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1. Introduction

In this paper, we consider the following class of first-order nonlinear neutral difference equations

∆[U(θ) + P(θ)U(θ − τ)] +

s∑
j=1

Q j(θ)F (U(θ − σ j)) = 0, (1.1)

where θ ∈ N(θ0) = {θ0, θ0 + 1, . . .}, P(θ), Q j(θ), j = 1, 2, . . . , s are discrete arguments and real valued
functions such thatQ j(θ) > 0 for θ ∈ N(θ0), F ∈ C(R,R) is nondecreasing function such that xF (x) > 0
for x , 0 and ∆ is defined by ∆u(θ) = u(θ+ 1)− u(θ). Let ρ = max{τ, σ j}, j = 1, 2, . . . , s. A real valued
function U(θ) defined on N(θ0 − ρ) is said to be a solution of (1.1) if it satisfies (1.1) for θ ≥ θ0 with
the initial conditions U(r) = φ(r), where φ(r), r = θ0 − ρ, · · · , θ0 are given real constants. A solution
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U(θ) of (1.1) is said to be oscillatory if for every positive integer N > 0 there exists θ ≥ N such that
U(θ)U(θ + 1) ≤ 0. Otherwise,U(θ) is said to be nonoscillatory.

In the continuous-time system [12], Kolmanovski et al. coined the term “neutral” in the
mid-twentieth century. Myshkis [17] used the classification of equations as retarded, neutral, or
advanced in 1955. In particular, the problem of oscillation of solutions of neutral
differential/difference equations arises in a wide variety of real-world phenomena observed in Science
and Engineering, like in population dynamics, stability theory, lossless transmission lines in computer
networks, vibrating masses attached to an elastic bar, etc., see [1, 5, 9]. As a result, many researchers
are interested in the dynamical behaviour of neutral difference equations.

Georgiou et al. [7] in particular introduced the study of oscillatory behaviour of solutions of neutral
difference equations (1.1) with P(θ) = P, Q j(θ) = Q for j = 1, 2, ..., s, and F (x) = x and established
four sufficient conditions that ensure the oscillation of (1.1). Since then, many scholars have studied
various generalizations of (1.1) and improved the oscillation conditions by using methods like the
summation averaging method, comparison method, inequality techniques, etc., see [3, 4, 8, 11, 13–16,
18–29] and references cited therein. In particular, Gao et al. [6] studied (1.1) withP(θ) = −1, F (x) = x
and j = 1.

Theorem 1.1 ([6]). Assume that Q(θ) > 0 for θ ≥ 0. Then all solutions of the Eq (1.1) are strongly
oscillatory if and only if equation ∆2Z(θ − 1) + 1

τ
Q(θ)Z(θ) = 0 is oscillatory.

Furthermore, Graef et al. [10] established new oscillation criteria for (1.1) with P(θ) > 1, j = 1 and
F (x)/x ≥ M > 0 by comparing it to the oscillatory behaviour of second order difference equations.

Theorem 1.2 ([10]). Assume that m = σ1 − τ and that

Q(θ) =
M(P − 1)
P2 Q(θ) ≥

mm

(m + 1)m+1 for all large θ.

If every solution of the difference equation

∆2Z(θ − 1) +
2(m + 1)m+1

mm+1

[
Q(θ) −

mm

(m + 1)m+1

]
Z(θ) = 0, for all large θ

is oscillatory, then every solution of the nonlinear neutral delay difference equation (1.1) (with P(θ) >
1, j = 1 and F (x)/x ≥ M > 0) is oscillatory.

However, to the best of our knowledge, there are no results that are sufficient as well as necessary
for the oscillation of (1.1). With this motivation, our main aim is to find the necessary and sufficient
conditions for the oscillation of solutions of (1.1) when the nonlinear function F is either sublinear
or superlinear. For the general theory of difference equations and a survey of excellent results in the
oscillation theory for difference equations, we refer the reader to the monographs by Agarwal [1],
Agarwal et al. [2] and Györi et al. [9].

Next, we mention the following fixed point theorems for the completeness of the paper.

Theorem 1.3 (Knaster-Tarski fixed point theorem, [2, 9]). Let X be a partially ordered Banach space
with ordering ≤. Let S be a subset of X with the following properties: the infimum of S belongs to S
and every nonempty subset of S has a supremum which belongs to S . Let T : S → S be an increasing
mapping, i.e, x ≤ y implies that T x ≤ Ty. Then T has a fixed point in S .

Theorem 1.4 (Banach’s contraction principle, [2, 9]). Let X be a complete metric space and T be a
contraction mapping on X. Then T has exactly one fixed point on X.
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2. Main results

Let us denote by X = lθ
∗

∞ the Banach space of real valued bounded functions U(θ) for θ ≥ θ∗ > θ0

with the norm
‖U‖ = sup{|U(θ)| : θ ≥ θ∗}.

Theorem 2.1. Consider −1 < a1 ≤ P(θ) ≤ 0 and τ ≥ σ j, j = 1, 2, . . . , s. Assume that

(H1) F (wz) = F (w)F (z), F (−w) = −F (w), w, z ∈ R.
(H2) F satisfies

∫ c

0
dx
F (x) < ∞, 0 < c < ∞.

Then, every solution of (1.1) is oscillatory if and only if

(H3)
∞∑
θ=θ0

s∑
j=1

Q j(θ) = ∞.

Proof. We argue by contradiction, assuming that U(θ) is a nonoscillatory solution of (1.1) such that
U(θ) > 0 or U(θ) < 0 for θ ≥ θ0. By symmetry of Eq (1.1) we may assume that U(θ), U(θ − τ),
U(θ − σ j) > 0 for θ ≥ θ1 = θ0 + ρ, j = 1, 2, . . . , s. Setting

Z(θ) = U(θ) + P(θ)U(θ − τ) (2.1)

in (1.1), we get

∆Z(θ) = −

s∑
j=1

Q j(θ)F (U(θ − σ j)) < 0, (2.2)

for θ ≥ θ1. Hence, Z(θ) is nonincreasing for θ ≥ θ2. So, there exists θ3 > θ2 such that Z(θ) > 0 or
Z(θ) < 0 for θ ≥ θ3.

Case 1. Consider Z(θ) > 0 for θ ≥ θ3. Here Z(θ) ≤ U(θ) for θ ≥ θ3. Consequently, (2.2) can be
written as

∆Z(θ) ≤ −
s∑

j=1

Q j(θ)F (Z(θ − σ j))

for θ ≥ θ4 > θ3 + σ j. Using the fact thatZ(θ) is nonincreasing, the last inequality can be written as

s∑
j=1

Q j(θ) ≤ −
∆Z(θ)
F (Z(θ))

.

IfZ(θ + 1) < x < Z(θ), then 1
F (Z(θ)) ≤

1
F (x) . Therefore, the last inequality implies that

s∑
j=1

Q j(θ) ≤ −
∫ Z(θ+1)

Z(θ)

dx
F (x)

.

Summing the preceding inequality from θ4 to θ − 1, we have

θ−1∑
k=θ4

s∑
j=1

Q j(k) ≤ −
θ−1∑
k=θ4

∫ Z(k+1)

Z(k)

dx
F (x)

= −

∫ Z(θ)

Z(θ4)

du
F (u)

,
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a contradiction to (H3) because of letting θ → ∞ and (H2).
Case 2. ConsiderZ(θ) < 0 for θ ≥ θ3. Clearly,Z(θ) < 0 implies that

U(θ) < −P(θ)U(θ − τ) ≤ U(θ − τ) for θ ≥ θ3.

Proceeding inductively, we get

U(θ) ≤ max{U(θ3),U(θ3 + 1), · · · ,U(θ3 + τ − 1)}.

Consequently,U(θ) is bounded for θ ≥ θ3. As a result,Z(θ) is bounded and lim
θ→∞
Z(θ) exists. We may

note that,Z(θ) < 0 and (2.1) implyZ(θ+ τ−σ j) > a1U(θ−σ j), j = 1, 2, . . . , s. Therefore, using (H1)
and (1.1) we obtain

∆Z(θ) +

s∑
j=1

Q j(θ)
F (a1)

F (Z(θ + τ − σ j)) ≤ 0. (2.3)

Since Z(θ) is nonincreasing for θ ≥ θ3, we can find θ4 > θ3 and c > 0 so that Z(θ) ≤ −c for θ ≥ θ4.
Consequently, (2.3) becomes

∆Z(θ) + F

(
−

c
a1

) s∑
j=1

Q j(θ) ≤ 0. (2.4)

Summing from θ4 to θ − 1, (2.4) gives

F

(
−

c
a1

) θ−1∑
k=θ4

s∑
j=1

Q j(k) ≤ −Z(θ) +Z(θ4) < ∞ as θ → ∞,

a contradiction to (H3).
To prove the necessary part, we assume that

∞∑
θ=θ1

s∑
j=1

Q j(θ) < ∞.

So, we can choose θ2 > θ1 such that

∞∑
k=θ

s∑
j=1

Q j(k) <
(1 + a1)κ2 − α

F (κ2)
, θ ≥ θ2, (2.5)

where κ1 and κ2 are two positive constants such that

κ1 < α < (1 + a1)κ2.

Let K = {U ∈ X : U(θ) ≥ 0 for θ ≥ θ2}. Next, we define a partial order on X, that is, forU1,U2 ∈ X,
U1 ≤ U2 if and only ifU2 −U1 ∈ K. Thus, X is a partially ordered Banach space. Set

Ψ = {U ∈ X : κ1 ≤ U(θ) ≤ κ2, θ ≥ θ2}.
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Obviously, for every subset Ψ∗ of Ψ both inf Ψ∗ and sup Ψ∗ exist in Ψ. Now, forU ∈ Ψ we define the
following map:

(ΓU)(θ) =


U(θ2 + ρ), θ2 ≤ θ ≤ θ2 + ρ

α − P(θ)U(θ − τ) +

∞∑
k=θ

s∑
j=1

Q j(k)F (U(k − σ j)), θ ≥ θ2 + ρ.

ForU ∈ Ψ and using (2.5), we have

(ΓU)(θ) = α − P(θ)U(θ − τ) +

∞∑
k=θ

s∑
j=1

Q j(k)F (U(k − σ j)), θ ≥ θ2 + ρ

≤ α − P(θ)U(θ − τ) + F (κ2)
∞∑

k=θ

s∑
j=1

Q j(k)

≤ α − a1κ2 + F (κ2)
[
(1 + a1)κ2 − α

F (κ2)

]
= κ2

and
(ΓU)(θ) ≥ α ≥ κ1.

Therefore, ΓU ∈ Ψ for allU ∈ Ψ and θ ≥ θ2. LetU1,U2 ∈ Ψ such thatU1 ≤ U2. It is not difficult to
verify that ΓU1 ≤ ΓU2. Therefore, by Theorem 1.3, Γ has aU ∈ Ψ such that ΓU = U. Thus,U(θ) is
a nonoscillatory solution of (1.1) with lim inf

θ→∞
U(θ) ≥ κ1 > 0. Thus, the proof is completed. �

Example 2.2. For θ > 3, let us consider

∆[U(θ) + P(θ)U(θ − 3)] + Q1(θ)U
1
3 (θ − 1) + Q2(θ)U

1
3 (θ − 2) = 0, (2.6)

where P(θ) = −1
3 (1 + (−1)θ), Q1(θ) = 1

3 , Q2(θ) = 3, s = 2, τ = 3, σ1 = 1, σ2 = 2 and F (x) = x
1
3 .

Clearly, −1 < −2/3 ≤ P ≤ 0. Also

∞∑
k=τ

2∑
j=1

Q j(k) = ∞.

Therefore, by Theorem 2.1 every solution of (2.6) oscillates.

Theorem 2.3. Consider −∞ < a3 ≤ P(n) ≤ a4 < −1 and τ ≥ σ j, j = 1, 2, . . . , s. Assume that F is a
Lipschitz function on any [α, β] where 0 < α < β < ∞, that (H1) holds and that

(H4) F satisfies
∫ ∞

c
dx
F (x) < ∞, c > 0.

Then, every solution of (1.1) is oscillatory if and only if (H3) holds.

Proof. To prove the sufficiency part, we follow the proof of Theorem 2.1 and we can conclude that if
U(θ) is a positive solution, then Z(θ) is nonincreasing for θ ≥ θ2. So, there exists θ3 > θ2 such that
Z(θ) > 0 orZ(θ) < 0 for θ ≥ θ3.
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Case 1. ConsiderZ(θ) > 0 for θ ≥ θ3. We have

U(θ) ≥ −P(θ)U(θ − τ) ≥ U(θ − τ).

Proceeding inductively, we get

U(θ) ≥ min{U(θ3),U(θ3 + 1), · · · ,U(θ3 + τ − 1)}

which implies thatU(θ) is bounded below by, say, M for θ ≥ θ4. Summing (2.2) from θ4 to θ − 1, we
get

Z(θ) −Z(θ4) +

θ−1∑
k=θ4

s∑
j=1

Q j(k)F (U(k − σ j)) = 0

implying

Z(θ) = Z(θ4) −
θ−1∑
k=θ4

s∑
j=1

Q j(k)F (U(k − σ j)),

that is,

Z(θ) ≤ Z(θ4) − F (M)
θ−1∑
k=θ4

s∑
j=1

Q j(k)→ −∞ as θ → ∞,

a contradiction to the fact thatZ(θ) > 0 for θ ≥ θ4.
Case 2 (Z(θ) < 0). Since Z(θ) < 0 for θ ≥ θ3, then we can find θ4 > θ3 such that Z(θ + τ − σ j) ≥

a3U(θ − σ j) for j = 1, 2, . . . , s. Hence, (1.1) reduces to

∆Z(θ) +

s∑
j=1

Q j(θ)
F (a3)

F (Z(θ + τ − σ j)) ≤ 0,

that is,

∆Z(θ) +

s∑
j=1

Q j(θ)
F (a3)

F (Z(θ)) ≤ 0.

Dividing both sides of the last inequality by F (Z(θ)), we get

∆Z(θ)
F (Z(θ))

+

s∑
j=1

Q j(θ)
F (a3)

≥ 0.

IfZ(θ + 1) ≤ u ≤ Z(θ), then the above inequality can be viewed as∫ Z(θ+1)

Z(θ)

du
F (u)

+

s∑
j=1

Q j(θ)
F (a3)

≥ 0.

Therefore,

θ−1∑
k=θ4

s∑
j=1

Q j(k) ≤ −F (a3)
θ−1∑
k=θ4

∫ Z(k+1)

Z(k)

du
F (u)

= −F (a3)
∫ Z(θ)

Z(θ4)

du
F (u)

,
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that is,

∞∑
k=θ4

s∑
j=1

Q j(k) < ∞ as θ → ∞

due to (H4), a contradiction to (H3).
To prove the necessary part, we assume that

∞∑
θ=θ1

s∑
j=1

Q j(θ) < ∞.

So, we can choose θ2 > θ1 such that

∞∑
k=θ

s∑
j=1

Q j(k) < η, θ ≥ θ2, (2.7)

where

η = min
{

a3κ3 + α

L
,
−(α + (1 + a4)κ4)

L
,

(−1 − a4)
2L

}
,

κ3 and κ4 are two positive constants such that

−a3κ3 < α < (−1 − a4)κ4,

and L = max{L1,F (κ4)}, L1 is the Lipschitz constant of F on [κ3, κ4]. Let

Ψ = {U ∈ X : κ3 ≤ U(θ) ≤ κ4, θ ≥ θ2}.

Ψ is a complete metric space. ForU ∈ Ψ let us define the map

(ΓU)(θ) =


U(θ2 + ρ), θ2 ≤ θ ≤ θ2 + ρ

−
α

P(θ + τ)
−
U(θ + τ)
P(θ + τ)

+
1

P(θ + τ)

∞∑
k=θ+τ

s∑
j=1

Q j(k)F (U(k − σ j)), θ ≥ θ2 + ρ.

ForU ∈ Ψ and using (2.7), we have

(ΓU)(θ) ≤ −
α

P(θ + τ)
−
U(θ + τ)
P(θ + τ)

≤ −
1
a4

[
(−1 − a4)κ4 + κ4

]
= κ4

and

(ΓU)(θ) ≥ −
α

P(θ + τ)
+

1
P(θ + τ)

∞∑
k=θ+τ

s∑
j=1

Q j(k)F (U(k − σ j))

≥ −
1

P(θ + τ)

α − F (κ4)
∞∑

k=θ+τ

s∑
j=1

Q j(k)


≥ −

1
a3

[
α − F (κ4)η

]
AIMS Mathematics Volume 7, Issue 10, 17670–17684.
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≥ −
1
a3

[
α − α − a3κ3

]
= κ3

implies that ΓU ∈ Ψ for every θ ≥ θ2. ForU1,U2 ∈ Ψ, we have

|ΓU1(θ) − ΓU2(θ)| ≤
1

|P(θ + τ)|
|U1(θ + τ) −U2(θ + τ)|

+
L1

|P(θ + τ)|

∞∑
k=θ+τ

s∑
j=1

Q j(k)|U1(k − σ j) −U2(k − σ j)|,

that is,

|ΓU1(θ) − ΓU2(θ)| ≤ −
1
a4
‖U1 −U2‖ −

L1

a4
‖U1 −U2‖

∞∑
k=θ+τ

s∑
j=1

Q j(k)

≤ −
1
a4
‖U1 −U2‖ −

L1

a4
η‖U1 −U2‖

≤ −
1
a4

(
1 −

1 + a4

2

)
‖U1 −U2‖

which implies
‖ΓU1 − ΓU2‖ ≤ λ‖U1 −U2‖,

where λ = a4−1
2a4

< 1, so, Γ is a contraction. Therefore, by Theorem 1.4, Γ has a pointU ∈ Ψ such that
ΓU = U. Consequently,U(θ) is a positive solution of (1.1). Thus, the theorem is proved. �

Example 2.4. For θ > 3, let us consider

∆[U(θ) + P(θ)U(θ − 3)] + Q1(θ)U3(θ − 1) + Q2(θ)U3(θ − 2) = 0, (2.8)

where P(θ) = −(3 + (−1)θ), Q1(θ) = eθ, Q2(θ) = 8 + eθ, s = 2, τ = 3, σ1 = 1, σ2 = 2 and F (x) = x3.
Here, −4 ≤ P(θ) ≤ −2 and

∞∑
k=τ

2∑
j=1

Q j(k) = ∞.

Therefore, every solution of (2.8) oscillates by Theorem 2.3.

In the next result we do not need the assumption (H4).

Theorem 2.5. Let us assume that all the conditions of Theorem 2.3 hold, except (H4). Then, every
bounded solution of (1.1) is oscillatory if and only if (H3) holds.

Proof. To prove the sufficiency part, we follow the proof of Theorem 2.3 and we can conclude that if
U(θ) is a bounded solution, then so is Z and we get Z(θ) < 0 for θ ≥ θ3. So, we can find θ4 > θ3 and
c > 0 so thatZ(θ) ≤ −c for θ ≥ θ4. Consequently, (1.1) becomes

∆Z(θ) + F

(
−

c
a3

) s∑
j=1

Q j(θ) ≤ 0 (2.9)

AIMS Mathematics Volume 7, Issue 10, 17670–17684.
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for θ ≥ θ4. Summing (2.9) from θ4 to θ − 1, we get

Z(θ) −Z(θ4) + F

(
−

c
a3

) θ−1∑
k=θ4

s∑
j=1

Q j(k) ≤ 0,

that is,

F

(
−

c
a3

) θ−1∑
k=θ4

s∑
j=1

Q j(k) ≤ Z(θ4) −Z(θ) < ∞ as θ → ∞,

a contradiction to (H3).
The necessary part can be obtained following the proof of Theorem 2.3. So, we omit it here. Thus,

the theorem is proved. �

Theorem 2.6. Let 0 ≤ P(θ) ≤ a6 < 1 and assume that (H1) holds. Let F be a Lipschitz function on any
[α, β] where 0 < α < β < ∞. Then, every nonoscillatory solutionU of (1.1) satisfies lim

θ→∞
U(θ) = 0 if

and only if (H3) holds.

Proof. To prove the sufficiency part, we argue by contradiction and we assume that (H3) holds and
U is an eventually positive solution of (1.1) which does not converge to zero. Then, following the
proof of Theorem 2.1, we conclude that Z(θ) is nonincreasing for θ ≥ θ2. Clearly, lim

θ→∞
Z(θ) exists as

Z(θ) > 0 for θ ≥ θ2. As a result, lim inf
θ→∞

U(θ) exists, that is, lim inf
θ→∞

U(θ) = l, 0 ≤ l < ∞. We claim
that lim inf

θ→∞
U(θ) = 0. If not, then for γ > 0 we haveU(θ − σ j) > γ for θ ≥ θ3 > θ2 and j = 1, 2, . . . , s.

Therefore, (2.2), we get

θ−1∑
k=θ3

s∑
j=1

Q j(k)F (U(k − σ j)) ≤ −Z(θ) +Z(θ3),

that is,

F (γ)
θ−1∑
k=θ3

s∑
j=1

Q j(k) ≤ Z(θ3) < ∞ as θ → ∞,

a contradiction to (H3). Hence, lim inf
θ→∞

U(θ) = 0. Since lim
θ→∞
Z(θ) exists, then by [22, Lemma 2.1],

lim
θ→∞
Z(θ) = 0. Consequently,

0 = lim
θ→∞
Z(θ) = lim sup

θ→∞

[U(θ) + P(θ)U(θ − τ)] ≥ lim sup
θ→∞

U(θ),

that is, lim sup
θ→∞

U(θ) = 0. Thus, lim
θ→∞
U(θ) = 0, which is a contradiction to the fact that U(θ) does not

converge to zero.
To proof the necessary part, we use the contrapositive method, that is, when (H3) does not hold we

find an eventually positive solution that does not converge to zero. Assume that
∞∑
θ=θ1

s∑
j=1

Q j(θ) < ∞.

AIMS Mathematics Volume 7, Issue 10, 17670–17684.
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So, we choose θ2 > θ1 such that
∞∑

k=θ

s∑
j=1

Q j(k) < η, θ ≥ θ2, (2.10)

where

η = min
{
κ6 − α

L
,
α − (κ5 + a6κ6)

L
,

1 − a6

2L

}
,

κ5 and κ6 are two positive constants such that

κ5 < (1 − a6)κ6, κ5 + a6κ6 < α < κ6,

and L = max{L1,F (κ6)}, L1 is the Lipschitz constant of F on [κ5, κ6]. Let

Ψ = {U ∈ X : κ5 ≤ U(θ) ≤ κ6, θ ≥ θ2}.

ForU ∈ Ψ let us define the map

(ΓU)(θ) =


U(θ2 + ρ), θ2 ≤ θ ≤ θ2 + ρ

α − P(θ)U(θ − τ) +

∞∑
k=θ

s∑
j=1

Q j(k)F (U(k − σ j)), θ ≥ θ2 + ρ.

ForU ∈ Ψ and using (2.10), we have

(ΓU)(θ) ≤ α +

∞∑
k=θ

s∑
j=1

Q j(k)F (U(k − σ j))

≤ α + F (κ6)
∞∑

k=θ

s∑
j=1

Q j(k)

≤ α + F (κ6)η ≤ κ6

and

(ΓU)(θ) ≥ α − P(θ)U(θ − τ) ≥ κ5 + a6κ6 − a6κ6 = κ5

implies that ΓU(θ) ∈ Ψ for every θ ≥ θ2. ForU1,U2 ∈ Ψ, we have

|ΓU1(θ) − ΓU2(θ)| ≤ |P(θ)| |U1(θ − τ) −U2(θ − τ)|

+L1

∞∑
k=θ

s∑
j=1

Q j(k)|U1(k − σ j) −U2(k − σ j)|,

that is,

|ΓU1(θ) − ΓU2(θ)| ≤ a6‖U1 −U2‖ +L1‖U1 −U2‖

∞∑
k=θ

s∑
j=1

Q j(k)

≤
(
a6 + ηL1

)
‖U1 −U2‖
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≤

(
a6 +

1 − a6

2

)
‖U1 −U2‖

and then
‖ΓU1 − ΓU2‖ ≤ λ‖U1 −U2‖,

where λ =
1+a6

2 < 1. So, Γ is a contraction. Therefore, by Theorem 1.4, Γ has a pointU ∈ Ψ such that
ΓU = U. Clearly, U(θ) is a positive solution of (1.1) such that lim inf

θ→∞
U(θ) ≥ κ5. Thus, the theorem

is proved. �

Example 2.7. For θ > 4, let us consider

∆[U(θ) + P(θ)U(θ − 4)] + Q1(θ)U(θ − 1) + Q2(θ)U(θ − 2) = 0, (2.11)

where P(θ) = 1
e , Q1(θ) = e2 − e, Q2(θ) = e2−e

e4 , s = 2, τ = 4, σ1 = 1, σ2 = 2 and F (x) = x. Here,
0 ≤ P(θ) ≤ 1

e < 1 and

∞∑
k=τ

2∑
j=1

Q j(k) = ∞.

Hence, every nonoscillatory solution of (2.11) converges to zero as θ → ∞ by Theorem 2.6. In
particular,U(θ) = e−θ is such a solution of (2.11).

Theorem 2.8. Let 1 < a7 ≤ P(θ) ≤ a8 < ∞ and assume that (H1) holds. Assume that F is a Lipschitz
function on any [α, β] where 0 < α < β < ∞. Then, every nonoscillatory solution of (1.1) satisfies
lim
θ→∞
U(θ) = 0 if and only if (H3) holds.

Proof. The proof of the sufficiency part of this theorem is similar to that of Theorem 2.6. To prove
the necessary part, we use the contrapositive method, that is, when (H3) does not hold we find an
eventually positive solution that does not converge to zero. Assume that

∞∑
θ=θ1

s∑
j=1

Q j(θ) < ∞.

So, we choose θ2 > θ1 such that
∞∑

k=θ

s∑
j=1

Q j(k) < η, θ ≥ θ2, (2.12)

where

η = min
{

a7κ8 − α

L
,
α − (κ8 + a8κ7)

L
,

(a7 − 1)
2L

}
,

κ7 and κ8 are two positive constants such that

a8κ7 < (a7 − 1)κ8, κ8 + a8κ7 < α < a7κ8,

and L = max{L1,F (κ8)}, L1 is the Lipschitz constant of F on [κ7, κ8]. Let

Ψ = {U ∈ X : κ7 ≤ U(θ) ≤ κ8, θ ≥ θ2}.
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ForU ∈ Ψ let us define the map

(ΓU)(θ) =


U(θ2 + ρ), θ2 ≤ θ ≤ θ2 + ρ

α

P(θ + τ)
−
U(θ + τ)
P(θ + τ)

+
1

P(θ + τ)

∞∑
k=θ+τ

s∑
j=1

Q j(k)F (U(k − σ j)), θ ≥ θ2 + ρ.

ForU ∈ Ψ and using (2.12), we have

(ΓU)(θ) ≤
α

P(θ + τ)
+

1
P(θ + τ)

∞∑
k=θ+τ

s∑
j=1

Q j(k)F (U(k − σ))

≤
α

P(θ + τ)
+
F (κ8)
P(θ + τ)

∞∑
k=θ+τ

s∑
j=1

Q j(k)

≤
1
a7

[
α + F (κ8)η

]
≤ κ8

and

(ΓU)(θ) ≥
α

P(θ + τ)
−
U(θ + τ)
P(θ + τ)

≥
1
a8

[
a8κ7 + κ8 − κ8

]
= κ7,

which implies that ΓU(θ) ∈ Ψ for every θ ≥ θ2. ForU1,U2 ∈ Ψ, we have

|ΓU1(θ) − ΓU2(θ)| ≤
1

|P(θ + τ)|
|U1(θ + τ) −U2(θ + τ)|

+
L1

|P(θ + τ)|

∞∑
k=θ+τ

s∑
j=1

Q j(k)|U1(k − σ j) −U2(k − σ j)|,

that is,

|ΓU1(θ) − ΓU2(θ)| ≤
1
a7
‖U1 −U2‖ +

L1

a7
‖U1 −U2‖

∞∑
k=θ+τ

s∑
j=1

Q j(k)

≤
1
a7
‖U1 −U2‖ +

L1

a7
η‖U1 −U2‖

≤
1
a7

(
1 +

a7 − 1
2

)
‖U1 −U2‖

implying
‖ΓU1 − ΓU2‖ ≤ λ‖U1 −U2‖,

where λ = 1+a7
2a7

< 1. So, Γ is a contraction. Hence, by Theorem 1.4, Γ has a point U ∈ Ψ such that
ΓU = U. Therefore,U(θ) is a positive solution of (1.1) such that lim inf

θ→∞
U(θ) ≥ κ7. Thus, the theorem

is proved. �
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3. Conclusions

In this work, we established some necessary and sufficient conditions for oscillation of (1.1), namely
when −∞ < P(θ) < −1 and −1 < P(θ) ≤ 0. It is worthy pointing out that we were able to establish
sufficient and necessary conditions for the asymptotic behaviour of nonoscillatory solutions of of (1.1)
for 0 ≤ P(θ) < 1 and 1 < P(θ) < ∞. However, to the best of the authors’ knowledge, the case
0 ≤ P(θ) < ∞ is still open. Asymptotic behaviour of the solutions of (1.1) for 0 ≤ P(θ) < 1 and
1 < P(θ) < ∞ are studied in Theorems 2.6 and 2.8, respectively. In Theorems 2.5–2.8, F could be
linear, sublinear or superlinear. The results contained in this paper extend those of Graef et al. [10],
Lin [14] because in these papers the authors assumed that α = 1 = β. Moreover, this paper extends the
results of Gao and Zhang [6]. Finally, we note that the methods employed in this paper can be applied
to the study of oscillatory properties examined by Tang and Lin [27] when m = 1 and −∞ < P(θ) < ∞.
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