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Riassunto 

Il miglioramento genetico delle piante coltivate, iniziato circa 10.000 anni fa, è basato su un 

complesso processo di selezione della variabilità genetica al fine di creare nuove varietà più 

produttive, resistenti a malattie, capaci di adattarsi a condizioni climatiche sfavorevoli ed in generale 

capaci di soddisfare i bisogni delle società umane. Sostenere l’innovazione varietale, significa 

supportare l’agricoltura del futuro per far fronte ai cambiamenti climatici e alla crescita esponenziale 

della popolazione mondiale, e rendere più sostenibile l’agricoltura. 

Tra gli strumenti a disposizione del miglioratore genetico (breeder), la selezione genomica o 

predizione genomica ha recentemente cominciato a trovare ampie applicazioni nel mondo vegetale. 

Questa metodologia combina dati fenotipici e genotipici per creare modelli predittivi in grado di 

stimare gli indici genomici (Genomic Estimated Breeding Values), invece di identificare singoli 

marcatori associati ai caratteri di interesse da utilizzare nei programmi di selezione assistita da 

marcatori. Per un dato carattere, gli indici genomici rappresentano una stima del valore genetico di 

un individuo basata sui marcatori molecolari. Con la predizione genomica, famiglie di individui o 

collezioni di accessioni (training population) sono utilizzati per costruire il modello predittivo, 

utilizzando sia dati fenotipici sia dati genotipici. Successivamente il modello predittivo è applicato 

ad individui dei quali si conoscono solamente i dati genotipici (breeding population) per stimare gli 

indici genomici usando solamente i marcatori molecolari (Capitolo 1). 

Nel presente progetto di ricerca, questa metodologia è stata applicata e valutata per la prima volta 

su una popolazione Multi Parent Advanced Generation Inter-crosses sviluppata da 8 parentali di orzo 

invernale ripetutamente inter-incrociati e autofecondati seguendo uno schema basato su incroci 

diallelici. Questa popolazione Multi Parent Advanced Generation Inter-crosses è stata genotipizzata 

mediante il “50K SNP chip” e fenotipizzata per la resa in granella e data di fioritura in ambienti 

temperati e semi-aridi rappresentativi dei diversi areali di coltivazione dell’orzo in prove di campo 

organizzate in diversi anni ed in condizioni azotate standard ed a basso input. Combinando le 

informazioni genotipiche e fenotipiche, in questo progetto di ricerca è stata ottimizzata e validata la 

dimensione ottimale della training population al fine di sviluppare diversi modelli di predizione 

genomica per singolo ambiente (SE-GP) e multi-ambiente (ME-GP) (Capitolo 2). 

Successivamente, la stessa training population, è stata fenotipizzata per l’angolo delle radici 

seminali, il numero delle radici seminali e l’andamento dell’indice di traspirazione in funzione 

dell’umidità relativa. Questi caratteri sono stati scelti perché, sulla base di altri studi condotti in altri 

cereali (frumenti, mais e sorgo), risultano essere particolarmente rilevanti in quanto correlati 

all’architettura delle radici nella pianta matura e connessi alla resa ed alla tolleranza alla siccità. Dopo 

aver correlato l’angolo delle radici seminali, il numero delle radici seminali e l’andamento dell’indice 

di traspirazione in funzione dell’umidità relativa con la resa in granella ottenuta in diversi ambienti, 

questi dati sono stati utilizzati per creare modelli di predizione genomica implementati con il metodo 

GBLUP standard e con “threshold GBLUP” (Capitolo 3).  

Gli obiettivi del presente progetto di ricerca sono: 

1) Testare e verificare la performance della predizione genomica nelle linee Multi Parent 

Advanced Generation Inter-crosses di orzo per selezionare linee con una maggiore resa in 

granella usando modelli “single and multi-environment”; 

2) Verificare la variabilità delle linee Multi Parent Advanced Generation Inter-crosses per 

l’angolo delle radici seminali, il numero delle radici seminali e l’andamento dell’indice di 

traspirazione in funzione dell’umidità relativa; 

3) Creare modelli di predizione genomica per l’angolo delle radici seminali, il numero delle radici 

seminali e l’andamento dell’indice di traspirazione. 
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Abstract 

The genetic improvement of crops, started circa 10.000 years ago, is based on a complex process 

of selection of genetic variation to create varieties that are 1) resistant to diseases, 2) capable of 

adapting to unfavorable climatic conditions, 3) high-yielding and 4) fit for purpose for the needs of 

human society. Varietal innovation is pivotal to underpin the agriculture of the future and cope with 

climate change and the exponential growth of the world population.  

Among the tools in the breeders’s toolbox, genomic selection or genomic prediction is gaining 

momentum and is becoming popular for genetic improvement of crops. This methodology aims to 

regress genome-wide single nucleotide polymorphisms or other types of DNA markers on phenotypes 

of individuals to simultaneously predict their effects. The population of individuals having both 

phenotypic and genotypic information is named training population and is used for constructing 

predictive models, which allow to compute “Genomic Estimated Breeding Values” in individuals for 

which only genotyping information is available (breeding population). Typically, the predictive 

models used in GP require to regress a large number of predictors (DNA markers) that greatly exceeds 

the number of observations or phenotypes and several parametric and non-parametric models have 

been proposed to deal with overfitting and the ‘large p, small n’ problem as in these conditions the 

estimation of marker effects using ordinary least squares method is not practicable (Chapter 1). 

In the present work, genomic prediction has been implemented and investigated on a panel of Multi 

Parent Advanced Generation Inter-crosses population of barley. This population was created crossing 

eight winter genotypes following “half-diallel” crosses. The resulting panel of Multi Parent Advanced 

Generation Inter-crosses lines was genotyped using the barley 50K SNP chip and was phenotyped in 

different site-by-season and site-by-season-by-management combinations to examine grain yield and 

heading date. Using phenotypic and genotypic information, models for grain yield predictions have 

been fitted and cross-validated using single-environment- and multi-environment-genomic prediction 

models (Chapter 2).  

Subsequently, the same panel of barley Multi Parent Advanced Generation Inter-crosses was 

phenotyped for belowground and physiological traits related to drought tolerance and grain yield. 

Particularly, these lines were phenotyped for seminal root number, seminal root angle and 

transpiration rate response to increasing evaporative demand. Standard and threshold models were 

subsequently fitted and cross-validated to predict these traits, which might support ideotype breeding 

for dry environments (Chapter 3). 

The aims of this project are: 

1) Testing and assessing the performance of genomic prediction on Multi Parent Advanced 

Generation Inter-crosses to select high-yielding barley lines. 

2) Examining the variability of Multi Parent Advanced Generation Inter-crosses lines for seminal 

root number, seminal root angle and transpiration rate to increasing evaporative demand. 

3) Developing, fitting and cross-validating genomic prediction models for seminal root number, 

seminal root angle and transpiration rate to increasing evaporative demand to underpin ideotype 

breeding for crop improvement. 
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Barley (Hordeum vulgare ssp. vulgare L.) 

Chapter 1: General Introduction and aim of the Ph.D. research thesis 

1 Barley (Hordeum vulgare ssp. vulgare L.) 

1.1 Use of barley for food and feed production and its economic importance 

To date, barley (Hordeum vulgare ssp. vulgare L.) ranks fourth among the most important 

worldwide cereal crops in terms of total grain production and acreage after wheat (Triticum aestivum 

L.), rice (Oryza sativa L.), and maize (Zea mays L.). Overall, the global barley grain production 

(Figure 1A) in 2019 was around 158.9 million tonnes (Mt), among them 95.6 Mt were produced in 

Europe, followed by Asia (~25.5 Mt), America (~21.6 Mt), Oceania (~9.2 Mt) and Africa (~6.8 Mt). 

The global barley acreage (Figure 1B) in 2019 was around 51.1 million hectares (Mha), of which 

around 50% were located in Europe (~24.2 Mha), followed by Asia (~12.5 Mha), America (~5.7 

Mha), Oceania (~4.4 Mha) and Africa (~4.1 Mha), while the acreage devoted to barley cultivation in 

the Mediterranean area (South Europe and North Africa) was around 3 Mha, 261 Kha of which were 

located in Italy (http://faostat.fao.org). 

 

Figure 1: World trend of annual barley production and cultivation areas from 1960 to 2019. 

(A) Annual barley production in different world areas and (B) areas devoted to barley cultivation in 

Africa, Americas, Asia, Europe, Oceania and Mediterranean region (Northern Africa and Southern 

Europe), respectively. 

 
 

Barley is one of the oldest crops cultivated by mankind as it was domesticated 10.000 years ago in 

the Fertile Crescent (Salamini et al. 2002). Since its domestication, farmers and breeders have 

succeeded to adapt and cultivate this crop in different environmental conditions and currently, barley 

farming is widespread from extreme Northern latitudes to desertic areas of North Africa. Unlike 

wheat, barley is more tolerant to drought, which is one of the most important environmental stress in 

agriculture, particularly in the Mediterranean region (Cattivelli et al. 2008; Giraldo et al. 2019; Ullrich 

2014). Along with durum wheat (Triticum durum Desf.), barley is a staple food for several rural 

populations of North Africa (Grando and Macpherson 2005).  

http://faostat.fao.org/
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Barley is mainly used as animal feed and circa 75% of its global production is devoted to this 

purpose (Langridge 2018). Compared to other cereals (e.g. maize and sorghum), barley has excellent 

nutritional characteristics such as higher contents of neutral (18%) and acidic (from 6 to 7%) detergent 

fibers in kernels, for being used as feed as these compounds allow to maximize the animal digestion 

(Bleidere and Gaile 2012). 

Circa 20% of its global production (Langridge 2018) is used to supply the malting and brewery 

industry: beer is obtained from the alcoholic fermentation of sugars deriving from starchy sources, 

the most used of which is malt, that is germinated cereal grains that have been appropriately dried. 

Barley plays a key role in the brewing industry since barley malt is an excellent substrate for yeast 

fermentation and beer production (Gupta, Abu-Ghannam, and Gallaghar 2010).  

The remaining part of the barley global production (circa 5%) is used as staple food (Langridge 

2018; Tricase et al. 2018). Barley is considered as a functional food since a regular barley 

consumption provides health benefits reducing the risk of chronic diseases (Donato-Capel et al. 2014; 

Lee 2017). These health benefits have been attributed to the high content of β-glucans (from 4 to 9%) 

and non-starch polysaccharides present in the endosperm, which are significantly higher than in other 

cereals (Gupta et al. 2010). Several studies have shown that diets based on barley grain help to prevent 

insulin resistance and type 2 diabetes, excessive cholesterol blood level (Ramakrishna et al. 2017), 

coronary heart diseases and colorectal cancer (Ahmad et al. 2012; Din et al. 2018).  

In Italy, there is mounting economic interest for this crop and consequently the number of seeds 

companies engaged in barley breeding programs is increasing (http://www.sementi.it): ISEA 

Agroservice SpA (https://www.agroservicespa.it) is one of these Italian seeds companies devoted to 

the improvement of barley and is directly involved in this industrial Ph.D. project.  

 

1.2 Trend of barley yield in Europe and North-Africa 

Globally, barley yield per hectare has grown linearly from 1.3 t/ha in 1960 to 3.1 t/ha in 2019 

(http://faostat.fao.org). Particularly, in 2019 Europe has recorded the highest value (~3.9 t/ha) 

followed by Americas (~3.7 t/ha), Oceania (~2 t/ha), Asia (~2 t/ha) and Africa (~1.6 t/ha) (Figure 2). 

Recent estimates point out that 28% of the yield increase observed in the last decades was obtained 

targeting barley genetics, corroborating the importance of barley breeding to increase grain yield 

(GY). In north-Italy, barley yield was circa 4.2 t/ha in 2019 (http://faostat.fao.org). 

Although these spectacular achievements obtained at the global level, barley yield in certain 

marginal and stressful areas and in North Africa is still stagnating and was on average 1.3 t/ha in 2019 

(Figure 2). Overall, in the Mediterranean region, the growth of the barley yield is not sufficient to 

guarantee food security for next years, especially for rural human populations of North Africa. 

Moreover, in North Africa and Southern Europe, barley yield follows a fluctuating trend, which might 

potentially threaten rural populations (Figure 2).  

The main reasons that underlie the ample difference in barley yield between North Africa and 

Europe is due to environmental factors that impose abiotic stresses (e.g., drought and water 

availability), inefficient agronomic practices due to the lack of means and equipment to implement 

high-input agricultural practices, the lack of affordable crop protection chemicals to manage pests 

and diseases and the insufficient genetic progress due to the lack of adapted and high-yielding barley 

varieties (Pswarayi et al. 2008). 

http://www.sementi.it/
https://www.agroservicespa.it/
http://faostat.fao.org/
http://faostat.fao.org/
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Figure 2: World trend of barley yield per hectare (t/ha) from 1960 to 2019. Different points and 

regression lines indicate barley yield in Africa, Americas, Asia, Europe, Oceania and Mediterranean 

region (Northern Africa and Southern Europe).  

 

2 Targeting barley genetics to improve grain yield: a short list of popular methods 

2.1 Empirical breeding and phenotypic selection to improve barley 

The success of barley breeding programs relies on effective selection of individuals carrying 

favorable alleles, which has been historically addressed in crops using phenotypic selection (PS), that 

is the selection of the individuals exhibiting the greatest phenotypic values as parents to mate for 

generating following progeny. PS relies on the genetic variability of traits in natural or segregating 

populations, that is populations artificially created by crossing two or more different genotypes. 

Depending on the type of fertilization, schemes for crop improvement have been historically 

classified in breeding for predominantly self-fertilizing species and breeding for predominantly 

outcrossing species. Barley has evolved floral structures that ensure a high percentage of self-

pollination and consequently, breeding concepts and schemes aimed at improving this crop are those 

developed and applied to predominantly self-fertilizing (autogamous) species (Barcaccia and 

Falcinelli 2006; Lynch and Walsh 1997). 

The two key components that enable breeding for crop improvement are 1) a source of genetic 

variability and 2) the phenotypic evaluation of the traits of interest for selecting the best individuals 

that fit for purpose. The most common approach to create ex novo variability in autogamous species, 

like barley, consists in crossing two or more inbred parents to generate highly diverse and 

heterozygous offspring. Crossing of inbred lines allows to shuffle parental genes, which in turn 

generate new allele combinations and genetic variability. In barley, as well as in other predominantly 
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autogamous crops, continuous cycles of self-fertilizations of F1 offspring create homogeneous 

descendant as the percentage of homozygous loci progressively increases with the number of 

generations (Table 1).  

 

Table 1: Expected trend of the percentage of heterozygous loci as function of self-fertilization 

cycles. For each generation of self-fertilizations, the percentage of heterozygosity decreases as the 

percentage of homozygosity increases. 

Homozygous loci Heterozygous loci Number of self-fertilizations 

0% 100% 0 

50% 50% 1 

75% 25% 2 

87.5% 12.5% 3 

93.75% 6.25% 4 

96.875% 3.15% 5 

 

In F1 offspring of predominantly autogamous plants, heterozygosity decreases at each generation 

of self-pollination, while the fraction of homozygotes loci increases over generations (Table 1). 

Considering a hybrid genotype with 𝑛 allelic pairs in heterozygous condition, the fraction of 

homozygous loci after 𝑚 segregating generations is equal to the following formulas (Barcaccia and 

Falcinelli 2006):  

𝑭𝒉𝒐𝒎𝒛 = [
(𝟐𝒎−𝟏)

𝟐𝒎
]
𝒏

        Equation 1 

𝑭𝒉𝒆𝒕𝒆𝒓 = 𝟐 𝒑 𝒒 (
𝟐 𝒕

𝟐−𝒔
)       Equation 2 

where 𝑝 and 𝑞 indicate the allele frequencies for A and a, 𝑠 and 𝑡 indicate the self-fertilization rate 

and the crossing rate. Consequently, self-pollinating species quickly bring individuals to complete 

homozygosity, namely obtaining a ‘pure line’, simply defined as set of individuals derived by self-

pollination from a homozygous progenitor. Equation 1 and Equation 2 (Barcaccia and Falcinelli 

2006) allow to compute the level of homozygosity and heterozygosity maintained in the population 

after n generations of self-fertilizations, respectively. 

Several breeding schemes have been proposed and developed for predominantly autogamous 

species in combination with PS to exploit the variability of both natural (e.g., mass selection and 

modified mass selection) or segregating populations artificially created by crossing inbred lines (e.g., 

pedigree method).  

2.1.1 Cereal traits that might be targeted to cope with climate change 

Climate change is the result of the greenhouse effect caused by gases developed through various 

activities, which include livestock farming and fossil fuel consumption. It is a global phenomenon 

that has repercussions in all fields of agriculture, resulting from innumerable anthropic activities. The 

future effects of climate change have been predicted by the Global Circulation Model (GCM), which 

projects a rise in the global average temperatures between 0.9 and 2.16 °C, and a variation of rainfall 

between -24 and +24% (Arneth et al. 2019; Cammarano et al. 2019). Furthermore, the report 

published in 2018 by the Intergovernmental Panel on Climate Change showed that exceeding the 

threshold limit of 1.5 °C foreseen in 2040, would have catastrophic effects in all aspects of human 

societies (Masson-Delmotte et al. 2018). Climate change is a global phenomenon that has a different 

impact at local level and specifically in the Mediterranean is expected to increase the frequency of 

drought episodes and heat waves, which in turn will be causing important yield losses in cereal crops 
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during the next years (Xie et al. 2018). These two phenomena have been already observed during the 

last years and represent the main concerns for rainfed Mediterranean agriculture.  

This dangerous trend along with the increase of world population, which will reach almost 10 

billion people by 2050 (http://faostat.fao.org), is increasing worldwide interest on genetic 

improvement of crops to cope with climate change and underpin food security (Lobell et al. 2008). 

For these reasons, beyond PS and classical breeding schemes, new breeding strategies and tools are 

needed to sustain barley yield since this crop plays a relevant role for ensuring food security, 

especially in North Africa. In fact, in these regions, which are characterized by harsh living conditions 

and dry environments, barley is one of the major staple food along with durum wheat and plays a 

relevant role for ensuring food security intended as ‘risk of adequate food not being available’ 

(Chakraborty and Newton 2011). In this context, direct phenotypic selection for improving GY is 

ineffective for two main reasons: 1) this trait shows, in general, low levels of heritability when tested 

in field trials organized in stressful conditions and 2) the confounding environmental effects are high, 

and it is difficult to obtain a strong selection response. 

To overcome these limitations, breeding programs often adopt indirect selection to achieve the 

expected genetic gain of a primary trait. Unlike direct selection, indirect selection allows the selection 

of a primary trait by selecting one or more directly correlated secondary traits. This methodology is 

useful when the primary trait to be selected has a low heritability. Some barley traits that might be 

targeted for indirect selection of GY, coping with climate change and improving drought tolerance 

are belowground traits (BGTs) and plant transpiration rate (TR). 

Improvement of BGTs has the potential to increase water extraction from soil layers for efficiently 

capturing residual moisture (El Hassouni et al. 2018). Moreover, these traits have important 

implications in the breeding programs for their relationship with GY (Robinson et al. 2018). In barley 

and in other cereals, seminal roots (SR) are the first roots differentiated from the embryonic root that 

allows the development of the primary root system. Differently, nodal roots (NR) begins at the 

tillering stage from the basal nodes of the crown (Wahbi and Gregory 1995). 

The number of radical axes obtained from the primary roots is known as seminal root number 

(SRN) (Figure 3). Several studies carried out in cereal crops have pointed out that modern and high-

yielding cultivars show lower values of SRN and inefficient root architectures for water-limiting 

environments (de Dorlodot et al. 2007), which are probably the result of selection for high input 

agriculture. The different root architecture and SRN of modern barley cultivars compared to barley 

landraces corroborate this latter hypothesis (Figure 4). 

 

Figure 3: Image of seminal roots collected in barley using the clear pot method analyzed in this 

study. This image was taken eleven-day days after sowing in barley seedlings, removing from the 

substrate. 

 

http://faostat.fao.org/
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Figure 4: Development and differentiation of seminal roots in barley (de Dorlodot et al. 2007). 

(A) Seminal roots in barley wild relatives, (B), modern cultivars and (C) barley landraces. 

 
 

The angle obtained by measuring the axes of the SR primary roots is known as seminal root angle 

(SRA) (Figure 5). The modulation of SRA has beneficial effects in several crops: in beans wide SRA 

allows the development of varieties that better absorb the phosphorus found in the surface soil (Lynch 

and Brown 2001); in bread wheat it was shown that less productive cultivars tend to have a wide root 

angle while the more productive and drought tolerant genotypes have a narrow root angle (Manschadi 

et al. 2008). This experimental evidence indicates that SRA is, in certain crops, a proxy trait for the 

root architecture system at the mature stage of development and has a fundamental role in the 

absorption of nutrients and water from the soil and in regulating plant growth (Robinson et al. 2018). 

As there is a significant genetic correlation between GY and the aforementioned BGTs (El Hassouni 

et al. 2018), SRA and SRN might be used for indirect selection of high-yielding genotypes in dry 

environments.  

 

Figure 5: Image of seminal root angle measured in barley genotypes using the clear pot method 

analyzed in this study. In this image, seminal root angle was measured five days after sowing with 

a digital camera using ImageJ software (https://imagej.nih.gov). 

 

https://imagej.nih.gov/
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Targeting barley genetics to improve grain yield: a short list of popular methods 

Several non-invasive methods have been developed to phenotype BGTs including the clear pot 

methodology (Richard et al. 2015), space-planted field pasta strainer (basket) method (El Hassouni 

et al. 2018), 3D magnetic resonance imaging (MRI) (Van As 2007), 2D-imaging techniques 

exploiting X-ray absorption and light transmission (de Dorlodot et al. 2007) or, for example, in 

substrate-filled rhizoboxes (Jia et al. 2019). To date, BGTs (SRA and SRN) have been phenotyped in 

different barley populations such as advanced backcross DH population of a cross between spring 

and wild barley (Sayed et al. 2017), for panels of two-rowed spring barley genotypes (Robinson et al. 

2018), for wild barley introgression lines (Naz et al. 2014) and for panels of mostly unrelated 

landraces (Hamada et al. 2012; Jia et al. 2019) but they have never been measured in MAGIC 

populations of barley. 

Another proxy trait for drought tolerance is the transpiration rate (TR), which is evaluated against 

increasing values of vapor pressure deficit (VPD), that is the difference between the vapor pressure 

in ambient conditions and the vapor pressure at the point of saturation for the same temperature 

(Rashed 2016). The regulation of TR under increasing VPD conditions is a relevant factor affecting 

the agronomic adaptation of wheat and barley to Mediterranean environments limited by water. 

Medina et al. (2019), showed how the different response can be correlated with different 

performances in terms of GY and biomass. In barley the analysis of TR in response to increasing 

VPD values is lagging behind but there is evidence that in durum wheat and in other cereal crops TR 

varies according to two main trends: 1) genotypes that show a linear TR trend to increasing VPD 

values and 2) genotypes showing a segmented TR trend to increasing VPD values. In durum wheat, 

genotypes showing this latter trend have been correlated with increasing drought tolerance in field 

conditions (Medina et al. 2019). Like durum wheat, other research works have shown that barley 

genotypes can exhibit linear and segmented TR response to increasing VPD conditions (Sadok and 

Tamang 2019) and the analyses carried out in the panel of barley lines examined in this research work 

have shown variability for this trait (Figure 6). 

 

Figure 6: Trend of transpiration rate under increasing vapor pressure deficit in the panel of 

barley population analyzed in this study. (A) lines exhibiting a segmented transpiration rate to 

increasing values of vapor pressure deficit; (B) lines showing a linear transpiration rate in response 

to increasing vapor pressure deficit values. 
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2.2 Genomic tools for enabling molecular breeding in barley 

2.2.1 Barley reference sequence 

The knowledge of barley genomics has the potential to accelerate barley breeding as it allows to 

investigate the genetic bases of agronomically important traits to enable marker assisted selection 

(MAS) and to better implement genomic prediction (GP) in breeding programs. Barley is a diploid 

plant (2n) and has a genome size of 5.3 gigabases (Gb) distributed across seven chromosomes named 

from 1H to 7H (Monat et al. 2019). The barley genome structure is characterized by approximately 

80.2% of repetitive elements, of which 74% of long terminal repeats (LTRs) retrotransposon and 

5.39% of DNA Transposon Superfamily (Monat et al. 2019; Wicker et al. 2017). Barley genes are 

unevenly distributed across the seven chromosomes as the telomeric ends have a higher gene content 

than the centromeric regions. 

To date, several reference sequences of barley are currently available in GenBank 

(http://plants.ensembl.org). The first reference version of barley cv. Morex was constructed using 

bacterial artificial chromosome (BAC), and BAC-by-BAC sequencing (Mascher et al. 2017). This 

reference sequence was later improved using the TRITEX pipeline (Monat et al. 2019), which uses a 

completely different approach compared to BAC-by-BAC sequencing. Beyond these genomic 

resources based on barley cv. Morex, Schreiber et al. (2020) have recently assembled the reference 

sequence of barley cv. Golden Promise, a Scotland spring two-row malting and whisky barley, 

integrating data from several technologies. The cv. Golden Promise is the most efficient genotype for 

genetic transformations (e.g. Cisgenesis, Genome editing), and for this reason it is considered as 

"Transformation Reference" in barley (Schreiber et al. 2020). Recently, other additional 19 reference 

sequences of barley obtained from a set of genetically distant genotypes were recently assembled to 

investigate the barley pan-genome (Jayakodi et al. 2020). In this research work, the SNPs used to 

develop GP models refer to the sequence of barley cv. Morex published in 2017 (Mascher et al. 2017).  

2.2.2 Tools for rapid SNP fingerprinting 

Single Nucleotide Polymorphisms (SNPs) are the most popular markers used in crop improvement 

programs as they have several advantages compared to other type of DNA markers like Restriction 

Fragment Length Polymorphism (RFLP), Simple Sequence Repeats or Microsatellites (SSR), 

Random Amplification of Polymorphic DNA (RAPD), Amplified Fragment Length Polymorphism 

(AFLP) and Inter Simple Sequence Repeats (ISSR) (Khlestkina and Salina 2006). Unlike RAPD, 

ISSR and AFLP, SNPs mark a single position on the genome and in addition they are codominant 

markers, that is they allow to distinguish heterozygous and homozygous genotypes. SNPs are prone 

to be analyzed using high-throughput technologies like chip arrays, which uses sets of probes that 

have the capability to interrogate specific genome positions. The 50k Illumina Infinium iSelect SNP 

chip array is a specific barley chip that interrogates 44.040 known SNP positions on the reference 

genome of barley and compared to other SNP typing technologies, this chip provides faster and more 

robust results (Bayer et al. 2017). 

3 Regression models 

A statistical model is a mathematical representation with which the data obtained from a given 

experiment are analyzed. In general, a model has the objective of evaluating the relationship between 

a response variable and a set of predictor variables as follows: 

 

VARIABLE = PREDICTORS + ERROR 

http://plants.ensembl.org/
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Regression models 

In this research work, four types of statistical models were extensively used to analyze experimental 

data (e.g., field trials, experiments carried out in controlled conditions) and for implementing genomic 

prediction. These four types of statistical models are known as linear models (LM), linear mixed 

models (LMM), generalized linear model (GLM) and generalized linear mixed model (GLMM). 

3.1 Linear model and linear mixed model 

In this research work, linear models were used to regress a set of 𝑛 independent variables (𝑋1, 𝑋2, 

𝑋3, … 𝑋𝑛) with dependent variable (𝑌) for estimating the effects obtained from the fixed values. In 

LM 𝑦 is continuous variable while 𝑋1, 𝑋2, 𝑋3, … 𝑋𝑛 can be either continuous or discrete variables.  

A typical equation describing a LMs is: 

 

𝒚𝒊 = 𝝁      } mean 

 + 𝒂𝟏𝑿𝟏𝒊 + 𝒂𝟐𝑿𝟐𝒊 + 𝒂𝟑𝑿𝟑𝒊 +…𝒂𝒏𝑿𝒏𝒊 } coefficients + fixed variables  

 + 𝒆𝒊       } error terms   Equation 3 

 

Equation 3 is a system of several equations that can be re-written as:  

𝑦1 = 𝜇 + 𝑎1𝑋11 + 𝑎2𝑋21 + 𝑎3𝑋31 +…𝑎𝑛𝑋𝑛1 + 𝑒1 

𝑦2 = 𝜇 + 𝑎1𝑋12 + 𝑎2𝑋22 + 𝑎3𝑋32 +…𝑎𝑛𝑋𝑛2 + 𝑒2 

𝑦3 = 𝜇 + 𝑎1𝑋13 + 𝑎2𝑋23 + 𝑎3𝑋33 +…𝑎𝑛𝑋𝑛3 + 𝑒3 

… 

𝑦𝑖 = 𝜇 + 𝑎1𝑋1𝑖 + 𝑎2𝑋2𝑖 + 𝑎3𝑋3𝑖 +…𝑎𝑛𝑋𝑛𝑖 + 𝑒𝑖 
 

This system of equations can be re-written using a matrix notation that is 𝒚 =  𝒂𝑿 +  𝒆: 

[
 
 
 
 
𝑦1
𝑦2
𝑦3
⋮
𝑦𝑖 ]
 
 
 
 

=

[
 
 
 
 
1
1
1
⋮
1]
 
 
 
 

𝜇 +

[
 
 
 
 
𝑋11 𝑋21 𝑋31 ⋯ 𝑋𝑛1
𝑋12 𝑋22 𝑋32 ⋯ 𝑋𝑛2
𝑋13
⋮
𝑋1𝑖

𝑋23
⋮
𝑋2𝑖

𝑋33
⋮
𝑋3𝑖

⋯
⋯
⋯

𝑋𝑛3
⋮
𝑋𝑛𝑖 ]

 
 
 
 

 

[
 
 
 
 
𝑎1
𝑎2
𝑎3
⋮
𝑎𝑛]
 
 
 
 

+

[
 
 
 
 
𝑒1
𝑒2
𝑒3
⋮
𝑒𝑖 ]
 
 
 
 

    Equation 4 

 

where 𝑦𝑖 is the response value, 𝑎𝑛 are the set of coefficients associated to the independent variables 

(𝑋1, 𝑋2, 𝑋3, … 𝑋𝑛), also known as fixed effects and 𝑒𝑖 is the error associated to each response. In 

general, the main aim of LM is to estimate the fixed parameters 𝑎1, 𝑎2, 𝑎3, … 𝑎𝑛 using Best Linear 

Unbiased Estimators (BLUEs) (Legendre 1805). The main assumption of LM are that: 1) errors are 

independent and normally distributed ~N(0, 𝜎𝑒
2) with mean of zero and constant variance 𝜎𝑒

2 

(homoscedasticity); 2) experimental data are obtained from a random extract from a population of X, 

𝑦 units for which the linear relationship applies; 3) for each X value we have a 𝑦 values normally 

distributed ~N(0, 𝜎𝑎
2) with the mean located on the regression line. 

BLUEs of model parameters are usually obtained using the least squares method, first introduced 

by Legendre (1805), which allows to choose the best regression line that minimizes the sum of the 

differences as much as possible. Therefore, the formula for computing 𝑎𝑛 is: 

 

 𝒂𝒏 = 
𝑪𝒐𝒗 (𝑿𝒏𝒊,𝒚𝒊)

𝑽𝒂𝒓(𝑿𝒏𝒊)
         Equation 5 

 

where 𝐶𝑜𝑣 (𝑋𝑛𝑖, 𝑦𝑖) is the covariance between dependent and independent variables and 𝑉𝑎𝑟(𝑋𝑛𝑖) is 

the variance of the dependent variable. 

Linear mixed models were used to regress: 1) a set of 𝑛 independent variables (𝑋1, 𝑋2, 𝑋3, … 𝑋𝑛) 

with dependent variable (𝑌) for estimating the effects obtained from the fixed values; 2) a set of 𝑛 
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independent variables (𝑍1, 𝑍2, 𝑍3, … 𝑍𝑛) with dependent variable (𝑌) for estimating the effects 

obtained from the random values. In LMM 𝑦 is continuous variable while 𝑋1, 𝑋2, 𝑋3, … 𝑋𝑛 and 𝑍1, 

𝑍2, 𝑍3, … 𝑍𝑛 can be either continuous or discrete variables.  

A typical equation describing a LMMs is: 

 

 𝒚𝒊𝒋 = 𝝁         } mean  

+𝒂𝟏𝑿𝟏𝒊 + 𝒂𝟐𝑿𝟐𝒊 + 𝒂𝟑𝑿𝟑𝒊 +…𝒂𝒏𝑿𝒏𝒊  } coefficients + fixed variables 

+ 𝒃𝟏𝒁𝟏𝒋 + 𝒃𝟐𝒁𝟐𝒋 + 𝒃𝟑𝒁𝟑𝒋 +…𝒃𝒏𝒁𝒏𝒋    } coefficients + random variables   

+ 𝒆𝒊𝒋       } error terms   Equation 6 

 

Therefore, the Equation 6 is a system of several equations that can be re-written as: 

𝑦11 = 𝜇 + 𝑎1𝑋11 + 𝑎2𝑋21 + 𝑎3𝑋31 +…𝑎𝑛𝑋𝑛1 +  𝑏1𝑍11 + 𝑏2𝑍21 + 𝑏3𝑍31 + …𝑏𝑛𝑍𝑛1 + 𝑒11 

𝑦22 = 𝜇 + 𝑎1𝑋12 + 𝑎2𝑋22 + 𝑎3𝑋32 +…𝑎𝑛𝑋𝑛2 +  𝑏1𝑍12 + 𝑏2𝑍22 + 𝑏3𝑍32 + …𝑏𝑛𝑍𝑛2 + 𝑒22 

𝑦33 = 𝜇 + 𝑎1𝑋13 + 𝑎2𝑋23 + 𝑎3𝑋33 +…𝑎𝑛𝑋𝑛3 +  𝑏1𝑍13 + 𝑏2𝑍23 + 𝑏3𝑍33 + …𝑏𝑛𝑍𝑛3 + 𝑒33 

… 

𝑦𝑖𝑗 = 𝜇 + 𝑎1𝑋1𝑖 + 𝑎2𝑋2𝑖 + 𝑎3𝑋3𝑖 +…𝑎𝑛𝑋𝑛𝑖 +  𝑏1𝑍1𝑗 + 𝑏2𝑍2𝑗 + 𝑏3𝑍3𝑗 +…𝑏𝑛𝑍𝑛𝑗  + 𝑒𝑖𝑗 

 

This system of equations can be re-written using a matrix notation that is 𝒚 =  𝒂𝑿 + 𝒃𝒁 +  𝒆 

[
 
 
 
 
𝑦11
𝑦22
𝑦33
⋮
𝑦𝑖𝑗 ]
 
 
 
 

=

[
 
 
 
 
1
1
1
⋮
1]
 
 
 
 

𝜇 +

[
 
 
 
 
𝑋11 𝑋21 𝑋31 ⋯ 𝑋𝑛1
𝑋12 𝑋22 𝑋32 ⋯ 𝑋𝑛2
𝑋13
⋮
𝑋1𝑖

𝑋23
⋮
𝑋2𝑖

𝑋33
⋮
𝑋3𝑖

⋯
⋯
⋯

𝑋𝑛3
⋮
𝑋𝑛𝑖 ]

 
 
 
 

 

[
 
 
 
 
𝑎1
𝑎2
𝑎3
⋮
𝑎𝑛]
 
 
 
 

+

[
 
 
 
 
𝑍11 𝑍21 𝑍31 ⋯ 𝑍𝑛1
𝑍12 𝑍22 𝑍32 ⋯ 𝑍𝑛2
𝑍13
⋮
𝑍1𝑗

𝑍23
⋮
𝑍2𝑗

𝑍33
⋮
𝑍3𝑗

⋯
⋯
⋯

𝑍𝑛3
⋮
𝑍𝑛𝑗]

 
 
 
 

 

[
 
 
 
 
𝑏1
𝑏2
𝑏3
⋮
𝑏𝑛]
 
 
 
 

+

[
 
 
 
 
𝑒11
𝑒22
𝑒33
⋮
𝑒𝑖𝑗 ]
 
 
 
 

 

Equation 7 

 

where 𝑦𝑖𝑗 is the response value, 𝑎𝑛 are the set of coefficients associated to the independent variables 

(𝑋1, 𝑋2, 𝑋3, … 𝑋𝑛), also known as fixed effects, 𝑏𝑛 are the set of coefficients associated to the 

independent variables (𝑍1, 𝑍2, 𝑍3, … 𝑍𝑛) also known as random effects and 𝑒𝑖𝑗 is the error associated 

to each response. In general, the main aim of LMM is to estimate the fixed parameters 𝑎1, 𝑎2, 𝑎3, … 

𝑎𝑛 using BLUE and random parameters 𝑏1, 𝑏2, 𝑏3, … 𝑏𝑛 using Best Linear Unbiased Prediction 

(BLUP). Briefly, least squares (Legendre 1805) and shrinkage or “linear unbiased prediction” 

(Robinson 1991) are used to estimate fixed and random effects, respectively. 

In order to highlight this difference, a practical example is presented using the top eight Italian 

barley varieties (Alastro, Alimini, Aquirone, Atlante, Enticel, Funky, Futura, Idra) evaluated in 6 

replicas for GY (ql/ha) in a single environment. The adjusted means, BLUP and BLUE (Figure 7), 

were estimated considering the genotype as a fixed or random effect, respectively, following the 

formula shown below: 

 𝒚𝒊𝒋 =  µ + 𝑹𝒆𝒑𝒊 + 𝑮𝒆𝒏𝒋 + 𝜺𝒊𝒋       Equation 8 

 

where 𝑦𝑖𝑗 is the response value GY, µ is the mean, 𝑅𝑒𝑝𝑖 are the 6 replicates, 𝐺𝑒𝑛𝑗 are the top eight 

best Italian barley varieties and 𝜀ij is the errors independent and normally distributed ~N(0, 𝜎𝜺
2). As 

shown in Figure 7, the random effect causes a shift towards the mean of the genotypes, highlighting 

its difference with the fixed effect. Indeed, while a fixed effect assumes genotypes as independent 

and separate, a random effect assumes that they are interrelated and interdependent representative of 

a large set of levels, which may not even be observed. 
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Figure 7: BLUEs and BLUPs estimation of GY (ql/ha) in 6 replicas of the top eight best Italian 

barley varieties through LMs and LMMs. Different colored points and its line of barley production 

Alastro, Alimini, Aquirone, Atlante, Enticel, Funky, Futura and Idra, respectively. 

 

3.2 Generalized linear model and generalized linear mixed model 

Generalized linear models extend the linear model to variables that are not normally distributed 

and are characterized by three components: 1) response variable 𝑌, 2) a link function connecting the 

response variable to the set of linear predictors and 3) a set of linear predictors 𝜂𝑖 having the following 

form: 

𝜼𝒊 = 𝒂𝟏𝑿𝟏𝒊 + 𝒂𝟐𝑿𝟐𝒊 + 𝒂𝟑𝑿𝟑𝒊 +…𝒂𝒏𝑿𝒏𝒊      Equation 9 

 

Equation 9 is a system of several equations that can be re-written as:   

𝜂1 = 𝑎1𝑋11 + 𝑎2𝑋21 + 𝑎3𝑋31 +…𝑎𝑛𝑋𝑛1 

𝜂2 = 𝑎1𝑋12 + 𝑎2𝑋22 + 𝑎3𝑋32 +…𝑎𝑛𝑋𝑛2 

𝜂3 = 𝑎1𝑋13 + 𝑎2𝑋23 + 𝑎3𝑋33 +…𝑎𝑛𝑋𝑛3 

… 

𝜂𝑖 = 𝑎1𝑋1𝑖 + 𝑎2𝑋2𝑖 + 𝑎3𝑋3𝑖 +…𝑎𝑛𝑋𝑛𝑖 
 

This system of equations can be re-written using a matrix notation that is 𝜼 =  𝒂𝑿: 

[
 
 
 
 
𝜂1
𝜂2
𝜂3
⋮
𝜂𝑖 ]
 
 
 
 

=

[
 
 
 
 
𝑋11 𝑋21 𝑋31 ⋯ 𝑋𝑛1
𝑋12 𝑋22 𝑋32 ⋯ 𝑋𝑛2
𝑋13
⋮
𝑋1𝑖

𝑋23
⋮
𝑋2𝑖

𝑋33
⋮
𝑋3𝑖

⋯
⋯
⋯

𝑋𝑛3
⋮
𝑋𝑛𝑖 ]

 
 
 
 

 

[
 
 
 
 
𝑎1
𝑎2
𝑎3
⋮
𝑎𝑛]
 
 
 
 

       Equation 10 

 

where 𝜂𝑖 is the linear predictor, 𝑎𝑛 are the set of coefficients associated to the independent variables 

(𝑋1, 𝑋2, 𝑋3, … 𝑋𝑛). The link function 𝑔() connects the response variable to the set of linear predictors 

𝜂𝑖 as follows: 
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𝒈(µ𝒊) =  𝜼𝒊 = 𝒂𝒏𝑿𝒏𝒊        Equation 11 

Equation 11 can be re-written as an inverse link function as follows: 

 µ𝒊 = 𝒈
−𝟏(𝜼𝒊) =  𝒈

−𝟏(𝒂𝒏𝑿𝒏𝒊)        Equation 12 

For each probability distribution, there are different link function such as identity, log, inverse, 

inverse-square, logit and probit. For instance, the identity function is associated with a normal 

distribution and the expected value of the dependent variable is just the linear predictor.  

The main aim of GLM is to estimate the fixed parameters 𝑎1, 𝑎2, 𝑎3, … 𝑎𝑛. Finally, like LMMs, 

generalized linear mixed models are an extension of GLMs that includes random effects. Therefore, 

the main aim of GLMM is to estimate the fixed parameters 𝑎1, 𝑎2, 𝑎3, … 𝑎𝑛 using BLUE and random 

parameters 𝑏1, 𝑏2, 𝑏3, … 𝑏𝑛 using BLUP.  

4 Field trial analysis 

Field variability originates from soil heterogeneity and non-uniformity and is one of the most 

important confounding factors that must be considered in trial analyses carried out during breeding 

programs as it can increase the variances of errors and masks the genetic variation that underlies the 

traits of interest (Araus and Cairns 2014). There are plenty of factors that cause soil heterogeneity 

and non-uniformity and generally the larger is the field trial, the greater is the internal variability: it 

is generally observed that in field trials the same genotype grown in adjacent plots tends to have 

similar yield or trait values than the same genotype grown in distant plots.  

There are different experimental designs that allow to control field variability and correct the 

phenotypic values measured in field trials considering these environmental factors. The most popular 

experimental designs adopted for analyzing field trials are the Randomized Complete-Block Designs 

(RCBD) and the alpha-lattice. These experimental designs are conveniently analyzed using LMs or 

LMMs and depending on whether the genotypes are considered as random or fixed variables, allow 

to compute the adjusted phenotypic values using BLUPs or BLUEs, respectively. Therefore, the 

adjusted means are pivotal to analyze field trial data.  

4.1 Randomized complete block design 

RCBD is a widely used experimental design used for field trial analyses, particularly when the 

number of treatments (e.g., the number of lines to test) is limited. The experimental unit of the RCBD 

is the block and RCBD assumes that these blocks are homogeneous, that is there is no variability 

within each block and that each block contains all treatments (e.g., all the lines that must be examined) 

(Figure 8). 

 

Figure 8: Graphical representation of a RCBD. This experimental design consists of two blocks 

or replicates and nine treatments (e.g., different genotypes). Each block contains all treatments and 

RCBD assumes that these blocks are homogeneous. 

 
Breeders uses RCBD to estimate the effect of each treatment (e.g., plant genotype) and assume that 

the raw phenotypic values are the sum of the block effects, the treatment effect plus a random error.  
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Using LMs or LMMs, a RCBD can be formalized as follows:  

𝒚𝒊𝒋 =  µ + 𝑹𝒆𝒑𝒊 + 𝑮𝒆𝒏𝒋 + 𝑪𝒐𝒗 + 𝜺𝐢𝐣       Equation 13 

 

where 𝑦𝑖𝑗 is the raw phenotypic value of the trait of interest measured in the replicate 𝑖𝑡ℎ for the 

genotype 𝑗𝑡ℎ, µ is the overall mean, 𝑅𝑒𝑝 is the effect of replicate 𝑖𝑡ℎ, 𝐺𝑒𝑛 is the effect of the genotype 

𝑗𝑡ℎ, 𝐶𝑜𝑣 might indicate another covariate that can exert its effect on trait 𝑦 while 𝜀 is the error 

associated with the phenotypic value measured in the replicate 𝑖𝑡ℎ for genotype 𝑗𝑡ℎ. Moreover, this 

model assumes 𝜀𝑖𝑗~𝑁(0, 𝜎𝜀
2), that is, the error terms 𝜀 is independent and normally distributed with 

mean 0 and variance 𝜎𝜺
2. With RCBD, breeders are interested to estimate the effect of treatments, in 

our case the effect of genotype 𝐺𝑒𝑛. Depending on the purpose, genotypes might be treated as random 

or fixed effects. Regardless whether genotypes are considered as random or fixed effects, their effects 

computed with Equation 13 are usually indicated as adjusted means. 

4.2 Alpha-lattice 

Like RCBD, the alpha-lattice design is widely used in field trial analyses when the number of 

treatments (e.g., the number of lines to test) is large. The experimental units of the alpha-lattice design 

are the blocks, which are assumed to be homogeneous, that is there is no variability within each block 

and contain only a part of all treatments (e.g., all the lines that must be examined) (Figure 9). 

 

Figure 9: Graphical representation of an alpha-lattice design. In this design there are six blocks 

(three blocks per replicate) and nine treatments (e.g., different genotypes). Each block contains only 

a subset (3) of all treatments. 

 
Breeders use alpha-lattice to estimate the effects of each treatment (e.g., plant genotype) and 

assume that the phenotypic values are the sum of the block effects on each replication, the replicates, 

the treatment effect plus a random error. Using LMs or LMMs, an alpha-lattice design can be 

formalized as follows:  

 

𝒚𝒊𝒋𝒌 =  µ + 𝑹𝒆𝒑𝒊 + 𝑩𝒍𝒐𝒄𝒌𝒋(𝑹𝒆𝒑𝒊) + 𝑮𝒆𝒏𝒌 + 𝑪𝒐𝒗 + 𝜺𝒊𝒋𝒌    Equation 14 

 

where 𝑦𝑖𝑗𝑘 is the phenotypic value of the trait of interest measured in the replicate 𝑖𝑡ℎ of the block 𝑗𝑡ℎ 

for the genotype 𝑘𝑡ℎ, µ is the overall mean, 𝑅𝑒𝑝 is the effect of replicate 𝑖𝑡ℎ, 𝐵𝑙𝑜𝑐𝑘 is the effect of 

block 𝑗𝑡ℎ on replication 𝑖𝑡ℎ, 𝐺𝑒𝑛 is the effect of the genotype 𝑘𝑡ℎ, 𝐶𝑜𝑣 might indicate another 

covariate that can exert its effect on trait 𝑦 and 𝜀 is the error associated with the phenotypic value 

measured in the replicate 𝑖𝑡ℎ of the block 𝑗𝑡ℎ for genotype 𝑘𝑡ℎ. Moreover, this model assumes 

𝜀𝑖𝑗𝑘~𝑁(0, 𝜎𝜀
2), that is the error terms 𝜀 are independent and normally distributed with mean 0 and 

variance 𝜎𝜺
2.  

Using the alpha-lattice design, breeders are interested to estimate the effect of treatments, in our 

case the effect of genotype 𝐺𝑒𝑛. Regardless whether genotypes considered as random or fixed effects, 

the effects of genotypes computed with Equation 14 are usually indicated as adjusted means. 
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4.3 Multi environmental Trials 

The estimation of genotypic effects from Equation 13 (or Equation 14) does not allow to further 

dissect them in additive and interaction effects. Consequently, the estimation of the genotypic effects 

conducted in a single environment might not be reliable owing to the confounding effects of genotype 

x environment interaction. Multi-environmental trials (METs) are field trials organized in different 

site-by-season combinations using pre-defined experimental designs (e.g., RCBD or alpha-lattice) 

and allow to better estimate the genotypic values of the lines tested. This can be demonstrated 

comparing the models of single and multi-environmental trials organized using RCBD. A model 

describing a multi-environmental trial organized using RCBD can be described as follows: 

 

𝒚𝒊𝒋𝒌 =  µ + 𝑬𝒏𝒗𝒊 + 𝑹𝒆𝒑𝒋(𝑬𝒏𝒗𝒊) + 𝑮𝒆𝒏𝒌 +  𝑮𝒆𝒏𝒌 𝐱 𝑬𝒏𝒗𝒊 + 𝑪𝒐𝒗 + 𝜺𝐢𝐣𝐤  Equation 15 

 

where 𝑦𝑖𝑗𝑘 is the phenotypic value of the trait of interest measured in the replicate 𝑗𝑡ℎ for the genotype 

𝑘𝑡ℎ in environment 𝑖𝑡ℎ, µ is the overall mean, 𝐸𝑛𝑣 is the effect of the environment 𝑖𝑡ℎ, 𝑅𝑒𝑝 is the 

effect of replicate 𝑗𝑡ℎ on each environment 𝑖𝑡ℎ, 𝐺𝑒𝑛 is the effect of the genotype 𝑘𝑡ℎ, 𝐺𝑒𝑛 𝑥 𝐸𝑛𝑣 is 

the interaction effect between genotype 𝑘𝑡ℎ and environment 𝑖𝑡ℎ, 𝐶𝑜𝑣 is the effect of covariate and 𝜀 

is the error associated with the phenotypic value measured in the replicate 𝑗𝑡ℎ for genotype 𝑘𝑡ℎ in 

environment 𝑖𝑡ℎ. Moreover, this model assumes 𝜀𝑖𝑗𝑘~𝑁(0, 𝜎𝜀
2), that is the error terms 𝜀 are 

independent and normally distributed with mean 0 and variance 𝜎𝜺
2.  

The comparison of Equation 13 with Equation 15 shows that the effects of genotypes 𝐺𝑒𝑛 in 

single-environmental trial is further dissected in  𝐺𝑒𝑛𝑘 and  𝐺𝑒𝑛𝑘 x 𝐸𝑛𝑣𝑖 terms in Equation 15. In 

other words, METs allow to estimate genotype x environment interaction effects and provide better 

estimate of the additive values. Similarly, METs organized with alpha-lattice designs provide better 

estimates of genetic effects. A model describing a MET organized using alpha-lattice can be described 

as follows: 

𝒚𝒊𝒋𝒌𝒍 = µ + 𝑬𝒏𝒗𝒊 + 𝑹𝒆𝒑𝒋(𝑬𝒏𝒗𝒊) + 𝑩𝒍𝒐𝒄𝒌𝒌(𝑬𝒏𝒗𝒊 𝑹𝒆𝒑j) + 𝑮𝒆𝒏𝒍 +  𝑮𝒆𝒏𝒍 𝒙 𝑬𝒏𝒗𝒊 + 𝑪𝒐𝒗 + 𝜺𝒊𝒋𝒌𝒍
           Equation 16 

 

where 𝑦𝑖𝑗𝑘𝑙 is the phenotypic value of the trait of interest measured in the replicate 𝑗𝑡ℎ of the block 

𝑘𝑡ℎ for the genotype 𝑙𝑡ℎ  and in environment 𝑖𝑡ℎ, µ is the overall mean, 𝐸𝑛𝑣 is the effect of the 

environment 𝑖𝑡ℎ, 𝑅𝑒𝑝 is the effect of replicate 𝑗𝑡ℎ on environment 𝑖𝑡ℎ, 𝐵𝑙𝑜𝑐𝑘 is the effect of block on 

replication 𝑗𝑡ℎ and environment 𝑖𝑡ℎ, 𝐺𝑒𝑛 is the effect of the genotype 𝑙𝑡ℎ, 𝐺𝑒𝑛 𝑥 𝐸𝑛𝑣 is the interaction 

effect between genotype 𝑙𝑡ℎ and environment 𝑖𝑡ℎ, 𝐶𝑜𝑣 is the effect of covariate and 𝜀 is the error 

associated with the phenotypic value measured in the replicate 𝑗𝑡ℎ of the block 𝑘𝑡ℎ for genotype 𝑙𝑡ℎ 

in environment 𝑖𝑡ℎ. Moreover, this model assumes 𝜀𝑖𝑗𝑘𝑙~𝑁(0, 𝜎𝜀
2), that is, the error terms 𝜀 are 

independent and normally distributed with mean 0 and variance 𝜎𝜺
2.  

Like RCBD, the comparison of Equation 14 with Equation 16 shows that the effects of genotypes 

𝐺𝑒𝑛 computed in single-environmental trial can be further dissected in  𝐺𝑒𝑛𝑘 and  𝐺𝑒𝑛𝑘 x 𝐸𝑛𝑣𝑖  using 

Equation 16 and then METs allow to estimate genotype x environment interaction effects and 

provide better estimate of the genetic values. 

5 Multi-parent Advanced Generation Inter-Crosses population 

A Multi-parent Advanced Generation Inter-Crosses (MAGIC) population is a collection of related 

plants obtained inter-crossing a set of founder lines for several generations in each single line (Huang 

et al. 2015). MAGIC population are an extension of the advanced inter-crossing (AIC) lines created 

for the first time in mice (Yalcin, Flint, and Mott 2005) and later in plants.  
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In cereal crops, MAGIC populations have been developed and established for rice (Chen et al. 

2013; Han et al. 2020; Ogawa et al. 2018), maize (Dell’Acqua et al. 2015; Jiménez-Galindo et al. 

2019), bread wheat (Huang et al. 2012; Mackay et al. 2014; Milner et al. 2016; Rebetzke et al. 2014; 

Sannemann et al. 2018; Shah et al. 2019; Stadlmeier, Hartl, and Mohler 2018; Thépot et al. 2014), 

sorghum (Ongom and Ejeta 2018) and barley including an eight-way population of 5000 DH 

(Sannemann et al. 2015) and another of 324 MAGIC lines F6 32-way (Bülow, Nachtigall, and Frese 

2019). MAGIC populations were explicitly developed for genetic research purpose as they allow to 

increase power and precision for detecting and mapping quantitative trait loci (QTLs) (Cavanagh et 

al. 2008; Huang et al. 2015). In cereal crops, MAGIC populations were used to map QTLs that 

underlie several key traits (Arrones et al. 2020) such as site-related to agronomic adaptation (Bülow 

et al. 2019), flowering time (Sannemann et al. 2015), plant height (Huang et al. 2012; Milner et al. 

2016; Sannemann et al. 2018), test weight (Huang et al. 2012), coleoptile length, thickness, shoot 

length (Rebetzke et al. 2014), grain yield (Milner et al. 2016) and powdery mildew resistance 

(Stadlmeier et al. 2018). Usually, the set of founder lines used to construct MAGIC populations, is 

composed by 8 or 16 different parents, although MAGIC population can be constructed using more 

founders. As shown in Figure 10, two are the commonly used schemes to construct MAGIC 

populations. In the first scheme, namely funnel scheme (Arrones et al. 2020; Huang et al. 2015), the 

eight parents are crossed to obtain 4 F1 hybrid populations. In the next stage, individuals from pairs 

of these F1 hybrid populations are inter-mated to generate 2 double-cross F2 populations. Similarly, 

individuals of these two F2 populations are intermated to create a population of individuals, which is 

self-fertilized for several generations to create inbred lines. The second approach for creating MAGIC 

populations is based on diallel cross (Arrones et al. 2020; Hayman 1954) where the eight parents are 

crossed in all possible combination both as male and female (full-diallel) or only as male or female 

(half-diallel).  

 

Figure 10: Graphical representation of schemes to construct 8-way MAGIC. The eight parents, 

(Hatif de Grignon, Dea, Robur and Athene, Ponente, Ketos, Aldebaran and Fridericus) of 6-rowed 

barley varieties are crossed as biparental population (funnel) or in all possible combination (diallel) 

for several generations to obtain a mosaic genome of MAGIC. 
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The development of MAGIC lines is time consuming, nevertheless Doubled Haploid (DH) 

technology allows to shorten their creations. DHs are obtained using in vitro culture of anthers or 

pollen or ovaries or egg cells, to which phytohormones are applied for stimulating cell divisions and 

forming the callus, which is the undifferentiated mass of meristematic cells from which a plant 

develops. This technology is often used to speed up the creation of MAGIC population instead of 

applying self-fertilizing cycles (Sannemann et al. 2015). 

6 Genomic selection (GS) 

Genomic selection (GS), also known as genomic prediction (GP), is a promising tool that can be 

used for accelerating the genetic gain of barley breeding and for coping with climate change 

(Abberton et al. 2016). GP aims to regress genome-wide single nucleotide polymorphisms (SNPs) or 

other types of DNA markers on phenotypes of individuals to simultaneously predict their effects 

(Meuwissen, Hayes, and Goddard 2001) and combines phenotypic and genotypic data using a training 

population (TP) to create predictive models for computing the “Genomic Estimated Breeding Values” 

(GEBVs). In GP, this predictive model is subsequently applied to individuals for which only 

genotyping information is available for ranking individuals based on their predicted performance or 

GEBVs. This latter collection of individuals having only genotypic information is known as breeding 

population (BP). In GP, a third set of individuals, defined as validation population (VP), might be 

optionally genotyped and phenotyped to validate the predictive ability of GP models, that is the 

accuracy of GP models, without using complex cross validation schemes (Figure 11).  

Like the breeding values (BV) introduced in the animal models (Henderson 1977), GEBVs point 

out the genetic merit of individuals that might be mated for the following generation, but are 

computed using molecular markers. In GP, the prediction of GEBVs is carried out for a TP of plants 

using different types of statistical models, which aim to fit the observed phenotypic values of the TP 

along with their genomic profiles.  

GP is a cutting-edge methodology that allows reducing selection cycles and efficiently capturing 

both major and minor gene effects using whole-genome marker regression without knowing the QTLs 

that underlie target traits (Desta and Ortiz 2014; Meuwissen et al. 2001; Xu et al. 2020). Although 

this methodology was described almost 20 years ago (Meuwissen et al. 2001), it is now gaining 

momentum in plant breeding although its application requires genotyping of many loci. 

Unlike MAS, GP allows efficiently capturing both major and minor gene effects using whole-

genome marker regression without knowing the QTLs that underlie target traits (Cavanagh et al. 

2008; Huang et al. 2015). GP exceeds the MAS limits for complex traits (e.g., grain yield, drought 

tolerance), based on the interaction of many genes and low heritability.  

MAGIC population has never been used along with a GP methodology and, potentially, this 

approach is a revolutionary method that combines good prediction accuracy and training population 

model recycling for several breeding populations. This approach allows to obtain a GP model that 

can theoretically be used for different breeding programs. 

6.1 Genomic predictive ability and cross validation schemes 

One of the parameters for evaluating GP models is the accuracy. Model accuracy (rA), or predictive 

ability points out the Pearson’s correlation coefficient between the unknown true BV and the GEBVs. 

In practice, the true BV of plants are unknown quantities and model accuracy is usually computed 

between GEBVs and the phenotypic values or other estimators (e.g., adjusted means). In GP, model 

accuracy depends on several genetic factors such as LD, size and genetic diversity of the TP, number 
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of markers and genetic relationship between training and breeding populations (Crossa et al. 2017) 

according to the following formula: 

 𝒓𝑨 = √
𝒉𝟐

𝒉𝟐 + 
𝑴𝒆
𝑵𝒑

        Equation 17 

where ℎ2 is the narrow sense heritability, 𝑁𝑝 is the number of individuals in a TP, and 𝑀𝑒 is the 

number of independent chromosome segments, which in turn depend on and consider the extent of 

LD. There are different approaches for estimating the accuracy of GP models: 1) use of a VPs and 2) 

cross-validation (CV) schemes, which do not require examining additional individuals for computing 

model accuracy (Figure 11).  

 

Figure 11: Example of GP applied to MAGIC lines phenotyped for GY and genotyped using 

50K SNP array. The TP is used to predict GEBVs for individuals that have only genotypic 

information (BP) using parametric and semi-parametric regressions. Finally, the GP accuracy is 

achieved using either the VP approach or the Cross-Validation approach (CV1 and CV2). 

 
 

The first approach for estimating the accuracy combines phenotypic and genotypic data using a TP 

to create predictive models to compute GEBVs of VPs. Subsequently, Pearson’s correlation 

coefficient between GEBVs and the phenotypic values or other estimators (e.g., adjusted means) of 

VPs are used to estimate the prediction accuracy of GP model. The use of VP implies that additional 
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resources for genotyping these individuals are available along with phenotypic data. Unlike the use 

of VPs, CV schemes allow estimating GP model accuracy without investing resources for 

fingerprinting other individuals. Using CV the different data used as TP are recursively divided into 

training sets and test sets, which in turn are used to calculate the average accuracy of the models (Jia 

2017). 

The CV approach can be applying for single environment or multi-environments GP models and 

two main CV schemes can be pursued. Cross validation 1 (CV1) can be applied to either single-

environment or multi-environment GP models and allows predicting GEBVs of individuals that have 

not been evaluated in any environment (Bandeira e Sousa et al. 2017). Cross validation 2 (CV2) can 

be applied to multi-environment GP models and allows predicting GEBVs for individuals that have 

been evaluated in some environments but not included in other environments. Either CV1 or CV2 

can be implemented pursuing different strategies (Figure 11).  

In the leave-one-out (LOO) cross-validation n GP models using the n lines of the TP are created 

(Gianola and Schon 2016). These models are created recursively using n-1 lines of the TP and 

computing the GEBV for the line excluded from the model. At the end of this procedure, the Pearson’s 

correlation coefficient between GEBVs and phenotypic values or other estimators (e.g., adjusted 

means) is used to estimate the accuracy of GP model (Figure 12).  

Using random cross-validation n lines of TP were randomly selected for x times (Roorkiwal et al. 

2016). Therefore, the accuracy values are obtained from each randomization and estimated through 

the Pearson’s correlation between the phenotypic values or other estimators (e.g. adjusted means) and 

GEBVs. Then, the mean and standard deviation GP models are estimated (Figure 13).  

Finally, K-fold cross-validation consists in randomly partitioning k portions of population with 

genotypic and phenotypic information (Jia 2017). At each cycle, a GP model is created using k -1 

portions while the remaining individuals are used as a test to compute the Pearson’s correlation 

coefficient between GEBVs and phenotypic values or other estimators (e.g., adjusted means) for 

estimating the accuracy of GP model. 

 

Figure 12: Graphical representation of leave-one out CV approach. The prediction accuracy was 

estimated recursively creating n predictive models, using n-1 lines of the training population and 

calculating the GEBV for the line excluded from the model. 
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Figure 13: Graphical representation of random CV approach. Through the random assignment n 

times of n individuals in the training population, the mean and standard deviation of the prediction 

accuracy of n models were estimated. 

 

6.2 A deeper review of the statistical models that underlie GP 

The models used for genomic selection can be summarized as follows: 

 

𝒚𝒊 =  𝒇 (𝒙𝒊) + 𝜺𝒊         Equation 18 

 

where 𝒇 (𝒙𝒊) represents the parametric or semi-parametric functions and 𝜺𝒊 is the residual error with 

normal distribution.  

Alternatively, using matrix notation, the vector of phenotypic observations 𝑦 for a given trait can be 

written as an LMM: 

 

𝒚 = 𝑿𝜷 + 𝒁𝒖 + 𝒆        Equation 19 

 

where 𝑋 is the incidence matrix of fixed effects, 𝛽 is the vector of fixed effects, 𝑍 is the incidence 

matrix of random effects that in GP indicates molecular markers, 𝑢 is the vector of random effects 

that in GP points out the predicted effects of markers and 𝑒 is the vector of residual error terms. 

Equation 19 assumes that 𝑢~𝑁(0, 𝐺), that is the vector of random genetic effects follows a multi-

variate normal distribution with mean 0 and covariance structure equals to G matrix. Similarly, it 

assumes that 𝑒~(0, 𝐼𝜎𝑒
2), that is the terms of the error vector are independently normally distributed 

with mean 0 and variance structure equals to 𝜎𝑒
2. Moreover, it supposes that 𝑐𝑜𝑣(𝑢, 𝑒) = 0, that is 

that the vectors of random effects and of model errors are independent and not correlated. Generally, 

𝑦, 𝑋 and 𝑍 are known, while 𝛽 and 𝑢 must be estimated and predicted, respectively. Henderson’s 

mixed model equations (Henderson 1984) provide the mathematical solutions to compute the 

estimators of 𝛽 and 𝑢: 

�̂� = (𝑿𝑻𝑽−𝟏𝑿)−𝟏𝑿𝑻𝑽−𝟏𝒚       Equation 20 

�̂� = 𝑮𝒁𝑻𝑽−𝟏(𝒚 − 𝑿�̂�)       Equation 21 

where 𝑽 = 𝒁𝑮𝒁𝑻 + 𝑹. In the standard animal model (Henderson 1984), the covariance matrix 𝑮 of 

additive effects is modelled as 𝐺 = 𝜎𝐴
2𝐴, where 𝜎𝐴

2 is the variance of additive effects and 𝐴 is the 

additive genetic relationship matrix, which is usually based on pedigree, that is using expected 

relatedness between individuals. This 𝐴 matrix does not consider the actual genetic relationships 

between individuals as mendelian sampling causes deviation from the expected relatedness. In GP, 
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the matrix 𝐴 is replaced with the matrix of genomic relationship K, which is constructed using 

molecular markers. Unlike matrix 𝐴, K measures the relatedness between individuals considering 

mendelian sampling and allows to better estimate �̂� according to Equation 20 and Equation 21 

(VanRaden 2008). The incorporation of genomic information using matrix K leads to estimate marker 

effects using genomic BLUP (GBLUP) which has become of the most popular method used for 

implementing GP in plants and animals (VanRaden 2008). GP models implemented using Ridge 

Regression BLUP (RRBLUP) (Piepho et al. 2012) have been demonstrated to be equivalent to 

GBLUP (Habier et al. 2010). 

Referring to Equation 18, parametric and non-parametric methods are based on different 

hypotheses and algorithms and for this reason the accuracies and variances that can produce are 

different. Beyond the aforementioned GBLUP method described above, the most widely used 

parametric methods are BRR (Bayesian ridge regression), BayesA, BayesB and Bayesian LASSO 

(least absolute shrinkage and selection operator). Instead, the most popular non-parametric method is 

RKHS (Reproducing Kernel Hilbert space) regression. These methods, parametric and non-

parametric, aim to regress whole genome markers on phenotypes. 

7 Aim of the Ph.D. research thesis 

The main aim of this research project was to develop and validate genetic improvement 

methodologies based on genomic prediction to underpin barley breeding in the Mediterranean 

environments. 

The first objective (Chapter 2) was to characterize a new barley MAGIC population constructed 

with a diverse founder set of winter cultivars showing contrasting GY, which was examined across 

an ample range of site-by-season combinations characterized by different temperature and 

precipitation patterns.  

The second objective (Chapter 2) was to combine the phenotypic data of MAGIC collected across 

these field trials with genotypic information to fit different single-environment genomic prediction 

and multi environment genomic prediction models for empirically assessing the predictive ability in 

multi-parent populations. Moreover, we applied different untargeted optimization methods to this 

MAGIC population for assembling and benchmarking the performance of optimized TPs. Fitting SE-

GP and ME-GP models to MAGIC lines, we aimed at broadening the use of these experimental 

populations beyond classical QTL mapping and analysis of epistatic effects for sustaining and 

accelerating barley breeding. 

The third objective (Chapter 3) was to investigate the diversity and distribution of morphological 

and physiological traits in the same MAGIC barley population. We correlated phenotypic data of 

SRA, SRN and TR along with GY obtained in different site-by-season combinations to re-assess the 

relevance of belowground and physiological traits of seedlings for predicting drought-tolerant and 

drought-intolerant lines. Leveraging on phenotypic and genotypic information we fitted and cross-

validated different GP models using standard and threshold GBLUP and models for count data 

including additive interaction. We showed that these models can successfully predict SRA, SRN and 

TR and might pave the way for characterizing large plant collections while minimizing resources for 

phenotyping. 
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1 Abstract 

Multi-parent Advanced Generation Inter-crosses (MAGIC) lines have mosaic genomes that are 

generated shuffling the genetic material of the founder parents following pre-defined crossing 

schemes. In cereal crops, these experimental populations have been extensively used to investigate 

the genetic bases of several traits and dissect the genetic bases of epistasis. In plants, genomic 

prediction models are usually fitted using either diverse panels of mostly unrelated accessions or 

individuals of biparental families and several empirical analyses have been conducted to evaluate the 

predictive ability of models fitted to these populations using different traits. 

In this paper, we constructed, genotyped and evaluated a barley MAGIC population of 352 

individuals developed with a diverse set of eight founder parents showing contrasting phenotypes for 

grain yield. We combined phenotypic and genotypic information of this MAGIC population to fit 

several genomic prediction models which were cross-validated to conduct empirical analyses aimed 

at examining the predictive ability of these models varying the sizes of training populations. 

Moreover, several methods to optimize the composition of the training population were also applied 

to this MAGIC population and cross-validated to estimate the resulting predictive ability. Finally, 

extensive phenotypic data generated in field trials organized across an ample range of water regimes 

mailto:agostino.fricano@crea.gov.it
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and climatic conditions in the Mediterranean were used to fit and cross-validate multi-environment 

genomic prediction models including GxE interaction, using both genomic best linear unbiased 

prediction and reproducing kernel Hilbert space along with a non-linear Gaussian Kernel. 

Overall, our empirical analyses showed that genomic prediction models trained with a limited 

number of MAGIC lines can be used to predict grain yield with values of predictive ability that vary 

from 0.25 to 0.60 and that beyond QTL mapping and analysis of epistatic effects, MAGIC population 

might be used to successfully fit genomic prediction models. We concluded that for grain yield, the 

single-environment genomic prediction models examined in this study are equivalent in terms of 

predictive ability while, in general, multi-environment models that explicitly split marker effects in 

main and environmental-specific effects outperform simpler multi-environment models. 

2 Introduction 

The experimental design that underlies Multi-parent Advanced Generation Intercrosses (MAGIC) 

populations traces its origins to the advanced inter-cross lines, which were originally developed in 

animal model species (Yalcin et al. 2005). MAGIC populations are developed crossing multiple 

inbred parents or founders, which are subsequently inter-mated several times following pre-defined 

crossing schemes to shuffle founder genomes in each single line (Huang et al. 2015). In plants, 

MAGIC populations have been explicitly developed for genetic research purposes as they allow to 

increase power and precision for detecting and mapping quantitative trait loci (QTLs) (Cavanagh et 

al. 2008; Huang et al. 2015; Scott et al. 2020). Theoretically, MAGIC populations have the potential 

to dissect the genetic bases of complex traits at sub-centimorgan scale, allowing to overcome common 

issues related to the use of biparental families for QTL mapping and detection such as low-resolution 

power, low genetic diversity of parents and limited number of recombination events (Valdar, Flint, 

and Mott 2006). In cereal crops, MAGIC populations have been developed and established for rice 

(Bandillo et al. 2013; Ponce, Ye, and Zhao 2018), bread wheat (Mackay et al. 2014; Sannemann et 

al. 2018; Stadlmeier et al. 2018), maize (Dell’Acqua et al. 2015; Jiménez-Galindo et al. 2019) and 

barley (Mathew et al. 2018) and to date they have been deployed for unravelling the genetic bases of 

biotic and abiotic stresses, grain yield (GY) and seed quality traits. Beyond the aforementioned 

applications, barley MAGIC populations have been recently exploited to disentangle the effect of 

epistasis on flowering time (Afsharyan et al. 2020; Mathew et al. 2018; Sannemann et al. 2018). 

Similarly to MAGIC, the theory underlying genomic prediction (GP) was originally developed and 

deployed in animal species. The pivotal component of GP is a population of individuals having 

phenotypic and genotypic information, which is known as training population (TP) and is used to 

regress genome-wide single nucleotide polymorphisms (SNPs) or other types of DNA markers on 

phenotypes to simultaneously predict their effects (Meuwissen et al. 2001), that is for training GP 

models. Trained GP models are subsequently used in combination with the genotypic information of 

candidate individuals that must be selected for computing their genomic estimated breeding values 

(GEBVs) and ranking them to apply truncation selection (Heffner, Sorrells, and Jannink 2009; 

Meuwissen et al. 2001). This latter population of candidate individuals having only genotypic 

information is known as breeding population (BP) (Heffner et al. 2009; Meuwissen et al. 2001). To 

date, GP has been largely applied for crop improvement fitting GP models trained with individuals 

from either biparental families or diversity panels of mostly unrelated accessions. As the genetic 

relatedness of TP and BP affects the prediction ability of GP models (Ben Hassen et al. 2018; Norman 

et al. 2018), these two approaches have profound differences in terms of versatility as DNA marker 

effects estimated on diversity panels have the potential of a broader applicability and might be used 

in different breeding programs (Bassi et al. 2016), while GP models trained with individuals of 
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biparental families can allow to accurately predict the performance of offspring produced within the 

same cross.  

Typically, GP models require to regress a number of predictors (DNA markers) that greatly exceeds 

the number of observations or phenotypes and several parametric and non-parametric models have 

been proposed to deal with overfitting and the ‘large p, small n’ problem (Jannink, Lorenz, and Iwata 

2010; Meuwissen et al. 2001; Pérez and de los Campos 2014) as in these conditions the estimation of 

marker effects using ordinary least squares method is not practicable. A commonly used solution is 

to estimate marker effects jointly using the Least Absolute Shrinkage and Selection Operator 

(LASSO) method (Tishbirani 1996) and its Bayesian counterpart (Bayesian Lasso or BL), which uses 

a penalizing or regularization parameter (λ) that denotes the amount of shrinkage for regressing 

markers (De Los Campos et al. 2009). Other popular whole genome regression methods based on 

Bayesian theory are BayesA and BayesB (Meuwissen et al. 2001), which relax the assumption of 

common variance across marker effects adopted in other models (e.g. ridge regression) and allow 

each marker to have its own variance. Differently to BayesA, BayesB allows having markers with no 

effects in the model and theoretically assumes more realistic conditions as it is plausible that a large 

fraction of genome-wide markers does not contribute to explaining the observed phenotypic variance. 

Beyond these methods, whole genome regression based on reproducing kernel Hilbert space (RKHS) 

has been proposed and applied to implement GP models (Gianola and Kaam 2008; Gota and Gianola 

2014). In the RKHS regression, a reproducing kernel, that is any positive definite function for 

mapping from pairs of points in input space to other pairs of points, is used to transform DNA markers 

of individuals in square distance matrix that are used in a linear model (Gota and Gianola 2014). The 

Gaussian Kernel (GK) is one of the most common function used as reproducing kernel and depends 

on the bandwidth (or smoothing) parameter ℎ that controls the decay rate of the kernel as two points 

step away. Several studies have shown that the use of GK in combination with RKHS improves the 

prediction of genetic values if the bandwidth parameter h is correctly chosen (Pérez-Elizalde et al. 

2015). Moreover as RKHS regression does not assume linearity, this model might allow to better 

capture nonadditive effects without explicitly including epistatic interactions and dominance in GP 

models (Gianola and Kaam 2008). Differently from methods based on whole genome regression of 

markers, the genomic best linear unbiased prediction (GBLUP) method treats genomic values of 

individuals as random effects in a linear mixed model and uses a genomic relationship matrix based 

on DNA marker data to compute GEBVs (VanRaden 2008; Wang et al. 2018). Notably, the use of 

RKHS along with the genomic relationship matrix is equivalent to the mixed linear model of GBLUP, 

that is GBLUP method represents a special case of RKHS regression (Gota and Gianola 2014). 

The effectiveness of GP depends, among other factors, on the degree of correlation between 

GEBVs and true genetic values, that is the predictive ability of the model. In practice, the predictive 

ability is evaluated using the Pearson’s correlation coefficient between GEBVs and the realized 

phenotypes or other estimators (e.g. adjusted means). To date several empirical studies have been 

conducted for fitting GP models on biparental populations and panels of mostly unrelated accessions 

across different species and traits, which point out that, depending on the genetic architecture of the 

trait, each statistical model has its own advantages and disadvantages in term of predictive ability and 

estimation of marker effects (Ben Hassen et al. 2018; Heslot et al. 2012). Other factors that strongly 

influence the predictive ability are the size of the TP, its structure, and its relatedness with the BP 

(Desta and Ortiz 2014). Several targeted and untargeted methods have been developed to optimize 

the composition of TP for maximizing the predictive ability for a given set of individuals (Akdemir, 

Sanchez, and Jannink 2015; Rincent et al. 2012). Nevertheless, these methods generally generate 

trait-dependent TPs which might hamper the implementation of these procedures in real breeding 

programs.  
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The first objective of the present study was to create a new barley MAGIC population using a 

diverse founder set of old and new 6-rowed, winter cultivars showing contrasting GY, which was 

examined across an ample range of site-by-season combinations characterized by different 

temperature and precipitation patterns. The second objective of this study was to combine data 

collected across these field trials with genotypic information to fit different single-environment 

genomic prediction (SE-GP) and multi environment genomic prediction (ME-GP) models for 

empirically assessing the predictive ability in multi-parent populations. Moreover, we applied 

different untargeted optimization methods to this MAGIC population for assembling and 

benchmarking the performance of optimized TPs. Fitting SE-GP and ME-GP models to MAGIC 

lines, we aimed at broadening the use of these experimental populations beyond classical QTL 

mapping and analysis of epistatic effects for sustaining and accelerating barley breeding. 

3 Materials and Methods 

3.1 Development of the barley MAGIC population 

The MAGIC population used in this study was developed using a founder set of eight 6-rowed 

barley genotypes with a winter growth habit, which were selected on the basis of their pedigrees and 

similarity in days-to-heading (DH) (Table 1). At the first stage of MAGIC development, four F1 

populations were created crossing one of the four old 6-rowed barley varieties (Hatif de Grignon, 

Dea, Robur and Athene) with one of the four 6-rowed modern barley varieties (Ponente, Ketos, 

Aldebaran and Fridericus). At the second stage of MAGIC development, half-diallel crosses of these 

four F1 individuals were carried out to generate 6 sets of plants. Finally, these 6 sets of genotypes, 

each of which contained the alleles of four out eight founder parents, were appropriately crossed in 

predefined funnel schemes to combine the genome of the eight founders in single lines. Differently 

from the original crossing schemes developed for constructing MAGIC populations (Cavanagh et al. 

2008), instead of recursively self-fertilizing these plants for several generations, seeds of the eight-

way inter-crosses were sent to an external lab (SAATEN-UNION GmbH, Germany) to generate 352 

inbred MAGIC lines using doubled haploid technology. 

 

Table 1: Founder set of barley varieties that were intermated for creating the barley MAGIC 

population. For each genotype of the founder set, the adjusted means of days to heading (DH), plant 

height (PH) and grain yield (GY) scored in 8 different trials were reported along with available 

pedigree information. 

Genotype 
Year of 

release 

Country 

of 

release 

Pedigree 
DH 

(days) 

PH 

(cm) 

GY 

(t/ha) 

Hatif de 

Grignon 
1937 France Selection from French landraces 208.3 95.9 4.1 

Dea 1953 Germany 

((Ragusa x Peragis12) x (Heils 

Franken x Frw.Berg)) x ((Ragusa x 

Mahnd.Viktoria) (Ragusa x 

Bolivia)) 

212.1 95.3 6.0 

Robur 1973 France Ager x ( Hatif de Grignon x Ares) 208.3 78.8 6.3 

Athene 1977 Germany 
(Herfodia x Hord.sp.nigrum H204) 

x (Madru x Weissenhaus-Stamm) 
211.5 94.0 6.0 

Ponente 2001 Italy (Vetulkio x Arma) x Express 209.7 85.0 6.3 
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Ketos 2002 France 
(Gotic x Orblonde) x (12813 x 

91H595) 
208.6 81.9 6.8 

Aldebaran 2003 Italy Rebelle x Jaidor 208.5 83.0 7.2 

Fridericus 2006 Germany Carola x LP 6-564 211.6 89.3 7.3 

 

3.2 Field trials and plant phenotyping 

The MAGIC population of 352 inbred individuals and the eight founder parents (Table 1) were 

sown during the fall of two consecutive growing seasons (2015-2016 and 2016-2017) in Fiorenzuola 

d’Arda (Italy) at CREA-Centro di Genomica e Bioinformatica (44°55'39.0"N 9°53'40.6"E, 78 m 

above sea level), using an alpha-lattice design with two-replicates. The whole set of MAGIC and the 

founder parents were also sown during the fall of 2015-2016 growing season in Marchouch 

(Morocco) at the Experimental station (33°36'43.5"N 6°42'53.0"W, 390 m above sea level) of the 

“International Center for Agricultural Research in the Dry Areas” using the same experimental 

design. Similarly, the subset of 82 MAGIC lines included in the optimized TP (TP-Diverse) and the 

eight founder parents were sown during the fall in 2017-2018 and 2018-2019 growing seasons in 

Fiorenzuola d’Arda under two different levels of nitrogen fertilization using alpha lattice 

experimental designs with two replicates. Trials conducted under ideal nitrogen conditions were 

fertilized with 100 kg/ha of nitrogen applied in two doses: 50 kg/ha were used at the sowing and 50 

kg/ha were applied at the stem elongation stage. Field trials conducted under low nitrogen conditions 

received 50 kg/ha of nitrogen, 25 of which were applied at sowing while the remaining amount was 

applied at the stem elongation stage. In the growing season 2018-2019, other two field trials were 

conducted in Konya (Turkey) (37°53’37.9”N 32°37’26.0”E, 1005 m above sea level) and in Adana 

(Turkey) (36°59’52.9”N 35°20’28.0”E, 24 m above sea level) to phenotype the optimized TP (TP-

Diverse) using the same experimental design. For each trial considered in this study, plots of 3 square 

meters and a sowing density of 350 seeds per square meter were adopted, respectively. Local check 

cultivars were included as internal checks in all experiments to compare phenotypes with trait 

observations collected in past seasons. Common protocols were adopted for each trial to phenotype 

plant genotypes for GY and DH. Phenotyping of MAGIC lines for GY was conducted as follows: 

from each plot grains were collected using a combine harvester and the total grain weight recorded 

in each plot was converted in tonnes per hectare. DH was measured as the number of days between 

sowing date and the date of heading stage, which was defined when 50% of the plants in a plot were 

at Zadoks’ 55 growth stage (Zadoks et al., 1974). For each trial, phenotypic data of GY used in GP 

models were centred by subtracting the overall mean and standardized dividing by the sample 

standard deviation. 

3.3 Statistical models for computing the adjusted means of GY 

The adjusted means of GY were computed in each site-by-season combination and across 

environments including DH as fixed covariate using the approach described in Emrich et al., 2008. 

The resulting model for computing the adjusted means of GY collected in field trials organized 

according to alpha-lattice design was: 

 

𝐲𝐢𝐣𝐤  =  𝟏µ + 𝐑𝐞𝐩𝐢  + 𝐁𝐥𝐨𝐜𝐤𝒋(𝐑𝐞𝐩𝒊)  + 𝐆𝐞𝐧𝒌  + 𝐃𝐇𝒌 + 𝐞𝐢𝐣𝐤   Equation 1 

 

where yijk is the response variable, that is the raw GY, µ is the general mean, Repi is the effect of the 

𝑖𝑡ℎ replicate, Block𝑗(Rep𝑖)  is the effect of the 𝑗𝑡ℎ incomplete block within the 𝑖𝑡ℎ  replicate, Gen𝑘 is 

the random effect of the 𝑘𝑡ℎ genotype and DH is the effect of “Days-to-heading” covariate measured 
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in each plot. In this model it is supposed that the random effects of Gen𝑘 follow a normal distribution 

with mean 0 and variance 𝜎𝑔
2, that is Gen𝑘~𝑁𝐼𝐼𝐷(0, 𝜎𝑔

2), and similarly, the residual terms eijk are 

normally distributed with mean 0 and variance equals to 𝜎2, that is eijk~𝑁𝐼𝐼𝐷(0, 𝜎
2). The adjusted 

GY values obtained predicting the random terms Gen𝑘 from the aforementioned model were used as 

phenotypes for training GP models. The linear mixed model reported in Equation 1 was fitted for 

each site-by-season combination using R 3.6.2 statistical environment and lme4 package (Bates et al. 

2015) and variance components of fitted models were used to compute broad sense heritability (H2) 

of GY. 

3.4 Genotyping of genetic materials 

DNA was extracted from plant leaves using the Macherey Nagel Plant II extraction kit (Macherey 

Nagel, Dueren,Germany) and analyzed using gel electrophoresis and Quant-iT™ PicoGreen™ 

dsDNA Assay Kit (ThermoFisher,Grand Island NY, USA) following manufacturer’s instructions to 

assess quality and concentration, respectively. DNA samples were shipped to a propel-certified 

service provider (Trait Genetics GmbH, Gatersleben, Germany) and fingerprinted using the Illumina 

Infinium technology along with the Barley 50k iSelect SNP Array (Bayer et al. 2017). To update the 

physical positions of SNP markers interrogated with the Barley 50k iSelect SNP Array, probe sets 

used to design this array were mapped against the new reference sequence of barley (Monat et al. 

2019). The raw genotyping table was imported in R software using “synbreed” package (Wimmer et 

al. 2012) to filter out markers with more than 10% of missing data and impute remaining missing 

data using Beagle 4.1 (Browning and Browning 2016). 20 random leaf samples from field trials 

organized in Adana and Marchouch were genotyped using Illumina Infinium technology and Barley 

50k iSelect SNP Array to assess whether mislabelling of genotypes occurred during phenotyping 

operations and data collection. 

3.5 Clustering and linkage disequilibrium analyses of the MAGIC population 

Principal component analysis was used to assess the diversity of the whole MAGIC population and 

was carried on imputed SNP data of the 352 MAGIC lines and the eight founders using ade4 package 

along with R version 3.6.2 (Team R. Core. 2019; Thioulouse et al. 2018). The first two principal 

components were used to visualize the dispersion of MAGIC lines in a graph. Linkage disequilibrium 

between pairs of markers was measured using 𝑟2 (Hill and Robertson 2008) in the subset of MAGIC 

genotypes included in the optimized TP and computed using Plink 1.9 software (Chang et al. 2015; 

Purcell et al. 2007). 𝑟2 values showing p-values above 0.001 were filtered out, while the remaining 

pairwise 𝑟2 values were imported and examined with a custom script developed for R 3.6.2 (Team 

R. Core. 2019) to compute the mean 𝑟2 in 100 kb windows, which was plotted in R 3.6.2 using 

ggplot2 package (Wickham 2016). 

3.6 Statistical models used for fitting SE-GP 

SE-GP models were fitted using BayesA, BayesB and BL models (Meuwissen et al. 2001; Park 

and Casella 2008; Tishbirani 1996). Moreover, RKHS regression models were fitted using a linear 

GBLUP kernel (GB) and a non-linear GK (Gianola and Kaam 2008; Gota and Gianola 2014). For the 

GK, that is 𝐾(𝑥𝑖, 𝑥𝑖′) = 𝑒−(ℎ∗𝑑𝑖𝑖′
2 )

, where 𝑑𝑖𝑖′
2  points out the squared Euclidean distance between 

individuals 𝑖 and 𝑖′, the rate of decay imposed by the bandwidth parameter ℎ, was estimated using an 

empirical Bayesian methodology (Pérez-Elizalde et al. 2015) modifying published R codes (Cuevas 

et al. 2016). 
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3.7 Statistical models used for fitting ME-GP 

Beyond SE-GP models, the adjusted means of GY computed across different site-by-season 

combinations were fitted to three previously described ME-GP models. Following the model 

nomenclature reported in Bandeira e Sousa et al. ( 2017), these three models were indicated in this 

study as “multi-environment, main genotypic effect” (MM) model (Bandeira e Sousa et al. 2017; 

Jarquín et al. 2014; Lopez-Cruz et al. 2015), “multi-environment, single variance GxE deviation 

model” (MDs) (Bandeira e Sousa et al. 2017; Jarquín et al. 2014) and the “multi-environment, 

environment-specific variance GxE deviation model” (MDe) (Bandeira e Sousa et al. 2017; Lopez-

Cruz et al. 2015). Site-by-season combinations were considered as environments in MM, MDs and 

MDe regression models, which are briefly defined and summarized as follows. In the MM model, 

environments were considered as fixed effects while the random genetic effects were considered 

constant across all environments without modelling marker x environment interactions. Following 

matrix notation, the MM regression model is defined as follows: 

𝐲 = 𝟏𝛍 + 𝐙𝒆𝛃𝒆 + 𝐙𝒖𝐮 +  𝛆       Equation 2 

where y is the vector of observations collected in all environments, μ is the overall mean, Z𝑒 is the 

incidence matrix that connects observed phenotypes to the environments in which they were 

measured, β𝑒 is the vector of environmental fixed effects that must be estimated, Z𝑢 is an incidence 

matrix connecting genotypes with phenotypes for each environment, u is the vector of random genetic 

effects that must be predicted while ε is a vector of model residuals. In this model, marker genetic 

effects are assumed as u~𝑁(0, 𝜎𝜇0
2 𝐾), that is, they follow a multivariate normal distribution with 

mean and variance-covariance matrix equal to zero and 𝜎𝜇0
2 𝐾, respectively. The term 𝜎𝜇0

2  of the 

variance-covariance matrix is the variance of additive genetic effects across environments, while 𝐾 

can be either a genomic relationship matrix (VanRaden 2008) or a kernel function as discussed below. 

Model residuals of the vector ε are assumed to be independent and normally distributed with null 

mean and variance equal to 𝜎𝑒
2, that is ε~𝑁(0, 𝐼𝜎𝑒

2), where 𝐼 points out the identity matrix. Overall, 

the MM regression model estimates marker effects across all environments and does not split them 

in main marker effects and in environmental-specific effects as in MDs and MDe models. As already 

substantiated in Lopez-Cruz et al. (2015), for balanced field trial designs, MM is equivalent to fitting 

a genomic regression model using the average performance of each line across environments as 

phenotype. 

Differently from the MM model, the MDe model allows markers to assume different effects in each 

𝑗𝑡ℎ environment (Bandeira e Sousa et al. 2017; Lopez-Cruz et al. 2015), and consequently allows to 

account for marker x environment interactions. This model assumes that the effects of the 𝑗𝑡ℎ 

environments, and the effects of markers are separated into two components, which are the main 

effect of markers for all environments, names as 𝑏0𝑘, and the peculiar random effect 𝑏𝑖𝑘, of the 

markers in each 𝑗𝑡ℎ environment, that is the effects of marker x environment interactions (Lopez-

Cruz et al. 2015). Consequently, in MDe models, the effect of the 𝑘𝑡ℎ marker on the 𝑗𝑡ℎ environment 

(𝛽𝑗𝑘) is described as the sum of an effect common to all environments (𝑏0𝑘), plus a random deviation 

(𝑏𝑖𝑘) peculiar to the 𝑗𝑡ℎ  environment, that is 𝛽𝑗𝑘 = 𝑏0𝑘 + 𝑏𝑖𝑘. Following matrix notation, the MDe 

regression model is defined as follows: 

𝐲 = 𝟏𝛍 + 𝐙𝒆𝛃𝒆 + 𝐙𝒖𝐮𝒐 + 𝐮𝑬 +  𝛆       Equation 3 

where μ, Z𝑒, β𝑒 have the same meaning of the MM regression model, u𝑜 represents the main effect 

of markers across all environments with a variance–covariance structure similar to MM model, that 

is, u~𝑁(0, 𝜎𝜇0
2 𝐾). As pointed out by López-Cruz et al. (2015) 𝜎𝜇0

2  is common to all environments, 

and the borrowing of information among environments is generated through the kernel matrix K. u𝐸 

points out the specific effects of marker x environment interactions, which follow a multi-variate 
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normal distribution with null mean and a variance–covariance matrix 𝐾𝐸, that is, u𝐸~𝑁(0, 𝐾𝐸). For 

𝑗 environments, the variance-covariance matrix 𝐾𝐸 is defined as follows: 

 

𝐾𝑒 =

[
 
 
 
 
 
𝜎𝜇𝐸1
2 𝐾1 ⋯ 𝟎 ⋯ 𝟎

⋮ ⋱ ⋮ ⋱ ⋮
𝟎 ⋯ 𝜎𝜇𝐸𝑚

2 𝐾𝑚 ⋯ 𝟎

⋮ ⋱ ⋮ ⋱ ⋮
𝟎 ⋯ 𝟎 ⋯ 𝜎𝜇𝐸𝑗

2 𝐾𝑗]
 
 
 
 
 

 

As explained in Bandeira e Sousa et al. (2017), 𝐾𝐸 can be discomposed as a sum of 𝑗 matrices, one 

for each 𝑗 environment. Consequently, the interaction term u𝐸 can be decomposed in 𝑗 environmental 

specific effects to transform Equation 3 as follows: 

𝒚 = 𝟏𝛍 + 𝐙𝒆𝛃𝒆 + 𝐙𝒖𝐮𝟎 + 𝐮𝑬𝟏 + 𝐮𝑬𝟐 + 𝐮𝑬𝟑 + … .+ 𝐮𝑬𝒋 + 𝛆    Equation 4 

where each interaction effect u𝐸𝑗 has a normal distribution with null mean and a variance-covariance 

structure 𝜎𝜇𝐸𝑗
2 𝐾𝑗. 

Starting from the MM regression model, the MDs model adds the random interaction effect of the 

environments with the genetic information of the lines pointed out with ue. Following matrix 

notation, the MDs modes is described as follows: 

𝒚 = 𝟏𝛍 + 𝐙𝒆𝛃𝒆 + 𝐙𝒖𝐮 + 𝐮𝐞 + ε       Equation 5 

where μ, Z𝑒, β𝑒 , Z𝑢, u and ε have the same meaning of the MM regression model. As substantiated in 

Jarquín et al. (2014) the interaction term ue has a multi-variate normal distribution with null mean 

and variance-covariance matrix equal to [𝑍𝑢𝐾𝑍𝑢
′ ]°[𝑍𝐸𝑍𝑒

′ ], where the Haddamar product operator 

denotes the element to element product between the two matrices in the same order. 

 

In the present study, MM, MDs and MDe regression models were fitted using either the linear GB 

kernel method (VanRaden 2008) or the non-linear GK method (Bandeira e Sousa et al. 2017). For the 

linear GB kernel method, the matrix K of the aforementioned models was the genomic relationship 

matrix and was computed as 𝐾 = (
𝑋𝑋′

𝑝
) (VanRaden 2008), where X is the standardized matrix of 

molecular markers for the individuals, of order n by p; where n and p are the number of observations 

and the number of markers, respectively. For GK method, the matrix K of MM, MDs and MDe 

regression models was computed as 𝐾𝑗(𝑥𝑖𝑗 , 𝑥𝑖𝑗′) = 𝑒−(ℎ𝑗∗𝑑𝑖𝑖′
2 )

 where 𝑑𝑖𝑖′
2  is the squared Euclidean 

distance of the markers genotypes in individuals 𝑖 and 𝑖′' for the 𝑗𝑡ℎ environment. Similarly to SE-GP 

models, the bandwidth parameter ℎ was computed using an empirical Bayes method (Cuevas et al. 

2016; Pérez-Elizalde et al. 2015). 

MM, MDs and MDe regression models used in this study were fitted using BGLR package 1.08 

(Pérez and de los Campos 2014) in R 3.6.2 statistical environment, adapting scripts provided in the 

framework of other studies (Bandeira e Sousa et al. 2017). For each model implemented in this study, 

predictions were based on 500,000 iterations collected after discarding 10,000 iterations for burn-in 

period-and using a thinning interval of 5 iterations. Trace plots for each of the variance parameters 

were created to assess whether the number of burn-in iterations was sufficient. 

3.8 Optimization of the TPs 

In this study three different untargeted optimization criteria based on coefficient of determination 

(Laloe 1993), predictive error variance (Rincent et al. 2012) and rScore (Ou and Liao 2019) were 

used to assemble three corresponding TPs, each of which groups a set of 90 MAGIC individuals. The 

R package TSDFGS (Ou and Liao 2019) was used to assemble these three optimized TPs using the 
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aforementioned criteria. A fourth empirical untargeted optimization criterion was adopted for 

assembling another TP from the whole MAGIC population and aimed at maximizing the average 

distance between each selected accession and the closest other line using the modified Roger’s 

distance (Thachuk et al. 2009). This criterion was implemented in R 3.6.2 using the heuristic 

algorithm implemented in the package Core Hunter3 (De Beukelaer, Davenport, and Fack 2018) and 

was used to select a subset of 82 out 352 MAGIC individuals along with the eight MAGIC founder 

parents. 

3.9 Cross validation schemes 

In this study several cross-validation (CV) schemes were adopted for estimating the predictive 

ability of GP models along with their standard errors (Burgueño et al. 2012; Gianola and Schon 2016). 

For estimating the predictive ability of SE-GP models implemented with BayesA, BayesB, Bayesian 

Lasso, GB and RKHS with GK, cross validation was carried out using 100 repeated random 

partitioning of MAGIC population into training and validation sets. Using increasingly larger TPs of 

80, 90, 100, 110, 120, 130, 140, 150 and 160 individuals, CV schemes were applied to compute mean 

and standard deviation of predictive ability for each TP size. Totally 4,500 models were fitted to carry 

out this CV experiment, combining the five statistical models with the aforementioned dimensions of 

the TP and 100 repeated random partitioning of MAGIC in training and validation sets. 

CV of SE-GP models fitted using optimized TPs was carried out using the standard leave-one-out 

(LOO) strategy to estimate their predictive ability (Gianola and Schon 2016). Basically, using LOO 

strategy, N GP models are fitted using N-1 individuals excluding recursively one individual from the 

TP and the GEBV of the excluded line is predicted from a model trained using all other lines. In our 

LOO experiment, this was carried out separately for each group of 90 lines included in the optimized 

TPs, and the accuracy of these predictions was calculated as the Pearson’s correlation coefficient 

between GEBVs and the corresponding adjusted means of GY. 

The predictive ability of ME-GP models was assessed using cross-validation 1 (CV1) and cross-

validation 2 (CV2) schemes (Burgueño et al. 2012), assigning 90% of lines to the training set and the 

remaining 10% to the validation set. In both CV schemes, all the parameters of the MM, MDs and 

MDe regression models were recursively re-estimated in each of 100 random partitions. For each 

random partitioning, models were fitted using genotypes included in the training sets and the 

predictive ability was computed as the Pearson’s correlation coefficient between GEBVs and the 

corresponding adjusted means of GY. Overall, 100 Pearson’s correlations were computed for each 

model and the mean and standard deviation of these values were computed to estimate the predictive 

ability of GP models. 

4 Results 

4.1 Development of the barley MAGIC population 

The barley genotypes included in the founder set of MAGIC were examined in field trials organized 

in height site-by-season combinations in Italy, Germany and Scotland (Xu et al. 2018) for assessing 

the diversity of European cultivars for GY, plant height and DH. These field trials showed that the 

founder set, which includes four elite and four old barley varieties with different genetic background, 

exhibits limited variation of DH values (Table 1). Following a modified version of the standard 

crossing design (Huang et al. 2015), this founder set was intermated to create an eight-way MAGIC 

population of 352 individuals, which were subsequently genotyped to assess the contribution of each 

founder parent to the mosaic genome of each line. 
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4.2 Estimating the predictive ability of GP models as a function of TP size 

In GP models, the variation of predictive ability as a function of the TP size has been empirically 

investigated on segregating families and in collections of mostly unrelated accessions (Norman et al. 

2018). Here, we investigated the relationship between TP size and the predictive ability of different 

GP statistical models fitted to the barley MAGIC population. To carry out this analysis, the whole 

panel of 352 MAGIC lines and the founder parents were genotyped using the Barley 50k iSelect SNP 

Array (Bayer et al. 2017). SNPs with more than 10% of missing data were discarded, while the 

remaining missing genotypes were imputed using the algorithm implemented in BEAGLE (Browning 

and Browning 2016). This procedure allowed to identify 19,723 polymorphic SNPs, which were 

combined to the adjusted means (BLUPs) of GY computed in three site-by-season combinations 

(Table 2) to fit and cross-validate SE-GP models. Overall, five different whole genome regression 

methods based on BayesA, BayesB, BL, GB and RKHS fitted with the non-linear GK (Crossa et al. 

2017; Cuevas et al. 2016; Gianola and Kaam 2008; Gota and Gianola 2014) were compared. 

 

Table 2: Field trials carried out for phenotyping the whole MAGIC population and the founder 

set for GY. 

Acronym Site Country 
Growing 

season 
Populations Traits 

Fio16IN 
Fiorenzuola 

d’Arda 
Italy 2015-2016 

352 MAGIC and the 

founder set 
DH, GY 

Fio17IN 
Fiorenzuola 

d’Arda 
Italy 2016-2017 

352 MAGIC and the 

founder set 
DH, GY 

Mar16IN Marchouch Morocco 2015-2016 
352 MAGIC and 

founder set 
DH, GY 

 

These aforementioned SE-GP models were fitted to the MAGIC population and cross-validated for 

estimating the trend of predictive ability as a function of TP size (Figure 1). Specifically, CV was 

implemented randomly partitioning 100 times the whole panel of MAGIC lines in a TP and in a 

validating population (VP). Overall, nine different CV experiments were carried out, using TP sizes 

of 80, 90, 100, 110, 120, 130, 140, 150 and 160 MAGIC lines and the remaining genotypes as VPs 

(Figure 1). The CV of these GP models points out that in the three site-by-season combinations Table 

2), GB, GK, BayesA, BayesB and BL show comparable predictive abilities across the entire range of 

TP sizes considered (Figure 1). 

Moreover, these CV experiments point out that in temperate locations (Fio16IN, Fio17IN, Table 

2), the predictive ability of SE-GP models exceeds 0.50 even using TPs of 80 or 90 individuals 

(Figure 1), while in the harsh and pre-desertic environment of Mar16IN (Table 2), it does not exceed 

0.25 and shows larger standard deviation. Varying the size of TPs from 80 to 160 individuals slightly 

increases the values of predictive ability for GY in the remaining individuals of the MAGIC 

population (Figure 1; Supplementary Table 1) as already substantiated in other GP models fitted 

using collection of mostly unrelated genotypes (Norman et al. 2018).  

Overall, this empirical analysis shows that 80 or 90 MAGIC individuals are sufficient to fit SE-GP 

models yielding high values of predictive ability and that larger TPs do not significantly improve the 

predictive ability of GP models either in temperate or stressful environments (Figure 1; 

Supplementary Table 1). 
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Figure 1: CV of different SE-GP models fitted to GY measured in the MAGIC population. Bars 

report the values of predictive ability for GY computed in A) Fio16IN, B) Fio17IN and C) Mar16IN. 

Bars of different colors point out values of predictive ability computed using GB, GK, BayesA, 

BayesB and BL models as a function of TP sizes, while the error bars point out the standard deviation 

of predictive ability values. 

 

4.3 Designing optimized TPs of MAGIC 

The predictive ability of GP models fitted in collection of mostly unrelated accessions and in 

biparental populations depends on the size of TP, the genome distribution and number of molecular 

markers used for whole genome regression, the genetic composition of TP and its genetic relationship 

with the BP (Berro et al. 2019; Desta and Ortiz 2014; Heffner et al. 2009; Jannink et al. 2010). 

Particularly, it was assessed that using a large reference panel of accessions, the predictive ability of 

GP models can be improved increasing the diversity of the TPs (Norman et al. 2018). Along with 

these empirical findings, several statistical criteria and algorithms have been proposed to optimize 

TPs for maximizing predictive ability using reference panels of accessions or sets of advanced lines 

(Akdemir et al. 2015; Berro et al. 2019; Ou and Liao 2019). 

Here, we examined three different untargeted optimization criteria based on the coefficient of 

determination (CD_mean) (Laloe 1993), prediction error variance (PEV) (Rincent et al. 2012) and 

rScore (Ou and Liao 2019) and benchmarked them against a method that samples a diverse TP from 

the whole MAGIC population using SNP markers (Figure 2). The rationale of this latter method is 

to maximize the average distance, computed using the modified Roger’s method, between each 

selected accession and the closest other genotype (Thachuk et al. 2009). This criterion, named entry-

to-nearest entry was maximized with a heuristic algorithm to construct a highly diverse TP in which 

all MAGIC lines are maximally different (De Beukelaer et al. 2018). The TP assembled with this 

latter untargeted optimization criterion, named “TP-Diverse” (Figure 2), was constructed using the 

panel of 19,723 polymorphic SNPs detected in the whole MAGIC population, and was subsequently 

used as optimized TP and benchmarked to TPs assembled using CD_mean, PEV and rScore 

optimization methods (Figure 2). 
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Figure 2: Benchmarking of different methods for optimizing TPs of MAGIC. Bars of different 

colors report the values of predictive ability obtained with GP models fitted using CD_mean (CD), 

prediction error variance (PEV), rScore and Diverse optimization criteria. The error bars of each plot 

point out the standard deviation of the predictive ability values. 

 
Following this “TP-Diverse” optimization, our procedure led to identify a set of 82 MAGIC lines 

as the smallest population subset fulfilling the aforementioned criterion, which was used as TP along 

with the eight founder parents. Overall, when applied to MAGIC populations, the four optimized TPs 

spawned similar predictive abilities across the three site-by-season combinations (Figure 2) and 

consequently the genetic makeup of this TP was further investigated. The genetic relationships 

between TP-Diverse and the remaining MAGIC lines were assessed conducting a principal 

component analysis (PCA) on genetic data, which pointed out that the first two principal components 

explain 22.3 and 5.5 percent of the total genetic variability of the MAGIC population, respectively 

(Figure 3). PCA shows three main clusters of MAGIC lines and corroborates those individuals 

included in the TP-Diverse are representative of the whole diversity of MAGIC lines (Figure 3; red 

points).  

 

Figure 3: Principal component analysis (PCA) of the MAGIC population based on 19.723 SNPs. 

The first two axes of PCA explain 22.3% and 5.5% of the total variability, respectively. Red points 

represent the subset of MAGIC lines included in TP-Diverse, while green points represent the 

remaining MAGIC lines. 
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In segregating families and collections of mostly unrelated accessions, a large number of molecular 

markers is often needed to capture the effects of all QTLs or alternatively, strong linkage 

disequilibrium (LD) between markers and causative variants that control the traits of interest is 

desirable to achieve high values of predictive ability in GP (Heffner, Jannink, and Sorrells 2011; 

Lorenzana and Bernardo 2009; Norman et al. 2018). Consequently, the extent of LD was investigated 

in TP-Diverse to assess its correlation with the predictive ability values of GP models. Firstly, SNP 

markers of the barley 50K SNP chip used to fingerprint the whole MAGIC population were lifted 

over to the new barley reference sequence (Monat et al. 2019) and secondly, the average extent of 𝑟2 

was computed for each barley chromosome. Overall, a large fraction of the 44,040 SNPs of the barley 

50k SNP chip were lifted over and 18,248 out 19,723 polymorphic SNPs unambiguously mapped to 

the reference sequence of barley (Supplementary Table 2) were used to estimate the decay of 

average LD computed in bins of 100kb (Figure 4). This analysis indicated that across the seven barley 

chromosomes 𝑟2 decays relatively slowly as SNPs mapped more than 10Mbp apart show 𝑟2 values 

of circa 0.2, while the average 𝑟2 values of markers within 1 MB or less exceed 0.4 (Figure 4). 

Considering the average number of markers per chromosome (Supplementary Table 2), the levels 

of LD measured in TP-Diverse are sufficiently high and higher marker densities might not 

significantly increase the predictive ability of GP models fitted in our MAGIC population of barley 

as empirically observed in other crops (Norman et al. 2018). Overall, the predictive ability values 

obtained with GP models fitted with the three optimization methods are substantially equivalent to 

the prediction accuracy obtained with TP-Diverse (Figure 2) and consequently this latter TP was 

chosen for fitting further single- and multi-environment GP models. 

 

Figure 4: Extent of the average linkage disequilibrium in TP-Diverse. For each barley 

chromosome, each point shows the average 𝒓𝟐 computed in 100 kb windows as a function of marker 

distance. 
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4.4 Using the optimized TP for fitting SE-GP and ME-GP models  

Field trials of TP-Diverse were organized in nine site-by-season combinations and phenotypic data 

for GY and DH were collected using common phenotyping protocols, while the remaining set of 

MAGIC lines were used in Fio16IN, Fio17IN and Mar16IN as VP (Table 3). Alpha-lattice 

experimental designs were adopted for all field trials and mixed linear models were used to compute 

adjusted means of GY and broad sense heritability (H2) for each site-by-season combination 

considering genotypes as random variables (BLUPs) (Table 3). This analysis indicated that H2 varies 

significantly across the nine field trials and spans from 0.805 in Kon19IN to 0.122 in Mar16IN (Table 

3). The adjusted means of GY were subsequently used as phenotypes for fitting GP models along 

with genotypic information. 

 

Table 3: Summary of field trials carried out for phenotyping TP and VP for GY. For each site-

by-season combination, the estimates of broad sense heritability (H2) of GY were reported. H2 was 

computed for the whole panel of MAGIC lines for Fio16IN, Fio17IN and Mar16IN. 

Acronym Site Country 
Growing 

season 
Populations H2 

Fio16IN Fiorenzuola d’Arda Italy 2015-2016 TP and VP 0.660 

Fio17IN Fiorenzuola d’Arda Italy 2016-2017 TP and VP 0.472 

Fio18IN Fiorenzuola d’Arda Italy 2017-2018 TP 0.532 

Fio18LN 
Fiorenzuola d’Arda – 

Low Nitrogen 
Italy 2017-2018 TP 0.395 

Fio19IN Fiorenzuola d’Arda Italy 2018-2019 TP 0.652 

Fio19LN 
Fiorenzuola d’Arda – 

Low Nitrogen 
Italy 2018-2019 TP 0.663 

Mar16IN Marchouch Morocco 2015-2016 TP and VP 0.122 

Ada19IN Adana Turkey 2018-2019 TP 0.737 

Kon19IN Konya Turkey 2018-2019 TP 0.805 

 

To assess the performance of MAGIC lines included in TP-Diverse, across different locations and 

years, a pairwise correlation analysis of the adjusted means of GY computed in the nine site-by-

season combinations considered in this study was carried out (Figure 5). The correlations of GY 

across environments spanned from -0.030 to 0.553 and, as expected, values were higher between field 

trials carried out in the same environments but in different years, while lower values were observed 

among Mar16IN and other site-by-season combinations, corroborating the hypothesis that the 

climatic peculiarity of this environment imposes higher levels of stress to MAGIC lines (Figure 5). 

Similarly, the adjusted means of GY computed in Fio18LN exhibited lower correlation values with 

other site-by-season combinations (Figure 5). These adjusted means of GY were used to train SE-

GP and ME-GP models using “TP-Diverse”. For each site-by-season combination, phenotypic and 

genotypic data were standardized, and nine different SE-GP models were fitted using GB and GK 

statistical models (Table 4). As expected after standardization, for models fitted using GB, the 

summation of variance components was circa 1 (Table 4), while the distribution of the residuals after 

fitting all GP models to the nine site-by-season combinations was approximately normal. The analysis 

of variance components of SE-GP models showed that the values of error variance in GK models are 

lower than those obtained for the corresponding GB models (Table 4), and similarly in GK models 

the values of genetic component variance are always higher than the corresponding quantities 

computed for GB models (Table 4). 
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Figure 5: Pairwise correlations of GY obtained in the nine site-by-season combinations for TP 

and VP. Numbers reported in black, red, and blue on the upper graph show pairwise Pearson 

correlations computed between adjusted means of GY for the whole set of lines tested, TP and VP, 

respectively. The lower graph shows scatter plots of GY adjusted means computed in pairs of site-

by-season combinations. 

 
 

Table 4: Variance components of SE-GP models fitted using GBLUP (GB) and GK statistical 

model. For each site-by-season combination, the estimated variance components of genetic effects 

and residuals fitted with GB and GK models are reported, while bracketed numbers point out the 

corresponding standard deviation. 

Site-by-season 

combination 

GB GK 

Genetic effect 

variance 

Residual 

variance 

Genetic effect 

variance 

Residual 

variance 

Kon19IN 0.586 (0.010) 0.557 (0.045) 0.660 (0.016) 0.489 (0.068) 

Mar16IN 0.467 (0.089) 0.719 (0.067) 0.590 (0.013) 0.588 (0.078) 

Fio18IN 0.491 (0.059) 0.560 (0.029) 0.632 (0.086) 0.455 (0.043) 

Fio18LN 0.412 (0.048) 0.752 (0.050) 0.544 (0.000) 0.611 (0.069) 

Fio17IN 0.537 (0.072) 0.480 (0.016) 0.655 (0.084) 0.417 (0.041) 

Fio16IN 0.618 (0.066) 0.336 (0.094) 0.680 (0.065) 0.348 (0.011) 

Ada19IN 0.561 (0.086) 0.543 (0.036) 0.654 (0.019) 0.498 (0.070) 

Fio19IN 0.480 (0.079) 0.651 (0.049) 0.659 (0.005) 0.469 (0.054) 

Fio19LN 0.479 (0.058) 0.566 (0.024) 0.632 (0.083) 0.446 (0.041) 

 

The adjusted means of GY computed at the nine site-by-season combinations were used to fit ME-

GP, particularly three models were fitted, which were named “Multi-environment, main genotypic 

effect” (MM), “Multi-environment, single variance GxE deviation” (MDs) (Jarquín et al. 2014) and 

“Multi-environment, environment specific variance GxE deviation” (MDe) (Lopez-Cruz et al. 2015) 

following recent model nomenclature (Bandeira e Sousa et al. 2017). Similarly to SE-GP models, 

MM, MDs and MDe models were fitted using GB and GK methods and totally six model method 

combinations were used to fit multi-environment predictions. The analysis of variance components 
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showed that for all three models (MM, MDs and MDe), GK methods exhibit lower values of the 

estimated residual variances pointing out a better model fitting (Table 5). Moreover, model 

comparisons showed that the inclusion of the interaction term (GxE) in MDe model induces a 

reduction in the estimated residual variance for GY compared to MM models either using GB or GK 

methods, but MDs models fitted better the data compared to MDe. For the MDe models, the residual 

variance components of MDe-GK were smaller than those of the MDe-GB, whereas the estimated 

variance components for the genetic main effect and genetic environment specific effect variances 

were higher for the GK than for the GB (Table 5).  

 

Table 5: Variance components of ME-GP models fitted using GBLUP (GB) and RKHS along 

with the Gaussian Kernel (GK) methods. For each of the three regression models (MM, MDs and 

MDe), the estimated variance components fitted with GB and GK methods are reported, while 

bracketed numbers point out the corresponding standard deviation of variance component estimates. 

Component Environment GB GK 

Multi-environment, main genotypic effect (MM) model 

Residual (𝝈𝒆
𝟐) - 0.758 (0.047) 0.746 (0.045) 

Genetic main effect (𝝈𝝁𝟎
𝟐 ) - 0.249 (0.069) 0.373 (0.088) 

Multi-environment, single variance GxE deviation (MDs) model 

Residual (𝝈𝒆
𝟐) - 0.516 (0.056) 0.389 (0.071) 

Genetic main effect (𝝈𝒖𝟎
𝟐 ) - 0.281 (0.077) 0.374 (0.089) 

Genetic interaction effect 

(𝝈𝒖𝒆
𝟐 ) 

- 0.247 (0.066) 0.589 (0.140) 

Multi-environment, environment specific variance GxE deviation (MDe) model 

Residual (𝝈𝒆
𝟐) - 0.602 (0.016) 0.592 (0.018) 

Genetic main effect (𝝈𝒖𝟎
𝟐 ) - 0.292 (0.026) 0.402 (0.031) 

Genetic environment 

specific effect (𝝈𝒖𝑬𝒋
𝟐 ) 

Ada19IN 0.251 (0.054) 0.353 (0.083) 

 Fio16IN 0.035 (0.027) 0.054 (0.046) 

 Fio17IN 0.010 (0.066) 0.024 (0.023) 

 Fio18LN 0.062 (0.054) 0.116 (0.085) 

 Fio18IN 0.007 (0.006) 0.018 (0.015) 

 Mar16IN 0.549 (0.085) 0.873 (0.122) 

 Kon19IN 0.217 (0.050) 0.312 (0.079) 

 Fio19LN 0.008 (0.007) 0.053 (0.018) 

 Fio19IN 0.004 (0.003) 0.055 (0.011) 

4.5 Predictive ability of ME-GP models with GB and GK methods 

The predictive ability of MM, MDs and MDe models implemented using GB and GK methods was 

estimated with cross-validation 1 (CV1) and cross-validation 2 (CV2) schemes using 100 random 

partitions. For each of the six multi-environment model-method combinations, the values of 

predictive ability for CV1 and CV2 schemes were obtained for the set of 100 random partitions, which 

were used to compute the average predictive ability and the associated standard deviation. Overall, 

CV2 showed that in four site-by-season combinations (Fio16IN, Fio17IN, Fio19IN and Fio19LN) the 

predictive ability is generally higher and exceed 0.70 for certain ME-GP models, while for Mar16IN 

the six model-method combinations exhibit, on average, the lowest values of predictive ability as for 

this site-by-season combination the lowest values of 0.161 and 0.236 were observed for MM-GB and 

MDs-GK models, respectively (Figure 6; Supplementary Table 3).  
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Figure 6: Bar plots of the predictive ability values obtained with CV2. Bar plots show the mean 

correlation between observed and predicted values of GY obtained with 100 random CV2 partitions 

for MM, MDs and MDe models implemented with GBLUP (GB) and Gaussian Kernel (GK) methods. 

Error bars point out the standard deviation of predictive ability values. 

 
As in most of the case, the standard deviations associated to the values of predictive ability were 

overlapping (Figure 6; Figure 7), Welch’s t-tests were applied to determine whether pairwise 

comparisons of predictive ability values obtained with ME-GP models were statistically different 

(Supplementary Figure 1 and 2). CV2 experiments showed that in Fio17IN the values of predictive 

ability computed with the six-model method combinations were comparable except for MM-GB, 

which was significantly lower than the predictive ability of MDs-GK, while in Fio16IN the predictive 

ability of MM-GK was significantly lower than the predictive ability obtained with the remaining 

model-method combinations (Figure 6; Supplementary Figure 2). In Fio16IN, CV2 showed that 

MDe-GB and MDe-GK have similar performance and significantly higher values of predictive ability 

compared to MM models, either implemented with GB or GK statistical methods (Figure 6; 

Supplementary Table 3; Supplementary Figure 2). In Ada19IN the best model predictive ability 

using CV2 scheme was obtained with MDe-GB, while for Fio18LN the best values of predictive 

ability were obtained with MDe-GB and MDs-GB models. Overall, CV2 experiments indicated that 

in four out nine site-by-season combinations (Fio16IN, Fio17IN, Fio18IN and Mar16IN) MDe-GB 

and MDe-GK models have higher values of predictive ability compared to MM models, either 

implemented with GB or GK statistical methods (Figure 6; Supplementary Table 3; 

Supplementary Figure 2). Differently, Fio19IN, Fio19LN and Kon19IN deviate from this trend as 

for these site-by-season combinations the values of predictive ability for MM models were higher 
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(Supplementary Table 3). In Fio19IN, MM-GB and MM-GK had the higher predictive ability values 

along with MDe-GK, while for Fio19LN the higher value of predictive ability was found for MM-

GB.  

 

Figure 7: Bar plots of the predictive ability values obtained with CV1. Bar plots show the mean 

correlation between observed and predicted values of GY obtained with 100 random CV1 partitions 

for MM, MDs and MDe models implemented with GBLUP (GB) and Gaussian Kernel (GK) methods. 

Error bars point out the standard deviation of predictive ability values. 

 
The values of predictive ability obtained for random CV1 decreased (Figure 7; Supplementary 

Table 4) as compared with those computed for CV2 for all models. Similarly, to the results obtained 

for CV2, CV1 experiments indicated that in four site-by-season combinations (Fio16IN, Fio17IN, 

Fio18IN and Fio19LN) the predictive ability of GP-ME models is generally higher than the values of 

predictive ability observed in other site-by-season combinations for all models. MDs-GB and MD-

GK yielded the higher values of predictive ability in Ada19IN, Fio16IN and Fio17IN, respectively. 

In Fio18IN, Fio18LN, Mar16IN and Fio19LN, the higher predictive ability values were found for 

MM-GK, although in this latter site-by-season combination the accuracy of MDe-GK does not differ 

significantly (Supplementary Figure 1). In Fio19IN, the highest values of predictive ability were 

obtained for MDe-GB and MD-GK models (Figure 7; Supplementary Figure 1). 
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5 Discussion 

5.1 Broadening the use of MAGIC populations for plant breeding 

MAGIC populations were conceived to improve precision and efficiency of QTL mapping in plants 

and animals as they allow overcoming limitations of biparental populations and association mapping 

panels (Huang et al. 2015). In cereal crops, these experimental populations have been extensively 

used for research purpose and contributed to dissecting the genetic bases of several traits among 

which biotic stress resistance (Jiménez-Galindo et al. 2019; Riaz et al. 2020; Stadlmeier et al. 2018), 

GY, grain quality (Zaw et al. 2019) and DH (Afsharyan et al. 2020). Recently, these genomic 

resources have been established in barley to investigate the effects of epistasis and environmental 

interactions on flowering time (Afsharyan et al. 2020; Mathew et al. 2018), further broadening the 

original scope for which they were devised. 

In the present study, we constructed a new MAGIC population shuffling alleles of winter 6-rowed 

barley varieties, and demonstrated that, along with biparental populations and collections of mostly 

unrelated accessions, these genomic resources might be used to train GP models with high predictive 

ability and might speed up barley breeding. Under this point of view, the large number of MAGIC 

populations developed in the last years in several crops (Kover et al. 2009; Mathew et al. 2018; 

Rebetzke et al. 2014; Stadlmeier et al. 2018) can be considered as untapped resources that would 

contribute to further strengthening and stimulating the application of GP in plant breeding. On the 

other side, de novo creation of MAGIC populations to train GP models for actual breeding purposes 

is hampered because of their time consuming and costly development, which requires to intermate 

and self-fertilize the founder parents for several cycles. The results presented in this study show that 

these limitations might be softened using doubled haploid technology, which allows to short self-

fertilization stages to obtain fully homozygous lines. Similarly, speed breeding might contribute to 

accelerating the development of new MAGIC populations (Watson et al. 2018). 

To examine the genetic relationship between the whole set of MAGIC and the subset of lines 

included in the “TP-Diverse”, a PCA was carried out using 19,723 SNPs, which detected genetic 

structure in the MAGIC population and three main clusters of individuals. The nature of these clusters 

is unclear, but it is plausible that they might reflect subgroups of individuals showing segregation 

distortion for one or more founders. In our eight-way MAGIC population, the expected segregation 

rate of the eight founder haplotypes is 1:1:1:1:1:1:1:1, but the haplotypes of some founders (e.g. Dea) 

deviate from the expected ratio (Data not shown). Segregation distortion is a common phenomenon 

that occurs in MAGIC populations as pointed out in other studies (Sannemann et al. 2018). Although 

this did not hamper our ability to train GP models with this population, this phenomenon might 

explain the genetic structure pointed out with PCA.  

Overall, the use of SE-GP and ME-GP models trained with MAGIC populations might find 

effective applications when the diversity of BPs originates from the same parents included in the 

founder set. In this case, GP models based on MAGIC populations might be applied to select the best 

offspring from crosses obtained with the MAGIC founders. 

5.2 Benchmarking of different TPs to improve the predictive ability of GP models 

The composition of TPs and their genetic relationship with BPs affect the predictive ability of GP 

models as pointed out in several studies (Desta and Ortiz 2014; Edwards et al. 2019; Norman et al. 

2018) and to date several algorithms for optimizing TPs have been developed to increase the 

predictive ability of GP models (Akdemir et al. 2015). Untargeted and targeted optimization criteria 

based on GBLUP have been so far developed and tested in biparental populations and panel of mostly 
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unrelated accessions. Nevertheless, the use of these optimization methods in actual breeding 

programs is hampered as the optimization process can lead to different optimized TP per each trait of 

interest. These optimization algorithms require a priori information (knowledge of the BP genotypes 

and traits for which GP models must be developed) and output trait-dependent TPs (Akdemir et al. 

2015). Moreover, in real breeding programs, BPs change over time and it might be difficult to 

implement these optimization procedures. Previous studies have shown that the relatedness between 

TPs and BPs has a large impact on the predictive ability of GP models, which can be improved 

increasing the genetic diversity of TPs (Norman et al. 2018). In fact, when the TP exhibits a narrow 

genetic diversity, low values of the predictive ability are often obtained in GP as it becomes 

impossible to predict all the marker effects that contribute to determining the phenotypic variations 

(Norman et al., 2018). Following these empirical findings, in this study we assembled a TP of 90 

barley genotypes, which was named “TP-Diverse”, maximizing the genetic diversity among MAGIC 

lines and assessing its predictive ability using random CV schemes. Surprisingly, the predictive 

ability obtained with TP-Diverse was comparable with the predictive ability of GP models trained 

with the other three optimized TPs used in this study (Figure 2). One of the main advantages of using 

this approach is that the criterion adopted to assemble “TP-Diverse” depends only on genetic data 

and does not generate trait-dependent TPs. On the other side, in this study we have not developed 

mathematical models to demonstrate or justify the rationale of this empirical criterion and 

consequently its validity should be further validated in other studies. 

5.3 Fitting SE-GP and ME-GP models using the MAGIC population of barley 

Several empirical analyses have been conducted to benchmark the predictive ability of different 

GP models in barley, maize and wheat panels of mostly unrelated accessions, biparental populations 

of A.thaliana and diallel crosses of maize and wheat to predict GY and other traits (Heslot et al. 2012). 

In this study, we presented another empirical analysis to assess the most promising GP models for 

MAGIC populations, implementing CV schemes for estimating the standard deviation of predictive 

ability values.  

Three out five models fitted in this study (BayesA, BayesB and BL) belong to the group of so 

called “Bayesian alphabet”, which denotes Bayesian linear regressions that differ in their prior density 

distribution (Gianola 2013). In these Bayesian regression models, the prior density distribution 

assigned to marker effects controls the shrinkage of estimates and then different priors induce 

different types of shrinkage of marker effects. In the original description both BayesA and BayesB 

were introduced as hierarchical structures (Meuwissen et al. 2001) and it was later demonstrated that 

BayesA adopts a scaled t-distribution prior, while BayesB adopts priors that are mixtures of a peak 

in the vicinity of zero and of a continuous density priors (e.g., t, or normal density distribution) 

(Gianola et al. 2009). BL adopts a double exponential prior density distribution, which behaves 

similar to that of BayesA as both priors used in these models do not allow marker effects to be equal 

to zero and shrink estimates of the remaining marker effects. While the priors adopted in BL and 

BayesA prevent to have marker effects equal to zero, the prior used in BayesB allows to have null 

marker effects. The rationale of this prior is that in GP many markers might have a null contribution 

to the observed phenotypic variation. Although marker effects might be estimated differently, the 

predictive ability of the Bayesian models fitted in this study does not differ significantly (Figure 1). 

Moreover, our empirical analysis shows that the predictive ability of Bayesian models fitted to 

MAGIC populations is comparable with that of GB and GK models (Figure 1). Several empirical 

analyses have been carried out in cereal crops to highlight advantages and limits of different whole 

genome regression methods. In rice, SE-GP models fitted with BayesA, GB and GK for three traits 

were compared using a reference panel of 284 accessions under different linkage disequilibrium 
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scenarios (Ben Hassen et al. 2018). These results showed that under high linkage disequilibrium 

scenarios GK models slightly outperform GB in terms of prediction ability. Differently, when a subset 

of rice reference panel was used to predict the performance of 97 advanced lined derived from 

biparental crosses, GK and GB prediction ability showed comparable results for the three traits 

considered (Ben Hassen et al. 2018). Anyway, the results obtained in this study are limited to one 

(complex) trait and it might plausible that for simpler traits GP models fitted in MAGIC might have 

different trend of the predictive ability. 

Beyond SE-GP models, in this study we used the MAGIC population of barley to fit three different 

ME-GP models, two of which (MDs and MDe models) include terms for incorporating GxE 

interaction. In plant breeding, multi-environment field trials are routinely carried out to evaluate and 

exploit GxE interaction as it contributes to creating high-yielding genotypes. Consequently, 

modelling GxE interaction in GP has the potential to differentiate marker effects. MDe models used 

in this study (Bandeira e Sousa et al. 2017; Lopez-Cruz et al. 2015) partition marker effects in main 

effects, that is effects that are stable across environments and environment-specific effects, that is 

interaction effects between markers and specific genotypes. As pointed out in other studies, MDe 

models are known to be more efficient when used along with sets of environments that have positive 

correlations. This limit arises as the pairwise correlation between environments is represented by the 

variance of the main marker effects, which in turn forces the co-variance between a pair of 

environments to be positive (Bandeira e Sousa et al. 2017; Lopez-Cruz et al. 2015). This requirement 

is not trivial and might not allow to fit correctly MDe models. In our study, the adjusted means of GY 

in Mar16IN showed low or negative correlation with the other site-by-season combinations tested in 

this study and this might be the reason for which we have found that MDs models fit better the data, 

particularly when used in combination with the non-linear GK. 

GP models based on reproducing kernel Hilbert Space along with the non-linear GK have the 

potential to capture non-additive genetic effects and potentially might outperform GB in terms of 

model fitting and predictive ability. In maize and wheat, comparison between the same GP models 

fitted with GB and the nonlinear GK for GY, unveiled that the latter method outperforms GB in terms 

of predictive ability in both single environment and multi-environment models (Bandeira e Sousa et 

al. 2017; Cuevas et al. 2016). In cereal crops, GY is a complex trait controlled by nonlinearity effects 

between genotypes and phenotypes owing to epistasis, environmental interactions (Bandeira e Sousa 

et al. 2017; Cuevas et al. 2018) and other interactions that are not considered in standard quantitative 

genetic models (Gianola, Fernando, and Stella 2006). GK models have the potential to capture small 

and complex interactions, which are more evident in quantitative traits and this can explain the higher 

prediction ability of GK for GY. The empirical analysis presented in this study using barley MAGIC 

population corroborates that, for complex traits like GY, the predictive ability of GK outperforms that 

of GB. Overall, considering the number of models and methods fitted and the extensive field trials 

carried out across the Mediterranean, this study has delivered the most comprehensive empirical 

analysis of GP models fitted with MAGIC populations. 
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7 Supplementary Material 

The Supplementary Material, figures and tables, can be found online at 

https://www.frontiersin.org/articles/10.3389/fpls.2021.664148/full#supplementary-material and are 

shown below: 

 

 

7.1 Supplementary Figures 

Supplementary Figure 1. Heatmap of P-values obtained applying Welch’s t-test to accuracy 

parameters (means and standard deviations) obtained from pairs of ME-GP models using CV1 

schemes. Red tiles in the heatmap point out pairs of models that exhibit significantly different 

accuracy (P-values<0.05), while blue tiles point out pairs of models that do not show different model 

accuracy. 
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Supplementary Figure 2. Heatmap of P-values obtained applying Welch’s t-test between model 

accuracy values obtained using CV2 schemes for each ME-GP model. Red tiles in the heatmap point 

out pairs of models that exhibit significantly different model accuracy values (P-values<0.05), while 

blue tiles point out pairs of models that do not show different model accuracy. 

 
 

7.2 Supplementary Tables 

Supplementary Table 1: CV of different SE-GP models fitted using MAGIC population. Model 

accuracies and associated standard deviation of SE-GP models, reported within brackets, computed 

in Fio16IN, Fio17IN and Mar16IN using GB, GK, BayesA, BayesB and BL models as a function of 

TP sizes. 

Env 
TP 

size 
BayesA BayesB BL GB GK 

Fio16IN 80 0.511 (0.037) 0.51 (0.039) 0.516 (0.038) 0.512 (0.035) 0.501 (0.038) 

Fio16IN 90 0.52 (0.033) 0.519 (0.039) 0.522 (0.033) 0.519 (0.033) 0.517 (0.037) 

Fio16IN 100 0.527 (0.029) 0.528 (0.038) 0.528 (0.035) 0.526 (0.033) 0.517 (0.033) 

Fio16IN 110 0.534 (0.031) 0.533 (0.039) 0.539 (0.035) 0.533 (0.034) 0.526 (0.035) 

Fio16IN 120 0.547 (0.035) 0.54 (0.036) 0.54 (0.032) 0.539 (0.037) 0.531 (0.036) 

Fio16IN 130 0.546 (0.039) 0.543 (0.037) 0.549 (0.031) 0.546 (0.035) 0.541 (0.036) 

Fio16IN 140 0.553 (0.035) 0.55 (0.037) 0.553 (0.037) 0.55 (0.038) 0.548 (0.038) 

Fio16IN 150 0.56 (0.034) 0.558 (0.035) 0.558 (0.037) 0.557 (0.037) 0.547 (0.036) 

Fio16IN 160 0.557 (0.031) 0.559 (0.042) 0.558 (0.035) 0.564 (0.036) 0.547 (0.038) 
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Fio17IN 80 0.509 (0.036) 0.506 (0.033) 0.514 (0.032) 0.514 (0.032) 0.504 (0.04) 

Fio17IN 90 0.525 (0.032) 0.526 (0.03) 0.523 (0.034) 0.516 (0.033) 0.511 (0.033) 

Fio17IN 100 0.53 (0.035) 0.528 (0.032) 0.532 (0.034) 0.526 (0.032) 0.526 (0.035) 

Fio17IN 110 0.53 (0.037) 0.534 (0.033) 0.537 (0.027) 0.529 (0.036) 0.532 (0.032) 

Fio17IN 120 0.543 (0.033) 0.544 (0.032) 0.544 (0.028) 0.545 (0.034) 0.533 (0.037) 

Fio17IN 130 0.548 (0.035) 0.542 (0.039) 0.551 (0.035) 0.545 (0.035) 0.54 (0.032) 

Fio17IN 140 0.553 (0.04) 0.553 (0.036) 0.546 (0.037) 0.553 (0.036) 0.546 (0.034) 

Fio17IN 150 0.561 (0.032) 0.555 (0.035) 0.557 (0.034) 0.562 (0.035) 0.554 (0.04) 

Fio17IN 160 0.562 (0.039) 0.558 (0.039) 0.566 (0.039) 0.56 (0.037) 0.559 (0.04) 

Mar16IN 80 0.16 (0.052) 0.165 (0.055) 0.151 (0.062) 0.166 (0.059) 0.151 (0.06) 

Mar16IN 90 0.169 (0.054) 0.17 (0.054) 0.176 (0.049) 0.169 (0.055) 0.171 (0.056) 

Mar16IN 100 0.186 (0.041) 0.183 (0.05) 0.181 (0.055) 0.174 (0.055) 0.182 (0.044) 

Mar16IN 110 0.199 (0.052) 0.185 (0.05) 0.177 (0.056) 0.179 (0.059) 0.189 (0.05) 

Mar16IN 120 0.194 (0.049) 0.191 (0.045) 0.190 (0.057) 0.193 (0.054) 0.191 (0.054) 

Mar16IN 130 0.203 (0.054) 0.206 (0.051) 0.190 (0.058) 0.2 (0.049) 0.198 (0.051) 

Mar16IN 140 0.209 (0.049) 0.205 (0.048) 0.209 (0.051) 0.201 (0.049) 0.194 (0.053) 

Mar16IN 150 0.211 (0.056) 0.208 (0.055) 0.211 (0.05) 0.206 (0.056) 0.204 (0.048) 

Mar16IN 160 0.22 (0.049) 0.213 (0.054) 0.211 (0.051) 0.217 (0.052) 0.205 (0.041) 

 

Supplementary Table 2: Distribution of polymorphic SNPs mapped in the seven barley 

chromosomes. 18,248 out 19,723 polymorphic SNPs were unambiguously mapped to the barley 

reference sequence and used to compute r2 to estimate the extent of LD. 

Chromosome Number of SNPs 
Average SNPs 

per Mb 

Chromosome 1H 2095 4.00 

Chromosome 2H 2281 3.38 

Chromosome 3H 2855 4.54 

Chromosome 4H 1444 2.31 

Chromosome 5H 3589 5.99 

Chromosome 6H 2615 4.56 

Chromosome 7H 3369 5.31 

Total 18248 4.36 

 

Supplementary Table 3: Mean correlation between observed and predicted values of GY (average 

of 100 random CV partitions) computed using CV2 scheme for MM, MDs and MDe models 

implemented with GBLUP (GB) and Gaussian Kernel (GK) methods. Numbers between brackets 

point out the standard deviation of model accuracy values. 

Model MDe-GB MDe-GK MDs-GB MDs-GK MM-GB MM-GK 

Ada19IN 
0.676 

(0.103) 

0.472 

(0.1) 

0.609 

(0.117) 

0.528 

(0.128) 

0.301 

(0.076) 

0.500 

(0.112) 

Fio16IN 
0.783 

(0.125) 

0.756 

(0.119) 

0.832 

(0.116) 

0.802 

(0.125) 

0.760 

(0.106) 

0.696 

(0.105) 

Fio17IN 
0.731 

(0.114) 

0.711 

(0.093) 

0.714 

(0.134) 

0.734 

(0.137) 

0.687 

(0.113) 

0.718 

(0.109) 

Fio18IN 
0.621 

(0.142) 

0.612 

(0.106) 

0.623 

(0.113) 

0.467 

(0.084) 

0.613 

(0.116) 

0.462 

(0.099) 
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Fio18LN 
0.528 

(0.088) 

0.46 

(0.108) 

0.518 

(0.1) 

0.443 

(0.105) 

0.364 

(0.113) 

0.414 

(0.104) 

Fio19IN 
0.581 

(0.133) 

0.757 

(0.103) 

0.571 

(0.095) 

0.662 

(0.143) 

0.774 

(0.12) 

0.779 

(0.115) 

Fio19LN 
0.749 

(0.093) 

0.744 

(0.125) 

0.674 

(0.114) 

0.661 

(0.121) 

0.817 

(0.132) 

0.721 

(0.129) 

Kon19IN 
0.515 

(0.083) 

0.557 

(0.118) 

0.579 

(0.122) 

0.632 

(0.152) 

0.427 

(0.131) 

0.664 

(0.123) 

Mar16IN 
0.304 

(0.098) 

0.261 

(0.103) 

0.384 

(0.139) 

0.236 

(0.12) 

0.161 

(0.072) 

0.243 

(0.085) 

 

Supplementary Table 4: Mean correlation between observed and predicted values of GY (average 

of 100 random CV partitions) computed using CV1 scheme for MM, MDs and MDe models 

implemented with GBLUP (GB) and Gaussian Kernel (GK) methods. Numbers between brackets 

point out the standard deviation of predictive ability values. 

Model MDe-GB MDe-GK MDs-GB MDs-GK MM-GB MM-GK 

Ada19IN 
0.276 

(0.113) 

0.298 

(0.106) 

0.232 

(0.102) 

0.442 

(0.129) 

0.192 

(0.097) 

0.208 

(0.114) 

Fio16IN 
0.683 

(0.120) 

0.675 

(0.101) 

0.775 

(0.117) 

0.701 

(0.094) 

0.682 

(0.118) 

0.532 

(0.109) 

Fio17IN 
0.605 

(0.158) 

0.614 

(0.119) 

0.588 

(0.099) 

0.731 

(0.102) 

0.621 

(0.17) 

0.727 

(0.111) 

Fio18IN 
0.537 

(0.117) 

0.484 

(0.113) 

0.545 

(0.102) 

0.512 

(0.126) 

0.434 

(0.098) 

0.597 

(0.13) 

Fio18LN 
0.122 

(0.088) 

0.377 

(0.079) 

0.314 

(0.13) 

0.261 

(0.083) 

0.211 

(0.092) 

0.417 

(0.119) 

Fio19IN 
0.407 

(0.087) 

0.439 

(0.118) 

0.153 

(0.080) 

0.43 

(0.107) 

0.355 

(0.106) 

0.282 

(0.093) 

Fio19LN 
0.496 

(0.1) 

0.599 

(0.096) 

0.481 

(0.101) 

0.535 

(0.129) 

0.539 

(0.095) 

0.613 

(0.124) 

Kon19IN 
0.305 

(0.054) 

0.208 

(0.121) 

0.348 

(0.089) 

0.367 

(0.121) 

0.173 

(0.087) 

0.349 

(0.1) 

Mar16IN 
0.283 

(0.062) 

0.226 

(0.046) 

0.215 

(0.091) 

0.162 

(0.06) 

0.143 

(0.059) 

0.306 

(0.096) 
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1 Abstract 

With the introduction of simpler and faster phenotyping methods, the study of belowground traits 

is gaining momentum due to their importance in yield formation and water and nutrient uptake. 

Among belowground traits, in cereal crops seminal root number and seminal root angle have shown 

to be correlated and predict the root system architecture at the mature stages. Along with seminal root 

number and seminal root angle, experimental evidence has indicated that the transpiration rate 

response to evaporative demand or vapor pressure deficit is a key physiological trait that might be 

targeted to cope with drought tolerance as the reduction of the water flux to leaves for limiting 

transpiration rate at high levels of vapor pressure deficit allows to better manage soil moisture.  

In the present study, we examined the phenotypic diversity of seminal root number, seminal root 

angle and transpiration rate in a panel of 90 eight-way Multi-parent Advanced Generation Inter-

crosses (MAGIC) lines of winter barley and correlated these traits with grain yield measured in 

different site-by-season combinations. Phenotypic and genotypic information of MAGIC population 

were combined to fit and cross-validate different genomic prediction models. Genomic prediction for 

seminal root number were fitted using threshold and log-normal models, considering these data as 

ordinal discrete variable and as count data, respectively, while for seminal root angle and transpiration 

rate genomic prediction models were fitted using extended GBLUP. 

Our empirical analyses showed that genomic prediction models can be used to predict seminal root 

number, seminal root angle and transpiration rate with high predictive ability and that the best models 

investigated included first order additive x additive epistatic interaction effects. Overall, this study 
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showed that beyond grain yield, genomic prediction models might be used to predict belowground 

and physiological traits.  

2 Introduction  

Despite their importance for water use and nutrient uptake, belowground traits have been largely 

neglected for crop improvement as breeding efforts have predominantly targeted aboveground traits 

related to yield formation. Nevertheless, there is evidence that thousands of years of empirical 

selection have also indirectly reshaped the root system architecture of domesticated species, 

corroborating the importance of belowground traits for crop yield (de Dorlodot et al. 2007; Herder et 

al. 2010; Jia et al. 2019). In cereals, experimental results and crop simulation models (CSMs) have 

pointed out that genotypes with deeper root system architecture can cope with drought and heat 

stresses and increase grain yield (GY) in dry environments (Manschadi et al. 2008; Mu et al. 2015; 

Liu et al. 2017; Tao et al. 2017). For instance in durum wheat, contrasting root system architectures 

correlate with drought-intolerant and drought-tolerant genotypes showing higher GY under sub-

optimal water regimes (El Hassouni et al. 2018). In this species, it has been shown that deeper root 

system architectures can increase GY from 16 to 35% in environments with limited soil moisture and 

from 9 to 24% in irrigated sites (El Hassouni et al. 2018). Similarly, in bread wheat narrower and 

deeper root system architectures with more branching at depth allow to provide greater access to soil 

moisture in environments experiencing terminal drought (Manschadi et al. 2008). In maize, it has 

been shown that the increase of root size improves nitrogen absorption and GY (Mu et al. 2015) and 

that a more efficient root system is more important than canopy architecture for determining plant 

growth rate and biomass accumulation (Hammer et al. 2009). 

In cereals, the root system architecture of seedlings can be dissected into primary or seminal roots 

and nodal or secondary roots. While seminal roots develop first from the primordia of the embryo 

and grow out from the coleorhizae, the development of nodal roots begins at the tillering stage from 

the basal nodes of the crown (Wahbi and Gregory 1995). In bread and durum wheat, it has been 

shown that the seminal root number (SRN) and the seminal root angle (SRA), that is the angle 

measured between the first pair of seminal roots or between the two outmost seminal roots at the 

seedling stage, are two proxy traits that can predict the root system architecture at the adult stages 

(Manschadi et al. 2008; El Hassouni et al. 2018; Alahmad et al. 2019). For instance, reduced SRA 

and higher SRN in bread wheat seedlings correlate with drought-tolerant genotypes (e.g. Baxter, 

Babax, and Dharwar Dry, SeriM82), which exhibit a deeper and more compact root system 

architecture at the adult stages (Manschadi et al. 2008). In barley the assumption that SRA and SRN 

measured in seedlings are proxies of the root system architecture of mature plants has not been 

directly assessed, although in spring genotypes moderate correlations between these belowground 

traits and GY have been observed in field trials organized in 20 rainfed and irrigated site-by-season 

combinations (Robinson et al. 2018). Recently, phenotypic variation for SRA and SRN has been 

assessed in a large panel of spring barley and exploited to map loci that underlie these traits using 

genome wide association studies (Jia et al. 2019).  

The evaporative demand or vapor pressure deficit (VPD) indicates the difference between the 

saturated and the actual vapor pressure of air at a given temperature and drives the transpiration rate 

(TR) of crops (Kholová et al. 2012). In field conditions, either soil drought or atmospheric drought, 

that is the combination of high temperatures and low humidity, does not allow crops to satisfy the 

required evaporative demand and climate change is expected to exacerbate these phenomena (Lobell 

and Gourdji 2012; Medina et al. 2019). CSMs have pointed out that, beyond the root system 

architecture, the TR response to VPD is an important physiological trait that might be targeted to 

cope with high evaporative demand and increase GY (Tao et al. 2009, 2017) as the reduction of water 
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flux to leaves for limiting TR at high levels of VPD is a water-saving strategy that imposes 

physiological trade-offs in leaf dehydration and senescence and allows crops to better manage soil 

moisture to overcome drought stress. While this water saving strategy might cause yield penalty when 

soil moisture is not a limiting factor, in sorghum and maize experimental evidence has shown that 

limiting TR at high evaporative demand can allow to increase GY in dry environments (Sinclair et al. 

2005). As substantiated for belowground traits, TR response to VPD is a key physiological trait that 

can serve as proxy trait for drought tolerance (Schoppach and Sadok 2012, 2013; Schoppach et al. 

2016). In durum wheat, the variation of TR response has allowed to identify at least two different sets 

of genotypes showing linear and segmented trends of TR in response to VPD and interestingly, these 

different responses have been correlated with different performances in terms of GY and biomass 

production in rainfed and irrigated field trials (Medina et al. 2019). Similarly, in sorghum and 

chickpeas, closing of stomata for limiting TR has been correlated with genotypes that have a better 

ability to retain soil moisture and contribute to yield formation under drought stress (Devi et al. 2015; 

Sivasakthi et al. 2017; Medina et al. 2019). While phenotypic diversity in TR response to VPD has 

been widely assessed in bread and durum wheat (Schoppach and Sadok 2012; Schoppach et al. 2017), 

the knowledge of this trait in barley has lagged behind and to date its natural variation has been 

assessed in a limited panel of 25 wild barley and in one cultivar, which corroborates the existence of 

diversity for this trait in barley germplasm (Sadok and Tamang 2019). 

Genomic prediction (GP) aims to regress genome-wide single nucleotide polymorphisms (SNPs) 

or other types of DNA markers on phenotypes of individuals to simultaneously predict their effects 

(Meuwissen et al. 2001). The population of individuals having both phenotypic and genotypic 

information is named training population (TP) and is used for constructing predictive models, which 

allows to compute “Genomic Estimated Breeding Values” (GEBVs) in individuals for which only 

genotyping information is available (Desta and Ortiz 2014). Typically, the predictive models used in 

GP require to regress a number of predictors (DNA markers) that greatly exceeds the number of 

observations or phenotypes and several parametric and non-parametric models have been proposed 

to deal with overfitting and the ‘large p, small n’ problem (Meuwissen et al. 2001; Jannink et al. 2010; 

Pérez and de los Campos 2014) as in these conditions the estimation of marker effects using ordinary 

least squares method is not practicable. Unlike methods based on whole genome regression of 

markers, the genomic best linear unbiased prediction (GBLUP) method treats genomic values of 

individuals as random effects in a linear mixed model and uses a genomic relationship matrix based 

on DNA marker data to compute GEBVs (VanRaden 2008; Wang et al. 2018). To date, in plant 

breeding GP has been mainly applied for improving GY (Crossa et al. 2017), but this methodology 

offers the possibility to predict other traits of agricultural interest that cannot be easily scored (e.g. 

belowground and physiological traits correlated with abiotic stress tolerances). For instance, GP 

models have been fitted to seed size (Nielsen et al. 2016), thousand grain weight, number of grains 

per m2, grain plumpness (Bhatta et al. 2020), straw breaking and lodging (Tsai et al. 2020) beta-

glucan and grain protein content (Bhatta et al. 2020) and starch (Tsai et al. 2020). 

In plant and animal breeding, categorical data often arise when traits are scored either as 

dichotomous phenotypes (e.g., presence or absence) or ordered categorical data varying on discrete 

values (e.g., ordered scales indicating increasing resistance to a pathogen). Similarly, count data arise 

when the trait of interest is the sum of discrete quantities that can take only integer values (e.g., the 

number of tillers per plant or the number of seminal roots in seedlings). These data are often analyzed 

assuming that the number of categories is sufficiently large, and that consequently they can be 

approximate to a normal distribution, but several studies have shown that significant bias is observed 

with low number of samples and discrete categories (Montesinos-López et al. 2015a). Treating count 

or ordinal categorical data as a random variable that follows a continuous distribution violates several 
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assumptions of standard GP linear models as already substantiated in other studies (Montesinos-

López et al. 2015b, a, 2016). To overcome these limitations, GP based on generalized linear mixed 

models (GLMM) have been developed and fitted to dichotomous and ordinal categorical traits. While 

in standard linear models the response variable is modelled as the sum of the explanatory variables 

and a probability assumption about the residual is made, in GLMM the response variable is connected 

to the explanatory variables via a link function, that is a function that maps explanatory variables to 

the observations. Compared to standard GP linear models, it has been empirically shown that GP 

models based on GLMM allow to increase the predictive ability for count data and ordinal categorical 

traits especially when the trait heritability is low (González-Recio and Forni 2011; Villanueva et al. 

2011; Wang et al. 2013; Montesinos-López et al. 2015a, 2016). 

In the present study, we examined the diversity and distribution of belowground and physiological 

traits in an eight-way MAGIC population of winter barley and in its founder parents (Puglisi et al. 

2021). We correlated phenotypic data of SRA, SRN and TR along with GY obtained in different site-

by-season combinations to re-assess the relevance of belowground and physiological traits of 

seedlings for predicting drought-tolerant and drought-intolerant lines. Leveraging on phenotypic and 

genotypic information we fitted and cross-validated different GP models including different sets of 

linear predictors and showed that these models can successfully predict SRA, SRN and TR and might 

pave the way for underpinning ideotype breeding and mining large plant collections. 

3 Material and methods 

3.1 Plant materials and genotyping 

The MAGIC population examined in this study along with the set of 90 MAGIC lines used for 

genome-enabled predictions has been extensively described elsewhere (Puglisi et al. 2021). 

Particularly, this latter set of 90 MAGIC lines used in the present study (Supplementary Table 1 

and 2) corresponds to the TP previously assembled for fitting multi-environment GP models and 

genotyped using the barley 50K SNP chip (Puglisi et al. 2021).  

3.2 Phenotyping of plant material 

The set of MAGIC lines was phenotyped in the following site-by-season combinations to examine 

GY and heading date (HD): Fiorenzuola d’Arda (Italy, 2016, 2017, 2018, 2019) at CREA-Centro di 

Genomica e Bioinformatica (44°55'39.0"N 9°53'40.6"E, 78 𝑚 above sea level), Marchouch 

(Morocco, 2016, 2019) at ICARDA Experimental station (33°36'43.5"N 6°42'53.0"W, 390 𝑚 above 

sea level), Adana (36°59’52.9”N 35°20’28.0”E, 24 𝑚 above sea level) and Konya (37°53’37.9”N 

32°37’26.0”E, 1005 𝑚 above sea level) (Turkey, 2019). These data, excluding phenotypic data 

collected in Marchouch during the growing season 2018-2019, are part of the data set previously 

analyzed (Puglisi et al. 2021). All these experiments were conducted following local management 

practices, except for field trials organized in Fiorenzuola d’Arda during 2017-2018 and 2018-2019 

growing seasons as they were conducted using two different levels of nitrogen fertilization as 

previously described (Puglisi et al. 2021). All field trials were analyzed using an alpha-lattice 

experimental design with two replicates and adjusted means of GY were computed using a mixed 

linear model considering genotypes as random effects (Puglisi et al. 2021). Best linear unbiased 

predictions (BLUPs) of genotypic effects were computed per environment and per site-by-season-by-

management combination including HD and both HD and year as covariates, respectively. Mixed 

linear models for analyzing field trial data were implemented in lme4 package (Bates et al. 2015) 

along with R 4.0.3 (Core R Team 2019). The adjusted means of GY were used to study genotype × 

environment (GE) interaction for delineating clusters of mega-environments using genotype plus 
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genotype × environment (GGE) biplot analyses (Yan et al. 2000; Yan and Holland 2010) 

implemented in GGEBiplots package and for assessing correlation with physiological and 

belowground traits. 

SRA and SRN were phenotyped using the clear pot method (Richard et al. 2015; Robinson et al. 

2016) at ICARDA's physiology laboratory under controlled temperature and humidity according to 

the original protocol (Richard et al. 2015) and using transparent ANOVApot pots (Anovapot Pty Ltd, 

Brisbane, QLD, Australia, www.anovapot.com/php/anovapot.php) with a diameter of 200 𝑚𝑚, 

height of 190 𝑚𝑚 and a volume of 4 𝐿. To phenotype SRA and SRN, the set of 90 MAGIC genotypes 

was randomized in 45 pots using 12 replicates per genotypes. In each pot 24 random genotypes were 

sowed at a distance of 2.5 𝑐𝑚 from each other and at a depth of circa 1.5-2 𝑐𝑚, positioning the embryo 

towards the bottom of the pot to support the correct root development. After sowing, pots were 

irrigated and placed inside black container pots, in a lightless growing chamber with controlled 

climate conditions with data logger at 19 °C and 70% of relative humidity (Type TGU-4550, Gemini 

Data Loggers, UK). Five days after sowing twelve images of SRA per genotype were acquired with 

a digital camera, which were subsequently analyzed using ImageJ software (https://imagej.nih.gov) 

(Schneider et al. 2012) to measure the angle between the first pairs of seminal roots according to 

published protocols (Richard et al. 2015). Eleven-day days after sowing seedlings were carefully 

removed from soil and SRNs were manually counted in the same seedlings used for measuring SRA. 

The incomplete block design used for phenotyping SRA was analyzed with the following linear 

model: 

𝑦𝑖𝑗𝑘  =  1µ + 𝑅𝑒𝑝𝑖  + 𝑃𝑜𝑡𝑗  + 𝐺𝑒𝑛𝑘 + 𝑒𝑖𝑗𝑘     Equation 1 

where yijk is the response variable, that is the raw SRA data, µ is the general mean, 𝑅𝑒𝑝𝑖 is the fixed 

effect of the 𝑖𝑡ℎ replicate, 𝑃𝑜𝑡𝑗   is the random effect of the 𝑗𝑡ℎ pot, 𝐺𝑒𝑛𝑘 is the fixed effect of the 𝑘𝑡ℎ 

genotype and 𝑒𝑖𝑗𝑘 is the error associated to each response. The adjusted means of SRA and their 95% 

confidence interval were estimated in R 4.0.3 statistical (Core R Team 2019) using lme4 package 

(Bates et al. 2015) and used to fit censored GP models and compute broad sense heritability (H2) and 

for seeking correlations with other belowground and physiological traits. 

The TR response to VPD was examined at ICARDA's physiology laboratory under controlled 

temperature and humidity. This experiment was designed randomizing the 90 MAGIC lines using 

three biological replicates per pot, using 2 𝐿 pots with diameter and height of 104 and 200 𝑚𝑚, 

respectively. In each pot, plants were sown at a depth of circa 2 𝑐𝑚 and were uniformly irrigated 

every 2 days. At Zadoks stage 14 (ZADOKS et al. 1974), which was reached after 4-5 weeks after 

sowing, depending on the genotype, pots were irrigated until reaching the maximum water holding 

capacity of the substrate and subsequently closed with plastic bags and balls to limit evaporation. TR 

was measured under increasing VPD ranging from 0.4 to 5.2 𝐾𝑃𝑎 in a greenhouse with controlled 

conditions (temperature and humidity) accurately monitored with data loggers (Type TGU-4550, 

Gemini Data Loggers, UK). Phenotyping of plants and the computation of TR under increasing VPD 

conditions was carried out following published protocols (Fletcher et al. 2007; Sadok and Sinclair 

2009a, b; Schoppach and Sadok 2012; Schoppach et al. 2017; Tamang and Sadok 2018; Sadok and 

Tamang 2019). Briefly, to determine the amount of water loss by transpiration, the weight of pots 

was measured using an electronic balance with a resolution of 0.1 𝑔 (KB Kern 573, Kern & Sohn 

GmbH, Balingen, Germany), at seven values of VPD. For calculating evapotranspiration, the weight 

of five empty pots was measured seven times and at the end of the experiment, plants leaf area, 

temperature and humidity were immediately collected using leaf area meters (LI-3000C, LiCor 

Biosciences, Lincoln, Nebraska, USA) and data loggers (Type TGU-4550, Gemini Data Loggers, 

UK). The VPD applied to plants was computed as a function of temperature and humidity and TR 

http://www.anovapot.com/php/anovapot.php
https://imagej.nih.gov/
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measures in 𝑚𝑔𝐻2𝑂𝑚
−2𝑠−1 was normalized as function of total leaf area and time in which pot weight 

was collected. TR data were regressed on VPD values using linear (Equation 2) and segmented 

models (Equations 2 and 3) (Medina et al. 2019).  

𝑦1 = 𝑆1𝑥 + 𝐼1          Equation 2 

𝑦2 = 𝑆2𝑥 + 𝐼2          Equation 3 

where 𝑆 and 𝐼 point out slope and intercept, respectively. These models were computed using 

“segmented” package (V. R. M. Muggeo 2008; Muggeo 2017) implemented in R 4.0.3 statistical 

(Core R Team 2019). Goodness-of-fit based on R-squared values was used as main criterion to select 

the best model and classify genotypes in a first group of lines showing linear trend of TR and a second 

group showing a segmented trend. 

Raw data of TR measured at 2.7 𝐾𝑃𝑎 of VPD were analyzed using the following linear model: 

𝑦𝑖𝑘  =  1µ + 𝑅𝑒𝑝𝑖 + 𝐺𝑒𝑛𝑘 + 𝑒𝑖𝑘       Equation 4 

where 𝑦𝑖𝑘 are the raw TR values, µ is the general mean, 𝑅𝑒𝑝𝑖 is the effect of the 𝑖𝑡ℎ replicate, 𝐺𝑒𝑛𝑘 

is the fixed effect of the 𝑘𝑡ℎ genotype and 𝑒𝑖𝑘 is the error associated to each response. The adjusted 

means of TR measured at low levels of VPD along with their 95% confidence intervals were estimated 

in R 4.0.3 statistical (Core R Team 2019) using lme4 package (Bates et al. 2015) and used to fit 

censored GP models and compute broad sense heritability (H2). 

3.3 Descriptive and correlation analysis 

Variation in GY and SRA in the panel MAGIC lines was investigated computing maximum and 

minimum values, mean, median and standard deviation. This descriptive analysis was computed using 

“metan” package (Olivoto and Lúcio 2020) implemented in R 4.0.3 statistical (Core R Team 2019). 

The adjusted means of GY and SRA, along with SRN and TR measured at a VPD of 2.7 𝐾𝑃𝑎 were 

analyzed and correlated each other. Two different types of correlations were applied on the basis of 

variable type: Pearson’s correlation coefficient was applied to compute correlation between 

continuous traits (GY, SRA and TR measured at a VPD of 2.7 𝐾𝑃𝑎), while polyserial correlations 

were computed to measure correlations between continuous and categorical variables (Drasgow 

2006). These correlation analyses were computed using “polycor” package (Fox 2019) implemented 

in R 4.0.3 statistical (Core R Team 2019). 

3.4 GP models fitted to SRN 

In the present study three different GP models were fitted to SRN combining phenotypic data with 

genotypic information obtained with the Barley 50k SNP chip (Puglisi et al. 2021). For this trait, GP 

models were fitted following two different hypotheses. Firstly, we assumed that SRN varies as an 

ordinal discrete variable that indicates the performance of plants at the adult stage under nitrogen or 

water deficiency and for this aim threshold genomic best linear unbiased predictor (TGBLUP) models 

and extended TGBLUP models were fitted.  

Formal presentation of the model theory of GP for ordinal discrete data was disserted elsewhere 

(Montesinos-López et al. 2015a). Here, we shortly introduce the TGBLUP models used in the present 

study for implementing GP. For SRN, we assumed that the ordinal response variable 𝑦𝑖𝑘, that is the 

number of observed seminal roots, can take 𝐶=7 mutually exclusive 𝑐 values, where 𝑖 indicates the 

genotype, 𝑘 points out the number of replicates and 𝑐 takes values equal to the number of observed 

seminal roots observed in the MAGIC population, that is 𝑐 = 2, 3, 4, 5, 6, 7, 8. Moreover, we 

supposed that the ordinal response variable 𝑦𝑖𝑘 follows a multinomial distribution with parameters 

𝑁𝑖𝑘 and 𝜋𝑖𝑘(𝑐=2), 𝜋𝑖𝑘(𝑐=3), 𝜋𝑖𝑘(𝑐=4), 𝜋𝑖𝑘(𝑐=5), 𝜋𝑖𝑘(𝑐=6), 𝜋𝑖𝑘(𝑐=7), 𝜋𝑖𝑘(𝑐=8), that is 

(𝑦𝑖𝑘(𝑐=2), 𝑦𝑖𝑘(𝑐=3), 𝑦𝑖𝑘(𝑐=4), 𝑦𝑖𝑘(𝑐=5), 𝑦𝑖𝑘(𝑐=6), 𝑦𝑖𝑘(𝑐=7), 𝑦𝑖𝑘(𝑐=8))~𝑀𝑈𝐿𝑇𝐼𝑁𝑂𝑀𝐼𝐴𝐿(𝑁𝑖𝑘, 

𝜋𝑖𝑘(𝑐=2), 𝜋𝑖𝑘(𝑐=3), 𝜋𝑖𝑘(𝑐=4), 𝜋𝑖𝑘(𝑐=5), 𝜋𝑖𝑘(𝑐=6), 𝜋𝑖𝑘(𝑐=7), 𝜋𝑖𝑘(𝑐=8)) 
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where 𝑁𝑖𝑘 points out the number of observation and 𝜋𝑖𝑘(𝑐=2), 𝜋𝑖𝑘(𝑐=3), … 𝜋𝑖𝑘(𝑐=8) point out the 

probabilities of getting values 𝑐 = 2, 3, … 8 in the 𝑖𝑡ℎgenotype in the 𝑘𝑡ℎreplicate. Threshold models 

assume that 𝑦𝑖𝑘 is generated from an underlying continuous random variable 𝑙𝑖𝑘, having a normal 

distribution, which is called latent “liability” variable (Sorensen et al. 1995; Montesinos-López et al. 

2015a) and imply that for 𝐶 ordinal and mutually exclusive categories the existence of 𝐶 − 1 = 6 

unknown 𝛾 thresholds that must be estimated such as 𝛾𝑚𝑖𝑛 < 𝛾1 < 𝛾2 < 𝛾3. . < 𝛾𝑚𝑎𝑥, with 𝛾𝑚𝑖𝑛 =
−∞ and 𝛾𝑚𝑎𝑥 = +∞. In threshold models, values of 𝑙𝑖𝑘 are mapped to the ordinal categorical 

response according to the following conditions: 

 𝑦𝑖𝑘 =

{
 
 

 
 
2      𝑖𝑓    𝛾𝑚𝑖𝑛 < 𝑙𝑖𝑘 < 𝛾1           
3     𝑖𝑓         𝛾1 < 𝑙𝑖𝑘 < 𝛾2           
4     𝑖𝑓         𝛾2 < 𝑙𝑖𝑘 < 𝛾3           

…… . . ………………
8    𝑖𝑓          𝛾6 < 𝑙𝑖𝑘 < 𝛾𝑚𝑎𝑥       

 

 

In these models the link function relating linear predictors with the probability of observing data is 

the cumulative probit Φ(. ), that is the cumulative distribution function of a standard normal 

distribution and Φ−1 is the corresponding inverse function. Consequently, threshold models are 

specified with 𝐶 − 1 linear predictors 𝜂𝑖𝑘𝑐 as follows: 

𝜂𝑖𝑘(𝑐=2) = Φ−1(𝜋𝑖𝑘(𝑐=2)) = 𝛾1 − 𝑋𝑖𝑘
𝑇 𝛽 − 𝑍𝑖𝑘

𝑇 𝑢 

𝜂𝑖𝑘(𝑐=3) = Φ−1(𝜋𝑖𝑘(𝑐=2) + 𝜋𝑖𝑘(𝑐=3)) = 𝛾2 − 𝑋𝑖𝑘
𝑇 𝛽 − 𝑍𝑖𝑘

𝑇 𝑢 

𝜂𝑖𝑘(𝑐=4) = Φ−1(𝜋𝑖𝑘(𝑐=2) + 𝜋𝑖𝑘(𝑐=3) + 𝜋𝑖𝑘(𝑐=4)) = 𝛾3 − 𝑋𝑖𝑘
𝑇 𝛽 − 𝑍𝑖𝑘

𝑇 𝑢 

𝜂𝑖𝑘(𝑐=5) = Φ−1(𝜋𝑖𝑘(𝑐=2) + 𝜋𝑖𝑘(𝑐=3) + 𝜋𝑖𝑘(𝑐=4) + 𝜋𝑖𝑘(𝑐=5)) = 𝛾4 − 𝑋𝑖𝑘
𝑇 𝛽 − 𝑍𝑖𝑘

𝑇 𝑢 

𝜂𝑖𝑘(𝑐=6) = Φ−1(𝜋𝑖𝑘(𝑐=2) + 𝜋𝑖𝑘(𝑐=3) + 𝜋𝑖𝑘(𝑐=4) + 𝜋𝑖𝑘(𝑐=5) + 𝜋𝑖𝑘(𝑐=6)) = 𝛾5 − 𝑋𝑖𝑘
𝑇 𝛽 − 𝑍𝑖𝑘

𝑇 𝑢 

𝜂𝑖𝑘(𝑐=7) = Φ−1(𝜋𝑖𝑘(𝑐=2) + 𝜋𝑖𝑘(𝑐=3) + 𝜋𝑖𝑘(𝑐=4) + 𝜋𝑖𝑘(𝑐=5) + 𝜋𝑖𝑘(𝑐=6) + 𝜋𝑖𝑘(𝑐=7))

= 𝛾6 − 𝑋𝑖𝑘
𝑇 𝛽 − 𝑍𝑖𝑘

𝑇 𝑢 

 

where 𝑋𝑖𝑘
𝑇  is a known row incidence vectors of fixed effects, 𝑍𝑖𝑘

𝑇  is a known row incidence vectors of 

random effects, 𝛽 points out the vector of fixed effects and 𝑏 is the vector of random effects. The 

probabilities 𝜋𝑖𝑘𝑐 are linked to the linear predictors 𝜂𝑖𝑘𝑐as follows: 

𝜋𝑖𝑘(𝑐=2) =  Φ(𝜋𝑖𝑘(𝑐=2)), 𝜋𝑖𝑘(𝑐=3) + 𝜋𝑖𝑘(𝑐=2)
=  Φ(𝜋𝑖𝑘(𝑐=3)), . . . . . , 𝜋𝑖𝑘(𝑐=7) + 𝜋𝑖𝑘(𝑐=6) + 𝜋𝑖𝑘(𝑐=5) + 𝜋𝑖𝑘(𝑐=4) + 𝜋𝑖𝑘(𝑐=3) + 𝜋𝑖𝑘(𝑐=2)
=  Φ(𝜋𝑖𝑘(𝑐=7))  

 

As mentioned above, threshold models assume that the latent and normally distributed variable 𝑙𝑖𝑘 

generates the observed 𝐶 categories as follows: 

𝑙𝑖𝑘 = 𝑋𝑖𝑘
𝑇 𝛽 + 𝑍𝑖𝑘

𝑇 𝑢 + 𝑒𝑖𝑘        Equation 5 

where the error terms 𝑒𝑖𝑘 are independent and identically distributed and follow a normal distribution 

with mean 0 and standard deviation equals to 1, that is 𝑒𝑖𝑘 ~𝑁(0,1). In the present study, different 

combinations of linear predictors including replicates, lines, markers and first order epistatic effects, 

were incorporated in 𝑋𝑖𝑘
𝑇  and 𝑍𝑖𝑘

𝑇  for fitting five extended threshold models (Table 1), which were 

already substantiated and described in other studies (Jarquín et al. 2014; Montesinos-López et al. 

2015a).  
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Table 1: Summary of the linear predictors incorporated in the GBLUP and TGBLUP models 

used to analyze SRN, SRA and TR. R, replicate; L, line; G, marker covariates; GxG, additive x 

additive epistasis. 

Model 
Main Effects Interaction 

R L G GxG 

SRN-Model 1 

SRA-Model 1 

TR-Model 1 

x x   

SRN-Model 2 

SRA-Model 2 

TR-Model 2 

x  x  

SRN-Model 3 

SRA-Model 3 

TR-Model 3 

x  x x 

SRN-Model 4 

SRA-Model 4 

TR-Model 4 

x x x  

SRN-Model 5 

SRA-Model 5 

TR-Model 5 

x x x x 

The resulting five models include the following sets of linear predictors: 

SRN-Model 1: 𝑙𝑖𝑘 = 𝑅𝑘  +  𝐿𝑖  +  𝜀𝑖𝑘     Equation 6 

SRN-Model 2: 𝑙𝑖𝑘 =  𝑅𝑘  +  𝑔𝑖  +  𝜀𝑖𝑘     Equation 7 

SRN-Model 3: 𝑙𝑖𝑘 = 𝑅𝑘  +  𝑔𝑖  + 𝑔𝐴𝑖  +  𝜀𝑖𝑘    Equation 8 

SRN-Model 4: 𝑙𝑖𝑘 = 𝑅𝑘  +  𝐿𝑖  +  𝑔𝑖 + 𝜀𝑖𝑘     Equation 9 

SRN-Model 5: 𝑙𝑖𝑘 = 𝑅𝑘  +  𝐿𝑖  +  𝑔𝑖 + 𝑔𝐴𝑖 + 𝜀𝑖𝑘     Equation 10 

where 𝑙𝑖𝑘 is the latent “liability” variable of 𝑘𝑡ℎreplicates in the 𝑖𝑡ℎ line. SRN-Model 1 includes 𝑅𝑘, 

which is the fixed effect of kth replicates and 𝐿𝑖  that is the random effect of the 𝑖𝑡ℎ line supposed to 

be independent and normally distributed as 𝐿𝑖~𝑁(0, 𝜎𝐿
2). SRN-Model 2 includes 𝑔𝑖, which points out 

the additive genetic value of the 𝑖𝑡ℎ line, that is 𝑔𝑖 = ∑ 𝑥𝑖𝑛𝑏𝑛
𝑝
𝑛=1 , where 𝑥𝑖𝑛 is the genotype of the 𝑖𝑡ℎ 

line at marker 𝑛 and 𝑏𝑛 is the corresponding effect of marker 𝑛. The vector of additive genetic value 

𝒈 = (𝑔1, 𝑔2, 𝑔3……𝑔𝑖) is supposed to be normally distributed as 𝒈 ~𝑁(0, 𝐺𝜎𝑔
2) with mean 0 and 

variance-covariance structure 𝐺𝜎𝑔
2, where 𝜎𝑔

2 points out the additive genetic variance 𝜎𝑔
2 and G is the 

genomic marker relationship matrix (VanRaden 2008). SRN-Model 3 extends SRN-Model 2 

including first order multiplicative epistatic effects 𝒈𝑨 = (𝑔𝐴1, 𝑔𝐴2, … 𝑔𝐴𝑖), which are modelled as 

𝒈𝑨~𝑁(0, 𝐺𝐴𝜎𝑔𝐴
2 ), that is the vector of epistatic effects follows a normal distribution with mean 0 and 

epistatic additive x additive genetic variance 𝜎𝑔𝐴
2  (Montesinos-López et al. 2015a). Finally, SRN-

Model 4 includes 𝑅𝑘, 𝐿𝑖 and 𝑔𝑖 as linear predictors while SRN-Model 5 extends SRN-Model 4 

including 𝑔𝐴𝑖 effects. In the present study the aforementioned threshold models were implemented in 

a Bayesian framework using BGLR package (Pérez and De Los Campos 2014) in R 4.0.3 statistical 

(Core R Team 2019) using default prior distributions and modifying codes published in other studies 

(Montesinos-López et al. 2015a).  

Secondly, we handled SRN as count data for predicting this trait per se, fitting five log-normal GP 

models based on GBLUP (Montesinos-López et al. 2015b). In these five log-normal model the 

response variable is the logarithm of SRN, that is log (𝑦𝑘𝑗) and were fitted using the same sets of 
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linear predictors (𝑅𝑘, 𝐿𝑗, 𝑔𝑗, 𝑔𝐴𝑗) described for the five extended TGBLUP models (Table 1). In these 

models 𝑅𝑘, 𝐿𝑗, 𝑔𝑗, 𝑔𝐴𝑗 follow the same distributions defined for the extended TGBLUP models except 

for the error terms 𝜀ik of 𝐾𝑡ℎ replicates in 𝑖𝑡ℎ line, which in these models is 𝜀𝑖𝑘~𝑁(0, 𝜎𝑒
2), that is the 

residuals are independent and normally distributed with mean 0 and variance 𝜎𝑒
2. Like TGBLUP 

models, log-normal models were implemented using BGLR package (Pérez and De Los Campos 

2014) in R 4.0.3 statistical (Core R Team 2019). 

3.5 Genomic prediction models fitted for SRA and TR 

The five sets of linear predictors used in the extended TGBLUP models (Table 1) were used for 

predicting SRA and TR measured at a VPD of 2.7 KPa, using the following models: 

SRA-Model 1: 𝑦𝑖  = 𝐿𝑖  +  𝜀𝑖       Equation 11 

SRA-Model 2: 𝑦𝑖  = 𝑔𝑖  +  𝜀𝑖       Equation 12 

SRA-Model 3: 𝑦𝑖  = 𝑔𝑖  + 𝑔𝐴𝑖  + 𝜀𝑖      Equation 13 

SRA-Model 4: 𝑦𝑖  = 𝐿𝑖  +  𝑔𝑖 + 𝜀𝑖      Equation 14 

SRA-Model 5: 𝑦𝑖  = 𝐿𝑖  +  𝑔𝑖 + 𝑔𝐴𝑖 + 𝜀𝑖      Equation 15 

 

TR-Model 1: 𝑦𝑖  = 𝐿𝑖  + 𝜀𝑖       Equation 16 

TR-Model 2: 𝑦𝑖  = 𝑔𝑖  +  𝜀𝑖       Equation 17 

TR-Model 3: 𝑦𝑖  = 𝑔𝑖  + 𝑔𝐴𝑖  +  𝜀𝑖      Equation 18 

TR-Model 4: 𝑦𝑖  = 𝐿𝑖  + 𝑔𝑖 + 𝜀𝑖      Equation 19 

TR-Model 5: 𝑦𝑖  = 𝐿𝑖  + 𝑔𝑖 + 𝑔𝐴𝑖 + 𝜀𝑖      Equation 20 

where 𝑦𝑖 is the adjusted mean of SRA or TR, 𝜖𝑖 is the error term of the 𝑖𝑡ℎ measurement with 

𝜖𝑖 ~𝑁(0, 𝜎𝜀
2), that is that the errors are independent and identically distributed with mean 0 and 

variance 𝜎𝜀
2. In these models, the linear predictors 𝐿𝑗, 𝑔𝑗, 𝑔𝐴𝑗 follow the same distribution defined for 

TGBLUP models. These five extended GBLUP models (SRA-Model 1-5, TR-Model 1-5) were 

implemented using BGLR package (Pérez and De Los Campos 2014) in R 4.0.3 statistical (Core R 

Team 2019) as censored data described with the following interval 

𝑎𝑖 < 𝑦𝑖 < 𝑏𝑖  

where 𝑦𝑖 is the adjusted mean of SRA or TR computed as BLUE, 𝑎𝑖 is the lower bound estimate of 

𝑦𝑖 computed as the difference between 𝑦𝑖 and 2 standard deviations (SD) and 𝑏𝑖 is the upper bound 

estimate of 𝑦𝑖 computed as the sum of 𝑦𝑖 with 2 SD. 

3.6 Cross-validation of GP models 

For the extended TGBLUP models, leave-one-out cross-validation was carried out and predictive 

ability was estimated using both Brier Score (BS) and the proportion of cases correctly classified 

(PCCC) (BRIER 1950; Montesinos-López et al. 2015a, 2020). BS was computed as follows: 

𝑩𝑺 = 𝒏−𝟏∑  ∑  
𝒈
𝒄=𝟏

𝒏
𝒊=𝟏 (�̂�𝒊𝒄 − 𝒅𝒊𝒄) 

𝟐      Equation 21 

where (�̂�𝒊𝒄 − 𝒅𝒊𝒄) 
𝟐 is the average square difference between �̂�𝑖𝑐 predictions and 𝑑𝑖𝑐 classes for 

observation i into category c. BS obtained with Equation 21 was divided by two in order to have a 

range that varies from 0 to 1 (Brier, G. W. 1950; Montesinos-López et al. 2015a). For the other models 

used in the present study (extended GBLUP and log-normal models), the predictive accuracy of GP 

models was calculated as the Pearson’s correlation coefficient between GEBVs and the corresponding 

adjusted means of the trait (SRA, TR measured at a VPD of 2.7 KPa). Unlike the Pearson's correlation 

coefficient used for the extended GBLUP models for SRA and TR, lower values of BS point out 

higher predictive ability of the models, while higher values of BS point out lower predictive ability 

of models. 
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4 Results 

4.1 Phenotypic distribution and analysis of belowground and physiological traits in the barley 

MAGIC population 

To assess the phenotypic variability of belowground traits, the panel of MAGIC lines was 

phenotyped for SRA and SRN at the seedling stage under controlled conditions. This analysis showed 

that SRN greatly varies in this population as it ranges between 2 and 8 with a mean of 5 roots and a 

standard deviation of 0.84 (Figure 1A; Supplementary Table 1). A linear mixed model was fitted 

to analyze the raw measurements of SRA following the adopted experimental design to compute the 

adjusted means and the corresponding 95% confidence intervals of SRA using best linear unbiased 

estimators (BLUEs). This analysis indicated that the phenotypic distribution of SRA ranges from 

57.75° (genotype “M18”) to 106.40° (genotype “M324”) with an average value of 86.51° and SD of 

9.6° (Figure 1B; Supplementary Table 2). Both belowground traits exhibit a bell-shaped 

distribution (Figure 1A and Figure 1B) and particularly, for SRA Shapiro-Wilk normality test shows 

that the null hypothesis, that is that the adjusted means of SRA follow a normal distribution, cannot 

be rejected (P-values = 0.1844).  

 

Figure 1: Phenotypic distribution of SRA, SRN and whole-plant TR measured at high 

evaporative demand in the panel of MAGIC lines: (a) Histogram of SRN counted in the MAGIC 

lines; (b) Histogram of the adjusted means of SRA measured in sexagesimal degrees; (c) Bar plot of 

TR measured at under high evaporative demand (2.7 KPa). Error bars point out the 95% confidence 

interval of TR values. 

  
The whole-plant TR was measured in the set of MAGIC lines at the seedling stage using increasing 

VPD values ranging from 0.4 to 2.7 KPa. Regression of whole-plant TR on VPD values was carried 

out using linear and segmented models and R-squared was used as goodness-of-fit measure for model 

selection. Regression of whole-plant TR on VPD values shows a segmented response in a large 
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fraction of genotypes, while 28 MAGIC lines show a linear response of TR to increasing levels of 

VPD (Supplementary Table 2). Following the results showed in previous studies (Sadok and 

Tamang 2019), we investigated the variability of TR measured at high evaporative demand (2.7 KPa), 

which showed that the panel of MAGIC exhibits circa a five-fold variation of TR as measured values 

range from 4.05 (genotype “M382”) to 13.6 (genotype “M150”) 𝑚𝑔𝐻2𝑂𝑚
−2𝑠−1 (Figure 1C, 

Supplementary Table 2).  

4.2 Correlation of belowground and physiological traits with GY 

To assess the level of correlation among site-by-season combinations, a genotype × environment 

(GGE) biplot analysis was carried using the adjusted means of GY (Figure 2A). This analysis 

indicated that AdaIN and FioIN show the highest environmental similarities, while compared to the 

remaining environments, MarIN is the most dissimilar one as already substantiated in other studies 

(Puglisi et al. 2021). For assessing whether belowground and physiological traits might contribute to 

determining yield formation, we correlated GY with SRN, SRA and TR measured at high evaporative 

demand computing Pearson’s correlation coefficient for pairs of continuous traits (GY, SRA and TR) 

and polyserial correlation coefficient for pairs of continuous and discrete (SRN) traits (Figure 2B). 

This pairwise correlation analysis indicated that SRN shows a positive and moderate correlation with 

SRA (r = 0.22) and a negative correlation with the TR measured at high evaporative demand 

(VPD=2.7 KPa) (r = -0.12), that is MAGIC lines with higher SRN tend to transpire less at high VPD 

conditions (Figure 2B). Furthermore, TR under high evaporative demand showed a slight negative 

correlation with GY in FioIN (r = -0.16). GY in FioLN exhibited positive correlations with SRA and 

SRN, showing values of 0.18 and 0.26, respectively (Figure 2B). Overall, GY was positively 

correlated among KonIN, AdaIN and FioIN while no significant correlations were observed between 

MarIN and the remaining sites (KonIN, AdaIN, FioIN and FioLN) (Figure 2B). 

 

Figure 2: GGE biplot of GY and pairwise correlations of SRA, SRN, GY and TR at high 

evaporative demand. (a) The environment-vector view of the GGE biplot indicates similarities 

among test environments in discriminating the genotypes. (b) Depending on the trait distribution type 

(discrete or continuous), pairwise values indicate Pearson’s correlation or polyserial correlation 

between GY, SRA, SRN and TR measured under high evaporative demand of VPD (2.7 KPa). 
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4.3 GP models based on proxy traits for nitrogen limiting conditions  

Here, following the moderate correlation observed between GY obtained with limiting nitrogen 

conditions and the number of seminal root (Figure 2B), we assumed that SRN might serve as a proxy 

trait for predicting the performance of MAGIC lines under nitrogen deficiency and consequently the 

number of seminal roots was analyzed as an ordinal categorical phenotype, that is we supposed that 

genotypes exhibiting less seminal roots are more sensitive to nitrogen deficiency and vice versa. 

Genotyping data of MAGIC (Puglisi et al. 2021) were combined with SRN counted in seedlings to 

fit five threshold GP models, which include the fixed effect of replicates (all models), the effect of 

lines (SRN-Model 1), the effect of molecular markers (SRN-Model 2), the effect of molecular 

markers and epistasis (SRN-Model 3), the effect of lines and molecular markers (SRN-Model 4) and 

the effect of lines, markers and epistasis (SRN-Model 5) (Table 1) (Montesinos-Lopes et al., 2015). 

SRN-Model 2 represents a standard TGBLUP, while SRN-Model 3, SRN-Model 4 and SRN-Model 

5 extend TGBLUP models for including line effects and epistasis (Table 1). The estimates of fixed 

effects and their 95% confidence interval, that is the effects of the twelve replicates used for 

phenotyping SRN, showed similar values in the five threshold models (Figure 3A; Supplementary 

Table 3). Similarly, the estimates of the six model thresholds (𝛾1, 𝛾2, . . 𝛾6) showed similar values 

across the five threshold models (Figure 3B; Supplementary Table 4). Overall, the five threshold 

models considered in this study showed similar estimates of fixed effects and thresholds (Figure 3; 

Supplementary Table 3; Supplementary Table 4).  

 

Figure 3: Bar plots of the estimated parameters and thresholds of SRN in SRN-Models 1-5. (a) 

Posterior mean and 95% confidence interval of the twelve fixed effects (β1, β2,… β12) estimated in the 

five TGBLUP models (b) Posterior mean and 95% confidence interval of threshold parameters 

(𝜸𝟏, 𝜸𝟐, . . 𝜸𝟔). In both graphs, error bars point out the posterior 95% confidence interval of parameter 

values. 

 
The probabilities for each ordinal categorical phenotype estimated in the five TGBLUP models for 

the whole data set are shown in Figure 4. This analysis shows that the average probabilities for 

category 5 (5 seminal roots) are circa 0.5 in the whole data set for all five models (Figure 4) followed 

by categories 6 and 4. Unlike the distribution estimated from raw data, these probability estimates 

consider the effect of replicates but, overall, show similar trends from the estimates obtained based 

on raw frequencies (Figure 1A).  
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Figure 4: Boxplots of the estimated probabilities of SRN in SRN-Models 1-5. In each boxplot, 

upper and lower hinges show the 25th percentiles of the estimated probabilities. Lines across boxes 

point out the average estimated probability. 

 
The analysis of the estimated variance components in the five TGBLUP models fitted to SRN data 

shows that overall, the total variance explained in the five TGBLUP models is 1.07 (Table 2). 

Molecular markers explain a variance of circa 0.05 in SRN-Model 2, and of circa 0.02 in SRN-Model 

3, 4 and 5 (Table 2). Similarly, the variance explained by the additive x additive epistatic terms is 

0.04 for the SRN-Model 3 and 0.02 for the SRN-Model 5. Overall, the molecular markers explain a 

small fraction of the total variance observed for SRN in the five TGBLUP models used in the present 

study. 

 

Table 2: Estimated variance components of SRN-Model 1-5. L indicates the estimated variance 

of line effects; G is the estimated variance of marker effects while GxG points out the variance of 

additive x additive epistatic effects. Numbers between brackets point out the standard deviation of 

the estimated variances. 

Model L G GxG 
Error 

variance 

Total 

Variance 

SRN-Model 1 0.07 (0.03)   1 1.07 

SRN-Model 2  0.05 (0.02)  1 1.05 

SRN-Model 3  0.02 (0.01) 0.04 (0.02) 1 1.07 

SRN-Model 4 0.04 (0.02) 0.02 (0.01)  1 1.06 

SRN-Model 5 0.02 (0.01) 0.02 (0.01) 0.02 (0.01) 1 1.06 

 

To assess the predictive ability of SRN-Model 1-5, leave-one-out (LOO) cross-validation was 

implemented to compute BS between predicted and observed categorical values and the proportion 

of cases correctly classified (PCCC) (Gianola and Schon 2016; Montesinos-López et al. 2020). Cross-

validation analysis points out the PCCC is circa 52% for the five models considered in the present 

study (Figure 5A; Supplementary Table 5). Similarly, BS points out a high predictive ability as a 

value of circa 0.3 was estimated in the five models (Figure 5B). 

 



 

72 

Chapter 3  

Figure 5: Predictive ability of SRN-Model 1-5 fitted to SRN: (a) Proportion of cases correctly 

classified using the five TGBLUP models; (b) Brier scores obtained from LOO cross-validation of 

the five TGBLUP models. 

 

4.4 Genomic prediction of SRN using log-normal transformation of count data. 

Beyond using SRN as a proxy trait for predicting drought tolerance, GP models for count data were 

fitted to predict this trait independently from its association with drought tolerance and performance 

under nitrogen deficiency at the mature stage, using log-normal models incorporating the same 

combinations of linear predictors included in the Model 1-5 (Table 1). The analysis of variance 

components of these five log-normal models shows that “Model 5”, which incorporate line (L), 

marker (G) and additive x additive epistatic interaction (GxG) effects, has a lower error variance 

compared to the other models considered in the present study and allows to better fit data (Figure 

6A; Supplementary Table 6). The variance of GxG is 27.52 % for Model 3 and 19.83 % for Model 

5 (Figure 6A; Supplementary Table 6). LOO cross validation points out that the predictive ability 

values of these models, measured using Pearson’s correlation coefficient between predicted and 

observed data, ranges from 0.35 (Model 2) to 0.79 (Model 1), while Model 3, Model 4 and Model 

5 show predictive ability values of 0.54, 0.60 and 0.65, respectively (Figure 6B; Supplementary 

Table 6; Supplementary Figure 1). Overall, this analysis indicates that for SRN, models that 

explicitly incorporate marker and interaction effects have higher efficiency in term of both predictive 

ability and variance components captured. 
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Figure 6: Estimated variance components and prediction ability of log- normal models fitted to 

SRN. (a) Bar plots indicated variances of each component, expressed as percentage of the total model 

variance. L indicates the estimated variance of line effects; G is the estimated variance of marker 

effects while GxG and “Error” point out the variance of additive x additive epistatic effects and the 

residual variance, respectively. Error bars point out the 95% confidence interval of the estimated 

variances; (b) Bar plots of predictive ability values computed as Pearson’s correlation between 

estimated and observed data using LOO cross validation strategy. 

 

4.5 GP models for SRA 

As with log-normal models, the GBLUP counterpart of the five threshold models used for 

predicting SRN were fitted to SRA. These five models incorporate the main effects and interactions 

used for SRN (Table 1) but assume that the response variable, that is SRA, is continuous and follows 

a normal distribution. The adjusted means of SRA were combined with 19,723 polymorphic SNPs 

detected in this panel of MAGIC population to fit these extended GBLUP models. The analysis of 

variance components of these five models showed that “SRA-Model 5”, which incorporates line (L), 

marker (G) and additive x additive epistatic interaction (GxG) effects, has a lower error variance 

compared to the other models considered in the present study and allows to better fit data (Figure 

7A; Supplementary Table 7). The variance of GxG is 27.79 % for SRA-Model 3 and 17.81 % for 

SRA-Model 5 (Figure 7A; Supplementary Table 7). LOO cross validation pointed out that the 

predictive ability values of these models, measured using Pearson’s correlation coefficient between 

predicted and observed data, range from 0.19 (SRA-Model 2) to 0.73 (SRA-Model 1), while SRA-

Model 3, SRA-Model 4 and SRA-Model 5 show predictive ability values of 0.37, 0.49 and 0.53, 

respectively (Figure 7B; Supplementary Table 7; Supplementary Figure 2). Like observed for 

log-normal models, this analysis indicates that for SRA, models that explicitly incorporate marker 

and interaction effects have higher efficiency in term of both predictive ability and variance 

components captured. 
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Figure 7: Estimated variance components and prediction ability of the SRA-Models 1-5 used to 

predict SRA: (A) Bar plots indicate the variances of each component, expressed as percentage of the 

total model variance. L indicates the estimated variance of line effects; G is the estimated variance of 

marker effects while GxG and “Error” point out the variance of additive x additive epistatic effects 

and the residual variance, respectively. Error bars point out the 95% confidence interval of the 

estimated variances; (B) Bar plot of predictive ability values computed using Pearson’s correlation 

between estimated and observed SRA. 

 

4.6 Models for predicting TR under high evo-transpiration demand 

The five combinations of linear predictors incorporated in GP models for SRA and SRN (Table 1) 

were used to predict TR at a VPD of 2.7 kPa. The analysis of variance components of these five 

models showed that “TR-Model 5”, which incorporates line (L), marker (G) and additive x additive 

epistatic interaction (GxG) effects, has a lower error variance compared to the other models 

considered in the present study and allows to better fit data (Figure 8A; Supplementary Table 8). 

The variance explained by GxG is 21.93 % for TR-Model 3 and 15.69 % for TR-Model 5 (Figure 

8A; Supplementary Table 8). LOO cross validation points out that the predictive ability values of 

these models, measured using Pearson’s correlation coefficient between predicted and observed data, 

range from 0.68 (TR-Model 2) to 0.96 (TR-Model 1), while TR-Model 3, TR-Model 4 and TR-

Model 5 show predictive ability values of 0.89, 0.95 and 0.95, respectively (Figure 8B; 

Supplementary Table 8; Supplementary Figure 3). Like observed for log-normal models, this 

analysis indicates that for TR, models that explicitly incorporate marker and interaction effects have 

higher performance in term of both predictive ability and percentage of explained variance. 
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Figure 8: Estimated variance components and prediction ability of the TR-Models 1-5 used to 

predict TR under high evaporative demand: (A) Bar plots indicate variances of each component, 

expressed as percentage of the total model variance. L indicates the estimated variance of line effects; 

G is the estimated variance of marker effects while GxG and “Error” point out the variance of additive 

x additive epistatic effects and the residual variance, respectively. Error bars point out the 95% 

confidence interval of the estimated variances; (B) Bar plot of predictive ability values expressed as 

Pearson’s correlation between estimated and observed TR under high evaporative demand (2.7 KPa). 

 

5 Discussion 

In the present study, the phenotypic variability of SRN, SRA and TR under high evaporative 

demand was surveyed in a panel of 90 MAGIC lines of barley (Supplementary Table 1, 

Supplementary Table 2). The results showed that in this genetic material, SRN can vary from 2 to 

8 (Figure 1A), consistently with other barley studies (Robinson et al. 2016; Jia et al. 2019). Anyway, 

this comparison is not straightforward as in other studies SRN has been handled as a continuous trait 

and the phenotypic variability was presented using the adjusted means (BLUE or BLUP), while in 

this research work, SRN was analyzed as a discrete trait. 

In the literature, SRA has been measured between the first pair of seminal roots (Robinson et al. 

2016) or between the two outmost seminal roots (Jia et al. 2019). Following the original protocol, in 

the present study SRA between the first pair of seminal roots has been measured and the comparison 

of the phenotypic distribution of SRA with the results obtained in other work carried out following 

the same methodology (Robinson et al. 2016, 2018) point out that the SRA observed in MAGIC lines 

has wider phenotypic distribution. Unlike the findings reported in other studies (Robinson et al. 2016), 

SRA and SRN show a moderate correlation (r = 0.22). Anyway, analyzing SRN as continuous or 

discrete phenotypic trait implies different assumptions that hamper the comparisons of correlations 

as in our analysis SRN was considered as a discrete trait and consequently the connection between 

SRA and SRN was assessed using the polyserial correlation instead of Pearson’s correlation 

coefficient. Interestingly, the present study indicated a moderate and positive correlation of SRA (r = 

0.18) and SRN (r = 0.26) with GY measured in FioLN, which is a field trial fertilized with reduced 
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amount of nitrogen (Figure 2B). This correlation might suggest a link between the root architecture 

system and the ability of barley to grow in soils with a reduced nitrogen fertilization. Anyway, this 

correlation emerged in one out two field trials organized with a limited nitrogen fertilization and other 

studies are needed to support the link between these belowground traits measured at the seedling stage 

and the ability to promote yield formation in limiting nitrogen conditions. 

In recent years, TR has been widely targeted to exploit its correlation to drought tolerance 

(Schoppach and Sadok 2012, 2013; Schoppach et al. 2016). Nevertheless, in barley the analysis of 

TR in response to high evaporative demand has lagged behind and to date has been investigated on a 

limited panel of 25 wild barley and in one cultivar (Sadok and Tamang 2019), which showed that at 

a VPD of circa 2.7 KPa, TR ranges from circa 25 to 75 𝑚𝑔𝐻2𝑂𝑚
−2𝑠−1 depending on the genotype. 

Our study confirms that in barley the TR at high evaporative demands is significantly lower than the 

values observed in other cereal crops (Schoppach and Sadok 2012; Sinclair et al. 2017; Tamang and 

Sadok 2018) and that the TR measured in our MAGIC population exhibits lower values of TR 

compared to other results obtained in barley at the same VPD values (Sadok and Tamang 2019). As 

with SRA analysis, technical causes and the lack of common genotypes hamper the comparison of 

different TR studies and absolute TR values, but it is plausible that, in general, our MAGIC population 

has a lower TR response to high evaporative demand compared to the barley genotypes investigated 

in other studies (Sadok and Tamang 2019). This trait showed a moderate and negative correlation of 

SRN (r = -0.12) with TR (Figure 2B), indicating that a high number of roots might decrease TR, 

which in turn could explain how in a stressful environment a high number of seminal roots can allow 

greater adaptation. 

Breeding for crop ideotypes specifically designed for specific target environments and cropping 

systems has been proposed as an alternative of empirical breeding (Donald 1968) and different 

ideotypes of future cereal cultivars have been proposed to cope with climate change (Rötter et al. 

2015). Designing and breeding for crop ideotypes requires a priori knowledge of sets of belowground 

and physiological traits that can cope with the peculiar environmental conditions of target 

environments to increase yield. In the present study, GP models for traits that are potentially relevant 

for barley ideotypes for dry environments were fitted using different methodologies. As substantiated 

in several reports, in cereal crops these are important traits as they are related to drought and GY but 

require time-consuming phenotyping operations that cannot be easily automated. Leveraging on 

prediction models for different types of data (continuous, count and ordinal), we showed that SRA, 

SRN and TR can be easily predicted paving the way to characterize large plant collection to sustain 

ideotype breeding while minimizing phenotyping costs. 

For standard, log normal and TGBLUP models we used five sets of linear predictors, which differ 

for the type of effect considered (Table 1). Specifically, we considered models with main effects and 

models taking into account interactions between genetic factors (additive x·additive epistatic effect) 

and we found that in general the inclusion of interaction effects brings advantages in term of model 

fitting and predictive ability. For instance, these latter models showed predictive ability values of 

0.65, 0.53 and 0.95 for SRN, SRA and TR, respectively (Figure 6; Figure 7; Figure 8). Overall, we 

observed that the inclusion of additive x additive improves model fitting in MAGIC population as it 

is plausible that in these lines epistasis might easier to model (Ehrenreich 2017; Mathew et al. 2018). 

Several traits that are relevant for plant breeding are not normally distributed and need to be 

analyzed using special statistical techniques (Montesinos-López et al. 2015a). Traits that fall in this 

category are proportion of plants that overcome a stress, disease resistance scored using discrete 

scales and SRN. In the present study we assumed that this latter belowground trait varies as an ordinal 

discrete variable indicating the level of drought tolerance of plants at the adult stage using TGBLUP 

GP models (Montesinos-López et al. 2015a). Moreover, we modelled SRN as count data fitting log-
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normal GP models. Using TGBLUP models, we observed that including additive x additive epistatic 

interaction (GxG) in the set of linear predictors (SRN-Model 3 and SRN-Model 5) increases the total 

variance explained in the models (Table 2) pointing out the importance of epistasis in the genetic 

architecture of this trait. These results are corroborated in log-normal GP models, as they benefit of 

the inclusion of additive x additive epistatic interaction in the set of linear predictors in term of model 

fitting and predictive ability (Figure 6; Figure 7; Figure 8). Despite the low values of variance 

explained by molecular markers (Table 2), the TGBLUP models used to fit SRN showed high 

predictive ability values (Brier Score equals to 0.36) (Figure 5), highlighting that GP can be 

successfully applied to traits showing low heritability (Supplementary Table 1, Supplementary 

Table 2) as already substantiated in other studies carried out in plants (Zhang et al. 2017; Klápště et 

al. 2020) and animals (Guo et al. 2014; Iheshiulor et al. 2016).   
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7 Supplementary Material 

7.1 Supplementary Figures 

Supplementary Figure 1: Scatter plot of prediction ability of the log-normal Models 1-5 used to 

predict SRN. Pearson’s correlation between estimated and observed SRN were reported for each 

model.  

 
 

 

Supplementary Figure 2: Scatter plot of prediction ability of the SRA-Models 1-5 used to 

predict SRA. Pearson’s correlation between estimated and observed SRA were reported for each 

model.  
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Supplementary Figure 3: Scatter plot of prediction ability of the TR- Models 1-5 used to predict 

TR at high evaporative demand. Pearson’s correlation between estimated and observed TR were 

reported for each model.  

 

7.2 Supplementary Tables 

 

Supplementary Table 1: Phenotypic data obtained for the panel of MAGIC lines. For each line, 

the raw data of SRN was reported. Maximum (Max), minimum (Min) average (Mean) values were 

calculated at the end of the table. 

Genotype 
Rep 

1 

Rep 

2 

Rep 

3 

Rep 

4 

Rep 

5 

Rep 

6 

Rep 

7 

Rep 

8 

Rep 

9 

Rep 

10 

Rep 

11 

Rep 

12 

Aldebaran 5 5 5 5 4 5 3 4 4 5 3 5 

Athene 6 5 6 4 NA 4 6 4 NA 5 5 5 

Dea 5 5 5 6 5 5 4 5 5 6 5 5 

Fridericus 4 4 5 5 5 5 4 5 5 4 2 4 

Hatif de 

Grignon 
5 5 6 NA 5 5 NA 6 NA 6 5 NA 

Ketos 5 5 6 5 5 4 6 5 3 3 4 5 

M101 5 5 4 5 5 5 5 4 6 NA 6 5 

M102 4 6 5 NA NA 5 5 5 4 NA 4 5 

M106 6 6 4 5 5 5 4 5 2 6 5 3 

M11 5 4 5 4 4 5 NA NA NA 6 4 NA 

M118 5 6 6 6 6 4 6 5 5 NA 6 6 

M121 6 6 6 5 5 5 6 4 4 5 5 5 

M131 5 4 6 6 NA 4 6 6 5 4 7 NA 

M132 5 4 5 4 5 6 NA 5 6 5 NA 5 

M136 6 NA 5 5 5 5 6 NA 5 4 NA NA 

M140 4 5 6 4 6 5 6 6 5 5 5 6 

M147 6 6 6 5 4 5 3 4 NA 5 5 4 

M148 4 6 5 5 5 5 NA 6 6 5 6 4 
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M149 5 5 6 5 5 6 6 NA 6 4 5 2 

M150 5 5 5 6 6 6 6 NA 5 NA 5 6 

M151 6 6 5 4 4 5 5 5 5 6 4 4 

M154 5 5 6 5 5 5 5 5 5 5 5 5 

M156 6 5 6 5 5 5 5 6 5 2 6 NA 

M158 5 5 5 5 4 5 5 6 5 5 5 4 

M162 5 4 6 4 NA 4 5 4 6 4 5 4 

M163 6 5 6 5 4 6 NA 6 6 5 6 5 

M169 NA 5 6 6 5 4 6 5 6 4 5 5 

M177 5 4 5 4 5 5 4 4 5 5 4 5 

M18 6 5 5 5 4 5 5 NA 5 5 5 NA 

M180 6 4 5 5 4 6 6 4 6 5 4 4 

M181 5 6 5 5 3 6 3 5 6 5 3 6 

M190 5 6 5 5 NA 6 5 5 4 5 5 6 

M194 6 5 6 6 5 6 6 6 5 6 5 3 

M200 5 5 4 5 4 5 3 4 4 4 NA 4 

M201 5 6 6 5 5 5 4 5 5 5 5 5 

M215 6 5 5 5 6 5 5 5 5 6 6 5 

M216 6 4 5 5 5 6 6 5 4 5 5 6 

M22 4 6 4 4 5 3 3 5 4 NA 4 4 

M224 6 4 5 5 6 6 5 5 5 6 5 5 

M233 6 5 NA 6 NA 6 6 5 6 4 5 6 

M237 4 NA 4 5 5 6 2 6 5 6 6 4 

M242 5 5 4 5 6 5 5 5 4 5 5 5 

M246 5 6 6 4 5 5 6 5 4 NA 4 NA 

M253 5 6 6 6 6 6 6 NA 5 5 4 6 

M254 6 6 5 6 5 5 3 3 4 7 3 5 

M258 5 5 5 5 5 5 5 5 5 5 5 NA 

M259 6 5 5 5 6 5 3 6 5 6 5 4 

M262 6 5 4 NA 6 4 6 5 4 4 5 6 

M264 5 5 5 5 NA 5 6 6 NA 5 NA NA 

M278 5 6 5 5 3 6 6 4 NA 5 3 5 

M281 6 4 5 5 4 6 5 5 NA 6 4 5 

M285 6 6 5 6 6 6 6 NA 6 4 6 5 

M287 5 6 6 6 5 5 4 5 6 3 NA 4 

M288 6 6 6 5 NA 6 6 5 5 NA NA 5 

M289 5 8 5 5 4 3 5 5 6 5 5 6 

M298 6 6 5 6 5 6 5 6 6 6 6 6 

M299 6 4 6 NA 4 5 5 5 6 5 5 5 

M30 5 5 4 6 5 5 5 5 5 5 5 4 

M304 4 4 5 5 5 5 5 5 4 4 NA 5 

M313 7 6 5 6 6 4 5 5 5 5 5 4 

M314 6 6 6 NA 6 6 5 6 6 5 NA 5 

M321 5 5 5 5 6 5 6 6 6 5 NA 4 

M324 6 5 5 5 4 5 6 5 5 5 5 5 

M328 5 6 6 5 6 5 6 5 6 5 4 4 
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M332 6 5 5 6 NA 6 NA 6 6 5 5 5 

M338 5 6 5 5 5 5 5 4 NA 5 5 5 

M339 5 5 6 4 6 4 5 6 5 5 6 5 

M345 5 NA 6 6 NA 6 3 6 6 5 5 6 

M349 6 4 5 NA 3 5 6 4 NA 6 6 4 

M350 6 6 5 4 5 4 NA NA 5 5 5 5 

M355 6 6 6 6 NA 6 5 4 5 5 4 4 

M357 4 6 4 5 5 NA 4 6 2 4 2 2 

M36 6 5 5 5 5 5 5 5 6 5 6 6 

M365 6 5 6 5 6 5 6 5 4 5 4 6 

M373 5 4 6 5 5 5 4 4 NA 5 NA 4 

M374 5 5 5 5 3 6 5 6 4 NA 2 5 

M376 5 5 6 5 5 6 4 4 6 6 5 5 

M382 6 5 5 5 5 5 5 5 5 3 6 5 

M383 5 4 6 5 6 NA NA 6 5 NA 5 5 

M42 5 6 5 6 6 5 4 5 6 6 4 4 

M52 4 3 5 5 NA 5 NA 5 5 5 5 4 

M53 5 4 NA 5 NA 4 NA NA 6 NA 5 5 

M68 6 6 5 6 5 4 4 6 6 3 5 3 

M78 5 6 5 5 6 6 6 5 5 6 6 6 

M84 5 5 6 3 4 5 6 6 NA 6 6 6 

M92 4 4 5 4 6 5 5 5 5 5 6 5 

M95 5 5 5 5 6 6 5 4 5 5 5 NA 

Ponente 6 5 5 5 6 6 6 4 4 5 5 4 

Rihane03 5 4 5 4 5 5 4 5 3 6 5 3 

Robor 5 6 6 6 6 NA 6 3 5 6 6 5 

S
ta

ti
st

ic
a
l 

p
a
ra

m
et

er
s 

Mean (SD) 5 (0.84) 

Max 8 

Min 2 

 

Supplementary Table 2: Phenotypic data obtained for the panel of MAGIC lines. For each line, 

transpiration rate measured at a vapor pressure deficit of 2.70 KPa (TR), linear or segmented trend 

transpiration rate (TR trend), the adjusted means of seminal root angle (SRA) measured in 

sexagesimal degrees were reported. Numbers between bracktes point out the standard deviation of 

each measurement. For each trait, maximum (Max), minimum (Min) average (Mean) values were 

calculated at the end of the table.  

Genotype 
TR 

(𝒎𝒈𝑯𝟐𝑶𝒎
−𝟐𝒔−𝟏) 

TR trend 
SRA 

(Sexagesimal degrees) 

Aldebaran 6.76 (1.61) Linear 78.25° (31.86°) 

Athene 11.63 (2.29) Linear 71.88° (26.37°) 

Dea 8.69 (0.22) Segmented 87.63° (27.87°) 

Fridericus 7.51 (0.93) Linear 100.66° (32.46°) 

Hatif de Grignon 7.36 (4.11) Segmented 70.83° (13.91°) 

Ketos 5.04 (0.99) Segmented 82.35° (16.45°) 
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M101 NA NA NA 

M102 NA NA NA 

M106 9.67 (1.6) Segmented 92.88° (29.84°) 

M11 NA NA NA 

M118 5.98 (2.48) Linear 80.59° (15.79°) 

M121 8.59 (2.83) Linear 96.26° (13.66°) 

M131 8.27 (6.78) Segmented 84.74° (26.34°) 

M132 4.08 (0.51) Segmented 105.83° (13.71°) 

M136 6.13 (0.66) Segmented 104.03° (12.87°) 

M140 11.57 (0.26) Linear 98.69° (27.41°) 

M147 5.75 (2.07) Segmented 85.14° (28.89°) 

M148 NA NA NA 

M149 4.63 (0.67) Segmented 86.39° (26.38°) 

M150 13.6 (2.36) Segmented 73.88° (24.52°) 

M151 7.82 (3.14) Segmented 105.06° (30.47°) 

M154 6.2 (1.12) Segmented 81.5° (18.1°) 

M156 9.8 (0.56) Segmented 76.17° (18.02°) 

M158 5.18 (1.43) Linear 80.93° (17.78°) 

M162 9.27 (4.37) Segmented 87.87° (30.9°) 

M163 5.98 (1.12) Segmented 80.86° (22.91°) 

M169 9.42 (1.8) Linear 96.84° (35.14°) 

M177 6.78 (1.32) Segmented 87.86° (28.1°) 

M18 6.54 (0.28) Segmented 57.75° (28.91°) 

M180 9.57 (1.7) Segmented 82.85° (18.33°) 

M181 7.66 (0.61) Segmented 75.95° (37.33°) 

M190 8.25 (1.82) Segmented 89.04° (19.21°) 

M194 5.53 (0.96) Segmented 88.43° (22.19°) 

M200 10.83 (1.98) Segmented 80.87° (32.99°) 

M201 7.85 (1.08) Segmented 88.72° (20.67°) 

M215 NA NA 95.58° (31.11°) 

M216 6.79 (1.16) Linear 82.09° (41.83°) 

M22 6.3 (1.22) Segmented 80.81° (38.32°) 

M224 9.85 (3.14) Linear 79.39° (19.19°) 

M233 7.1 (3.5) Segmented 72.1° (19.02°) 

M237 5.38 (1.11) Linear 93.14° (25.78°) 

M242 6.22 (0.33) Segmented 86.99° (23.44°) 

M246 9.08 (4.49) Linear 78.82° (22.03°) 

M253 6.47 (1.35) Segmented 92.4° (28.79°) 

M254 7.64 (0.53) Segmented 86.13° (17.98°) 

M258 10.78 (0.54) Segmented 91.09° (26.07°) 

M259 9.2 (3.75) Segmented 83.3° (24.15°) 

M262 6.29 (1.05) Segmented 78.59° (24.21°) 

M264 NA NA 88.27° (17.23°) 

M278 9.22 (6.03) Segmented 74.83° (13.68°) 

M281 5.72 (1.81) Segmented 72.82° (27.13°) 

M285 6.05 (0.35) Linear 87.22° (23.97°) 
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M287 7.55 (2.29) Segmented 87.6° (22.25°) 

M288 7.22 (2.42) Segmented 104.5° (44.59°) 

M289 7.92 (0.25) Segmented 95.83° (12.55°) 

M298 6.48 (1.55) Linear 87.07° (25.29°) 

M299 8.4 (2.63) Segmented 88.31° (23.65°) 

M30 7.19 (0.44) Segmented 87.68° (30.76°) 

M304 5.44 (1.86) Segmented 90.19° (29.96°) 

M313 5.7 (1.27) Segmented 87.68° (22.78°) 

M314 9.51 (2.46) Segmented 105.32° (20.61°) 

M321 8.87 (2.29) Linear 91.55° (20.34°) 

M324 7.54 (2.53) Segmented 106.4° (31.21°) 

M328 7.29 (0.89) Segmented 77.79° (25.49°) 

M332 6.96 (2.12) Segmented 88.96° (15.21°) 

M338 8.52 (3.83) Segmented 80.58° (27.34°) 

M339 6.34 (2.66) Segmented 85.47° (18.24°) 

M345 6.14 (1.15) Linear 99.37° (22.49°) 

M349 8.09 (2.1) Segmented 77.41° (24.34°) 

M350 4.84 (0.23) Linear 92.29° (19.98°) 

M355 8.58 (1.75) Segmented 94.25° (17.99°) 

M357 6.67 (0.72) Linear 71.9° (32.73°) 

M36 7.17 (2.21) Linear 91° (20.5°) 

M365 8.66 (2.58) Segmented 92.65° (28.82°) 

M373 6.63 (3.37) Segmented 90.7° (29.11°) 

M374 4.91 (1.62) Linear 79.74° (29.34°) 

M376 9.75 (2.7) Segmented 85.51° (23.17°) 

M382 4.05 (0.96) Linear 89.87° (18.59°) 

M383 10.59 (5.17) Linear 87.06° (21.57°) 

M42 10.7 (2.1) Linear 85.5° (17.51°) 

M52 6.46 (2.04) Linear 78.55° (27.04°) 

M53 NA NA 95.83° (16.36°) 

M68 7.89 (1.39) Linear 85.97° (25.48°) 

M78 8.11 (0.68) Segmented 90.99° (18.97°) 

M84 4.93 (0.2) Linear 74.27° (25.71°) 

M92 5.4 (1.4) Linear 85.33° (30.05°) 

M95 9.64 (4.71) Segmented 79.87° (27.96°) 

Ponente 9.44 (4.2) Segmented 87.45° (21.54°) 

Rihane03 NA NA NA 

Robor 5.59 (0.27) Linear 88.5° (19.38°) 

S
ta

ti
st

ic
a
l 

p
a

ra
m

et
er

s 

Mean (SD) 
7.63 

(1.99) 
/ 

86.51° 

(9.06°) 

Max 13.6 / 106.40° 

Min 4.08 / 57.75° 
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Supplementary Table 3: Estimated parameters of the SRN-Models 1-5 used to predict SRN. 

Posterior average (Mean) values along with the standard deviation (SD) between brackets of fixed 

effects (β1, β2,… β12) were estimated. 

Model β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12 

SRN-

Model 1 

-0.90 

(0.41) 

-1.15 

(0.42) 

-0.96 

(0.41) 

-1.25 

(0.43) 

-1.30 

(0.43) 

-1.18 

(0.43) 

-1.30 

(0.43) 

-1.33 

(0.43) 

-1.32 

(0.43) 

-1.41 

(0.43) 

-1.53 

(0.44) 

-1.62 

(0.44) 

SRN-

Model 2 

-0.68 

(0.35) 

-0.94 

(0.36) 

-0.75 

(0.36) 

-1.03 

(0.37) 

-1.08 

(0.37) 

-0.96 

(0.37) 

-1.08 

(0.37) 

-1.12 

(0.38) 

-1.10 

(0.37) 

-1.19 

(0.37) 

-1.32 

(0.38) 

-1.40 

(0.38) 

SRN-

Model 3 

-0.88 

(0.39) 

-1.14 

(0.40) 

-0.95 

(0.40) 

-1.23 

(0.41) 

-1.28 

(0.41) 

-1.17 

(0.41) 

-1.28 

(0.41) 

-1.33 

(0.41) 

-1.31 

(0.41) 

-1.40 

(0.41) 

-1.52 

(0.42) 

-1.61 

(0.42) 

SRN-

Model 4 

-0.93 

(0.38) 

-1.19 

(0.39) 

-1.00 

(0.39) 

-1.28 

(0.40) 

-1.33 

(0.40) 

-1.21 

(0.40) 

-1.33 

(0.40) 

-1.37 

(0.41) 

-1.36 

(0.40) 

-1.45 

(0.40) 

-1.57 

(0.41) 

-1.66 

(0.41) 

SRN-

Model 5 

-0.81 

(0.33) 

-1.07 

(0.34) 

-0.88 

(0.34) 

-1.16 

(0.35) 

-1.21 

(0.35) 

-1.10 

(0.35) 

-1.22 

(0.35) 

-1.25 

(0.35) 

-1.24 

(0.35) 

-1.33 

(0.35) 

-1.45 

(0.35) 

-1.55 

(0.36) 

 

Supplementary Table 4: Estimated thresholds of the SRN-Models 1-5 used to predict SRN. 

Posterior average (Mean) values along with the standard deviation (SD) between brackets of threshold 

parameters (𝛾1, 𝛾2, . . 𝛾6) were calculated. 

Model 𝜸1 𝜸2 𝜸3 𝜸4 𝜸5 𝜸6 

SRN-

Model 1 
-3.77 (0.47) -3.09 (0.46) -2.11 (0.45) -0.72 (0.41) 1.13 (0.17) 1.30 (0.10) 

SRN-

Model 2 
-3.52 (0.40) -2.85 (0.39) -1.88 (0.38) -0.50 (0.36) 1.21 (0.14) 1.34 (0.07) 

SRN-

Model 3 
-3.76 (0.44) -3.07 (0.43) -2.10 (0.42) -0.71 (0.39) 1.13 (0.17) 1.31 (0.10) 

SRN-

Model 4 
-3.81 (0.43) -3.13 (0.42) -2.15 (0.41) -0.75 (0.39) 1.11 (0.16) 1.30 (0.10) 

SRN-

Model 5 
-3.70 (0.37) -3.01 (0.35) -2.03 (0.35) -0.63 (0.33) 1.17 (0.13) 1.32 (0.08) 

 

Supplementary Table 5: Prediction ability of the SRN-Models 1-5 used to predict SRN: 

Proportion of cases correctly classified (PCCC) using five TGBLUP models; Brier scores obtained 

from LOO cross-validation of the five TGBLUP models. For each model, maximum (Max), minimum 

(Min) average (Mean) values along with the standard deviation (SD) between brackets were 

calculated. 

Model 

Prediction ability by Brier 

Score 

Proportion of cases correctly classified 

(PCCC) 

Max Mean Min Correctly predicted Incorrectly predicted 

SRN-

Model 1 
0.65 0.36 (0.08) 0.21 451 (47.93%) 490 (52.07%) 

SRN-

Model 2 
0.65 0.36 (0.08) 0.21 494 (47.50%) 447 (52.50%) 

SRN-

Model 3 
0.65 0.36 (0.08) 0.21 491 (47.82%) 450 (52.18%) 
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SRN-

Model 4 
0.65 0.36 (0.08) 0.21 491 (47.82%) 450 (52.18%) 

SRN-

Model 5 
0.65 0.36 (0.08) 0.21 490 (47.93%) 451 (52.07%) 

 

Supplementary Table 6: Prediction ability by Pearson correlation and Estimated variance 

component of the log-normal Models 1-5 used to predict SRN: Genomic heritability; Pearson 

correlation between estimated and observed SRN using LOO cross-validation of the five extended 

GBLUP models; L indicates the estimated variance of line effects; G is the estimated variance of 

marker effects while GxG points out the variance of additive x additive epistatic effects. Numbers 

between brackets point out the standard deviation (SD) of the estimated variances. 

Model 

Genomic 

heritability 

H2 (h2) 

Prediction ability 

by Pearson 

correlation 

Estimated variance component 

L G GxG 
Error 

variance 

Total 

Variance 

Model 1 0.50 0.79 
0.38 

(0.12) 
  

0.37 

(0.12) 
0.75 

Model 2 0.36 0.35  
0.29 

(0.09) 
 

0.51 

(0.10) 
0.80 

Model 3 0.51 (0.23) 0.53  
0.19 

(0.08) 

0.22 

(0.09) 

0.39 

(0.11) 
0.80 

Model 4 0.52 0.60 
0.22 

(0.09) 

0.19 

(0.08) 
 

0.37 

(0.11) 
0.78 

Model 5 0.58 (0.38) 0.65 
0.15 

(0.07) 

0.15 

(0.09) 

0.16 

(0.07) 

0.33 

(0.11) 
0.79 

 

Supplementary Table 7: Prediction ability by Pearson correlation and Estimated variance 

component of the SRA-Models 1-5 used to predict SRA: Genomic heritability; Pearson correlation 

between estimated and observed SRA using LOO cross validation strategy of the five extended 

GBLUP models; L indicates the estimated variance of line effects; G is the estimated variance of 

marker effects while GxG points out the variance of additive x additive epistatic effects. Numbers 

between brackets point out the standard deviation (SD) of the estimated variances. 

Model 

Genomic 

heritability 

H2 (h2) 

Prediction ability 

by Pearson 

correlation 

Estimated variance component 

L G GxG 
Error 

variance 

Total 

Variance 

SRA-

Model 1 
0.5 0.73 

44.38 

(14.74) 
  

44.34 

(14.68) 
88.72 

SRA-

Model 2 
0.32 0.19  

31.93 

(11.80) 
 

66.76 

(13.24) 
98.70 

SRA-

Model 3 
0.45 (0.2) 0.37  

20.27 

(8.94) 

24.60 

(11.33) 

54.35 

(14.08) 
99.23 

SRA-

Model 4 
0.5 0.49 

28.09 

(12.07) 

20.13 

(8.53) 
 

46.98 

(14.12) 
95.22 

SRA-

Model 5 
0.46 (0.37) 0.53 

21.01 

(10.47) 

14.87 

(6.98) 

17.34 

(8.81) 

44.14 

(13.92) 
97.37 
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Supplementary Table 8: Prediction ability by Pearson correlation and Estimated variance 

component of the TR-Models 1-5 used to predict TR at high evaporative demand: Genomic 

heritability; Pearson correlation between estimated and observed TR using LOO cross-validation of 

the five extended GBLUP models; L indicates the estimated variance of line effects; G is the estimated 

variance of marker effects while GxG points out the variance of additive x additive epistatic effects. 

Numbers between brackets point out the standard deviation (SD) of the estimated variances. 

Model 

Genomic 

heritability 

H2 (h2) 

Prediction ability 

by Pearson 

correlation 

Estimated variance component 

L G GxG 
Error 

variance 

Total 

Variance 

TR-

Model 1 

0.49 
0.96 

0.31 

(0.10) 
    

0.32 

(0.11) 
0.63 

TR-

Model 2 

0.3 
0.68   

0.22 

(0.08) 
  

0.49 

(0.09) 
0.72 

TR-

Model 3 

0.41 (0.19) 
0.89 

 

0.14 

(0.06) 

0.16 

(0.07) 

0.42 

(0.10) 
0.73 

TR-

Model 4 

0.49 
0.95 

0.21 

(0.09) 

0.13 

(0.05) 
  

0.34 

(0.10) 
0.69 

TR-

Model 5 

0.5 (0.35) 
0.95 

0.15 

(0.08) 

0.10 

(0.05) 

0.11 

(0.05) 

0.34 

(0.10) 
0.71 

8 Data Availability Statement 

The data underpinning the results presented in this manuscript are available from the authors upon 

request. 
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General Conclusions 

The results presented in this research work have contributed to acquiring new knowledge in the 

field of genomic prediction. Particularly, the present work has demonstrated that genomic prediction 

can be successfully applied to MAGIC populations as, in general, models fitted to these populations 

show high predictive ability and explain a large fraction of the observed phenotypic variability 

(Figure 1; Chapter 2). To date, actual breeding programs that implement genomic prediction are 

focused on grain yield. In Chapter 3, we have shown that genome-enabled prediction can be 

successfully applied to belowground (seminal root number and seminal root angle) and physiological 

(Transpiration rate at high evaporative demand of VPD) traits paving the way for using this 

methodology to other traits of agronomic interest. Interestingly, our empirical analysis (Chapter 2) 

shows that a limited panel of 90 lines is large enough to fit genomic prediction models with high 

predictive ability (Figure 1). This latter finding might potentially facilitate the use of MAGIC and 

genomic prediction in real breeding programs, where optimal trade-offs between costs and advantages 

are desirable. 

 

Figure 1: Flowchart of genomic prediction for grain yield, seminal root number, seminal root 

angle and transpiration rate at high evaporative demand of VPD develop for 8-way MAGIC 

population lines investigated in this Ph.D. thesis. Chapter 2 and Chapter 3 are highlighted by blue 

and green colors, respectively. 

 
 

To date, MAGIC population have been used to map QTL and have been limited impact on actual 

plant breeding programs. Moreover, MAGIC lines have never been used along with genomic 

prediction methodology: as shown in the present work, this approach might allow recycling data for 

several breeding populations derived from the same parents used for constructing MAGIC lines.  
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In cereal crops, direct selection for grain yield and above-ground traits has been used as the method 

of choice to select and develop superior genotypes1. Our empirical analyses showed that GP models 

can be used to predict grain yield, across an ample range of site-by-season combinations and site-by-

season-by-management combinations characterized by different temperature and precipitation 

patterns, with values of predictive ability that range between 0.25 and 0.6 for both single and multi-

environments (Figure 1).  

In drought-prone or stressful environments direct selection based on grain yield is largely 

ineffective because this trait exhibits, in general, low levels of heritability, which in turn does not 

allow to realize the desired rate of genetic gain2. Multi-environment genomic prediction models allow 

the evaluation of GxE interaction and contribute selecting high-yielding genotypes. Alternatively, for 

harsh environments, indirect selection, that is the selection of grain yield by scoring one or more 

directly correlated secondary traits, is an alternative approach. This methodology could be used for 

breeding ideotypes designed for specific target environments and cropping systems and has been 

proposed as an alternative of empirical breeding3. Different ideotypes of future cereal cultivars have 

been proposed to cope with drought and climate change4. Designing and breeding for crop ideotypes 

require a priori knowledge of sets of belowground and physiological traits that can cope with the 

peculiar environmental conditions of target environments to increase yield. For instance, crop 

simulation models have pointed out that the belowground and physiological traits investigated in this 

research study can both increase grain yield and cope with drought tolerance, water-saving strategy, 

and thermal stress in stressful environments. Phenotyping these traits is time consuming, and no tools 

have been used to predict these targets quickly and for a large panel of lines. For this reason, despite 

they are key element to support varietal innovation and indirect selection, they are rarely used in 

breeding programs. Our empirical analysis showed that genomic prediction models can be used to 

predict seminal root number (0.36 and 0.58 of brier score and of Pearson correlation, respectively), 

seminal root angle (0.46 of Pearson correlation) and transpiration rate (0.94 of Pearson correlation) 

(Figure 1). 

Recently, the evaluation of multiple traits in multiple environments is prompting breeders to 

implement the use of multi-traits genomic prediction models. These models have been used to predict 

agronomic and malting quality in barley5 since, in some cases, the selection is based on trade-offs 

among the agronomic traits of interest. Therefore, it might be interesting to implement multi-trait 

genomic prediction models using the traits investigated in this research work to benchmark single 

and multi-trait models. The GP models implemented in Chapter 3, probably could be able to predict 

the grain yield of the breeding population of Chapter 2. Conversely, these models would allow to 

predict the grain yield starting from belowground and physiological traits.  

  

  

 
1 Lalić A, Novoselović D, Kovačević J, Drezner G, Babić D, Abičić I, Dvojković K. 2010. “Genetic gain and selection 

criteria effects on yield and yield components in barley (Hordeum vulgare L.)” Period Biol 112:311–316. 
2 Samarah. NH, 2005. “Effects of drought stress on growth and yield of barley”. Agron Sustain Dev Springer 

Verlag/EDP Sci 25:145–149. https://doi.org/10.1051/agro. 
3 Donald CM. 1968. “The breeding of crop ideotypes”. Euphytica 17:385–403. https://doi.org/10.1007/BF00056241 
4 Rötter RP, Tao F, Höhn JG, Palosuo T. 2015. “Use of crop simulation modelling to aid ideotype design of future 

cereal cultivars”. J Exp Bot 66:3463–3476. https://doi.org/10.1093/jxb/erv098. 
5 Bhatta, M, Gutierrez L, Cammarota C, Cardozo F, Germán S, Gómez-Guerrero B, Pardo M F, Lanaro V, Sayas M, 

and Castro A J. 2020. “Multi-Trait Genomic Prediction Model Increased the Predictive Ability for Agronomic and 

Malting Quality Traits in Barley (Hordeum Vulgare L.)”. G3: Genes, Genomes, Genetics 10(3):1113–24. 
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Annex 1: R script implemented  

1 GBLUP for GY - Single Environment 

rm(list = ls()) 
install.packages(pkg= "BGLR", repos= "https://cran.r-project.org/") 
library(BGLR) 
 
####loading genotypic SNP dataset 
SNP_data <- read.csv("/MyFiltred_SNP.csv") 
####loading phenotypic GY dataset BLUPs 

data <- read.table ("/MyBLUPs.csv", sep=",",header=TRUE, 
na.strings="NA") 
####deleting monomorphic SNP 
SNP_data [,-1] <- SNP_data[,1][vapply(SNP_data[,-1], function(x) 
length(unique(x))>1, logical(1L))] 

data$Samples <- toupper(data$Samples) 
SNP_data$Samples <- toupper (SNP_data$Samples) 
data$Samples <- gsub ("^M[0]{1}", "M", data$Samples) 
data$Samples <- gsub ("M0", "M", data$Samples) 
data <- data[complete.cases(data),] 
data$Samples <- as.character(data$Samples) 
SNP2 <- merge (data, SNP_data, by.y = "Samples") 

SNP3 <-SNP2 [,-c(1,2)] 
y <- SNP2$BLUPs 
 
####Example of Random Cross Validation strategy  
yNA <- SNP2$BLUPs 
set.seed(129) 
tst <- sample(1:n, size=round(n/3,0), replace=FALSE) 
yNA[tst] <- NA 
ite<-52000 
bur<-6000 
t<-1  
 

####Parametric Random Regression  
#Bayesian ridge regression (BRR) 
ETA <- list(list(X=SNP3, model="BRR")) 
fm <- BGLR(y=yNA, ETA=ETA,nIter=ite, burnIn=bur,thin= t,saveAt= 'BRR_') 
cor_pred <- cor(fm$yHat[tst], y[tst],use= "pairwise.complete.obs") 
cor_unpred <- cor(fm$yHat[-tst], y[-tst]) 

 
####Semi-Parametric Regression  
#Reproducing kernel Hilbert space (RKHS) 
X <- scale (SNP3, center=TRUE, scale=FALSE) 
D <- (as.matrix(dist(X, method='euclidean'))^2)/p 
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h <- 0.5 

K <- exp (-h*D) 
ETA<-list(list(K= K, model= 'RKHS')) 
fm1<-BGLR(y= yNA, ETA= ETA, nIter= ite, burnIn= bur, thin= t, saveAt= 
'RKHS_h=0.5_') 
cor_predicted <- cor(fm1$yHat[tst], y[tst]) 
cor_unpredicted <- cor(fm1$yHat[-tst], y[-tst]) 
 
#Genomic Best Linear Unbiased Prediction (GBLUP) 
#Van Raden Matrix  
G<-tcrossprod(X)/n 
ETA<-list(list(K= G, model= 'RKHS')) 

fm2<-BGLR(y= yNA, ETA= ETA, nIter= ite, burnIn= bur, thin= t, saveAt= 
'RKHS_') 
cor_predicted<-cor(fm2$yHat[tst], y[tst]) 
cor_unpredicted<-cor(fm2$yHat[-tst], y[-tst]) 

 

2 GBLUP for GY - Multi Environment  

rm(list = ls()) 
install.packages(pkg = "BGLR", repos = "https://cran.r-project.org/") 
library (BGLR) 
 

####loading genotypic dataset 
SNP_data <- read.csv("/MyFiltred_SNP.csv") 
####loading phenotypic GY dataset BLUPs 
training_pop <- read.table ("/MyBLUPs.csv", sep = ",", header = TRUE, 
na.strings = "NA") 
SNP_data <- data.frame(SNP_data, stringsAsFactors = FALSE) 
Samples <- rownames(SNP_data) 
SNP_data <- data.frame(Samples, SNP_data, stringsAsFactors = FALSE) 
SNP_data <- SNP_data[SNP_data$Samples %in% training_pop,] 
####deleting monomorphic SNP 
SNP_data[,-1] <- SNP_data[,1][vapply(SNP_data[,-1], function(x) 
length(unique(x))>1, logical(1L))] 

X <- scale (SNP_data[,-1],) 
X <- scale (SNP_data[,-1],center=TRUE, scale=TRUE) #G-BLUP kernel (GB) 
GB <- tcrossprod(X)/ncol(X) 
Zg <- model.matrix(~factor(pheno_geno1$Entry)-1) 
Ze <- model.matrix(~factor(pheno_geno1$Location)-1)  
K1 <- Zg %*% GB %*% t(Zg) 
ZEZE <- tcrossprod(Ze)  
K2 <- K1*ZEZE 
ite <- 80000 
bur <- 10000 
t <- 1 
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##Fitting “Multi-Environment, main genotypic effect” (MM)  

ETA <- list(ENV=list(X=Ze, model="FIXED"), Grm=list(K=K1, model="RKHS", 
df0 = 0.00001, S0 = 0.0001)) 
y <- scale(pheno_geno1$BLUP, center = TRUE, scale = TRUE) 
fm_MM_FIXED <- BGLR(y=y, ETA=ETA, nIter=ite, burnIn=bur, thin=t, saveAt 
= "MM__", df0 = 0.00001, S0 = 0.0001) 
 
##Fitting “Multi-Environment, single variance GxE deviation model”(MDs)  
ETA <- list(ENV=list(X=Ze, model="FIXED"), Grm = list(K=K1, model = 
"RKHS", df0 = 0.00001, S0 = 0.0001), EGrm = list(K=K2, model="RKHS", 
df0 = 0.00001, S0 = 0.0001)) 
y <- scale(pheno_geno1$BLUP,center = TRUE, scale = TRUE) 

fm_MDs_FIXED <- BGLR(y=y, ETA=ETA, nIter=ite, burnIn=bur, thin=t, 
saveAt = "MDs", df0 = 0.00001, S0 = 0.0001) 
 
##Fitting “Multi-Environment, environment-specific variance GxE 
#deviation model” (MDe) 
ETA<-list(ENV=list(X=Ze, model = "FIXED", df0 = 0.00001, S0 = 0.0001), 
Grm=list(K=K1, model = "RKHS", df0 = 0.00001, S0 = 0.0001))  
for (k in 1:nEnv) {  
    ZEE <- matrix(0, nrow = nrow(Ze), ncol = ncol(Ze))  
    ZEE[,k] <- Ze[,k]  
    ZEEZ <- (ZEE %*% t(Ze))  
    K3 <- K1*ZEEZ  

    ETA[[k+2]] <- list (K=K3, model="RKHS", df0 = 0.00001, S0 = 0.0001)  
} 
y <- scale(pheno_geno1$BLUP,center = TRUE, scale = TRUE) 
fm_MDe_FIXED <- BGLR(y = y ,ETA = ETA, nIter = ite, burnIn = bur, thin= 
t, df0 = 0.00001, S0 = 0.0001, saveAt = "MDe_") 

 

3 TGBLUP for BGTs  

rm(list = ls()) 
install.packages(pkg = "BGLR", repos = "https://cran.r-project.org/") 
install.packages(pkg = "measures",repos ="https://cran.r-project.org/") 

install.packages(pkg ="matrixcalc",repos="https://cran.r-project.org/") 
library (BGLR) 
library (measures) 
library (matrixcalc) 
####loading genotypic dataset 
SNP_data <- read.csv("/MyFiltred_SNP.csv") 
####loading phenotypic categorical dataset from raw data 
data <- read.table("/MyCategorical_Variable_SRN.csv", sep = ",", header 
= TRUE, na.strings = "NA") 
data$Rep <- as.factor(data$Rep) 
data$SRN <- as.factor(data$SRN) 
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####subset SNP data to select only genotypes with phenotypic records 

SNP_data_filtered <- SNP_data[SNP_data$Samples %in% data$Geno,] 
data_filtered <- data[data$Geno %in% SNP_data_filtered$Samples,] 
length(unique(data_filtered$Geno)) 
data_filtered$Geno <- factor(data_filtered$Geno, ordered = T) 
 
####deleting monomorphic SNP 
SNP_data_filtered[,-1]<-SNP_data_filtered[,1][vapply(SNP_data_filtered 
[,-1], function(x) length(unique(x))>1, logical(1L))] 
SNPscaled <- scale (SNP_data_filtered[,-1], scale = TRUE,center = TRUE) 
 
#KL line matrix  

ZL<-model.matrix(~factor(data_filtered$Geno)-1) 
KL<-tcrossprod(ZL) 
#KG marker covariate matrix  
GB<-tcrossprod(SNPscaled[,-1])/ncol(SNPscaled[,-1]) 
KG<- ZL %*% GB %*% t(ZL) 
#KGG additive x additive epistasis matrix 
GA<-hadamard.prod(GB,GB) 
KGG<-ZL %*% GA %*% t(ZL) 
 
ite <- 52000 
bur <- 6000 
t <- 1 

BS <- "" 
 
####Model used to fit the dataset based on KL 
####Example of Leave-one-out (LOO) Cross Validation approach  
ETA1 <- list(list(~factor(Rep), data= data_filtered, model="FIXED"), 
list(K=KL, model="RKHS")) 
for (i in 1:length(SNP_data_filtered$Samples)){ 
yNA <- data_filtered$SRN 
 tst<- which(data_filtered$Geno == SNP_data_filtered$Samples[i]) 
 yNA[tst] <- NA 
 print(SNP_data_filtered$Samples[i]) 
 fm1 <- BGLR(y=yNA, response_type = "ordinal", ETA = ETA1, nIter = ite, 

burnIn= bur, thin= t, saveAt = "Model_1") 
 probs <- fm1$probs[tst,] 
 BS2 <- multiclass.Brier(probs, data_filtered$SRN[tst])/2 
 BS <- c(BS, BS2) 
 write.table(BS, "BrierScore_SRN_LOO_Model1.txt") 
}  
 
####Model used to fit the dataset based on KG 
####Example of Leave-one-out (LOO) Cross Validation approach  
ETA2 <- list(list(~factor(Rep), data=data_filtered, model="FIXED"), 
list(K=KG, model="RKHS")) 
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for (i in 1:length(SNP_data_filtered$Samples)){ 

yNA <- data_filtered$SRN 
 tst<- which(data_filtered$Geno == SNP_data_filtered$Samples[i]) 
 yNA[tst] <- NA 
 print(SNP_data_filtered$Samples[i]) 
 fm1 <- BGLR(y=yNA, response_type = "ordinal", ETA = ETA2, nIter = ite, 
burnIn= bur, thin= t, saveAt = "Model_2") 
 probs <- fm1$probs[tst,] 
 BS2 <- multiclass.Brier(probs, data_filtered$SRN[tst])/2 
 BS <- c(BS, BS2) 
 write.table(BS, "BrierScore_SRN_LOO_Model2.txt") 
}  

 
####Model used to fit the dataset based on KG and KGG 
####Example of Leave-one-out (LOO) Cross Validation approach  
ETA3 <- list(list(~factor(Rep), data=data_filtered, model="FIXED"), 
list(K=KG, model="RKHS"), list(K=KGG, model="RKHS")) 
for (i in 1:length(SNP_data_filtered$Samples)){ 
yNA <- data_filtered$SRN 
 tst<- which(data_filtered$Geno == SNP_data_filtered$Samples[i]) 
 yNA[tst] <- NA 
 print(SNP_data_filtered$Samples[i]) 
 fm1 <- BGLR(y=yNA, response_type = "ordinal", ETA = ETA3, nIter = ite, 
burnIn= bur, thin= t, saveAt = "Model_3") 

 probs <- fm1$probs[tst,] 
 BS2 <- multiclass.Brier(probs, data_filtered$SRN[tst])/2 
 BS <- c(BS, BS2) 
 write.table(BS, "BrierScore_SRN_LOO_Model3.txt") 
}  
 
####Model used to fit the dataset based on KL and KG 
####Example of Leave-one-out (LOO) Cross Validation approach  
ETA4 <- list(list(~factor(Rep), data=data_filtered, model="FIXED"), 
list(K=KL, model="RKHS"), list(K=KG, model="RKHS")) 
for (i in 1:length(SNP_data_filtered$Samples)){ 
yNA <- data_filtered$SRN 

 tst<- which(data_filtered$Geno == SNP_data_filtered$Samples[i]) 
 yNA[tst] <- NA 
 print(SNP_data_filtered$Samples[i]) 
 fm1 <- BGLR(y=yNA, response_type = "ordinal", ETA = ETA4, nIter = ite, 
burnIn= bur, thin= t, saveAt = "Model_4") 
 probs <- fm1$probs[tst,] 
 BS2 <- multiclass.Brier(probs, data_filtered$SRN[tst])/2 
 BS <- c(BS, BS2) 
 write.table(BS, "BrierScore_SRN_LOO_Model4.txt") 
}  
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####Model used to fit the dataset based on KL and KG and KGG 

####Example of Leave-one-out (LOO) Cross Validation approach  
ETA5 <- list(list(~factor(Rep), data=data_filtered, model="FIXED"), 
list(K=KL, model="RKHS"), list(K=KG, model="RKHS"), list(K=KGG, 
model="RKHS")) 
for (i in 1:length(SNP_data_filtered$Samples)){ 
yNA <- data_filtered$SRN 
 tst<- which(data_filtered$Geno == SNP_data_filtered$Samples[i]) 
 yNA[tst] <- NA 
 print(SNP_data_filtered$Samples[i]) 
 fm1 <- BGLR(y=yNA, response_type = "ordinal", ETA = ETA5, nIter = ite, 
burnIn= bur, thin= t, saveAt = "Model_5") 

 probs <- fm1$probs[tst,] 
 BS2 <- multiclass.Brier(probs, data_filtered$SRN[tst])/2 
 BS <- c(BS, BS2) 
 write.table(BS, "BrierScore_SRN_LOO_Model5.txt") 
}  
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Influence of the genetic background on the performance of molecular markers linked 

to seedlessness in table grapes. Bennici S, Di Guardo M, Distefano G, La Malfa S, Puglisi D, 

Arcidiacono F, Ferlito F, Deng Z, Gentile A, Nicolosi E. Scientia Horticulturae (2019) 252, 316–323 

| https://doi.org/10.1016/j.scienta.2019.03.060. 

Genomic prediction of grain yield in a barley MAGIC population modelling 

genotype per environment interaction. Puglisi D, Delbono S, Visioni A, Ozkan H, Kara İ, 

Casas A M, Igartua E, Valè G, Lo Piero A R, Cattivelli L, Tondelli A, Fricano A. Frontiers in Plant 

Science (2021) | https://doi.org/10.3389/fpls.2021.664148. 
Malting Quality of ICARDA Elite Winter Barley (Hordeum vulgare L.) Germplasm 

Grown in Moroccan Middle Atlas. Bouhlal O, Affricot J R, Puglisi D, El-Baouchi A, El-Otmani 

F, Kandil M, Hafidi A, Keser M, Sanchez-Garcia M, Visioni A. Journal of the American Society of 

Brewing Chemists (2021) | 
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Annex 4: Ph.D. Training  

During the industrial Ph.D. course, Dr. Damiano Puglisi participated in several training courses, 

summer school and national/international congresses in order to deep all topics covered by the Ph.D. 

research program. 

The impact of climate change on agriculture was deepened by attending summer school “Climate 

change and crop productivity: The role of plant physiology, breeding and biotechnology”, which took 

place at Polvese’s Island in Trasimeno’s Lake, Perugia (Italy), from 12th to 15th June 2018. 

Theoretical-practical training on statistical models was deepened through several national and 

international statistical courses including “Metodologia statistica per le Scienze Agrarie. I modelli 

lineari generali e generalizzati”, promoted by the Società Italiana di Agronomia (SIA), held in Rome 

(Italy) from 21th to 25th January 2019; "Gestione ed interpretazione di dati biologici complessi: basi 

teoriche ed utilizzo di software di analisi. Excel (avanzato) e R", organized by the University of 

Catania (Italy) from 11th to 22th February 2019; “Genome Wide Association Mapping with R”, 

promoted by INRA and ICARDA, held in Rabat (Morocco) 11th April 2019; “SPSS and R” organized 

by ENSET Ph.D. students, held in Rabat (Université Mohammed V, Morocco), 15rh February 2020; 

"The Data Scientist’s Toolbox" and “R programming” online courses authorized by Johns Hopkins 

University and offered through Coursera 12th May and 10th June 2020, respectively; "Enhancing 

discovery and creativity with AI" online course promoted by Swiss Data Science Center 1th October 

2020; "Samsung Innovation Camp", promoted by University of Catania (Italy), 25 hours online course 

and two days of classroom training for the realization of a Project Work, selected among the 60 best 

students of the University of Catania who obtained the higher score, 30th November 2020. 

The quantitative genetics theory behind crop breeding was deepened by attending international 

specialized training courses including "Classical and molecular approaches in wheat breeding”, 

promoted by ICARDA and held in Rabat (Morocco) from 15th April to 3th May 2019. During this 

event, Dr. Damiano Puglisi participated to both theoretical and practical sessions covering wheat 

breeding approaches and strategies, marker assisted selection, doubled haploid, and speed breeding 

techniques; and "First International Experts Workshop on Pre-breeding utilizing Crop Wild Relatives 

(1st PBCWR)" which took place at INRA-Institute National de la Recherche Agronomique, in Rabat 

(Morocco), from 24th April to 26th April 2019. 

Finally, abstracts and posters submitted for participation in a summer school and scientific 

national/international congresses in which Dr. Damiano Puglisi took part during his industrial Ph.D. 

course: 

The development and validation of methodologies for the genetic improvement of 

barley based on genomic selection to support varietal innovation and agriculture of the 

future. Puglisi D. Summer school Polvese’s Island on Trasimeno’s Lake, Perugia (Italy), Abstract 

12th-15th June 2018. 

Il programma di miglioramento genetico per l'uva da tavola dell'Università di 

Catania. Nicolosi E, Ferlito F, Domina F, Puglisi D, Salonia F, Zingale N, La Malfa S, Gentile A. 

XII Giornate Scientifiche SOI, Bologna (Italy), 19th-22th June 2018. Book of abstract and poster: 75. 

Acta Italus Hortus ISBN: 978-88-940276-8-6. 

Multi-parental genomic prediction for improving barley yield in harsh Mediterranean 

environments. Delbono S, Tondelli A, Visioni A, Jilal A, Iguarta E, Ozkan H, Puglisi D, Cattivelli 

L, Fricano A. LXII Congress of the Italian Society of Agricultural Genetics (SIGA), Verona (Italy), 

25th-28th September 2018. Book of abstract and poster: 7.07. ISBN 978-88-904570-8-1. 
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iBarMed: Innovative barley breeding approaches to tackle the impact of climatic 

change in the Mediterranean region. Puglisi D, Delbono S, Tondelli A, Visioni A, Jilal A, 

Iguarta E, Ozkan H, Cattivelli L, Fricano A. International conference: ARIMNet2 ends, but our 

heritage serves the future.  INRA, 2 Place Pierre Viala, 34060 Montpellier (France), 18th-19th June 

2019. 

Prediction of grain yield and complex traits to assess the potential of a MAGIC 

population for genomic selection in barley. Puglisi D, Tondelli A, Visioni A, Ozkan H, Lo 

Piero A R, Cattivelli L, Fricano A. SIGA (Italian Society of Agricultural Genetics) Young Web 

Meeting, 7th July 2020. Book of abstract: SY32. ISBN 978-88-944843-0-4. 

Genome-enabled prediction models for grain yield, transpiration rate and below-

ground traits using a barley MAGIC population. Puglisi D, Delbono S, Visioni A, Ozkan H, 

Kara Ä, Casas A M, Igartua E, Valè G, Lo Piero A R, Cattivelli L, Tondelli A, Fricano A. LXIV 

Congress of the Italian Society of Agricultural Genetics (SIGA), Plant genetic innovation for food 

security in a climate change scenario. 14th-16th September 2021. Book of abstract and oral 

communication: 4.07. 
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