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Abstract  

Providing easy-to-use tools to support clinical and biological research in the analysis of complex 

biological phenomena is becoming a critical issue and a great challenge. 

Systems biology is playing a central role in this direction. This type of approach can be strategic, for 

example, in helping clinicians to make better clinical decisions such as prescribing drugs or their 

combinations by tracking phenotypic deregulations consequences of a given disease, or specific to one 

or more patients. In fact, there is a growing interest in conducting patient-centered analyses and 

predictions to assess both patient-specific conditions and drug efficacy. 

The difficulties, costs, and timelines required in the discovery and development of new pharmaceutical 

molecules is a main problem. On the other hand, the availability of a huge number of drugs, that have 

passed all critical phases of clinical trials and for which most side effects are already known, increase 

the interest in repositioning such drugs for new therapeutic purposes. This strategy constitutes one main 

issue in personalized medicine. 

The aim of this thesis is to develop a new methodology, using a systems biology approach, for drug 

repositioning. This approach produces a drug prioritization based on a dynamic pathway-mechanistic 

prediction. 

In silico simulations are powerful techniques able to integrate experimental data and bibliographic 

information in order to predict, at different scales of detail (pathways, genes, proteins, metabolites), the 

effect of diseases and drugs. Computational experiments produce data allowing a multi-level 

understanding of a specific disease. This will guide identification of new druggable targets highlighting 

mechanisms of action of repositioned drugs and their cascading effects.  

Nowadays, infectious diseases represent a global emergency. Drug repurposing may represent a first-

aid strategy waiting for vaccines or new specific molecules. The availability of cheap and easy-to-use 

computational tools for such task, appears to be of great importance for urgent clinical decision. The 

pandemic that has been developing since 2019 has raised this major challenge. For a virus as novel as 

SARS-CoV-2, knowledge of the host immune response to infection in order to design appropriate 

emergency therapies is crucial. Here we introduce a systems biology tool, the PHENotype SIMulator 

which, by leveraging available transcriptomic and proteomic data, allows in silico modeling of SARS-

CoV-2 infection in host cells to i) determine with high sensitivity and specificity (both >96%) the viral 

effects on the host-immune cellular response, resulting in a specific cellular signature of SARS-CoV-2 

and ii) use this specific signature to narrow promising repurposable therapeutic strategies. Using this 

tool, coupled with expertise in the field, we have identified several potential drugs for COVID-19, 

including methylprednisolone and metformin, and further discern key cellular pathways influenced by 

SARS-CoV-2 as potential new pharmacological targets in the pathogenesis of COVID-19. 
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1 
Introduction 

  

Our entire existence is based on continuous interactions. We are ourselves the result of interactions 

between thousands of genes, proteins and metabolites within our cells, and our state of health or 

disease is closely related to their collective behavior: we are complex systems. 

Every cell is a complex and dynamic unit in which thousands of proteins regulate and target specific 

tasks with exceptional efficiency and precision. Cells in living organisms are constantly exposed to 

signals from both extracellular and intracellular microenvironments, and molecular interactions are 

modified with high sensitivity by evolving situations, thus regulating qualitative and quantitative 

biomolecules production. These signals regulate multiple cellular functions, including gene 

expression, chromatin remodeling, DNA replication and repair, protein synthesis and metabolism. 

The appropriate response to signals depends on the expression, activation or inhibition of 

interconnected sets of genes/proteins, acting in a well-defined order within vector-based biological 

processes, aimed to reach specific endpoints. In this context, the study of the genome and 

transcriptome, the definition of protein-protein interaction networks and the investigation of the 

association between multiple gene sets and molecular mechanisms in humans have provided 

valuable biological information. 

In this perspective, new systems biology approaches are playing a central role in modelling and 

understanding the interactions between molecular entities behind biological phenomena, 

significantly improving manual analysis. 

In addition, computational pathway analysis and/or in silico simulation techniques can be 

extensively applied on a massive scale, allowing thousands of hypotheses to be evaluated under 

various conditions. 

In a world that is moving towards personalized medicine, tools allowing efficient and deep analyses 

of complex diseases are needed. These approaches should go beyond the simple identification of 

biomarkers supporting physicians in discriminating the most promising treatments. In particular 

this is very will be very helpful when rare or poorly known diseases are considered. 

The research activity carried out during my PhD course and described in this thesis, is focused on 

the application of computational techniques to study molecular mechanisms underlying disease 

states and the development of a new Systems Biology approach for Drug Repositioning. Finally in 

silico-based screening may significantly lower preclinical study costs by filtering out less promising 

experiments.  

Research on host-pathogen interactions is an ever-evolving field. To understand its social, health 

and economic impact, it is enough to consider that about a quarter of deaths in the world are caused 

by infectious diseases. Therefore, every two days a new pathogen is discovered implying new 

challenges for its prevention and treatment. 

Nowadays, infectious diseases represent a global emergency. For this reason, the first application 

of the novel methodology proposed in the present thesis involved viral infections.  
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Understanding the mechanisms underlying host-pathogen interaction that lead to successful 

pathogen invasion and obtaining a comprehensive understanding of the molecular events and 

perturbations induced by infection is extremely important. Moreover, this can suggest druggable 

genes for new therapeutic strategies. Therefore, in order to correctly rank candidate repurposable 

drugs, it is necessary to design valid tools modeling both pathogen and drug molecular mechanism 

of action, through genes and pathways analyses. 

Here we propose PHENSIM (Phenotype Simulator)[1] as such computational tool using a systems 

biology approach to simulate cell phenotypes such as drug, disease, or pathogen effects. 

PHENSIM uses a probabilistic algorithm to calculate the effect of genes, proteins, microRNAs 

(miRNAs) and metabolites dysregulation on the KEGG[2,3] and REACTOME [4–6] pathways, 

allowing phenotype predictions to be made on selected cell lines or tissues in 25 different 

organisms.  

To assess the reliability of the simulator, we built a benchmark from transcriptomics data collected 

from NCBI GEO and performed four case studies on known biological experiments. Our results 

showed high prediction accuracy, thus highlighting the capabilities of this methodology. 

The new repositioning pipeline proposed in this thesis, involves the use of high-resolution but easily 

producible experimental data, i.e. transcriptomics or proteomics data, more specifically the 

differentially expressed genes/proteins (DEGs/DEPs) in a given cell line. Starting from these data, 

following a mechanistic approach, molecular consequences of viral infection are computationally 

predicted. Subsequently the results of such computation are analyzed highlighting both potentially 

druggable genes and pathways. On the other side, similar gene/pathways signatures of existing 

drugs will be produced. More precisely for each drug, specific targets known from the literature and 

databases such as Drug Bank or PubChem are collected and used as input for PHENSIM in silico 

simulations. Viral and drug simulations should be performed in the same biological context (cell 

lines, tissues etc.).  

Finally, a ranking of repurposable drugs is constructed by Pearson anti-correlation between viral 

and drug signatures (see Fig.24). Indeed, this expresses how much drugs contrast viral infection. 

Those drugs which are positively correlated with the investigated virus will be disgorged from the 

list of candidates. On the other hand, negatively correlated drugs may be considered potential 

therapeutical suggestions according to their ranks.  

The great advantage of this methodology is that it is an explainable not black-box approach. 

PHENSIM was chosen precisely because it allows the inspection of pathways deregulations and 

their associated genes, thus enabling the acquisition of new knowledge on the cellular and molecular 

mechanisms underlying the pathological condition being studied. Thus, for each drug it is possible 

to see not only whether it is positively or negatively correlated, but also why, i.e. which specific 

pathways and genes are involved. 

As mentioned above, our original plan was to apply our methodology to study general viral 

infections. However, the emergency of COVID-19 pandemic addressed our investigation towards 

SARS-CoV-2 virus. 

To validate our pipeline, drugs assayed at multiple concentrations in vitro against SARS-CoV-2 

infection by Stukalov et al. 2021[7] were selected and repositioned in silico. Drugs signatures were 

constructed using data available in the L1000 database[8] and giving as input to the PHENSIM 

simulations the respective Differentially Expressed Genes (DEGs). Since Stukalov et al. 2021[7] 

tested several in vitro concentrations for which there was not an exact match in L1000, we decided 

to select the closest ones. Finally, our in silico results were compared to the in vitro assays described 

by Stukalov et al. 2021[7]. 

This study is part of a collaboration within an international and multidisciplinary group of scientists 

adhering to the challenging project RxCoVea[9], conceived and realized by prof. Bud Mishra (see 

https://paperpile.com/c/0zppLK/6T4B
https://paperpile.com/c/0zppLK/ZVec
https://paperpile.com/c/0zppLK/vmLn
https://paperpile.com/c/0zppLK/vmLn+2CBX+HiVO+cu2k
https://paperpile.com/c/0zppLK/7Pzt
https://paperpile.com/c/0zppLK/iu8c
https://paperpile.com/c/0zppLK/7Pzt
https://paperpile.com/c/0zppLK/7Pzt
https://paperpile.com/c/0zppLK/oWh3
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Chapter 4). This community involves about 100 volunteers, including senior scientists/professors 

and young researchers, from more than 15 countries, collaborating together with the common goal 

of being helpful in the COVID-19 pandemic. 

Within this group research on the host-pathogen interactions and the validation of our method for 

drug repositioning was carried out through close collaboration with the Department of Immunology 

of the Curacao Biomedical & Health Research Institute (CBHRI), where I carried out part of my 

activities in smart working modalities due to the global pandemic, supervised by Prof. Ashley John 

Duits. The research was also carried out in collaboration with the Northwell Health Hospital 

represented by Dr. Naomi I. Maria, Shanghai University of Medicine represented by Prof. Evelyne 

Yehudit Bischof and the Courant Institute of Mathematical Sciences of New York University 

represented by Prof. Bud Mishra. 

Given that currently available tools for pathway analysis are based on incomplete knowledge 

networks (for example KEGG contains only about one third of the known genes), it may happen 

that in some context missing genes may cause discrepancies with biological and clinical data. To 

overcome this problem, it is possible to extend PHENSIM model by introducing important missing 

genes and their relations with the other nodes of the network. In particular to correctly model SARS-

CoV-2 action we extended the network by adding the crucial gene CD147. This integration was 

done manually by a detailed literature investigation for the reconstruction of the network to be 

integrated in the PHENSIM meta-pathway[1]. 

Although the manual extension of such networks by a careful and time-consuming literature review 

remains, in terms of accuracy and up-to-date information, the most reliable approach, a more 

efficient computational approach was clearly needed. 

This led to the application of our text-processing system NETME[10]. This tool, starting from either 

a set of full texts obtained from PubMed, or pdfs directly provided by the user, interactively extracts 

biological elements from ontological databases and then synthesizes a network by inferring 

relationships between those elements. 

This pandemic has brought the scientific community together, as never before. We have all 

embraced the idea of an open and shared science and we have experienced the importance of sharing 

data, codes and protocols, reporting and disseminating results. 

The urgency of the pandemic has created an imperative to accelerate the adoption of open science 

[7, 11]. Multidisciplinary open science has emerged as a powerful mechanism to accelerate science 

and combat the rapidly evolving global pandemic of COVID-19.  

Indeed, disseminating results through a collaborative environment allows for hypothesis testing, 

detecting contradictions, validating sources, and filtering out false data. 

This prompted us to create SciKi (Scientific wiKi), a toolbox developed primarily to integrate and 

disseminate results obtained using PHENSIM-based drug-discovery framework. 

This new platform, which is not yet in its final form, is designed to interact with open scientific 

communities in an innovative way and to publicly disseminate reproducible and explainable 

scientific results in a simple and effective way. 

 

The conceptual simplicity underlying the proposed pipeline makes it versatile and applicable in the 

most diverse contexts. 

As a demonstration, in the context of host-pathogen interactions, another project is going on and it 

is almost in its final stage. The idea is comparing several viral infections by applying the above 

repositioning strategy. 

https://paperpile.com/c/0zppLK/6T4B
https://paperpile.com/c/0zppLK/asI0
https://paperpile.com/c/0zppLK/asI0
https://paperpile.com/c/0zppLK/asI0
https://paperpile.com/c/0zppLK/asI0
https://paperpile.com/c/0zppLK/7Pzt+vLWL
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In this context, several viral signatures will be constructed, analyzed and compared. The case of 

possible co-infection will be assessed. In particular, since we have not yet emerged from the 

COVID-19 pandemic, we are especially interested in studying the case of co-infections with SARS-

CoV-2. In particular, HRV, IAV, RSV and HPIV3 with SARS-CoV-2 will be analyzed.  

 

Given the potential of the Systems Biology methods described in this thesis, new ideas, projects 

and collaborations have come up. 

A new project, started recently, involves bioinformatics along with systems biology approaches to 

helping in understanding complex diseases such as chronic liver disease leading to tissue 

degeneration. The new project will take place in close collaboration with the Max Planck Institute 

of Molecular Cell Biology and Genetics in Dresden (MPI-CBG), where I spent the last period of 

my PhD, working in the lab of Prof. Marino Zerial.  

 

Some results illustrated in this thesis have been published: 

· Alaimo S, Rapicavoli RV, Marceca GP, La Ferlita A, Serebrennikova OB, Tsichlis PN, et al. 

(2021) PHENSIM: Phenotype Simulator. PLoS Comput Biol 17(6): e1009069. 

https://doi.org/10.1371/journal.pcbi.1009069 

· Alessandro Muscolino, Antonio Di Maria, Rosaria Valentina Rapicavoli, Salvatore Alaimo, 

Lorenzo Bellomo, Fabrizio Billeci, Stefano Borzì, Paolo Ferragina, Alfredo Ferro and Alfredo 

Pulvirenti. NETME: On-the-fly knowledge network construction from biomedical literature. 

Applied Network Science. 

Results regarding the proposed new approach for drug repositioning is currently published in pre-

print form: 

· Naomi MARIA, Rosaria Valentina Rapicavoli, Salvatore Alaimo, Evelyne Bischof, Alessia 

Stasuzzo, Jantine Broek, Alfredo Pulvirenti, Bud Mishra, Ashley Duits, Alfredo Ferro. Rapid 

Identification of Druggable Targets and the Power of the PHENotype SIMulator for Effective Drug 

Repurposing in COVID-19. Preprint, Research Square. DOI:10.21203/rs.3.rs-287183/v1 

SciKi has been presented at BITS 2021 conference as poster: 

· Alaimo S., Rapicavoli R. V., Maria N., Bischof E., Broek J., Mishra B., Duits A., Ferro A., 

Pulvirenti A. SciKi: Science Wiki for In Silico Target Discovery and Drug Repurposing to Combat 

Covid-19. 

   

https://doi.org/10.21203/rs.3.rs-287183/v1
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2 
Prerequisites 

2.1 Biological Prerequisites 

This section is a brief introduction to the necessary background in cell biology, genetics, virology and 

immunology. 

 

2.1.1 The Cell and the Gene Information Flow 

“The key to any biological problem must be found in the cell, since every living thing is, or at some time 

in its history has been, a cell”, said by E. B. Wilson, pioneer of cell biology. In fact, cells are the 

fundamental units of life: all living organisms are made up of cells. They are small functional units 

surrounded by a membrane that possess many membrane-bound structures inside them, called organelles 

immersed in a solution called cytoplasm. Each cell possesses the machinery required to carry out all its 

vital functions and to create a new identical cell to itself, containing a new copy of the hereditary 

information. 

 

 

Figure 1. Typical Animal cell. Eukaryotic cells have a multitude of membrane-bound structures called organelles 

(e.g., nucleus, mitochondria, smooth and rough endoplasmic reticulum, ribosomes) and a cytoskeleton of microtubules, 

microfilaments, and intermediate filaments that play an important role in the structure and shape of the cell itself. The 
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nucleus, which is surrounded by a double membrane equipped with pores, houses the cell's DNA and directs the 

synthesis of proteins and ribosomes. Image courtesy of [12] 

Among the organelles within the cell, the nucleus houses the genetic information in the form of DNA, 

a double-stranded molecule consisting of two long, paired polymeric chains made up of four types of 

monomers. Each monomer in a single strand of DNA is called nucleotide and consists of two parts: a 

sugar, deoxyribose, with a phosphate group attached, and a nitrogenous base, which can be Adenine, 

Guanine, Cytosine or Thymine. Nucleotides are referred to as A, G, C and T on the basis of the 

nitrogenous base they carry. In 1953, James Watson and Francis Crick put forward their double-helix 

model of DNA[13], based on crystallized X-ray structures being studied by Rosalind Franklin. 

 

 

 

Figure 2. Nucleotide structure. a) Each nucleotide is made up of a sugar, a phosphate group, and a nitrogenous base. 

The sugar is deoxyribose in DNA and ribose in RNA. b) The nitrogenous base can be a purine, such as adenine (A) 

and guanine (G), or a pyrimidine, such as cytosine (C) and thymine (T). In the case of RNA molecules, thymine is 

replaced by another pyrimidine, uracil (U) [15]. 

 

In the living cell, DNA is not synthesized as an isolated free strand, but on a template consisting of a 

pre-existing DNA strand. Bases protruding from the existing strand bind to bases in the newly 

synthesized strand, according to a strict rule defined by complementary structures of the bases: A binds 

to T and C binds to G. This creates a double-stranded structure, consisting of two exactly complementary 

sequences of A-T and C-G. The two strands wrap around each other, forming a double helix. DNA has 

a predefined directionality and information is always interpreted and copied into the cells in a defined 

order. 

 

https://paperpile.com/c/0zppLK/5ixT
https://paperpile.com/c/0zppLK/jxl8
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Figure 3. DNA double-stranded structure. a) Base pairing occurs between adenine and thymine, cytosine and 

guanine (purine-pyrimidine). These base couples are defined as complementary. b) The base pairs are stabilized by 

hydrogen bonds; adenine and thymine form two hydrogen bonds and cytosine and guanine form three hydrogen bonds. 

The two DNA strands are antiparallel in nature: the 3′ end of one strand faces the 5′ end of the other strand. c) The 

sugar and phosphate nucleotides form the backbone of the structure, while the nitrogenous bases are stacked on the 

inside. Each base pair is separated from the other base pair by a distance of 0.34 nm, and each turn of the helix measures 

3.4 nm. The diameter of the DNA double helix is 2 nm. Only the pairing of a purine and a pyrimidine can explain the 

uniform diameter. Twisting the two strands around each other causes the formation of uniformly spaced major and 

minor grooves. Images courtesy [16, 17]. 

 

To perform its function, DNA needs to express genetic information to guide the synthesis of other 

molecules in the cell. This process, common to all living organisms, leads mainly to the production of 

two other key classes of polymers: RNA and proteins. Indeed, DNA does not directly code for protein 

synthesis, but instead employs RNA as an intermediary. 

When a particular protein is needed by the cell, the nucleotide sequence of the appropriate portion of 

the long DNA molecule is first copied into RNA in a process called transcription. These DNA sequence 

copies on the RNA are used as templates to direct protein synthesis in a subsequent process called 

translation. 

Genetic information always flows through DNA à RNA à proteins. All cells, from bacteria to humans, 

express their genetic information following this flow of information, a principle so fundamental called 

the “central dogma of molecular biology” [14]. 

 

GENES - The portions of the DNA that code for proteins are called genes, and genes are the molecular 

units of the hereditary [18]. Therefore, genes are portions of the genome located at precise loci in the 

DNA sequence (or, in for some viruses, in the RNA sequence) and contain the information needed to 

code for molecules such as RNA and proteins. During cell division and reproduction (mitosis and 

meiosis), the DNA and its genes are found in an extremely compacted form in the cell, the chromosomes. 

Each species has a certain number of chromosomes of a constant shape and size, humans have 46 of 

them. 

A gene that is active in a given cellular context is evaluated according to its expression level, on which 

the downstream RNA and protein synthesis are dependent. 

Upstream and downstream of the protein coding region are two transcribed but untranslated portions 

called the 5' untranslated region (5'UTR), with the important function of regulating the protein 

production process, and the 3' untranslated region (3'UTR), which regulates translation efficiency, the 

stability of the messenger and its location. Each gene is enclosed between a promoter region, in which 

the enzymes involved in transcription bind to begin the process, and a terminator, which is the portion 

where the RNA synthesis process ends. Finally, the region coding for the protein is composed of portions 

https://paperpile.com/c/0zppLK/iWhv
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that contain instructions, called exons, and unused portions called introns. Downstream and upstream of 

a gene, special sequences called enhancer, or silencer, may be present and they are used to facilitate or 

prevent the transcription process when bound to special proteins called Transcription Factors. 

 

  

Figure 4. Structure of an eukaryotic protein coding gene. In yellow are depicted the regulatory features which 

determine where and when the protein coding sequence (shown in red) will be expressed. The gene is transcribed into 

a pre-mRNA which is spliced to remove introns and generate mature mRNA. 5′ and 3′ untranslated regions (UTRs) of 

the mRNA (shown in blue) direct which portions should be translated into the final protein product. Image courtesy 

[19]. 

 

Transcription and Translation - Through transcription and translation, cells express the genetic 

instructions in their genes. Each gene can be transcribed and translated with different efficiency, 

allowing the cell to produce large amounts of some proteins and small amounts of others. Depending on 

specialization, role and context, each cell can modify or regulate the expression of each gene, by 

regulating RNA production. 

The first step is to copy a given portion of the DNA nucleotide sequence (gene) into a RNA nucleotide 

sequence. Despite the chemical form of RNA differing from DNA, the language in which the 

information is written is still essentially similar to the language of DNA (it is a nucleotide sequence). 

This explains why this process is called transcription. 

The same segment of DNA can be used several times to drive the synthesis of many identical RNA 

transcripts. 

RNA - RiboNucleic Acid is a polymeric molecule involved in different biological functions of coding, 

decoding, regulation and gene expression. It is composed of a slightly different sugar from DNA, the 

Ribose. RNA differs from DNA by one single base, as it has Uracyl (U) instead of Thymine. Therefore, 

those four bases pair up with their complementary counterparts in DNA: A-U, C-G.  Furthermore, while 

DNA is found in cells as a double-stranded helix, RNA is single-stranded. 

Transcription begins by unfolding a small portion of the double strand DNA to expose its bases on the 

two strands and thus to serve as a template for the synthesis of an RNA molecule. Any RNA which 

provides instructions to build a protein, is called messenger RNA (mRNA). The transcription process 

takes place in the nucleus by specific enzymes called RNA polymerases, which bind to a promoter and 

initiate the RNA production process. It is at this stage that Thymine is changed into Uracil. The RNA 
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chain produced by the transcription process is elongated one nucleotide at a time and its nucleotide 

sequence is exactly complementary to the strand of template DNA. The RNA strand does not remain 

hydrogen-bonded to the DNA template strand but, just behind the region where ribonucleotides are 

added, the RNA chain is displaced and the DNA helix is reformed. Thus, the RNA molecules produced 

by transcription are released from the DNA template as single strands. 

The almost immediate release of the RNA strand means that many RNA copies can be produced from 

the same gene in a relatively short time, as the synthesis of other RNA molecules begins before the first 

RNA is completed. RNA polymerase operates at around 50 nucleotides per second, synthesizing more 

than a thousand transcripts from a single gene in an hour. The resulting RNA is processed and matures. 

The mature mRNA is transported into the cytoplasm where the translation process takes place. 

Translation is carried out by ribosomes, cytoplasmic organelles, which use mRNA as a mold to produce 

a polypeptide sequence. Translation is accomplished by particular RNA molecules called transfer RNAs 

(tRNAs). Each tRNA associates a specific triplet of amino acids with a specific sequence of three 

nucleotides (codon). Once the translation of a given protein is finished, a stop codon is reached. 

 

 
Figure 5. Transcription and translation. Transcription and translation are processes used by a cells to make all the 

proteins it requires to function. Transcription - the coding portion of DNA is copied into messenger RNA (mRNA) in 

the nucleus. The mRNA then carries the genetic information to the cytoplasm, where translation takes place. During 

translation, the mRNA attaches to the ribosome, which can read the genetic information to be translated into proteins. 

The transfer RNA (tRNA) carries an amino acid to the ribosome on the corresponding sequence in the mRNA. As 

each tRNA binds to the mRNA strand, that amino acid joins the other amino acids to form an amino acid chain. Once 

all the amino acids encoded in the mRNA piece have been linked, the completed protein is released from the ribosome. 
Image courtesy [18, 20]. 

 

Proteins - Proteins are large molecules made up of long chains of amino acids. To date, 20 amino acids 

are known, and they are synthesized directly from DNA. Proteins are therefore sequences of amino acids 

that differ from each other according to the order in which the amino acids are arranged. The sequence 

that makes up a protein is defined by the sequence of particular genes. Proteins are then organized at 

various levels of complexity and are typically folded to form a three-dimensional shape that will 

influence their activity.  Proteins make up most of the dry mass of a cell and perform almost all cellular 

functions. They often work together to form what are called protein complexes. Once formed, proteins 

https://paperpile.com/c/0zppLK/iWhv+7Bmw
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exist for a limited period of time and they are then degraded and recycled through a cellular mechanism 

that determines their turnover. 

The coding portions of DNA (genes) account for only 2% of the entire genome of eukaryotes. In fact, 

mRNA represents only 3-5% of the total RNA in a typical mammalian cell. 

DNA has many non-coding protein regions that appear to have no function (junk DNA). However, many 

of these regions have been associated with important regulatory processes of gene activity. The product 

of non-coding genes is also RNA, and it is known as non-coding RNA precisely because it does not code 

for proteins. Therefore, non-coding RNA is a gene transcript that does not undergo translation. 

non coding RNA (ncRNAs) - These include ribosomal RNA (rRNA), which is the most abundant type 

of RNA in the cell. It does not directly encode proteins, but is the essential component (about two-thirds) 

of ribosomes; nuclear RNAs (snRNAs), which direct the splicing of pre-mRNA (modification of the 

pre-mRNA, occurring along with or after transcription, in which introns are removed and exons are 

joined together) to give rise to mRNA; transfer RNAs (tRNAs) form the adaptors that choose amino 

acids and hold them in place on a ribosome to incorporate them into proteins; microRNAs (miRNAs) 

and small interfering RNAs (siRNAs) that serve as key regulators of the expression of eukaryotic genes; 

piwi-interacting RNAs (piRNAs) that protect the animal germline from transposons, genetic elements 

in the prokaryotic and eukaryotic genomes that are capable of moving 'transposons' from one position 

to another in the genome. 

Among the ncRNAs, a brief description is devoted to miRNAs, since they are the ones that will be 

mentioned in this thesis. Indeed, they are included in the large network (meta pathway) that constitutes 

the knowledge base on which our simulator works. 

Micro RNA (miRNAs) - microRNAs are small non-coding RNAs made up of approximately 22 

nucleotides. They have been found not only in humans but also in animals, plants and some viruses. The 

main function attributed to miRNAs is regulating gene expression through post-transcriptional silencing 

[21-23].  They act through base pairing with the complementary sequence of the mRNA molecule. Once 

the pairing between miRNA and mRNA molecule has occurred, silencing can be achieved in several 

ways including cutting the mRNA into pieces, shortening the poly-A tail and destabilizing the mRNA 

molecule or reducing the efficiency of the translation process [24, 25].  miRNAs are produced from 

specific genes or introns of other genes and the DNA regions coding for miRNAs have a characteristic 

hairpin shape. The primary miRNA (pri-miRNA), once transcribed by RNA polymerase, is processed 

by the enzyme Drosha to free the hairpin from a pri-miRNA, which can contain more than one[24-26]. 

The transcript obtained is called precursor-miRNA (pre-miRNA) and this is then exported from the 

nucleus by a nucleocytoplasmic protein called Esportin-5 [27]. 

In the cytoplasm, pre-miRNAs are cut by the type III RNAase Dicer. The cut generates double-stranded 

RNA molecules that are approximately 22 bases long. Subsequently, miRNAs interact specifically with 

Argonaute proteins of the Ago subfamily and are incorporated into large ribonucleoprotein effector 

complexes called RNA-Induced Silencing Complexes (RISCs) where the interaction between miRNA 

and target takes place [28]. 

 

https://paperpile.com/c/0zppLK/JEPc
https://paperpile.com/c/0zppLK/Knqj
https://paperpile.com/c/0zppLK/CVcp+gv7v
https://paperpile.com/c/0zppLK/CVcp+gv7v+FuWd
https://paperpile.com/c/0zppLK/9gVt
https://paperpile.com/c/0zppLK/zfTm
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Figure 6. Overview of the endogenous miRNA pathway. In the nucleus The miRNA gene is initially transcribed 

into a primary miRNA (pri-miRNA) by RNA polymerase II. Subsequently Drosha enzyme processes the pri-miRNA 

into the 70 to 100 nt hairpin precursor miRNA (pre-miRNA), which is then translocated into the cytoplasm by 

Exportin-5. Here it is again cleaved by the ribonuclease Dicer enzyme into a mature miRNA duplex that through its 

guide strand binds to the RNA-induced silencing complex (RISC) to regulate gene expression by inducing either target 

mRNA degradation or translation repression, depending on the level of binding complementarity. Its complementary 

miRNA strand is released and degraded. Image courtesy [28, 29]. 

 

Genotype and Phenotype - All the genes possessed by each individual are called genotype, whereas 

the genetic component that confers all its observable characteristics, influenced both by its genotype and 

by the “environment”, is called phenotype. 

 

 

  

https://paperpile.com/c/0zppLK/zfTm+GUf3
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2.1.2 DNA Sequencing 

DNA sequencing is the process for determining the ordered sequence of nucleotides in DNA. The 

development of advanced methods for DNA sequencing has led to a revolution in bio-medical research 

and discovery. The knowledge of DNA sequences is now fundamental for basic biological research, and 

in many applied fields such as medical diagnosis, virology and biological systematics. 

The fast sequencing rate achieved with modern technology has been crucial in the complete sequencing 

of DNA, or genomes, of numerous organisms, including the human genome. 

Sequencing data allows researchers to gain insight about changes in genes, associations with diseases 

and phenotypes, and identify potential drug targets. It was Frederick Sanger who in 1955 laid the 

foundation for protein sequencing by completing the sequence of all the amino acids in insulin, a small 

protein secreted by the pancreas. This served to demonstrate that proteins were chemical entities with a 

specific molecular pattern. 

Sanger's discovery led Crick to develop the theory, published in 1958, which states that it is a specific 

arrangement of nucleotides in DNA that determines the sequence of amino acids in proteins, which in 

turn helps determine the function of the proteins themselves. 

In 1970 at Cornell University the first method for determining DNA sequences was developed [30, 31]. 

In 1977 Frederick Sanger developed a more rapid DNA sequencing method at the MRC Centre, 

Cambridge, UK publishing a method for "DNA sequencing with chain-terminating inhibitors" in 1977 

[32]. This approach, also known as Sanger method, after being developed, became the most widely used 

sequencing method for approximately 40 years and it is still considered the gold standard for sequencing. 

Sanger sequencing is based on the selective incorporation of chain-terminating dideoxynucleotides 

(ddNTPs) by DNA polymerase during in vitro DNA replication [32, 33]. 

To perform sequencing, a single-stranded DNA template, a DNA primer, a DNA polymerase, normal 

triphosphate deoxynucleotides (dNTPs) and modified triphosphate dioxynucleotides (ddNTPs) are 

required, the latter is engineered to terminate DNA strand elongation. Indeed it lacks the 3'-OH group 

required for the formation of a phosphodiester bond between two nucleotides, causing termination of 

extension of DNA when it is incorporated. The ddNTPs may be radioactively or fluorescently labelled 

for detection in automated sequencing machines. 

Initially, Sanger's method required that all four DNA samples should be divided into separate tubes, 

each containing a specific ddNTP (dATP, dGTP, dCTP and dTTP) and the DNA polymerase. The ratio 

of dNTPs to ddNTPs is approximately 100:1. 

Next, the resulting DNA fragments were heat-denatured and separated by size using gel electrophoresis; 

the DNA bands visualized by autoradiography or UV light and the NDA sequence read directly on the 

X-ray film or gel image. 

Sanger sequencing was the dominant method from the 1980s until the mid-2000s. Over that period, great 

advances in technology were made, such as fluorescent labelling, capillary electrophoresis, and general 

automation. It was through the Sanger method, in mass production form, that the first human genome 

was sequenced in 2001, ushering in the era of genomics. 

https://paperpile.com/c/0zppLK/dXNd+Uaco
https://paperpile.com/c/0zppLK/TSUs
https://paperpile.com/c/0zppLK/qB9Q+TSUs
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Figure 7. The Sanger method for DNA sequencing. (1) A primer is annealed to a sequence, (2) Reagents are added to 

the primer and template, including: DNA polymerase, dNTPs, and a small amount of all four dideoxynucleotides 

(ddNTPs) labeled with fluorophores. During primer elongation, the random insertion of a ddNTP instead of a dNTP 

terminates synthesis of the chain because DNA polymerase cannot react with the missing hydroxyl. This produces all 

possible lengths of chains. (3) The products are separated on a single lane capillary gel, where the resulting bands are 

read by an imaging system. (4) This produces several hundred thousand nucleotides a day, data which require storage 

and subsequent computational analysis. Image courtesy [34] 

 

High costs and the need to reduce the time for acquiring more and more genomic data has been leading 

to the development of new, more efficient and faster methods. 

With time, Sanger sequencing has given way to new high throughput technologies called "Next-

Generation Sequencing"(NGS) or "second-generation"  sequencing methods  to distinguish them from 

earlier methods, including Sanger sequencing. These technologies parallel the sequencing process in a 

massive way, producing thousands or millions of sequences simultaneously (reads). 

NGS technology is typically characterized by being highly scalable, allowing the entire genome to be 

sequenced at one time. For this reason, these sequencing techniques are also known as "massively 

parallel". 

The first commercially available "next-generation" sequencing method was published and marketed by 

Lynx Therapeutics in 2000. This method, named Massively Parallel Signature Sequencing (MPSS), 

used a very complex approach to sequence four nucleotides at a time. However, this technology was 

simplified and made less expensive in subsequent years. 

Basically, NGS is also defined as an "extension" method because the bases are identified during their 

addition to the parent chain. Very briefly the process could be summarized by starting with single-

stranded DNA, a primer, DNA polymerase and labeled single nucleotides. Once the double-stranded 

DNA synthesis reaction is started, every time the DNA polymerase inserts a nucleotide on the elongating 

chain, it is immediately detected as a fluorescence signal specific for each of the nucleotides is released. 

To date, there are several techniques for NGS that are increasingly accurate and cost-effective. Some of 

them are: 

- Illumina: fluorescent sequencing, short reads; 

- Life Technologies: pH sequencing, relies on the change in pH that occurs when a nucleotide is 

incorporated; 
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- Genereader NGS system (QIAGEN): fluorescence-based sequencing; 

- Oxford Nanopore: single molecule sequencing based on the use of pores; 

- 10X Genomics: short reads (usually sequenced on Illumina platform) that physically belong to the 

same DNA molecule (linked reads). 

 

Through NGS techniques, it is possible to sequence: 

Genomic DNA: 

- Whole genome (the complete sequence - small genomes); 

- Exome (only the DNA portion transcribed into RNA, exons); 

- Targeted genes; 

- Amplicons (only PCR products) 

Transcriptome: 

- Total RNA; 

- mRNA; 

- small RNA (<30 nt). 

Epigenome: 

- ChIP-Seq (Chromatin immunoprecipitation sequencing: DNA or RNA to which specific proteins are 

bound); 

- Methyl-Seq (DNA methylation pattern study, epigenetics); 

- Whole genome bisulfite sequencing (WGBS). 

 

Extracting RNA expression 

Quantification of RNA expression is a key factor in the analysis of biological and/or pathological 

processes. Among the techniques available today to sample gene expression, there are the microarrays. 

Microarrays are small solid supports, called chips, on which are immobilized, in fixed and known 

positions, thousands of DNA strand sequences (called probes) derived from different genes. Indeed, 

microarrays leverage on a technique of reverse hybridization consisting in fixing the probes on the 

support and labelling the nucleic acid we want to identify (target) to naturally form hydrogen bonds 

between pairs of complementary bases. A greater number of complementary base pairs implies a greater 

strength on the bond. Alla fine della reazione, la superficie dell’array viene lavata e rimarranno attaccati 

alle sonde solo i legami più forti. Through using color dyes, it is possible to identify where sequences 

have hybridized, and by comparing the color intensity between two different conditions, an estimate of 

expression can be determined. 

In order to use microarrays with RNA molecules, the latter must be converted to complementary DNA 

(cDNA) through a process called reverse transcriptase. 

Although microarrays are widely used and also relatively low-cost, they have some major limitations. 

First of all, the process of synthesis, purification, and storage of solutions necessary for manufacturing 

microarrays are extremely complex and expensive. Furthermore, when very similar RNA families are 

present in the sample, this technique becomes inaccurate because these molecules may hybridize to spots 

designed for other RNAs of the same family. This phenomenon is referred to as cross-hybridization. In 

addition, measuring the color intensity of microarrays can introduce biases in presence of overlapping 

spots or poorly expressed RNAs, where the color intensity is not sufficient and can cause failure in 

expression detection. 

Cost reduction of NGS techniques has resulted in making these techniques suitable for detection of gene 

expression and they are defined as RNA-sequencing (RNA-seq). Therefore, these NGS techniques reveal 
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the presence and quantity of RNA in biological samples at a given time by analyzing the cellular 

transcriptome. 

The use of these techniques has many advantages compared to microarrays. In particular, RNA-Seq 

facilitates the ability to observe alternative gene splicing transcripts, post-transcriptional modifications, 

gene fusion, mutations/SNPs, and changes in gene expression over time, or differences in gene 

expression in different groups or treatments [35]. In addition to mRNA transcripts, RNA-Seq can 

examine different RNA populations to include total RNA, small RNAs, such as miRNA, tRNA, and 

ribosomal profiles[36]. 

Recent advances in RNA-Seq include single-cell sequencing, in situ sequencing of fixed tissues, and 

sequencing of native RNA molecules with real-time single-molecule sequencing [37]. 

In order to analyze the data obtained from RNA-seq, it is necessary to use appropriate bioinformatics 

tools and subsequent analysis to validate the results obtained. 

 

2.1.3 Omics Science  

Omics sciences consist of those disciplines that, thanks to the use of advanced technologies of analysis, 

allow the production of a large amount of data, useful for the description and interpretation of the 

biological system studied (Fig.8). 

Omics such as genomics, transcriptomics, proteomics, and metabolomics represent the data sources 

supporting systems biology, which aims to integrate data and provide predictive models for assessing 

the complex functioning of living systems. The first omics was genomics, as a discipline that studies 

and measures the set of genes in such an organism. 

Whole DNA sequencing was rapidly followed by the development of innovative investigative 

technologies and there was a rapidly growing insight that knowledge of an organism's DNA gene 

sequence alone is not sufficient to understand its proper functioning. Thus, knowledge of the gene 

sequence does not take into account the effects of interaction with the overall environment. 

This has led to change the previous hierarchical view of the functioning of a living system, described as 

a unidirectional flow between genes, transcripts, proteins and metabolites, into a view based on an 

interactive flow between the different levels of the system (gene system, transcripts, proteins and 

metabolites) and the external environment. 

Similarly to the genome, systems were defined in terms of transcriptome, consisting of all messenger 

RNAs, proteome, consisting of all proteins, and metabolome, consisting of all metabolites present in a 

cell, tissue, organ, organism. The necessity to obtain quantitative data concerning the different 

component components (transcripts, proteins, metabolites), has led to the development of advanced 

technologies and new analytical disciplines (data-mining) that allow to interpret and summarize huge 

amounts of data. 

Genome - The term genome, refers to the set of genes within a given organism and genomics is the 

discipline that investigates and measures that gene system. 

This is the most advanced omics science and is focused on studying whole genome sequences and the 

information contained within them. Since the 1990s, several hundred genome sequencing projects have 

been completed on species representative of the three kingdoms of life. Of importance, the study of the 

human genome allowed the identification of groups of genes related to the development of diseases. As 

a consequence, groups of genes have been identified as related to the development of various human 

https://paperpile.com/c/0zppLK/vKrP
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https://paperpile.com/c/0zppLK/QloW
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diseases. This has directed the biomedical sciences to look for potential genetic markers of disorders, 

opening new perspectives in this field. 

Transcriptome - The term transcriptome is derived from the two words transcript and genome to 

indicate the process of transcript production during the biological process of transcription. In general, 

the transcriptome is therefore the set of all transcribed RNAs, including coding and non-coding in an 

individual or a population of cells, although in some experiments it is used to refer to all mRNAs. 

The advance of high-throughput technology has led to faster and more efficient ways of obtaining data 

about the transcriptome. To date, the most widely used techniques for studying the transcriptome are the 

DNA microarray, a hybridization-based technique, and the RNA-seq, a sequence-based approach, which 

is now the preferred method and the dominant transcriptomics technique. 

The main experimental technologies used for transcriptomics are based on microarray techniques and 

Serial Analysis of Gene Expression (SAGE). The latter technique is based on the analysis of sequences 

of cDNA fragments derived from the reverse transcription of cellular or tissue RNA. The analysis allows 

us to evaluate the level of gene expression. 

When physiological and pathological environmental conditions are altered and therefore also the 

exigencies of the cell change, it modifies its functions by modulating gene expression, thus affecting 

transcripts and, downstream, the translated proteins. 

An in-depth analysis of the transcriptome allows researchers to obtain information on how the cell 

modulates the expression of certain genes rather than others, and thus on the biological processes 

associated with them, depending on specific contexts. Thus, for example, the transcriptome can be 

assessed during carcinogenesis, infections, metabolic dysfunction, for the detection of biomarkers, etc. 

Transcriptomics has the potential to contribute to the development of new biomarkers useful for 

predicting disease progression and its potential response to treatments. Nonetheless, in order to obtain 

valid biomarkers, it is necessary to take into account that the analysis of transcripts may not be sufficient 

alone, since gene expression may be regulated at the post-transcriptional level. 

Proteome - While the transcriptome is the set of all transcribed RNAs, the proteome allows the study of 

the proteins expressed in a cell (cells, organism, etc.), including all isoforms and post-translational 

modifications, according to the genome instructions. Effectively the term, coined by Wilkins, refers to 

proteins expressed by genome [38]. Proteins represent an increase in the level of biological complexity. 

The proteome is dynamic over time, as it changes in response to external factors and differs substantially 

between different cell types of the same organism. Proteomics involves the large-scale study of proteins, 

particularly their structures and functions. 

Nowadays, advanced techniques make it possible to obtain precise measurements of the molecular mass 

of polypeptides or of their proteolytic fragmentation products, and also to describe the primary structure 

of the polypeptides and thus obtain their complete identification. 

These techniques are highly reliable due to the very high precision with which molecular masses can be 

measured. (errors no greater than 0,001%). 

Metabolomics - This omics discipline aims to provide a quantitative measure of low molecular weight 

metabolites within cells, biofluids, tissues, or organisms. Collectively, these small molecules and their 

interactions within a biological system are known as metabolome. 

To date, there is a large amount of published omics data available on databases such as Gene Expression 

Omnibus (GEO).  
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Figure 8. The overall diagram of relationship between single and multi-omics data analysis challenges.  

Image courtesy (modified)   [39] 
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2.1.4 Biological Pathways 

A pathway is defined as a series of interactions among molecules within the cell leading to a certain 

product or to a change of the cell phenotype, displayed in a graph form. There are many types of 

biological pathways and each can describe different processes. Among the best known there are 

pathways involved in metabolism, gene regulation and signal transduction, those leading to the assembly 

of new molecules, such as a fat or protein, the cell cycle, etc. Pathway analysis allows the study and 

description of the change of a given biological process in response to external events or diseases, 

enabling a better understanding of its molecular details. In fact, for each pathway it is possible to inspect 

the contribution that each gene makes to determine its overall behavior. 

A fundamental role in a pathway is played by its endpoints, that are those molecules which directly 

affect the phenotype, in relation to the phenomenon that is taking place at that moment. 

Finally, it is very important to point out that the biological pathways that determine the functioning of 

our cells interact to form a larger network of interactions called the cellular interaction network. These 

interactions determine the overall behavior of each cell. 

  

2.1.5 Host-Pathogen Interaction 

Host is an entity that houses an associated microbiome/microbiota and interacts with microbes in such 

a way that the result is harm, benefit or indifference, resulting in the states of symbiosis, colonisation, 

commensalism, latency and disease [40, 41]. In the context of a host-pathogen interaction, the host is an 

entity that houses its own microbiota and interacts with pathogenic microorganisms. The result of this 

interaction is a trade-off between host, microbiota and pathogen [42, 43]. 

Pathogen is any organism that can produce disease (bacteria, virus or fungi). Therefore, a pathogen 

refers to a microorganism as an infectious agent. 

Host-pathogen interaction refers to how a pathogen sustains itself within host organisms on a 

molecular, cellular, organismal or population level and how the host reacts to the attack of a pathogen. 

Their interaction does not always result in disease. The host response to a microbial attack involves the 

activation of defenses at multiple levels, in other words it involves the activation of the immune system. 

This is why talking about host-pathogen interaction means describing all those biological processes in 

which the immune system plays a key role. 
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2.1.6 Immune System 

The immune system is a network of biological processes designed to protect an organism from potential 

diseases. The immune system protects the host from infections and diseases with defenses of increasing 

specificity. To do this, the immune system is organized in a highly intricate and sophisticated manner. 

In many species, including humans, the immune system is categorized into an innate and an adaptive 

immune system. 

Prior to the activation of the immune responses itself, every organism possesses physical and chemical 

barriers to the entry of the pathogen. 

Effectively, the first encounter between pathogen and host takes place at the epithelial surface level 

comprising the skin, which lines the respiratory, digestive, urinary and reproductive tracts. The 

keratinized epithelial cells of the skin form a thick physical barrier; the sebaceous glands secrete fatty 

acids and lactic acid that prevent bacterial growth; epithelial cells lining internal organs, such as the 

respiratory and digestive tracts, secrete mucus that hinders the adhesion of agents and also contains 

substances that can kill or inhibit the proliferation of pathogens; cilia movements on epithelial cells 

lining the respiratory tract and represent an obstacle for pathogen adhesion [14]. 

However, physical and chemical barriers are not always sufficient to protect us from the invasion of 

pathogens. 

When a pathogen successfully enters the body, the first form of defense comes from the innate immune 

system, which provides an immediate but non-specific response. It employs "molecular sensors" that 

recognize particular types or patterns of molecules that are common in pathogens. Innate immunity most 

of the time is efficient in destroying and clearing invading pathogens and in directing the development 

of an appropriate pathogen-specific adaptive immune response. 

As this name suggests, the immune system adapts its response during an infection to improve its ability 

to detect the pathogen and improve its response.  The adaptive immune system uses a class of white 

blood cells (leukocytes) called lymphocytes: B-lymphocytes (B-cells), which secrete antibodies that 

bind specifically to the pathogen, and T-lymphocytes (T-cells), which can either directly kill infected 

cells or produce signaling proteins, that are exposed on the cell surface or secreted, stimulating other 

host cells into contributing to the clearance of the pathogen. 

The adaptive immune system then creates an immunological memory leading to an enhanced response 

to subsequent encounters with those pathogens. This process of acquired immunity is the basis of 

vaccination. 

The innate response is active for a short time, whereas the adaptive response provides long-lasting 

protection. 

Both innate and adaptive immunity have the ability to distinguish between the host's own molecules, 

called self, and “foreign” molecules, called non-self. Non-self molecules are called antigens, a term that 

means “antibody generators” [14]. They are defined as substances that bind to specific immune 

receptors leading to an immune response. 
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Innate Immune System 

When pathogens successfully break through physical and chemical barriers and enter cells, the innate 

immune system, which corresponds to the non-specific response of the organism to pathogens, comes 

in action with the rapid intervention of a number of sentinel molecules that act as a proper alarm system 

warning about a potential infection in our cells. These molecules are protein receptors that recognize 

non-self molecules and initiate a sequence of events that are characteristic for innate immunity. 

PRRs - Pattern recognition receptors (PRRs), as their name implies, recognize microbial molecules by 

the presence of characteristic repeated conserved patterns called Pathogen-Associated Molecular 

Patterns (PAMP). 

PRRs can have different localizations thus differing also in the way they act. Some PRRs are 

transmembrane proteins present on the surface of many types of host cells, where they recognize 

extracellular pathogens. PRRs on cells such as macrophages and neutrophils may mediate the capture 

of pathogens in phagosomes, which then fuse with lysosomes, where the pathogens are destroyed. Other 

PRRs may be found within the cell either free in the cytosol or associated with the membranes of the 

endosomal system. Some PRRs, on the other hand, bind to the surface of extracellular pathogens, 

marking them for destruction via both phagocytes and proteins that are present in the blood that are part 

of the complement system. 

There are several classes of PRRs: 

TLRs - The first PRR to be described was the Drosophila Toll receptor, known for its ability to produce 

antimicrobial peptides that protect the midge from fungal infection [44]. Similar receptors were 

discovered shortly after in animals and plants and were called Toll-like receptors (TLRs). Mammals 

have about 10 TLRs, each recognizing distinct ligands such as: TLR3 recognizes viral double strand 

RNA in the lumen of endosomes, TLR4 recognizes the lipopolysaccharide (LPS) of the outer membrane 

of Gram-negative bacteria, TLR5 recognizes the protein that forms the bacterial flagellum, TLR9 

recognizes short unmethylated sequences of viral, bacterial and protozoan DNA, called CpG motifs, 

which are not common in the vertebrates DNA[14]. 

NLR NOD-Like Receptors are a family of exclusively cytoplasmic PRRs that recognize bacterial 

molecules. 

RLR RIG- Like Receptors are another class of exclusively cytoplasmic PRRs. They identify viral 

pathogens. 

CLR C-type Lectin Receptors are a class of PRRs consisting of C-type lectin receptors. These are 

transmembrane proteins, present on the cell surface, which recognize carbohydrates on various 

microorganisms. 

When activated by PAMPs, the numerous surface and intracellular PRRs stimulate the production of a 

wide variety of extracellular signal molecules that mediate the inflammatory response at the site of 

infection by activating intracellular signaling pathways that act on transcriptional regulators, including 

NFkB, to induce transcription of genes encoding the appropriate cytokines. 
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Some of the most important pro-inflammatory cytokines are Tumor Necrosis Factor α (TNFα), 

Interferon γ (IFNγ), various chemokines (which attract leukocytes) and several Interleukins (IL) such 

as IL-1, IL-6, IL-12 and IL-17. 

For instance, several cytoplasmic NLRs, once activated, assemble with adaptor proteins and specific 

protease precursors belonging to the caspase family to form inflammasomes, in which pro-inflammatory 

cytokines, such as IL-1, are activated by caspases. These cytokines are subsequently released from the 

cell by a secretion pathway that is not yet well understood. Apart from infections, NLR can also trigger 

the assembly of inflammasomes if cells are damaged or under stress for other reasons. 

Complement System - The complement system consists of about thirty interacting soluble proteins 

produced continuously mainly by the liver. These proteins are known for their ability to amplify and 

“complement” the action of antibodies produced by B lymphocytes. Some complement components are 

also PRRs, which directly recognize PAMP on microbes. If there are no infections or special conditions 

requiring its activation, the complement system remains inactive. The destructive, inflammatory and 

self-amplifying properties of the complement cascade make it essential that key activated components 

are rapidly inactivated after being generated, to prevent the attack from spreading to neighbouring host 

cells.  

Macrophages - In all animals, when the microbial invasor is detected, it is usually quickly encapsulated 

in a phagocytic cell. Macrophages are long-lived phagocytes found in most vertebrate tissues and are 

among the first cells to encounter pathogens, and whose PAMPs activate the secretion of pro-

inflammatory molecules. 

Neutrophiles - Neutrophils are short-living cells, abundant in blood but absent in normal healthy tissues, 

which are rapidly recruited to the site of infection by various types of molecules including chemokines 

secreted by activated macrophages. In the site of infection, neutrophils contribute with their pro-

inflammatory cytokines. Neutrophils have a short half-life in the human blood system (several hours).  

In addition to PRRs, macrophages and neutrophils possess various receptors on their cell surface that 

recognize fragments of complement proteins or antibodies bound to the pathogen surface. The binding 

of the pathogen to these receptors leads to its phagocytosis. Inside, phagocytes possess an impressive 

armamentarium to kill the invader, which includes enzymes, such as lysozyme and hydrolyse acids, that 

can degrade the pathogen's cell wall. 

If a pathogen is too large to be successfully phagocytosed, a group of macrophages, neutrophils or 

eosinophils (another type of leukocyte) clusters around the invasor to attack it.  

Blood and other extracellular fluids contain many proteins with antimicrobial activity, and some of these 

are produced in response to infection, while others are produced constitutively. The most important of 

these are the components of the complement system. 

Dendritic Cells - Dendritic cells (DCs) are an important and heterogeneous class of cells belonging to 

the innate immune system. Immature DCs are located in most tissues of the body, for instance under the 

skin and intestinal epithelial layers, where they continuously select and process proteins present in their 

environment. 

DCs express a wide variety of PRRs, which enable them to recognize and phagocyte pathogens and their 

products [14]. DCs become activated and mature when their PRRs encounter molecular patterns 

associated with pathogens (PAMP) or such products. When activated, they degrade pathogen proteins 

into peptide fragments, which bind to newly synthesized MHC proteins. 
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MHCs carry the fragments to the surface of DCs. The latter then migrate to a nearby lymphoid organ to 

present the MHC-peptide complexes to the T lymphocytes of the adaptive immune system to participate 

in fighting that specific pathogen. 

In addition to MHC-peptide complexes, activated DCs also expose co-stimulatory proteins on their 

surface that help in activating T-cells to become effector or memory cell, and cell-cell adhesion 

molecules, which allow the T lymphocyte to bind to the dendritic cell for a sufficient time to be activated, 

generally several hours[14]. In addition, activated dendritic cells secrete various cytokines influencing 

the type of T-cell response, ensuring that it is appropriately tailored to fight the specific pathogen. 

Dendritic cells provide the crucial link between the innate immune system, which provides a rapid first 

line of defense against invading pathogens, and the adaptive immune system, which organizes slower 

but much more powerful and specific responses. 

 

Figure 9. Overview Innate immunity pathway and intracellular RNA recognition and signaling. Innate immunity 

relies on the recognition of pathogen-associated molecular patterns (PAMPs) or endogenous danger signals through the 

detection of danger-associated molecular patterns (DAMPs) by pattern 1 recognition receptors (PRRs). Activation of 

PRRs triggers cell signaling leading to the production of proinflammatory cytokines, chemokines, and type 1 interferons, 

and the recruitment of phagocytic cells. The innate immune system comprises several classes of PRRs that allow for 

early detection of pathogens at the site of infection. Membrane-bound Toll-like receptors (TLRs) and C2-type lectin 

receptors (CLRs) detect PAMPs in extracellular and endosomal compartments. TLRs and CLRs cooperate with PRRs 

that detect the presence of cytosolic nucleic acids such as RIG-I like helicases/receptors (RLH/RLR). Another set of 

intracellular sensing PRRs are NOD-like receptors (NLRs) that can recognize PAMPs and DAMPs. Under stress 

(including infection and metabolic deregulation), some NLRs form high molecular weight complexes called 

inflammasomes. These autophagy-associated complexes play a central role in the control of innate and adaptive 

immunity. Figure shows the intracellular signaling involved in response to the foreign RNA recognition. Cytosolic 

dsRNA or 5′-triphosphate ssRNA is recognized primarily by the cytoplasmic RNA helicases RIG-I and MDA5, which 

mediate interaction with the mitochondria-localized adaptor IPS-1 and activate signaling to NF-κB and IRF3 through 

IKK and TBK/IKKε, respectively. The dsRNA can also be recognized by TLR3 located in the endosomal compartment 
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or by cytosolic PKR, but whereas TLR3 triggers signaling to NF-κB and IRF3, PKR instead activates NF-κB and 

MAPKs. Finally, ssRNA is recognized by TLR7/8 in endosomes and induces signaling to IRF7 as well as to NF-κB and 

MAPKs. Image courtesy [45, 46] 

 

Innate immunity and viral infections 

In case of viral infections, cells must adopt special strategies to try to prevent their replication. Since 

viruses use the host's molecular machinery to self-replicate, and host ribosomes will produce proteins 

and lipids forming the membranes of enveloped viruses, PAMPs are not present on the surface of those 

viruses. This problem is overcome by host cells because PRRs can recognize the presence of a virus by 

detecting unusual elements of the viral genome, such as double-stranded RNA (dsRNA), which is an 

intermediate in the life cycle of many viruses. dsRNA is recognized by several PRRs including TLR3. 

Mammalian cells are highly efficient in recognizing the presence of dsRNA, which activates 

intracellular PRRs leading the host cell to produce and secrete two antiviral cytokines as a primary 

response: interferon α (IFN α) and interferon β (IFNβ)[14]. IFN α and β are described as type I 

interferons to distinguish them from IFN γ, which is a type II interferon and has different functions. 

The production of type I IFNs is a primary cellular response to antiviral infection. They help in blocking 

viral replication in several ways and can act both in autocrine (on the infected cell that produced them) 

and paracrine (on adjacent uninfected cells) ways. Type I IFNs bind a surface receptor (IFNAR), which 

activates the intracellular JAK-STAT signaling pathway to stimulate transcription and the production of 

more than 300 proteins, including numerous cytokines. Thus, interferons are able to activate a latent 

ribonuclease, which nonspecifically degrades single-stranded RNA, and they also indirectly activate a 

protein kinase that inactivates the protein synthesis initiation factor eIF2, thus blocking the synthesis of 

most proteins in the cell. By adopting these strategies (destroying most of its RNA and blocking most 

protein synthesis), the host cell inhibits viral replication without killing itself. If those efforts fail, the 

host cell makes an even more extreme step to prevent virus replication: it commits self-suicide by 

apoptosis, often with the help of killer cells from the immune system. 

Type I interferons can also have indirect ways to prevent viral replication. One of these is to increase 

the activity of natural killer cells (NK cells), which are leukocytes related to T- and B-lymphocytes but 

are part of the innate immune system and are recruited to inflammation sites very early. Similar to the 

cytotoxic T cells of the adaptive immune system, NK cells destroy virus-infected cells by inducing them 

to kill themselves by apoptosis.  

IFN γ, which is a type II interferon, has the main functions of activating macrophages and inducing the 

expression of the Class II Major Histocompatibility Complex (MHC). 

 

Adaptive Immune System 

Differently from the innate immune system, which is programmed to react to broad categories of 

pathogens, the adaptive immune system is highly specific to each particular pathogen the body has 

encountered. 

Adaptive immunity creates an immunological memory after a first response to a specific pathogen, 

leading to an enhanced response to future encounters with that pathogen. 

This complex defense system is highly dependent on T and B lymphocytes (T and B cells). During their 

development, these cells can produce almost unlimited numbers of T (TCR) and B (BCR) receptors, 

rearranging particular DNA sequences in various combinations[14]. Collectively, these proteins can 

bind essentially to any molecule, including small chemical compounds, carbohydrates, lipids and 

https://paperpile.com/c/0zppLK/HYYc+4lT5
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proteins; individually, they can distinguish very similar molecules, such as two proteins that differ by a 

single amino acid. Using this strategy, the adaptive immune system can recognize and respond 

specifically to any pathogen, including new mutant strains. Adaptive immunity can provide long-lasting 

protection, possibly extending for a person's entire life. 

However, since the process of genetic rearrangement produces both receptors that can bind to self-

molecules and receptors that can bind foreign molecules, vertebrates evolved specific mechanisms to 

ensure that B and T lymphocytes do not react against the host's own molecules and cells, a process called 

immunological self-tolerance[14]. In addition, many innocuous foreign substances enter our bodies and 

it would not make sense or be potentially dangerous to initiate adaptive immune responses against them. 

It is possible to trigger the adaptive immune system to respond to innocuous non-self molecules by co-

injecting a molecule (often of microbial origin) called an adjuvant, which activates the PRR. This 

strategy is called immunization and is the basis of vaccination.  

Any substance capable of stimulating B or T lymphocytes to initiate a specific adaptive immune 

response against it is called antigen or antibody generator. 

There are two broad classes of adaptive immune responses: antibody responses and T-lymphocyte-

mediated immune responses. Most pathogens induce both classes of response. 

In antibody responses, B lymphocytes are activated to secrete antibodies, which are proteins 

transported in the bloodstream and capable of permeating other body fluids, where they can bind 

specifically to the antigen that stimulated their production. The antibody binding neutralizes 

extracellular viruses and microbial toxins by blocking their ability to bind the receptors on the host cell 

surface. The binding of antibodies also targets the pathogens for destruction, by either facilitating their 

phagocytosis and destruction by the phagocytes of the innate immune system, or by activating the 

complement system. 

In T-lymphocyte-mediated immune responses, T-lymphocytes recognize foreign antigens that are 

bound to MHC proteins on the host cell surface, such as dendritic cells, which are specialized in antigen 

presentation to T-lymphocytes and are therefore defined as professional antigen-presenting cells (APC). 

Since MHC proteins transport protein fragments encoded by pathogens from the inside of a host cell to 

its cell surface, T lymphocytes can detect pathogens hiding in a host cell and can either kill the infected 

cell or trigger phagocytes or B cells to contribute to pathogen clearance. 

B and T lymphocytes There are approximately 2 × 1012  lymphocytes in the human body, an amount 

that makes the immune system comparable in cell mass to the liver or the brain. Lymphocytes are 

abundant in the blood and lymph (the colorless fluid flowing in the lymphatic vessels, which connect 

lymph nodes to each other throughout the body and to the bloodstream) as well as in lymphoid organs, 

such as the thymus, lymph nodes and spleen; many are also located in other organs, such as the skin, 

lungs and gut. 

T-cells and B-cells take their names from the organs in which they originate. T-cells are derived from 

thymus and B-cells, in adult mammals, are generated in the bone marrow[14]. Both types of 

lymphocytes develop from lymphoid progenitor cells, which are derived from multipotent 

hematopoietic stem cells, located mainly in the bone marrow. 

The majority of B and T lymphocytes die in the primary lymphoid organs shortly after development, 

never becoming functional. Other lymphocytes, however, mature and migrate through the blood into 

peripheral lymphoid organs, mainly the lymph nodes, spleen and lymphoid tissues associated with the 

epithelium of the gastrointestinal tract, respiratory tract and skin. It is in these secondary lymphoid 

organs that foreign antigens activate T- and B-cells. 
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When B and T lymphocytes are not active, they are very similar, becoming morphologically 

distinguishable only once they have been activated by antigen. After activation by an antigen, both cell 

types proliferate and mature into effector cells. Effector B cells secrete antibodies; in their more mature 

form, called plasma cells, they contain an extended rugose endoplasmic reticulum responsible for 

antibody production[14]. 

Conversely, effector T cells contain a minimal percentage of endoplasmic reticulum and secrete various 

cytokines rather than antibodies. While antibodies produced by B lymphocytes are widely distributed 

by the blood circulation, cytokines produced by T lymphocytes act mainly locally on neighbouring cells, 

although some are carried by the circulatory stream and act over distant cells. The majority of antibody 

responses need T helper lymphocytes to begin. 

The T-cell responses differ from those of B-cells. First of all, T lymphocytes are only activated to 

proliferate and differentiate into effector cells when antigen is shown on the surface of Antigen-

Presenting Cells (APCs), usually dendritic cells in secondary lymphoid organs. T lymphocytes require 

APCs for activation, as the form of the antigen they recognize is different from that recognized by Ig 

produced by B lymphocytes. 

Newly synthesized MHC proteins capture these peptide fragments and transport them to the host cell 

surface, where T lymphocytes can recognize them. 

Effector T cells act only over short distances, within a secondary lymphoid organ or after migrating to 

the site of infection. Effector T cells interact directly with the targeted cells: they kill or mark it in some 

way. As for APCs, targeted cells must display an antigen bound to a MHC protein on their surface in 

order to be recognized by a T lymphocyte. There are three main classes of T lymphocytes: cytotoxic T 

lymphocytes, T helper lymphocytes and regulatory T lymphocytes. 

T Cytotoxic effectors directly kill cells that are infected by a virus or some other intracellular pathogen. 

T helper effector lymphocytes contribute stimulating responses from other immune cells, mainly 

macrophages, dendritic cells, B lymphocytes and cytotoxic T lymphocytes. There are several 

functionally distinct subtypes of T helper lymphocytes. 

Regulatory effector T lymphocytes suppress the activity of other cells of the immune system. 

 

MHC proteins capture and display peptide fragments of foreign proteins in order to present them to T 

lymphocytes. MHC proteins are divided into two main classes, which differ both structurally and 

functionally. 

MHC class I - present peptides that are foreign to cytotoxic T lymphocytes. They are expressed by 

almost all nucleated cells in our body. Humans have three main groups of class I MHC proteins: HLA-

A, HLA-B and HLA-C. 

MHC class II - have peptides that are foreign to helper and regulatory T lymphocytes. This class of 

proteins is generally expressed only in APCs. All APCs charge their MHC class II proteins with peptides 

derived primarily from extracellular proteins that have been endocytosed and targeted to endosomes. 

Humans have three groups of MHC class II proteins: HLA-DR, HLA-DP and HLA-DQ. 

The acronym HLA stands for human-leukocyte-associated, in fact these proteins were first identified in 

human leukocytes). 

 

Immunological Memory - The most remarkable property of the adaptive immune system is its ability 

to respond to millions of different foreign antigens in a highly specific manner. Human B lymphocytes, 

for example, can collectively produce more than 1012 different antibodies which react specifically to the 

antigen that triggered their production[14]. 
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When every lymphocyte develops in a primary lymphoid organ, it is designed to react to a particular 

antigen even before being exposed to it. The lymphocyte expresses this destiny in the form of receptors 

on its surface, which can specifically bind the antigen [14, 41, 42]. When a lymphocyte encounters its 

antigen in a secondary lymphoid organ, the binding of the antigen to the receptors activates the 

lymphocyte, which begins to proliferate, thereby producing many more cells with the same receptor, a 

process called clonal expansion[14]. Thus, an antigen activates only those lymphocytes that express 

complementary antigen-specific receptors, in other words, that have the appropriate characteristics to 

respond to it. This process, called clonal selection, provides an explanation for immunological memory, 

through which we develop lifelong immunity to many common infectious diseases after our initial 

exposure to the pathogen, either through natural infection or a vaccine. 

Immunological memory depends not only on proliferation but also on the level of lymphocyte 

differentiation. In adults, peripheral lymphoid organs contain lymphocytes in at least three stages of 

maturation: naïve, effector, and memory cells. When naïve cells first encounter their specific antigen, 

they are stimulated to proliferate and differentiate into effectors that carry out the immune response (B 

effector cells secrete antibodies; T effector cells kill infected cells or influence the response of other 

cells, for example by secreting cytokines). Some of the naïve cells, triggered by the antigen, proliferate 

and differentiate into memory cells. These will be the first to become effectors if they ever encounter 

the same antigen again. Differently from most effector cells, which die within a few days or weeks, 

memory cells can persist for a lifetime. Most B and T effector cells die when the immune response is 

finished. A small portion will remain as effector cells helping to provide long-term protection against 

the pathogen. 

Antibodies - Antibodies are proteins secreted exclusively by B lymphocytes as a defense against 

pathogens. They belong to the class of proteins called immunoglobulins (Ig) and are one of the most 

abundant protein components of the blood. The first immunoglobulins produced by a new B lymphocyte 

are not secreted, but incorporated into the plasma membrane as antigen receptors: B cell receptors 

(BCRs). Each B cell contains approximately 105 BCRs in its plasma membrane, which are all associated 

with an invariant transmembrane protein complex that activates intracellular signaling pathways once 

the antigen binds to the BCR. 

When an antigen and a T helper cell activate a B lymphocyte (naive or memory), it proliferates and 

differentiates into an effector cell, which produces and secretes large amounts of soluble 

immunoglobulins called antibodies. 

A typical Ig molecule possesses two identical antigen-binding sites and consists of four polypeptide 

chains, two identical light (L) chains and two identical heavy (H) chains. The N-terminal parts of both 

heavy and light chains generally cooperate to form the antigen-binding surface, while the more C-

terminal parts of the heavy chains form the Y-shaped tail of the protein. 

In mammals, there are five major classes of Ig: IgA, IgD, IgE, IgG and IgM, each with its own class of 

heavy chains, a, d, ε, g and m, respectively. In addition, there are four subclasses of IgG 

immunoglobulins (IgG1, IgG2, IgG3 and IgG4) with the heavy chains g1, g2, g3 and g4, respectively. 

In humans, there are also two subclasses of IgA. Each class (and subclass) has distinctive properties. 

IgM is always the first class of Ig produced by a B lymphocyte and develops in the bone marrow by 

forming the BCR on the surface of naïve immature B lymphocytes. IgM are secreted into the blood in 

the early stages of a primary antibody response, after initial exposure to the antigen.   

T lymphocyte coreceptors: CD4 e CD8 The affinity of TCRs for MHC-peptide complexes on an APC 

is generally too low to mediate a functional interaction between the two cells. Thus, T lymphocytes need 

https://paperpile.com/c/0zppLK/4o1B+JzR3+F8qG
https://paperpile.com/c/0zppLK/F8qG
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accessory receptors to stabilize the interaction and increase the total strength of cell-cell adhesion. This 

increased adhesion allows the T lymphocyte to remain bound long enough to be activated. 

An ancillary receptor that contributes directly in the activation of the T lymphocyte by generating its 

own intracellular signals is called a coreceptor. Among the most important are the CD4 and CD8 

proteins, both single-pass transmembrane proteins with Ig-like extracellular domains. 

CD4 is expressed on both helper and regulatory T cells and binds to MHC class II proteins; 

CD8 is expressed on cytotoxic T cells and binds to MHC class I proteins. 

CD4 and CD8 assist T-cell recognition by helping them to focus on particular MHC proteins and thus 

on particular target cell types. 

A naive T helper cell, activated by the binding with a foreign peptide associated with an MHC class II 

protein on the surface of an activated dendritic cell, can differentiate into different types of effector T 

lymphocytes, depending on the nature of the pathogen and the cytokines it encounters: TH1, TH2, TFH, 

TH17, and regulatory (suppressor) T lymphocytes. These effector lymphocytes produce interferon-γ 

(IFNγ), which is crucial for triggering macrophages to destroy pathogens. IFNγ can also cause B 

lymphocytes to change the class of Ig they are producing. 

Naïve TH lymphocytes activated in the presence of IL4 differentiate into TH2 lymphocytes, which are 

important for the control of extracellular pathogens, including parasites. 

Naïve TH lymphocytes activated in the presence of IL6 and IL21 differentiate into follicular T helper 

lymphocytes (TFH), which are found in lymphoid follicles and secrete a variety of cytokines, including 

IL4 and IL21. 

Naïve TH lymphocytes activated in the presence of IL6 and TGFβ differentiate into TH17 lymphocytes. 

These secrete IL17, which recruits neutrophils and stimulates skin and intestinal epithelial cells and 

fibroblasts to produce pro-inflammatory cytokines.  TH17 lymphocytes are important in the control of 

extracellular bacterial and fungal infections and in wound healing, but they may also play a key role in 

autoimmune diseases and allergies. 

Treg lymphocytes suppress the development, activation, or function of most other types of immune 

system cells, either through the secretion of suppressor cytokines such as IL10 and TGFb, or through 

the exposure of inhibitory proteins on the surface of Treg cells. 
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Figure 10. A simplified schematic diagram of the innate and adaptive immune response activating and regulatory 

pathways under normal physiological conditions. Image courtesy [38, 45] 
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2.1.7 Virus 

Viruses are defined as obligate intracellular parasites that can replicate exclusively within the cells of 

host organisms. Viruses can infect all forms of life: animals, plants, microorganisms (including other 

infectious agents such as bacteria), and even other viruses. 

When they are not in the active phase of infection or within an infected cell, viruses exist as independent, 

inactive particles also known as virions. Each virion consists of two or three parts: (I) the genetic 

material, which depending on the virus can be DNA or RNA; (II) a capsid, which is a protein coating 

that surrounds and protects the genetic material; and in some cases (III) a pocket of lipids that surrounds 

the protein coating when they are outside the cell. Virions can have simple, helical and icosahedral 

shapes as well as more complex architectures. Virions do not possess metabolism: they are therefore 

passively transported until they find a cell to infect. Infection of a host cell requires binding to specific 

membrane proteins. 

In infected cells, viruses lose their structural individuality: they consist of the nucleic acids and their 

products that take over part of the cellular biosynthetic activity in order to produce new virions. 

Alternatively, some viruses can physically insert their genome into that of the host so that it is replicated 

together with it. The viral genome inserted into that of the host, called a provirus, regains its individuality 

and produces new virions if the host cell is damaged. 

 

Coronaviruses: main characteristics 

Coronaviruses (CoVs) are a group of related RNA viruses that can infect the respiratory, gastrointestinal, 

hepatic, and central nervous systems of humans, livestock, birds, bats, mice, and many other wild 

animals[48-50]. 

Generally, human coronaviruses are members of the order Nidovirales which includes the families 

Coronaviridae, Arteriviridae, Roniviridae. Coronaviridae has two subfamilies: Coronavirinae and 

Torovirinae. 

The Coronavirinae subfamily is further classified into four groups Alpha, Beta, Gamma and Delta. 

Among them, the first two (CoV α- and β-) infect mammals, γ-coronaviruses infect avian species, and 

δ-coronaviruses infect both mammals and avians. 

Mild diseases in humans include some cases of the common cold (caused also by different viruses such 

as rhinoviruses), while potentially lethal strains can cause SARS, MERS, and COVID-19. 

The first human coronaviruses to be identified were OC43 and 229E in the 1960s, followed by the 

identification of SARS-CoV in 2003, HCoV-NL63 in 2004, HKU1 in 2005, MERS-CoV in 2012, and 

finally SARS-CoV-2 in 2019[51]. 

For SARS-, MERS-, and SARS-CoV-2 zoonotic transmission is reported and they spread between 

humans through close contact. SARS-CoV-2 is relatively more infectious than SARSCoV and MERS-

CoV probably due to different epidemiological dynamics. 

CoVs are enveloped viruses with a single-stranded positive RNA genome and a nucleocapsid with 

helical symmetry[51, 52]. Their name is derived from their crown-shaped surface. CVs are spherical, 

polyhedral viruses, ranging from 80 to 160 nm in diameter. They have a positive-sense, single-stranded 

RNA genome (+ssRNA) that is one of the largest among RNA viruses, ranging from 26 to 32 kb in 

length [53, 54]. 

They are enclosed in an envelope embedded with a number of protein molecules [55]. The viral envelope 

is made up of a lipid bilayer in which membrane Glycoprotein (M), is the most abundant structural 

https://paperpile.com/c/0zppLK/9vO2
https://paperpile.com/c/0zppLK/fX8m
https://paperpile.com/c/0zppLK/fX8m+KRZA
https://paperpile.com/c/0zppLK/dG3Z
https://paperpile.com/c/0zppLK/o3Bl
https://paperpile.com/c/0zppLK/MDtW
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protein of the virus. It reinforces the curvature of the membrane and attaches to the nucleocapsid. The 

envelope contains a small amount of a transient membrane protein known as the Envelope protein (E), 

which plays a role in virus assembly, release and pathogenesis [50, 56]. 

Nucleocapsid (N) is another viral protein that binds to the RNA genome, creating a symmetrical helical 

nucleocapsid. It has two domains, which can adhere to the RNA genome through various mechanisms 

[56, 57]. Characteristic are the club-like surface projections or peplomers, composed of trimers of a 

spike (S) protein, that are evident in electron microscopy images of coronavirus and which give them 

the classic crown from which they derive their name[57].  

The S protein consists of two subunits S1 and S2. The homotrimeric S protein is a class I binding protein 

that mediates receptor binding and membrane fusion between the virus and the host cell. The S1 subunit 

has the receptor binding domain (RBD) instead the S2 subunit forms the stalk that anchors the tip into 

the viral envelope and, upon activation of the protease, allows fusion. The two subunits remain non-

covalently bound as they are exposed on the viral surface until they attach to the membrane of the host 

cell[55]. 

The S1-S2 subunit complex is cleaved by host proteases such as those belonging to the cathepsin family 

and transmembrane serine protease 2 (TMPRSS2), when binding between the virus and the host cell 

occurs[58]. 

S1 proteins are critical components in terms of infection also because they are highly variable being 

responsible for host cell specificity. 

The CVs +ssRNA genome has a 5′-terminal cap, a 3′-terminal poly (A) tail, and several open reading 

frames (ORFs). Their genome organization involves: 5′-leader-UTR-replicase (ORF1ab)-spike (S)-

envelope (E)-membrane (M)-nucleocapsid (N)-3′UTR-poly (A) tail (Fig.11). ORFs 1a and 1b occupy 

the first two-thirds of the genome and encode for the replicase polyprotein (pp1ab) which cleaves to 

form 16 non-structural proteins (nsp1-nsp16) [58, 59]. 

Subsequent reading frames encode the four major structural proteins: spike, envelope, membrane, and 

nucleocapsid[60]. 

Spaced among the ORFs are accessory proteins that vary in number and function depending on the 

specific coronavirus[59, 60]. 
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Figure 11. Coronavirus genomic organization. Coronaviruses are enveloped viruses with a positive-sense, single-

stranded RNA of approximately 26-32 kb. They are spherical in shape and approximately 80-160 in diameter. The figure 

shows an overview of the genome organization of coronaviruses including: 5′-leader-UTR-replicase (ORF1ab)-spike (S)-

envelope (E)-membrane (M)-nucleocapsid (N)-3′UTR-poly (A) tail.  Notably represented are SARS-CoV, MERS-CoV, 

and SARS-CoV-2 that share ORF1 a/b encoding polyprotein pp1ab. The other ORFs are responsible for encoding the four 

major structural proteins: spike (S), envelope (E), membrane (M) and nucleocapsid (N) plus several accessory proteins. 

Image courtesy [61] 
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2.2 Mathematical and Algorithmic Prerequisites 

2.2.1 Analysis of Biological data: fundamental of pathway enrichment analysis 

Pathway enrichment analysis is a technique used to provide a reasoning for sets of biological elements 

generated by genome-scale experiments, particularly genes, in a specific context. 

The accelerating availability of molecular sequences, particularly the sequences of entire genomes, has 

transformed both the theory and practice of experimental biology[62]. 

The richness and diversity of information progressively acquired, such as genes and different 

phenotypes, mutations with their pathological implications, proteins and their chemical characterization, 

have gradually emerged no more as different fields of research but as multiple aspects of a unified 

biology, highlighting the need to organize, describe, query and visualize biological knowledge at vastly 

different stages of completeness. So, the acquired knowledge has led to the construction of databases 

that categorize and describe the genes and the gene products for each living organism, in a very detailed 

way and, more importantly, with a standard format as for instance GeneOntology[62]. This has enabled 

the development of new methods that, using statistical approaches, can automatically reveal biological 

functions based on annotated information. 

Knowledge Graph - Knowledge Graph (also known as a semantic network) is a systematic way to 

connect information and data to knowledge. It represents a collection of interlinked descriptions of 

entities, real-world objects, and events, or abstract concepts, obtained from knowledge-bases such as 

ontologies. 

Ontology – It is a formal description of knowledge as a set of domain-based concepts in relationships 

among them. As a result, the ontology does not only introduce a shareable and reusable knowledge 

representation, but it can also provide new knowledge about the considered domain[63]. 

 

The Gene Ontology 

The Gene Ontology (GO) is part of the wider Open Biological and Biomedical Ontology (OBO) project, 

created with the aim of unifying terminology in the biomedical field. It is considered one of the most 

important bioinformatics initiatives created with the aim to create a unified and standardized database 

of terminologies related to genes and biological functions of a wide range of categories, in order to 

facilitate the process of communication and data sharing. It defines concepts used to describe gene 

function, and relationships between these concepts. The Gene Ontology (GO) knowledge base has 

become and still remains one of the largest sources of information on gene function. 

The project aims to develop and maintain a controlled vocabulary, to annotate genes and their products 

and also provide an easy access tool. 

Within the GO database the terms are organized hierarchically. The most generic terms, at the highest 

level, are connected to their descendants by their relationship type, typically "is a" or "part of". 

GO terms are organized in a Directed Acyclic Graph – DAG (Fig.12), where edges between the terms 

represent parent-child relationship. The level of specificity can be selected by the user. 

GO classifies functions along three domains: 

MF: Molecular Function - molecular activities of gene products; 

CC: Cellular Component  - parts of a cell or its external environment where gene products are active; 

https://paperpile.com/c/0zppLK/Rug6
https://paperpile.com/c/0zppLK/Rug6
https://paperpile.com/c/0zppLK/4x4z
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BP: Biological Process - pathways and larger processes made up of the activities of multiple gene 

products. 

Every term within an ontology can be a word, a phrase, a unique identifier, a citation, and a domain to 

which it belongs. Synonyms are also often included. 

 

 
Figure 12. Ontologies - Directed Acyclic Graph This figure depicts the diagrams of the different sections of three 

ontologies, schematically: The biological process on the left side (dark blue), the molecular function in the middle 

(light blue), and the cellular component on the right side (yellow). The general concepts are at the top and the more 

specific concepts are at the bottom. The is_a relations (solid black lines) indicate that a child concept is a type of the 

parent concept, and the part_of relations (dashed black lines) indicate that the child concept is a part of the parent 

concept. Separately and concurrently with GO development, gene products are annotated (red lines) to the terms. The 

annotation indicates that the gene product (gray background, black outline) is involved in the process described, or has 

the function, or acts in the position described. Image from [64]. 

 

ReactomePA for enrichment analysis 

ReactomePA is an R package designed for Reactome pathway based analysis[65]. It evaluates pathway 

associations with gene lists or genomic coordination obtained from high-throughput genomic and 

proteomic studies[65]. 

Reactome[4-6, 65] is a manually curated resource that describes chemical reactions, biological processes 

and pathways. 

ReactomePA extends from the DOSE package[66] and supports hypergeometric testing and gene set 

enrichment analysis (GSEA)[66, 67] to provide Reactome and functional pathway analysis using 

variable NGS data. 

Actually ReactomePA supports several model organisms, including c.elegans, fly, human, mouse, rat, 

yeast and zebrafish. It takes as input gene Entrez IDs. 

The enrichPathway function allows users to select an appropriate background of genes as the baseline. 

The gsePathway function supports GSEA to evaluate the enriched Reactome pathways of high-

throughput data. In addition, ReactomePA provides several high-quality visualization features to 

facilitate the interpretation of the analysis. It is possible to graph the results including bar plot and dot 

https://paperpile.com/c/0zppLK/f2hZ
https://paperpile.com/c/0zppLK/DQcy
https://paperpile.com/c/0zppLK/DQcy
https://paperpile.com/c/0zppLK/DQcy+2CBX
https://paperpile.com/c/0zppLK/WLwA
https://paperpile.com/c/0zppLK/WLwA+B8lQ
http://bioconductor.org/packages/ReactomePA
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plot to summarize enrichment, cnetplot to visualize the gene-pathway association network, the 

enrichMap function to visualize the enriched pathway network, and gsea plot that displays the current 

sum of enrichment scores and its association with the phenotype. 

  

  

2.2.2 Pearson Correlation 

Among the different types of correlation coefficients, the Pearson correlation, also known as the linear 

correlation coefficient, is the most common correlation measure. The full name is Pearson Product 

Moment Correlation (PPMC) and it shows any linearity relationship between two statistical variables. 

A linear regression exists when the relationships between your variables can be described with a straight 

line. 

Given two statistical variables X and Y, the Pearson correlation is defined as their covariance divided 

by the product of the standard deviations of the two variables: 

𝜌𝑋𝑌 =
𝜎𝑋𝑌

𝜎(𝑋) ⋅ 𝜎(𝑉𝑌)
 

The formulas return a value between -1 and 1, where: 

A correlation coefficient of 1 indicates a strong positive relationship. It means that for every positive 

increase in one variable, there is a positive increase of a fixed proportion in the other. 

A correlation coefficient of -1  indicates a strong negative relationship. It means that for every positive 

increase in one variable, there is a negative decrease of a fixed proportion in the other. 

Zero indicates no relationship at all. It means that for every increase, there isn’t a positive or negative 

increase. 

The absolute value of the correlation coefficient gives us the relationship strength. The larger the 

number, the stronger the relationship. 

Suppose we plot our linear relationship on a graph with one X axis and one Y axis, the X variable is 

sometimes called the independent variable and the Y variable is called the dependent variable. 
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DT-Web 

DT-Web[104, 105] is a web-based interface to the Domain Tuned-Hybrid (DT-Hybrid)[104–106], 

which extends a well-established recommendation technique from domain-based knowledge that 

includes drug and target similarity. 

This method, together with domain-specific knowledge expressing drug-target similarity, is used to 

calculate recommendations for each drug. 

DT-Web can consider different matrices as input: known drug-target matrix, drug-drug similarity 

matrix, and target-target similarity matrix. 

The drug-target interactions are taken from DrugBank, and from this data, an adjacency matrix is 

constructed. The drug-drug similarity is assessed using SIMCOMP[107] and then a similarity matrix is 

constructed. The target similarity matrix can be obtained by performing BLAST or using the Smith-

Waterman local alignment technique. 

Then, using these three matrices, a drug-target interaction network is constructed. Each target is mapped 

to its Entrez Identifier and annotated with Gene Ontology (GO) terms in this interaction network. For 

each pair of GO terms, the similarity score is calculated. Therefore, a p-value is calculated to evaluate 

the association between the predicted and validated targets. 

DT-Web, given a set of candidate disease genes as input, can predict drug combinations whose targets 

are at an optimal distance from those genes. 

 

Binding site parametrization 

Binding sites are structural regions of macromolecules that bind ligands through interactions that are 

almost always reversible and can often be accompanied by conformational changes in the molecules. 

These are often conserved regions that can be used to search for other ligand-binding proteins that 

generally bind to other molecules by exploiting the structural similarity of these binding regions. Below, 

some of the methods designed to predict targets based on the binding sites of query molecules are 

explored. 

ProBis 

The ProBiS-ligands Web server predicts the binding of ligands to a protein structure. Starting with a 

protein structure or binding site, ProBiS-ligands identify model proteins in the Protein Data Bank (PDB) 

that share similar binding sites to the query [107, 108]. 

The algorithm uses the structure and physicochemical properties of the constituent amino acids and their 

backbones to compare two protein binding sites[108]. Then, it detects structures sharing similar 3D 

amino acid motifs to the searched protein within the PDB[108]. ProBiS-Database is a repository of non-

redundant binding sites and associated PDB structures, which is updated weekly. 

  

Pocket Similarity Search using Multiple-sketches - PoSSuM 

PoSSuM searches the entire PDB database for binding similarity of all coupling molecules. Given a 

protein query, PoSSuM will search for all known ligand binding sites with a structure similar to the 

input. To obtain results, users can provide three types of input: protein structure; ligand binding site; and 

a ligand[108-110]. It uses a neighbor-searching algorithm called SketchSort. The similarity measure is 

determined based on cosine similarity and a p-value indicating significance [109, 110]. Dissimilarity 

values are given by the mean square deviation[109,110]. 

 

https://paperpile.com/c/0zppLK/x2j6+js1I
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Disease-based approaches 

This section is dedicated to tools that use disease association-dependent annotations. Disease-based 

approaches are used when drug pharmacology is not present or not considered. 

MeSHDD 

MeSHDD is a literature-based repositioning methodology that leverages drug-drug similarity based on 

the MeSH term co-occurrence[111]. MeSHDD, clusters drugs based on disease-centered Medical 

Subject Heading (MeSH) terms found in the MEDLINE Baseline Repository, which contains manually 

annotated MeSH terms for over 20 million biomedical articles, to predict shared indications[111]. 

MeSHDD uses drugs from DrugBank, including manually curated information on approved, 

investigational, and illicit drugs and their targets, mechanisms of action, and indications. Co-occurrence 

of drug-MeSH terms is calculated using a hypergeometric P-value, followed by a Bonferroni 

correction[111]. The drug-drug similarity is measured by calculating the bitwise distance from 

converting p-values to a binary representation. Drugs are clustered based on pairwise distances and 

bootstrap-means clustering techniques (implemented in R), and the Jaccard index was used to compare 

the clustering of various k-values[111]. 

 

RE:fine drugs 

RE:fine drugs is a freely available interactive dashboard for integrated search and discovery of drug 

repurposing candidates from GWAS and PheWAS repurposing datasets constructed using previously 

reported methods in Nature Biotechnology[112]. 

Starting from a disease that users give as input, the tool returns a list of drugs that can be potentially 

useful for that case. Prediction results are classified as known/discovered if present in DrugBank, 

strongly supported if present in the NIH clinical trial registry and biomedical literature, Probable if the 

evidence is in the NIH clinical trial registry or biomedical literature, and Novel if not present in 

either[112]. 

 

Drug-induced gene expression to predict new connections 

Drug-induced gene expression is the differential mRNA expression profiles in a cell line before and 

after drug treatment. This repurposing approach is accomplished by comparing disease-associated 

expression signatures with these drug-induced expression signatures, looking for drugs that have 

opposite effects on the disease and may be effective. 

 

Connectivity map - CMap 

CMap relies on a database of pre- and post-gene expression profiles from cellular samples in response 

to various types of perturbation, e.g., genetic perturbations in response to drug administration. CMap 

provides mRNA expression data from DNA microarrays for researchers who want to monitor 

differential expression to identify drugs that produce reverse signatures to query expression signatures. 

Connectivity are measured using the Kolmogorov-Smirnov statistical test. To date, CMap has generated 

a library containing over 1.5M gene expression profiles from ~5,000 small molecule compounds and 

~3,000 gene reagents, tested in multiple cell types[8, 112, 113]. CMap has profoundly impacted 

therapeutic research and has opened new challenges in scientific investigations in drug repurposing, 

MoA elucidation, biological understanding, and systems biology[8][113]. 
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Differentially expressed gene signatures - inhibitors DeSigN 

DeSigN associates disease signatures with drug response signatures based on IC50 (quantitative measure 

of drug efficacy often used to prioritize compounds in vitro) data. Unlike CMap, which uses pre- and 

post-gene expression profiles, DeSigN uses only baseline gene expression profiles[114]. 

 

GoPredict 

GoPredict uses gene expression data integrated with heterogeneous public information, such as signaling 

pathways and drug target information. It takes gene expression data as input and returns drug predictions 

as output. The reference databases used in GoPredict are TCGA, KEGGDrug, DrugBank, and Gene 

Ontology[115].  

 

MANTRA 2.0 

MANTRA 2.0 predicts molecular drug targets from gene expression profiles before and after drug 

perturbation in a collaborative and additive learning environment [115, 116]. 

An automated pipeline of MANTRA 2.0 transforms the gene expression profiles into a single drug 

“node” in the network and allows users to explore their neighbors to find new indications and 

interactions. It enables users to calculate a prototype ranked list (PRL) for each drug and then compare 

PRLs using a Gene Set Ensemble Approach (GSEA) based method[116]. 

 

NFFinder 

NFFinder uses the MARQ method to compare molecular signatures. Performing this analysis requires 

two sets of expression data, up- and down-regulated genes compared to GEO, CMap, and DrugMatrix 

data[117]. 

 

Prediction of Drugs with Opposing Effects on Disease Genes - PDOD 

The online server PDOD uses gene expression data and associates information regarding "effect-type" 

and "effect-direction" using KEGG pathway and drug target informations from DrugBank[117, 118]. It 

uses case/control expression datasets published in GEO to determine which gene expression changes 

happen due to a specific disease and looks for a drug that can counteract them[118]. 

To extract the gene signature, PDOD draws differentially expressed genes from the expression data by 

applying Limma and a function that evaluates the drug-disease score based on the parameterization of 

relationships[118]. 

  

2.2.3.3 Others Drug repositioning tools 

Reverse Gene Expression Score - RGES 

RGES is a system providing a predictive measure on how a given drug could reverse the gene expression 

profile for a given disease. The principle is to reverse overexpressed genes by increasing weakly 

expressed ones, restoring gene expression to levels closer to normal tissue[119]. 

First, the pipeline consists in calculating the gene expression signatures of the disease and the one 

generated by the drug-induced effect. From the two molecular signatures, the system then calculates the 

Reverse gene expression score (RGES) between the disease and the drug. This score ranges from -1 to 

1, and it represents a measure of how much the drug under consideration can counteract the changes in 

expression due to disease. A low RGES value indicates higher potency to reverse disease gene 

expression and vice versa[119]. 

https://paperpile.com/c/0zppLK/7oSD
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The data needed to perform the analysis can be taken from various publicly available databases such as 

TCGA, which includes gene expression profiles of tissue samples, LINCS, which includes perturber-

mediated gene expression profiles, ChEMBL, which includes drug activity in tumor cells, and CCLE, 

which includes gene expression profiles of tumor cells[119]. Due to the progressively decreasing cost 

of many profiling technologies, large volumes of gene expression profiles of drugs under different 

biological conditions can be produced and made available to apply various drug repositioning and 

compound screening techniques such as RGES[119]. 

  

Searching off-lAbel dRUg aNd NEtwoRk - SAveRUNNER 

SAveRUNNER is a freely available network-based algorithm for drug repurposing. Starting from a list 

of drug-target interactions and disease-gene associations, this tool predicts drug-disease associations by 

computing a new network-based similarity measure that prioritizes associations between drugs and 

diseases located in the same neighborhoods[120]. The pipeline consists first (i) in the construction of 

the proximity-based drug-disease network and then (ii) in the construction of a similarity-based bipartite 

drug-disease network. 

The construction of the proximity-based drug-disease network comprises three phases: 

Computation of network proximity (p) to measure how close the disease and drug modules are in the 

human interactome. Given two modules T and S that respectively represent the drug module, containing 

all t targets of the drug, and the disease module, comprising all s genes of the disease, p is described as 

the average length of the shortest path between the elements of T and S [120]. 

Computation of z‑score proximity and p-values. SAveRUNNER calculates z-scores and their p-values 

by building a reference distance distribution corresponding to the expected distance between two 

randomly selected sets of proteins with the same size and degree distribution as the original sets of 

disease proteins and drug targets in the human interactome. The procedure is repeated 1000 times, and 

the z and its p-value are calculated through the mean and standard deviation of the reference distance 

distribution[120]. 

Statistically significant drug‑disease associations (generally, p-value ≤ 0.05) are selected. 

Next, the pipeline involves the construction of a similarity-based bipartite drug-disease network that 

comprises the following steps: 

 

Computation of network similarity 

The similarity measure is calculated from the network proximity measure p through the equation 

similarity =  max(p) - pmax(p)           p= network proximity. 

This measure assumes a value between 0 and 1[120]. 

Cluster detection 

SAveRUNNER uses a clustering algorithm based on greedy optimization of the modularity network to 

define drug and disease groups. Each identified cluster is evaluated by the cluster quality score 

(QC)[120]. 

 

Adjustment of network similarity 

The similarity of a drug-disease pair belonging to the same cluster increases proportionally to the QC 

score of the cluster. If the drug belongs to the same cluster as the disease then it might be considered 

eligible for repurposing. SAveRUNNER produces a list of predicted and prioritized drug-disease 

https://paperpile.com/c/0zppLK/lzoF
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associations in a weighted bipartite network format, where nodes represent drugs and diseases. A link 

between a drug and a disease occurs if the corresponding drug targets and disease genes are close in the 

interactome with a significant p-value ( p ≤ 0.05). Their interactions are represented by weighted edges 

in which the weight corresponds to the adjusted and normalized similarity value[120]. 

 

Bayesian ANalysis to determine Drug Interaction Targets – BANDIT 

BANDIT is a machine learning algorithm that uses a Bayesian approach to integrate multiple data types 

and predict possible interactions with therapeutic effects. The rationale for this approach is integrating 

multiple data types to significantly improve the accuracy of target prediction[120, 121]. Indeed, 

BANDIT integrates data on drug efficacy, post-treatment transcriptional responses, drug structures, 

reported adverse effects, bioassay results and known targets[121].  The tool is based on a database 

containing approximately 2000 different drugs with 1670 different known targets and over 100,000 

compounds without known targets (orphans)[121]. 

For each data type, a similarity score is calculated for all drug pairs with known targets. For each pair, 

BANDIT converts the similarity score into a likelihood ratio. These ratios are then combined to obtain 

a total likelihood ratio (TLR) proportional to the probability that two drugs share a target, given all 

available evidence[121]. 

The integrative approach of BANDIT can identify drugs that share targets, discern the mechanisms of 

approved drugs, explain existing but not fully known clinical phenotypes, and repurpose drugs for new 

therapeutic indications[121]. 

  

2.2.3.4 Data sources for drug repurposing 

In the last decades, the gathering of genomic data has led to the acquisition of new knowledge on the 

genetic basis of diseases. It is enough to mention the numerous studies through which the association of 

gene loci with the risk of developing certain diseases has been discovered or the sequencing of human 

tumors, thanks to which somatic mutations underlying many types of cancer have been identified. 

Thus, the acquisition of new knowledge about some disease phenotypes and drug-induced perturbations 

has increased the interest in new computational methods that can analyze and integrate large amounts 

of data to discover new disease targets. 

These approaches have increased our understanding of the connection between genes, drugs, and disease 

leading to the generation of new hypotheses. Machine learning techniques and biomedical text mining 

approaches have been crucial in discovering hidden relationships between drugs and potential new 

therapeutic indications. 

Systematic collection and analysis of gene expression data from human cell lines before and after drug 

treatment can be used to identify new opportunities for drug repurposing, discover new mechanisms of 

action for compounds, make small-molecule mimics of endogenous ligands, and predict side effects of 

such compounds[122]. 

In this direction, Connectivity Map was among the first databases to collect data about transcriptional 

responses of human cancer cell lines to various drugs/compounds and other small molecules. The first 
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version of this database had limitations due to its small scale, leading to the extension of the Connectivity 

Map project through the NIH Library of Integrated Network-based Cellular Signatures (LINCS) 

program. A new approach was introduced to increase the available experimental data. A cheaper 

technology than the classic RNA-seq,  called L1000, was employed. The LINCS-L1000 provides the 

signatures of ~50 human cell lines in response to ~20,000 drugs (at various concentrations) for a total 

of over a million experiments[122]. 

In this section, I will provide an overview of CMap and its evolution LINCS L1000. These "big data" 

resources provide essential but straightforward platforms for characterizing small molecule-induced 

changes in gene expression and determining connections, similarities, or dissimilarities among diseases, 

drugs, genes, and pathways. 

Connectivity Map - CMap 

CMap, introduced in 2006 by Lamb et al., is a database collecting gene-expression profiles of drug-

treated human cell cultures, which has been used for investigation of polypharmacology and drug 

repurposing. 

Gene expression profiles are a series of experiments conducted using a microarray platform (Affymetrix 

HT_HG_U133 and HG_U133A) and standardized preprocessing (MAS 5.0). Experiments were done 

on different cell lines at different vehicle concentrations and time points compared to controls[123]. 

In the original CMap study, the initial reference database (Build 1) included 455 treatment-control pairs, 

where treatment constitutes a selection of 165 drugs, 42 different concentrations, 2-time points, and four 

human cell lines (MCF7, PC3, SKMEL5, and HL60). Subsequently, the database was significantly 

extended (Build 2), adding 1309 drugs with 156 different concentrations for a total of about 7000 gene 

expression profiles[123]. An “instance identifier” uniquely identifies each instance within the database. 

Thus, there is an instance representation in the reference database for each drug corresponding to 

treatment and control conditions[123]. 

The connectivity mapping methods 

CMap's rationale is to use a reference database containing disease-specific gene expression profiles and 

compare it to the gene signature of a given drug. This approach is aimed to predict potential therapeutic 

candidate drugs. It also allows the identification of connections between drugs, genes, and diseases. 

The CMap workflow comprises an initial query consisting of a set of gene signatures highly 

representative of a given biological state (e.g., disease).  Although there is no definite way to generate 

the optimal gene signatures, the conventional approach identifies and uses a statistically significant list 

of differentially expressed genes (DEGs) calculated from disease and control samples. This list of genes 

will delineate the characteristic phenotype for a particular disease[123]. 

This kind of approach is platform-independent, allowing users to create query signatures from any gene 

expression platform[8, 123]. Then, the query is used to interrogate the CMap catalog. 

Within the database, each of the signatures consists of a weighted average of the three biological 

replicate perturbations to mitigate the effects of unrelated replicates or outliers[8]. 

At this point, a connectivity score with a p-value is estimated using a non-parametric rank-ordered 

Kolmogorov-Smirnov (KS) test. The “connectivity score” is normalized through the random 
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permutation described by Lamb et al., assuming values from 1 to -1 to reflect the closeness between 

expression profiles[8, 123]. 

A positive correlation indicates the degree of similarity between a query signature and a perturbation-

derived profile after specific treatment, whereas a negative correlation denotes an inverse similarity. 

These correlations are used to determine how exposure to a particular chemical may mimic or reverse 

the signature of the biological sample of interest. 

A false discovery rate (FDR), which adjusts the p-value considering multiple hypothesis testing, and a 

t-parameter, which compares an observed enrichment score to all others in the database, are also 

calculated[8]. These metrics allow a comprehensive assessment of the relationship between a query and 

a perturbation, rather than just sorting by similarity. 

Since the CMap method involves usage of expression profiles to define molecular signatures, it does not 

require prior knowledge of the detailed mechanism of action (MoA) or drug targets[8, 123]. This 

advantage makes it a widely used method in drug discovery and repositioning. The original CMap 

database had limited chemical and genetic perturbation data due to the high cost of commercial gene 

expression microarrays and RNA sequencing (RNA-seq). In addition, the expression profiles looked 

only at a few cell lines leaving the uncertainty of applicability to other cell lines, animal models, or 

human systems. 

To improve the system and overcome these significant limitations, the same team of researchers 

developed a new simplified platform called L1000 to facilitate rapid and high-throughput gene 

expression profiles at a lower cost. 

 

L1000 

The L1000 platform, developed at the Broad Institute by the CMap team, is a method to facilitate high-

throughput, low-cost gene expression profiling and is suitable for extending CMap at a large scale[8, 

123]. 

The development of this method was part of the NIH LINCS (Library of Integrated Cellular Signatures) 

consortium, which funds the generation of expression profiles across multiple cell types and 

perturbations. To date, through L1000 technology, over one million gene expressions have been profiled 

and collected. 

Its name, L1000, is because it contains a number of reference transcripts equal to 1000, used to estimate 

the signature of the whole genome gene expression generated by microarrays. Effectively, the basic idea 

is that it is possible to capture any cellular state by starting from a certain number of representative 

transcripts at a low cost. The authors used a set (12,031) of Affymetrix HGU133A expression profiles 

available in the Gene Expression Omnibus (GEO) to define the threshold for the number of transcripts. 

From this analysis, it was estimated that 1,000 landmarks were sufficient to recover 82% of the 

information in the entire transcriptome[8]. 

CMap and its updated versions provide a hypothesis-generating tool to identify new therapeutic targets 

(drug repositioning), signaling pathways affected by a compound, and search for new Mechanisms of 

Action (MoA), including potential side effects. It allows identifying new or known disease-gene-drug 

connections, depending on the observed level of changes. 

To facilitate the fruition and use of this system, a platform called CLUE - CMap Linked User 

Environment has been developed. It can provide several analyses and allow access to all data at multiple 

levels of pre-processing via Gene Expression Omnibus (GEO: GSE92742)[8]. 
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The L1000 LINCS  currently includes over one million gene expression profiles of chemically disrupted 

human cell lines. Several resources and databases derived from L1000 LINCS data are available, for 

example, the L1000 Characteristic Direction Signature (L1000CDS2) search engine described below. 

  

L1000CDS2 

L1000CDS2 is a web-based search engine software designed to query gene expression signatures versus 

LINCS data to discover and prioritize small molecules that reverse or mimic the entered gene expression 

profile[122]. 

To compute the signatures, L1000CDS2 uses a multivariate method called the Characteristic Direction 

(CD). 

The L1000CDS2 search engine prioritizes thousands of small molecule signatures and their pairwise 

combinations predicted to mimic or reverse an input gene expression signature. The L1000CDS2 search 

engine also predicts drug targets for all small molecules profiled by the L1000 assay[122]. 

Rather than giving relevance to fold-change and assigning greater weight to single genes that show a 

big fold-change, the CD method assigns a higher weight to genes that move together in the same 

direction. Thus, a gene that changes less but “moves” along with a large group of other genes may have 

more weight than a single gene that has changed more in magnitude[122]. 

The method first identifies the linear hyperplane that best separates control samples from treatment 

samples using linear discriminant analysis and then uses the normal to this hyperplane to define the 

direction of change in expression space for each gene[122]. Signatures can be accessed through an 

advanced web-based application called L1000CDS2[122]. 

The platform allows inserting the initial queries in dedicated sections (e.g. some up- or down- regulated 

genes or a complete signature), to customize the search by selecting optional parameters. The system 

also supports searching for paired combinations of small molecules[122]. After starting the search by 

clicking the Search button, the first 50 signatures are shown in a table on the results page[122].  Each 

entry provides seven columns of signature information: rank, score, perturbation, cell-line, dose, time 

point, and overlap with input[122]. It is possible to download all the information about a signature as a 

JavaScript Object Notation file (JSON)[122].  Results can be downloaded in table format to a .csv file. 

L1000CDS2 also allows users to perform enrichment analysis on the substructures of the best classified 

small molecules. The enrichment analysis results are displayed as a table where each row provides three 

pieces of information: the substructure, the p-value (calculated using Fisher's exact test), and the 

perturbation count. Enrichment analysis results can be shared through email, publication, or other 

documentation using a permanent URL provided on the page. Interestingly, there is a function that 

allows users to share their input signatures and metadata so that others can query those signatures[122]. 

The user may also decide to search for combinations of small molecules. In this case, L1000CDS2 

compares each possible pair among the first 50 matching signatures and calculates the potential synergy 

between each pair by examining the level of orthogonality. The synergy score is calculated as the 

combined overlap of the differentially expressed genes of the two drug signatures with the input gene 

lists[122]. 
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3 
Related Works 

 

The Systems Biology approach for in-depth analysis of cellular and molecular mechanisms underlying 

diseases and for the realization of a new methodology for drug repurposing, requires the use of 

algorithmic techniques of different nature. 

Despite the unprecedented growth in our understanding of cell biology, it still remains challenging to 

link it to experimental data obtained with the pathophysiological state of cells and tissues under specific 

circumstances. Recently, computational approaches in systems biology have emerged as efficient means 

to bridge the gap between systems-level experimental biology and quantitative sciences[124]. 

Here, network analysis is playing a central role in modeling and understanding biological phenomena 

and, in this direction, algorithms that enable in-depth pathway analysis become key instruments. These 

algorithms, based on current biological knowledge, allow us to learn more about the characteristic 

disease-related phenotypes, classify them and make new hypotheses. In this perspective, in silico 

simulation methodologies can also assist in understanding the intricate patterns of interaction between 

molecular entities, significantly improving manual analysis. Moreover, in silico simulations can be 

extensively applied at massive scales, testing thousands of hypotheses under various conditions, which 

is usually experimentally impossible. 

Computational analysis also allows us to filter results on the basis of the most promising hypothesis, 

becoming a valuable system to support experimental choices, helping to make well focused lab 

schedules, reducing time and costs. 

In the following paragraphs will be described the algorithms used in my research work for pathway 

analysis and in silico phenotype simulations. 

Pathway analysis is typically used in Omics data analysis to gain biological insights into the functional 

roles of predefined subsets of genes, proteins, and metabolites. Nowadays there are numerous methods 

proposed in the literature for this purpose. The method for pathway analysis used in this thesis, MITHrIL 

is a latest generation method that exploits not only information about the individual perturbed entities 

(genes, proteins, metabolites) and their relative level of deregulation (measured by LFCs) but also 

information about the topology of the underlying pathways, which, as the evidence from their evaluation 

reveals, results in improved sensitivity and specificity. 

In silico simulations, on the other hand, will be performed using PHENSIM[1, 124], a computational 

tool using a systems biology approach to simulate how cell phenotypes are affected by the 

https://paperpile.com/c/0zppLK/SEz2
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activation/inhibition of one or multiple biomolecules, and it does so by exploiting signaling pathways. 

PHENSIM requires a set of nodes (at least one) together with their "deregulation type" (up-/down-

regulation) as input to compute synthetic Log-Fold-Changes (LogFC) values that are then propagated 

within biological pathways using the MITHrIL algorithm Alaimo et al. 2016[125] to establish how these 

local perturbations can affect the cellular environment. 

Since these models are based on knowledge networks such as KEGG or Reactome, it is necessary to 

address the problem of model incompleteness. Indeed, these networks contain partial information that 

could affect the success of in silico predictions. In this regard, a new system called NETME[10, 125] 

will be presented. This system, starting from a set of full texts obtained from PubMed, through an easy-

to-use web interface, interactively extracts biological elements from ontological databases and then 

synthesizes a network by inferring relationships between these elements. 

NETME allows to integrate large biological networks used for pathways analysis with missing 

information about genes, proteins, metabolites, drugs, etc., helping to develop more accurate and precise 

in silico models. 
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3.1 MiTHrIL - Mirna enrIched paTHway Impact anaLysis 

The prediction of phenotypes, such as that related to diseases or to responses to therapies, starting from 

the large amount of genotypic high-dimensional data obtained through Next-Generation Sequencing 

techniques, is an extremely important task in translational biology and precision medicine [125]. 

These technologies enable the generation of a list of differentially regulated elements (genes or 

microRNAs) whose behavior varies significantly across phenotypes and in relation to different 

pathophysiological conditions. 

Generally, to extrapolate from NGS data new insights about the biological processes in which 

differentially expressed genes are involved in a given phenotype, genes are grouped into smaller subsets 

according to some relationships that leverage on existing knowledge-bases such as ontologies or 

pathways. The analysis of this type of data at the functional level is crucial since it allows a strong 

reduction of dimensionality, thus providing greater insights on the biology of the phenomenon under 

study[125, 126]. 

An extensive class of techniques known as Pathway Analysis[127] goes in this direction. More recently, 

great interest has shifted toward a class of methods called Knowledge base-driven pathway 

analysis[128]. Those methods rely on existing databases, such as the Kyoto Encyclopedia of Gene and 

Genomes (KEGG)[2, 3,128]  or Pathway Commons [129], to identify pathways that may be affected by 

expression changes in the observed phenotype. 

There are three generations of approaches into which Knowledge base-driven pathway analysis 

techniques can be classified: i) Over-Representation Analysis (ORA); ii) Functional Class Scoring 

(FCS); iii) Pathway Topology-based (PT). 

ORA methods statistically evaluate the number of deregulated genes in a pathway with respect to the 

set of all analyzed genes. These methods may be limiting because, by considering only the number of 

differentially expressed genes, while omitting their expression level, implies that their magnitude of 

change is not considered as important to the activity of the pathway. Furthermore, taking into account 

only statistically differentially expressed genes may lead to the exclusion of those genes whose 

coordinated alteration may lead to substantial effects, even though their differential expression may not 

be statistically significant. 

Finally, they consider individual genes and pathways, respectively, in a manner independent of the 

surrounding biological context [125]. 

FCS methods compute a gene-level statistic from the expression levels, by means of a statistical 

approach (i.e. ANOVA, Q-statistic, signal-to-noise ratio, t-test, or Z-score). Such a statistic is calculated 

considering all genes in a pathway [130, 131] and its statistical significance is estimated through an 

appropriate null hypothesis [132-134]. 

This method identifies Functional Gene Sets by taking into account their relative positions in the 

complete list of genes studied and their expression level.  One of the first and most popular methods 

using the FCS approach was Gene Set Enrichment Analysis (GSEA). 

However, by using only expression values to compute the gene-level statistic, they do not take into 

account the magnitude of their deregulation when estimating pathway activity[125]. 

Finally, third-generation pathway analysis methods, PT, use specific topological information about the 

role, location, and interaction directions of elements (genes or other biomolecules) in the pathway to 
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compute scores. Effectively, pathways are modeled as graphs, where nodes represent genes and edges 

represent interactions between them. 

MITHrIL (miRNA enriched pathway impact analysis) algorithm is a third generation method that 

extends the Draghici et al. [134, 135] and Tarca et al. [136] techniques (both third generation methods). 

An important feature introduced with MITHrIL, that distinguishes it from the other pathway analysis 

techniques, is the extension of KEGG[2, 3 136]. pathways with information regarding microRNAs 

(miRNAs) and their interaction genes resulting in an improvement of a knowledge base with 10,537 

experimentally validated interactions between 385 miRNAs and 3,080 genes. 

These interactions are taken from validated databases as miRTarBase[3, 137] and miRecords [138]. The 

algorithm integrates also interactions between transcription factors (TFs) and miRNAs from 

TransmiR[139], increasing the knowledge stored within each pathway. 

Mithril, starting from expression values of genes and/or microRNAs, returns a list of pathways sorted 

according to the degree of their deregulation, together with the corresponding statistical significance (p-

values)[125, 139]. 

Alaimo et al. 2016 have proven that MITHrIL gives the best performances compared with 

PARADIGM[140], SPIA[136] and Micrographite [141] by employing the technique defined in Vaske 

et al. 2010[142] on a set of cancer types.  The authors showed that taking into account the network 

topology and essential regulatory elements such as microRNAs, increases the results reliability. Indeed, 

miRNAs have been revealed to be crucial in the modulation of numerous cellular pathways via the 

exertion of their important regulatory function when targeting key genes[143, 144]. 

In contrast to SPIA, MITHrIL also returns the estimated perturbation for pathway endpoints. 

Importantly, the proper assessment of pathway endpoints can contribute to a much more accurate 

phenotype evaluation, as more detailed diversification among pathway-level disease phenotypes is 

reflected more in the endpoints than at any other node in the pathway network. This allows pathologies 

that also share a very similar set of deregulated genes to be distinguished more effectively. 

Finally, in order to acquire information on which endpoints are contained in each pathway, MiTRiL 

employed a depth-first search algorithm (DFS) [145]  to automatically mark which genes are located at 

the end of the chains of reactions in each pathway. The search for endpoints in a pathway starts from a 

random node. The DFS algorithm follows the interactions down to the nodes from which no other one 

can be reached (putative endpoints)[125, 145]. 

To start the MITHrIL analysis it is necessary to have a case/control expression data set from which 

statistically differentially expressed features have been extracted (genes, miRNAs, or both). The system 

requires as input the list of differentially expressed elements with the relative Log-Fold-Change. 

Starting from such information, MITHrIL computes, for each gene in a pathway, a Perturbation Factor 

(PF), which is an estimate of how much its activity is altered considering its expression and 1-

neighborhood[125]. Positive (negative) values of PF indicate that the gene is likely activated 

(inhibited)[125]. By combining each PF of a pathway, MITHrIL computes also an Impact Factor (IF) 

and an Accumulator (Acc). The IF of a pathway is a metric expressing how important are the changes 

detected in the pathway, the greater the value, the more significant are the changes[125]. The Acc 

indicates the total level of perturbation in the pathway and the general tendency of its genes: positive 
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Acc values indicate a majority of activated genes (or inhibited miRNAs), while negative ones 

corresponds to an abundance of inhibited genes (or activated miRNAs)[125]. Mithril calculates a p-

value for the Acc, which estimates the probability of getting such accumulator by chance. Finally the 

Benjamini and Yekutieli [146] method is applied to estimate the false discovery rate and p-values are 

adjusted on multiple hypotheses [125, 146]. 

Therefore, the final result of the Mithril algorithm consists of a list of pathways along with their impact 

factor, accumulator and adjusted p-values. 

Starting from such output it is possible to perform data analysis to extract new knowledge and 

informations. 
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3.2 PHENSIM - Phenotype Simulator 

Nowadays, many simulation models have become available. They can be grouped into two broad 

categories: (i) discrete/logic or (ii) continuous models[147]. Discrete models represent each element’s 

state in a biological network as discrete levels, and the temporal dynamic is also discretized. At each 

time step, the state is updated according to a function, determining how an entity’s state depends on the 

state of other (usually connected) entities. Boolean networks [148, 149] and Petri nets [149, 150] 

represent two types of discrete models. 

BioNSi (Biological Network Simulator)[151] is a tool for modeling biological networks and simulating 

their discrete-time dynamics, implemented as a Cytoscape 3 plugin [152], that uses KEGG 

pathways[153] as a network model. At each simulation time point, the state of a node is updated using 

an effect function. The simulation ends as soon as it reaches a steady state. The model is easy to use. 

However, a more complex biological network might pose challenges to its performance. 

Continuous models usually produce real continuous measurements instead of discretized values, 

simulating network dynamics over a continuous timescale. Although they could provide a greater degree 

of accuracy, these methods are limited by our current description of the biological systems and our 

measurement techniques’ capabilities. Continuous linear models [154, 155] and flux balance analysis 

[156] are the most representative continuous models. 

Pathway modeling is an essential step for building networks that simulation methodologies can use. 

SBML is an open and interchange format for computer models of biological processes. However, 

converting pathways in annotated SBML files suitable for simulation models is not easy. Several tools 

such as KEGGconverter [156, 157] or KENeV [158] have been specifically developed for this objective. 

These tools can also consider crosstalk with neighboring pathways, providing improved simulation 

accuracy. However, KEGGconverter has not been updated recently, and KENeV does not integrate post-

transcriptional regulatory interactions or Reactome pathways. 

PHENSIM (PHENotype SIMulator), is a web-based, flexible, user-friendly pathway-based simulation 

technique, and an in silico tool based on it, allowing phenotype predictions on selected cell lines or 

tissues in 25 organisms, including models such as Homo sapiens, Mus musculus, Rattus norvegicus, and 

Caenorhabditis elegans. 

PHENSIM has been mainly developed to predict the effects of one or multiple molecular deregulations 

on cell/tissue phenotype. Thus, we view PHENSIM as an easy-to-use, supportive pathway-based method 

that can make predictions of in vitro experiments targeting the expression of signaling processes’ 

activity. 

PHENSIM uses a probabilistic algorithm to predict the effect of deregulated (up/down) genes, 

metabolites, or microRNAs on the KEGG meta-pathway[159]. 

The meta-pathway is a network obtained by merging all KEGG pathways through their common nodes. 

This approach allows us to consider pathway crosstalk and, ideally, gives a more comprehensive 

representation of the human cell environment. Furthermore, the KEGG meta-pathway is annotated with 

experimentally validated miRNA-target and Transcription Factor-miRNA interactions to consider post-

transcriptional expression modulation. 
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Currently, PHENSIM uses all KEGG pathways (downloaded on April 2020) with details on validated 

miRNA-targets inhibitory interactions downloaded from miRTarBase (release 8.0) [159, 160]  and 

miRecords (updated to April 2013) [138], and TF-miRNAs interactions obtained from TransmiR 

(release 2.0) [138, 161]. Furthermore, since the method’s architecture is easily extensible, we include the 

possibility of integrating Reactome pathways to the meta-pathway environment, yielding a richer and 

more comprehensive model. 

Reactome is a free online database of biological pathways [4-6]. It includes databases of reactions, 

pathways and biological processes of several organisms. However, the largest one is dedicated to human 

biology. Reactome offers visual representations of biological pathways in full mechanistic detail, 

making source data available in a computationally accessible format. The nodes of the Reactome 

network therefore are entities (nucleic acids, proteins, complexes and small molecules) that participate 

in reactions, the latter being the arcs of the network, forming a network of biological interactions 

grouped into pathways (e.g. signaling, innate and acquired immunity, apoptosis, metabolism, etc.). 

The pathways in Reactome are species-specific and experimentally validated. When there is no 

experimental validation that supports certain interactions, pathways may contain manually inferred steps 

from non-species-specific experimental data. This occurs only if an expert biologist, designated as the 

pathway author, and a second biologist, designated as the reviewer, concur to make such deductions as 

a valid one. 

To date, Reactome contains a more extensive network than that of KEGG, which is why such extension 

becomes very important. 

To start a simulation, PHENSIM requires a set of nodes (at least one) together with their "deregulation 

type" (up-/down-regulation) as input values. We can also provide: (i) a list of non-expressed genes, (ii) 

a set of new nodes or edges that will be added to the meta-pathway, and (iii) the organism. 

The list of non-expressed genes is useful to specify the context (e.g. a specific cell line or tissue) in 

which we wish to perform the simulation. Generally, genes that report a value below a certain threshold 

in the expression data are considered to be unexpressed. 

The addition of a set of new nodes or edges to the meta-pathway is very useful in case we want to 

simulate the action of "new entities" such as drugs, or in case we need to add to the meta-pathway 

missing nodes that are essential for the specific process to be analyzed. 

Finally, since PHENSIM can work on different species, it is necessary to specify the organism in the 

appropriate section. 

PHENSIM uses the input to compute synthetic Log-Fold-Changes (LogFC) values. These values are 

then propagated within biological pathways using the MITHrIL algorithm proposed in Alaimo et al. 

2016[125 ] to establish how these local perturbations can affect the cellular environment. 

This propagation result is called a "Perturbation," reflecting the change of expression for a gene in a 

pathway (negative/positive for down-/up-regulation). This value is computed for each gene in the meta-

pathway. Finally, PHENSIM summarizes all results using two values for each gene: the "Average 

Perturbation" and the "Activity Score" (AS). The average perturbation is the mean for all perturbation 

values computed during the simulation process and reproduces the expected change of expression for 

the entire process. The function of the Activity Score is twofold. The sign gives the type of predicted 

effect: positive for activation, negative for inhibition. The value is the log-likelihood that this effect will 

occur. Together with the AS, PHENSIM also computes a p-value through a bootstrapping procedure. 

All p-values are then corrected for multiple hypotheses using the q-value approach PHENSIM p-values 
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are used to establish how biologically relevant the predicted alteration is for the simulated phenomena - 

i.e., the lower is a node p-value, the less likely it is that such alteration will occur by chance. An overview 

of the PHENSIM algorithm is depicted in Fig 13. 

 

 
Figure13. Description of the PHENSIM algorithm. First, the user provides a set of genes and the type of alteration (over-

/underexpression). Then, synthetic LogFCs are generated, and a simulation step is performed. This procedure is repeated 1000 

times to compute the Activity Scores. Next, user input is randomized, and 100 synthetic LogFC are generated to estimate 

Activity Scores using the simulation step. This input randomization is repeated 1000 times for greater precision. Finally, p-

values are computed, and the False Discovery Rate is estimated using the q-value methodology. The algorithm comprises 5 

main steps. Given a user input, (i) synthetic LogFC are generated and a (ii) simulation step is performed. These steps are 

repeated 1000 times to (iii) compute the AS. Next, user input is (iv) randomized, and 100 synthetic LogFC are generated to 

estimate AS using the simulation step. The input is randomized 1000 times to obtain greater precision. Finally, (v) p-values are 

computed, and the False Discovery Rate is estimated using the q-value methodology. 

  

The next section will describe the benchmarking procedure to which PHENSIM was subjected and the 

in silico experiments performed as case studies. 
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3.2.1 PHENSIM benchmarking procedure 

To assess PHENSIM prediction reliability, we performed a comprehensive experimental analysis. 

First, we built a benchmark based on data published in the GEO [162] database, specifically 

transcriptomics experiments performed on cell lines where a single gene was perturbed (knockdown, 

CRISPR, or transfection). 

More in detail, we wanted to determine how much PHENSIM can correctly predict the biological 

outcomes of the up-/down-regulation of a gene in a cell line through comparisons with expression data 

collected before and after the alteration. 

Therefore, we gathered 22 GEO series of cell lines with a perturbed gene. Since these series could 

contain multiple perturbation experiments of different genes or in several cell lines, we obtained a total 

of 50 case/control sample sets. 

Their details are shown in [1] (supplementary Table S2) together with the name and code of the GEO 

series, the technology used to determine gene expression, the perturbed gene, the type of experiment 

(knockout, knockdown, transfection, CRISPR, etc.), whether the gene is present in KEGG pathways, 

and the GEO accessions of the case and control samples. Each sample set was then divided into two 

categories, which were analyzed differently: (i) samples whose altered gene is present in the meta-

pathway (called DS1), and (ii) samples whose perturbed gene is not in the meta-pathway (called DS2). 

For DS1, consisting of 30 sample sets, we directly simulated the alteration of the gene using PHENSIM. 

For DS2, consisting of the remaining 20 sample sets, we simulated the alteration of the Differentially 

Expressed Genes (DEGs) computed between cases and controls. The rationale behind this choice is that 

DEGs somehow represent the effect of the source alteration. 

For each dataset, non-expressed genes were identified according to the experiment type: Microarray or 

Sequencing. For sequencing, we chose all genes with an average count of less than 10. For microarrays, 

we selected all genes exhibiting an average expression less than the 10th percentile. DEGs were 

computed using Limma [163] with a p-value threshold of 0.05 and a LogFC threshold of 0.6. Each 

sample set was simulated as described above. 

Then, we compared PHENSIM predictions (up/down-regulation) with LogFC computed on the 

expression data. All genes showing an absolute LogFC lower than 0.6 were considered as non-altered. 

Finally, we assessed the results in terms of accuracy (the number of correctly predicted genes divided 

by the total number of genes). Furthermore, since accuracy can be influenced by class imbalance, we 

chose to compute Positive Predictive Value (PPV), Sensitivity, Specificity, and False Negative Rate 

(FNR) according to the type of alteration found in the expression data. More in detail, for altered genes 

(LogFC > 0.6), we want to identify upregulation and downregulation events correctly. Therefore, the 

True Positives (TPs) are genes predicted as upregulated with positive LogFC in the expression data. In 

contrast, genes predicted as downregulated with a negative LogFC are the True Negatives (TNs). 

Furthermore, genes predicted as upregulated with a negative LogFC are False Positives, and 

downregulated genes with a positive LogFC are False Negatives. 

So that we determined the ability of PHENSIM to correctly identify upregulated genes by computing 

PPV and Sensitivity, while we assessed the performance regarding down regulated ones through 

Specificity:  

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
,   𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
,       𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁+𝐹𝑃
,   

  

https://paperpile.com/c/0zppLK/6QZr
https://paperpile.com/c/0zppLK/yM24
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Concerning non-altered genes, we were interested in determining whether PHENSIMis capable of 

correctly identifying them. In this case, a gene that is predicted as non-altered with a LogFC < 0.6 is 

considered as a True Positive, while a gene indicated as altered with a LogFC < 0.6 is a False Negative. 

Therefore, estimated the rate of correctly identified non-altered genes in terms of PPV, while the FNR 

shows us the percentage of non-altered genes that are wrongly identified as perturbed by PHENSIM: 

   

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
, 

Then, among the competitors with which to compare the performances of our system, we have chosen 

BioNSi (Biological Network Simulator)[151, 163]. 

To compare performances with BioNSi, we ran the same simulations and computed the same metrics 

on the results. BioNSi requires an expression (in the range 0–9) for each gene and tracks how it changes 

until a steady state is reached. Therefore, a gene is up-/down-regulated if the simulated expression 

increases/decreases between the initial and the final state, respectively. If no change is observed, the 

gene is not perturbed. To run the simulation, we loaded the meta-pathway and set all genes’ expression 

levels to 5. Next, we gave expression 9 for upregulated genes and 1 for down-regulated ones. 

Moreover, since PHENSIM can extend KEGG pathways with REACTOME ones, we decided to run all 

tests on this extended network, comparing the results before and after the extension. However, we could 

not perform any comparison with BioNSi since it could not load the extended network due to its size. 

To assess performance differences between the two systems for each dataset, we provide several graphs 

comparing each metric. In Fig 14, we summarized the DS1 datasets’ results, and in Fig 15, we reported 

the results from the DS2 datasets. In each graph, we detail a single metric: Positive Predictive Value 

(PPV), Sensitivity and Specificity for genes showing altered expression, and PPV and False Negative 

Rate (FNR) for the non-altered ones. On the x-axis, we have PHENSIM performance, while on the y-

axis, we have BioNSi. Each dot represents a dataset. 

The black line marks the points where the two algorithms have the same performance. We summarize 

the comparisons before and after adding REACTOME pathways in Appendix i) Fig S1 for DS1 and Fig 

S2 for DS2. In these graphs, the x-axis represents the PHENSIM performance with REACTOME, while 

on the y-axis, we have PHENSIM without REACTOME. 

  

https://paperpile.com/c/0zppLK/yM24+vicT
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 Figure 14. Comparison between PHENSIM and BioNSi for datasets where the altered gene was in the meta-pathway. Each graph 

reports one metric: Positive Predictive Value (PPV), Sensitivity and Specificity for genes showing altered expression, and PPV and False 

Negative Rate (FNR) for the non altered ones. On the x-axis, we report PHENSIMperformance, while on the y-axis, we present BioNSi. Each 

dot represents a dataset. The black line marks the points where the two algorithms have the same performance. On a dataset below the line, 

PHENSIMhas better performance than BioNSi; above the line, it is the opposite. 

 

 

 



 

62 

  
Figure 15. Comparison between PHENSIM and BioNSi for datasets where the altered gene was not in the meta-pathway. 

Each graph reports one metric: Positive Predictive Value (PPV), Sensitivity and Specificity for genes showing altered expression, 

and PPV and False Negative Rate (FNR) for the non-altered ones. On the x-axis, we report the PHENSIMperformance, while on 

the y-axis, we have BioNSi. Each dot represents a dataset. The black line marks the points where the two algorithms have the 

same performance. On a dataset below the line, PHENSIMhas better performance than BioNSi; above the line, it is the opposite. 

 

 

Our results show that PHENSIM has an average accuracy of 0.6295 for the dataset in the first category 

and 0.3650 for the second category. BioNSi offers an average accuracy of 0.0640 and 0.0735 for the 

datasets in the first and second categories. Nevertheless, PHENSIM has higher PPV than BioNSi 

(0.6899 and 0.5075, respectively) in the first and second categories (PHENSIM = 0.7350, BioNSi = 

0.3282). PHENSIM also shows a greater Sensitivity and Specificity to BioNSi. Furthermore, since 

PHENSIM can extend KEGG pathways with REACTOME, we performed the same tests on such an 

extended network, comparing the results before and after the integration. However, we could not 

evaluate BioNSi capabilities in this context since it could not load the extended network due to its size. 

In this setting, PHENSIM showed an average accuracy of 0.6437 with comparable PPV (0.6349) 

although lower Sensitivity (0.5416) and comparable Specificity (0.9854) for DS1. A slight decrease of 

performance can be observed for DS2 (Accuracy: 0.3291, PPV: 0.7571, Sensitivity: 0.7622, Specificity: 

0.9716). Table 2 reports the detailed comparison in terms of average metrics. 
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 Algorithm Accuracy 
Altered Genes Non-altered Genes 

PPV Sensitivity Specificity PPV FNR 

DS1 

 

PHENSIM 0.6259 0.6899 0.6150 0.9829 0.8921 0.3078 

PHENSIM + 

Reactome 
0.6437 0.6349 0.5416 0.9854 0.8972 0.3007 

BioNSi 0.0640 0.5075 0.2692 0.7925 0.8624 0.9970 

DS2 

 

PHENSIM 0.3650 0.7350 0.8105 0.9684 0.8797 0.6836 

PHENSIM + 

Reactome 
0.3291 0.7571 0.7622 0.9716 0.8780 0.7201 

BioNSi 0.0735 0.3283 0.1500 0.8052 0.4345 0.9968 

Table 2. Summary of the comparisons between PHENSIM and BioNSi. We computed for both software accuracy, Positive 

Predictive Value (PPV), Sensitivity and Specificity for genes showing altered expression, and PPV and False Negative Rate (FNR) 

for the non-altered ones. The sample sets were categorized based on the KEGG meta-pathway genes: DS1 contains all sample sets 

where the up- or down-regulated gene was in KEGG; DS2 all the remaining ones. 

https://doi.org/10.1371/journal.pcbi.1009069.s001 

 

 

Moreover, to quantitatively evaluate network perturbation prediction, we chose an additional 

dataset containing experimental measurements of protein expression changes following drug 

treatment in a cell line[164]. The dataset comprises 124 protein levels in a time series from 10 

minutes to 67 hours (8 timepoints). The authors followed the perturbation caused by the 

administration of 54 drug combinations, including several gene inhibitors (MEKi, AKTi, STAT3i, 

SRCi, mTORi, BETi, PKCi, RAFi, and JNKi). To perform the comparison, we first gathered all 

drug targets from Nyman et al. [164]. Then, we simulated the alteration of their targets for each 

drug combination and collected the results concerning the 124 proteins. Finally, we computed the 

Pearson Correlation Coefficient between our predictions and the actual measurement to indicate 

results consistency. 

In Fig 16, we rep report the analysis results comparing PHENSIM steady-state predictions with each 

time point in terms of the Pearson Correlation Coefficient. Results show that PHENSIM predictions are 

coherent with the proteomics experiments, reaching the maximal correlation at 24h and 48h. 

  

https://doi.org/10.1371/journal.pcbi.1009069.s001
https://paperpile.com/c/0zppLK/mzfX
https://paperpile.com/c/0zppLK/mzfX
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Figure 16. Comparison between PHENSIM predictions and the proteomics measurements of Nyman et al. [162]. We 

report the Pearson Correlation Coefficient computed between PHENSIM and the proteomics measurements for each timepoint 

and drug combination. Results are summarized through a violin plot detailing both the distribution and the values’ density. 

 

All raw data, input files, and other source codes are available for download at 

https://github.com/alaimos/phensim/tree/master/Benchmark. 

Finally, to complete our assessment of PHENSIM capabilities, we run several simulations to perform 4 

case studies on known biological experiments: (i) anti-cancer effects of metformin, (ii) Everolimus 

(RAD001) treatment in breast cancer, (iii) effects of exosomal vesicles on hematopoietic 

stem/progenitor cells (HSPCs) in the bone marrow (BM) and (iv) testing TNFα/siTPL2-dependent 

synthetic lethality on a subset of human cancer cell lines. We examined the ability of PHENSIM to 

correctly predict the activity status of both individual genes/proteins and signaling pathways by 

comparing PHENSIM predictions with experimental data. In the following sections, are reported the 

case studies and their results. 

 

  

https://paperpile.com/c/0zppLK/mzfX
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3.2.2 PHENSIM- Case Studies 

Simulation 1: Anti-cancer effects of metformin 

Metformin is a widely prescribed agent for the treatment of type 2 diabetes [164-166]. It inhibits glucose 

production in the liver and increases insulin sensitivity in the peripheral tissues. Furthermore, metformin 

treatment reduces insulin secretion by β-pancreatic cells. The key molecule that performs these functions 

is AMP-activated protein kinase (AMPK), a serine-threonine kinase regulating cellular energy 

metabolism. 

Some evidence indicates that metformin possesses anti-cancer effects in various cancer types, especially 

in diabetic patients, directly and indirectly [165,167,168].  Indeed, metformin directly activates the 

LBK1-AMPK signaling pathway [168]. Metformin is known to uncouple the electron transport chain in 

the mitochondria by targeting Complex I [165, 167-169], leading to impaired mitochondrial function, 

decreased adenosine triphosphate (ATP) synthesis, and elevated cellular AMP/ATP ratio [165,167,168]. 

Increased AMP binding to AMPK activates AMPK by inducing phosphorylation of its catalytic subunit 

at residue Thr172 by liver kinase B1 (LKB1), a tumor suppressor and a regulator of cellular energy 

status[167,168]. The binding of AMP to AMPK also prevents the dephosphorylation of AMPK Thr172 

by protein phosphatases. LKB1-activated AMPK phosphorylates and activates the tumor suppressor 

Tuberous Sclerosis Complex 1 and 2 (TSC1/2), which negatively regulates the activity of the 

mammalian target of rapamycin (mTOR), which is upregulated in most cancer cells and causes tumor 

proliferation and cell growth by inhibiting Ras homolog enriched in brain (Rheb) [165,168]. mTOR is 

a critical mediator of the phosphatidylinositol-3-kinase/protein kinase B/Akt (PI3K/PKB/Akt) signaling 

pathway, one of the most frequently deregulated molecular networks in human cancer[168]. 

Metformin-activated AMPK inhibits mTOR and reduces the phosphorylation of its downstream targets, 

the eukaryotic initiation factor 4E-binding proteins (4EBPs), and ribosomal S6 kinases (S6Ks), leading 

to an inhibition of global protein synthesis, cell cycle progression, cell proliferation, and 

angiogenesis[168]. Moreover, AMPK has been reported to suppress the mTOR signaling pathway 

independent of TSC2 via phosphorylation of mTOR binding protein Raptor. 

Metformin has been shown to cause a G0/G1 cell cycle arrest by decreasing the expression of cyclin D1 

[167]. 

Metformin-induced AMPK activation has been shown to phosphorylate insulin receptor substrate-1 

(IRS-1) at Ser-794, which results in decreased recruitment of the p85 subunit of phosphoinositide-3-

kinase (PI3K), thus, impairing the insulin-like growth factor (IGF)-stimulated PI3K/protein kinase B/ 

mammalian target of rapamycin complex 1 (PI3K/Akt/mTORC1) signaling pathway. 

Metformin also inhibits the crosstalk between G-protein-coupled receptors (GPCR) and insulin/IGF1 

receptors signaling, resulting in the inhibition of mTORC1 and reduction of cellular proliferation[165, 

167]. 

Metformin induces nuclear degradation and decreased expression of Sp proteins, transcription factors 

for genes involved in cell proliferation (cyclin D1), metabolism (FAS), apoptosis (B-cell lymphoma 2, 

BCL-2, and survivin), and angiogenesis (vascular endothelial growth factor, VEGF, and its receptor 

VEGFR1) [167, 168]. 

The indirect mechanism of metformin in anti-cancer function is related to its ability to lower insulin and 

insulin-like growth factor 1 (IGF-1)[168]. 

Metformin disrupts insulin and IGF-1 signaling pathways by reducing insulin and IGF-1 levels, reducing 

total IGF-1 receptor and IR levels, and downregulating IGF-1 receptor and IR gene expression[170]. 

https://paperpile.com/c/0zppLK/mzfX+f5VX
https://paperpile.com/c/0zppLK/f5VX+Ujn5+Dx3I
https://paperpile.com/c/0zppLK/Dx3I
https://paperpile.com/c/0zppLK/f5VX
https://paperpile.com/c/0zppLK/f5VX+Ujn5+Dx3I
https://paperpile.com/c/0zppLK/Ujn5
https://paperpile.com/c/0zppLK/Dx3I
https://paperpile.com/c/0zppLK/f5VX
https://paperpile.com/c/0zppLK/Dx3I
https://paperpile.com/c/0zppLK/Dx3I
https://paperpile.com/c/0zppLK/Dx3I
https://paperpile.com/c/0zppLK/Ujn5
https://paperpile.com/c/0zppLK/f5VX
https://paperpile.com/c/0zppLK/Ujn5
https://paperpile.com/c/0zppLK/Ujn5
https://paperpile.com/c/0zppLK/Dx3I
https://paperpile.com/c/0zppLK/Dx3I
https://paperpile.com/c/0zppLK/3wMB
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In parallel with this, metformin also downregulates the MAPK (mitogen-activated protein kinase) 

pathway, NF-𝜅B (nuclear factor kappa B) signaling [169, 171], glycolysis, and the TCA (tricarboxylic 

acid) cycle [167, 168, 170]. An overview of the metformin-mediated effects is reported in Fig 18. 

Based on these details, we run the PHENSIM simulation setting the simultaneous upregulation of LKB1 

and the downregulation of insulin (Ins), IGF1, and GPD1[171, 172] as input. 

As expected, PHENSIM returned significant downregulation of Insulin (pathway activity score = -

8.7121, p-value 0.105) and mTOR signaling (pathway activity score = -8.7121, p-value 0.107). 

Although mTOR's negative regulation should activate the repressor of translation initiation 4EBP, the 

simulation returns no activity score for this node. However, a low positive perturbation for 4EBP can 

be observed (perturbation = 0.00009). PHENSIM also predicted the inhibition of downstream nodes 

involved in protein synthesis, such as S6Ks (S6K-alpha3 activity score =  -2.0019, p-value = 0.046). 

MAPK signaling was predicted as downregulated (MAPK pathway activity score = -4.8203, p-value = 

0.130). Several down regulated enzymes and metabolites were predicted for these two pathways, in full 

agreement with data from literature [170]. 

Finally, in accordance with literature, PHENSIM also predicted weak changes in cytokine gene 

expression as it can be seen from average nodes perturbations (IL6 perturbation = -0.0001; IL8 

perturbation =  -0.00002;  IL17 perturbation = -0.00001; TNF-alpha perturbation = -0.00014)[170]. 

  

 
Figure 17. The current model of metformin-mediated pharmacological effects. Black solid edges represent direct 

interaction between first neighbor nodes. Dashed edges represent indirect interactions between nodes. Red dot-dashed 

edges evidence scientifically validated interactions considered for PHENSIM prediction. 

  

https://paperpile.com/c/0zppLK/4p4f
https://paperpile.com/c/0zppLK/Ujn5
https://paperpile.com/c/0zppLK/8XDZ+modO
https://paperpile.com/c/0zppLK/3wMB
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Simulation 2: Everolimus (RAD001) and breast cancer 

Everolimus (RAD001, Afinitor®), an analog of rapamycin, has shown immunosuppressive and anti-

cancer activities [173-176]. It is currently approved to treat various cancer types, including metastatic 

breast cancer [177-179]. Everolimus has a growth inhibitory activity against tumor cells and can retard 

tumor growth through direct mechanisms against both the tumor cell and the solid tumor stromal 

components[175]. 

Everolimus inhibits the “mammalian target of rapamycin” (mTOR) to prevent the downstream signaling 

required for cell cycle progression, cell growth, and proliferation[173-175; 180-182]. 

In mammalian cells, mTOR exists in two complexes, mTORC1 and mTORC2[178, 179, 181, 183], 

which are differentially regulated and have distinct substrate specificities[178]. mTORC2 signaling is 

lower in breast tumors compared to normal breast tissue. This difference could suggest that mTORC1 

signaling is more oncogenic than mTORC2[184]. 

mTORC1 promotes protein synthesis by (a) stimulating ribosome biogenesis via phosphorylation and 

inhibition of the RNA Polymerase III repressor MAF1[185]; (b) phosphorylating the p70S6K and 

4EBP1 and modulating the activity of their downstream targets[186, 187]; (c) by regulating 

nucleocytoplasmic RNA transport[185, 186]. In addition, mTORC1 stimulates pyrimidine biosynthesis 

and lipid biosynthesis [186, 187] mTORC1 phosphorylates ULK1 (unc-51 like autophagy activating 

kinase 1) and DAP (death-associated protein) inhibiting autophagy[184, 188]. 

Finally, the upregulation of mTOR signaling can promote tumor growth and progression through several 

mechanisms, including the promotion of growth factor receptor signaling, angiogenesis, glycolytic 

metabolism, lipid metabolism, cancer cell migration, and suppression of autophagy [178, 179]. All these 

functions of mTORC1 are reversed by Everolimus and other mTORC1 inhibitors [174, 177] (Fig. 18). 

Everolimus binds with high affinity to its intracellular receptor, the FKBP12, a protein belonging to the 

immunophilin family. The Everolimus–FKBP12 complex binds mTOR when associated with RAPTOR 

and mLST8 to form mTORC1 complex, resulting in decreased interaction between mTOR and 

RAPTOR, which could inhibit the phosphorylation and activation of the major mTORC1 downstream 

targets[176, 178-180, 183, 184]. 

Here we wanted to simulate the inhibition of mTORC1. Unfortunately, simulating mTORC1 inhibition 

was not feasible because KEGG does not distinguish the mTOR node in mTORC1 from the one included 

in mTORC2. To overcome such limitation, we have set the downregulation of p70S6K (p70S6Ka and 

p70S6Kb) and 4EBP and the upregulation of ULK1/2 because these are the well-known downstream 

targets of mTORC1. Then we uploaded a list of non-expressed genes in breast tissue to simulate the 

drug’s effects on such tissue. Our simulation predicted that RNA transport factors would be 

downregulated, while factors involved in autophagy would be upregulated. The simulation showed that 

the RNA transport signaling pathway exhibits a negative activity scores (activity score = -4.4108; p-

value = 0.13). Furthermore, we could predict several downregulated factors involved in RNA transport 

and protein synthesis, such as eukaryotic translation initiation factor 4A, 4B and ribosomal proteins 

S6Ks, p70-S6K and p70S6Kb (eIF4A1 activity score = -4.8203; eIF4A2 activity score = -4.8203; p70-

S6K activity score = -4.8203; p70S6Kb activity score = -4.8203; p-value for all nodes < 0.01). 

PHENSIM also predicts the 4EBP1 inhibition (activity score = -4.8203; p-value = 0.013) and 

consequently the upregulation of eIF4E (activity score = 4.8203; p-value = 0.008). 

PHENSIM predicts upregulation of the autophagy (activity score = 4.8203, p-value = 0.26) as a 

consequence of alterations in ULK1/2 phosphorylation levels and the downregulation of cyclin D. 

However, PHENSIM failed in predicting the deregulation of p21 (cyclin-dependent kinase inhibitor 1) 

and NF-kB [177]. This limitation is probably due to the presence of a single node for mTORC1 and 

mTORC2. 

https://paperpile.com/c/0zppLK/S2zi
https://paperpile.com/c/0zppLK/MR6P
https://paperpile.com/c/0zppLK/Eobn
https://paperpile.com/c/0zppLK/S2zi
https://paperpile.com/c/0zppLK/N37T
https://paperpile.com/c/0zppLK/N37T
https://paperpile.com/c/0zppLK/lLxr
https://paperpile.com/c/0zppLK/VF9p
https://paperpile.com/c/0zppLK/CBZm
https://paperpile.com/c/0zppLK/VF9p
https://paperpile.com/c/0zppLK/CBZm
https://paperpile.com/c/0zppLK/lLxr
https://paperpile.com/c/0zppLK/N37T
https://paperpile.com/c/0zppLK/C5ah
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Figure 18. mTORC1 and its downstream signaling pathways. Black solid edges represent direct interaction between first 

neighbor nodes. Dashed edges represent indirect interactions between nodes. Red dot-dashed edges evidence scientifically 

validated interactions considered for PHENSIM prediction. 
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Simulation 3: effects of exosomal vesicles on hematopoietic stem/progenitor cells (HSPCs) in the 

bone marrow (BM) 

Cancer-derived exosomes’ functional relevance to tumor growth, metastasis, and treatment response has 

become increasingly evident[189,190]. Exosomes derived from AML blasts contain complex cargoes 

which function via paracrine mechanisms to modulate the properties of both the tumor cells themselves 

and the BM niche. Several microRNAs are selectively incorporated in these exosomes, including miR-

150 and miR-155[191, 192]. One of these microRNAs targets is the transcription factor c-MYB, which 

is downregulated in tumor cells exposed to the exosomes[192]. Additional targets include c-KIT, 

DNMT1, Lymphoid Cell Helicase (HELLS), PAICS, an enzyme involved in purine biosynthesis, TAB2, 

and others. The downregulation of these molecules compromises hematopoiesis via stroma-independent 

mechanisms. However, the cargo of AML cell-derived exosomes also targets mesenchymal stromal 

progenitors, inhibiting/reducing the expression of hematopoietic stem cell supporting factors such as 

CXCL12 (C-X-C motif ligand 12), KITL (c-Kit ligand), IL-17, and IGF1 and interfering with both 

hematopoiesis and osteogenesis[189] (Fig. 19). Moreover, AML-derived exosomes increase gene 

expression supporting AML growth (DKK1, IL-6, CCL3). 

To determine whether PHENSIM can make the correct predictions in this model, we simulated the 

uptake of the eight most representative miRNAs (miR-150, -155, -146a, -191, -221, -99b, -1246, and 

let-7a) included in AML-derived exosomes by hematopoietic stem cells [191]. 

The simulation predicts an inhibition of osteoclast differentiation (activity score = -8.7121, p-value = 

0.132) and cytokine-cytokine receptor interaction pathways (activity score = -4.8203, p-value =  0.115). 

In agreement with the literature, some genes involved in modulation of normal hematopoiesis, like 

CXCL12 (activity score = -4.4108, p-value = 0.008) and the receptor IGF1R (activity score = -4.8203, 

p-value = 0.038), but not IGF1, were downregulated [189]. Similarly, c-MYB, which is involved in 

HSPC differentiation and proliferation, was also downregulated [192] (activity score = -4.5951; p-value 

= 0.012). However, PHENSIM failed to predict the upregulation of DKK, IL6 and CCL3 (DKK and 

CCL3 activity score = 0, IL6 activity score = -4.7015, p-value = 0.011), and the downregulation of KITL 

and IL17 (activity score = 0) [189]. 
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Figure 19. A reconstructed model showing cellular components involved in hematopoiesis and motility of HSPCs and 

their downregulation mediated by exosomal-miRNAs derived from AML cells. Black solid edges represent direct 

interaction between first neighbor nodes. Dashed edges represent indirect interactions between nodes. Red dot-dashed edges 

evidence scientifically validated interactions considered for PHENSIM prediction. 
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Simulation 4: testing TNFα/siTPL2-dependent synthetic lethality on a subset of human cancer cell 

lines 

TNFα (tumor necrosis factor alpha), a type II transmembrane protein, is a member of the tumor necrosis 

factor cytokine superfamily and has an essential role in innate immunity and inflammation. 

Although it can induce cell death, most cells are protected by a variety of mechanisms. 

In a recent paper, Serebrennikova et al.[192, 193] showed that one of the checkpoints of TNFα-induced 

cell death is TPL2 (MAP3K8), a MAP3 kinase that is known to have an important role in immunity, 

inflammation, and oncogenesis. The knockdown of TPL2 resulted in the downregulation of miR-21 and 

the upregulation of its target CASP8 (caspase-8). This effect, combined with the downregulation of the 

caspase-8 inhibitor cFLIP (FADD-like IL-1β-converting enzyme inhibitory protein), resulted in the 

activation of caspase-8 by TNFα and the initiation of apoptosis (Fig. 20). The activation of caspase-8 

promotes the activation of the mitochondrial pathway of apoptosis. However, some molecules such as 

BIML (Bcl-2-like protein 11, isoform L), which are also involved in the activation of the mitochondrial 

pathway, may be activated via caspase-8-independent mechanisms. A crucial upstream regulator of this 

pathway is NF-κB. The knockdown of TPL2 also inhibits the activation of ERK (MAPK1/2), JNK (c-

Jun Nterminal kinase), and p38MAPK, the activation of AKT, and the phosphorylation of GSK3 

(glycogen synthase kinase 3) at Ser9/21. However, their inhibition does not appear to have a role in the 

initiation of TNFα/siTPL2-induced apoptosis. It is worth noting that the activation of the apoptotic 

(caspase-8-dependent) pathway in TNFα/siTPL2 treated cells was observed in some but not all cancer 

cell lines, suggesting that correct prediction will depend on whether the data analyzed by PHENSIM are 

derived from sensitive or resistant cells. 

To launch the simulation, we set TPL2 and miR-21-5p as downregulated and TNFα as upregulated. 

Since our goal was to simulate the outcome of such treatment in six cell lines, i.e., HeLa, HCT116, U2-

OS, CaCo-2, RKO, and SW480, we launched six different simulations. Each simulation had a separate 

list of non-expressed genes, one for each cell line. 

Among these tumor cell lines, only HeLa, HCT116, U2-OS were sensitive to treatment with 

TNFα/siTPL2. At the end of the computations, PHENSIM could not predict the upregulation of caspase-

8 for any of the six cell lines nor the downregulation of cFLIP. This limitation could be the result of 

missing information in KEGG pathways. PHENSIM did not indicate any activity score for MLC1 (Mcl-

1 apoptosis regulator) and XIAP (X-linked inhibitor of apoptosis) nodes. 

PHENSIM could not predict the upregulation of the apoptosis inhibitors BCL2 and BCL-XL in all cell 

lines except for HCT116, where BCL2 results positively perturbed (perturbation = 0.001). PHENSIM 

showed a negative perturbation of the inducer of mitochondrial apoptosis BAX only in  HCT116. 

Although these results do not precisely reflect our expectations as there are discrepancies between the 

in vitro and in silico experiment done by PHENSIM, it was confirmed by results obtained by the 

previously mentioned experimental study [193], which suggested that the change in the expression of 

such molecules was due to the activation of feedback mechanisms.  

Besides, phosphorylated ERK, MEK, JNK, and p38 activity were strongly downregulated for all of the 

six cell lines except for RKO where PHENSIM predict correctly just ERK and p38, and for Caco-2 cells, 

which result in a negative activity score for ERK and a weak perturbation for JNK and p38 genes.  

Finally, PHENSIM did not predict cIAP2 (baculoviral IAP repeat containing 2) negative perturbation, 

which has an activity score of 0 and a weak negative perturbation, in RKO cells as confirmed by the 

experimental data. 

https://paperpile.com/c/0zppLK/bYhs+2g3B
https://paperpile.com/c/0zppLK/2g3B
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Figure 20. Generalized model showing molecular mechanisms underlying the TNFα/siTPL2-dependent synthetic lethality. 

Black solid edges represent direct interaction between first neighbor nodes. Dashed edges represent indirect interactions between 

nodes. Red dot-dashed edges evidence scientifically validated interactions considered for PHENSIM prediction. 

  

  

The comparison between PHENSIM predictions and experimental data reported shows that simulation 

1 results were in almost full agreement with literature and that there is a partial agreement with the three 

remaining simulations, showing a discrete degree of accuracy. 

Discrepancies with baseline data suggest some limitations in the predictive potential of our method. 

However, since pathway analysis relies on prior knowledge about how genes, proteins, and metabolites 

interact, we hypothesize that such a negative outcome is at least partly due to the incompleteness of the 

existing knowledge employed in the study. Indeed, since the biological pathways on current databases 

are still largely fragmented, calculations based on them will inevitably produce less than ideal 

results[128]. One example of this limitation is provided by mTORC1 downstream signaling. It is known 

that mTORC1 promotes protein synthesis by phosphorylating p70SK and 4EBP. It also stimulates 

ribosome biogenesis via inhibitory phosphorylation of the RNA Polymerase III repressor MAF1[185]. 

mTORC1-induced pyrimidine biosynthesis is stimulated by p70S6K-mediated phosphorylation of the 

CAD enzyme (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase). 

Furthermore, the upregulation of 5-phosphoribosyl-1 pyrophosphate (PRPP) is an allosteric CAD 

activator [187, 194]. 

KEGG Pathways do not consider such interactions. Therefore, our tool could not predict any 

perturbations for these biological processes. Similar observations can be made for the downregulation 

of cFLIP in the siTPL2/TNFα-resistant cell lines by our method. However, we were able to identify 

indirect evidence of such activity. On the other hand, the correct predictions obtained for autophagy, 

RNA transport, and mTOR signaling in simulation 2, and the mitochondrial apoptotic pathway 

activation in simulation 4, suggest that, provided with the right information, PHENSIM is likely to 

obtain significantly better results. 

https://paperpile.com/c/0zppLK/e9U9
https://paperpile.com/c/0zppLK/VF9p
https://paperpile.com/c/0zppLK/9Rmj
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A further limitation for pathway analysis methods is the current knowledge-base inability to 

contextualize gene expression and pathway activation in a cell- and condition-specific manner [128]. 

Furthermore, pathways do not consider protein isoforms encoded by different genes or differently 

processed mRNAs derived from a single gene. This poses a significant limitation since such isoforms 

may have unique and sometimes opposite signaling properties. By developing a strategy that allows 

removing non-expressed genes from the computation, we offer the user the possibility to contextualize 

predictions in a cell- or tissue-dependent manner. In conjunction with this, integrating KEGG pathways 

with information from post-transcriptional regulators such as miRNAs increased the results’ accuracy, 

leading to considerable improvements in predictions[195]. Moreover, using the meta-pathway approach, 

instead of single disjointed pathways, partially addresses pathway independence[128]. 

In conclusion, PHENSIM showed good accuracy in most applications and could predict the effects of 

several biological events starting from the analysis of their impact on KEGG. We believe that several 

discrepancies can be traced to the incompleteness of knowledge in KEGG or Reactome pathways or the 

lack of appropriate cell- and condition-specific information. Such incompleteness can be partially 

addressed through a manual annotation of the pathways with the missing elements and links, including 

miRNA-target and TF-miRNA interactions. 

Despite these limitations, our approach shows appreciable utility in the experimental field as a tool for 

the reliable prioritization of experiments with greater success chances. 

In the next paragraph a new system for knowledge network construction will be introduced. It works by 

applying text mining and machine learning algorithms. Indeed, although the meta-pathway is easily 

extensible manually, reconstructing the missing information (nodes and arcs) on the basis of extensive 

bibliographic research, it can be quite expensive in terms of time. For this reason, having a system that 

builds biological knowledge networks annotating automatically the information present in the literature 

becomes extremely interesting. 

  

  

  

  

 

  

https://paperpile.com/c/0zppLK/e9U9
https://paperpile.com/c/0zppLK/SZ85
https://paperpile.com/c/0zppLK/e9U9
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3.3 NetMe 

In the previous paragraphs were discussed some of the existing tools [1] and computational models 

relying on existing network databases, such as KEGG[2, 195, 196] and Reactome [4-6, 153]. It was also 

seen that, despite the enormous amount of available data, these databases are still incomplete and 

therefore have partial information[197]. As an example, KEGG includes approximately one-third of the 

known genes[153]. 

The algorithms described in previous paragraphs are manually extensible, which means that it is possible 

to add missing nodes and edges as needed.  Since especially in research areas like biology or bio-

medicine, thanks to fast-track publication journals, the number of published papers increases 

significantly fast, it becomes extremely expensive in terms of energy and time to make a totally manual 

research, especially if it is necessary to integrate highly connected nodes, or multiple nodes, in the 

network. Moreover, even if our research can be carefully and detailed, it cannot be totally complete and 

updated with all the knowledge available in literature. 

In the last few years, thanks to the availability of sizeable open-access article repositories such as 

PubMed Central[198, 199], arxiv [197, 200] biorxiv [201] as well as ontology databases which hold 

entities and their relations[202], the research community has focused on text mining tools and machine 

learning algorithms to digest these corpora and extract valuable semantic knowledge from them. Text 

mining[202, 203], and Natural Language Processing[204] tools employ information extraction methods 

to translate unstructured textual knowledge in a form that can be easily analyzed and used to build a 

functional knowledge network or graph [198, 205, 206]. 

This technology allows us to infer putative relations among molecules, such as understanding how 

proteins interact with each other or determining which gene mutations are involved in a disease. 

NETME is a novel web-based app which is able to extract knowledge from a collection of full-text 

documents. 

Moreover it is the first tool that allows to interactively synthesize biological knowledge-graphs on-the-

fly starting from a set of n documents obtained through: i) a query to the PubMed database; ii) list of 

PMCID/PMID provided by the users; iii) a set of PDF documents. The inferred network contains 

biological elements (i.e., genes, diseases, drugs, enzymes) as nodes and edges as possible relationships. 

To build a knowledge-network NETME operates in two main steps: 

 1. First, through OntoTAGME tool, it converts the full-text of the input documents into a list of entities 

using literature databases and ontologies (such as GeneOntology[207], Drug-Bank[208], DisGeNET 

[209], and Obofoundry [210]  as corpus. These entities will be the knowledge graph nodes. 

2. Next, an NLP model based on Python SpaCy[211], and NLTK[210–212]  libraries, is executed to 

infer the relations among nodes entity-nodes belonging to the same sentence (Si) or to the adjacent ones 

(Si, Si+1) of the same document. 

These relationships can indicate disease treatment, gene regulations, molecular functions, gene-gene 

interactions, gene-disease interactions, gene-drug interactions, drug-disease interactions, disease-

disease interactions and drug-drug interactions. 

https://paperpile.com/c/0zppLK/6T4B
https://paperpile.com/c/0zppLK/SZ85+ZVec
https://paperpile.com/c/0zppLK/r7ya+2CBX+HiVO
https://paperpile.com/c/0zppLK/tjXU
https://paperpile.com/c/0zppLK/r7ya
https://paperpile.com/c/0zppLK/2UPU+d2tl
https://paperpile.com/c/0zppLK/tjXU+ufBn
https://paperpile.com/c/0zppLK/HYlP
https://paperpile.com/c/0zppLK/VHVN
https://paperpile.com/c/0zppLK/VHVN+1R5D
https://paperpile.com/c/0zppLK/tIuL
https://paperpile.com/c/0zppLK/2UPU
https://paperpile.com/c/0zppLK/41b7
https://paperpile.com/c/0zppLK/zxF7
https://paperpile.com/c/0zppLK/Z8kg
https://paperpile.com/c/0zppLK/tzne
https://paperpile.com/c/0zppLK/xjYl
https://paperpile.com/c/0zppLK/tzne+xjYl+rRBU
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NETME allows users to build networks composed of several biological entities such as: genes, variants, 

diseases, drugs, compounds, molecular function, biological proves, pathways, enzymes, etc. 

In building this network it handles the disambiguation among gene symbols and the acronyms of 

diseases or other biological elements, a very common problem since in many documents, authors assign 

acronyms for very long biological elements that are usually equal to genes symbols. 

 Moreover our system has an easy-to-use web interface in which users can specify various search 

parameters (number of articles from PubMed to work on, criteria used to sort articles, specific items on 

which one wants to focus the query, etc.). 

The result of the network inference procedure is a direct graph (network) which shows all inference 

details in three main tables containing: the list of extracted papers, the list of annotations, and the list of 

edges together with their weight. 

Users can then click on nodes in the network to view all incoming and outgoing connections, or click 

on particular edges to view the type and verbal relationship between the nodes they link. 

Examples of applications include: i) analyzing disease networks for identifying disease-causing genes 

and pathways [213]; ii) discovering the functional interdependence among molecular mechanisms 

through textcolorrednetwork inference and construction[205]; iii) releasing Network-based inference 

models with application on drug repurposing [214]. 

The reliability of the knowledge graphs generated by NETME was tested through two case studies. The 

first one aims to provide a comprehensive analysis of the NETME performances by verifying its ability 

to predict known relationships between genes drawn from Kyoto Encyclopedia of Genes and Genomes 

- KEGG[2, 153, 196, 214] or Reactome[4-6] and, on the other hand, its ability to avoid the inference of 

false connections between proteins using the Negatome 2.0 database[215, 216]. The second case study 

is a more specific application and focuses on developing a network starting from a precise gene, that is 

CD147, this time using a selection on previously selected papers. In both cases, the performance of 

NETME was measured in terms of the precision/recall curve. 

In the following section, will be described the first case study, whereas the second will be widely 

discussed later in the thesis, since it concerns a very important application related to the proposed novel 

drug repositioning pipeline. 

  

3.3.1 Case study 

The first case study focuses on assessing NETME performance through its capability to recover known 

gene interactions. For this purpose, we selected a subset of gene-gene interactions from 

KEGG/REACTOME by making use of STRING API. 

More precisely, such interactions were obtained by selecting 100 random gene-gene interactions for 

each of the following STRING text-mining score intervals: 500-600, 600-700, 700-800, 800-900, >= 

900. These interactions form the true-positive set. 

Next, we selected 100 random pairs of non-interacting genes from the Negatome 2.0 database as a true-

negative set (listed in Table 3). For each interacting gene-pairs, we queried NETME with the papers 

used by STRING to infer the interactions. On the other hand, to annotate non-interacting genes, we 

queried NETME with the pair of genes of interest, selecting the top 20 papers from PubMed.  

 

 

 

https://paperpile.com/c/0zppLK/nfAM
https://paperpile.com/c/0zppLK/naFq
https://paperpile.com/c/0zppLK/eOi8
https://paperpile.com/c/0zppLK/eOi8+ZVec+r7ya
https://paperpile.com/c/0zppLK/2CBX
https://paperpile.com/c/0zppLK/1Iig
https://paperpile.com/c/0zppLK/jk5h
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Non-interacting genes from Negatome 2.0 

SOURCE TARGET SOURCE TARGET SOURCE TARGET SOURCE TARGET 

AKT1 TSC1 MAD2L2  MAD1L1 CTNND1   APC TANK RBCK1 

ARAF BCL2L1  NCK1  EGFR CTNND1   CTNNA1 TBC1D7 TSC2 

ARAF  BCL2 OSM LIFR CTNND1   CTNND1 TFDP1 CDK2 

BCL10  BIRC3 PARD3  LIMK1 CTNND1   CTNNB1 TFDP1 CCNA1 

BCL2L1  MAVS PDGFC FLT1 DKK1   WNT1 TICAM1 TLR4 

BMPR1A  TGFB1  PFN4  ACTB DKK1   SOST TJAP1 F11R 

BMPR1A  BMP5 PGF KDR DVL1   TSC1 TJAP1 CLDN1 

BMPR1A BMP6  PIAS3 STAT1 EIF3I   ACVR2A TJAP1 TJP1 

BMPR1B TGFB1  PIK3CG PIK3R2 EIF3I   ACVR1 TNF EGFR 

BMPR1B   BMP5 PKN1 RPS6KA1 EIF3I   TGFBR1 TRADD 

TNFRSF10

A 

BMPR1B   BMP6 PKN1 RPS6KA3 EP300   CD44 TRADD 

TNFRSF10

B 

BMPR2   BMP2 PKN1 MAP3K2 ERBB2   PIK3R2 TRAF6 IRF3 

CCND1   MCM2 PKN2 RPS6KA1 ETS1   CREBBP TSC1 CDKN1B 

CCR3   CCL3 PKN2 RPS6KA3 FOXO1   TSC1 VAV1 SHC1 

CCR3   CCL4L2 PKN2 MAP3K3 GRAP2   SOS1 VEGFB KDR 

CD274   CD28 RB1 SMAD3 GRAP2   CBL VEGFB FLT4 

CD274   CTLA4 RBL2 SMAD3 HDAC2   RELA VEGFC FLT1 

CD274   ICOS RIPK1 TNFRSF10A HIPK2   MDM2 VIPR2 RAMP1 

CD3G   ZAP70 RIPK1 TNFRSF10B HSPA4   BAX VIPR2 RAMP2 

CD74   NOTCH1 SFN TSC1 IGF2   IGF1R VIPR2 RAMP3 

CDKN1B   TSC1 SH3KBP1 TNFRSF14 IL15  IL2RA VWF F8 

CSF2   IL3RA SMAD1 ANAPC10 IL1A EGFR YWHAB TSC1 

CTNNB1   HSP90AA1 SMAD4 ANAPC10 IL22  IL10RA YWHAE TSC1 

CTNNB1   DDIT3 SOCS3 JAK2 IL4R  IL13 YWHAZ TSC1 

CTNND1   IL2 STIM1 TRPC6 KDR FLT1 NFKBIA CREB3L2 

Table 3. List of the  first 100 pairs of non-interacting genes from the Negatome 2.0 database. The column "SOURCE" indicates the 

starting gene, instead the column "TARGET" indicates the gene to which the action of the source gene is directed. 

 

Accuracy, sensitivity, specificity and PPV values, detected by NETME, are listed in Table 4 
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Text-Mining 

Score Interval 
Accuracy Sensitivity Specificity PPV 

500-600 58.5% 31% 86% 68.8% 

600-700 66.5% 47% 86% 77.05% 

700-800 72.5% 59% 86% 80.8% 

800-900 73.5% 61% 86% 81.3% 

≥ 900 84% 82% 86% 85.4% 

Table 4. Metrics on NETME's ability to predict known interactions (from KEGG/Reactome) and non-interactions (from 

Negatome 2.0) between genes. 

The results clearly show that NETME produces reliable results when the annotations are performed on 

top of relevant literature (STRING text-mining score higher than 700). On the other hand, when the 

STRING text-mining score is lower than 700, the NETME performances degrade in accordance with 

STRING predicted confidence as highlighted by their score . The reason behind such a behavior is due: 

(i) not enough literature about these interactions; (ii) the interactions have been inferred by human 

curators as a combination of other interactions occurring in the text. Furthermore, when the text-mining 

score is small, STRING predictions could be wrong. Indeed, as reported in [205], a score of 500 would 

indicate that roughly every second term of an interaction might be erroneous (i.e., a false positive). 

Therefore, the computed value of accuracy, sensitivity, specificity and PPV could be incorrect. 

  

 

 

 

  

https://paperpile.com/c/0zppLK/naFq
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4 
From Diseases Mechanisms of Action to Drug Repurposing: 

A novel Systems Biology approach 

  

The following chapter aims to illustrate the new pipeline built for drug repositioning. This project should 

be a response to the necessity for specialists in the various fields of bio-medicine, to have an easy to use 

tool that allows to use the impressive amount of data from high-throughput experimentation to produce 

new knowledge regarding disease and drug mechanisms of action and therefore may help in the 

identification of potential drug candidates for therapies, including personalized medicines. 

The pipeline that will be presented is designed to be a simple methodology that is easily applicable in 

different contexts, in other words, it is transferable.. 

The methodology exploits the potential of in silico simulations to predict disease-induced effects on the 

one hand and drug effects on the other, and then perform drug repositioning and ranking on the basis of 

the acquired knowledge. 

For this purpose, we chose to use PHENSIM-Phenotype Simulator [1], to perform the predictions in 

silico. As previously described this is a web-based, easy-to-use computational tool that adopts a Systems 

Biology approach, and allows us to simulate how cellular phenotypes are affected by perturbation 

(activation/inhibition) of one or more biomolecules. 

To calculate the deregulation effect of genes, proteins, microRNAs (miRNAs) and metabolites, 

PHENSIM uses a probabilistic algorithm, on all pathways present in KEGG, combined into a single 

meta-pathway[159] and integrates miRNA-target and transcription factor (TF)-miRNA information 

extracted from online public knowledge bases [125, 159]. 

As seen previously, PHENSIM offers the possibility to extend the meta-pathway with REACTOME to 

integrate a wider source of information for cellular networks. In addition, given the partial completeness 

of these networks (KEGG or REACTOME), PHENSIM allows to integrate the meta-pathway with new 

nodes and edges to complete biological pathways that are not completely connected and lacking in 

information, which is often a problem especially when the processes are crucial to the phenomenon 

under study. 

Moreover, it is worth mentioning that PHENSIM offers the possibility to perform contextualized 

simulations in as many as 25 different organisms. 

As the first step, the strategy involves (i) the creation of a "molecular signature" of the disease, i.e. the 

prediction of the effects caused by the disease in a specific biological context (e.g. cell line). This first 

step becomes extremely important taking into account that, having a systematic and global view of the 

effects caused by a specific disease, can improve knowledge in the field and also help the identification 

of potential drug targets. Thus, despite the enormous progress in understanding the molecular 

https://paperpile.com/c/0zppLK/6T4B
https://paperpile.com/c/0zppLK/DNot
https://paperpile.com/c/0zppLK/DNot+y9Ub
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mechanisms underlying diseases, knowledge is often only partial and selecting the appropriate approach 

to make full use of the large amounts of available data is still a challenge. The conceptual simplicity of 

the methodology is also reflected in the required data to perform it. In fact, it is expected, in this first 

step, the use of easily available experimental data, such as transcriptomics and/or proteomics. In fact, 

the signature can be determined using as input to the simulator two types of data: Differentially 

Expressed Genes (DEGs) calculated from transcriptomic data (transcriptomic approach) or 

Differentially Expressed Proteins (DEPs) from proteomic data (proteomic approach). 

Simultaneously, the method involves (ii) predicting the effects of given drugs in the same biological 

context, i.e., building a database of drug signatures. Drug signatures are calculated by inputting multiple 

targets reported on databases such as DrugBank and/or derived from a careful literature survey. 

To contextualize the input simulation will have to specify the genes not expressed [see chapter Related 

Work - PHENSIM- Phenotype Simulator]. 

After this, the methodology involves (iii) the proper application of the repurposing strategy, through the 

calculation of Pearson's correlation between the viral signature and the drug one. This will give rise to 

a correlation scoring system to evaluate candidates for drug repositioning in a given sample (cells, 

tissue). Eventually, ranking of possible repositioning candidates will be possible. Negative correlation 

will indicate that the drug is counteracting the action of the disease. 

The method is designed to be transparent and not a black box. Specifically, during all steps, it is possible 

to inspect the perturbations for each node within the meta-pathway and understand their role within each 

biological pathway. Indeed, anti-correlation will then show, for each node within the meta-pathway and 

for each biological pathway, where the drug does or does not counteract the disease. 

As discussed in the introduction to the thesis, the first area of application of the methodology concerns 

the study of host-pathogen interactions, with particular interest in viral infections in humans. 

However, exactly when this new methodological approach was coming to fruition, at the end of 2019, a 

new virus of only a few nanometers (50-200 nm) in size showed its power by kneeling the entire planet. 

A novel member of the coronaviruses was reported in Wuhan, Hubei Province, China. It was a new viral 

strain more closely related to a bat coronavirus (RaTG13) that is now formally known as Severe Acute 

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The disease caused by this virus has been named 

Coronavirus 2019 (COVID-19). 

Starting with a local spread from Wuhan, the infection quickly diffused worldwide.  On March 11, 2020, 

after assessing the levels of spread and severity of the viral infection, the World Health Organization 

(WHO) declared it a global pandemic, as it continuously spreads and holds the world hostage. 

From the very beginning of the pandemic, in the early 2020s, we became part of an international group 

called RxCovea, which to date, gathers about 100 members from more than 15 countries, representing a 

broad swath of disciplines relevant to the present crisis including, but not limited to, epidemiological 

modeling, artificial intelligence, immunology, game theory, drug development, diagnostic screening and 

testing, economics, and data management (Fig. 21). In RxCovea we are all volunteers, and our objectives 

are neither fame nor fortune; we simply hope to be helpful [9]. 

The group was founded with the assumption that existing methods for understanding and managing this 

pandemic were inadequate, and that significant innovations are needed to address the current challenge, 

as well as to prepare to respond to any future pandemic effectively and efficiently. 
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Innovations cannot be imposed, managed, or predicted, but the chances are greatly increased when 

disciplinary boundaries are crossed and young scientists and technologists have unlimited access to 

mentors as they strategize against unprecedented challenges. 

RxCovea using the discipline, experience, and leadership of the older generation, combined with the 

technological expertise of the younger generation, aims to use the talents of each individual to come up 

with innovative strategies on how to solve the unique challenges of Coronavirus Disease 2019 (COVID-

19). 

The complexity of the COVID-19 problem led to unconventional interactions and a non-hierarchical, 

multidisciplinary organization within the RxCovea group to generate ideas and tools, and then submit 

them to rigorous scrutiny and testing by proven experts. 

Particularly along with my research group, we are part of the RxCOVEA subgroup that is specifically 

focused on drug repositioning for COVID19. It is in collaboration with the Curacao Biomedical & 

Health Research Institute (CBHRI) - Department of Immunology, Northwell Health Hospital and 

Courant Institute of Mathematical Sciences at New York University that we have developed and applied 

our novel drug repositioning pipeline. 

   
Figure 21. The “cure COVid for Ever and for All” (RxCOVEA) Framework: A Global Network. Pan-national members of 

RxCOVEA superimposed on the pandemic viral genomic tracing map of COVID-19 spread (Gisaid.org). The serious health and 

economic consequences of the interconnected world in spreading the infection are contrasted by the rigorous science and 

technology projects, self-assembling spontaneously and equally rapidly around the globe (representative images shown of 

RxCOVEA member locality).   
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4.1 SARS-CoV-2 

At the end of 2019, a new member of the coronavirus was reported in Wuhan, Hubei Province, China. 

The virus was a new strain most closely related to a bat coronavirus, RaTG13, that is now formally 

known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). 

Recent studies have shown that RaTG13 has the highest similarity to SARS-CoV-2 (92-96% similarity) 

and establishes a separate order from other coronaviruses[217]. The disease caused by SARS-CoV-2 

has been named Coronavirus 2019 (COVID-19). 

Starting with a local spread from Wuhan, the infection spread very rapidly around the world and on 11 

March 2020, the World Health Organization (WHO) declared it a global pandemic. 

COVID-19 is considered one of the largest fast expanding pandemics since the 1918 Spanish flu with 

serious consequences for global health and economy. As of November 2021, SARS-CoV-2 has infected 

more than 250 million people, and caused 5.148.221 deaths (WHO Coronavirus Disease Dashboard, 

https://covid19.who.int)(Fig.20)[217, 218]. 

 

 

  
Figure 22. Global Report on COVID-19 pandemic by WHO.  Globally, as of 1:11pm CET, 22 November 2021, there have been 

256.637.065 confirmed cases of COVID-19, including 5.148.221 deaths, reported to WHO. As of 18 November 2021, a total of 

7.370.902.499 vaccine doses have been administered. WHO Coronavirus Disease Dashboard, Image courtesy [217].  

 

  

SARS-CoV-2 is a single-stranded, positive-sense RNA (+ssRNA) virus, which belongs to the β-

coronavirus family and therefore it is an enveloped, single-stranded RNA virus. β-coronaviruses are able 

to infect wild animals, livestock and humans. While bats are the first suspected source of this virus, there 

may be an intermediate host in the bat-human transmission chain [220], for SARS-CoV-2 the pangolin 

has been hypothesized. 

The single-stranded, positive-sense RNA genome has a 5′-terminal cap, a 3′-terminal poly (A) tail, and 

several open reading frames (ORFs). SARS-CoV-2 is composed of 13-15 ORFs (12 functional) 

containing about 30,000 nucleotides, encoding 27 proteins [220, 221]. 

At the 5′ terminus of the genome, there are ORF1a and ORF1b genes encoding 15-16 non-structural 

proteins (NSPs) from nsp1 to nsp10 and nsp12 to nsp16, respectively. Of those 15 make up the viral 

replication and transcription complex (RTC) that includes enzymes that process and modify RNA and 

an RNA repair function required to maintain genome integrity [222]. 

On the other hand, the 3′ term of the genome contains four structural proteins (S, E, M and N) and eight 

secondary proteins (3a, 3b, p6, 7a, 7b, 8b, 9b and orf14) [221]. 

Most of the viral nucleotide content (two thirds of the capped and polyadenylated genome) is held by 

the two non-structural proteins ORF1a and ORF1b followed by the structural proteins.  Among the 

https://paperpile.com/c/0zppLK/1a8P
https://covid19.who.int/
https://covid19.who.int/
https://covid19.who.int/
https://paperpile.com/c/0zppLK/1a8P+Tnhb
https://paperpile.com/c/0zppLK/lnsA
https://paperpile.com/c/0zppLK/lnsA+TXAS
https://paperpile.com/c/0zppLK/5DBp
https://paperpile.com/c/0zppLK/TXAS
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proteins encoded by ORF 1a and 1b are the polyproteins pp1a and pp1ab, which are well conserved in 

all CoVs belonging to the same family [221]. 

The many NSPs play numerous roles in virus replication and assembly processes[222, 223]. 

These proteins participate in viral pathogenesis by modulating the regulation of early transcription, 

helicase activity, immunomodulation, gene transactivation and by counteracting the antiviral response 

[58][224]. Figure 23 shows a schematic representation of SARS-CoV-2 structure and genome. 

 

 

  
Figure 23. Representation of SARS-CoV-2: structure and genome. SARS-CoV-2 is a Betacoronavirus, with a spherical shape and 

surrounded by an external lipid envelope, covered by spike glycoprotein. Its complete RNA (single-stranded, positive-sense RNA (+ssRNA)) 

genome comprises approximately 29,903 nucleotides and has a replicase complex, composed of ORF1a and ORF1b, at the 5′UTR. ORF1a and 

ORF1b encode 16 non-structural proteins (nsp1-16). 

ORF1a encodes from nsp1 to nsp10, whereas ORF1b encodes for nsp12-nsp16. There are then four genes that encode for structural 

proteins: Spike gene (S), Envelope gene (E), Membrane gene (M), Nucleocapsid gene (N) and a poly tail (A) at the 3′UTR. 

Accessory genes are distributed among the structural genes. Image adapted from [225]and [226] 

 

https://paperpile.com/c/0zppLK/TXAS
https://paperpile.com/c/0zppLK/5DBp+F1bd
https://paperpile.com/c/0zppLK/wGka
https://paperpile.com/c/0zppLK/glD9
https://paperpile.com/c/0zppLK/6qM8
https://paperpile.com/c/0zppLK/DBMX
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4.1.1 Viral infection and molecular mechanism of action 

SARS-CoV-2 spreads from one person to another through direct contact or over short distances in the 

air, either impacted in aerosol droplets or carried on fomites. The primary reproduction number (R0) of 

the person-to-person spread of SARS-CoV-2 is about 2.6, which means that infected cases grow at an 

exponential rate [227]. 

After inhalation of droplets containing viral particles, infection of mammalian lung epithelial cells 

begins with the virus binding to a specific receptor on the cell surface, via its Spike (S) protein. Like all 

the other viruses, coronaviruses require the host's cellular mechanisms to survive and replicate. Viral 

replication in these cells causes direct negative effects including the rapid and abundant secretion of 

cytokines and chemokines by local immune cells that cause the well-known cascade phenomenon called 

cytokine storm with harmful effects on the lungs and beyond. 

In the following section, the mechanism of action of SARS-CoV-2 will be illustrated by organizing it 

into three distinct steps as follows, for simplicity: 

1. Binding and Entry into the Host Cell; 

2. Viral Transcription and Translation; 

3. Virion Assembly and Release 

  

Binding and Entry into the Host Cell 

SARS-CoV-2 enters into the host cell by direct fusion of the viral envelope with the host cell membrane, 

or membrane fusion within the endosome after endocytosis. Virus entry into the host cell begins with 

the attachment of the virus to the cell surface through the binding of the Spike protein to a human host 

cell surface receptor. In SARS-CoV-2, as well as SARS-CoV, the main entry point to the host cell is the 

angiotensin-converting enzyme 2 (ACE2) receptor [228-230], which is widely expressed with the 

original structure conserved in a variety of animals, including fish, amphibians, reptiles, birds and 

mammals [230, 231]. In humans, ACE-2 is expressed on lung and gut epithelial cells and, in lower 

proportion, in kidney, heart, adipose, and both male and female reproductive tissues [232, 233]. 

The wide expression of ACE-2 in various tissues contributes to the multi-tissue infection by SARS-

CoV-2 in humans. The entry of SARS-CoV-2 into the cells markedly down-regulates ACE-2 receptors, 

which favors the progression of inflammatory and thrombotic processes [233] 

Coronavirus Spike (S) proteins are homotrimeric class I fusion glycoproteins that consists of two 

subunits, S1 and S2, with S1 at the N-terminus providing Receptor Binding Function (RBD) and S2 at 

the C-terminus providing fusion activity (Fig.24). After RBD-receptor interaction proteolytic cleavage 

of coronavirus S-proteins (S1/S2) by host cell-derived proteases such as furin, TMPRSS2, and cathepsin 

B/L (CatB and CatL), is essential for viral-host membrane fusion [234-237]. 
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Figure 24. Structure of the trimeric spike (S) protein and virus-host entry initiated by S recognition and binding to 

the ACE2 receptor. (A) S protein construct shows a head, stalk, and transmembrane (TM) S1/S2 and S2′ cleavage sites are 

depicted in red. Proteolytic processing (furin) of the S protein generates the S1 and S2 subunits. (B) Schematic of viral entry 

into the host cell mediated by S-ACE2 interactions [238].  Binding to ACE2 induces conformational changes that promote 

proteolysis of Furin (red) at the cleavage site (red arrows), leading to dissociation of the S1 and S2 subunits, the mechanism 

of which is unknown. Furin here also denotes relevant related proteases. The residual ACE2-bound S1 subunit becomes 

stably bound to ACE2, and the S2 subunits dissociate. Image courtesy [239] 

 

The way SARS-CoV-2 enters into a given cell type depends largely on the expression of proteases, in 

particular TMPRSS2. When TMPRSS2 (or other serine proteases such as TMPRSS4 or the human 

airway trypsin-like protease [HAT]) is expressed, the early entry pathway is preferred, whereas in the 

absence of this protease, the virus relies on the late pathway involving endocytosis and activation by 

cathepsin L (CTSL)[229, 230]. 

The understanding of the relationship between TMPRSS2 and SARS-CoV-2 infection since the early 

stages of the emergence was demonstrated starting from the pre-existing knowledge that expression of 

TMPRSS2, leads to activation of the SARS-CoV spike protein, allowing membrane fusion [240]. The 

TMPRSS2 gene encodes a type II transmembrane serine protease (TTSP) and is androgen-regulated and 

highly expressed in the prostate epithelium [241] this could support the increased prevalence of the virus 

in the male sex. Although ACE2 is considered the preferential entry point to the host cells other host 

receptors and/or co-receptors have been reported to promote the entry of SARS-CoV-2 into cells of the 

respiratory system. 

Apart from ACE-2, one of the most important alternative entry points for the virus is Basigin receptor 

(BSG), also known as CD147 or EMMPRIN[242] (Fig. 25). 

Furin, a proprotein convertase, is also known since a while ago to play a role in viral entry, and recent 

data support a role for this enzyme in particular in TMPRSS2-mediated cell surface entry (Fig. 25). 
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Figure 25. Schematic representation of the pathogenesis of SARS CoV-2 inside the host cell. It shows the key proteins 

involved in the viral life cycle. Image (modified) courtesy [242, 243].  

 

Cleavage of the spike protein by furin at the S1/S2 cleavage site is thought to occur after viral replication 

in the intermediate compartment of the Golgi endoplasmic reticulum (ERGIC) (Fig.26)[244]. The S1/S2 

Furin cleavage site is present in SARS-CoV-2 and MERS but not in SARS-CoV[245]. 

Recently, the VEGF-A receptor Neuropilin 1 (NRP1) has also been shown to be a host factor for SARS-

CoV-2 spike protein flayed by Furin[245-247]. 

Unlike ACE2, which directly binds the RBD of SARS-CoV-2, neuropilin-1 interacts with RRAR 

residues (amino acids 682–685) only after the C-terminus of SARS-CoV-2 S1 protein is exposed by 

protease cleavage[248]. Therefore, neuropilin-1 serves as a “post-proteolysis receptor” for viral 

attachment on the surface of host cells [248].  

Beyond such preferential entry routes for the virus, several in vitro studies have demonstrated an 

alternative endosomal-lysosomal pathway for SARS-CoV-2 entry. Indeed, coronaviruses in general, and 

SARS-CoV-2 in detail, are able to establish robust infection through endosomal entry within the in vitro 

cell culture systems commonly used. Even the understanding of the molecular events involved in the 

endosomal entry pathway is not fully understood, it is known that relevant functions in this pathway 

include CTSL, 1 of 11 cathepsins in humans [249, 250]. 

When the spike protein binds to the receptor via the S1 subunit, the receptor initiates severe 

conformational changes in the S2 subunits, which as a consequence lead to the fusion between the virus 

and the host cell membrane.  This results in the release of the nucleocapsid into the cytoplasm where 

viral replication can take place[57]. 

Once the virus enters the cellular environment and the envelope is removed, in the cytoplasm the viruses 

express and replicate their genomic RNA using the host machinery to replicate its genetic material and 

assemble new viral particles. 
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Fig.26 Coronavirus maturation. Infection by a coronavirus induces in the perinuclear area the formation of new membranous structures of 

various sizes and shapes, which as a whole are referred to as replication organelles [251, 252]. These structures originate from the endoplasmic 

reticulum (ER) and house viral replication complexes, sequestering them from cellular innate immune molecules. Viral structural proteins and 

genomic RNA synthesized at the replication site are then translocated through an unknown mechanism to the ER–Golgi intermediate 

compartment (ERGIC), where virus assembly and budding occur[253, 254]. Only four viral proteins, spike (S), envelope (E), membrane (M) 

and nucleocapsid (N) proteins, are incorporated into the virion. While the N protein bound to the viral genomic RNA is packed inside the 

virion, the structural proteins S, E and M are incorporated in the virion membrane. The S protein, assembled as a trimer, giving the appearance 

of a crown (corona), mediates major entry steps, including receptor binding and membrane fusion. During biosynthesis and maturation in the 

infected cell, the S protein is cleaved by furin or furin- like proprotein convertase in the Golgi apparatus into the S1 and S2 subunits, which 

remain associated [255, 256]. The S protein on the virus therefore consists of two non- covalently associated subunits with different functions: 

in the new target cell, the S1 subunit binds the receptor and the S2 subunit anchors the S protein to the virion membrane and mediates membrane 

fusion. The E and M proteins contribute to virus assembly and budding through the interactions with other viral proteins [257, 258]. Assembled 

viruses bud into the ERGIC lumen and reach the plasma membrane via the secretory pathway, where they are released into the extracellular 

space after virus- containing vesicles fuse with the plasma membrane. FP, fusion peptide. Image courtesy [259] 

  

Viral Transcription and Translation 

Viral genomic replication begins with the synthesis of full-length negative-sense genomic copies, which 

act as a template for the production of new positive-sense genomic RNA. The polymerase can alter the 

string pattern during discontinuous genome transcription and create a complex set of negative 

subgenomic RNA (sgRNA) strands used as a template for creating a complex set of positive sgRNA 

strands [57]. The S, M, and E proteins are translated and released in the endoplasmic reticulum, whereas 

N protein is released in the cytoplasm after translation. Most structural proteins of the virus undergo 

post-translational changes that are essential for their function[221]. 

  

Virion Assembly and Release 

Before its release, the virus is assembled in the ER-Golgi Intermediate Compartment (ERGIC) in 

coordination with the M proteins [57]. The M protein plays a crucial role in the formation of the viral 

envelope; in fact, the interaction between M proteins generates the viral envelope scaffold, and M-S and 

M-N interactions facilitate the transport of other viral proteins to the assembly site[221, 260]. On the 

other hand, the interaction of the M-protein with the E-protein plays a role in component assembly and 

also induces membrane curvature [260]. 
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Once assembled, viral particles bind to vesicles and are transported by exocytosis through the secretory 

pathway[221] 

Like other RNA viruses, SARS-CoV-2, while adapting to their new human hosts, is prone to genetic 

evolution with the development of mutations over time, resulting in mutant variants that may have 

different characteristics than its ancestral strains. Several variants of SARS-CoV-2 have been described 

during the course of this pandemic, among which only a few are considered Variants Of Concern 

(VOCs) by the WHO, given their impact on global public health. Based on the recent epidemiological 

update by the WHO, as of June 22, 2021, four SARS-CoV-2 VOCs have been identified since the 

beginning of the pandemic: 

Alpha (B.1.1.7 lineage): first variant of concern described in the United Kingdom (UK) - September 

2020 

Beta (B.1.351 lineage): first reported in South Africa - May 2020 

Gamma(P.1 lineage): first reported in Brazil - November 2020 

Delta (B.1.617.2 lineage): first reported in India - October 2020 

Lambda (C.37 lineage): first reported in Peru - December 2020 

Mu (B.1.621 lineage): first reported in Columbia - January 2020 

Omicron (B.1.1.529  lineage): first reported in South Africa and Botswana - November 2021 

Despite the unprecedented speed of vaccine development against the prevention of COVID-19 and 

robust global mass vaccination efforts, the emergence of these new SARS-CoV-2 variants threatens to 

overturn the significant progress made so far in limiting the spread of this viral illness[261]. 

 

4.1.2 Pathogenesis and Molecular mechanism of infection 

SARS-CoV-2 infection activates the innate and adaptive immune response, supporting, for most cases, 

the resolution of COVID-19 disease. 

Indeed, effective antiviral responses of host innate and adaptive immunity (production of 

proinflammatory cytokines, activation of T cells, CD4 and CD8+), are essential for clearance of infected 

cells[261-263]. However, the tissue damage caused by the virus might induce the exaggerated 

production of proinflammatory cytokines, recruitment of proinflammatory macrophages and 

granulocytes leading to macrophage activation syndrome - MAS (or secondary hemophagocytic 

lymphohistiocytosis - sHLH), and to tissue damage [264, 265]. 

Only a small percentage of  patients, characterized by a huge production of cytokines (cytokine storm) 

progresses to severe pneumonia and eventually develops acute respiratory distress syndrome (ARDS), 

septic shock and/or multiple organ failure. The severity of COVID-19 is related to the level of 

proinflammatory cytokines and immune cell subsets [265-267]. 

From the molecular point of view, following viral Spike protein binding to host cells via the ACE2 

receptor, viral RNAs, as pathogen-associated molecular patterns (PAMPs), are detected by recognition 
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receptors, which include the family of Toll like receptors (TLRs). Viral RNA or intermediates during 

viral replication, including dsRNA, are recognized by both endosomal RNA receptors, TLR3 and 

TLR7/8, and the cytosolic RNA sensor, retinoic acid-inducible gene (RIG-I)/MDA5[268]. 

After identifying the RNA of the virus, the signaling cascades pathway of NF-kB and IRF3 is activated. 

These transcription factors, once translocated into the nucleus induce expression of inflammatory 

cytokines and IFN-I, which results in the immune system’s initial response to a viral attack [268, 269]. 

Studies of the molecular mechanisms underlying SARS-CoV-2 infection show that, as also other 

viruses, it can adopt strategies to evade and modulate the host's innate immune response, hence evading 

immune detection and dampening human defenses at least at the onset of infection. 

For instance it was seen that it evades the antiviral effects of type I and III IFNs at multiple levels, 

including the induction of IFN expression and cellular responses to IFNs [270]. Furthermore, SARS-

CoV-2 and other coronaviruses replicate within double-membrane vesicles, preventing recognition of 

dsRNA replication intermediates by cytosolic RLRs [253]. 

Furthermore, a modification of the cap structure of viral RNA by Nsp16, which has 2′-O-

methyltransferase activity, prevents MDA-5-mediated detection of viral RNA [251, 269] e la successiva 

produzione di IFN-β [272]. Moreover, modification of the viral RNA by Nsp14 of SARS-CoV, which 

has guanine-N7-methyltransferase activity, mimics the 5′ cap structure of host mRNAs, allowing the 

efficient escape of viral RNA from detection by RIG-I [271, 273]. 

Failure to suppress the virus with an adequate primary response leads to viral replication and 

propagation, resulting in the production of large amounts of INF-I (at advanced infection), followed by 

chemotaxis of neutrophils and macrophages in the lungs, causing the release of inflammatory cytokines 

[269, 271, 273] as described below. 

Patients with COVID-19 showed increased plasma levels of proinflammatory cytokines including IL-

1β, IL-1RA, IL-2, IL-6, IL-7, IL-8, IL-9, IL-10, IL-17, FGF, granulocyte-colony-stimulating factor (G-

CSF), GMCSF, IP-10, monocyte chemoattractant peptide(MCP)-1, macrophage inflammatory protein 

(MIP)-1α, MIP-1β, PDGF, VEGF, CCL3, IFN-γ, and tumor necrosis factor (TNF)α [135, 268, 269, 

274]. 

Specifically, it was found that plasma levels of IL-1β, IL-1RA, IL-7, IL-8, IL-10, IFN-ɣ, MCP-1, MIP-

1A, MIP-1B, G-CSF, and TNF-α were increased since initial stage. Then, further analysis has shown 

that plasma concentrations of IL-2, IL-7, IL-17, IL-10, MCP- 1, MIP-1A, and TNF-α in ICU patients 

are higher than in non-ICU patients[275]. In addition, plasma levels of IL-2, IL-6, IL-8, IL-10, and TNF-

α observed in severe infections are significantly higher than those in non-severe infections (Fig.27) [275, 

276]. 

Increased plasma cytokine and chemokine levels and neutrophil-to-lymphocyte ratio (NLR) in patients 

infected with SARS-CoV-2 were correlated with disease severity ranging from mild to severe phase. 

Such hypercytokinemia, the so-called “cytokine storm”, has been proposed as one of the key leading 

factors that trigger the pathological processes leading to plasma leakage, vascular permeability, and 

disseminated vascular coagulation, observed in COVID-19 patients, and accounting for life-threatening 

respiratory symptoms [220]. 

While a rapid and well-coordinated immune response represents the first line of defense against viral 

infection, an exaggerated host inflammatory response and a dysregulated host adaptive immune 

response can cause tissue damage both at the site of infection and systemically. The excessive 

proinflammatory host response has been hypothesized to induce an immune pathology resulting in the 
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rapid course of acute lung injury (ALI) and ARDS occurring in SARS-CoV-2 infected patients [220, 

275, 277]. 

During the infection, both innate and adaptive immune cells synergistically participate in the antiviral 

response[278]. 

After entry and replication of SARS-CoV-2 into epithelial cells, the cells are damaged and lysed so that 

the viral content can spread. Viral antigens are presented to CD8+ T cells and natural killer (NK) cells. 

Subepithelial dendritic cells (DCs), as well as tissue macrophages (MΦ), can recognize SARS-CoV-2 

antigens and present them to CD4+ T cells via MHC class II molecules after epithelial destruction, and 

trigger T cell differentiation into Th1, Th17, and follicular helper (TFH) memory cells[217, 278]. TFH 

cells can help B lymphocytes to differentiate into plasma cells (PCs) and promote the generation of 

different antibody isotypes that start with IgM production [279]. 

B cells are able to directly recognize SARS-CoV-2 and present viral antigens to Th lymphocytes via 

MHC class II molecules that then contribute to the induction of MΦ. Typically, after the primary IgM 

response, there is an isotypic switch to IgG that can lead to long-term immunity[279, 280]. However, 

SARS-CoV-2 appears to be able to impair the development of long-term antibody responses by blunting 

the germinal center (GC) response [281]. 

In patients with severe COVID-19, there was a marked decrease in absolute number levels of CD4+ 

cells, CD8+ cells, B cells[282] and circulating natural killer (NK) cells [220, 275, 282, 283] as well as 

a decrease in monocytes, eosinophils, and basophils [284-286]. It is supposed that one of the causes may 

be functional impairment and overexpression of activation or depletion markers, such as FAS, TRAIL 

and caspase 3, in the case of CD4+ and CD8+ T cells [287]. 

 Novel SARS-CoV-2 has been shown to primarily affect lymphocyte count and balance. 

Specifically, it was seen that deceased COVID-19 patients had a lower percentage of CD3+, CD4+, and 

CD8+ lymphocyte populations than survivors, which are strong predictors of mortality, organ injury, 

and severe pneumonia [288]. 

SARS-CoV-2 infection can lead to immune dysregulation through affecting the subsets of T cells. A 

retrospective study done in Wuhan, shows a significantly lower numbers of total T cells, both helper T 

cells and suppressor T cells, in patients with severe COVID-19 [276]. 

Particularly, naïve and memory T cells are key immune components, whose balance is crucial for 

maintaining a highly efficient defensive response [268]. Naïve T cells enable defenses against novel and 

previously unrecognized infections through a massive and tightly coordinated release of cytokines, 

whereas memory T cells mediate the antigen-specific immune response[268]. A dysregulation in their 

balance, favoring naïve T cell activity over regulatory T cells, could highly contribute to 

hyperinflammation [268]. A reduction in memory T cells on the other hand could be implicated in 

COVID-19 recurrence [268, 289-291]. 

Therefore, COVID-19 causes immune dysregulation by inducing an abnormal cytokine and chemokine 

response, modulation of total neutrophils, and lymphocytopenia, all of which could enhance the cytokine 

storm and cause further tissue damage, resulting in a severe disease course and worsening prognosis. 
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Figure 27. Schematic representation of SARS-CoV-2-driven signaling pathways and potential drug targets. Schematic 

representation of host intracellular signaling pathways induced by SARS-CoV-2 infection. Selected drugs, acting on these 

pathways, are repurposed to manage the cytokine storm induced by the viral infection. SARS-CoV-2, severe acute respiratory 

syndrome coronavirus 2; IκB, inhibitor of nuclear factor κB; NF-κB, p65-p50, nuclear factor κB; IL-6, interleukin 6; IL-1β, 

interleukin 1β; IL-2, interleukin 2; IL-8, interleukin 8; IL-17, interleukin 17; G-CSF, granulocyte-colony stimulating factor; 

GM-CSF, granulocyte macrophage-colony stimulating factor; IP-10, IFN-γ-induced protein 10; MCP-1, monocyte 

chemoattractant protein 1; CCL3, chemokine (C-C motif) ligand 3; TNFα, Tumor necrosis factor α; JAK, Janus kinase; STAT, 

signal transducer and activator of transcription; S1P, sphingosine-1-phosphate; S1PR1, sphingosine-1-phosphate receptor 1; 

MyD88, myeloid differentiation primary response gene 88; TRIF, TIR-domain-containing adapter-inducing IFN-β. Image 

courtesy [268] 
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4.1.3 COVID 19: more than a pulmonary disease 

The first reports describing pneumonia due to infection with the novel coronavirus were published in 

NEJM on January 24, 2020 [274] and in Nature on February 3, 2020 [277].  In these reports, the initial 

identification of SARS-CoV-2 was done by sequencing and phylogenetic analysis on lower respiratory 

tract and bronchoalveolar lavage (BAL) fluids collected from patients in Wuhan from December 21, 

2019 onward. 

Approximately 80% of COVID-19 cases are asymptomatic or present mild to moderate symptoms, but 

about 15% progress to severe pneumonia and about 5% eventually develop acute respiratory distress 

syndrome (ARDS), septic shock and/or multiple organ failure [220, 275]. The most common symptoms 

of COVID-19 are fever, fatigue and respiratory symptoms, including cough, sore throat and shortness 

of breath, respiratory disorders, including neurological, cardiovascular, intestinal, and kidney 

dysfunction [268]. 

The primary site of infection of SARS-CoV-2 is the lower respiratory tract. In the respiratory tract, 

SARS-CoV-2 RNA and/or antigens were observed primarily in respiratory ciliated epithelial cells and 

type I and II pneumocytes, but also in alveolar macrophages [292, 293].  

Underlying the respiratory disease there is an alveolar damage that includes alveolar edema, vascular 

decongestion, and inflammatory infiltration and appears to lead to pulmonary fibrosis [294]. Rarely 

hypercoagulation leading to death via pulmonary embolism [295]. In cases where there are severe 

symptomatic manifestations,  it causes severe pneumonia, mainly due to activation of the inflammasome 

and pyroptosis[296]. It is known that canonical and non-canonical activation of pyroptosis can trigger 

the release of IL-1β, an interleukin that has been found increased in the serum of SARS-CoV-2 positive 

patients. Specifically, it appears that SARS-CoV-2 causes cellular pyroptosis in lymphocytes through 

activation of NLRP3[297]. 

Although the lungs are considered "viral ground zero", it is now known that SARS-CoV-2 affects many 

organs in the human body by both a direct viral infection or indirect effects of the immune response. 

Given the role of ACE2 as a major cellular entry point for SARS-CoV-2, some studies have attempted 

to map ACE2 expression to obtain information about the tissues or cell types that are theoretically 

susceptible to SARS-CoV-2 infection. Interestingly, the presence of SARS-CoV-2 components in 

different tissues does not always correlate with ACE2 expression levels. 

At the neurological level, ACE2 has been shown to be expressed in both neuronal and nonneuronal cells. 

In the human central nervous system, it is especially expressed in the spinal cord, dorsal root ganglion, 

brainstem substantia nigra, choroid plexus, hypothalamus, hippocampus, middle temporal gyrus, and 

posterior cingulate cortex[298, 299]. Interestingly, non-neuronal cells rather than neuronal cells residing 

in the epithelium and olfactory bulb express ACE2 and TMPRSS2[298, 2300-302]. 

Given the presence of these receptors, it is believed that SARS-CoV-2 can directly invade the central 

nervous system. Furthermore, induced damage to olfactory receptors is correlated with the characteristic 

olfactory sensorineural loss that occurs early in the course of the disease. Neurological damage from 

COVID19 is of primary importance. It is enough to consider that approximately 78% of COVID-19 

patients show neurological symptoms ranging from headache, loss of smell (anosmia) and taste 

(ageusia), imbalance, altered consciousness, delirium and paresthesia to paralysis of the extremities and 

seizures[301–309]. Severe neurological symptoms can mostly be attributed to abnormalities located in 
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the brain (trunk) and spine such as edema, hemorrhage, and thrombotic events with or without stroke, 

demyelination, and encephalomyelitis [309-312]. 

However, it remains unclear whether the severe neurological manifestations are triggered by direct 

virus-induced damage or by virus-induced endothelial damage and/or cytokine disturbances. 

Ocular symptoms remained rare. COVID-19 hospitalized patients have manifested dry eyes, blurred 

vision, foreign body sensation, and conjunctivitis with conjunctival congestion. If we go to see how 

ACE2 is expressed in these organs, it has been found to be restricted to the retina and specifically in the 

retinal epithelium[312] whereas in corneal and conjunctival epithelial cells both ACE2 and TMPRSS2 

are co-expressed[314, 315]. Therefore, infection could occur via droplets that enter the eye and travel 

through the nasolacrimal canal to the respiratory tract. 

The cardiovascular system is also compromised in cases of severe disease.  Approximately 20% of 

patients admitted to intensive care units have developed acute cardiac injury during the course of 

infection [275, 316]. Although the relatively high expression of ACE2 in cardiac tissue supports 

potential direct infection [317, 318], it is unknown whether SARS-CoV-2 facilitates cardiac injury 

through direct infection or by triggering inappropriate immune activation. 

Approximately 10-15% of COVID-19 cases report gastro-intestinal (GI) tract symptoms including 

diarrhea, nausea, vomiting, or abdominal pain [319-321]. Expression of ACE2 is elevated in epithelial 

cells throughout the gastrointestinal tract, including the oral mucosa of the tongue and in enterocytes of 

the ileum and colon[321-325]. 35-56% of COVID-19 patients report abnormal liver tests (aspartate 

aminotransferase (AST), alanine aminotransferase (ALT), and bilirubin)[326, 327]. Virus was also 

detected in stools. 

The human kidney may also be a target for SARS-CoV-2. Seventy-five percent of infected patients 

report abnormalities such as proteinuria, hematuria, and leukocyturia on urine tests [125, 126]. In 

addition, up to 27% of COVID-19 patients even develop acute renal failure, especially the elderly with 

comorbidities such as hypertension and heart failure [328, 329]. Virus (RNA, protein, and viral particles) 

has been found in the tubular epithelium of the kidney, where ACE2 is highly expressed[330-334], in 

podocytes, and to a lesser extent in the renal endothelium of deceased patients with COVID-19 [292, 

329, 334-337]. 

Regarding the reproductive system, however, only a few cases of testicular pain in men are reported, 

nothing for women[338]. There is no evidence of viral transmission from mother to fetus and no 

evidence of SARS-CoV-2 has been found in the placenta, amniotic fluid or cord blood. In addition, the 

human placenta does not express high levels of ACE2[339-343]. 

Although obesity has been found to be the primary non-genetic risk factor for the onset of severe disease, 

it has not yet been detected in adipose tissue. Poort et al. 2020 found that patients who have an increased 

body mass index (BMI) also have increased serum leptin levels, hypothesizing that this might correlate 

with the severity of infection[342-345]. In addition, a particularly interesting finding is that obese 

subjects report increased ACE2 receptor expression in lung epithelia, which correlates positively with 

infection and cardiovascular disease[344, 345]. 

Immune dysfunction has been extensively characterized in COVID-19 patients, such as dysregulation 

of T cells, B cells, and innate immune cells[345-347]. It is interesting that despite the determinant role 

of the immune response during SARS-CoV-2 infection, no viral replication is observed in patients' 
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immune cells. Postmortem studies of secondary lymphoid organs from COVID-19 patients confirmed 

the expression, albeit minimal, of the ACE2 receptor and the presence of the SARS-CoV-2 

nucleoprotein in CD169+ macrophages[347, 348]. 

Recent studies also report expression, albeit minimal, of ACE2 and TMPRSS2 in innate immune cells 

such as monocytes and macrophages even in humans[349]. In addition, monocytes can express high 

levels of CD147[349, 350].  

ACE2 expression levels are strongly influenced by prior conditions in patients and comorbidities. 

Cigarette smoking, diabetes, obesity, and hypertension induce elevated levels of ACE2 expression in 

the respiratory tract and are recognized as factors associated with COVID-19 disease severity[351-352]. 

The distribution of ACE2 expression levels may give indications about the organs targeted by the virus, 

although the existence of different entry points to the cellular environment implies that there is no 

absolute correspondence between the distribution of SARS-CoV-2 and ACE2. 

Moreover, regarding the distribution and expression of ACE2, it is very important to distinguish between 

membrane-bound and soluble ACE2 molecules. Indeed, while the membrane-bound form acts as a host 

cell receptor for SARS-CoV-2, soluble ACE2 can neutralize free virions by shielding the viral spike (S) 

binding protein[354].Elevated levels of soluble ACE2 in the plasma of children may be one explanation 

why children often exhibit minor symptoms in SARS-CoV-2 infection, whereas the elderly are at 

increased risk for severe disease [355, 356]. 
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Figure 28. Schematic representation of ACE2 expression in human organs. ACE2 mRNA is present in all organs 

[268,357]. ACE2 protein expression is present in heart, kidney, testis, lung (type I and type II alveolar epithelial cells), nasal, 

and oral mucosa and nasopharynx (basal layer of the non-keratinizing squamous epithelium), smooth muscle cells and 

endothelium of vessels from stomach, small intestine and colon, in smooth muscle cells of the muscularis mucosae and the 

muscularis propria, in enterocytes of all parts of the small intestine including the duodenum, jejunum, and ileum (but colon), 

skin (basal cell layer of the epidermis extending to the basal cell layer of hair follicles smooth muscle cells surrounding the 

sebaceous glands, cells of the eccrine glands), endothelial, and smooth muscle cell of the brain [357]. Red asterisk (*): ACE2 

deficiency only hypothesized. Image from [355]  



 

95 

4.1.4 Treatment 

In the context of the current COVID-19 pandemic, significant progress has been made to develop 

prophylactic and therapeutic strategies that could successfully resolve the disease. The global scientific 

community has made immense efforts to shorten the timeframe for finding convalescent plasma, 

vaccines, neutralizing antibodies, and other antiviral drugs. Although several vaccines have been 

approved in various countries, through emergency authorization, a large proportion of the world's 

population currently remains unvaccinated due to disparities in vaccine distribution and limited 

production capacity and, unfortunately, also due to scientific misinformation circulating through the 

mass media (from TV to social networks). 

Although vaccine development and deployment is underway, to date, only 42.4% of the world's 

population has undergone full vaccination. Indeed, widespread distribution remains a challenge, and at 

present only an antiviral (Remdesivir, given intravenously in patients with severe COVID-19 disease) 

and glucocorticoids (Dexamethasone/ Methylprednisolone) have been approved for treatment of severe 

COVID-19. The use of glucocorticoids has been proposed only in patients with markedly elevated C-

reactive protein levels. In severe patients, early use of glucocorticoids appears to be associated with a 

significant reduction in mortality or mechanical ventilation. In contrast, glucocorticoid treatment in 

patients with lower levels of C-reactive protein is associated with worse outcomes [358]. 

Recently, the virus-neutralizing antibody cocktail (Casirivimab and Imdevimab, termed REGN-COV2) 

also received emergency use authorization for treatment of mild to moderate COVID-19 in high-risk 

patients. Otherwise, no established drug is available to prevent or adequately treat COVID-19 and in the 

absence of a clear etiological understanding, treatment has remained largely supportive and 

symptomatic[268, 359]. 

Due to the lack of treatment options (particularly in low- and middle-income countries), the slow 

progression in vaccination, and the emergence of SARS-CoV-2 variants eliciting reduced responses to 

vaccines, it becomes of utmost importance and urgency to implement new strategies for the development 

and identification of drugs that can help the specific treatment of the disease and reduce the morbidity 

and mortality of COVID-19. 

An important contribution to speeding up experimental processes and choices has been made by 

advanced bioinformatics modelling tools. Therefore, alongside in vitro studies, in silico studies are of 

great importance for rapid and effective drug discovery. Indeed, computational structure-based drug 

design and immuno-informatics have recently resulted in identification of potential SARS-CoV-2 target 

proteins and drugs that are being selected for further testing[268, 360, 361]. Another promising avenue 

for obtaining effective and readily available therapeutic strategies is the repurposing of drugs already 

approved for other indications. Drug repurposing strategies provide an attractive and effective approach 

based on available drug characteristics – drug-related pharmacology and toxicology – for rapid 

therapeutic selection[360–362]. If we could, with higher probability, identify and pre-select the most 

promising hypothesis-based candidates using in silico systems biology tools, prior to costly and 

laborious in vitro and in vivo experiments and ensuing clinical trials, we could significantly improve 

disease-specific drug development[362, 363]. 
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4.1.5 Rapid Identification of Druggable Targets and the Power of the PHENotype SIMulator for 

Effective Drug Repurposing in COVID-19  

In the previous chapters it has been pointed out how drug repurposing strategies could provide an 

efficient alternative for a rapid treatment selection[362]. In this direction, a systems biology approach, 

which allows us to identify and pre-select the most promising candidates based on our specific 

requirements, prior to expensive and laborious in vitro and in vivo experiments and subsequent clinical 

trials, can significantly improve and accelerate the development of new drug schemes. 

During a health emergency such as the one we are undergoing due to the outbreak of SARS-CoV-2, 

where urgent need for efficient care is manifested daily, having an easy-to-use instrument that allows 

fast and high-reliability drug screening becomes extremely powerful. 

Several in silico techniques have been developed, mainly making use of molecular modeling of key viral 

proteins for virtual screening of drug candidates simulating receptor-drug molecular dynamics [268, 

359, 360]. In order to increase the effectiveness of identifying candidate drugs for combating COVID-

19, it is crucial to build on a more in-depth knowledge of the molecular basis of the immune signaling 

pathways regarding host-virus interaction and SARS-CoV-2-induced immunopathology. Only if we 

better understand how this particular virus affects host cells in detail, on a transcriptomic, proteomic 

level and beyond[268, 359, 360, 364], will we be able to effectively treat COVID-19 patients. It is 

becoming evident that treatment should not only focus on direct antiviral effects in mild cases but should 

also encompass potential (cytokine storm induced) aberrant host-response in severe cases[268, 365, 

366]. 

Taken together, this points towards the importance of a more detailed and targeted approach for COVID-

19, where antivirals or steroids alone might not suffice and specifically targeting the (aberrant) host-

response is imperative [268, 360, 361, 366].   Recently in literature, tools and algorithms devised to 

perform simulation on biological networks have been described[151, 152].  

Here we aim to utilize our systems biology tool, the PHENotype SIMulator (PHENSIM), to leverage 

the power of pathway analysis by simulating tissue-specific infection of host cells of SARS-CoV-2 and 

subsequently perform in silico drug selection for potential repurposing. 

In the following paragraphs, the new approach for drug repositioning using PHENSIM will be described. 

Next to that, will be presented the validation of the methodology by comparing our results with available 

data from recently published in vitro studies based on transcriptomics and proteomics in different model 

systems[359, 364]. Relevant and significantly affected pathways are further detailed on a protein 

interaction level. Finally, we show the potential of the PHENSIM in selecting promising hypothesis-

driven COVID-19 drug candidates, which has applicability to other diseases and broader aspects of 

clinical practice, thereby outlining the potential power of PHENSIM in drug repurposing in COVID-19 

and beyond.  
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4.1.5.1 PHENSIM approach  

As described in chapter 3 PHENSIM is a systems biology approach, simulating the effect of the 

alteration of one or more biomolecules (genes, proteins, microRNAs, or metabolites) in a specific 

cellular context using KEGG (Kyoto Encyclopedia of Genes and Genomes) meta-pathways[1, 125, 

364]. The meta-pathway concept, introduced by us previously[159], has been devised to account for 

pathway cross-talk in analysis. Essentially, all KEGG pathways are merged in a single graph through 

common nodes, where the meta-pathway is a graph in which the nodes represent molecular entities 

(genes, metabolites) and the edges are the known biological interactions present in the KEGG database. 

The meta-pathway is further completed by adding validated miRNA-targets downloaded from 

miRTarBase (release 8.0), miRecords and TF-miRNA-interactions obtained from TransmiR (release 

2.0)[159-161]. The algorithm thus computes, under-specified biological contexts, by iteratively 

propagating the effects and alterations of one or more biomolecules (differentially expressed genes 

(DEGs), proteins, microRNAs, or metabolites), thus making use of published virus-human interaction 

data[161, 361]. 

To start the simulation, PHENSIM requires a set of biomolecules as input, their direction of deregulation 

(activation/up-regulation or inhibition/down-regulation), and a set of inactive biomolecules in the 

cellular context (cell lines, tissue, e.g). The algorithm uses these details to compute synthetic Log Fold 

Changes (LogFC). Synthetic LogFCs are computed by sampling the normal distribution fitted to the 

actual LogFCs of a particular gene, as described previously[1].  Such values are then propagated within 

the meta-pathway, using the MITHrIL (Mirna enrIched paTHway Impact anaLysis) pathway 

perturbation analysis[125]. MITHrIL determines how local change can affect the cellular environment 

by computing a “perturbation”. For each gene in the meta-pathway, the perturbation reflects its expected 

change of expression/activity (negative/positive for down-/up-regulation, respectively). Finally, these 

results are collected and synthesized using two values: the “Average Perturbation” and the "Activity 

Score" (AS). To recall what was described previously, given a node, the average perturbation is the 

mean for its perturbation values computed at each simulation step. It reproduces the expected change of 

expression for the entire process. The function of AS is twofold: 1) the sign gives the type of predicted 

effect (activation(+); inhibition(-)), 2) the value is the log-likelihood that this effect will occur. Together 

with AS, PHENSIM also calculates a p-value which determines how biologically relevant the predicted 

alteration is for the phenomena being simulated.  All p-values computed by PHENSIM are corrected for 

multiple hypotheses using the q-value algorithm[125, 367]. To determine this probability, PHENSIM 

randomly selects genes in the meta-pathway and runs the simulation on this random set. By repeating 

this procedure (n=1000 for our simulations), it is possible to empirically estimate the probability that a 

node has a higher activity score than the observed one. For this reason, we can employ such a value to 

determine which alterations are most specific for a particular infection, gaining novel hypotheses on the 

molecular action of the pathogen.   

  

PHENSIM pathogen alterations profile  

Our approach defines a protocol for the in silico simulation of emerging pathogen infection, aimed at 

defining candidate drugs for repositioning. First, we find a representation of the pathogen in the KEGG 

meta-pathway, which allows us to perform simulations. For a novel pathogen, such as SARS-CoV-2, 

interactions with the host genes might be unknown. Therefore, we can approximate this by employing 

expression data of pre-/post-infection samples. The rationale is that differentially expressed genes 

(DEGs) represent the downstream effects of the viral infection on the host; i) we compute DEGs between 

pre- and post-infection samples, ii) we extend the meta-pathway by adding a new node representing the 
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virus, iii) the viral node is connected to each DEG with an activating (/inhibiting) edge if its LogFC 

computed between post- and pre-infection is positive (/negative), iv) we run a simulation by giving the 

upregulation of the viral node as input.   

To build the pathogen signature, we use pathway endpoints; An endpoint is a biological element in a 

pathway whose alteration, based on current knowledge, affects the phenotype in a specific way[125]. 

Given the output of this simulation, we collect all Endpoint Activity Scores in a single signature, the 

‘pathogen alterations profile’. This profile can be exploited to search for possible repositioning 

candidates, by building a drug signature database queried by means of a similarity measure (Fig. 29). 

When building the simulation profile, we do not use any p-value. Indeed, we need to consider not only 

the alterations, which are the most specific for a particular infection, but also the alterations caused by 

any cellular response to the infection. Since the p-value represents the biological relevance for the 

phenomena that is being simulated, we can ignore its value to build the signature. 

 

 
Figure 29. Schematic representation of the PHENSIM Drug repurposing Strategy. Outline for our approach to acquire a cell-specific viral 

signature in silico using a Transcriptomic strategy: logFold Changes (logFCs) of Differentially Expressed Genes (DEGs) arising from 

transcriptomic genome wide expression analysis of SARS-CoV-2 infected vs. baseline uninfected cells, cell-lines and tissues are the main input 

for the PHENotype SIMulator. Once a cell-specific viral signature is defined based on gene and signaling pathway endpoints using KEGG 

meta-pathway analysis, PHENSIMcan be exploited to search for possible repositioning candidates by building a drug signature database using 

the Drug repurposing strategy: multiple targets of drug candidates are used as input for PHENSIMto define drug signatures based on pathway 

endpoints. A Pearson correlation between the acquired virus and drug signatures ρ(x,y) gives rise to a correlation scoring system to evaluate 

drug repositioning candidates in a certain infected cell or tissue. Negative correlation (green) predicts promising targets that inhibit the viral 

signature and positive correlation (red) suggests exacerbation of the viral signature when introducing the drug. 

 

 

PHENSIM drug signature database   

Given a particular drug identified through databases (i.e. Drugbank or Pubchem) and literature (Pubmed) 

searches, we define all known targets and their alterations (up/down-regulations caused by the drug), 

and these alterations are provided as input to PHENSIM together with the same cellular context specified 

for the viral simulation. The results are used to define a drug signature using pathway endpoints as 

described above, which are collected in a database used for repositioning.  
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Furthermore, for each drug, we compute random models to empirically estimate repurposing p-values. 

Let T be the set of targets for a drug. First, we select a random set of targets of the same size as T. 

Therefore, we perform a PHENSIM simulation with the random set using the same alterations of the 

drug. Finally, we collect the signature as described above. This procedure is repeated to gather for each 

drug N random signatures (N = 1000 in our experiments) that are stored for the p-value computation 

phase.  

   

PHENSIM drug repurposing approach   

Our drug repurposing methodology is based on a similarity search performed on the drug signature 

database. Given a pathogen profile computed with PHENSIM, we use a correlation function to scan 

through each record in a drug profile database. This procedure yields a ranking on each drug in the range 

[-1;1], where negative values indicate that the virus alteration profile is opposite to the drug and positive 

values indicate the reverse; drugs with a negative correlation are considered possible candidates for 

repositioning. In our experiments, we employ a Pearson correlation function to run the similarity search. 

Since PHENSIM is based on MITHrIL pathway perturbation analysis, which computes results in a log-

linear space[125], we can assume a Pearson correlation is sufficient to determine similarity between the 

viral and drug signature.  

A key characteristic of this approach is the capability to simulate both single and drug combinations. 

Furthermore, PHENSIM also provides a framework for extending pathways by adding new nodes and 

edges coming from results in the literature as well as other reputable sources.   

Finally, to assess whether each drug candidate targets relevant infection processes, we decomposed the 

Pearson correlation in terms of KEGG pathways and reviewed the results. More in detail, let D and V 

be drug and pathogen alteration profiles, respectively. That is, D[e] is the activity score of the endpoint 

“e” computed by PHENSIM for a drug simulation, and V[e] is the activity score for the same endpoint 

in the pathogen simulation. Pearson correlation 𝜌D,V can be written as equation (1):  

𝜌(𝐷, 𝑉) =  
∑ (𝐷𝑒 − �̅�)(𝑉[𝑒] − 𝑉)̅̅ ̅

𝑒

𝜎(𝐷) ∙ 𝜎(𝑉)
, 

Where  and  are the means of �̅� and 𝑉, respectively, and 𝜎⋅ is the standard deviation. Therefore, given a 

pathway P, we can sum the Pearson correlation components belonging to its endpoints to estimate how 

much it contributes to the final correlation value. More in detail, the partial correlation �̂�(𝐷, 𝑉, 𝑃)  can 

be computed as equation (2):  

�̂�(𝐷, 𝑉, 𝑃) =  
∑ (𝐷[𝑒] − 𝐷 ̅) (𝑉[𝑒] − �̅�𝑒∈𝑃 )

𝜎(𝐷) ∙ 𝜎(𝑉)
, 

A significant feature of this partial correlation approach is that we obtain the total correlation by 

summing up all values for each pathway P. Therefore, we can determine which biological processes are 

impacted by the drug administration.  

 

Drug repurposing approach: p-value computation  

To determine the significance of the results, we use an empirical approach based on a bootstrapping 

procedure. First for each drug D, we build N random signatures 𝐷𝑖
′ as described above. Next, for each 
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signature we compute the Pearson correlation coefficient against the pathogen profile, 𝜌(𝐷𝑖
′, 𝑉). Finally, 

we count the number of times we obtain a greater correlation to empirically estimate the p-value as:  

𝑝 =
|{𝐷𝑖

′||𝜌(𝐷𝑖
′, 𝑉)| > |𝜌(𝐷, 𝑉)|}|

𝑁
. 

Finally, the p-values are corrected for multiple hypotheses using the Benjamini-Hochberg 

Procedure[368].   

  

PHENSIM combined drug/pathogen simulation  

To further evaluate whether the results of the correlation could be confirmed by PHENSIM, we devised 

a strategy to simultaneously simulate drug action and pathogen infection on a host cell line. First, we 

collected DEGs between pre- and post-infection samples as described in the previous section. Then, 

given a drug, we gather its known targets and their alterations (up/down-regulations caused by the drug) 

through databases (i.e. Drugbank or Pubchem) and literature (Pubmed) searches. Therefore, we extend 

the meta-pathway by adding two nodes, representing the virus and the drug, respectively. The virus node 

is connected to each DEG with an edge as described in the “PHENSIM pathogen alterations profile” 

section. Then, an activating (inhibiting) edge is added between the drug node and a target, for any up-

regulated (/down-regulated) target. Finally, we can run a simulation by giving as input the simultaneous 

upregulation of both virus and drug nodes (results depicted in Fig. 29).  
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4.1.5.2 PHENSIM method validation   

To determine the efficacy of our model we used several datasets obtained in the context of 

SARS-CoV-2 infection. For each dataset, we computed the genome-wide Log Fold Changes 

(FC). As PHENSIM does not require any quantitative information, DEGs were termed 

upregulated if LogFC > 0.6, and downregulated if LogFC < -0.6.  

  

PHENSIM transcriptomic reliability assessment  

To assess the reliability of the results, we focused on two fronts: ii) the ability of PHENSIMto 

predict genes altered in the expression data, and ii) the ability to predict the correct direction of 

the alteration. In detail, we define as altered all genes having an absolute LogFC > 0.6. The type 

of the alteration is given by the sign of the LogFC (+LogFC for upregulation, -LogFC for 

downregulation). Predictive power of PHENSIM was assessed by means of Positive Predictive 

Value (PPV), Sensitivity, and Specificity. The PPV is the proportion of true positive results 

with respect to all positive predictions, the sensitivity is the percentage of true positives with 

respect to the entire population, and the specificity is the percentage of true negatives with 

respect to all negative cases.  

  

PHENSIM transcriptomic approach 

For the evaluation of our strategy, we exploited transcriptomics data published in Blanco-Melo et al. 

2020 [GSE147507][364, 368] and proteomics data coming from Bojkova et al. 2020[359].  

The Blanco-Melo et al. dataset comprises RNA-seq data of infected vs. mock-treated cell-lines from 

human and ferret. The data were obtained by using the Illumina NextSeq 500 platform[364]. In our 

analysis, we focused solely on human cell data. In detail, 4 cell-lines were evaluated: primary human 

lung epithelium (NHBE), transformed lung alveolar (A549) cells, transformed lung alveolar (A549) 

transduced with a vector expressing human ACE2 and transformed lung-derived Calu-3 cells. For all 

cell-lines, sequencing data of biological replicates was obtained from mock treated or SARS-CoV-2 

infected experiments. Furthermore, for both A549 cell lines different MOIs (multiplicity of infection) 

were used at low 0.2 and high MOI 2.0. Following the same procedure used by Blanco-Melo et al., raw 

counts were normalized and analyzed for differential expression using the DESeq2 pipeline[364, 369]. 

All genes with an FDR-adjusted p-value < 0.05 and absolute LogFC>0.6 were considered differentially 

expressed. Non-expressed genes for a specific cell-line were defined as genes that showed an average 

read count lower than 10.  

  

PHENSIM proteomic approach   

To determine if our methodology can also exploit proteomic data, we leveraged data from Bojkova et 

al. 2020, namely proteome measurement by LC–MS/MS of control vs. SARS-CoV-2-infected human 

Caco-2 cell lines[359]. All cell lines were analyzed in triplicates (n=3) at 2, 4, 10 and 24h. Log2-ratios 

between infected and normal differentially expressed proteins (DEPs) (p-value < 0.05) were used as 

input for the simulation algorithm. Non-expressed proteins for the Caco-2 cells were taken from the 
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Human Protein Atlas (using the query “celline_category_rna:CACO-2;Not detected”). Since PHENSIM 

uses Entrez Gene Identifiers, we mapped all proteins to their gene, yielding 5809 mapped proteins. Of 

these 5809 mapped proteins, we could find only 1914 in the KEGG meta-pathway. We therefore 

combined our PHENSIM analysis with an enrichment analysis to determine if a prediction made by our 

methodology was based on adequate data.  

More in detail, for each time point and each pathway, we compared the number of altered proteins 

predicted by PHENSIM to the expected number of altered proteins using a hypergeometric distribution. 

This analysis yielded an enrichment p-value combined with PHENSIM one using the Fisher’s Method 

[368, 369] due to their independence. P-values were corrected for multiple hypotheses using the 

Benjamini-Hochberg correction, and all pathways with a p-value < 0.05 were considered significant for 

further analyses.   

As Bojkova et al. reported their results using Reactome Pathway analysis [359], we selected all 

pathways mentioned in their paper and also in the supplementary material published (translation, 

splicing, carbon metabolism and nucleic acid metabolism, for instance). Comparisons were performed 

using the Average Pathway Perturbations as reported by PHENSIM(Fig. 32D). Finally, since we found 

many similar metabolic pathways significantly affected in silico as described in vitro by Bojkova et al., 

we aimed to determine if a core set of proteins was common between pathways; results are displayed in 

the VENN diagrams in Fig. 33.   

 

PHENSIMCD147 gene and pathway extension 

Prior to running all simulations, we verified if viral entry points were present in KEGG to better 

represent viral activity. SARS-CoV-2 is said to invade host cells via these two receptors: angiotensin-

converting enzyme 2 (ACE2) and CD147 (also known as Basigin or EMMPRIN[372]. In KEGG the 

latter gene is missing and to extend our simulation model, a new node, representing CD147 was added 

and connected with its known interactions and downstream nodes according to literature [373-382]. The 

incoming edges to CD147 represent the possible activators/inhibitors (upstream genes), the outgoing 

edges represent the actions performed by CD147 towards its downstream genes. CD147 is a 

transmembrane protein of the immunoglobulin super family, expressed in many tissues and cells, acting 

as the main upstream the stimulator of matrix metalloproteinases (MMPs) and playing a crucial role in 

intercellular recognition[374]. Over the last decade, several groups have shown that CD147 acts as a 

key molecule in the pathogenesis of several human diseases including infectious diseases (HIV, HBV, 

HCV, KSHV)[372, 374], and it has now been posed to recognize and internalize/endocytose SARS-

CoV-2 in certain cell types[372].  

 

 Drug Repurposing Validation  

To evaluate our drug repurposing approach, we compared predictions made using our pipeline with the 

in vitro drug screening performed in Stukalov et al. 2021[7], using the previously described 

transcriptomic approach to build both pathogen and drug signatures. First, we gathered all drugs 

expression data from the LINCS L1000[8, 57] dataset for the A549 cell line. Next, we selected all drugs 

that were also tested in Stukalov et al. 2021[7], yielding 27 drugs. Therefore, for each drug we matched 

the concentration values from the L1000 datasets with the nearest one in Stukalov at al., building a 

dataset of 81 drug-concentration transcriptomic experiments. Then for each experiment, we gathered 

the differentially expressed genes and performed PHENSIM simulation as described above to produce 

drug signatures.  

https://paperpile.com/c/0zppLK/0HzS+87bL
https://paperpile.com/c/0zppLK/7HmG
https://paperpile.com/c/0zppLK/cmm4
https://paperpile.com/c/0zppLK/TtWb
https://paperpile.com/c/0zppLK/cmm4+TtWb
https://paperpile.com/c/0zppLK/cmm4
https://paperpile.com/c/0zppLK/7Pzt
https://paperpile.com/c/0zppLK/X8l9+iu8c
https://paperpile.com/c/0zppLK/7Pzt
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For the pathogen signatures we used the expression data from Blanco-Melo et al. for A549 and A549-

ACE2 cell lines.  

Finally, using the repurposing procedure described in the ”PHENSIM drug repurposing approach” 

section, we determined the correlation values for each drug experiment and computed the FDR-adjusted 

p-values. The results were, then, compared against the in vitro drug screening results from Stukalov et 

al. Such screening results were reported as treatment-induced changes in virus growth over time using 

the log2 fold change of the GFP signal normalized to the total cell confluence between the treated and 

control conditions (Figure 30).  

 

       
Figure 30 Validation outcomes for the PHENSIM repositioning approach. The test was done on all drugs tested by 

Stukalov et al. that are also present in the L1000 database at comparable concentrations.  The L1000 drug signatures (DEGs 

caused by the drug effects) were gived as input to PHENSIM to built up our drug signatures. Then, Pearson correlations were 

performed between the PHENSIM drug- and viral- signatures obtained before.  

Although the validation was satisfactory, it must be taken into account that the in vitro assays were performed on A549-ACE-

2 cells whereas the data available on L1000 concern A549 cells. In addition, Pearson's correlation was performed using the 

viral model of A549 at both MOI 0.2 (see Appendix Figure S3) and MOI 2.0 instead Stukalov et al. infected cells with SARS-

CoV-2 at MOI 3.0. In addition, a prediction was also made by performing the Pearson correlation against the in silico model 

of A549-ACE-2 at MOI 0.2 (see Appendix ) and 2.0.  

The drugs (and concentrations) tested by Stukalov et al. are listed at the top of the heatmap, the corresponding L1000 drugs 

(and the nearest concentrations to the Stukalovo et al. ones) are listed at the bottom side. The colours in the heatmap represent 

the correlation values. In red are showed the drugs that are positively correlated with SARS-CoV-2 and in blue the negative 

correlated ones. Stars denote the adjusted p-values, pv ≤ 0.05 * ; pv ≤ 0.01 **; pv ≤ 0.001 ***. 

 

 

 

Although the validation was satisfactory, it is to be taken into account that there were important 

differences in terms of cell lines, multiplicity of infection and concentration of drugs used for in vitro 

versus in silico experiments.  
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Stukalov et al. perform the in vitro experiments on A549-ACE-2 cells while the data available on L1000 

concern A549 cells. In addition, Pearson's correlation was performed using our viral model at both MOI 

0.2 (see supplementary figure) and MOI 2.0 whereas Stukalov et al. infected the cells with SARS-CoV-

2 at MOI 3.0 to perform the in vitro viral inhibitor assay.   

Although the drug signatures available on L1000 were on A549 cells, we performed repositioning also 

on A549-ACE-2 at MOI 0.2 (see Appendix) and 2.0 by exploiting our in silico viral infection model. 

Thus, our prediction on A549-ACE-2 was made using our viral signature as obtained previously and the 

drug signature resulting from the L1000 data on A549.  

Concerning the different concentrations, we have taken into account, for each drug, the ones closest to 

those tested by Stukalov et al. (see Fig. 30).  

Figure 30 shows the correlation values between the different drugs' effects and the in silico infection 

models, compared with the in vitro results reported by Stukalov et al.  

Our repositioning approach shows, according to Stukalov et al., that the B-RAF inhibitors Sorafenib, 

Regorafenib and Dabrafenib and the JAK1/2 inhibitor Baricitinib, which are commonly used to treat 

cancer and autoimmune diseases [7, 383, 384], led to a significant increase of virus infection.   

Our results reveal a slight anticorrelation of Tirapazamine, an inducer of DNA damage at a concentration 

of 2.22 uM on A549-ACE-2 MOI 2.0 cells, reflecting the findings of Stukalov et al. however in their 

data the strongest effects appear to be at concentrations as high as 10 uM. In addition, our results also 

report potential effects for the mTOR inhibitor Ramapicins, and in particular we evaluated Sirolimus. 

In addition, according to Stukalov et al., Marimastat, a potent inhibitor of matrix metalloproteinases 

(MMP) proteinases, seems to be a promising drug.  

In addition, our results also reveal that Bosutinib, a small molecule BCR-ABL and src tyrosine kinase 

inhibitor used for the treatment of chronic myelogenous leukemia, and Doxorubicin, an antibiotic and 

antineoplastic that binds to cellular DNA and inhibits nucleic acid synthesis and mitosis (acting mainly 

in the S phase of the cell cycle) causing chromosome aberrations, should be  also potentially good 

candidates.  

  

  

https://paperpile.com/c/0zppLK/7Pzt+BbaF
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4.1.5.3 Performance Evaluation: PHENSIM Genome-wide and Proteome network analysis  

We compared our results with published in vitro experiments from Blanco-Melo et al., Bojkova et al., 

and Draghici et al.[359, 364, 384, 385]. First, we compared the results from Blanco-Melo et al. with our 

in silico predictions for NHBE, Calu-3, A549 (MOI 0.2 and 2) and A549 transduced with ACE-2 (MOI 

0.2 and 2) cells. Transcriptomics data for all cell lines were collected from the GEO dataset GSE147507 

and Log2-LogFCs were computed. Next, LogFCs were compared with our predicted Activity Scores 

(AS) by accounting for their direction of perturbation. We compared our predictions with the genes that 

Blanco-Melo et al. reports as important in the antiviral host-response to SARS-CoV-2. Furthermore, 

using an unbiased approach and to verify the accuracy of PHENSIM, we assessed the top-10 upregulated 

and top-10 downregulated genes for each cell-line. Finally, we assessed our viral simulation with results 

from Draghici et al. 2020 and Catanzaro et al. 2020[268, 385].  

Pathway Analysis  

Pathway analysis was applied to the transcriptomics data to determine which biological processes were 

altered by the viral infection. We used 4 pathway analysis approaches to assess the most impacted 

pathways: 1) MITHrIL, 2) SPIA, 3) Reactome Pathways and 4) Gene Ontology Enrichment analysis. 

MITHrIL pathway analysis was performed as described in Alaimo et al., 2016[268, 386]. We used the 

LogFC of DEGs for all cell lines to perform MITHrIL perturbation analysis on the KEGG meta-

pathway. Therefore, all values were aggregated on a pathway basis to compute an Accumulator and a 

p-value. Finally, p-values were adjusted for multiple hypotheses using the Benjamini-Hochberg FDR 

correction. Results were filtered by an FDR-adjusted p-value of 0.05 and ranked using the Accumulator. 

The top-25 significant pathways were reported in Fig. 31D&E. SPIA analysis was performed as 

previously described by Tarca et al., 2009[136]; the LogFC of DEGs and ranked pathways were 

calculated using FDR-adjusted p-values as computed by SPIA. Pathways with a p<0.05 were considered 

significant.  

Finally, to further expand our understanding of the biological processes affected by the infection, we 

performed enrichment analysis on both Reactome Pathways, using the ReactomePA package [65, 136], 

and Gene Ontology, using the GOfuncR package [387]. All results produced by the 4 pathway 

methodologies were collected and considered significant with an FDR-adjusted p-value<0.05 (Seey Fig. 

S3 and Supplementary material in [388]). 

Statistical analysis  

Statistical methods for transcriptomics and proteomics were applied as described by Blanco-Mello and 

Bojkova et al. respectively[359, 364] For transcriptomic data, raw counts were normalized and analyzed 

for differential expression using the DESeq2 pipeline as previously described [369] . All genes with an 

FDR-adjusted p-value<0.05 and absolute LogFC>0.6 were considered differentially expressed. In 

addition, we considered all genes showing an average read count<10 as non-expressed. All p-values 

computed by PHENSIM are corrected for multiple hypotheses testing, using the q-value algorithm 

[359]. For proteomic data, Normalized LC-MS/MS data were downloaded and significance was tested 

using unpaired two-sided Student’s t-tests with equal variance assumed. All values were aggregated on 

a pathway basis to compute an Accumulator and a p-value, and p-values were adjusted for multiple 

hypotheses using the Benjamini-Hochberg FDR correction. Results were filtered by an FDR-adjusted 

p-value of 0.05 and ranked using the Accumulator.  

   

https://paperpile.com/c/0zppLK/gPPD+7HmG
https://paperpile.com/c/0zppLK/bRZJ
https://paperpile.com/c/0zppLK/6bTr+Wtwq
https://paperpile.com/c/0zppLK/V5QD
https://paperpile.com/c/0zppLK/V5QD+DQcy
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4.1.5.4 PHENSIM model: from in vitro to in silico  

Innovative approaches to rapidly elucidate a pathogens’ mechanism of action have proven crucial for 

containing the global burden of communicable diseases. The PHENSIM approach, described here, is 

based on the definition of a newly introduced protocol for in silico simulation of novel emerging 

pathogens, such as SARS-CoV-2, and it aims at elucidating distinct host-responses and molecular 

mechanisms triggered by that particular pathogen, all while defining possible candidate drugs for 

indication repositioning.  

For our strategy to be viable, even when only limited direct knowledge is available on the host-pathogen 

interaction, we need direct infection (in vitro) data that can be exploited to predict such interactions. To 

acquire this knowledge, we therefore employ transcriptomic and proteomic experiments of in vitro 

infected vs. normal, pathogen-free cell lines. When available, we leverage Differentially Expressed 

Genes (DEGs) as a means to simulate the direct and indirect effect of the virus on a host without a priori 

knowledge regarding the mechanism of infection. Using DEGs as input for our cell PHENotype 

SIMulator PHENSIM[1, 105] we define a signature of pathogen predicted effects on human pathways 

(pathogen alterations profile; here termed the “viral signature”; see Fig. 29). To build the viral 

signature, we use pathway endpoints; an endpoint is a biological element in a pathway whose alteration, 

based on current knowledge, affects the phenotype in a specific way[125].   

By leveraging PHENSIM we aimed to determine the impact of such viral infection induced alterations 

on an array of human cell lines in silico. Simulation results are used to define a “viral signature” that 

can then be employed to identify candidate drugs. Once a cell-specific SARS-CoV-2 viral signature is 

defined, potential repositioning drugs can be identified by building a “drug signature” database queried 

by means of a similarity measure using pathway endpoints (Fig. 29).  Given a candidate drug identified 

through a database (i.e. Drugbank or Pubchem) and literature (Pubmed) search, we define all known 

targets and alterations (up/down-regulations caused by the drug). Alterations are then provided as input 

to PHENSIM, together with the corresponding cell-specific viral signature. Next, distinct endpoint 

pathways[125] are identified and resulting drug signatures relating to a specific candidate can 

subsequently be compared with acquired viral signatures to evaluate the inhibitory potential of that 

candidate drug. Both viral and drug signatures are collected in a database, where a similarity search is 

performed using a Pearson correlation ρ(x,y) since the propagation algorithm is linear in time 

complexity[125, 389]; see methods section equation (1). All drugs whose correlation with the virus is 

negative (green) are considered possible repositioning candidates, since they predict inhibition of the 

viral signature, whereas a positive correlation (red) suggests exacerbation of the viral signature when 

introducing the candidate drug.    

  

  

https://paperpile.com/c/0zppLK/js1I+6T4B
https://paperpile.com/c/0zppLK/y9Ub
https://paperpile.com/c/0zppLK/y9Ub
https://paperpile.com/c/0zppLK/y9Ub+SRJZ
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4.1.5.4 Validation of PHENSIM transcriptomic strategy in SARS-CoV-2-infected host cells  

To validate our PHENSIM model on a transcriptomic level in the context of SARS-CoV2, we sought to 

replicate the in vitro experiments using publicly available data presented by Blanco-Melo et al[125, 364, 

389]. The in-depth transcriptomic analysis of SARS-CoV-2 elicited host-response by Blanco-Melo et 

al. recently revealed an inappropriate inflammatory response driven by reduced innate antiviral 

defenses, with low or delayed type I and type III interferon (IFN) and exaggerated inflammatory 

cytokine response, with elevated chemokines and IL-6[364].   

As SARS-CoV-2 largely affects the lungs and respiratory tract, and because of its apparent affinity for 

lung tissue, the authors make use of several respiratory epithelial cell lines to assess the transcriptomic 

host-response. Here we use PHENSIM to reproduce transcriptomic effects in silico, as described in vitro 

for the following cell lines, namely undifferentiated normal human bronchial epithelial (NHBE) cells, 

cultured human airway epithelial cells (Calu-3) cells and A549 lung alveolar cells. The comparison of 

these results is depicted in Fig. 31. A549 cells are described to be relatively non-permissive to SARS-

CoV-2 replication in comparison to Calu-3 cells, which is attributed to low expression of the viral entry 

receptor angiotensin-converting enzyme (ACE)2 [229, 364]. Thus, A549 cells were transduced with 

human ACE2 (A549-ACE2), which enabled SARS-CoV-2 replication at low-MOI (multiplicity of 

infection of 0.2). Furthermore, to induce significant IFN-I and -III expression, a high MOI of 

approximately 2-5 was necessary.  

Here we leveraged the data published by Blanco-Melo et al. to run our PHENSIM simulation pipeline. 

In Fig. 31A we show representative genes, namely anti-viral, IFN stimulated genes (ISGs) and 

inflammatory cytokines and chemokines, considered important for the course of SARS-CoV-2 infection. 

The heatmap shows perturbed expression, either up- or down-regulated, based on results obtained by in 

vitro (left column for each depicted cell-line) experiments for the different cells assessed in comparison 

to in silico PHENSIM predictions (right column; Fig. 31A). An unbiased approach of this predictive 

comparison is shown in Fig. 31B, displaying the top 10 up- and downregulated DEGs based on in vitro 

SARS-CoV-2 infection, as assessed in the different cells at low and high MOI (0.2 and 2) and with 

ACE2 addition in A549 lung alveolar cells. For each of the top in vitro acquired DEGs (left; checkered 

boxes), the PHENSIM predicted result is shown side-by-side (right). At first glance, PHENSIM reaches 

high predictive accuracy for Calu-3 human airway epithelial cells and A549-ACE2 and high MOI of 2, 

at least for the top DEGs (Fig. 31B). To quantify the overall predictive accuracy of PHENSIM, genome-

wide transcriptomic data was assessed for all scenarios as described in Fig. 31. Overall accuracy of in 

vitro predicted transcriptomic results are shown in Table 1, ranging from 51.66-83.74% for A549-ACE2 

MOI 0.2 - to NHBE cells. Sensitivity of perturbation prediction for nodes accurately predicted as 

perturbed, ranged from 95.83-100.00% sensitivity with 97.67-99.86% specificity for this in-depth 

SARS-CoV-2 transcriptomic analysis. Furthermore, the positive predictive value (PPV) and False 

negative rate (FNR) are shown for each tested scenario (see Table 4).  

 

 

 

 

https://paperpile.com/c/0zppLK/y9Ub+SRJZ+qp0C
https://paperpile.com/c/0zppLK/y9Ub+SRJZ+qp0C
https://paperpile.com/c/0zppLK/qp0C
https://paperpile.com/c/0zppLK/qp0C
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Overall 

Accuracy 

 Nodes Predicted as perturbed 
Nodes predicted as non-

perturbed 

 
 PPV Sensitivity Specificity PVV FNR 

A549-ACE2 MOI 0.2 51.66%  93.50% 96.72% 97.67% 58.90% 41.10% 

A549-ACE2 MOI 2 71.72%  96.88% 99.24% 99.13% 60.04% 39.96% 

A549 MOI 0.2 83.74%  68.75% 100.00% 99.86% 85.64% 14.36% 

A549 MOI 2 78.20%  97.41% 97.20% 99.58% 77.47% 22.53% 

Calu-3 77.17%  96.93% 99.34% 99.30% 76.55% 23.45% 

NHBE 82.43%  67.65% 95.83% 99.69% 86.48% 13.52% 

Table 4. PHENSIM transcriptomic predicted values from Blanco-Melo et al. 2020. 

 

In order to further verify PHENSIM’s robustness in whole genome pathway analysis, we next explored 

PHENSIM’s ability to predict significantly affected signaling pathways in SARS-CoV-2 infection. In 

Fig. 31C we highlight PHENSIM’s predicted perturbation of a select set of affected pathways during 

infection, as recently identified to be of importance by Catanzaro et al. 2020 and Draghici et al. 2020, 

such as IL-17, JAK-STAT and TNF signaling pathways, Toll-like Receptor (TLR), NOD-like receptor 

and RIG-I-like receptor signaling pathways as well as complement and coagulation cascades.   
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Figure 31. In silico PHENSIM prediction of host transcriptional response to SARS-Cov-2. In vitro results from Blanco-

Melo et al. (left column; checkered boxes) are compared to in silico PHENSIM predictions (right; solid) for all evaluated 

respiratory related cells assessed; NHBE, Calu-3, A549 cells at low (0.2) and high (2.0) MOI, ± ACE2 transduction 

respectively. A) Heatmap depicting the perturbation of a select subset of anti-viral, ISGs and inflammatory genes. B) 

Heatmaps depicting unbiased analysis of the top-10 upregulated (red) and top-10 downregulated (blue) DEGs from Blanco-

Melo et al. (left) with side-by-side PHENSIM predictions (right). For A&B, legend shows denoted perturbations for 

PHENSIM prediction and Blanco-Melo et al. See legend box for DEG annotation. C) Heatmap depicts whole genome 

pathway analysis as predicted by PHENSIM for a select set of signaling pathways of interest in all assessed cell types. 

Pathway selection was based on highlighted pathways affected by SARS-CoV-2 infection. Color gradient depicts the average 

pathway perturbation as predicted in our PHENSIM in silico experiments. D&E) MITHrIL pathway analysis was used to 

assess top meta-pathways for D) A549-ACE2 MOI 0.2 (low viral load) and E) A549-ACE2 MOI 2.0 (high viral load), 

according to impact (circle size) and significance (color-gradient for adjusted p-value) for the top 12 up- (+accumulator) and 

down-regulated pathways. The accumulator is the accumulation/sum of all perturbations computed for that particular 

pathway. NHBE; Normal Human Bronchial Epithelial cells, Calu-3; Cultured human airway epithelial cells, A549; 

Transformed lung alveolar cells, ACE2; angiotensin-converting enzyme, MOI; multiplicity of infection. DEGs; Differentially 

expressed genes, ISGs; IFN-stimulated genes. 

 

For further verification of our PHENSIM pathway analysis prediction in silico, we compared our results 

with those obtained using our previously described MITHrIL (Mirna enrIched paTHway Impact 

anaLysis) tool[125, 229] to analyze the Blanco-Melo et al. acquired in vitro data (Fig. 31D-E). Given 

DEGs, MITHrIL first computes a perturbation for each gene in the meta-pathway (as described in 

Methods section). The perturbation can be considered as the predicted state that the node will have given 

the input DEGs. Next, we sum the perturbation of all nodes for each pathway to acquire the 

"accumulated perturbation," or the Accumulator. The accumulator is equivalent to a pathway expression 

and is a sum of all perturbations computed for that particular pathway. MITHrIL pathway analysis for 

A549-ACE2 at low viral load (MOI 0.2) revealed Chemokine, JAK-STAT, PI3K-Akt signaling and 

cytokine-cytokine interaction as a few of the top upregulated pathways, according to impact (circle size), 

significance (color-gradient for adjusted p-value) and accumulated perturbation computed for that 

particular pathway (accumulator).   

For A549-ACE2 at high viral load (MOI 2.0; Fig. 31E), next to similar pathways at low viral MOI, Toll-

like receptor (TLR) and NOD-like receptor signaling were among the top pathways observed, 

corresponding to the observation that high viral MOI was needed to induce significant type I IFN 

signaling[364]. Interestingly, both at low and high MOI various metabolic pathways were significantly 

affected with a negative accumulator. Overall, the MITHrIL analysis results show the most affected 

pathways to be similar to the PHENSIM in silico predicted results.  

  

 

https://paperpile.com/c/0zppLK/Mktr+y9Ub
https://paperpile.com/c/0zppLK/qp0C
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4.1.5.5 Modeling proteomics in SARS-CoV-2-infected host cells leveraging PHENSIM 

Using combinatorial profiling of proteomics and translatomics to study host-infection on a cellular and 

molecular level gives opportunity to study relevant viral pathogenicity in the search of potential drug 

targets [359]. As SARS-CoV-2 has been detected in stool and can replicate in gastrointestinal cells [172, 

193, 359], Bojkova et al. use the human colon epithelial carcinoma cell line Caco-2 to study SARS-

CoV-2 infection [359]. With their novel method, multiplexed enhanced protein dynamics (mePROD) 

proteomics, they determined SARS-CoV-2-specific translatome and proteome changes at high temporal 

resolution [128], and were able to quantify translational changes occurring during SARS-CoV-2 

infection in vitro over the course of 24 hours at multiple timepoints (at 2, 4, 10 and 24h) [359].  

  

PHENSIM proteomic validation  

To validate PHENSIM on a proteomic level, we used our in silico approach to replicate the in vitro 

SARS-CoV-2 infection of human Caco-2 cells[125, 229, 359]. As viral genome copy number in cell 

culture supernatant and all viral protein levels assessed reached peak levels at 24h post infection, and 

the proteome underwent most extensive modulation[359], we focused on this particular time-point for 

more in-depth comparison of protein expression and functional pathway analysis (Fig. 32). The 

PHENSIM simulation results obtained by leveraging the proteomic data 24hrs post SARS-CoV-2 

infection are shown in Fig. 32. We provide an unbiased assessment by comparing the PHENSIM 

obtained Average Node perturbation in silico, to the 30 most perturbed proteins according to Bojkova 

et al. In order to compare in vitro to in silico protein expression levels a representative selection of 

relevant proteins involved in infection is depicted in the heatmaps in Fig. 32B and C. In Fig. 32B, 

proteomic perturbation of the top differentially expressed proteins (DEPs; n=30) as predicted by 

PHENSIM(right, solid) is compared side-by-side to perturbation results from Bojkova et al. (left, 

checkered). Next, in Fig. 32C the top DEPs described by Bojkova et al. (right) are compared to 

PHENSIM predicted perturbation. Based on this selection of proteins we can denote a relatively high 

prediction rate for PHENSIM, although not all proteins are predicted to full accuracy. When quantifying 

the predictive power of PHENSIM on this protein-wide analysis, PHENSIM simulated results showed 

a predictive accuracy of 97.9% to the described in vitro proteomic data at 24hrs, where significant 

perturbation prediction was at 97.87% sensitivity and 97.96% specificity for this particular dataset (see 

Table 5).   

 

Time 

(hours) 

All 

Proteins 

Proteins in 

Meta-pathway 

Predicted 

Percentage 
Accuracy PPV Sensitivity Specificity 

2 5809 1914 6.95% 93.98% 95.45% 92.65% 95.38% 

6 5809 1914 11.70% 93.75% 94.35% 97.66% 81.13% 

10 5809 1914 10.45% 94.50% 95.27% 98.17% 77.78% 

24 5809 1914 34.95% 97.91% 98.39% 97.87% 97.96% 

Table 5. PHENSIM proteomic predicted values from Bojkova et al. 2020. 

 

https://paperpile.com/c/0zppLK/Mktr+y9Ub+7HmG
https://paperpile.com/c/0zppLK/7HmG
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PHENSIM proteomics from in vitro to in silico 

Next, to compare the Reactome-based in vitro functional pathway analysis to our PHENSIM in silico 

approach, a representative selection of significantly affected pathways correctly predicted by PHENSIM 

is depicted in Fig. 32D. Pathways were selected according to the cellular mechanisms highlighted by 

Bojkova et al.[359]. The centered heatmap shows an increasing activity score (top to bottom) as 

predicted by PHENSIM for each pathway. An in-depth analysis of proteomic pathways at 24hrs revealed 

distinct upregulation of various pathways involving cellular metabolism such as fatty acid degradation, 

glycolysis and gluconeogenesis, carbon metabolism, inflammatory and immune signaling pathways and 

also cellular senescence signaling pathways (Fig. 32D).  

 

PHENSIM predicts a metabolic signature in SARS-CoV-2 infection in silico  

As a metabolic signature was identified by PHENSIM’s proteomic in silico simulation of SARS-CoV-

2 infection (Fig. 32D), we next assessed the degree of intersection between the perturbed genes of these 

metabolic pathways in order to reject the hypothesis that a common set of altered proteins is driving the 

significant perturbation of these closely related metabolic pathways. All metabolic pathways considered 

essential for SARS-CoV-2 infection according to the acquired Bojkova et al. data (Fig. 32) were 

included in the analysis (FDR-adjusted p-value < 0.05) and a PHENSIM activity score was determined 

(see Table 5).  

 

The affected general metabolic pathways showed very low degree of shared sub-pathway overlap. The 

Venn diagrams in Fig. 33 show all possible intersections for the following top metabolic pathways: (i) 

Fatty acid degradation, Amino sugar and nucleotide sugar metabolism, Glycolysis /Gluconeogenesis, 

Citrate cycle (TCA cycle), and Purine metabolism; (ii) Glycolysis /Gluconeogenesis, Citrate cycle (TCA 

cycle), Purine metabolism, Carbon metabolism, and Pyrimidine metabolism.  

 

           

https://paperpile.com/c/0zppLK/7HmG
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Figure 32. PHENSIM proteomic pathway analysis in SARS-CoV-2-infected human host cells. PHENSIM pathway analysis of the Caco-

2 cell experiment was simulated in silico to reproduce in vitro results presented by Bojkova et al. at the 24hour time-point post SARS-CoV-2 

infection A) Schematic representation depicting the experimental design as described by Bojkova et al. in vitro: the human colon epithelial 

carcinoma cell line, Caco-2 cells, were infected and monitored for 24hrs post SARS-CoV-2 infection. Naturally occurring heavy isotype SILAC 

labelling was used to quantify translational changes, as this method does not affect cellular behavior allowing for unbiased pathway analysis. 

Quantitative translation and whole cell proteomics by LC-MS/MS was performed 5. B&C) Heatmaps depicting a representative subset of the 

30 top differentially expressed proteins (FDR<0.05) involved in viral infection after 24hr SARS-CoV-2 infection B) as predicted by PHENSIM 

in silico (right column, solid squares), compared to expression results as determined by Bojkova et al. (left column, checkered squares) and C) 

as described by Bojkova et al. (left column, checkered) with side-by-side PHENSIM expression prediction for that protein (right column, 

solid). D) Heatmap depicts PHENSIM simulated results in silico for the signaling pathways significantly affected at 24h post infection; Up- 

(red) and Down-regulated (blue). These signaling pathways were described as significant by Bojkova et al. in their analysis. Color gradient 

reflects PHENSIM activity; the value of the activity score attributed to each pathway from blue (downregulation) to red (maximum 

upregulation). Caco-2; the human colon epithelial carcinoma cell line, SILAC; Stable Isotype Labeling by Amino Acids in Cell culture, LC-

MS/MS; Liquid chromatography mass spectrometry, DEPs; Differentially expressed proteins, Max; maximum. 

 

 

 
Figure 33. Venn diagrams of the perturbed genes of the significant metabolic pathways, related to Figure 32 and Table S2 in [386]. This 

figure illustrates the Venn diagrams obtained by calculating the intersections between the perturbed genes of the metabolic pathways identified 

in the PHENSIM simulation for the proteomics data illustrated in Figure 32. The analysis was conducted to exclude the hypothesis that a 

common core of altered enzymes was driving the significant perturbation of these closely related metabolic pathways. To construct the graphs, 

we took all the metabolic pathways considered essential for the infection in Bojkova et al. 2020 (Figure 32), which presented an FDR-adjusted 

p-value < 0.05 (Table S2). For each of these pathways, the perturbed genes were determined according to the PHENSIM activity score. Finally, 

all possible intersections were calculated. To better visualize the results, the eight pathways obtained with the previous criteria were divided 

into two groups of 5 pathways: (i) Fatty acid degradation, Amino sugar and nucleotide sugar metabolism, Glycolysis /Gluconeogenesis, Citrate 

cycle (TCA cycle), and Purine metabolism; (ii) Glycolysis /Gluconeogenesis, Citrate cycle (TCA cycle), Purine metabolism, Carbon 

metabolism, and Pyrimidine metabolism.  
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4.1.5.6 PHENSIM Drug repurposing strategy for COVID-19 

The next step in our PHENSIM approach is the employment of our drug strategy in order to test 

candidate drugs for potential COVID-19 repurposing. This approach takes advantage of existing 

knowledge on drug-related pharmacology and toxicology for rapid therapeutic selection[362]. As 

schematically described in Fig. 29, once a cell-specific viral signature is defined, it can be exploited to 

search for possible repositioning candidates by leveraging our select drug signature database. We used 

a Pearson correlation p(x,y) to compare the viral and drug signatures, which gives rise to a correlation 

score specific to that candidate drug, computed for SARS-CoV-2 infection in a particular setting. Here 

we set out to test a selection of hypothesis- and data-driven candidate drugs as shown in Fig. 34. One 

such drug which regrettably failed to live up to its anticipated potential to effectively treat COVID-19 

is the antimalarial drug hydroxychloroquine (HCQ), currently approved for rheumatologic implications, 

although associated with cardiac toxicity[362, 390, 391].  

Although the efficacy of corticosteroids in viral acute respiratory distress syndrome (ARDS) remains 

controversial, recent evidence on drugs such as Dexamethasone and Methylprednisolone are showing 

promise in COVID-19[385, 392]. Furthermore, the potential beneficial effects of blocking the mTOR 

pathway with use of mTOR-inhibitors such as Metformin, Everolimus or Rapamycin (the later not 

evaluated here) in COVID-19 patients have been hypothesized, however its effects on gene expression 

and distinct signaling pathways remain to be satisfyingly established. In light of targeting cell 

immunometabolism, 2-Deoxy-Glucose (2DG) was recently proposed as a possible therapeutic in 

COVID-19[359, 385]. Lastly, therapeutic targeting of excessive host inflammation by inhibiting Bruton 

tyrosine kinase (BTK) – for example the BTK-inhibtor Acalabrutinib – in severe COVID-19 was 

recently described[393].   

We evaluated a select set of candidate drugs for potential repurposing in SARS-CoV-2 infection as 

shown in Fig. 34  The drug candidates having a positive effect on ameliorating SARS-CoV-2 infection 

in silico have a negative correlation score (green) between viral and drug signature, whereas candidate 

drugs worsening the disease phenotype have a positive correlation (red). Indeed, for both low and high 

viral load (MOI), Methylprednisolone, Metformin, Dexamethasone and Acalabrutinib positively 

correlated with the viral signature (green) which points to an effective therapeutic to target SARS-CoV-

2 infection in A549 cells in the presence of ACE2, however, the order of the candidate drugs differed 

somewhat between the two.   

https://paperpile.com/c/0zppLK/cMPz
https://paperpile.com/c/0zppLK/cMPz+P01A
https://paperpile.com/c/0zppLK/C8Sr
https://paperpile.com/c/0zppLK/bRZJ+7HmG
https://paperpile.com/c/0zppLK/LuxS
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Figure 34. Drug repositioning candidates for COVID-19. We leverage our PHENSIM drug strategy approach to test 
candidate drugs for potential repurposing for COVID-19 treatment. Once a cell-specific viral signature is defined, it can be 

exploited to search for possible repositioning candidates by building a drug signature database. A Pearson correlation p(x,y) 

between the viral and drug signatures gives rise to a correlation score. Drug candidates having a positive effect on 
ameliorating SARS-CoV-2 infection have a negative correlation score (green) between viral and drug signature, whereas 

candidate drugs worsening disease correlate positively (red). Here we show distinct candidate drugs having a variable effect 

depending on cell types and on the multiplicity of infection (MOI) of virus infection. A) NHBE; B) Calu-3; C) A549 MOI 
0.2; D) A549 MOI 2.0; E) A549-ACE-2 MOI 0.2; F) A549-ACE-2 MOI 2.0. This analysis shows the modeling viral load 

dynamics and discerning what candidate could work best in low vs higher viral load. Drug candidates represented here: 

Methylprednisolone, Metformin (mTOR-inhibitor), (Hydroxy)chloroquine (HCQ-CQ), Acalabrutinib (BTK-inhibitor), 
Dexamethasone, 2-Deoxy-Glucose (2DG) and Everolimus (mTOR-inhibitor). ACE2; angiotensin-converting enzyme, MOI; 

multiplicity of infection. 

 
 

Using CoVariation analysis, we next looked at individual pathway contributions for each of the 

repositioning candidates evaluated here. The acquired Pearson correlation when comparing viral and 

drug-based signatures was dissected into components to show individual pathway contribution (see Fig. 

35 and Appendix Fig. S6).  

The overall effect of a candidate drug can be seen as the sum of the individually affected pathways, 

where anti-correlation is depicted in purple and positive correlation in orange. In Fig.35 we use 

Methylprednisolone as an example for A549 cells expressing ACE2 receptors at low (0.2, Fig. 35A) and 

high MOI (2.0, Fig. 35B). Only significantly affected pathways are depicted to illustrate the variation 

and effectiveness of the tested drug candidates (top; most pathways are anti-correlated shown in purple), 

to least likely candidate of interest (bottom; mostly positively correlated pathways in orange). Some top 

anti-correlated pathways for Methylprednisolone, highly contributing to the final result of this drug 

candidate based on our PHENSIM analysis include the JAK-STAT pathway, the Toll-like receptor 
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pathway, MAPK and PI3K-AKT signaling pathways. Next to similar pathways of importance affected 

for A549-ACE2 at both low and high viral MOI such as JAK-STAT, Toll-like receptor (TLR), NOD-

like receptor, RIG-I-like receptor and MAP-kinase (MAPK) signaling, Focal adhesion and Neurotrophin 

signaling pathway were among the top pathways observed at high viral load (MOI 2.0; Fig. 35B).  

Pathway accumulation plots for the other drugs are shown in Appendix (iv) Fig. S5-S11.   

 

 
Figure 35. Resulted top pathways significantly affected by Methylprednisolone treatment in A549-ACE-2 cells. 

A) A549-ACE-2 MOI 0.2 and B) MOI 2.0. 
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Methylprednisolone treatment of SARS-CoV-2 infected host cells in silico  

As a next step in our drug repurposing efforts, we simulate the simultaneous host-cell infection of SARS-

CoV-2 and in silico treatment with Methylprednisolone (MP), hereby combining the drug action and 

pathogen infection on a host-cell, in order to further assess MP as top candidate. We simulate SARS-

CoV-2 viral infection and simultaneous MP treatment in silico, in order to more closely resemble the in 

vivo situation (Fig. 36). The heatmap in Fig. 5 depicts the results of transcriptomic pathways analysis of 

host-cell SARS-CoV-2 infection, based on Blanco melo et al. in vitro (Fig. 5; left column A) and 

PHENSIM simulation in silico (Fig. 36.; middle column B), compared to MP treatment of in silico 

SARS-CoV-2 infected host cells (Fig. 36; right column C). Here we visualize the pathways identified 

in Fig. 31C, and show the effects of MP treatment on these top affected pathways during SARS-CoV-2 

infection in particular host-cells. All identified upregulated pathways during infection were significantly 

inhibited by MP treatment, showing it’s known anti-inflammatory and immunosuppressive effects.  

 
Figure 36. Methylprednisolone inhibits key inflammatory and viral signaling pathways in host lung and airway cells 

after SARS-CoV-2 infection. Heatmap depicts the effects of Methylprednisolone in silico in SARS-CoV-2 infection on 

select signaling pathways of interest (similar pathways to Fig. 2C). From left to right, column A shows pathway analysis 

results of SARS-CoV-2 infection in vitro as performed using the MITHrIL algorithm; column B shows PHENSIM results 

of SARS-CoV-2 infection in silico; column C shows PHENSIM simulation results of Methylprednisolone on SARS-CoV-2 

infected cells in silico. Color gradient depicts the average pathway perturbation as predicted in our PHENSIM in silico 

experiments for column B&C. NHBE; Normal Human Bronchial Epithelial cells, Calu-3; Cultured human airway epithelial 

cells, A549; Transformed lung alveolar cells, ACE2; angiotensin-converting enzyme, MOI; multiplicity of infection.  
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4.2 NETME to extend biological networks: The case of CD147. 

Previously, it was pointed out the problem of incompleteness of the main biological knowledge networks 

underlying many of the in silico models such as KEGG. 

A concrete example as previously described, is CD147, also known as Basigin (BSG) or EMMPRIN, a 

transmembrane glycoprotein of the immunoglobulin superfamily, expressed in many tissues and cells, 

which is known to participate in several high biological and clinical relevance processes and is a crucial 

molecule in the pathogenesis of several human diseases[374, 394]. Moreover, as mentioned above, 

CD147 plays a fundamental role in SARS-CoV-2 infection since, together with Angiotensin-Converting 

Enzyme 2 (ACE2), it interacts with viral spike protein as secondary cellular entry point. 

In this direction, CD147 is an example of how a missing crucial gene within a biological network can 

compromise scientists' efforts to understand certain molecular phenomena. In literature, there are many 

valuable tools [214, 395] to integrate the missing information into bio-databases, such as KEGG. 

However, the most reliable approach in terms of accuracy and updated information remains the manual 

curation of such networks through careful and time-consuming literature analysis. On the other hand, a 

manually constructed network provides partial information due to the limited number of articles that a 

scientist could read. Among the bibliography consulted to build the network manually, we have carefully 

selected 11 papers containing a significant amount of helpful information for our purpose. On the other 

hand, we also assessed the capabilities of NETME in inferring CD147-diseases relations. For this 

purpose we selected 100 random interactions from DisGenNET [209], as well as the same abstracts used 

by DisGenNET for inferring such interactions. 

This NETME application aims to be a practical example of how this system can create valuable networks 

by analyzing quickly and automatically larger sets of publications. 

The set of 11 selected papers, described in Figure 37a, was analyzed by a bio-expert to derive a CD147-

genes interactions network manually. This process resulted in 50 genes and 64 interactions, as shown in 

Figure 37a. Next, by using the same set of papers, we run NETME with no upstream  filter. The 

automatically generated network consisted of 86 genes and 139 relationships between them (see Figure 

37a-b). As the manually curated network consists of genes and proteins, only elements from these two 

categories were selected for the evaluation. This was performed by considering edges with the lowest 

"bio" score for each node pair. Qualitatively, this network includes most of the interconnections 

mentioned in the papers, thus providing a reliable and comprehensive overview of the molecular 

function of Basigin. 

Quantitatively, NETME achieved an accuracy of 98.99%, a sensitivity of 100%, a specificity of 98.98%, 

and a positive predicted value of 46.32%. Figure 38a-b-c depicts the precision/recall curve (AUC 0.997), 

the sensitivity/specificity curve and the True positive rate/False Positive Rate one. The construction of 

the curves considered all possible gene-pairs and their edges. 

Finally, we queried NETME with the selected 100 random CD147-diseases interactions in DisGenNET, 

selecting the same PubMed abstract used by DisGenNET for inferring those interactions. NETME 

detected 63 True Positive values out of 100, revealing a sensitivity of 63%. It is essential to stress that 

NETME allows us to extract a satisfactory and valid amount of information in a few minutes, compared 

to a manual search that may take days or weeks. We also believe that this case study is significant 

because, in the evaluation, we considered not only the presence of a link between two nodes but even 

https://paperpile.com/c/0zppLK/mTuN+TtWb
https://paperpile.com/c/0zppLK/eOi8+yBCr
https://paperpile.com/c/0zppLK/Z8kg
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more closely the type of edge, hence the adequacy and specificity of the annotated edge in its biological 

context. 

   

a)   b)  

 

 

Figure 37 CD147 Network reconstruction using NETME. a) depicts the pathway constructed by hand from the 

selected papers [373-382], with CD147(BSG) as the central node. b) Shows the molecular mechanisms 

summarized in the knowledge network developed by NETME in accordance with the same papers used in a) 

NETME shows that CD147 is a potent inducer of metalloproteinases (MMPs) such as MMP2, MMP14 and MMP9 

as reported in [374, 378, 379]. Furthermore, the overexpression of CD147, which results in increased 

phosphorylation of PI3K(PIK3CA), Akt(AKT1), leads to the secretion of vascular endothelial growth factor 

(VEGFA) in several biological contexts such as KSHV infection [374, 378]. In addition to its ability to induce MMPs, 

CD147 regulates spermatogenesis, lymphocyte reactivity and MCT system, in particular MCT1 and MCT4 

(MCTS1 and SLC16A4) expression [374, 382]. Our results also show that CD147 can increase the expression of 

ATP-binding cassette transporter G2 (ABCG2) protein, regulating its function as a drug transporter, as mentioned 

by Xiong et al. for MCF-7 cells[374]. NETME identifies also BSG as an upstream activator of STAT3, highlighting 

its involvement in tumor development in agreement with the literature[381]. As summarized by our knowledge 

network, CD147 is regulated by various inflammatory mediators, such as RANKL (TNFSF11), denoting its 

involvement in inflammatory processes [377, 378]. Among the potential activators of BSG, NETME also find the 

transcription factor c-Myc (MYC) [375]. 

 
Figure 38. Metrics of BSG-network performed by NETME. The plots show a) Precision/Recall curve; b) 

Sensitivity/Specificity; c) True positive rate/False Positive Rate. The red dashed line in b) and c), indicates the expected 

result if the used method was random, that is any method which, given a pair of nodes, elects whether between them 

there is a link with a probability of 0.5. 

  

 

  

https://paperpile.com/c/0zppLK/XJvx
https://paperpile.com/c/0zppLK/fkpJ
https://paperpile.com/c/0zppLK/Z91i+TtWb+705w
https://paperpile.com/c/0zppLK/Z91i+TtWb
https://paperpile.com/c/0zppLK/TtWb
https://paperpile.com/c/0zppLK/TtWb
https://paperpile.com/c/0zppLK/IDek
https://paperpile.com/c/0zppLK/f1Cz
https://paperpile.com/c/0zppLK/379v
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4.3 The Value of Sharing: Scientific Wiki 

The COVID-19 pandemic has reinforced to the entire community the value of collaboration. The 

scientific world has experienced the importance of sharing protocols, results, data, and codes succeeding 

in obtaining impressive scientific results in a very short time.  This project is one of the concrete proofs 

that collaboration, at every level, always helps to build and build better. 

Multi-disciplinary open science has emerged as a powerful mechanism to accelerate science and fight 

the rapidly evolving worldwide COVID-19 pandemic. 

The current pandemic has raised the need for efficient and effective identification of potential drug 

candidates, creating an urgency for spreading knowledge and innovation. 

This prompted us to create SciKi, short for Scientific wiKi, a toolbox developed primarily to integrate 

and disseminate results obtained using the PHENSIM(Phenotype Simulator) based drug-discovery 

framework. Indeed, disseminating the results through a collaborative environment allows the 

verification of hypotheses, by detecting contradictions, validating sources, and filtering fake data. 

Therefore such a tool is critically needed. 

Sciki is a toolbox primarily developed to interpret and disseminate the results obtained by using our 

drug-discovery framework based on PHENSIM(Phenotype Simulator). 

Designed to interact with open science communities innovatively by helping researchers search for 

candidate drugs based on publications, wikis, leaderboards, and comments and machine-generated 

“interpretations” for successful (e.g. thresholded by statistical significance) candidates. 

This new platform, which is not yet in its final form, is designed to interact with open scientific 

communities in an innovative way and to publicly disseminate reproducible and explainable scientific 

results in a simple and effective way. 

https://sciki.eu/ 

 
Figure 39 Screen shot of SciKi's main page.  

https://sciki.eu/
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5  
Conclusions 

 

Technological advancement in biomedicine allowed the production of a large amount of omics and 

clinical data, increasing the necessity to develop new techniques to analyze them. 

Providing easy-to-use tools to support clinical and biological research in the analysis of complex 

diseases or, in general, complex biological phenomena is becoming a critical issue and a great challenge. 

Systems biology is playing a central role in this direction. Abstract biological  modeling can be strategic 

for instance, in helping physicians to make better clinical decisions such as prescribing new therapeutic 

schemes based on specific disease-related gene and/or pathway deregulations. This framework allows 

patient-centered analyses and predictions to evaluate both the patient's disease status and the efficacy of 

treatments moving towards personalized medicine. 

The difficulties, costs and time required in the discovery and development of new pharmaceutical 

molecules taken together with the availability of a huge number of drugs that passed all the critical 

phases of clinical trials, and for which most of the side effects are already known, increase the interest 

in repositioning existing drugs for new therapeutic purposes. 

Various databases and toolboxes are available to systematically produce exciting predictions 

for drug repositioning and identify thousands of drug-disease pairs by computational studies 

[98,146,147]. Although advanced computational tools for drug repositioning exist, they are often 

difficult to understand or use, limiting their accessibility to scientists without a strong computational 

background [68]. 

The purpose of this thesis is to develop a new methodology for drug repositioning, using a typical 

systems biology approach, differentiating from most existing methods for being explainable. 

In silico simulations, based on experimental data and literature information, allow us to explore the 

obtained results at multiple levels of detail (overall phenotypic profile, pathways, genes, metabolites) 

both from the disease-specific and drug-specific point of view. 

This thesis addresses a multi-hypothesis-driven systems biology approach to improve drug repositioning 

across multiple contexts.  

This dissertation was motivated by the current SARS-Cov-2 pandemic, which has hyper-accelerated the 

need for efficient and effective identification of potential drug candidates. 
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We find that PHENSIM performs at a high overall accuracy with high PPV, sensitivity and specificity 

for all airway and lung-related cell lines evaluated in our applications. PHENSIM predictive 

performance was further validated using our previously described MITHRIL transcriptomic pathway 

analysis[125, 393], showing similar results. Interestingly, key signaling pathways proposed to be crucial 

in SARS-CoV2 infection[268], were shown to be significantly perturbed in all cell lines studied in silico 

using PHENSIM, simulation offering promising potential molecular drug targets.   

The PHENSIM strategy was also suitable for a proteomics/translatome-data based approach. PHENSIM 

simulation was compared to published SARS-CoV2 infection specific proteomic effects in host cell 

lines[268, 359]. Comparing simulation results to proteomic data 24 hours post infection showed, for the 

proteins available in KEGG, high accuracy with a PPV, sensitivity and specificity well above 97%. 

Inhibition of several of these protein-associated pathways was shown to prevent viral replication in 

human cells[268].  

We next used the transcriptomic-based PHENSIM approach to compare the viral signatures, computed 

with respect to model cell lines, to in-silico-derived drug signatures. Our overall correlation results show 

several potential drug repurposing candidates negatively correlating with SARS-CoV-2, varying from 

corticosteroids such as MP (already approved for treatment of COVID-19 patients) to biologics such as 

BTK-inhibitors that are currently being studied in clinical trials[268, 393] to metformin[396]. Individual 

signaling pathway contribution to the observed correlation score could be further delineated for each 

individual drug, providing specific targets for in depth analysis and potential for pathway-specific 

therapeutic targeting. As expected, the individual pathways most targeted by the in silico drug 

interventions (Fig. 36A&B) were similar to pathways found most perturbed by PHENSIM during host 

transcriptomic response to SARS-CoV-2 viral infection (Fig. 31C&D), emphasizing their potential 

therapeutic effects. HCQ, although hypothesized to be a good potential candidate to treat COVID-19, 

has not proven effective in vivo[396, 397]. The exact reason why HCQ has failed in COVID-19 remains 

to be fully understood. Interestingly, COVID-19 is associated with a variety of hematologic 

complications[398], and increased HCQ use during the COVID-19 pandemic has induced the emergence 

of methemoglobinemia, including tissue hypoxia and reduced oxygenation[398-400]. Evidently, 

evaluating the risk-benefit ratios – drug safety and efficacy – is crucial when selecting drugs to be 

repurposed for COVID-19[362, 400], which particularly holds true for HCQ[391, 401, 402]. 

In Fig. 34, we depict our drug repurposing PHENSIM approach that functions as a selection tool for 

initial drug candidate screening, based on the anti-correlation of viral and drug signatures. In this ranking 

system a negative correlation constitutes higher potential for that particular drug. This broader 

correlation approach can be used to screen large sets of candidate drugs. Next, as depicted in Fig. 36, a 

more dynamic and extensive analysis can be performed, in order to compare simulations of SARS-CoV-

2 host-cell infection (column B) and in silico treatment with a candidate drug such as 

Methylprednisolone (column C). Although Methylprednisolone is a known broad-spectrum 

corticosteroid, with clear anti-inflammatory and immunosuppressive effects (as shown in Fig.35), 

complete inhibition of these crucial immune signaling pathways might not be beneficial to COVID-19 

patients at every stage of disease as described in clinical practice. Other, more targeted drug candidates 

might be more beneficial to the overall functioning of the patient’s immune system during the fight and 

recovery from COVID-19. Indeed, our detailed approach can be implemented for all other top 

candidates, for further in-depth evaluation of their potential. However, we should bear in mind that the 

simulation is simultaneous (both virus and drug) and not completely reflective of a sequential treatment 

of a drug during infection. We are currently leveraging our simultaneous approach to evaluate the use 

of Metformin in COVID-19 in more detail.  

https://paperpile.com/c/0zppLK/LuxS+y9Ub
https://paperpile.com/c/0zppLK/6bTr
https://paperpile.com/c/0zppLK/6bTr+7HmG
https://paperpile.com/c/0zppLK/6bTr
https://paperpile.com/c/0zppLK/6bTr+LuxS
https://paperpile.com/c/0zppLK/4EGF
https://paperpile.com/c/0zppLK/4EGF+R1G5
https://paperpile.com/c/0zppLK/bpiF
https://paperpile.com/c/0zppLK/bpiF+6XK3
https://paperpile.com/c/0zppLK/E6rD+cMPz
https://paperpile.com/c/0zppLK/VdI3
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 Drug repurposing towards COVID-19 is challenging, but also opens many new opportunities. Several 

innovative approaches have been used varying from structure assisted computer designed mini inhibitors 

of receptor binding domain (RBD) [402–404], inhibitors of viral key enzymes like Mpro[360, 405, 406], 

machine learning models predicting compound protein inhibiting activity[406, 407] to infected cell-

based assays drug screening[406–409]. Using computational tools, such as PHENSIM, allows for safe 

exploration of potential candidate drugs and uses previously acquired knowledge from biomedical 

databases to narrow the scope of possible viable biomarkers and druggable targets. One of the clear 

advantages of PHENSIM is a more effective selection of hypothesis driven drugs, before initiating 

extensive, time-consuming and costly in vitro experiments that should eventually provide the basis for 

clinical studies. PHENSIM requires on average (depending on data availability) about 3 hours of for 

each simulation. Another interesting possibility enabled by our approach is the potential capability to 

not only simulate the effect of a single drug, but also drug combinations. This expansion of PHENSIM 

is currently being developed (see Methods section; data availability). By making use of not just viral 

targets but also host proteins and structured pathways in the computation of the PHENSIM viral 

signature, we broaden the scope of potential drug targets with the added advantage that these are less 

prone to resistance development[410]. Here we simulated a select set of candidate drugs for repurposing 

in COVID-19, however, there are many candidates with high potential that can be added to this list, and 

further evaluated by our PHENSIM system in silico in the near future. We can also learn from and 

identify additional candidates based on the results obtained in this study. Starting from SARS-CoV-2 

viral signature acquired by PHENSIM and recent data on IFN-involvement in COVID-19 [411], 

targeting the JAK/STAT pathway using Baracitinib – approved for moderate to severe arthritis[411, 

412] – was recently shown to reduce time-to-recovery for hospitalized COVID-19 patients in 

combination with Remdesivir [411–413], however, caution is warranted[414].  

An important featrure of PHENSIM is its extensibility with additional information on crucial genes, 

absent from KEGG, when specific knowledge becomes available. The in silico model presented here 

provides an interesting framework that could be further developed and expanded, achieving a more 

complete cell signature by new available data on processes. These may include cell-cell communication 

through ligand-receptor complexes[414, 415] or viral immune evasion e.g.[414–416]. For example, in 

the case of SARS-CoV2 infection, the absence of some important genes in the KEGG , was considered 

a severe limitation. More specifically  Basigin (BSG), also known as CD147, was added to KEGG, in 

order to investigate the role of extracellular matrix metalloproteinase inducer (EMMPRIN) in COVID-

19.  

Although the extension of the model has been manually executed, we have shown that, using our new 

text-processing  NETME system, it is possible to build knowledge networks in an easy, fast and 

automatic way, obtaining results comparable to manual bibliographic research. However in-silico 

literature mining allows to consult many more papers in a much shorter time. Since models based on 

biological networks such as KEGG or Reactome are incomplete, providing a way to solve the problem 

in a simple, fast and reliable way becomes extremely important. 

As most in vitro studies are performed on cell lines, tissue tropism characteristics of viral infection seem 

key to better understanding viral activity[417, 418]. The same model could be adapted to study specific 

cells involved in viral infection like tissue-specific epithelial cells and immune cells (e.g. T cells and 

NK cells)[417, 419]. Moreover, many interesting avenues can potentially be explored using PHENSIM, 

such as modeling immune-related effects of this pathogen and others, in distinct tissue-specific non-

immune epithelial cells, stem cells, and beyond[293, 365, 417, 419]. The system can be further adapted 

to include new data gathered on the viral translational landscape related to newly discovered open 

reading frames (ORFs) and potential novel polypeptides/proteins and infectivity potentiating cell surface 

https://paperpile.com/c/0zppLK/9K4I+RtWW+cRyV
https://paperpile.com/c/0zppLK/pagY+hx44
https://paperpile.com/c/0zppLK/UeY4+Qey2
https://paperpile.com/c/0zppLK/UeY4+Qey2+fe5b
https://paperpile.com/c/0zppLK/pkTT
https://paperpile.com/c/0zppLK/jecL
https://paperpile.com/c/0zppLK/jecL+cGBq
https://paperpile.com/c/0zppLK/jecL+cGBq
https://paperpile.com/c/0zppLK/jecL+cGBq+RUaL
https://paperpile.com/c/0zppLK/Eafs
https://paperpile.com/c/0zppLK/oGq5+rMcf
https://paperpile.com/c/0zppLK/oGq5
https://paperpile.com/c/0zppLK/IrMW+nnEz
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structures like neuropilin [246, 420]. Interestingly, integration of all the aforementioned schemes could 

potentially yield novel and effective drug targets[421].  

As demonstrated by our results, we believe that the PHENSIM system provides a multitude of powerful 

systems biology functions and implements them easily and efficiently.  PHENSIM is a simulation 

algorithm which follows the biological processes modeled by pathways. Therefore, PHENSIM is able 

to make a prediction of such processes and not only of the final effect, going beyond methods based on 

pathway enrichment. Furthermore, since pharmacological treatments may depend on the state of 

biological processes, PHENSIM may be of more appropriate use in this context. Comparison with other 

simulation algorithms such as BIONSI[151, 152] has shown excellent performance by PHENSIM[1]. 

PHENSIM creates and builds on interpretable and intervenable mechanistic bio-chemical models, rather 

than combinatorial and statistical “black-box” models for joint stationary distribution of biological data, 

as in, say protein-protein interaction (PPI) networks, Graphical or Deep-net models.  

PHENSIM gives rise to feasible validation and comparison of in vitro and in vivo experimental data[268, 

359], gives insight into drug efficacy[268, 359, 385, 410], tracks specific host signal transduction 

pathways[268], in silico testing of single drugs and drug combinations and further delineation of future 

targets (e.g. CD147) and identification of specific pathways of action of both pathogen and therapeutic 

compound in healthy and infected systems. For cost efficiency, validated predictive methods and assays 

for early elimination of potential drug candidates are of great value[370, 410]. The overall efficiency 

(time, costs, safety) prompts to suggest implementing PHENSIM not only in viral acute pandemic 

settings[394], but in additional curative and non-curative diseases, especially complex chronic disorders, 

where clinical trials are time-consuming or impossible to reduce to practice. Optimally leveraging the 

power of pathway analysis by simulating host cell and tissue-specific infection and performing in silico 

drug selection, has a tremendous potential beyond COVID-19, with applicability to high global burden 

communicable diseases, translatable to pathogens of viral, bacterial and fungal origin, and potentially 

chronic disease such as inflammaging and diabetes. In conclusion, our PHENSIM approach will enable 

more rapidly initiated clinical trials and accelerated regulatory review of already pre-selected drugs with 

a high repurposable potential. However, there are critical considerations for the clinical use of 

repurposed drugs related to drug combinations, alternative doses, and routes of administration that need 

to be systematically explored. It becomes critical in this perspective, to develop new algorithms, 

methods and tools that enable quantitative analysis of omics data using the framework of systems 

biology. In this perspective we propose to extend PHENSIM by integrating new features that allow to 

simulate the timing of drug administration, in fact at the moment we can only perform simulations on 

the effects of simultaneous administration of drugs, and also add new features that allow to perform 

quantitative investigations (e.g. dosages). The addition of the temporal factor also can be very useful in 

silico modeling of infections that occur over time. 
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6  
Future and outlook 

The flexibility and transposability of our method make it extremely interesting for several applications. 

Among these, we are currently carrying out a study on the comparison of the effects of different viral 

infections including HRV, HPIV3, HIAV and RSV. Through this study we would like to investigate the 

mechanisms of action of the various viruses and explore the potential effects of overlapping infections. 

Indeed, it is known that viruses, in their interaction with the host, implement very different strategies to 

make a successful invasion. Knowing the differences and similarities might open new avenues and 

perspectives in the research for new potential pharmacological targets together with the acquisition of 

new knowledge on some previously underestimated biological processes.  

Systems biology and other bioinformatics techniques are cross disciplinary sciences which have shown 

to be very useful in enhancing research in cancer and other complex diseases.  
In this direction new research plans and collaborations are being developed. In particular, a project 

concerning important liver diseases such as Nonalcoholic steatohepatitis (NASH) and Primary 

sclerosing cholangitis (PSC), is being carried out by biologists and bioinformaticians in collaboration 

with clinicians.   
NASH is a progressive liver disease involving hepatocyte injury, accumulation of lipid droplets in the 

liver, inflammation and fibrosis.  
PSC is a progressive cholangiopathy involving bile duct destruction and strictures, concentric periductal 

fibrosis and periportal inflammation. PSC patients are forced, in 50% of cases, to resort to 

transplantation within 10-15 years from diagnosis.  
Both diseases lead to cirrhosis, malignancies and end-stage liver disease.   
The aim of the project is to outlight related molecular mechanisms, supporting clinical and biological 

research in order to formulate new hypotheses and their possible applications.  
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i) 

 

Figure S1 Comparison between PHENSIM with and without REACTOME for datasets where the altered gene belongs to the meta-

pathway. Each graph reports one metric: Positive Predictive Value (PPV), Sensitivity and Specificity for genes showing altered expression, 

and PPV and False Negative Rate (FNR) for the non-altered ones. On the x-axis, we report PHENSIM performance with REACTOME, while 

on the y-axis, we present PHENSIM without REACTOME. Each dot is a dataset. The line marks the points where the two variants have the 

same performance. 
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Figure S2 Comparison between PHENSIM with and without REACTOME for datasets where the altered gene was not in the meta-

pathway. Each graph reports one metric: Positive Predictive Value (PPV), Sensitivity and Specificity for genes showing altered expression, 

and PPV and False Negative Rate (FNR) for the non-altered ones. On the x-axis, we report the PHENSIM performance with REACTOME, 

while on the y-axis, we have PHENSIM without REACTOME. Each dot is a dataset. The black line marks the points where the two algorithms 

have the same performance. 
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ii) 

 

 

 
Figure S3 From in vitro to in silico. Comparison of drug treatments between Stukalov et al. 2021 and PHENSIM predictions. The heatmap depicts the validation outcomes for the PHENSIM repositioning 

approach. The test was done on all drugs tested by Stukalov et al. that are also present in the L1000 database at comparable concentrations. The L1000 drug signatures (DEGs caused by the drug effects) were gived as 

input to PHENSIM  to built up our drug signatures. Then, Pearson correlations were performed between the PHENSIM drug- and viral- signatures obtained before.  

Although the validation was satisfactory, it must be taken into account that the in vitro assays were performed on A549-ACE-2 cells whereas the data available on L1000 concern A549 cells. In addition, Pearson's 

correlation was performed using the viral model of A549 at both MOI 0.2 (see supplementary figure) and MOI 2.0 whereas Stukalov et al. infected cells with MOI 3.0.  

Drugs (and concentrations) tested by Stukalov et al. are listed at the top of the heatmap, the corresponding L1000 drugs (and the nearest concentrations to the Stukalovo et al. ones) are listed at the bottom side. The 

colours in the heatmap represent the correlation values. In red are showed the drugs that are positively correlated with SARS-CoV-2 and in blue the negative correlated ones. Stars denote the adjusted p-values, pv ≤ 0.05 

* ; pv ≤ 0.01 **; pv ≤ 0.001 ***. 
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iii) 

 
Figure S4. MITHrIL vs Reactome pathway analysis. Figure is related to Figure 31D&E. MITHrIL (using KEGG pathways; left) and 

Reactome pathway analysis (right) was used to assess top meta-pathways for  A549 lung alveolar cells¬ +/- transduction with human ACE2 

(A549-ACE2), at low and high multiplicity of infection (MOI), and in cultured human airway epithelial (Calu-3) cells. according to impact 

(circle size) and significance (color-gradient for adjusted p-value). The accumulator is the accumulation of all perturbations computed for that 

particular pathway. 
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iv) 

 
Figure S5 Resulted top pathways significantly affected by 2DG. A)NHBE; B) Calu-3; C)A549 MOI 0.2; D) A549 MOI 2.0 E) A549-

ACE-2 MOI 0.2; F) A549-ACE-2 MOI 0.2. 
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Figure S6 Resulted top pathways significantly affected by Acalabrutinib. A)NHBE; B) Calu-3; C)A549 MOI 0.2; D) A549 MOI 2.0 

E) A549-ACE-2 MOI 0.2; F) A549-ACE-2 MOI 0.2. 
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Figure S7 Resulted top pathways significantly affected by Dexamethasone. A)NHBE; B) Calu-3; C)A549 MOI 0.2; D) A549 MOI 2.0 

E) A549-ACE-2 MOI 0.2; F) A549-ACE-2 MOI 0.2. 
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Figure S8 Resulted top pathways significantly affected by Everolimus. A)NHBE; B) Calu-3; C)A549 MOI 0.2; D) A549 MOI 2.0 E) 

A549-ACE-2 MOI 0.2; F) A549-ACE-2 MOI 0.2. 
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Figure S9 Resulted top pathways significantly affected by Hydroxychloroquine (HCQ). A)NHBE; B) Calu-3; C)A549 MOI 0.2; D) 

A549 MOI 2.0 E) A549-ACE-2 MOI 0.2; F) A549-ACE-2 MOI 0.2. 
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Figure S10 Resulted top pathways significantly affected by Metformin. A)NHBE; B) Calu-3; C)A549 MOI 0.2; D) A549 MOI 2.0 E) 

A549-ACE-2 MOI 0.2; F) A549-ACE-2 MOI 0.2. 
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Figure S11 Resulted top pathways significantly affected by Methylprednisolon. A)NHBE; B) Calu-3; C)A549 MOI 0.2; D) A549 

MOI 2.0 E) A549-ACE-2 MOI 0.2; F) A549-ACE-2 MOI 0.2. 


