact fast. For this reason we run the test with
two different values of Ag. The test is initialized by setting η = 10, m = 10
and n = 0. The sediment layer is initialized as follows:

zb =

 0.1 + sin2
(

π(x−300)
200

)
sin2

(
π(y−400)

200

)
,

200 ≤ x ≤ 300,
400 ≤ y ≤ 600,

0.1, otherwise.

Again, we use an explicit scheme to initialize properly the test in order to
avoid small disturbances at the water surface. After a stationary state is
reached we have the well prepared initial conditions for the semi implicit
scheme Figure 14.4.

First we initialize the test on a 100× 100 numerical grid and we set the Grass
model parameters Ag = 0.001, mg = 3 and the porosity ρ0 = 0.4. The final
time for this test is T = 360000 and the results are shown in Figure 14.5.

Finally we use exactly the same initial conditions, but here we set Ag = 1
which represents a strong interaction between the sediment and the water.
For this reason the final time here is T = 500. The results are shown on
Figure 14.6
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(a) Sediment (b) Surface

FIGURE 14.4: Initial conditions of conical dune test case

(a) Sediment (b) Sediment top view

FIGURE 14.5: Conical dune test case at the final time T =
360000 with small interaction Ag = 0.001.
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(a) Sediment (b) Sediment top view

FIGURE 14.6: Conical dune test case at the final time T = 500
with strong interaction Ag = 1.
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Chapter 15

Conclusions for Exner Model

We propose an efficient fast and very robust scheme. Motivated from the
multiscale nature of the Exner model we built a scheme that is focused on
the sediment evolution. Moreover the scheme can be used (with the classical
CFL condition) for the evolution of the fast water waves if one is interested
for the surface waves. Bigger CFL numbers can be used when one is inter-
ested for the sediment layer evolution and this leads to less diffusive results
while explicit schemes, which obey the classical CFL condition, suffer from
numerical dissipation. We managed to achieve a remarkable decrease at the
computation time while we observe less dissipation in the solution.
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Appendix A

Fourier-Spectral Method

Here we briefly describe the Fourier-spectral method that we used in Section
8.4. We assume the problem is in a domain [0, 2π]2, with periodic boundary
conditions.

The vorticity satisfies the equation

∂ω

∂t
+ u · ∇ω = 0. (A.1)

Because ∇ · u = 0 there exists a stream function ψ such that:

u =

(
−∂ψ

∂y
,

∂ψ

∂x

)
.

Plugging this expression into Eq.(8.11) we obtain the Poisson equation for ψ:

− ∆ψ = ω. (A.2)

The Fourier-spectral method works as follows: let Ω be a discretisation of ω
on a M×M grid. Then Ω satisfies the system of ODE’s:

dΩ
dt

= F(Ω). (A.3)

The right hand side is computed as follows: First compute the Fast Fourier
Transform of Ω as

Ω̂(kx, ky) = F (Ω, kx, ky).

Then compute the Fourier transform ψ̂ of ψ from the Poisson equation (A.2):

ψ̂ = Ω̂/(k2
x + k2

y).
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Appendix A. Fourier-Spectral Method

where we note that Ω̂(0, 0) = 0 because Ω has zero mean. The two compo-
nents of the velocity, U, V, are given by:

U = F−1(−ikyψ̂), V = F−1(ikxψ̂).

The space derivatives of Ω are given by:

Ωx = F−1(ikxΩ̂), Ωy = F−1(ikyΩ̂)

Finally, the right hand side of Eq.(A.3) is given by

F = −(UΩx + VΩy). (A.4)

System (A.3) can then be solved by an accurate ODE solver.
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