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Supervised Classification via Neural Networks
for Replicated Point Patterns

Kateřina Pawlasová, Iva Karafiátová, and Jiří Dvořák

Abstract A spatial point pattern is a collection of points observed in a bounded
region of R3 , 3 ≥ 2. Individual points represent, e.g., observed locations of cell
nuclei in a tissue (3 = 2) or centers of undesirable air bubbles in industrial materials
(3 = 3). The main goal of this paper is to show the possibility of solving the su-
pervised classification task for point patterns via neural networks with general input
space. To predict the class membership for a newly observed pattern, we compute
an empirical estimate of a selected functional characteristic (e. g., the pair correla-
tion function). Then, we consider this estimated function to be a functional variable
that enters the input layer of the network. A short simulation example illustrates
the performance of the proposed classifier in the situation where the observed pat-
terns are generated from two models with different spatial interactions. In addition,
the proposed classifier is compared with convolutional neural networks (with point
patterns represented by binary images) and kernel regression. Kernel regression
classifiers for point patterns have been studied in our previous work, and we consider
them a benchmark in this setting.
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1 Introduction

Spatial point processes have recently received increasing attention in a broad range
of scientific disciplines, including biology, statistical physics, or material science
[9]. They are used to model the locations of objects or events randomly occurring
in R3 , 3 ≥ 2. We distinguish between the stochastic model (point process) and its
realization observed in a bounded observation window (point pattern).

Typically, analyzing spatial point pattern data means working with just one pat-
tern, which comes from a specific physical measurement. In this paper, we take
another perspective: we suppose that a collection of patterns, which are independent
realizations of some underlying stochastic models, is to be analyzed simultaneously.
These independent realizations are then referred to as replicated point patterns.
Recently, this type of data has become more frequent, encouraging the adaptation
of methods such as supervised classification to the point pattern setting.

Since we are talking about supervised classification, our task is to predict the la-
bel variable (indicating class membership) for a newly observed point pattern, using
the knowledge about a sample collection of patterns with known labels (training
data). In the literature, this problem has been studied to a limited extent. Properties
of a classifier constructed specifically for the situation where the observed patterns
were generated by inhomogeneous Poisson point processes with different intensity
functions are discussed in [5]. However, this method is based on the special proper-
ties of the Poisson point process, and its use is thus limited to a small class of models.
On the other hand, no assumptions about the underlying stochastic models are made
in [12], where the task for replicated point patterns is transformed, with the help
of multidimensional scaling [16], to the classification task in R2. In [10, 11], the ker-
nel regression classifier for functional data [4] is adapted for replicated point patterns.
Instead of classifying the patterns themselves, a selected functional characteristic
(e.g. the pair correlation function) is estimated for each pattern. These estimated
values are considered functional observations, and the classification if performed
in the context of functional data. The idea of linking point patterns to functional
data also appears in [12] – the dissimilarity matrix needed for the multidimensional
scaling is based on the same type of dissimilarity measure that is used for the ker-
nel regression classifier in [10, 11]. Finally, [17] briefly discusses the model-based
supervised classification. Unsupervised classification is explored in [2].

In this paper, our goal is to discuss the use of classifiers based on artificial neu-
ral networks in the context of replicated point patterns. We pay special attention
to the procedure described in [14], where both functional and scalar observations
enter the input layer. Hence, similarly as in [10, 11], each pattern can be represented
by estimated values of a selected functional characteristic and the classification is per-
formed in the context of functional data. The resulting decision about class member-
ship is based on the spatial properties of the observed patterns that can be described
by the selected characteristic. Therefore, with a thoughtfully chosen characteristic,
this method has great potential within a wide range of possible classification scenar-
ios. Moreover, it can be used without assuming stationarity of the underlying point
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processes, and it can be easily extended to more complicated settings (e.g., point
patterns in non-Euclidean spaces or realizations of random sets).

We present a short simulation experiment that illustrates the behaviour of the neu-
ral network described in [14]. Binary classification is performed on realizations
of two different point process models – the Thomas process (model for attractive
interactions among pairs of points) and the Poisson point process (benchmark model
for no interactions among points). This approach is then compared to the classifica-
tion based on convolutional neural networks (CNNs) [8], where each pattern enters
the network as a binary image. Finally, both methods based on artificial neural net-
works are compared to the kernel regression classifier studied in [10, 11] which can
be considered a benchmark in the context of replicated point patterns.

This paper is organized as follows. Section 2 provides a brief theoretical back-
ground on spatial point processes and their functional characteristics, including
the definition of the pair correlation function, which plays a crucial role in the se-
quel. Section 3 summarizes themethodology introduced in [14] about neural network
models with general input space. Section 4 is devoted to a short simulation example.

2 Point Processes and Point Patterns

This section presents the necessary definitions from the point process theory. Our ex-
position closely follows the book [13]. For detailed explanation of the theoretical
foundations, see, e.g., [7]. Throughout the paper, a simple point process - is defined
as a random locally finite subset of R3 , 3 ≥ 2, where each point G ∈ - corresponds
to a specific object or event occurring at the location G ∈ R3 . In applications, - can
be used as a mathematical tool to model random locations of cell nuclei in a tissue
(with 3 = 2) or centers of undesirable air bubbles in industrial materials (3 = 3).
We distinguish between the mathematical model - , which is called a point process,
and its observed realization X, which is called a point pattern. Examples of four
different point patterns are given in Figure 1.

Before proper definition of the pair correlation function, a functional characteristic
that plays a key role in the sequel, we need to define some moment properties of - .
The intensity function _(·) is a non-negative measurable function on R3 such that
_(G) dG corresponds to the probability of observing a point of - in a neighborhood
of G with an infinitesimally small area dG. If - is stationary (its distribution is
translation invariant in R3), then _(·) = _ is a constant function and the constant _ is
called the intensity of - . In this case, _ is interpreted as the expected number of points
of - that occur in a set with unit 3-dimensional volume. Similarly, the second-order
product density _ (2) (· , ·) is a non-negative measurable function on R3 × R3 such
that _ (2) (G, H) dG dH corresponds to the probability of observing two points of -
that occur jointly at the neighborhoods of G and H with infinitesimally small areas
dG and dH.

Assuming the existence of _ and _ (2) , the pair correlation function 6(G, H) is de-
fined as _ (2) (G, H)/(_(G)_(H)), for _(G)_(H) > 0. If _(G) = 0 or _(H) = 0, we set
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6(G, H) = 0. We write 6(G, H) = 6(G − H) when 6 is translation invariant and
6(G, H) = 6 (‖G − H‖) when 6 is also isotropic (invariant under rotations around
the origin). For the Poisson point process, a model for complete spatial randomness,
_ (2) (G, H) = _(G)_(H) and 6 ≡ 1. Thus, 6(G, H) quantifies how likely it is to observe
two points in - jointly occurring in infinitesimally small neighbourhoods of G and H,
relative to the "no interactions" benchmark.

A large variety of characteristics (both functional and numerical) have been de-
veloped to capture various hypotheses about the stochastic models that generated
the observed point patterns at hand. We have focused on the pair correlation function
6 mainly because of its widespread use in practical applications and ease of interpre-
tation. Other popular characteristics are based on 6, e.g., its cumulative counterpart,
traditionally called the  -function. Others are based on inter-point distances, such as
the nearest-neighbor distance distribution function � and the spherical contact dis-
tribution function �. A comprehensive summary of commonly used characteristics,
including the list of possible empirical estimators, is presented in [9, 13]. Estimators
of 6,  , �, and � are implemented in the R package spatstat [3].

3 Neural Networks with General Input Space

This section prepares the theoretical background for the supervised classification
of replicated point patterns via artificial neural networks. The recent approach
of [14, 15] is the cornerstone of our proposed classifier, and hence we focus on
its description in the following paragraphs. On the other hand, the approach based
on CNNs is more established in the literature. We use it primarily for comparison
and thus we refer the reader to [8] for a detailed description.

Following the setup in [14], let us assume that we want to build a neural network
such that it takes  ∈ N functional variables and � ∈ N scalar variables as input.
In detail, suppose that we have 5: : g: −→ R, : = 1, 2, . . . ,  (g: are possibly
different intervals in R), and I (1)

9
∈ R, 9 = 1, 2, . . . , �. Furthermore, suppose that

the first layer of the network contains =1 ∈ N neurons. We then want the 8-th neuron
of the first layer to transfer the value

I
(2)
8
= 6

©«
 ∑
:=1

∫
g:

V8: (C) 5: (C) dC +
�∑
9=1
|
(1)
8 9
I
(1)
9
+ 1 (1)

8

ª®¬ , 8 = 1, 2, . . . , =1,

where 1 (1)
8
∈ R is the bias and 6 : R −→ R is the activation function. Two

types of weights appear in the formula: the functional weights {V8: : g: −→ R},
and the scalar weights {| (1)

8 9
, 1
(1)
8
}. The optimal value of all these weights should

be found during the training of the network. To overcome the difficulty of find-
ing the optimal weight functions V8: , we can express V8: as a linear combina-
tion of q1, . . . , q<: , where q1, . . . , q<: are the basis functions (from the Fourier
or �-spline basis) and<: is chosen by the user. The sum

∑ 
:=1

∫
g:
V(C)8: 5: (C) dC can
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Fig. 1 Theoretical values of the pair correlation function 6 for the Poisson point process
and the Thomas processwith different values of themodel parameter f. For thesemodels, 6 is trans-
lation invariant and isotropic. A single realization of the Poisson point process and the Thomas
process with parameter f set to 0.1, 0.05 and 0.02 respectively, is illustrated in the right part
of the figure.

be expressed as
∑ 
:=1

∑<:
;=1 28;:

∫
g:
q; (C) 5: (C) dC, where the integrals

∫
g:
q; (C) 5: (C) dC

can be calculated a priori and the coefficients of the linear combination of the basis
functions {28;: } act as scalar weights of the first layer and are learned by the network.
The scalar values I (2)

8
, 8 = 1, . . . , =1, then propagate through the next fully connected

layers as usual. An in-depth analysis of the computational point of view is provided
in [14]. In the software R, neural networks with general input space are covered by
the package FuncNN [15] built over the packages keras [6] and tensorflow [1].
The last two packages are used to handle CNNs.

4 Simulation Example

This section presents a simple simulation experiment in which we illustrate the per-
formance of the classification rule based on the neural network with general input
space. Binary classification is considered, where the group membership indicates
whether a point pattern was generated by a stationary Poisson point process or a sta-
tionary Thomas process, the latter exhibiting attractive interactions among pairs
of points [13]. The sample realizations can be seen in Figure 1.

We consider the Thomas process to be amodelwith one parameterf. Small values
of f indicates strong, attractive short-range interactions between points, while larger
values of f result in looser clusters of points. Attractive interactions between the
points of a Thomas process result in the values of the pair correlation function being
greater than the constant 1, which corresponds to the Poisson case. The effect of
f on the shape of the theoretical pair correlation function of the Thomas process
(which is translation invariant and isotropic) is illustrated in Figure 1.
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Since the model parameter f affects the strength and range of attractive interac-
tions between points of the Thomas process, the complexity of the binary classifica-
tion task described above increases with increasing values of f [10, 11]. Therefore,
this experiment focuses on the situation where f is set to 0.1, and all realizations
are observed on the unit square [0, 1]2. We fix the intensity of the two models to 400
(in spatial statistics, patterns with several hundreds of points are standard nowadays).
In this framework, we expect the classification task to be challenging enough to ob-
serve differences in the performance of the considered classifiers. On the other hand,
it is still reasonable to distinguish (w.r.t. the chosen observation window) the realiza-
tions of the model with attractive interactions from the realizations corresponding
to the complete spatial randomness.

Two different collections of labelled point patterns are considered as training sets.
The first, referred to as Training data 1, is composed of 1 000 patterns per group.
The second, called Training data 2, is then composed of 100 patterns per group.
The test and validation sets have the same size and composition as the Training
data 2. Table 1 presents the accuracy of three classification rules (described below)
with respect to the test set. For the first two rules, the accuracy is in fact averaged
over five runs corresponding to different settings of initial weights in the underlying
neural network. Concerning the network architecture, we fix the ReLU function to be
the activation function for all layers, except the output one. The output layer consists
of one neuron with sigmoid activation function. The loss function is the binary
cross-entropy. A detailed description of the individual layers is given below.

Rule 1 is based on the neural network with general input space. We set  and
� from Sect. 3 to be 1 and 0, respectively, and g1 = (0, 0.25). The value 0.25 is
related to the observation window of the point patterns at hand being [0, 1]2. Then,
51 is the vector of the estimated values of the pair correlation function 6 (estimated
by the function pcf.ppp from the package spatstat [3] with default settings but
the option divisor set to d), considered as a functional observation. Furthermore,
we set<1 = 29, and consider the Fourier basis. The data preparation (estimation of 6,
computation of integrals from Sect. 3) takes 740 s of elapsed time (w.r.t. the Training
data 1, on a standard personal computer). To tune the hyperparameters of the final
neural network (number of hidden layers, number of neurons per hidden layers,
dropout, etc.), we performed a rough grid search (models with various combinations
of the hyperparameters were trained on Training data 1 and we used the loss function
and the accuracy computed on the validation set to compare the performances).
The resulting network consists of one hidden layer with 128 neurons followed by
a dropout layer with a rate of 0.3. We use the Adam optimizer, and the learning rate is
decaying exponentially, with initial value 0.001 and decay parameter 0.05. In total,
the network has 3 969 trainable parameters. To train the network, we perform 50
epochs with an average elapsed time of 200 ms per epoch (w.r.t. Training data 1).

Rule 2 uses CNNs. Similarly to the previous case, our decision about the network
architecture is based on a rough grid search. The final network has two convolutional
layers, each of them with 8 filters, a squared kernel matrix with 36 (first layer) or 16
rows (second layer), and a following average pooling layer with the pool size fixed
at 2 × 2. We add a dropout layer after the pooling, with a rate of 0.3 (after the first
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Table 1 Accuracy for the three presented classification rules w.r.t. the testing set. For Rule 1
and Rule 2, the accuracy is averaged over five runs corresponding to five different choices of initial
weights in the underlying neural networks. In addition, the standard deviation computed from
the five accuracy values is reported. Values close to 1 indicate a nearly perfect classification.

Rule 1 Rule 2 Rule 3

Training data 1 0.947 ±0.003 0.934 ±0.032 0.935
Training data 2 0.895 ±0.010 0.512 ±0.028 0.925

pooling) and 0.2 (after the second pooling). The batch size is set to 32. We use
the Adam optimizer, and the learning rate is decaying exponentially, with initial
value 0.001 and decay parameter 0.1. The total number of trainable parameters is
equal to 32 785 and we perform 50 epochs with the average elapsed time per epoch
(w.r.t. Training data 1) equal to 930 s. Data preparation (converting point patterns
to binary images) takes less than 10 s of the elapsed time (w.r.t. Training data 1).

Rule 3 is the kernel regression classifier studied in [10, 11]. We use the Epanech-
nikov kernel together with an automatic procedure for the selection of the smoothing
parameter. The underlying dissimilarity measure for point patterns is constructed
as the integrated squared difference of the corresponding estimates of the pair cor-
relation function 6; for more details, see [10]. The elapsed time needed to compute
the upper triangle of the dissimilarity matrix (containing dissimilarities between
every pair of patterns from Training data 1) is equal to 390 s. To predict the class
membership for the testing set (w.r.t. Training data 1), 206 s elapsed. During the clas-
sification procedure, no random initialization of any weights is needed. Thus, there
is no reason to average the accuracy in Table 1 over multiple runs.

For Training data 1, Table 1 shows that the highest accuracy was achieved for the
neural network with general input space. The standard deviation of the five different
accuracy values is significantly higher for CNN which has almost ten times more
trainable parameters than the network with general input space. For Training data
2, the kernel regression method achieved the highest accuracy. In this situation,
the performance of the classifier is stable even in the case of small training data.
For the first two rules, the neural network models chosen with the help of the grid
search (where the networks were trained w.r.t. the bigger training set) are now
trained w.r.t. the smaller training set. The resulting accuracy is still around 0.90
for the network with general input space, but it drops to 0.5 (random assignment
of labels) for CNN. The size of Training data 2 seems to be too small to successfully
optimize the large amount of trainable parameters of the convolutional network.

To conclude, our simulation example suggests that the classifier based on CNN
(using information about the precise configuration of points) is in the presented sit-
uation outperformed by the classifiers based on the estimated values of the pair cor-
relation function (using information about the interactions between pairs of points).
The high number of trainable parameters of the CNNmakes its use rather demanding
with respect to computational time. The approach based on neural networks with
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general input space proved to be competitive with or even outperform the current
benchmark method (kernel regression classifier), especially for large datasets. Also,
it has the lowest demands regarding computational time. In the case of a small
dataset, the low number of hyperparameters speaks in favor of kernel regression.
Finally, in the simple classification scenario that we have presented, the choice
of the pair correlation function was adequate. In practical applications, a problem-
specific characteristic should be constructed to achieve satisfactory performance.
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Parsimonious Mixtures of Seemingly Unrelated
Contaminated Normal Regression Models

Gabriele Perrone and Gabriele Soffritti

Abstract In recent years, the research into linear multivariate regression based on
finite mixture models has been intense. With such an approach, it is possible to
perform regression analysis for a multivariate response by taking account of the
possible presence of several unknown latent homogeneous groups, each of which is
characterised by a different linear regression model. For a continuous multivariate
response, mixtures of normal regression models are usually employed. However, in
real data, it is not unusual to observe mildly atypical observations that can negatively
affect the estimation of the regression parameters under a normal distribution in
each mixture component. Furthermore, in some fields of research, a multivariate
regression model with a different vector of covariates for each response should be
specified, based on some prior information to be conveyed in the analysis. To take
account of all these aspects, mixtures of contaminated seemingly unrelated normal
regression models have been recently developed. A further extension of such an
approach is presented here so as to ensure parsimony, which is obtained by imposing
constraints on the group-covariance matrices of the responses. A description of the
resulting parsimonious mixtures of seemingly unrelated contaminated regression
models is provided together with the results of a numerical study based on the
analysis of a real dataset, which illustrates their practical usefulness.

Keywords: contaminated normal distribution, ECM algorithm, mixture of regres-
sion models, model-based cluster analysis, seemingly unrelated regression
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1 Introduction

Seemingly unrelated (SU) regression equations are usually employed in a multivari-
ate regression analysis whenever the dependence of a vector Y = (.1, . . . , ." ) ′ of
" continuous variables on a vector X = (-1, . . . , -%) ′ of % regressors has to be
modelled by allowing the error terms in the different equations to be correlated and,
thus, the regression parameters of the " equations have to be jointly estimated [14].
With such an approach, the researcher is also enabled to convey prior information
on the phenomenon under study into the specification of the regression equations
by defining a different vector of regressors for each dependent variable. This latter
feature is particularly useful in any situation in which different regressors are ex-
pected to be relevant in the prediction of different responses, such as in [3, 6, 16].
This approach has been recently embedded into the framework of Gaussian mixture
models, leading to multivariate SU normal regression mixtures [7]. In these models,
the effect of the regressors on the dependent variables changes with some unknown
latent sub-populations composing the population that has generated the sample of
observations to be analysed. Thus, when the sample is characterised by unobserved
heterogeneity, model-based cluster analysis is simultaneously carried out.

Another source of complexity which could affect the data and make the prediction
of Y a difficult task to perform is represented by mildly atypical observations [13].
Robust methods of parameter estimation insensitive to the presence of such obser-
vations in a sample characterised by unobserved heterogeneity have been introduced
in [9], where the conditional distribution Y|X = x is modelled through a mixture of
 multivariate contaminated normal models, where  is the number of the latent
sub-populations. A limitation associated with these latter models is that the same
vector of regressors has to be specified for the prediction of all the dependent vari-
ables. To overcome this limitation while preserving all the features mentioned above,
a more flexible approach which employs mixtures of multivariate SU contaminated
normal regression models has been recently introduced in [11]. These latter models
are able to capture the linear effects of the regressors on the dependent variables
from sample observations coming from heterogeneous populations. The researcher
is also enabled to specify a different vector of regressors for each dependent variable.
Finally, a robust estimation of the regression parameters and the detection of mild
outliers in the data are ensured.

In the presence of many responses and many latent sub-populations, analyses
based on these latter models can become unfeasible in practical applications because
of a large number of model parameters. In order to keep this number as low as
possible, an approach due to [4], based on the spectral decompositions of the  
covariance matrices of Y|X = x, is exploited here so as to obtain fourteen different
covariance structures. The resulting parsimonious mixtures of SU contaminated
regression models are described in Section 2. The usefulness of these new models is
illustrated through a study aiming at determining the effect of prices and promotional
activities on sales of canned tuna in theUSmarket. A summary of the obtained results
is provided in Section 3.
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2 Parsimonious SU Contaminated Normal Regression Mixtures

In a system of " SU regression equations for modelling the linear dependence of
Y on X, let X< = (-<1 , -<2 , . . . , -<%< ) ′ be the %<-dimensional sub-vector of X
composed of the %< regressors expected to be relevant for the explanation of .<,
for < = 1, . . . , " . Furthermore, let X∗< = (1,X′<) ′. The mixture of  SU normal
regression models described in [7] can be defined as follows:

Y =


X̃∗′ #∗1 + & , & ∼ #" (0" ,�1) with probability c1,

· · ·
X̃∗′ #∗ + & , & ∼ #" (0" ,� ) with probability c ,

(1)

where c: is the prior probability of the :th latent sub-population, with c: > 0 for
: = 1, . . . ,  ;

∑ 
:=1 c: = 1; X̃∗ is the following (%∗ + ") × " partitioned matrix:

X̃∗ =


X∗1 0%1+1 . . . 0%1+1

0%2+1 X∗2 . . . 0%2+1
...

...
...

0%"+1 0%"+1 . . . X∗
"


,

with 0%<+1 denoting the (%< + 1)-dimensional null vector; %∗ =
∑"
<=1 %<; #

∗
: =

(#∗′
:1, . . . , #

∗′
:<
, . . . , #∗′

:"
) ′ is the (%∗ + ")-dimensional vector containing all the

linear effects on the " responses in the :th latent sub-population, with #∗:< =

(V0:,<, #
′
:<) ′, for< = 1, . . . , "; & = (n1, . . . , n" )

′ is the vector of the errors, which
are supposed to be independent and identically distributed; #" (0" ,�: ) denotes
the "-dimensional normal distribution with mean vector 0" and positive-definite
covariance matrix �: . From now on, this mixture regression model is denoted as
MSUN. When X< = X ∀< (the % regressors are employed in all the " equations),
model (1) reduces to the mixtures of  normal (MN) regression models (see [8]).

When the data are contaminated by the presence of mild outliers, departures from
the normal distribution could be observed within any of the latent sub-populations.
A model able to manage this situation has been recently introduced in [11]. It
has been obtained from equation (1) by replacing the normal distribution with
the contaminated normal distribution. Under this latter distribution, the probability
density function (p.d.f.) of & within the :th sub-population is equal to ℎ (& ;:: ) =
U:q" (& ; 0" ,�: ) + (1 − U: )q" (& ; 0" , [:�: ), where q" (·; -,�) denotes the
p.d.f. of the distribution #" (0" ,�: ), U: ∈ (0.5, 1) and [: > 1 are the proportion
of typical observations within the :th sub-population and a parameter that inflates the
elements of �: , respectively, and :: = (U: , [: ,�: ). As a consequence, a mixture
of  SU contaminated normal (MSUCN) regression models is given by:

Y =


X̃∗′ #∗1 + & , & ∼ �#" (U1, [1, 0" ,�1) with probability c1,

· · ·
X̃∗′ #∗ + & , & ∼ �#" (U , [ , 0" ,� ) with probability c ,

(2)
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where �#" (U: , [: , 0" ,�: ) denotes the "-dimensional contaminated normal dis-
tribution described by the p.d.f. ℎ (& ;:: ). The parameter vector of model (2) is
7 = (71, . . . ,7: , . . . ,7 ), where 7: = (c: , ): ), ): = (#∗: , :: ). The number of
free elements of 7 is =7 = 3 − 1 +  (%∗ + ") + =2 , where =2 denotes the total
number of free variances and covariances, with =2 =  =� and =� = " ("+1)

2 . When
X< = X∀<, model (2) coincides with themixture of contaminated normal (MCN)
regression models described in [9]. For U: → 1 or [: → 1 ∀: , model (2) reduces
to model (1). Conditions ensuring identifiability of models (2) are provided in [11].
The ML estimation of 7 in equation (2) can be carried out by means of a sample
S = {(x1, y1), . . . , (x� , y� )} of � independent observations drawn frommodel (2) and
an expectation-conditional maximisation (ECM) algorithm [10]. Details about this
algorithm, including strategies for the initialisation of7 and convergence criteria, are
illustrated in [11]. In practical applications, the value of  is generally unknown and
has to be properly chosen. This task can be carried out by resorting to model selec-
tion criteria, such as the Bayesian information criterion [15]: ��� = 2ℓ(7̂) −=7 ln �,
where 7̂ is the maximum likelihood estimator of 7. Another commonly used in-
formation criterion is the integrated completed likelihood [2], which admits two
slightly different formulations: ��!1 = ��� + 2

∑�
8=1

∑ 
:=1 MAP( Î8: ) ln Î8: and

��!2 = ��� + 2
∑�
8=1

∑ 
:=1 Î8: ln Î8: , where Î8: is the estimated posterior probabil-

ity that the 8th sample observation come from the :th sub-population (for further
details see [11]), MAP( Î8: ) = 1 if maxℎ{Î8ℎ} occurs when ℎ = : (MAP( Î8: ) = 0
otherwise). Whenever the specification of the subvectors X<, < = 1, . . . , " , to be
considered in the " equations of the multivariate regression model is questionable,
such criteria can also be employed to perform subset selection.

As the number of free parameters =7 incresases quadratically with " , analyses
based on model (2) can become unfeasible in real applications. A way to man-
age this problem can be based on the introduction of suitable constraints on the
elements of �: , : = 1, . . . ,  , based on the following eigen-decomposition [4]:
�: = _:D:A:D′: , where _: = |�: |

1/" , A: is a diagonal matrix with entries
(sorted in decreasing order) proportional to the eigenvalues of �: (with the con-
straint |A: | = 1) and D: is a " × " orthogonal matrix of the eigenvectors of �:
(ordered according to the eigenvalues). This decomposition allows to obtain vari-
ances and covariances in �: from _: , A: and D: . From a geometrical point of view,
_: determines the volume, A: the shape and D: the orientation of the :th cluster of
sample observations detected by the fitted model. By constraining _: , A: and D: to
be equal or variable across the  clusters, a class of fourteen mixtures of  SUCN
regression models is obtained (see Table 1). With variable volumes, shapes and ori-
entations (VVV in Table 1), the resulting model coincides with (2). When  > 1, the
other covariance structures allow to obtain thirteen different parsimonious mixtures
of  SUCN regression models (i.e.: with a reduced =2). When  = 1, the possible
covariance structures for �1 are: diagonal with different entries, diagonal with the
same entries and fully unconstrained. The ML estimation of 7 under model (2) with
any of these parameterisations can be carried out through an ECM algorithm in
which the CM-step update for �: can be computed either in closed form or using
iterative procedures, depending on the parameterisation to be employed (see [4]).
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Table 1 Features of the parameterisations for the covariance matrices �: , : = 1, . . . ,  ( > 1).

Acronym Covariance structure Volume Shape Orientation CM step =2

EEE _DAD′ Equal Equal Equal Closed =�
VVV _:D:A:D′

:
Variable Variable Variable Closed  =�

EII _I Equal Spherical − Closed 1
VII _:I Variable Spherical − Closed  

EEI _A Equal Equal Axis-aligned Closed "

VEI _:A Variable Equal Axis-aligned Iterative " +  − 1
EVI _A: Equal Variable Axis-aligned Closed " − ( − 1)
VVI _:A: Variable Variable Axis-aligned Closed " 

EEV _D:AD′
:

Equal Equal Variable Iterative  =� − ( − 1)"
VEV _:D:AD′

:
Variable Equal Variable Iterative  =� − ( − 1) (" − 1)

EVE _DA:D′ Equal Variable Equal Iterative =� − ( − 1) (" − 1)
VVE _:DA:D′ Variable Variable Equal Iterative =� − ( − 1)"
VEE _:DAD′ Variable Equal Equal Iterative =� − ( − 1)
EVV _D:A:D′

:
Equal Variable Variable Iterative  =� − ( − 1)

3 Analysis of U.S. Canned Tuna Sales

The models illustrated in Section 2 have been fitted to a dataset [5] containing the
volume of sales (Move), a measures of the display activity (Nsale) and the log price
(Lprice) for seven of the top 10 U.S. brands in the canned tuna product category in
the � = 338 weeks between September 1989 and May 1997. The goal of the analysis
is to study the dependence of canned tuna sales on prices and promotional activites
for two products: Star Kist 6 oz. (SK) and Bumble Bee Solid 6.12 oz. (BBS). To this
end, the following vectors have been considered: Y′ = (.1 = Lmove SK,.2 = Lmove
BBS), X′ = (-1 = Nsale SK, -2 = Lprice SK, -3 = Nsale BBS, -4 = Lprice
BBS), where Lmove denotes the logarithm of Move. The analysis has been carried
out using all the parameterisations of the MSUN, MN, MCSUN and MCN models
for each  ∈ {1, 2, 3, 4, 5, 6}. Furthermore, MSUN and MCSUN models have been
fitted by considering all possible subvectors of X as vectors X<, < = 1, 2, for each
 . In this way, best subset selections for Lmove SK and Lmove BBS have been
included in the analysis both with and without contamination. The overall number of
fitted models is 37376, including the fully unconstrained models (i.e., with the VVV
parameterisation) previously employed in [11] to perform the same analysis.

Table 2 reports some information about the ninemodels which best fit the analysed
dataset according to the three model selection criteria over the six examined values
of  within each model class. An analysis based on a single linear regression model
( = 1), both with and without contamination, appears to be inadequate according to
all criteria. All the examined criteria indicate that the overall best model for studying
the effect of prices and promotional activities on sales of SK and BBS tuna is a
parsimonious mixture of two SU contaminated Gaussian linear regression models
with the EVE parameterisation for the covariance matrices in which the log unit sales
of SK tuna are regressed on the log prices and the promotional activites of the same
brand, while the regressors selected for the BBS log unit sales are the log prices of
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both brands and the promotional activites of BBS. Thus, the analysis suggests that
two sources of complexity affect the analysed dataset: unobserved heterogeneity over
time ( = 2 clusters of weeks have been detected) and the presence ofmildly atypical
observations. Since the two estimated proportions of typical observations are quite
similar (see the values of Û: in Table 3), contamination seems to characterise the
two clusters of weeks detected by the model almost in the same way. As far as the
strength of the contaminating effects on the conditional variances and covariances
of Y|X = x is concerned, it appears to be stronger in the first cluster, where the
estimated inflation parameter is larger ([̂1 = 15.70). By focusing the attention on the
other estimates, it appears that also some of the estimated regression coefficients,
variances and covariances are affected by heterogeneity over time. Sales of SK tuna
results to be negatively affected by prices and positively affected by promotional
activites of the same brand within both clusters detected by the model, but with
effects which are sligthly stronger in the first cluster of weeks. A similar behavior is
detected for the estimated regression equation for Lmove BBS, which also highlights
that Lmove BBS are positively affected by the log prices of SK tuna, especially in
the first cluster of weeks. Furthermore, typical weeks in the first cluster show values
of Lmove SK which are more homogeneous than those of Lmove BBC; the opposite
holds true for the typical weeks belonging to the second cluster. Also the correlation
between log sales of SK and BBS products results to be affected by heterogeneity
over time: while in the largest cluster of weeks this correlation has been estimated
to be slightly positive (0.200), the first cluster is characterised by a mild estimated
negative correlation (−0.151). An interesting feature of this latter cluster is that 17
out of the 20 weeks which have been assigned to this cluster are consecutive from
week no. 58 to week no. 74, which correspond to the period from mid-October 1990
to mid-February 1991 characterised by a worldwide boycott campaign encouraging
consumers not to buy Bumble Bee tuna because Bumble Bee was found to be buying
yellow-fin tuna caught by dolphin-unsafe techniques [1]. Such events could represent
one of the sources of the unobserved heterogeneity detected by the model. According
to the overall best model, some weeks have beed detected to be mild outliers. In the
first cluster, this has happened for week no. 60 (immediately after Halloween 1990)
and week no. 73 (two weeks immediately before Presidents day 1999). The analysis
of the estimated sample residuals y8 − -̂1 (x8; #̂

∗
1) for the 20 weeks belonging to the

first cluster (see the scatterplot on the left side of Figure 1) clearly show that weeks
60 and 73 noticeably deviates from the other weeks. Among the 318 weeks of the
second cluster, 32 have resulted to be mild outliers, most of which are associated
with holidays and special events that took place between September 1989 and mid-
October 1990 or between mid-February and May 1997 (see the scatterplot on the
right side of Figure 1). These results are almost equal to those obtained using the best
overall fully unconstrained fitted model in the analysis presented in [11]. However,
the EVE parameterisation for the MSUCNmodel has allowed to obtain a better trade-
off among the fit, the model complexity and the uncertainty of the estimated partition
of the weeks; furthermore, it has led to a slightly lower number of mild outliers in
the second cluster of weeks.
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Table 2 Maximised log-likelihood ℓ (7̂) and values of ���, ��!1 and ��!2 for nine models
selected from the classes MSUCN, MCN, MSUN and MN in the analysis of tuna sales.

Model class  Acronym X1 X2 ℓ (7̂) =k ��� ��!1 ��!2
MSUCN 2 EVE -1, -2 -2, -3, -4 −242.9 23 −619.8 −625.7 −635.8
MCN 2 EVI X X −239.6 28 −642.2 −648.9 −663.2
MCN 2 EEV X X −240.8 29 −650.6 −650.8 −652.0
MCN 3 EVI -1, -2, -4 -1, -2, -4 −214.2 36 −638.0 −703.1 −788.6
MSUN 2 VEV -1, -2 -3, -4 −279.3 18 −663.4 −673.1 −692.1
MSUN 3 EEV -2, -3 -2, -3, -4 −259.8 28 −682.7 −684.7 −688.0
MSUN 5 VVV -2, -3 -1, -4 −167.4 49 −620.0 −701.1 −780.3
MN 3 EEV -2, -3, -4 -2, -3, -4 −258.7 31 −697.9 −699.6 −702.1
MN 4 VVE -2, -4 -2, -4 −216.6 36 −642.9 −725.3 −832.9

Table 3 Parameter estimates of the overall best model for the analysis of tuna sales.

7̂ : = 1 : = 2
ĉ: 0.062 0.938
Û: 0.810 0.844
[̂: 15.70 6.94
#̂
′∗
:1 (8.87, 0.56, −4.70) (8.64, 0.27, −3.09)

#̂
′∗
:2 (15.04, 3.92, 2.83, −17.76) (9.98, 0.25, 0.12, −3.83)

�̂:

(
0.034 −0.009
−0.009 0.105

) (
0.121 0.012
0.012 0.030

)
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Fig. 1 Scatterplots of the estimated residuals for the weeks assigned to the first (left) and second
(right) clusters detected by the overall best model. Points of the first scatterplot are labelled with
the number of the corresponding weeks. Black circle and red triangle in the second scatterplot
correspond to typical and outlying weeks, respectively.

4 Conclusions

The parsimonious mixtures of seemingly unrelated linear regression models for
contaminated data introduced here can account for heterogeneous regression data
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both in the presence of mild outliers and multivariate correlated dependent variables,
each of which is regressed on a different vector of covariates. Models from this
class allow for simultaneous robust clustering and detection of mild outliers in
multivariate regression analysis. They encompass several other types of Gaussian
mixture-based linear regression models previously proposed in the literature, such
as the ones illustrated in [7, 8, 9], providing a robust and flexible tool for modelling
data in practical applications where different regressors are considered to be relevant
for the prediction of different dependent variables. Previous research (see [9, 11])
demonstrated that BIC and ICL could be effectively employed to select a proper
value for  in the presence of mildly contaminated data. Thanks to an imposition of
an eigen-decomposed structure on the  variance-covariance matrices of Y|X = x,
the presented models are characterised by a reduced number of variance-covariance
parameters to be included in the analysis, thus improving flexibility, usefulness and
effectiveness of an approach to multivariate linear regression analysis based on finite
Gaussian mixture models in real data applications.
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Penalized Model-based Functional Clustering: a
Regularization Approach via Shrinkage Methods

Nicola Pronello, Rosaria Ignaccolo, Luigi Ippoliti, and Sara Fontanella

Abstract With the advance of modern technology, and with data being recorded
continuously, functional data analysis has gained a lot of popularity in recent years.
Working in a mixture model-based framework, we develop a flexible functional
clustering technique achieving dimensionality reduction schemes through a !1 pe-
nalization. The proposed procedure results in an integrated modelling approach
where shrinkage techniques are applied to enable sparse solutions in both the means
and the covariance matrices of the mixture components, while preserving the under-
lying clustering structure. This leads to an entirely data-driven methodology suitable
for simultaneous dimensionality reduction and clustering. Preliminary experimental
results, both from simulation and real data, show that the proposed methodology is
worth considering within the framework of functional clustering.
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1 Introduction

In recent decades, technological innovations have produced data that are increasingly
complex, high dimensional, and structured. A large amount of these data can be
characterized as functions defined on some continuous domain and their statistical
analysis has attracted the interest of many researchers. This surge of interests is
explained by the ubiquitous examples of functional data that can be found in different
application fields (see for example [2], and references therein for specific examples).
With functions as the basic units of observation, the analysis of functional data
poses significant theoretical and practical challenges to statisticians. Despite these
difficulties, methodology for clustering functional data has advanced rapidly during
the past years; recent surveys of functional data clustering are presented in [7] and
[2]. Popular approaches have extended classical clustering concepts for vector-valued
multivariate data to functional data.

In this paper, we consider a finite mixture as a flexible model for clustering.
In particular, applying a functional model-based clustering algorithm with an !1-
penalty function on a set of projection coefficients, we extend the results of [8]
and [9] for vector-valued multivariate data to a functional data framework. This
approach appears particularly appealing in all cases in which the functions are
spatially heterogeneous, meaning that some parts of the function can be smoother
than in other parts, or that theremay be distant parts of the function that are correlated
with each other. Furthermore, the introduction of a shrinkage penalty allows to look
for directions in the feature space (that is now the space of expansion/projection
coefficients) that are the most useful in separating the underlying groups without
first applying dimensionality reduction techniques.

In Section 2 we present at first the methodology along with some details on model
estimation (subsection 2.2). Secondly, in Section 3, we perform a validation study
with simulated and real data for which the classes are known a-priori.

2 Shrinkage Method for Model-based Clustering for Functional
Data

Here we consider the problem of clustering a set of = observed curves into  
homogeneous groups (or clusters). To this end, we propose a flexible model based
on a finite mixture of Gaussian distributions, with a !1 penalized likelihood, which
we name Penalized model-based Functional Clustering (PFC-!1).

2.1 Model Definition

We consider a set of = observed curves, G1, . . . , G=, that are independent realizations
of a continuous stochastic process - = {- (C)}C ∈[0,) ] taking values in !2 [0, )]. In
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practice, such curves/trajectories are available only at a discrete set of the domain
points {C8B : 8 = 1, . . . , =, B = 1, . . . , <8} and the = curves need to be reconstructed.
To this goal, it is common to assume that the curves belong to a finite dimensional
space spanned by a basis of functions, so that given a basis of functions � =

{k1, ..., k?} each curve G8 (C) admits the following decomposition:

G8 (C) =
?∑
9=1

V 9 ,8k 9 (C), 8 = 1, . . . , =; (2.1)

that is the stochastic process - admits a corresponding truncated basis expansion

- (C) =
?∑
9=1

V 9 (-)k 9 (C),

where # = {V1 (-), . . . , V? (-)} is a random vector in R? . By considering observa-
tions with a sampling error, such that

G>1B8 (C) = G8 (C) + n8 , 8 = 1, . . . , =, (2.2)

with n8 ∼ N(0, f2
n ), the realizations of the random coefficients V 9 ,8 for 9 = 1, . . . , ?

describing each curve can be obtained via least squares as #̂8 = (�
′
8�8)−1�

′
8X>1B8

where�8 = (k 9 (C8B)), 1 ≤ 9 ≤ ?, 1 ≤ B ≤ <8 contains the basis functions evaluated
at the fixed domain points and X>1B

8
= (G>1B

8
(C81), . . . , G>1B8

(C8<8 ))
′ is the vector of

observed values of the 8-th curve.
With the goal of dividing into  homogeneous groups the observed curves

G1, . . . , G=, let us assume that it exists an unobservable grouping variable Z =

(/1, ..., / ) ∈ [0, 1] indicating the cluster membership: I8,: = 1 if G8 belongs to
cluster : , 0 otherwise (and I8,: is indeed what we want to predict for each curve).

In adopting a model-based clustering approach, we denote with c: the (a-priori)
probabilities of belonging to a group:

c: = P(/: = 1), : = 1, . . . ,  ,

such that
∑ 
:=1 c: = 1 and c: > 0 for each : , and we assume that, conditionally on

/ , the random vector # follows a multivariate Gaussian distribution, that is for each
cluster

#| (/: = 1) = #: ∼ N(-: ,�: )

where -: = (`1,: , . . . , `?,: )) and �: are respectively the mean vector and
the covariance matrix of the :-th group. Then the marginal distribution of # =

{V1, . . . , V?} can be written as a finite mixture with mixing proportions c: as

?(#) =
 ∑
:=1

c: 5 (#: ; -: ,�: ),
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where 5 is the multivariate Gaussian density function. The log-likelihood function
can then be written as

; (); #) =
=∑
8=1

;>6

 ∑
:=1

c: 5 (#8; -: ,�: ),

where ) = {c1, . . . , c ; -1, . . . , - ;�1, . . . ,� } is the vector of parameters to be
estimated and #8 = (V1,8 , . . . , V?,8)) is the vector of projection coefficients of the
8-th curve.

In this modeling framework, we consider a very general situation without intro-
ducing any kind of constraints neither for cluster means nor for covariance matrices,
that can be different in each cluster. This flexibility, however, leads to overparame-
terization and, as an alternative to any kind of constraints, we consider a penalty that
allows regularized parameters’ estimation.

To define a suitable penalty term, we follow the penalized approach introduced
by Zhou et al. [8] in the high-dimensional setting, and so we consider a penalty
composed by two terms: the first one on the mean vector of each cluster -: , and
the second one on the inverse of the covariance matrix in each group W: = �−1

:
,

otherwise said “precision” matrix, with elements ,:; 9 ,; . The proposed penalized
log-likelihood function, given the projection coefficients #8 , is

;% (); #) =
=∑
8=1

;>6

 ∑
:=1

c: 5 (#8; -: ,�: ) − _1

 ∑
:=1
| |-: | |1 − _2

 ∑
:=1

?∑
9 ,;

|,:; 9 ,; |,

where | |-: | |1 =
∑?

9=1 |`:, 9 |, _1 > 0 and _2 > 0 are penalty parameters to be suitably
chosen.

The penalty term on the cluster mean vectors allow for component selection
in the functional data framework (whereas it would be variable selection in the
multivariate case), considering that when the 9-th component in the basis expansion
is not useful in separating groups it has a common mean across groups, that is
`1, 9 = . . . = ` , 9 = 0. Then to realize component selection the considered term is∑ 
:=1 | |-: | |1.
The second part of the penalty, namely

∑ 
:=1

∑?

9,;
|,:; 9 ,; |, imposes a shrinkage on

the elements of the precision matrices, thus avoiding possible singularity problems
and facilitating the estimation of large and sparse covariance matrices.

2.2 Model Estimation via E-M Algorithm

Since the membership of each observation to a cluster is unobservable, data related
to the grouping variable Z is inevitably missing and the maximum penalized log-
likelihood estimator can be obtained by means of the E-M algorithm [4], that iterates
over two steps: expectation (E) of the complete data (penalized) log-likelihood by
considering the unknown parameters equal to those obtained at the previous iteration
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(with initialization values), and maximization (M) of a lower bound of the obtained
expected value with respect to the unknown parameters.

In particular, at the 3-th iteration, given a current estimate ) (3) , the lower bound
after the E-step assumes the following form:

&% ();) (3) )=∑ :=1
∑=
8=1 g

(3)
:,8
[log c:+log 5 (#8 ;-: ,�: ) ]−_1

∑ 
:=1 | |-: | |1−_2

∑ 
:=1

∑?
9,;
|,:; 9,; |,

where g:,8 = P(/: = 1|- = G8) is the posterior probability of observation 8 to belong
to group : . The M-step maximizes the function &% in order to update the estimate
of ) .

As suggested by [9], it is possible to maximize each of the  term us-
ing a “graphical lasso” (GLASSO) algorithm (first proposed by [5]), thanks
to the close connection between fitting Gaussian mixture models and Gaus-
sian graphical models. Indeed, in GLASSO the objective function looks like
log det(W) − tr(SW) − _∑?

9,;
|, 9 ,; | so that the algorithm implemented in the R

package “glasso” can be used with W = W: , ( = S̃: and _ = 2_2∑=
8=1 g

(3)
:,8

for each :

to obtain the elements ,̂ (3+1)
:; 9 ,; of the precision matrices.

2.3 Model Selection via Silhouette Profile

A fundamental, and probably unsolved, problem in cluster analysis is determining
the “true” number of groups in a dataset. To this purpose, for simplicity, here we
approach the problem choosing the number of groups as cluster validation problem
and use the average silhouette width index as a model selection heuristic. The
silhouette value for curve 8 is given by

B(8) = 1(8) − 0(8)
max{0(8), 1(8)}

where 0(8) is the average distance of curve 8 to all other curves ℎ assigned to the
same cluster (if 8 is the only observation in its cluster, then B(8) = 0), and 1(8) is
the minimum average distance of curve 8 to observations ℎ which are assigned to
a different cluster. This definition ensures that B(8) takes values in [−1, 1], where
values close to one indicate “better”clustering solutions. Conditional on  and a pair
of values (_1, _2), we thus assess the overall cluster solution using the total average
of silhouette values

(( , _1, _2) =
1
=

=∑
8=1

B(8).

In particular, by doing a grid search for the triple ( , _1, _2), the best cluster
solution is obtained by looking for the largest value of the average silhouette width
(ASW) index. Note that, to evaluate B(8), 8 = 1, . . . , =, and then the objective function
(( , _1, _2), we need to compute a distance between pairs of curves -8 and -ℎ . One
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possibility is to compute the euclidean distance

32
� (8, ℎ) =

∫
‖-8 (C) − -ℎ (C)‖23C.

3 Experimental Results

3.1 Simulation

We present here a simulated scenario in order to investigate the effectiveness of
the !1 regularization in removing noise while preserving dominant local features,
accommodating for spatial heterogeneity of the curves.

The statistical analysis is illustrated for data simulated bymeans of a finite mixture
of multivariate Gaussian distributions. In particular, based on equation (2.1) and
(2.2), the curves are simulated using a combination of ? = 25 Fourier basis functions
defined over a one-dimensional regular grid with 100 observations. We consider a
mixture of four ( = 4) multivariate Gaussian distributions with isotropic covariance
matrices, i.e.

#: ∼ N(-: ;I: ) where n8 ∼ N(0; 0.5), : = 1, . . . , 4.

With the exclusion of 3 entries per group, the means -: are all zero mean vectors.
Under this scenario, the simulated curves (25 per group) and the non-zero group
expansion coefficients are represented in Figure 1. For this simple simulation setting,
estimation results suggest that, using euclidean distance to computed the ASW, the
grid search procedure is always able to correctly select the cluster-relevant basis
functions. This is confirmed by Figure 2 which shows both the distribution (over 100
replications) of the selected basis functions and the data projected on these bases that
clearly highlight the identification of 4 clusters. Under this scenario, the quality of
the estimated clusters thus appears very good as the analysis of the misclassification
rate suggests an 100% of accuracy in all the replicated datasets.

Similar results hold for more complex simulation designs, where we consider
different structure of the covariance matrices in the data generating process.

3.2 Performance on Real Data Sets

We evaluate the PFC-!1 model on a well-known benchmark data set, namely the
electrocardiogram (ECG) data set (data can be found at the UCR Time Series
Classification Archive [3]).

The ECG data set comprises a set of 200 electrocardiograms from 2 groups of
patients, myocardial infarction and healthy, sampled at 96 time instants in time.
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Fig. 1 Left: 25 simulated curves for each group. Right: Vector of expansion coefficients for each
group, with only three non-zero coefficients corresponding to basis functions with specific period-
icities (Hertz values).

Fig. 2 Left: Data projected on cluster specific functional subspace generated by the selected basis
functions. Right: Distribution (over 100 replications) of the selected basis functions shown for pairs
of sine and cosine basis functions, according to the Hertz values.

This data set were previously used to compare the performance of several func-
tional clustering models in [1]. The results in Table 5 of [1] show that the FunFEM
models, compared to other state of the art methodologies, achieved the best perfor-
mances in terms of accuracy. Hence, here, we limit the comparison to the results
obtained with the PFC-!1 and the FunFEMmodels. Although FunFEMmodels relay
on a mixture of Gaussian distributions describing the likelihood of the data similarly
to our proposal, they differ on facing the intrinsic high dimension of the problem
by estimating a latent discriminant subspace in parallel with the steps of an EM
algorithm.

For all the data, we reconstruct the functional form from the sampled curves
choosing arbitrarily 20 cubic spline basis of functions. We tested the PFC-!1 models
considering five different values for the number of clusters,  = {2, 3, 4, 5, 6}, and
six values for _1 = {0.5, 1, 5, 10, 15, 20}.

Considering that the GLASSO penalty parameter _ depends linearly from _2,
the choice of _2 has to provide suitable values for _. A practical approach is to
choose values avoiding convergence problems with GLASSO. Here _2 was set to
{5, 7.5, 10, 12, 15, 20} for the ECG data. Both PFC-!1 and FunFEM algorithmswere
initialized using a  -means procedure.
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The clustering accuracies, computed with respect to the known labels, are 69% for
FunFEM DFM[U: 9V: ] (choosing among 12 different model parameterizations with
BIC index), and 75% for PFC-L1 [_1 = 0.5 , _2 = 5] (values of tuning parameters
chose by ASW index) . Thus PFC-!1 achieves good performance, with an increase
in the accuracy about 9%.

4 Discussion

In this paper we tried to investigate the potential of shrinkage methods for clustering
functional data. Our numerical examples show the advantages of performing clus-
tering with features selection, such as uncover interesting structures underlying the
data while preserving good clustering accuracy. To the best of our knowledge, this is
the first proposal that considers a penalty for both means and covariances of mixture
components in functional model-based clustering. In the model selection section we
defined an heuristic criterion to choose among different model parameterizations
based on average silhouette index. It may be interesting to evaluate different dis-
tances (i.e. not euclidean) to compute this index in future research. Moreover, we
will consider more complex simulation designs to investigate the robustness of the
proposal and extend the comparison with the state of the art methodologies on more
benchmark datasets.
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Emotion Classification Based on Single
Electrode Brain Data: Applications for Assistive
Technology

Duarte Rodrigues, Luis Paulo Reis, and Brígida Mónica Faria

Abstract This research case focused on the development of an emotion classification
system aimed to be integrated in projects committed to improve assistive technolo-
gies. An experimental protocol was designed to acquire an electroencephalogram
(EEG) signal that translated a certain emotional state. To trigger this stimulus, a set
of clips were retrieved from an extensive database of pre-labeled videos. Then, the
signals were properly processed, in order to extract valuable features and patterns
to train the machine and deep learning models.There were suggested 3 hypotheses
for classification: recognition of 6 core emotions; distinguishing between 2 different
emotions and recognising if the individual was being directly stimulated or merely
processing the emotion. Results showed that the first classification task was a chal-
lenging one, because of sample size limitation. Nevertheless, good results were
achieved in the second and third case scenarios (70% and 97% accuracy scores,
respectively) through the application of a recurrent neural network.
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1 Introduction

Emotions are a part of our lives, as humans we know how to identify the tiniest
of microexpressions to unveil what someone is feeling, but also how to use them
to express our hearts. From the youngest of ages we see and interact with others
and build a database of patterns of, for example, what joy is and how different it is
from fear or sadness. Computers, on the other hand, do not have any idea of what an
emotion is or how to recognize it. Or do they?

The Artificial Intelligence and Computer Science Laboratory (LIACC) estab-
lished 2 projects where emotion recognition can be of the utmost importance. The
first project, the "IntellWheels 2.0" [1], intends to develop an interactive and in-
telligent electric wheelchair. This innovative equipment will have a diverse set of
features, such as an adaptive control system (through eye gaze, a brain-computer
interface, hand orientation, among others) and a personalized multi-modal interface
which will allow communication to multiple devices both from the patients and the
caregivers. In this case, having information about the mood of the patient is very
beneficial, because the interface can give updates to the nursing staff of the emotional
condition of the patient. The second project, the "Sleep at the Wheel" [2], focuses on
the research of an interface that can sense and predict a driver’s drowsiness state, be-
ing able to detect if he fell asleep while driving and, consequently, support an alarm
system to provide safer routing and driving. Here the state of mind of the driver
is a very important aspect, as different emotions, like anger or fear, can provoke
dangerous situations or unpredictable scenarios, making the driver less attentive to
his surroundings.

In this work, emotions will be sensed through a brain-computer interface (BCI).
These are commercial devices that allow to acquire a surface electroencephalo-
gram (EEG). This signal is used to measure the electrical activity of the brain, that
fluctuates according to the firing of the neurons in the brain, being quantified in
micro-volts. In this research, the BCI used was the "NeuroSky MindWave2" which
possesses one single electrode on the forehead, from which it collects a signal from
the activity of the frontal lobe. This brain area is responsible for the higher executive
functions, including emotional regulation, planning, reasoning and problem solving
[3].

The study of emotion recognition started with psychologist Paul Ekman that
defined, based on a cross cultural study, six core emotions - Fear, Anger, Happiness,
Sadness, Surprise and Disgust [4]. Later, psychologist Robert Plutchik established a
model called "Wheel of Emotions", a diagram where every emotion can be derived
from the core 6.

It is also important to have a way to measure what someone is feeling or what
emotion they are experiencing. An easy way to do this is through the "Discrete Emo-
tion Questionnaire", a psychological validated questionnaire to verify the intensity
of a certain emotion. This assessment presents the 6 core emotions to the subjects
asking them to rate the intensity they felt, from 1 to 7 [5].

As a first approach in this area, the current work aims to be able to identify the
core emotions using EEG signals collected with the BCI.
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2 Experimental Methodology

In order to correctly identify the core emotions, the first step is to trigger them in
an efficient way for the brain data collected to be as informative as possible.To do
so, the emotions were prompted via a set of video clips, that lasted 5-7 seconds.
These videos were selected from a certified database, where the videos were labeled
according to the intensity and kind of emotion it caused in the subjects [6]. For each
of the 6 core emotions, the 4 videos classified with the biggest intensity were selected
to be presented to the participants of this research work.

For each of the 24 video clips (4 videos per each of the 6 emotions), 3 EEG
samples are collected. The first is before the display of the video, where a fixation
cross is presented, in order to collect the idle/blank state of the user, where he
is asked to relax. The second sample is the EEG during the video (active visual
stimulus); and the third sample is after the video finishes where the volunteer is
processing the emotion triggered (higher level thinking), while getting back to the
initial relaxed state, where the fixation cross is presented again. To confirm that the
volunteers experience the same emotion defined in the pre-determined label, they
are a prompted to answer the “Discrete Emotion Questionnaire”, after the 3 EEG
samples are collected.

Regarding the physiological signal processing, this step is important because the
raw EEG signal that comes directly from the BCI has a low signal-to-noise ratio,
as well as many surrounding artifacts that contaminate the readings, especially eye
blinks and facial movements triggered by the various emotions. These interfering
signals caused by the latter, denominated electromyograms (EMG), are characterized
by high frequencies (50-150 Hz) that make the underlying signal very noisy. Every
time a person blinks, the EEG signal shows a very high peak with a very low
frequency (<1Hz). To remove these muscle artifacts, a 5th order utterworth bandpass
filter (this type of filter was chosen because it has the flattest frequency response,
which leads to less signal distortion) with cut-off frequencies in 1 Hz and 50 Hz
[7].The attenuation of very low frequencies is important to remove the eye blinks
artifacts. Considering the top cut-off frequency, it is very convenient to use 50 Hz
since it mitigates the effects of the power line noise and the EMG artifacts. Like
this, no important brain data is lost. At this step, the EEG was segmented in the
brain waves of interest, i.e., the alpha and beta brain waves. The best way to perform
this is to apply bandpass filters (same filter type as before) in the corresponding
bandwidths, 8-13Hz and 13-32 Hz, to have alpha and beta bands, respectively.

The EEG signals, at this stage possess the "emotional data" exposed allowing
to extract the features. To do so, multiple mathematical equations were applied to
obtain relevant information from the signals. Feature extraction methods depend
on the domain, as will be seen ahead [8]. Most strategies to extract features from
the EEG are formulas applied in the time domain, such as, the common statistical
equations, the Hjorth statistical parameters, the mean and zero crossings (number of
times the signal crosses these 2 thresholds) [8]. Besides these, there were applied
more advanced feature extraction methods, based on fractal dimensions and entropy
analysis (methods to assess the complexity, or irregularity, of a time-series) [9].
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Regarding frequency domain approaches, these features can only be calculated in
the filtered EEG and not in the brain waves, as their spectrum is very narrow. In
terms of the pure frequency band, the only feature computed was the Power Spectral
Density (PSD), based on theWelchmethod. These domains can be combined creating
the time-frequency domain, leading to more sophisticated methods, like the Hilbert
– Huang Transform, where the original signal is decomposed in intrinsic mode
functions (IMF) [10].

The resulting number of features is too high to compute machine learning models,
because the correlation between most of the features is very low, which means that
between different classes the information is virtually the same. This would introduce
uncertainty in the weights for each class in the models, thus the number of features
needs to be reduced. To do this the "Min Redundancy Max Relevance" (MRMR)
method was applied, with the objective of finding the optimal number of features
to have a higher inter-class variability, in order to find distinct patterns between
emotions [11]. The features were used raw, normalized or standardized to train the
models.

In this study, all the models implemented are based on supervised learning and
fully depend on the data that is inputted. Concerning emotion classification there is
not a specific machine learning approach that is optimal, thus 9 different types of
models were implemented to verify which has the best performance. These models
are designed to be able to adapt to various kinds of input data, through the definition
of hyper-parameters. Hence, to tune them to the best possible configuration, it was
performed a GridSearchCV. This method exhaustively searches over a given list of
possible parameters applying cross validation between them. In the end, the model
with the best performance is chosen to be trained with the resulting feature matrix.

A deep learning model was also implemented, based on recurrent neural network
(RNN), a very common architecture in classification problems using EEG. A par-
ticularity of this network is that it has a GRU, i.e., a layer that helps to mitigate the
problem of vanishing gradients (common issue on artificial neural networks), giving
long term memory to the model [12].

3 Evaluation and Discussion of Results

In this experiment, 12 subjects volunteered to participate. Each EEG recording is
labeled according to the emotion registered in the original database, as well as if it
was before video, during or after the video. The answers of the “Discrete Emotion
Questionnaire” were used to validate if the emotion triggered by the video was as
expected and, if so, the data was used. With this dataset structure, 3 hypotheses were
tested and their results are discussed ahead.

An important aspect to have in consideration is that the EEG collected while the
subject is relaxing, i.e., while the fixation cross presented before the video, does not
have relevant cognitive information regarding emotions. Therefore, these segments
were not considered to train any of the models.
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3.1 Core Emotions Classification

This first hypothesis describes the main goal of the project where a model was
developed to classify 6 emotions.

First, the feature extraction was computed. At this step, the optimal number of
features to get selected was tested, iterating from 5 to 50, 5 at a time. The best
number found was 30, which gave the best accuracies, with a balanced computation
time and power. This value was chosen for the 3 feature matrixes (raw, normalized
and standardized). The dataset was then divided into training and testing with an
80% ratio and fully independent of one another. Each model was then trained and
assessed, by computing the accuracy in the test dataset. Table 1 presents the results
for each model.

Table 1 Results of the 6 Core Emotions Classification.

Classification Models Raw Features Normalized Features Standardized features

Accuracy (%)
Gaussian Naïve Bayes Classifier 12.07 12.93 10.34

Support Vector Classifier 12.07 12.93 16.38
Decision Tree Classifier 18.96 18.10 18.10
Random Forest Classifier 24.13 18.10 20.69
K Nearest Neighbors 21.55 18.96 16.38
Logistic Regression 25.00 14.66 18.10

Linear Discriminant Analysis 24.13 14.65 18.96
Linear Support Vector Classifier 18.10 13.79 19.82

Multi-Layer Perceptron 20.69 13.79 12.93
Recurrent Neutral Network 13.79 20.69 23.27

When comparing the various models, the average accuracy is around 16-18%,
logically due to the number of classes in the problem (100%/6 = 16,6%). Despite
this, the best result reached was 25% accuracy, with the features in their raw state,
since the magnitude information was not lost, so patterns in different emotions could
be more easily identified due to the high discrepancy in the values. These results are
not discouraging since the main objective of the study is very ambitious, as we are
trying to create a model to define universally what an emotion is. There is no work
more subjective or abstract, and the onlyway to achieve this universal standardization
would be with a sample population as wide and diverse as possible with different
beliefs, nationalities, age groups, etc. Although this is an initial study, it shows that
it is possible to register and identify differences in the electrical changes of the
prefrontal cortex and, with that information, categorize what someone is feeling.
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3.2 One vs One – Dual Emotion Classification

As the results in the previous hypothesis could not precisely identify an emotionwhen
compared to the other 5, the problem was narrowed down and a new hypothesis was
tested, to continue the proposed research. In this experiment, the model was trained
to discern between only 2 emotions, decided a priori. For demonstration purposes,
a concrete example can be seen in Table 2 where it compares "fear" vs "surprise".

Table 2 Results of "Fear vs Surprise" Classification.

Classification Models Raw Features Normalized Features Standardized features

Accuracy (%)
Gaussian Naïve Bayes Classifier 48.27 55.17 53.44

Support Vector Classifier 51.72 51.72 53.44
Decision Tree Classifier 56.89 50.00 44.83
Random Forest Classifier 48.27 50.00 60.34
K Nearest Neighbors 46.55 44.82 50.00
Logistic Regression 50.00 53.45 53.45

Linear Discriminant Analysis 50.00 48.28 53.44
Linear Support Vector Classifier 50.00 51.72 55.17

Multi-Layer Perceptron 50.00 50.00 58.62
Recurrent Neutral Network 69.23 51.23 56.21

In this case, most of the machine learning algorithms have accuracies in the
order of the 50-53%. This results are not ideal, as they are no better than a random
choice between the two classes, however this can be justified by the low population
sample, which is not high enough to bring to the surface concrete patterns on the
features. Regarding the deep learning approach, the RNN has an advantage in this
case, giving a final accuracy of 69%. This result shows that this model is reliable, and
in the majority of the cases the 2 emotions can be distinguished. In this particular
case, the facial expressions and their muscle activity, can induce big artifacts in
the EEG. Someone who feels surprised has the tendency to raise their eyebrows
and open the mouth. These movements can lead to a difference in the EEG and,
consequently, in the patterns of the features, making the distinction between surprise
and fear more noticeable. The same thinking applies to other emotions that trigger
facial movement, like laugh, frowning, among others.

3.3 Stimulus vs No Stimulus Classification

Besides the good results presented in the last premise, one last hypothesis was
assessed, regarding the difference between experiencing the emotion while watching
the video (direct stimulus), and after, when the fixation cross is presented, while the
volunteer is simply thinking and cognitively processing the emotion.
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Table 3 summarizes the results of the various models.

Table 3 Results of Stimulus vs No Stimulus classification.

Classification Models Raw Features Normalized Features Standardized features

Accuracy (%)
Gaussian Naïve Bayes Classifier 61.20 58.62 85.34

Support Vector Classifier 58.62 58.62 91.37
Decision Tree Classifier 39.65 58.62 89.65
Random Forest Classifier 39.65 58.62 91.37
K Nearest Neighbors 37.93 58.62 89.65
Logistic Regression 34.48 58.62 87.06

Linear Discriminant Analysis 29.31 37.06 80.17
Linear Support Vector Classifier 34.48 58.62 87.06

Multi-Layer Perceptron 31.03 58.62 88.79
Recurrent Neutral Network 96.55 61.20 88.79

As it can be seen, for this experiment, most models did fairly well using the
standardized feature, being all accuracies higher than 80%. However, when testing
the deep learning approach, this architecture revealed to fit almost perfectly to the
testing data, with an accuracy higher than 96%. This hypothesis is the proof of
concept that the characteristics of the signal collected during the stimulus itself
are very different from the ones from a signal obtained when the person is simply
thinking and cognitively processing the emotion (this change would be obvious if
the EEG was collected from the occipital lobe, which is responsible for the visual
perception, but is remarkable when spotted in the prefrontal cortex).

4 Conclusions

In conclusion, as a first approach, the results achieved are very satisfactory and
reveal a high potential to be greatly efficient in the proposed applications both in
"IntellWheels2.0" and "Sleep at the Wheel projects". Nevertheless by collecting
more data the models will get more generalized resulting in more realistic patterns
and, consequently, increasing the prediction’s accuracies.

Comparing to the literature, using simple visual stimuli to distinguish six emo-
tions, in a relaxed state, is a novel tactic. Most studies, complement the stimulus with
forced facial expression, introducing different characteristics to the signal, leading
to better results. Other studies use BCIs with more electrodes (channels), covering a
wider cranial surface and, consequently, getting more EEG and information, which
leads to more robust results.

As future work, the preprocessing of the data could be polished, improving the
removal of artifacts and enhancing the underlying information of theEEG’s. To obtain
better results, it could also be used a transfer learning approach, by pre-training the
models with another emotion related EEG databases.
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The Death Process in Italy Before and During
the Covid-19 Pandemic: a Functional
Compositional Approach

Riccardo Scimone, Alessandra Menafoglio, Laura M. Sangalli, and Piercesare
Secchi

Abstract In this talk, based on [1], we propose a spatio-temporal analysis of daily
death counts in Italy, collected by ISTAT (Italian Statistical Institute), in Italian
provinces and municipalities. While in [1] the focus was on the elderly class (70+
years old), we here focus on the middle class (50-69 years old), carrying out anal-
ogous analyses and comparative observations. We analyse historical provincial data
starting from 2011 up to 2020, year in which the impacts of the Covid-19 pan-
demic on the overall death process are assessed and analysed. The cornerstone of
our analysis pipeline is a novel functional compositional representation for the death
counts during each calendar year: specifically, we work with mortality densities over
the calendar year, embedding them in the Bayes space �2 of probability density
functions. This Hilbert space embedding allows for the formulation of functional
linear models, which are used to split each yearly realization of the mortality density
process in a predictable and an unpredictable component, based on the mortality
in previous years. The unpredictable components of the mortality density are then
spatially analysed in the framework of Object Oriented Spatial Statistics. Via spa-
tial downscaling of the results obtained at the provincial level, we obtain smooth
predictions at the fine scale of Italian municipalities; this also enable us to perform
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anomaly detection, identifying municipalities which behave unusually with respect
to the surroundings.

Keywords: COVID-19, O2S2, functional data analysis, spatial downscaling

1 Introduction and Data Presentation

At the dawn of the third year of global pandemic, we can affirm that no aspect of
people’s everyday life has been left untouched by the consequences of Covid-19.
The virus, in addition to exacting an heavy death toll, has caused great upheavals
in global economy, education systems, technological development and in countless
other aspects of human life. Given this global reaching, we deem appropriate to anal-
yse death counts from all causes, and not just those directly attributed to Covid-19, as
a proxy of how Italian administrative units, be they municipalities or provinces, have
been affected by the pandemic. This choice is driven by the following considerations:

• Death counts from all causes are, on many levels, high quality data: they have a
very fine spatial and temporal granularity, being collected daily in each Italian
municipality, they are finely stratified inmany age classes, and they are not affected
by errors due to incorrect attribution of the cause of death, as may happen, for
example, in deciding whether or not a given death is due to Covid-19;

• They incorporate any possible shock, be it direct or indirect, which the natural
death process underwent: less deaths from road accidents due to restrictive poli-
cies, more deaths from other pathologies which are left untreated because of the
unnatural stress on the welfare systems, and so on;

• They aremade freely available by ISTAT1, with a substantial amounts of historical
data; in particular, in the following analysis we consider data starting from the
beginning of 2011 up to the end of 2020.

The purpose of the analysis of such data is twofold: (1) to study the correlation
structure of the death process in Italy before and during the pandemic, assessing
possible perturbations caused by its outbreak, and (2) to assess local anomalies at
the municipality level (i.e., identifying municipalities which behave unusually with
respect to the surrounding). This talk will entirely be devoted to presenting data and
results concerning people aged between 50 and 69 years. The elderly class was the
focus of [1], while analyses focusing on younger age classes can be freely examined
at https://github.com/RiccardoScimone/Mortality-densities-italy
-analysis.git.

Daily death counts for the 107 Italian provinces, in the time interval spanning
from 2017 to 2020, are shown in Fig. 1: for each province, we draw death counts
along the year in light blue. The black solid line is the weighted mean number of
deaths, where each province has a weight proportional to its population. We also

1 https://www.istat.it/it/archivio/240401
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highlight four provinces with colours: Rome, Milan, Naples, and Bergamo. By a
visual inspection, it is easy to see that, during the years 2017, 2018 and 2019, the
mortality in this age class has an almost uniform behaviour, with only a very slight
increase in deaths during winter, for some Provinces. Conversely, 2020 presents
an abnormal behaviour in many provinces, due to the pandemic outbreak: look for
example at the double peak for Milan, hit by both pandemic waves, or the single,
dramatically sharp peak of Bergamo, which reached, during the first wave, higher
death counts than the ones associated to provinces which are several times bigger, as
Rome or Naples. By comparison with the plots in [1], on can see how all these peaks
are less sharper with respect to the elderly class: this is perfectly reasonable, since
people aged more than 70 years are much more susceptible to death by Covid-19.

Daily death counts, Italian provinces, 50-69 years

Fig. 1 Daily death counts during the last four years, for the Italian provinces. The plots refer to
people aged between 50 and 69 years. For each province, death counts along the year are plotted in
light blue: curves are overlaid one on top of the other to visualize their variability. The black solid
line is the weighted mean number of deaths, where each province has a weight proportional to its
population, while some selected provinces are highlighted in colour.

To set some notation, we denote the available death counts data as 38HC , where
8 is a geographical index, identifying provinces or municipalities, H is the year and
C is the day within year H. Moreover, we denote by )8H the absolutely continuous
random variable time of death along the calendar year, that models the instant of
death of a person living in area 8 and passing away during year H. We hence consider
the empirical discrete probability density of this random variable,

?8HC =
38HC∑
C 38HC

for C = 1, ..., 365

for each area 8 and year H. The family {?8H}8H is the main focus of our analysis: we
show these discrete densities in Fig. 2, with the same color choices of Fig. 1. It is
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clear that using densities provides a natural alignment of areas whose population
differs significantly, providing complementary insights with respect to the absolute
number of death counts: greater emphasis is given on the temporal structure of the
phenomenon. For example, the astonishing behaviour of the province of Bergamo
during the first pandemic wave in 2020, is now much more visible.

Empirical densities of daily mortality, provinces, 50-69 years

Fig. 2 Empirical densities of daily mortality, for people aged between 50 and 69 years, at the
provincial scale. For each province, the empirical density of the daily mortality is plotted in light
blue: densities are overlaid one on top of the other to visualize their variability. The black solid line
is the weighted mean density, where the weight for each province has been set to be proportional to
its population; some selected provinces are highlighted in colour.

In this talk, we will show results obtained by embedding a smoothed version
of the {?8H}8H , i.e., an estimate { 58H}8H of the continuous density functions of the
{)8H}8H , in the Hilbert space �2 (Θ), called Bayes space [2, 4, 3], where Θ denotes
the calendar year. This is the set (of equivalence classes) of functions

�2 (Θ) = { 5 : Θ→ R+ B.C. 5 > 0, ;>6( 5 ) ∈ !2 (Θ)}

where the equivalence relation in �2 (Θ) is defined among proportional functions,
i.e., 5 =�2 6 if 5 = U6 for a constant U > 0. In [1], we also propose a preliminary
exploration of the {?8H}8H based on theWasserstein space embedding, a very regular
metric space of probability measures with a straightforward physical interpretation
[5]. For the sake of brevity, we here focus on the analysis in �2 (Θ), which constitutes
our main contribution.
�2 (Θ) is equippedwith anHilbert geometry, constituted by appropriate operations

of sum, multiplication by a scalar, and inner product, which make it the infinite-
dimensional counterpart of the Aitchison simplex used in standard compositional
analysis [6, 7]: for this reason this space is considered the most suited Hilbert
embedding for positive continuous density functions. The smoothed densities { 58H}8H
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Smooth estimates of the mortality densities, 50-69 years
Provinces

Fig. 3 Smooth estimates of the mortality densities over the 107 Italian provinces. The usual pattern
of mortality is visible till 2019, while the functional process is completely different in 2020, with
the two pandemic waves clearly captured by the estimated densities. The black thick lines represent
the mean density, computed in �2, with weights proportional to the population in each area.

are shown in Fig. 3: they are obtained by smoothing the {?8H}8H via compositional
splines [8, 9]. It is easy to see, by comparison with Fig. 2, how smoothing filters out
a good amount of noise, much more than the case of the elderly class: this is fairly
reasonable, since the death process is usually more noisy for younger age classes.
Fromnowon, the { 58H}8H are analysed as a spatio-temporal functional random sample
taking values in �2 (Θ). We briefly anticipate the results of such analysis:

1. The { 58H}8H are decomposed, by means of a linear model formulated in �2 (Θ)
[10], in a predictable and an unpredictable part, on the basis of mortality during
previous years;

2. The unpredictable part is then analysed spatially in order to infer the main
spatial correlation characteristics of the process; in particular, the impacts of
the pandemic are investigated via functional variography [13, 14, 11, 12] and
Principal Component Analysis in the �2 space (SFPCA, [16]);

3. The results obtained at the provincial level are reduced to the municipality scale
by spatial downscaling [15] techniques, obtaining smooth density estimates
for each municipality. This provides continuous density at the municipality
level, without directly smoothing the corresponding daily death process, which
is quite irregular due to the reduced population of many municipalities. The
spatial downscaling estimates, that are exclusively based on provincial data, are
then compared with the actual measurements on municipalities, allowing for the
identification of local anomalies.

Points 1 and 2 above are detailed in Section 2, while point 3 will be discussed during
the talk. The reader is referred to [1] for full details on the analysis pipeline.
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2 Some Results

The first step of the analysis of the random sample { 58H}8H , where 8 is indexing the
107 Italian provinces, is the formulation of a family of function-on-function linear
models in �2 (Θ), extending classical models formulated in the !2 case [17], namely

58H (C) = V0H (C) + 〈VH (·, C), 5 8H〉�2 + n8H (C), 8 = 1, ...107, C ∈ Θ, (1)

where 5 8H = 1
4
∑H−1
A=H−4 58A is the �

2 mean of the observed densities in the four years
preceding year H, functional parameters V0H (C), VH (B, C) are defined in the �2 sense,
aswell as the residual terms n8H (C) and all operations of summation andmultiplication
by a scalar. Model (1) is trying to explain the realization of the mortality density
58H for a year H in a province 8 as a linear function of what happened in the same
province during the preceding years. It is thus interesting to look at the following
functional prediction errors:

X8H = 58H − 5̂8H (2)

where
5̂8H (C) := V̂0H−1 (C) + 〈V̂H−1 (·, C), 5 8H〉�2 . (3)

The X8H are not the estimate n̂8H of the residual of model (1): they rather represent

Prediction error norms and �2 functional clustering, provinces, 50-69 years

Fig. 4 First four panels, from the left: heatmaps of the �2 norm of the prediction errors X8H , in
logarithmic scale, for the elderly class. In 2020 the pandemic diffusion is clearly visible in northern
Italy, while the prediction errors are generally higher on all provinces. Last panel: result of a
 -mean �2 functional clustering ( = 3) on the X8H , during 2020.

the error committed in forecasting 58H using the model fitted at year H − 1. Thus,
we can look at the densities X8H as the unpredictable component of 58H , i.e., as a
proxy of what happened at year H which could not be predicted by information
available at the previous years, and analyze them under the spatial viewpoint. For
example, we can look at the spatial heatmaps of the �2 norms of the X8H , which are
shown in Fig 4. It is clear, by looking at the magnitude of the error norms, that what
happened during 2020 was to a large extent unpredictable, since almost all Italian
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provinces are characterized by higher errors with respect to previous years. More
significantly, in 2020 a clear spatial pattern can be noticed, at least during the first
wave in northern Italy: a diffusive process, having at its core the provinces most
gravely hit by the first pandemic wave, seems to take place in northern Italy. This
pattern is, as reasonable, slightly less evident with respect to the case of the elderly
class analysed in [1]. Going in this direction, we also show in Fig 4 the result of
a K-means functional clustering, set in the �2 space, of the X8H for the year 2020.
We clearly identify provinces hit by the first wave (blue cluster), while the other two
clusters behave irregularly: this is a neat distinction with people aged more than 70
years, where each cluster clearly identifies different kinds of pandemic behaviour
(see [1]). For a more precise investigation of the spatial correlation structure of the

Functional trace-semivariograms, provinces, 50-69 years

Fig. 5 Empirical trace-semivariograms for the prediction errors X8H , in people aged between 50
and 69 years. The purple lines are the corresponding fitted exponential models. Distances on the
x-axes are expressed in kilometers. The last panel shows the 2020 severe perturbation of the spatial
dependence structure of the process generating the prediction errors.

process across different years, from the X8H we compute a functional trace variogram
for each year: we show them for 2017 up to 2020 in Figure 5. Without entering into
the details of the mathematical definition of variograms, we can look at the fitted
curves in Figure 5 as follows. Distances are on the x-axis, while on the y-axis we
have a function of the spatial correlation of the process: when the curve reaches its
horizontal asymptote, it has reached the total variance of the process and we are
beyond the maximum correlation length. In this perspective, it is immediate to infer
that not only the total variance of the functional process X8H has sharply increased
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in 2020, but also a significant spatial correlation has manifested, compatibly with
the presence of a pandemic. In the main work [1], we further deepen the connection
between the pandemic and the upheavals in the spatial structure bymeans of Principal
Component Analysis of the X8H in the Bayes space (SFPCA, [16]).
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Clustering Validation in the Context of
Hierarchical Cluster Analysis:
an Empirical Study

Osvaldo Silva, Áurea Sousa, and Helena Bacelar-Nicolau

Abstract The evaluation of clustering structures is a crucial step in cluster analysis.
This study presents the main results of the hierarchical cluster analysis of variables
concerning a real dataset in the context of Higher Education. The goal of this
research is to find a typology of some relevant items taking into account both the
homogeneity and the isolation of the clusters.Two similarity measures, namely the
standard affinity coefficient and Spearman’s correlation coefficient, were used, and
combined with three probabilistic (AVL, AVB and AV1) aggregation criteria, from
a parametric family in the scope of the VL (Validity Link) methodology. The best
partitions were selected based on some validation indices, namely the global STAT
levels statistics and the measures P(I2, Σ) and W, adapted to the case of similarity
coefficients. In order to evaluate the clusters and identify their most representative
elements, the Mann and Whitney U statistics and the silhouette plot were also used.
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1 Introduction

Cluster analysis or unsupervised classification usually concerns exploratory multi-
variate data analysis methods and techniques for grouping either a set of data units
or an associated set of descriptive variables in such a way that elements in the same
group (cluster) are more similar to each other than elements in different clusters [6].
Therefore, it is important to validate the results obtained, bearing in mind that, in
an ideal situation, the clusters should be internally homogeneous and externally well
separated or isolated. Thus, according to Silva et al. ([15], p. 136), there are some
important questions, such as: “i) How to compare partitions obtained using different
cluster algorithms? ii) Is it possible to join information from several approaches in
the decision-making process of choosing the most representative partition?”

This paper presents the main results of a hierarchical cluster analysis of variables
concerning a real dataset in the field of Higher Education, in order to find a typology
taking into account relevant validation measures. Two similarity measures (standard
affinity coefficient and Spearman’s correlation coefficient) were used, and combined
with a parametric family aggregation criteria in the scope of the VL methodology
(e.g., [10, 11, 17]).

With regard to the validation of clustering structures, some validation indices
were used for the evaluation of partitions and the clusters that integrate them, which
are referred to in Section 2. The main results are presented and discussed in Section
3. Section 4 contains some final remarks.

2 Data and Methods

Data were obtained from a questionnaire administered to three hundred and fifty
students who were attending Higher Education in a public university, after their
informed consent. The questionnaire contains, among others, eleven questions related
to academic life and the respective courses.

Several algorithms of hierarchical cluster analysis of variables were applied
on the data matrix. The variables (items) are: T1-Participation, T2-Interest, T3-
Expectations, T4-Accomplishment, T5-Job Outlook, T6- Teachers’ Professional
Competence, T7-Distribution of Curricular Units, T8- Number of weekly hours
of lessons, T9-Number of hours of daily study, T10-School Outcomes and T11-
Assessment Methods, which were evaluated based on a Likert scale from 1 to 5
(1-Totally disagree, 2- Partially disagree, 3- Neither disagree nor agree, 4- Partially
agree, 5- Totally agree).

The Ascendant Hierarchical Cluster Analysis (AHCA) was based on the standard
affinity coefficient [1, 17] and Spearman’s correlation coefficient. In this paper both
measures of comparison were combined with three probabilistic aggregation criteria
(AVL, AVB and AV1), issued from the VL parametric family. This methodology, in the
scope of Cluster Analysis, uses probabilistic comparison functions, between pairs of
elements, which correspond to random variables following a unit uniform distribu-
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tion. Besides, this approach considers probabilistic aggregation criteria, which can
be interpreted as distribution functions of statistics of independent random variables,
that are i.i.d. uniform on [0, 1] (e.g., [17]).

Let A and B be two clusters with cardinals, respectively, U and V, and let WGH
be a similarity measure between pairs of elements, G, H ∈ � (set of elements to
classify). Concerning the family I of AVL methods (e.g., SL, AV1, AVB, and AVL),
the comparison functions between clusters can be summarized by the following
conjoined formula:

Γ(�, �) = (?��)6 (U,V) (1)

where U = �0A3 �, V = �0A3 �, ?�� = <0G [W01 : (0, 1) ∈ (� × �], with
1 ≤ 6(U, V) ≤ UV, and WGH , establishing a bridge between SL and AVL methods
which have a braking effect on the formation of chains. For example, 6(U, V) = 1 for
SL, 6(U, V)=(U + V)/2 for AV1, 6(U, V)=

√
UV for AVB, and 6(U, V) = UV for AVL

(see [3, 17]).
The application of the two measures of comparison between elements (Spearman

correlation coefficient and standard affinity coefficient), combined with the afore-
mentioned aggregation criteria, aims to find a typology of items corresponding to
the best partition among the best partitions obtained by the several algorithms, in
order to verify if there are any substantial changes in the results. Therefore, some
validation indices based on the values of the corresponding proximity matrices were
used, namely the global levels statistics (STAT) [1, 10, 11] and the indices P(I2mod,
Σ) and W [8], adapted to this type of matrices [16], so that the choice of the best
partition is judicious and based on the desirable properties (e.g., isolation and homo-
geneity of the clusters). Concerning the best partitions, the respective clusters and
the identification of their most representative elements were based on appropriate
adaptations of the Mann and Whitney U statistics [8] and of the silhouette plots [14]
to the case of similarity measures.

Each level of a dendrogram corresponds to a stage in the constitution of the
partitions hierarchy. Therefore, the study of the most relevant partition(s) is strictly
related to the choice of the best cut-off levels (e.g., [6, 5])

According to Bacelar Nicolau [1, 2], the global levels statistics (STAT) values
must be calculated for each of the : = 1, =8{<0G levels of the corresponding den-
drograms, designating them by () �) (:). At each level k, () �) (:) is the global
statistics that measures the total information given by the pre-order associated to
the corresponding partition, in relation to the initial pre-order associated with the
similarity or dissimilarity measure. A “significant” level is considered to be one that
corresponds to a partition for which the global statistics undergoes a significant in-
crease in relation to the information provided by neighbouring levels, that is, a local
maximum of the differences ��� (:) = () �) (:) − () �) (: − 1), : = 1, =8{<0G.
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2.1 Adaptation of the P (I2, �)

To evaluate the partitions, an appropriate adaptation of the index P (I2, Σ) [8] for the
case of similarity measures was used, given by the following formula:

%(�2<>3, Σ) = 1
2

2∑
A=1

Σ
8∈�A

Σ
9∉�A

B8 9

=A × (# − =A )
(2)

where 2 is the number of clusters of the partition and B8 9 is the value of the similarity
measure between the element 8 belonging to cluster �A and the element 9 belonging
to another cluster. This index takes into account the number of clusters and the
number of elements in each of the clusters and evaluates the isolation of clusters
belonging to a given partition.

2.2 Goodman and Kruskal Index ($ )

The W index, proposed by Goodman and Kruskal [7], has been widely used in cluster
validation [9]. Comparisons are developed between all within-cluster similarities,
B8 9 and all between-cluster similarities B:; [18]. A comparison is judged concordant
(respectively discordant) if B8 9 is strictly greater (respectively, smaller) than B:; . The
W index is defined by:

W = ((+ − (−)/((+ + (−), (3)

where (+ (or (−) is the number of concordant (respectively, discordant) comparisons.
This index is a global stopping rule and it evaluates the fit of the partition in c clusters
based on the homogeneity (high similarity between the elements within the clusters)
and the isolation (low similarity of the elements between the clusters) of the clusters.
Note that the higher the value of this index, the better is the adjustment of that
partition.

The use of STAT, W and P(I2mod, Σ) indices can help identifying the most
significant levels of a dendrogram, taking into account both the homogeneity and
the isolation of the clusters [15].

2.3 U Statistics (Mann and Whitney)

U statistics [12] are relevant for assessing the suitability of a cluster, combining the
concepts of compactness and isolation. Thus, the “best” cluster is the one with the
lowest values of global U-index,*� , and local U-index,*! [8]. In the present paper
we used an appropriate adaptation of these indices to the case of similarity measures
(for details, see [19]). Moreover, the clusters considered “ideal” are those for which
*� and *! both take the value zero. Mann and Whitney’s U statistics are useful in
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decision making, in situations of uncertainty, both for the evaluation of the clusters
and partitions.

2.4 Silhouette Plots

We also used an appropriate adaptation of the silhouette plots [14], which allows
the assessment of compactness and relative isolation of clusters. The adaptation of
this measure for the case of similarity measures, (8; (8), considers the average of the
similarities between an element i belonging to cluster �A , which contains =A (≥ 2)
elements, and all other elements that do not belong to this cluster (see [19]). The
values of this measure {(8; (8) : 8 ∈ �A } lie between −1 and +1, with “values near +1
indicating that element strongly belongs to the cluster in which it has been placed”
([8], p. 205). In the case of a singleton cluster, (8; (8) assumes the value zero [8] in
the corresponding algorithm.

3 Results and Discussion

The best partitions provided by the dendrograms are shown in Table 1.

Table 1 The best partitions concerning the dendrograms.

Coefficient Method The best partition Validation indices

Affinity AVL (T1, T3, T4, T5 ,T6, T7, T8, T10, T11), (T2, T9) STAT=5.1301
W= 0.8589
P(I2mod,Σ)=0.2077

AV1/AVB (T1, T3, T4 , T5, T6, T7, T8, T10, T11), (T2), (T9) STAT=5.3453
W= 0.8830
P(I2mod,Σ)=0.2049

Spearman AVL (T3, T4 ,T2 , T9) (T7, T11, T8), (T6, T10), (T1), (T5) STAT=4.0152
W= 0.8178
P(I2mod,Σ)=0.3896

AV1/AVB (T3, T4 ,T2 , T9, T6 ) (T7, T11, T8), (T1, T10), (T5) STAT=4.05751
W= 0.7317
P(I2mod,Σ)=0.38177

Figure 1 shows the dendrograms obtained, respectively, by the standard affin-
ity coefficient (left side) and Spearman’s correlation coefficient (right side), both
combined with the AVL method.
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Fig. 1 Dendrograms based on standard affinity coefficient (left side) and Spearman’s correlation
coefficient (right side) - AVL.

The “best” partition obtained using the affinity coefficient and the AVLmethod is
the partition into two clusters (level 9 of the aggregation process). The first cluster
consists of nine items that highlight the importance of the teachers’ professional
competence, the structuring/content of the course and the future perspectives in
relation to the career opportunities, mostly factors exogenous to the students. The
second one is composed by two items (T2 and T9) which emphasize the role of
interest in the study of Mathematics.

The algorithms in which the standard affinity coefficient was used are the ones that
provided the best partitions and their hierarchies are the ones that remained closest
to the initial pre-orders. In fact, in the case of Spearman correlation coefficient the
values of STAT and W indices are clearly lower than the previous ones. Moreover,
the cluster {T1, T3, T4, T5, T6, T7, T8, T10, T11}, corresponding to the best
partition provided by the combination of the standard affinity coefficient with the
aggregation criteria AVL, AV1 and AVB, presents (*� =39 and*!=4, both lower than
those obtained for the cluster {T3, T4, T2, T9, T6} (*�=65 and *!=26) provided
by the Spearman correlation coefficient combined, respectively, with AV1 and AVB
methods.

Focusing the attention on the two first partitions of Table 1, the only difference
between them is that while the best partition provided by AV1 and AVB methods
contains the singletons T2 and T9, the best partition given by AVL joins these two
singletons in the same cluster. The values of the numerical validation indices shown
in Table 1 indicate that the best partition is the one provided by AV1 and AVB
methods. This conclusion is reinforced by the observation of the silhouette plot (see
Figure 2), which indicates that the cluster joining T2 and T9, given by AVL method,
includes the elements which have the two lowest values of (8; and Sil (T2) is negative
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Fig. 2 Silhouette plot - standard affinity coefficient and AVL method.

(i.e., T2 does not fit very well in this cluster). Note that the silhouette plot cannot be
used for the best partition, since it does not apply for singletons.

4 Final Remarks

This research was useful concerning the identification of relevant partitions of items
in the context of Higher Education. In the cases where the affinity and the Spearman
correlation coefficients were used, it was concluded that the probabilistic criteriaAV1
and AVB showed a higher agreement regarding the hierarchies of partitions obtained
than the AVL method.

The validation measures STAT, W and P(I2mod, Σ) help us to determine the best
cut-off levels of a hierarchy of clusters, taking into account both the homogeneity
and the isolation of the clusters. It should also be noted that if there is no absolute
consensus between these three measures, the Mann and Whitney U statistics and the
silhouette plot prove to be very useful, as we have seen with the application of this
methodology to evaluate both the clusters and the partitions obtained.
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An MML Embedded Approach for Estimating
the Number of Clusters

Cláudia Silvestre, Margarida G. M. S. Cardoso, and Mário Figueiredo

Abstract Assuming that the data originate from a finite mixture of multinomial
distributions, we study the performance of an integrated Expectation Maximization
(EM) algorithm considering Minimum Message Length (MML) criterion to select
the number of mixture components. The referred EM-MML approach, rather than
selecting one among a set of pre-estimated candidate models (which requires run-
ning EM several times), seamlessly integrates estimation and model selection in a
single algorithm. Comparisons are provided with EM combined with well-known
information criteria – e.g. the Bayesian information Criterion. We resort to synthetic
data examples and a real application. The EM-MML computation time is a clear ad-
vantage of this method; also, the real data solution it provides is more parsimonious,
which reduces the risk of model order overestimation and improves interpretability.

Keywords: finite mixture model, EM algorithm, model selection, minimum mes-
sage length, categorical data

1 Introduction

Clustering is a technique commonly used in several research and application areas.
Most of the clustering techniques are focused on numerical data. In fact, clustering
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methods for categorical data aremore challenging [12] and there are fewer techniques
available [11].

In order to determine the number of clusters, model-based approaches commonly
resort to information-based criteria e.g., the Bayesian Information Criterion (BIC)
[15] or the Akaike Information Criterion (AIC) [1]. These criteria look for a balance
between the model’s fit to the data (which corresponds to maximizing the likelihood
function) and parsimony (using penalties associated with measures of model com-
plexity), thus trying to avoid over-fitting. The use of information criteria follows the
estimation of candidate finite mixture models for which a predetermined number
of clusters is indicated, generally resorting to an EM (Expectation Maximization)
algorithm [7]. In this work, we focus on determining the number of clusters while
clustering categorical data, using an EM embedded approach to estimate the number
of clusters. This approach does not rely on selecting among a set of pre-estimated
candidate models, but rather integrates estimation and model selection in a single
algorithm. Our new implementation to deal with categorical variables by estimating
a finite mixture of multinomials, follows a previous version described in [16]. We
capitalized on the work of Figueiredo and Jain [9] for clustering continuous data and
extended it for dealing with categorical data. The embedded method is thus based on
a Minimum Message Length (MML) criterion to select the number of clusters and
on an EM algorithm to estimate the model parameters.

2 Clustering with Finite Mixture Models

The literature on finite mixture models and their application is vast, including some
books covering theory, geometry, and applications [8, 13, 3]. When applying finite
mixture models to social sciences, the analyst is often confronted with the need to
uncover sub-populations based on qualitative indicators.

2.1 Definitions and Concepts

Let Y = {H
8
, 8 = 1, . . . , =} be a set of = independent and identically distributed

(i.i.d.) sample of observations of a random vector, . = [.1, . . . , .!] ′. We assume
. follows a mixture of  components densities, 5 (H |\

:
) (: = 1, . . . ,  ), with

probabilities {U1, . . . , U }, where \: are the distributional parameters defining the
:-th component and Θ = {\1, . . . , \ , U1, . . . , U } the set of all the parameters of
the model. The U values, also called mixing probabilities, are subject to the usual
constraints:

∑ 
:=1 U: = 1 and U: ≥ 0, : = 1, . . . ,  . The log-likelihood of the

observed set of sample observations is

log 5 (Y|Θ) = log
=∏
8=1

5 (H
8
|Θ) =

=∑
8=1

log
 ∑
:=1

U: 5 (H
8
|\
:
). (1)
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In clustering, the identity of the component that generated each sample observa-
tion is unknown. The observed data Y is therefore regarded as incomplete, where
the missing data is a set of indicator variables Z = {I1, ..., I=}, each taking the
form I

8
= [I81, ..., I8 ] ′, where I8: is a binary indicator: I8: takes the value 1 if the

observation H
8
was generated by the k-th component, and 0 otherwise. It is usually

assumed that the {I
8
, 8 = 1, . . . , =} are i.i.d., following a multinomial distribution of

 categories, with probabilities {U1, . . . , U }. The log-likelihood of complete data
{Y,Z} is given by

log 5 (Y,Z|Θ) =
=∑
8=1

 ∑
:=1

I8: log
[
U: 5 (H

8
|\
:
)
]
. (2)

2.2 Discrete Finite Mixture Models

Consider that each variable in Y, .; (; = 1, . . . , !) can take one of �; categories.
Conditionally on having been generated by the k-th component of the mixture,
each .; is thus modeled by a multinomial distribution with =; trials, �; categories,
and non-negative parameters \

:;
= {\:;2 , 2 = 1, . . . , �;}, with

∑�;
2=1 \:;2 = 1.

For a sample H8; (8 = 1, . . . , =) of .; , we denote as H8;2 the number of outcomes
in category 2, which is a sufficient statistic; naturally,

∑�;
2=1 H8;2 = =; . Thus, with

\
:
= {\

:1, . . . , \:!} andΘ = {\1, . . . , \ , U1, . . . , U: }, the log-likelihood function,
for a set of observations corresponding to a discrete finite mixture model (mixture of
multinomials). This log-likelihood can be seen as corresponding to a missing-data
problem, where the missing data has exactly the same meaning and structure as
above. The log-likelihood of the complete data {Y,Z} is thus given by

log ?(Y,Z|Θ) =
=∑
8=1

 ∑
:=1

I8: log

(
U:

!∏
;=1

[
=;!

�;∏
2=1

(\:;2)H8;2
H8;2!

])
. (3)

To obtain a maximum-likelhood (ML) or maximum a posteriori (MAP) estimate
of the parameters of a multinomial mixture, the well-known EM algorithm is usually
the tool of choice [7].

3 Model Selection for Categorical Data

Model selection is an important problem in statistical analysis [6]. In model-based
clustering, the term model selection usually refers to the problem of determining
the number of clusters, although it may also refer to the problem of selecting the
structure of the clusters. Model-based clustering provides a statistical framework to
solve this problem usually resorting to information criteria. Among the best-known
information criteria we find BIC and AIC, their modifications - namely the consistent
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AIC, (CAIC) and the Modified AIC (MAIC) - and also the Integrated Completed
Likelihood (ICL) [14, 4]. They are all easily implemented, the final model being
selected according to a compromise between its fit to data and its complexity.
In this work, we use the Minimum Message Length (MML) criterion to choose
the number of components of a mixture of multinomials. MML is based on the
information-theoretic view of estimation and model selection, according to which an
adequate model is one that allows a short description of the observations. MML-type
criteria evaluate statistical models according to their ability to compress a message
containing the data, looking for a balance between choosing a simple model and
one that describes the data well. According to Shannon’s information theory, if . is
some random variable with probability distribution ?(H |Θ), the optimal code-length
(in an expected value sense) for an outcome H is ; (H |Θ) = − log2 ?(H |Θ), measured
in bits (from the base-2 logarithm). If Θ is unknown, the total code-length function
has two parts: ; (H,Θ) = ; (H |Θ) + ; (Θ); the first part encodes the outcome H, while
the second part encodes the parameters of the model. The first part corresponds the
fit of the model to the data (better fit corresponds to higher compression), while the
second part represents the complexity of the model. The message length function
for a mixture of distributions (as developed in [2]) is:

; (H,Θ) = − log ?(Θ) − log ?(H |Θ) + 1
2

log |� (Θ) | + �
2
(1 − log(12)) , (4)

where ?(Θ) is a prior distribution over the parameters, ?(H |Θ) is the likelihood
function of mixture, |� (Θ) | ≡ | − �

[
m2

mΘ2 log ?(. |Θ)
]
| is the determinant of the

expected Fisher information matrix, and � is the the number of parameters of
the model that need to be estimated. For example, for the  mixture multinomial
distributions presented in (3), � = ( − 1) + 

(∑!
;=1 (�; − 1)

)
. The expected Fisher

information matrix of a mixture leads to a complex analytical form of MML which
cannot be easily computed. To overcome this difficulty, Figueiredo and Jain [9]
replace the expected Fisher information matrix by its complete-data counterpart
�2 (Θ) ≡ −�

[
m2

m\2 log ?(., / |Θ)
]
. Also, they adopt independent Jeffreys’ priors for

the mixture parameters that is proportional to the square root of the determinant of
the Fisher information matrix. The resulting message length function is

; (H,Θ) = "

2

∑
:: U:>0

log
(= U:

12

)
+ :=I

2
log

=

12
+ :=I (" + 1)

2
− log ?(H,Θ) (5)

where " is the number of parameters specifying each component (the dimension
of each \

:
) and :=I the number of components with non zero probability (for more

details on the derivation of (5), see [9, 2]).
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4 The MML Based EM Algorithm

In order to estimate a mixture of multinomials, we use a variant of the EM algorithm
(herein termed EM-MML), which integrates both estimation andmodel selection, by
directly minimizing (5). The algorithm results from observing that (5) contains, in
addition to the log-likelihood term, an explicit penalty on the number of components
(the two terms proportional to :=I), and a term (the first one) that can be seen as a
log-prior on the U: parameters of Θ, that will directly affect the M-step.

E-step: The E-step of the EM-MML is precisely the same as in the case of ML or
MAP estimation, since the generative model for the data is the same. Since we are
dealing with a multinomial mixture, we simply have to plug the corresponding
multinomial probability function yielding

Ī
(C)
8:
=

U:
∏!
;=1

[
=;!

∏�;
2=1

( \̂ (C )
:;2
)H8;2

H8;2!

]
∑ 
9=1 U 9

∏!
;=1

[
=;!

∏�;
2=1

( \̂ (C )
9;2
)H8;2

H8;2!

] , (6)

for 8 = 1, . . . , = and : = 1, . . . ,  .
M-step: For the M-step, noticing that the first term in (5) can be seen as the

negative log-prior − log ?(U: ) = �− +1
2 logU: (plus a constant), and enforcing

the conditions that U: ≥ 0, for : = 1, ...,  and that
∑ 
:=1 U: = 1, yields the

following updates for the estimates of the U: parameters:

Û
(C+1)
:

=

max

{
0,

=∑
8=1

Ī
(C)
8:
− � −  + 1

2 

}
 ∑
9=1

max

{
0,

=∑
8=1

Ī
(C)
8 9
− � −  + 1

2 

} , (7)

for : = 1, ...,  . Notice that, some Û (C+1)
:

may be zero; in that case, the :-th
component is excluded from the mixture model. The multinomial parameters
corresponding to components with Û (C+1)

:
= 0 need not be further calculated,

since these components do not contribute to the likelihood. For the components
with non-zero probability, Û (C+1)

:
> 0, the estimates of multinomial parameters

are updated to their standard weighted ML estimates:

\̂
(C+1)
:;2

=

=∑
8=1

Ī
(C)
8:
H8;2

=;

=∑
8=1

Ī
(C)
8:

, (8)
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for : = 1, . . . ,  , ; = 1, . . . , !, and 2 = 1, . . . , �; . Notice that, in accordance with
the meaning of the \:;2 parameters,

∑�;
2=1 \̂

(C+1)
:;2

= 1.

5 Data Analysis and Results

First, we evaluate the performance of the EM-MML algorithm on 10 synthetic data
sets, over 50 runs. The data sets were originated from a mixture of 3 categorical
variables (with 2, 3 and 4 levels) and 2 components. The correponding Sihouette
index values illustrate the structures diversity: 0.099; 0.216; 0.217; 0.230; 0.713;
0.733; 0.746; 0.778; 0.805; 0.817. The obtained results are compared with those
obtained from a standard EM algorithm combined with BIC, AIC, CAIC, MAIC,
and ICL criteria.

The comparison resorts to a cohesion-separation measure and a concordance
measure: the Fuzzy Silhouette index [5] of the clustering structure obtained and the
Adjust Rand [10] between the same clustering structure and the original one. In
Table 1 we can verify there are no significant differences between the EM-MML and
the other criteria, except ICL which only recovers the very well separated structures.
Regarding the number of clusters, EM-MML and MAIC are tied, recovering this
number correctly for all data sets.The same is not true for the other criteria: AIC
identifies 3 clusters in 3 data sets and 4 clusters once; in addition, BIC and CAIC
could not find any cluster structure once and ICLwas unable to do it for 4 data sets. In
terms of computation time, since EM-MML does not require a sequential approach,
it becomes clearly faster than the other criteria (Friedman test yields j2(5)=2500
and p-value<0.01; Post hoc tests, with Bonferroni correction, only reveal statistically
significant differences between the EM-MML and the other criteria).

Table 1 Criteria performance.

Criterion Number of Fuzzy Silhouette: 95% CI Adjusted Rand: 95% CI
data sets Lower ; Upper Limits0 Lower ; Upper Limits0

AIC 10 0.430 ; 0.741 0.545 ; 0.867
BIC 9 0.622 ; 0.935 0.728 ; 1.000
CAIC 9 0.616 ; 0.931 0.732 ; 1.000
ICL 6 0.917 ; 0.948 1.000 ; 1.000
MAIC 10 0.568 ; 0.887 0.623 ; 0.950
EM-MML 10 0.561 ; 0.891 0.594 ; 0.955
0 1000 bootstrap samples were used to estimate the Confidence Intervals (CI).

Additional insight into the performance of EM-MML is obtained by applying it
to a real data set referring to the 6th European Working Conditions Survey (2015),
Eurofound working conditions survey. Note that these data are the most recent.

For the purpose of our experiment, we consider the aggregate data referring to
305 European regions and the answers to the following questions: Are you able to
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Fig. 1 Clusters’ profile and their dimensions (=).

choose or change: a) your order of tasks; b) your methods of work; c) your speed or
rate of work. Do you work in a group or team that has common tasks and can plan
its work?

EM-MML selected 7 clusters, which is a smaller number than for the remaining
criteria (ICL, BIC, CAIC, AIC and MAIC select 10, 12, 12, 15 and 15 respectively).
This fact avoids estimation problems associated with very small segments and also
improves the interpretability of the clustering solution.

The segments selected by EM-MML criterion are presented in Figure 1. Workers
with slightly above average autonomy (cluster 7) live in several countries, but Ireland
stands out, as well as Belgium, Germany, Netherlands, Switzerland, and the UK
regions. Denmark, Estonia, Malta, and Norway are the countries where the most
independent workers are found (cluster 3). The smallest cluster, 6, includes Sweden
and a region of Greece and Kriti and Açores, a Greek and a Portuguese region,
respectively. The cluster 5, where workers claim they have no autonomy, includes
regions from many countries.

6 Discussion and Perspectives

In this work, a model selection criterion and method for finite mixture models of
categorical observations was studied - EM-MML. This algorithm simultaneously
performs model estimation and selects the number of components/clusters. When
compared to information criteria, which are commonly associated with the use of
the EM algorithm, the EM-MML method exhibits several advantages: 1) it easily
recovers the true number of clusters in synthetic data sets with various degrees of
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separation; 2) its computations times are significantly lower than those required
by standard approaches resorting to the sequential use of EM and an information
criterion; 3) when applied to a real data set it produces a more parsimonious solution,
thus easier to interpret. An additional advantage of this approach that stems from
obtaining more parsimonious solutions is that such solutions have a higher number
of observations per cluster, thus helping to overcome eventual estimation problems.

The performance of the EM-MML is encouraging for selecting the number of
clusters, and the same criterion was already used for feature selection [17]. However,
future research is required, namely considering data sets with different numbers of
clusters and high dimensional data.
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Typology of Motivation Factors for Employees in
the Banking Sector: An Empirical Study Using
Multivariate Data Analysis Methods

Áurea Sousa, Osvaldo Silva, M. Graça Batista, Sara Cabral, and Helena
Bacelar-Nicolau

Abstract Leadership has been considerate as a competitive advantage for organiza-
tions, contributing to their success and effective and efficient performance. Motiva-
tion, on the other hand, is assumed as a basic competence of leadership. Therefore,
the main purpose of this paper is to know the perceptions of bank employees on
the main motivational factors in the organizational context. Data analysis was per-
formed based on several statistical methods, among which the Categorical Principal
Component Analysis (CatPCA) and some agglomerative hierarchical clustering al-
gorithms from VL (V for Validity, L for Linkage) parametrical family, applied to the
items that aim to assess the aspects most valued by bankers in the work context. The
CatPCA allowed to extract four principal components which explain almost 70%
of the total data variance. The dendrograms provided by the hierarchical clustering
algorithms over the same data, exhibit four main branches, which are associated with
different main motivational factors. Moreover, CatPCA and clustering results show
an important correspondence concerning the main motivations in this sector.
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1 Introduction

Motivation has always been subject of analysis by the scientific community, as
numerous definitions have emerged. For Robbins and Judge ([21], p. 184), motivation
is defined as “the processes that account for an individual’s intensity, direction, and
persistence of effort toward attaining a goal”. These three indicators are assumed
to be key-factors of motivation: intensity describes the individual’s effort to achieve
the proposed goals; this effort should go in a direction that benefits the organization;
and, finally, the persistence with which the individual is able to maintain that effort.
In this context, the individual’s behavior is determined by what motivates them,
which is why their performance results not only from ability and skills, but also
from motivation. Moreover, motivation is complex and influenced by innumerable
variables, considering the diverse needs and expectations that individuals try to
satisfy in different ways [15]. Moreover, different leadership practices may lead to
better or worse motivational responses from employees.

The main purpose of this paper is to analyse the perceptions of bank employees
who work in the banks that operate in the Autonomous Region of the Azores on
the main motivational factors in the organizational context. Our study also intends
to perform a reduction of the dimensionality of the data and to find a typology of a
set of items that was used to evaluate the latent variable “Motivation”, regarding the
most valued aspects in the work context. Thus, Section 2 concerns the materials and
methods of research. Section 3 presents and discusses the main results of this study.
Finally, Section 4 contains the main conclusions.

2 Materials and Methods

This study was based on a quantitative approach, using a validated questionnaire,
which can be found in Cabral [7]. The sample consists of 202 bank employees (51.0
% male and 49.0 % female) of the Autonomous Region of the Azores (response
rate: 6.4%). Most respondents are 36 years old or older (60.9%) and have higher
education (56.7%).

The present study refers to a subset of twenty-seven items used to evaluate the
latent variable “Motivation” in work context, namely: 1 - The opportunity for career
advancement, 2 - Have greater responsibility, 3 - The feeling of being involved
in decision making, 4 - A job that gives you prestige and status, 5 - Have an
interesting and challenging job, 6 - The recognition and appreciation of others for
the accomplished work, 7 - Have a good relationship with your colleagues, 8 - Have
a good relationship with your superiors, 9 - A work environment where there is trust
and respect, 10 - The loyalty of superiors towards the collaborators, 11 - Team spirit,
12 - Sense of belonging to the organization, 13 - An adequate discipline, 14 - There
is equality of treatment and opportunities between the various employees, 15 - Earn
respect and esteem of your colleagues and superiors, 16 - Professional development,
17 - Salary appropriate to the professional functions, 18 - A stable job that gives
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you security, 19 - Good working conditions, 20 - Balance between personal and
professional life, 21 - Being able to express your opinion and ideas without fear of
reprisals, 22 - Availability to solve problems/personal situations, 23 - Have a fair
and adequate system of objectives and incentives, 24 - Being rewarded for overtime
work, 25 - Being pressured to achieve the proposed objectives, 26 - Ability to handle
pressure at work, and 27 - Appropriate training to the professional functions.

For each item, respondents could pick only one of six modalities of response
according to their level of agreement or disagreement with the items that assess
motivation: Totally disagree; Disagree most of the time; Slight disagree; Slight
agree; Agree most of the time, and Totally agree. In this study, Categorical Principal
Components Analysis (CatPCA), using the Varimax rotation method with Kaiser
Normalization; and some agglomerative hierarchical clustering algorithms (AHCA)
were used. Data analysis was performed using the packages IBM SPSS Statistics 26
and CLUST11 [19].

Principal Components Analysis (PCA) aims to reduce the dimensionality of the
original data so that “the first few dimensions account for as much of the available
information as possible” ([9], p. 83), assuming linear relationships among numeric
variables. Each principal component is uncorrelated with all others, and it is ex-
pressed as a linear combination of the original variables. CatPCA optimally quanti-
fies categorical (ordinal or nominal) variables and can handle and discover nonlinear
relationships between variables (e.g., [12]). In the present study, we applied the
CatPCA due to the ordinal nature of the items under analysis.

The goal of a clustering algorithm is to obtain a partition, where the elements
within a cluster are similar and elements (objects/individuals/groups of individuals or
variables) in different groups are dissimilar, identifying natural clustering structures
in a data set (e.g., [8]). Agglomerative clustering algorithms usually start with each
element to sort into its own separate cluster of size 1 (singleton). At each step,
the algorithms find the two “closest” clusters, taking into account the aggregation
criterion, and join them. The process continues until a cluster containing all elements
to classify is obtained. The AHCA of the set of items was based on the affinity
coefficient as a measure of comparison between elements, combined with two classic
(Single-Linkage ( SL) and Complete-Linkage (CL)) and a family of probabilistic VL
(V for Validity, L for Linkage) aggregation criteria (e. g., [1, 2, 3, 10, 11, 16, 17, 18,
22]).

According to Ng et al. ([20], p. 849), “the task of finding good clusters has been
the focus of considerable research in machine learning and pattern recognition“.
However, the identification of the best partitions using validation indices is also
of crucial importance. Therefore, a pertinent question arises: “How well does the
partition fit the data?” ([8], p. 505). On what validation of results is concerned, the
identification of the best partitions in the present study was based on the global
level statistics, STAT [1, 10, 11]. The global maximum STAT value indicates the best
cut-off level of a dendrogram and the local maxima STAT differences indicate the
most significant levels.

The affinity coefficient between two distribution functions was introduced by
Matusita in 1951 (e.g., [13, 14]). Bacelar-Nicolau extended it to the non-supervised
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classification field as a similarity measure between profiles. Let V be a set of p
variables, describing a set D of N statistical data units (individuals), so that each of
the # × ? cells of the corresponding data table X contains one single non-negative
real value G8: (8 = 1,..., N; : = 1,. . . , p) which denotes the value of the k-th variable
on the i-th individual. The standard affinity coefficient 0(:, : ′) between a pair of
variables, +: and + ′: (:, :

′ = 1,..., p) is given by formula (1), where G.: = Σ#8=1G8: ,
G.:′ = Σ

#
8=1G8:′ .

0(:, : ′) = Σ#8=1

√
G8:

G.:

G8:′

G.:′
(1)

The coefficient (1) is a symmetric similarity coefficient which takes values in
[0,1] (1 for equal or proportional vectors and 0 for orthogonal vectors). Note that
its mathematical formula corresponds to the inner product between the square root
column profiles associated with those variables and measures a monotone tendency
between column profiles. In the particular case of binary variables, the affinity
coefficient coincides with the well-known Ochiai coefficient. Furthermore (e.g.,
[4, 6]), it is related to the Hellinger distance 3 by the relation 32 = 2(1 − 0), which
has been used in the context of spherical factor analysis by Michel Volle. Later on,
the standard affinity coefficient was extended to the clustering of statistical data units
or variables, mainly in a three-way approach (e.g., [3, 4, 5, 6]). The computation of
the standard affinity coefficient between individuals can be performed by previously
transposing the data matrix and then applying formula (1).

The probabilistic aggregation criteria on the scope of VL methodology can be
interpreted as distribution functions of statistics of independent random variables,
that are i.i.d. uniform on [0, 1] (e.g., [3, 17]). The SL aggregation criterion can lead
to very long clusters (chaining effect). On the other hand, the AVL (Aggregation
Validity Link) has a tendency to form equicardinal clusters with an even number of
elements. The comparison functions between a pair of clusters, A and B, concerning
the family I of AVL methods can be generated by the following conjoined formula
(e.g., [17, 10, 11]):

Γ(�, �) = (?��)6 (U,V) (2)

with U = �0A3 �, V = �0A3 �, ?�� = <0G [W01 : (0, 1) ∈ (� × �], with
1 ≤ 6(U, V) ≤ UV, and WGH is a similarity measure between pairs of elements, x and
y, of the set of elements to classify (e.g., 6(U, V) = 1 for SL, 6(U, V) = UV for AVL).
Note that varying 6(U, V) with 1 < 6(U, V) < UV, a sort of compromise can be
built between SL and AVLmethods (e.g., 6(U, V)=(U+ V)/2 for AV1). Thus, Γ(�, �)
will be “more polluted by the chain effect when 6(U, V) remains near 1, and more
contaminated by the symmetry effect as long as 6(U, V) is in the neighbourhood of
UV“ ( [17], p. 95). Among the criteria that establish a compromise between AVL and
SL methods, stands out the AV1 method, whose behavior is very similar to that of
AVL and often provides, at its cut-off level, a partition better adjusted to the preorder
than the “best” classification obtained by AVL.
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3 Main Results and Discussion

Concerning the CatPCA, the best solution comprises four principal components,
and the percentage of variance accounted for (PVAF) across these components is
almost 70% (about 69%) of the data’s total variance. All extracted components have
eigenvalues above 1. Moreover, the first three main components have a very good
internal consistency and the fourth component has an acceptable internal consistency,
as shown by the values of the Cronbach’s Alpha coefficient (see Table 1).

Table 1 Rotated component loadings of the 4-component solution - Motivational factors.

Items PC1 PC2 PC3 PC4

M1 0.213 0.351 0.699 0.166
M2 0.197 0.044 0.794 0.211
M3 0.248 0.148 0.763 -0.018
M4 -0.028 0.098 0.482 0.442
M5 0.354 0.219 0.674 0.037
M6 0.522 0.214 0.425 0.095
M7 0.837 0.110 0.193 -0.114
M8 0.774 0.151 0.244 0.099
M9 0.778 0.227 0.183 -0.125
M10 0.783 0.269 0.227 -0.043
M11 0.757 0.259 0.223 -0.103
M12 0.798 0.155 0.227 -0.035
M13 0.708 0.213 0.341 0.070
M14 0.486 0.511 0.372 -0.257
M15 0.775 0.263 0.252 0.041
M16 0.432 0.364 0.665 0.035
M17 0.289 0.708 0.410 -0.046
M18 0.462 0.641 0.097 -0.247
M19 0.548 0.532 0.211 -0.034
M20 0.503 0.609 0.074 -0.223
M21 0.684 0.401 0.070 0.074
M22 0.678 0.399 0.019 0.054
M23 0.295 0.770 0.284 0.102
M24 0.174 0.835 0.176 -0.011
M25 0.019 -0.012 0.233 0.864
M26 -0.038 -0.146 0.035 0.896
M27 0.543 0.458 0.230 0.227
Eigenvalue (VAF) 7.988 4.417 4.066 2.138
Percentage accounted (PVAF) 29.59 16.36 15.06 7.92
Cronbach’s Alpha 0.950 0.934 0.919 0.610

The most important items for the first dimension are items M6, M7, M8, M9,
M10, M11, M12, M13, M15, M19, M21, M22, andM27, which are related to human
relationships/interactions with colleagues and hierarchical superiors, so it is called
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“Psychological well-being/Interpersonal relationships”. This dimension explains the
highest proportion of data variance (29.59%).

Concerning the second dimension, the items M14, M17, M18, M20, M23, and
M24 are the most important, so this dimension was designated “Remuneration,
job stability and incentive system”. The most relevant items regarding the third
dimension are M1, M2, M3, M4, M5, and M16; so, this dimension was called
“Career progression/Professional achievement”. Finally, the most important items
for the fourth dimension are M25 and M26 related to “Fulfilment of the proposed
objectives and the timings to achieve them”.

Regarding the AHCA of the same set of items, and considering the best cut-off
levels, the results of the present study are summarized in Table 2.

Table 2 The best partition - Standard affinity coefficient.

Method The best partition STAT Cut-off
level

SL/CL {M1, M2, M3, M5, M8, M10, M11, M12, M13, M15, M14,
M16, M18, M19, M22, M20, M6, M23, M27, M24, M21};
{M4}; {M9}; {M7}; {M25}; {M26}; {M17}

15.8858 20

AV1 {M1, M2, M3, M6, M27, M21, M5, M23, M24, M8, M15,
M14, M16, M10, M13, M11, M12, M18, M19, M20, M22};
{M4, M25, M26}; {M7}; {M9}; {M17}

15.6490 22

According to the STAT values, the best partitions were obtained by the classic
SL/CL and the probabilistic AV1methods (see Table 2). All dendrograms highlighted
four main branches, which are associated with different motivational factors ("Career
progression"; "Psychological well-being / Interpersonal relationships"; "Organiza-
tional environment and working conditions"; "Conformity with objectives and time
to reach them"), bringing new information, and identifying some singletons, as
shown in Figure 1.

4 Conclusion

Organizations and their leaders have become increasingly aware of the importance
of their employees being well and that negative feelings can negatively affect pro-
ductivity. Thus, it is essential to ensure the well-being of employees, taking into
account the main motivational factors identified in this study. CatPCA made it pos-
sible to extract four principal components (dimensions), which explain almost 70%
of the total variance of the data, which were designated, respectively, by “Psy-
chological well-being/Interpersonal relationships”; “Remuneration, job stability and
incentive system”; “Career progression/Professional achievement”; and “Fulfilment
of objectives and timings to achieve them”. Regarding the AHCA of the items that
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M1 --*--------------------------* 
|--------------------* 

M2 --*--------------* | | 
|-----------* | 

M3 --*--------------* |--------* 
| | 

M6 --*--------------------* | |
|--------------* | |

M27 --*--------------------* |-----------* |
| |

M21 --*-----------------------------------* | 
| 

M5 --*-----------------* |
| |

M23 --*-----------------|--------------------* |---
| | |

M24 --*-----------------* | |
|-----------* |

M8 --*-----* | | | 
|-----------------------* | | | 

M15 --*-----* | | | | 
|--------* | | 

M14 --*-----* | | | 
|-----------------------* | | 

M16 --*-----* | | 
|-----* 

M10 --*--------* |
|--------------* | 

M13 --*--------* | |
|--------------------* | 

M11 --* | | |
|-----------------------* | |

M12 --* | |
|-----*

M18 --*--* | 
|-----------------------------* | 

M19 --*--* | | 
|-----------* 

M20 --*-----------* | 
|--------------------* 

M22 --*-----------*

M4 --*-----------------------------------------------------* 
|------

M25 --*-----------------------------------------* | 
|-----------* 

M26 --*-----------------------------------------* 

M7 --*-----------------------------------------------------------*
|

M9 --*-----------------------------------------------------------*

M17 --*------------------------------------------------------------

M1 --* 
| 

M2 --| 
| 

M3 --| 
| 

M6 --| 
| 

M27 --| 
| 

M21 --| 
| 

M5 --| 
| 

M23 --| 
| 

M24 --| 
| 

M8 --| 
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M15 --|-----* 
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| | | 
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| | 

M4 --* | | 
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| | | | 

M26 --* |--* | 
| | 
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M9 --* | 
| 
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Fig. 1 Dendrogram - Standard affinity coefficient + AV1.

assess motivation, the dendrograms highlight four main branches, which are associ-
ated with different motivational factors called "Career progression"; "Psychological
well-being / Interpersonal relationships"; "Organizational environment and working
conditions"; and "Conformity with objectives and time to reach them". They carried
new information and identify some singletons as well. Comparing the dendrograms,
we conclude that the clusters referring to the best partitions are quite similar, with
observed differences mainly concerning the few singletons. Moreover, the effec-
tive and fruitful correspondence between the AHCA and the CatPCA results may
help to better understand the main types of factors identified. In fact, the four main
branches of all dendrograms are related to motivational factors which corresponding
interpretation are in consonance with those identified through CatPCA.
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A Proposal for Formalization and Definition of
Anomalies in Dynamical Systems

Jan Michael Spoor, Jens Weber, and Jivka Ovtcharova

Abstract Although many scientists strongly focus on anomaly detection in different
applications and domains, there currently exists no universally accepted definition
of anomalies and outliers. Using an approach based on control theory and dynamical
systems, as well as a definition for anomalies as described by philosophy of science,
the authors propose a generalized framework viewing anomalies as key drivers
of progress for a better understanding of the dynamical systems around us. By
mathematically defining anomalies and delimiting deviations within expectations
from completely unforeseen instances, this paper aims to be a contribution to set up
a universally accepted definition of anomalies and outliers.

Keywords: anomaly detection, outlier analysis, dynamical systems

1 Introduction

Anomalies, often interchangeably called outliers [1], are of key interest in explorative
data analysis. Therefore, anomaly detection finds application in many different sci-
entific fields, i.e., in social science, economics, engineering, and medical science [2].
In particular, research in these domains regarding databases, data mining, machine
learning or statistics focuses strongly on anomaly detection [3]. Despite the wide
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range of anomaly detection, there is currently no universally accepted definition of
what an outlier or anomaly is [2], and the mathematical definition depends on the
selected method to find these anomalies [4].

The authors previously proposed an applied framework to formalize anomalies
within the context of control theory and dynamical systems [5]. In this publication,
the idea is discussed inmore depth, and a generalization of the framework is proposed
to extend its application area to more domains since dynamical systems are relevant
in engineering and science [6] as well as in management science and economics [7].
Furthermore, the proposed definition of anomalies should also be applicable outside
of the context of control theory and aims to be a contribution to set up a universally
accepted definition of anomalies and outliers.

When controlling or simulating dynamical systems, ameasurement and prediction
process is used. Anomalies occur in this process as substantial deviations of a
measured system state (an actual value) from an expected system state (a planned
value) [5]. Despite simulation and planning effort, these deviations still occur. While
some deviations fall within an acceptable range andwithin the expectations of normal
system behavior, other anomalies are completely unforeseen and do not fit the set-up
and expectations of the system. Three sequential questions are derived to further
investigate the nature of anomalies within dynamical systems:

1. What distinguishes unforeseen system states from regular system behavior?
2. How can unforeseen system states or errors occur despite simulation?
3. How can unforeseen system states be analyzed and transferred to a standard

model of a system’s behavior?

2 Definition of Anomalies for Dynamical Systems

2.1 Definitions of Anomalies and Outliers

In general, it is assumed that anomalies are somehow visible within the data of
the observed systems. This is also clearly stated by the definition of an outlier or
anomaly as data points with a substantial deviation from the norm since this requires
a normal state of the system and a measurable deviation [8]. Furthermore, the
anomaly detection requires existence and knowledge of a normal state, a definition
of a deviation, a metric, and a threshold measure of distance. This threshold measure
of distance uses the selected metric. All distances between the norm and the data
points, which are either above (in case of distance measures) or below (in case of
similarity measures) the defined threshold, are assumed to be non-substantial.

Therefore, in addition, the selection of an appropriate metric becomes an impor-
tant tool to accurately describe an anomaly. Some authors claim that, in a practical
application, the selection of a suitable metric might be more important than the
algorithm itself. For example, if clusters are clearly separated within the examined
dataset in context of the selected metric, clusters will be found independently of
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the used method or algorithm [9]. Other authors claim that the selected method for
investigating clusters is of importance [10].

To summarize, there is no trivial definition of a normal state, a deviation, andwhen
a deviation might be substantial. Some authors therefore describe the usefulness of
an analysis only within the context of the goals of the analysis [11]. Outlier detection
becomes more of a technical target than an actual scientific finding of something
novel since the novelty is always defined within the technical target of the analysis.
Alternatively, the normal model of the data defines an anomaly [1].

This results, for example, in approaches of regression diagnostics to exclude
outliers and anomalous data prior to an analysis or to conduct the analysis along the
standard model in a more robust way, which is less affected by anomalies [12]. Both
approaches result in the maintaining of the normal model using anomalies as if they
were less adequate or not at all representative of the data set.

Since anomalies are only relevant within a context, a typology of anomalies within
different dataset contexts can be created. Thus, Foorthuis [13] proposes a typology
along the following dimensions: types of data (qualitative, quantitative or mixed),
anomaly level (atomic or aggregated) and cardinality of relationship (univariate or
multivariate). Anomalies are, within this kind of typology, always dependent on
the dataset and behave differently along the measured features, which have been
classified as relevant for the specific analysis. The anomaly detection becomes a
detection of unfitting, surprising values while maintaining the normal model.

2.2 Definition by Philosophy of Science

If the assumptions regarding normal states, deviation, and substantiality are dropped,
it is possible to discuss anomalies on a more fundamental level for understanding
our surroundings and the observations of them.

To do this, anomalies have to be placed in the historic context of science and
research. Since anomaly detection as a discipline of data science is placed within
the scientific context [14], anomaly detection can also be analyzed as part of the
scientific method and therefore a comparison with the historical understanding of
anomalies in the context of science becomes relevant. By definition of Kuhn [15],
anomalies play an important role in the scientific discovery of novelties:

Discovery commences with the awareness of anomaly, i.e., with the recognition that nature
has somehow violated the paradigm-induced expectations that govern normal science. It
then continues with a (...) exploration of the area of anomaly. And it closes only when the
paradigm theory has been adjusted so that the anomalous has become the expected.

This statement describes scientific progress as a stepwise discovery and the place-
ment of anomalies within a normal state by science. The discussed normal state is
therefore dictated by current scientific knowledge, which encompasses the predic-
tions of the currently available and widely used models and theories. An anomaly
violates the normal state by violating the predictions of these models. The steps of
scientific progress are then as follows:
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1. Knowledge of the anomaly.
2. Stepwise acknowledgement of observations and conceptual nature of the

anomaly.
3. Change of paradigm and methods to include the anomaly in the new models,

often under resistance by the scientific community itself.

Therefore, different states of an anomaly exist as follows:

1. The anomaly is completely unknown.
2. The anomaly is neither described nor modeled but was observed.
3. The anomaly is not commonly recognized and placed within the standard model.

The states of anomalies correspond to the initially defined questions in the in-
troduction regarding the delimitation of anomalous states from normal states, the
exploration of the causes for anomalies, and the modeling and planning with the
now known anomalies. If the states of anomalies are used to describe practical errors
in engineering, error states of systems are not anomalies. This is the case because
if error states are priorly classified as such, they are therefore already known and
described. This corresponds to the idea that outliers or anomalies are created by a
different underlying mechanism [16] and therefore imply an unknown system behav-
ior, which needs modeling to better describe the system. In addition, this follows the
assumption of a normal state in which anomalies simply derive from a normal model
[1] since they are not part of the normal model. Also, this idea relates strongly to the
discussion of the relation between novelty and anomaly detection [17].

To follow the definitions by Kuhn [15], science is driven by internal progress, lim-
ited by the current methods and available resources, while external targets, defined by
stakeholders, e.g., society or companies, drive technicians. This description matches
the idea that the usefulness of an analysis should be evaluated within the context of
its goals [11] and distinguishes two types of anomalies: "Scientific" anomalies of a
novel observation and "technical" anomalies as deviations from a predefined norm
using a predefined measurement of substantiality.

"Scientific" anomalies might still result in unwanted system states, which then
can result in some kind of error or critical system state. Nevertheless, not every
"scientific" anomaly inevitably results in an error state and not every error state is
a "scientific" anomaly. An anomaly is not a "scientific" anomaly if the error state
is already documented or can be described by the standard model. In this case, the
anomaly becomes a "technical" anomaly.

Using the philosophy of science definition of anomalies, the normal state is the
prediction by the systemmodel, the deviation is the difference between the prediction
of the system state and the measured actual state of the system, and the substantiality
is defined by the noise and precision of our predictions and measurement tools.

3 Proposed Framework for a Formalization of Anomalies

To separate "scientific" and "technical" anomalies, a formerly proposed framework
[5] is generalized as illustrated in Fig. 2. and mathematically defined in this section.
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Fig. 1 Formalization of "scientific" and "technical" anomalies and system states.

Definition 1 (System State) There exists a multivariate description G8 of a state 8
with a finite number of features. For each feature 9 of state 8 a value G8 9 exists, which
is a realization of the feature space ' 9 . The value G8 9 is the actual and precise state
description of feature 9 at state 8. Although there exists only a single true value
G8 9 , the value itself does not necessarily have to be a single data point but can be a
multivariate or symbolic data value and can be of any data type.

∀8 ∀ 9 ∃! G8 9 , G8 9 ∈ ' 9 (1)

The set � of all combinations of system state values with � features is given by:

� = {G8 | ∀ 9 ∃ G8 9 ∈ ' 9 } = '1 × ... × '� (2)

Definition 2 (Operation) An operation is an analytical function 5 which changes
the system state from state 8 to the following state 8 + 1. Both states belong to the set
of all combinations of system states �.

5 : � → �, 5 (G8) = G8+1 (3)

There exists a finite set � of functions of endogenous state transformations. This
set of functions is the scope of operations that can be performed. These functions
are the fundamental functionality of a system, which can be performed without any
external involvement. For all functions the following expression is applied:

6 ∈ � ∧ 5 ∈ � : 6 ◦ 5 ∈ � (4)

Using the defined function space, a restriction of reachable system states via all
functions from � is defined, resulting in the set of physically possible system states.

Definition 3 (Physically Possible System States) The relation 5 spans the complete
space of state changes of a system using the entire scope of operations. The resulting
space is the set of all possible system states. The physically possible system states
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are the possible realizations of G8 based on a starting point and if only functions from
� are applied. The set % is a group with a neutral element of operations.

% = {G8 | ∀ 5 ∈ � : 5 (G8) ∈ %} ⊆ � (5)

Definition 4 (Observed System States) Of the amount � of existing features of the
system state, only an amount � of features is known with � ≤ �. Since not all
system states can be measured, a function I transforms the real system states and
real operations of the system into observable system states and operations.

I : � → ", I(G8) = G8∗ (6)

Therefore, the set " = '1 × ... × '� is the space of all observable and known
system states. Function I is the measurement process.

Definition 5 (Observed Operations) Not all functions of the whole set of function
� are known or observable when planning and operating a system.

� ′ ⊆ � (7)

Additionally, only observable system states are modeled when operating a system.
The observed operations of systems are therefore projections of a subsets of known
operations of � and operate within the observed and known system states.

�∗ = I(� ′) (8)

The actual conducted operations 5 are always from the set of operations �, but the
expectation and prediction utilize, due to lack of system knowledge, only 5 ∗ ∈ �∗.

5 ∗ : " → ", 5 ∗ (G8∗ ) = G8+1∗ (9)

Therefore, all states applied in operation 5 ∗ are defined as expected system states.

Definition 6 (Expected System States) The system states, which are possible if
only the observed and known operations of the set �∗ are applied to all system states
G8∗ ∈ � , are the expected system behavior.

� = {G8∗ | ∀ 5 ∗ ∈ �∗ : 5 ∗ (G8∗ ) ∈ �} ⊆ " (10)

The expected system states can be further split into desired system states, where
the system is running most beneficially for its usage, a critical system state, where
a possible error or rare system states are measured, and error states, which are
system faults with operational risks involved as defined by Basel III [18]. Applied
in engineering, this definition is compatible with the definition of DIN EN 13306
since the system is at risk of being unable to perform a certain range of functions
without necessarily being completely inoperable [19]. All kinds of errors, warnings
and non-beneficial system states are the "technical" anomalies within the contextual
analysis of the data set.
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Definition 7 (Unforeseen System States) The set of unforeseen system states* are
therefore all measurable system states within the realm of observable system states
but not within the expected system states:

* = "/� (11)

"Scientific" anomalies in unforeseen system states are measured if the real oper-
ation 5 differs from 5 ∗ such that a prediction error occurs:

5 ∗ (G8∗ ) ∈ �, 5 ∗ (G8∗ ) ≠ I( 5 (G8)) ∉ � (12)

"Scientific" anomalies are part of the unforeseen system states. Another reason for
unforeseen system states is a measurement of an impossible system state. Anomalies
originated by physically impossible system states are to be distinguished from "scien-
tific" anomalies since the reason for their occurrence follows a different mechanism.
Thus, they are assigned to the "technical" anomalies.

Definition 8 (Physically Impossible System States) Physically impossible system
states � are combinations of states in set� which are not reachable using function 5 :

� = �/% (13)

Definition 9 (External Influence) Applying changes to the system, the feature
space also changes. Consequently, the space of the physically possible system states
changes. Previously impossible system states become possible system states.

Definition 10 (Faulty Data Points) If a measurement is conducted incorrectly, the
measured values could be within the impossible system states. Faulty data points are
therefore neither measurement noise nor imprecision, but should be systematically
excluded. Note that faulty data points could be within the possible system space but
need to be excluded either way.

4 Conclusion

It is concluded that the anomaly concept is often loosely defined and heavily depends
on assumptions of a normal state, deviation, and substantiality. These definitions are
often case-specific and influenced by the conducting researchers’ choice. Therefore,
a rigorous definition of anomalies is capable of further streamlining the discourse
and increasing a common understanding of what kind of anomaly is described.

Using "technical" and "scientific" anomalies, further research will be conducted
to set up models detecting both types of anomalies separately. Differences between
observed and real system states and operations are a focus of further research to
more precisely analyze the hidden processes of the "scientific" anomaly generation.
Also, a more fundamental discussion of the philosophical definition of anomalies
within the philosophy of science and its applications to anomaly detection in general
should be conducted to further gain insight into the true nature of anomalies.
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The authors plan to validate the concept by using the proposed definition and
framework in exemplary applications within industrial processes. Furthermore,
anomaly detection methods designed for applications in dynamical systems using
the proposed framework are planned to be developed.
Acknowledgements TheMercedes-BenzGroupAG funds this research. The researchwas prepared
within the framework of the doctoral program of the Institut für Informationsmanagement im
Ingenieurwesen (IMI) at the Karlsruhe Institute of Technology (KIT).

References

1. Aggarwal, C. C.: Outlier Analysis. Springer Science+Business Media, New York (2013)
2. Hodge, V. J., Austin, J.A.: Survey of outlier detection methodologies. Artif. Intell. Rev. 22,

85-126 (2004)
3. Aggarwal, C. C., Sathe, S.: Outlier Ensembles. Springer, Cham (2017)
4. Wang, X., Wang, X., Wilkes M.: New Developments in Unsupervised Outlier Detection -

Algorithms and Applications. Springer, Singapore (2021)
5. Spoor, J. M., Weber, J., Ovtcharova, J.: A definition of anomalies, measurements and predic-

tions in dynamical engineering systems for streamlined novelty detection. Accepted for the
8th International Conference on Control, Decision and Information Technologies (CoDIT),
Istanbul (2022)

6. Åström,K. J.,Murray, R.M.: Feedback Systems -An Introduction for Scientists andEngineers.
Princeton University Press, Princeton, New Jersey (2008)

7. Sethi, S. P., Thompson, G. L.: Optimal Control Theory - Applications to Management Science
and Economics. Springer Science+Business Media, Boston, MA (2000)

8. Mehrotra, K. G., Mohan, C., Huang, H.: Anomaly Detection - Principles and Algorithms.
Springer International Publishing, Cham (2017)

9. Skiena, S. S.: The Data Science Design Manual. Springer International Publishing, Cham
(2017)

10. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning.
Springer Science+Business Media, New York (2013)

11. Fahrmeier, L., Hamerle, A., Tutz, G. (ed.): Multivariate Statistische Verfahren. de Gruyter,
Berlin (1996)

12. Rousseeuw, P. J., Leroy, A. M.: Robust Regression and Outlier Detection. JohnWiley & Sons,
Inc (1987)

13. Foorthuis, R.: On the nature and types of anomalies: A review of deviations in data. Int. J.
Data Sci. Anal. 12, 297-331 (2021)

14. Cuadrado-Gallego, J. J., Demchenko, Y.: The Data Science Framework: A View from the
EDISON Project. Springer Nature Switzerland AG, Cham (2020)

15. Kuhn, T.: The Structure of Scientific Revolutions. 2nd ed. The University of Chicago Press,
Chicago (1970)

16. Hawkins, D.: Identification of Outliers. Chapman and Hall (1980)
17. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput. Surv.

41(3) 15 (2009)
18. Bank for International Settlements: Basel Committee on Banking Supervision: International

Convergence of Capital Measurement and Capital Standards (2006)
19. DIN Deutsches Institut für Normung e. V.: DIN EN 13306: Instandhaltung - Begriffe der

Instandhaltung. Beuth Verlag GmbH, Berlin (2010)

380



Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

381A Proposal for Formalization and Definition of Anomalies in Dynamical Systems



New Metrics for Classifying Phylogenetic Trees
Using Q-means and the Symmetric Difference
Metric

Nadia Tahiri and Aleksandr Koshkarov

Abstract The :-means method can be adapted to any type of metric space and is
sometimes linked to the median procedures. This is the case for symmetric difference
metric (or Robinson and Foulds) distance in phylogeny, where it can lead to median
trees as well as to Euclidean Embedding. We show how a specific version of the
popular :-means clustering algorithm, based on interesting properties of the Robin-
son and Foulds topological distance, can be used to partition a given set of trees into
one (when the data is homogeneous) or several (when the data is heterogeneous)
cluster(s) of trees. We have adapted the popular cluster validity indices of Silhouette,
and Gap to tree clustering with :-means. In this article, we will show results of this
new approach on a real dataset (aminoacyl-tRNA synthetases). The new version of
phylogenetic tree clustering makes the new method well suited for the analysis of
large genomic datasets.

Keywords: clustering, symmetric difference metrics, :-means, phylogenetic trees,
cluster validity indices

1 Introduction

In biology, one of the most significant organizing principles is the "Tree of Life"
(ToL) [12]. In genetic studies, there is evidence of an enormous number of branches,
but even a rough estimate of the total size of the tree remains difficult. Many recent
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representations of ToL have emphasized either the existence of deep evolutionary
relationships [7] or the knowledge of a large and diverse variety of life, with an
emphasis onEukaryotes [8]. These approaches do not consider the dramatic evolution
in our understanding of the diversity of life due to genomic sampling of previously
unexplored environments.

As a result, Maddison in 1991 [11] was the first to formulate the idea of multiple
consensus trees when he described his phylogenetic island method. He observed
that island consensus trees can differ significantly from each other and are generally
better resolved than the species-wide consensus tree. The most intuitive approach to
discovering and clustering genes that share similar evolutionary histories is to cluster
their genetic phylogenies. In this context, Stockham et al. in 2002 [18] proposed
a tree clustering algorithm based on :-means [4, 9, 10] and the Robinson and
Foulds quadratic distance [15]. Their clustering algorithm aims to infer a set of
strict consensus trees, minimizing information loss. They proceed by determining
the consensus trees for each set of clusters in all intermediate partitioning solutions
tested by :-means. This makes the Stockham et al. algorithm very expensive in
terms of execution time. More recently, Tahiri et al. in 2018 [19] proposed a fast and
accurate tree clustering method based on :-medoids. Finally, Silva and Wilkinson
in 2021 [17] introduced a revised definition of tree islands based on any tree-to-tree
metric that usefully extends this notion to any set or multiset of trees and provided
an interesting discussion of biological applications of their method.

In this context, the use of a method that infers multiple supertrees (i.e., a supertree
clusteringmethod)would help discover and cluster alternative evolutionary scenarios
for several ToL subtrees.

The paper is structured as follows. In the next section, we introduce a new metric
for :-means algorithm based on the Robinson and Foulds distance. The section
3 presents the simulation results (on a real dataset) obtained with our algorithm
compared to other clusteringmethods. Finally,we discuss our contributions in section
4.

2 Methods

The :-means algorithm [9, 10] is a very common algorithm for data parsing. From
a set of # observations G8 , . . . , G# each one being described by " variables, this
algorithm creates a partition in : homogeneous classes or clusters. Each observation
corresponds to a point in a "-dimensional space and the proximity between two
points is measured by the distance between them. In the framework of :-means, the
most commonly used distances are the Euclidean distance, Manhattan distance, and
Minkowski distance [4]. To be precise, the objective of the algorithm is to find the
partition of the # points into : clusters in such away that the sum of the squares of the
distances of the points to the center of gravity of the group to which they are assigned
is minimal. To the best of our knowledge, finding an optimal partition according to
the :-means least-squares criterion is known to be NP-hard [13]. Considering this
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fact, several polynomial-time heuristics were developed, most of which have the time
complexity of O( #�") for finding an approximate partitioning solution, where
 is the maximum possible number of clusters, # is the number of objects (for
example, phylogenetic trees), � is the number of iterations in the :-means algorithm,
and " is the number of variables characterizing each of the # objects.

A well-known metric of comparing two tree topologies in computational biology
is the Robinson-Foulds distance ('�), also known as the symmetric-difference dis-
tance [15]. Moreover, the distance '� is a topological distance, which means that
it does not consider the length of the edges of the tree. The formula of '� distance
can be describe as (=1 ()1) + =2 ()2)), where =1 ()1) is the number of partitions of
data implied by the tree )1, but not the tree )2 and =2 ()2) is the number of partitions
of data implied by the tree )2 but not the tree )1. According to Barthélemy and
Monjardet [1], the majority-rule consensus tree of a set of trees is the median tree of
this set. This fact makes the use of tree clustering possible.

2.1 Silhouette Index Adapted for Tree Clustering

The first popular cluster validity index we consider in our study is the Silhouette
width ((�) [16]. Traditionally, the Silhouette width of the cluster : is defined as
follows:

B(:) = 1
#:

[
#:∑
8=1

1(8) − 0(8)
<0G(0(8), 1(8))

]
, (1)

where #: is the number of objects belonging to cluster : , 0(8) is the average distance
between object 8 and all other objects belonging to cluster : , and 1(8) is the smallest,
over all clusters : ′ different from cluster : , of all average distances between 8 and all
the objects of cluster : ′.

We used Equations (2) and (4) for calculating 0(8) and 1(8), respectively, in
our tree clustering algorithm (see also [19]). For instance, the quantity 0(8) can be
calculated as follows:

0(8) =
[∑#:

9=1 '� ():8 , ): 9 )
2=():8 , ): 9 ) − 6

+ b
]
/#: , (2)

where #: is the number of trees in cluster : , ):8 and ): 9 are, respectively, trees 8
and 9 in cluster : , =():8) is the number of leaves in tree ):8 , =(): 9 ) is the number of
leaves in tree ): 9 , and b is a penalty function which is defined as follows:

b = U ×
"8=(=():8), =(): 9 )) − =():8 , ): 9 )

"8=(=(): 9 ), =(): 9 ))
, (3)

385



N. Tahiri and A. Koshkarov

where U is the penalization (tuning) parameter, taking values between 0 and 1, used
to prevent from putting to the same cluster trees having small percentages of leaves
in common, and =():8 , ): 9 ) is the number of common leaves in trees ):8 and ): 9 .

The formula for 1(8) is as follows:

1(8) = min
1≤:′≤ ,:′≠:

[∑#:′
9=1 '� ():8 , ):′ 9 )

2=():8 , ):′ 9 ) − 6
+ b

]
/#:′ , (4)

where ):′ 9 is the tree 9 of the cluster : ′, such that : ′ ≠ : , and #:′ is the number of
trees in the cluster : ′.

The optimal number of clusters,  , corresponds to the maximum average Silhou-
ette width, (�, which is calculated as follows:

(� = B( ) =
 ∑
:=1

[
B(:)

]
/ . (5)

The value of the Silhouette index defined by Equation (5) ranges from -1 to +1.

2.2 Gap Statistic Adapted for Tree Clustering

It is worth noting that the (� cluster validity index (Equations (1) to (5)) do not allow
comparing the solution consisting of a single consensus tree ( = 1; the calculation of
(� is impossible in this case) with clustering solutions involving multiple consensus
trees or supertrees ( ≥ 2). This can be considered as an important disadvantage
of the (�-based classifications because a good tree clustering method should be
able to recover a single consensus tree or supertree when the input set of trees is
homogeneous (e.g. for a set of gene trees that share the same evolutionary history).

The Gap statistic was first used by Tibshirani et al. [20] to estimate the number of
clusters provided by partitioning algorithms. The formulas proposed by Tibshirani
et al. were based on the properties of the Euclidean distance. In the context of tree
clustering, the Gap statistic can be defined as follows. Consider a clustering of #
trees into  non-empty clusters, where  ≥ 1. First, we define the total intracluster
distance, �: , characterizing the cohesion between the trees belonging to the same
cluster ::

�: =

#:∑
8=1

#:∑
9=1

[
'� ():8 , ): 9 )

2=():8 , ): 9 ) − 6
+ b

]
. (6)

Then, the sum of the average total intracluster distances, + , can be calculated
using this formula:

+ =

 ∑
:=1

1
2#:

�: . (7)
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Finally, the Gap statistic, which reflects the quality of a given clustering solution
including  clusters, can be defined as follows:

�0?# ( ) = �∗#
{

log(+ )
}
− log(+ ) . (8)

where �∗
#

denotes expectation under a sample of size # from the reference distri-
bution. The following formula [20] for the expectation of ;>6(+ ) was used in our
algorithm:

�∗#
{

log(+ )
}
= log(#=/12) − (2/=) log( ) , (9)

where = is the number of tree leaves.
The largest value of the Gap statistic corresponds to the best clustering.

3 Results - A Biological Example

To illustrate the methods described above, we used a dataset from Woese et al. [22].
The aminoacyl-tRNA synthetases (aaRSs) are enzymes that attach the appropriate
amino acid onto its cognate transfer RNA. The structure-function aspect of aaRSs
has long attracted the attention of biologists [22, 6]. Moreover, the relationship of
aaRSs to the genetic code is observed from the evolutionary view (the central role
played by the aaRSs in translation would suggest that their histories and that of the
genetic code are somehow intertwined [22]). The novel domain additions to aaRSs
genes play an important role in the inference of the ToL.

We encoded 20 original aminoacyl-tRNA synthetase trees fromWoese et al. [22]
in Newick format and then split some of them into sub-trees to account for cases
where the same species appeared more than once in the original tree. Our approach
cannot handle data that includes multiple instances of the same species in the input
trees. Thus, 36 aaRS trees with different numbers of leaves (including 72 species
in total) were used as input of our algorithm (their Newick strings are available at:
https://github.com/tahiri-lab/PhyloClust). Our approach was applied
with the U parameter set to 1.

First, we implemented our new approach with the Gap statistic cluster validity
indexwhich suggested the presence of 7 clusters of trees in the data, thus suggesting a
heterogeneous scenario of their evolution. Then,we conducted the computation using
the (� cluster validity index and obtained 2 clusters of trees each of which could
be represented by its own supertree. The first cluster obtained using (� included 19
trees for a total of 56 organisms, whereas the second cluster included 17 trees for
a total of 61 organisms. The supertrees (see Figure 1) for the two obtained clusters
of trees were inferred using the CLANN program [5]. Further, we decided to infer
the most common horizontal gene transfers which characterized the evolution of
gene trees included in the two obtained tree clusters. The method of [3], reconciling
the species and gene phylogenies to infer transfers, was used for this purpose. The
species phylogenies followed the NCBI taxonomic classification. These phylogenies
were not fully resolved (the species phylogeny in Figure 1a contains 9 internal nodes
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S.solfataricus
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A.fulgidus
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Eukaryota
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(a) (b)

Fig. 1 Nonbinary species tree corresponding to the NCBI taxonomic classification are represented
with (a) 56 species for cluster 1. The 4 HGTs (indicated by arrows) were found by the (� index for
the first cluster; (b) 61 species with U equal 1 for cluster 2. The 2 HGTs (indicated by arrows) were
found by the (� index with U equal 1 for the second cluster. We applied Most Similar Supertree
Method (3 5 8C) [5] implemented in CLANN Software with <A ? criterion. This criterion is a
matrix representation employing parsimony criterion.

with a degree higher than 3 and the species phylogeny in Figure 1b contains 10
internal nodes with a degree higher than 3).

We used the version of the HGT (Horizontal Gene Transfer) algorithm available
on the T-Rex web site [2] to identify the scenarios of HGT events that reconcile the
species tree and each of the supertrees. We choose the same root between species
trees and supertrees: the root which split Bacteria to the clade of Eukayota and
Archaea.

For the first cluster composed of 56 species, we obtained 40 transfers with 22
regular and 18 trivial HGTs. Trivial HGTs are necessary to transform a non-binary
tree into a binary tree. We removed the trivial HGTs and selected between regular
HGTs. The non-trivial HGTs with low representation are most likely due to the tree
reconstruction artefacts. In Figure 1a, we illustrated only those HGTs that are most
represented in the dataset.

We followed the same procedure for the second cluster composed of 61 species
and obtained 42 transfers with 28 regular and 14 trivial HGTs that are not represented
here. We selected only the most popular HGTs in the dataset. All other transfers are
represented in Figure 1b.

The transfers link of P. horikoshii to the clade of spirochetes (i.e. B. burgdorferi
and T. pallidum) was found by [3, 14]. The transfers of P. horikoshii to P. aerophilum
were also found by [14]. These results confirmed the existing HGT of [3, 14].
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4 Discussion

Many research groups are estimating trees containing several thousands to hundreds
of thousands of species, toward the eventual goal of the estimation of the Tree of Life,
containing perhaps several million leaves. These phylogenetic estimations present
enormous computational challenges, and current computationalmethods are likely to
fail to run even with datasets on the low end of this range. One approach to estimate a
large species tree is to use phylogenetic estimation methods (such as maximum like-
lihood) on a supermatrix produced by concatenating multiple sequence alignments
for a collection of markers; however, the most accurate of these phylogenetic estima-
tion methods are extremely computationally intensive for datasets with more than
a few thousand sequences. Supertree methods, which assemble phylogenetic trees
from a collection of trees on subsets of the taxa, are important tools for phylogeny
estimation where phylogenetic analyses based upon maximum likelihood (ML) are
infeasible.

In this article, we described a new algorithm for partitioning a set of phylogenetic
trees in several clusters in order to infer multiple supertrees, for which the input trees
have different, but mutually overlapping sets of leaves. We presented new formulas
that allow the use of the popular Silhouette and Gap statistic cluster validity indices
along with the Robinson and Foulds topological distance in the framework of tree
clustering based on the popular :-means algorithm. The new algorithm can be used
to address a number of important issues in bioinformatics, such as the identification
of genes having similar evolutionary histories, e.g. those that underwent the same
horizontal gene transfers or those that were affected by the same ancient duplication
events. It can also be used for the inference of multiple subtrees of the Tree of Life. In
order to compute the Robinson and Foulds topological distance between such pairs
of trees, we can first reduce them to a common set of leaves. After this reduction,
the Robinson and Foulds distance is normalized by its maximum value, which is
equal to 2= − 6 for two binary trees with = leaves. Overall, the good performance
achieved by the new algorithm in both clustering quality and running time makes it
well suited for analyzing large genomic and phylogenetic datasets. A C++ program,
called PhyloClust (Phylogenetic trees Clustering), implementing the discussed tree
partitioning algorithm is freely available at https://github.com/tahiri-lab/
PhyloClust.
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On Parsimonious Modelling via Matrix-variate t
Mixtures

Salvatore D. Tomarchio

Abstract Mixture models for matrix-variate data have becoming more and more
popular in the most recent years. One issue of these models is the potentially high
number of parameters. To address this concern, parsimonious mixtures of matrix-
variate normal distributions have been recently introduced in the literature. However,
when data contains groups of observations with longer-than-normal tails or atypi-
cal observations, the use of the matrix-variate normal distribution for the mixture
components may affect the fitting of the resulting model. Therefore, we consider a
more robust approach based on the matrix-variate C distribution for modeling the
mixture components. To introduce parsimony, we use the eigen-decomposition of the
components scale matrices and we allow the degrees of freedom to be equal across
groups. This produces a family of 196 parsimonious matrix-variate C mixture mod-
els. Parameter estimation is obtained by using an AECM algorithm. The use of our
parsimonious models is illustrated via a real data application, where parsimonious
matrix-variate normal mixtures are also fitted for comparison purposes.

Keywords: matrix-variate, mixture models, clustering, parsimonious models

1 Introduction

The matrix-variate model-based clustering literature is expanding more and more
over the last few years, as confirmed by the high number of contributions using finite
mixture models for the modelization of matrix-variate data [1, 2, 3, 4, 5, 6, 7, 8]. This
kind of data is arranged in three-dimensional arrays, and depending on the entities
indexed in each of the three layers, different data examples might be considered
[9]. In many of these applications, we observe a ? × A matrix for each statistical
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observation. Thus, from a model-based clustering perspective, the challenge is to
suitably cluster realization coming from random matrices.

One problem of matrix-variate mixture models is the potentially high number of
parameters. To cope with this issue, [5] have recently proposed a family of parsimo-
niousmixtures based on thematrix-variate normal (MVN)distribution.Nevertheless,
for many datasets, the tails of the MVN distribution are often shorter than required.
This has several consequences on parameter estimation as well as in the proper data
classification [4, 7]. Therefore, in this paper we relax the normality assumption of the
mixture components by using (in a parsimonious setting) the matrix-variate C (MVT)
distribution. The MVT distribution has been used within the finite mixture model
paradigm by [10] in an unconstrained framework. Here, to introduce parsimony in
this model, (i) we use the eigen-decomposition of the two scale matrices of each
mixture component and (ii) we allow the degrees of freedom to be tied across the
groups. This produces the family of 196 parsimonious matrix-variate MVT mixture
models (MVT-Ms) discussed in Section 2. Parameter estimation is implemented by
using an alternating expectation-conditional maximization (AECM) algorithm [12].
In Section 3, our parsimonious MVT-Ms, along with parsimonious matrix-variate
MVN mixture models (MVN-Ms) for comparison purposes, are fitted to a Swedish
municipalities expenditure dataset. The differences in terms of fitting among the two
families of models are illustrated. The estimated parameters and the data partition
of the overall best fitting model are also commented. Finally, some conclusions are
drawn in Section 4.

2 Methodology

2.1 Parsimonious Mixtures of Matrix-variate t Distributions

The probability distribution function (pdf) of a ? × A random matrixX coming from
a finite mixture model is

5MIXT (X;
) =
�∑
6=1

c6 5 (X;�6), (1)

where c6 is the 6th mixing proportion, such that c6 > 0 and
∑�
6=1 c6 = 1, 5 (X;�6)

is the 6th component pdf with parameter �6, and 
 contains all of the parameters
of the mixture. In this paper, for the 6th component of model (1), we adopt the MVT
distribution having pdf

5MVT (X;�6) =
|�6 |−

A
2 |	6 |−

?

2 Γ

(
?A+a6

2

)
(
ca6

) ?A
2 Γ

(
a6

2

) [
1 +

X6
(
X; M6,�6,	6

)
a6

]− ?A+a62

, (2)
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where X6
(
X; M6,�6,	6

)
= tr

[
�−1
6 (X −M6)	−1

6 (X −M6) ′
]
, M6 is the ? × A

component mean matrix, �6 is the ?× ? component row scale matrix,	6 is the A ×A
component column scale matrix and a6 > 0 is the component degree of freedom.
It is interesting to recall that the pdf in (2) can be hierarchically obtained via the
matrix-variate normal scale mixture model when the mixing random variable , is
a gamma distribution with scale and rate parameters set to a6/2 [10]. Specifically, a
hierarchical representation of MVT distribution can be given as follows

1. , ∼ G
(
a6/2, a6/2

)
,

2. X|, = | ∼ N(M6,�6/|,	6),
where G (·) is a gamma distribution and N(·) denotes the MVN distribution. This
representation will be convenient for parameter estimation presented in Section 2.2.

As discussed in Section 1, the mixture model in (1) may be characterized by a
potentially high number of parameters. To address this concern, we firstly use the
eigen-decomposition of the components scale matrices �6 and 	6. In detail, we
recall that a generic @ × @ scale matrix �6 can be decomposed as [11]

�6 = _6�6�6�
′
6, (3)

where _6 = |�6 |1/@ , �6 is a @ × @ orthogonal matrix whose columns are the
normalized eigenvectors of �6, and �6 is the scaled (|�6 | = 1) diagonal matrix of
the eigenvalues of �6. By constraining the three components in (3), the following
family of 14 parsimonious structures is obtained: EII, VII, EEI, VEI, EVI, VVI,
EEE, VEE, EVE, VVE, EEV, VEV, EVV, VVV, where “E” stands for equal, “V”
means varying and “I” denotes the identity matrix.

If we apply the decomposition in (3) to �6 and 	6, we obtain 14 × 14 = 196
parsimonious structures. However, to solve a well-known identifiability issue related
to the scalematrices ofmatrix-variate distributions [1, 3, 5], we impose the restriction
|	6 | = 1, which makes the parameter _6 unnecessary, and reduces the number of
parsimonious structures related to 	6 from 14 to 7: II, EI, VI, EE, VE, EV, VV.
Thus, we have 14×7 = 98 parsimonious structures for the component scale matrices.

To further increase the parsimony of model (1), we also consider the option
of constraining the component degrees of freedom a6. The nomenclature used is
the same to that adopted for the scale matrices. This option, combined with that
discussed above for the scale matrices, allows us to produce a total of 98 × 2 = 196
parsimonious MVT-Ms.

2.2 An AECM Algorithm for Parameter Estimation

To estimate the parameters of our family ofmixturemodels, we implement anAECM
algorithm. By using the hierarchical representation of Section 2.1, our complete data
are S2 = {X8 , z8 , |8}#8=1, where z8 = (I81, . . . , I8�) ′, such that I86 = 1 if observation
8 belongs to group 6 and I86 = 0 otherwise, and |8 is the realization of, . Therefore,
the complete-data log-likelihood can be written as

395



S. D. Tomarchio

ℓ2 (
; S2) = ℓ12 (0; S2) + ℓ22 (�; S2) + ℓ32 (o; S2) , (4)

where

ℓ12 (0; S2) =
#∑
8=1

�∑
6=1

I86 ln
(
c6

)
,

ℓ22 (�; S2) =
#∑
8=1

�∑
6=1

I86

[
− ?A

2
ln (2c) + ?A

2
ln

(
|86

)
− A

2
ln |�6 | −

?

2
ln |	6 |

−
|86X6 (X; M6,�6,	6)

2

]
, (5)

ℓ32 (o; S2) =
#∑
8=1

�∑
6=1

I86

{ a6
2

ln
( a6

2

)
− ln

[
Γ

( a6
2

)]
+

( a6
2
− 1

)
ln

(
|86

)
−
a6

2
|86

}
,

with 0 =
{
c6

}�
6=1, � =

{
M6,�6,	6

}�
6=1 and o =

{
a6

}�
6=1.

Our AECM algorithm then proceeds as follows (notice that, the parameters
marked with one dot are the updates of the previous iteration, while those marked
with two dots are the updates at the current iteration):

E-step At the E-step we have to compute the following quantities

¥I86 =
¤c6 5MVT

(
X8; ¤�6

)∑�
ℎ=1 ¤cℎ 5MVT

(
X8; ¤�ℎ

) and ¥|86 =
?A + ¤a6

¤a6 + ¤X6
(
X8; ¤M6, ¤�6, ¤	6

) . (6)

There is no need to compute the expected value of ln
(
,86

)
, given that we do not

use this quantity to update a6.
CM-step 1 At the first CM-step, we have the following updates

¥c6 =
∑#
8=1 ¥I86
#

and ¥M6 =

∑#
8=1 ¥I86 ¥|86X8∑#
8=1 ¥I86 ¥|86

.

Because of space constraints, we cannot report here the updates of each par-
simonious structure related to �6 and 	6. However, they can be obtained by
generalizing the results in [5]. The only differences consist in the updates of the
row and column scatter matrices of the 6th component, that are here defined as

¥W'
6 =

#∑
8=1
¥I86 ¥|86

(
X8 − ¥M6

) ¤	−1
6

(
X8 − ¥M6

) ′
,

¥W�
6 =

#∑
8=1
¥I86 ¥|86

(
X8 − ¥M6

) ′ ¥�−1
6

(
X8 − ¥M6

)
.
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CM-step 2 At the second CM-step, we firstly define the “partial” complete-data
log-likelihood function according to the following specification

ℓ?2
(

; S?2

)
= ℓ12

(
0; S?2

)
+

#∑
8=1

�∑
6=1

I86 ln 5MVT (X8;�6), (7)

where “partial” refers to fact that the complete data are now defined as S?2 =
{X8 , z8}#8=1. Then, ¥a6 is determined by maximizing

#∑
8=1
¥I86 ln 5MVT (X8; ¥�6) or

#∑
8=1

�∑
6=1
¥I86 ln 5MVT (X8; ¥�6),

over a6 ∈ (0, 100), depending on the parsimonious structure selected, i.e. V or
E, respectively. Notice that, an higher upper bound could also have been selected
for the maximization problem but, with the already chosen value, the differences
between an estimated MVT distribution and the nested MVN distribution would
be negligible. Furthermore, when a heavy-tailed distribution approaches to nor-
mality, the precision of the estimated tailedness parameters is unreliable [4].

3 Real Data Application

Here, we analyze the Municipalities dataset contained in the AER package [13]
for the R statistical software. It consists of expenditure information for # = 265
Swedish municipalities over A = 9 years (1979–1987). For each municipality, we
measure the following ? = 3 variables: (i) total expenditures, (ii) total own-source
revenues and (iii) intergovernmental grants received.

We fitted parsimonious MVT-Ms and MVN-Ms for� ∈ {1, 2, 3, 4, 5} to the data,
and for each family of models the Bayesian information criterion (BIC) [14] is used
to select the best fittingmodel. According to our results, we found that the best among
MVN-Ms has a BIC of -82362.61, a VVV-EE structure and � = 4 groups, while
the best among MVT-Ms has a BIC of -82701.59, a VVE-EE-V structure and � = 3
groups. Thus, the overall best fitting model is that selected for MVT-Ms. The MVN-
Ms seem to overfit the data, given that an additional group is detected. This is not an
unusual behavior, given that the tails of normal mixture models cannot adequately
accommodate deviations from normality, and additional groups are consequently
found in the data [4, 7, 15]. Anyway, the best fitting models of the two families agree
in finding varying volumes and shapes in the components row scale matrices and
equal shapes and orientations in the components column scale matrices.

Figure 1 illustrates the parallel coordinate plots of the data partition detected by
the VVE-EE-V MVT-Ms. The dashed lines correspond to the estimated mean for
that variable, across the time, in that group. We notice that the first group contains
municipalities having, on average, slightly higher expenditures, an intermediate
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Fig. 1 Parallel coordinate plots of the data partition obtained by the VVE-EE-V MVT-Ms. The
dashed lines correspond to the estimated means.

level of revenues and higher levels of intergovernmental grants than the other two
groups. Furthermore, it seems to cluster several outlying observations, as confirmed
by the estimated degree of freedom a1 = 3.75, which implies quite heavy tails
for this mixture component. The second group shows the lowest average levels of
expenditures and revenues, but a similar amount of received grants to that of the
third group. Interestingly, this group does not presents many outlying observations,
as also supported by the estimated degree of freedom a2 = 10.95. Lastly, the third
group has the highest levels of revenues but, as already said, it is similar to the other
two groups in the other variables. Also in this case, we have a moderately heavy tail
behavior given that the estimated degree of freedom is a3 = 6.05.

To evaluate the correlations of the variables with each other and over time, for the
three groups, we now report the correlation matrices R( ·) related to the covariance
matrices associated to �6 and 	6:

R�1 =


1.00 0.48 0.14
0.48 1.00 −0.06
0.14 −0.06 1.00

 ,R�2 =


1.00 0.55 0.18
0.55 1.00 −0.07
0.18 −0.07 1.00

 ,R�3 =


1.00 0.73 0.22
0.73 1.00 −0.02
0.22 −0.02 1.00

 ,

R	1 = R	2 = R	3 =



1.00 0.80 0.72 0.67 0.65 0.59 0.58 0.55 0.52
0.80 1.00 0.79 0.73 0.69 0.62 0.62 0.57 0.54
0.72 0.79 1.00 0.80 0.73 0.69 0.66 0.63 0.60
0.67 0.73 0.80 1.00 0.79 0.73 0.71 0.67 0.64
0.65 0.69 0.73 0.79 1.00 0.83 0.80 0.73 0.71
0.59 0.62 0.69 0.73 0.83 1.00 0.80 0.76 0.73
0.58 0.62 0.66 0.71 0.80 0.80 1.00 0.81 0.78
0.55 0.57 0.63 0.67 0.73 0.76 0.81 1.00 0.79
0.52 0.54 0.60 0.64 0.71 0.73 0.78 0.79 1.00


.

When R�1 , R�2 and R�3 are considered, we notice that, as it might be reasonable to
expect, the correlations between total-expenditures and total-own source revenues
or intergovernmental grants received are positive, despite they increase as we move
from the first to the third group. Conversely, there exists a slightly negative correlation
between total-own source revenues and intergovernmental grants received. However,
there would be no great differences among the groups in this case. As concerns
R	1 ,R	2 and R	3 , we observe that the correlation among the columns, i.e. between
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time points, decreases as the temporal distance increases. Furthermore, considering
the dimensionality of these column matrices, it is readily understandable the benefit,
in terms of number of parameters to be estimated, of an EE parsimonious structure
with respect to a fully unconstrained model.

Finally, we analyze the uncertainty of the detected classification. This can be
computed, for each observation, by subtracting the probability I86 of the most likely
group from 1 [16]. The lower the uncertainty is, the stronger the assignment becomes.
The quantiles of the obtained uncertainties can be used to measure the quality of
the classification. In this regard, we noticed that 75% of the observations have an
uncertainty equal or lower than 0.05. However, we observed a maximum value of
0.50. This happenswhen groups intersect, since uncertain classifications are expected
in the overlapping regions [17]. Relatedly, a more detailed information can be gained
by looking at the uncertainty plot illustrated in Figure 2, which reports the (sorted)
uncertainty values of all the municipalities. We see that the municipalities clustered
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Fig. 2 Uncertainty plot for the Municipalities dataset.

in the first group, excluding a couple of cases, have practically null uncertainties.
This applies to a lesser extent to the municipalities in the other two groups, given
the slightly higher number of exceptions. For example, there are 15 observations
(approximately 5% of the total sample size) that have uncertainty values greater than
0.3. However, and as said above, this is due to the closeness between the groups,
which can be confirmed by looking at the parallel plots in Figure 1.

4 Conclusions

One serious concern of matrix-variate mixture models is the potentially high number
of parameters. Furthermore, many real data requires models having heavier-than-
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normal tails. To address both aspects, in this paper a family of 196 parsimonious
mixture models, based on the matrix-variate C distribution, is introduced. The eigen-
decomposition of the components scale matrices, as well as constraints on the com-
ponents degrees of freedom, are used to attain parsimony. An AECM algorithm for
parameter estimation has been presented. Our family of models have been fitted to a
real dataset alongwith parsimoniousmixtures ofmatrix-variate normal distributions.
The results demonstrate the best fitting results of our models, and the overfitting ten-
dency of matrix-variate normal mixtures. Lastly, the estimated parameters and data
partition for the best of our models have been reported and commented.
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Evolution of Media Coverage on Climate Change
and Environmental Awareness: an Analysis of
Tweets from UK and US Newspapers

Gianpaolo Zammarchi, Maurizio Romano, and Claudio Conversano

Abstract Climate change represents one of the biggest challenges of our time.
Newspapers might play an important role in raising awareness on this problem and
its consequences. We collected all tweets posted by six UK and US newspapers in
the last decade to assess whether 1) the space given to this topic has grown, 2) any
breakpoint can be identified in the time series of tweets on climate change, and 3) any
main topic can be identified in these tweets. Overall, the number of tweets posted on
climate change increased for all newspapers during the last decade. Although a sharp
decrease in 2020 was observed due to the pandemic, for most newspapers climate
change coverage started to rise again in 2021. While different breakpoints were
observed, for most newspapers 2019 was identified as a key year, which is plausible
based on the coverage received by activities organized by the Fridays for Future
movement. Finally, using different topic modeling approaches, we observed that,
while unsupervised models partly capture relevant topics for climate change, such
as the ones related to politics, consequences for health or pollution, semi-supervised
models might be of help to reach higher informativeness of words assigned to the
topics.
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1 Introduction

Climate change is one of the biggest challenges for our society. Its consequences
which include, among others, glaciers melting, warming oceans, rising sea levels,
and shifting weather or rainfall patterns, are already impacting our health and im-
posing costs on society. Without drastic action aimed at reducing or preventing
human-induced emissions of greenhouse gasses, these consequences are expected
to intensify in the next years. Despite its global and severe impacts, individuals may
perceive climate change as an abstract problem [1]. It is also a well-known fact that
the level of information plays a crucial role in the awareness about a topic (e.g.
healthy food [2] and smoking [3]) . Media represent a crucial source of information
and can exert substantial effects on public opinion, thus helping to raise the awareness
on climate change. For instance, media can explain climate change consequences as
well as portraying actions that governments, communities and single individuals can
take. For this reason, it is important to distinguish themes that might have gained
popularity from those that may have seen a decrease of interest. Nowadays, social
media have become a reliable and popular source of information for people from
all around the world. Twitter is one of the most popular microblogging services and
is used by many traditional newspapers on a daily basis. While we can hypothesize
that in the last few years the media coverage on climate change might have risen,
due for instance to international climate strike movements, the recent emergence of
the coronavirus disease 2019 (COVID-19) pandemic might have led to a decrease of
attention on other relevant topics.

Aims of this work were to: (1) assess trends in media coverage on climate change
using tweets posted by main international newspapers based in United Kingdom
(UK) and United States (US), and (2) identify the main topics discussed in these
tweets using topic modeling.

2 Dataset and Methods

We downloaded all tweets posted from 2012 January 1st to 2021 December 31st
from the official Twitter account of six widely known newspapers based in UK (The
Guardian, The Independent and TheMirror) or US (TheNewYork Times, TheWash-
ington Post and The Wall Street Journal) leading to a collection of 3,275,499 tweets.
Next, we determined which tweets were related to climate change and environmental
awareness based on the presence of at least one of the following keywords: “climate
change”, “sustainability”, “earth day”, “plastic free”, “global warming”, “pollution”,
“environmentally friendly” or “renewable energy”. We plotted the number of tweets
on climate change posted by each newspaper during each year using R v. 4.1.2 [4].

We analyzed the association between the number of tweets on climate change and
the whole number of tweets posted by each newspaper using Spearman’s correlation
analysis. For each year and for each newspaper, we computed and plotted the differ-
ences in the number of posted tweets compared to the previous year, for either (a)
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tweets related to climate change and (b) all tweets. Finally, we used the changepoint
R package [5] to conduct an analysis aimed at identifying structural breaks, i.e. unex-
pected changes in a time series. In many applications, it is reasonable to believe that
there might bem breakpoints (especially if some exogenous event occurs) in which a
shift in mean value is observed. The changepoint package estimates the breakpoints
using several penalty criteria such as the Bayesian Information Criterion (BIC) or the
Akaike Information Criterion (AIC). We estimated the breakpoints using the Binary
Segmentation (BinSeg) method [6] implemented in the package.

Lastly, we used tweets posted by The Guardian to perform topic modeling, a
method for classification of text into topics. Preprocessing (including lemmatization,
removal of stopwords and creation of the document termmatrix) was conducted with
tm [7] and quanteda [8] in R. We used two different approaches: 1) Latent Dirichlet
Allocation (LDA) implemented in the textmineR R package [9]; and 2) Correlation
Explanation (CorEx), an approach alternative to LDA that allows both unsupervised
as well as semi-supervised topic modeling [10].

3 Results

3.1 Analysis of Tweet Trends and Breakpoints

Among 3,275,499 collected tweets, we identified 11,155 tweets related to climate
change and environmental awareness. Figure 1A shows the number of tweets on
climate change posted by each of the analyzed newspapers from 2012 to 2021, while
Figure 1B the total number of tweets posted by each newspaper.

Fig. 1 Number of tweets on climate change (A) or total number of tweets (B) posted by the six
newspapers from 2012 to 2021.

For the majority of newspapers, the number of tweets on climate change increased
from2014 to 2019, saw a sharp decrease in 2020, in correspondence of the emergence
of the COVID-19 pandemic, and a subsequent rise in 2021. On the other hand, the
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Fig. 2 Year-over-year percentage changes of overall tweets and tweets on climate change. A: The
Guardian, B: The Mirror, C: The Independent, D: The New York Times, E: The Washington Post,
F, The Wall Street Journal.

number of tweets on climate change posted by The Guardian showed a peak during
2015 and a subsequent decrease. However, it must be noted that The Guardian is
also the newspaper that showed a more pronounced decrease in the overall number
of tweets.

The number of tweets on climate change was significantly positively correlated
with the overall number of tweets posted from 2012 to 2021 for four newspapers (The
Guardian, Spearman’s rho = 0.95, ? < 0.001; The Mirror, Spearman’s rho = 0.95, ?
< 0.001; The Independent, Spearman’s rho = 0.76, ? = 0.016; The Washington Post,
Spearman’s rho = 0.70, ? = 0.031) but not for The New York Times (Spearman’s
rho = 0.18, ? = 0.63) or The Wall Street Journal (Spearman’s rho = 0.49, ? = 0.15).
Year-over-year percentage changes among either tweets related to climate change or
all posted tweets can be observed in Figure 2.

Looking at Figure 2, we can observe a great variability in the posted number of
tweets during the years, both for the total number of tweets and for the number of
tweets on climate change. While the analysis aimed at identifying structural changes
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Fig. 3 Structural changes in the time series of tweets related to climate change. A: The Guardian,
B: The Mirror, C: The Independent, D: The New York Times, E: The Washington Post, F, The Wall
Street Journal. The red line represents the years between two breakpoints.

in the time series comprising tweets on climate change identified three or four
breakpoints for all newspapers, wide variability was observed regarding the specific
year in which these structural changes were identified (Figure 3). Despite the great
variability, Figure 3 shows that even if a common breakpoint cannot be identified,
2019 was a key year for five out of six newspapers (except for The Independent).

3.2 Topic Modeling

Finally, we exploited the topic modeling approach to identify and analyze the main
topics discussed by newspapers in their tweets. Due to space limitations, we focus
only on The Guardian since this newspaper showed a trend in contrast with the
others. Data comes from 2,916 tweets posted by The Guardian analyzed using LDA
and CorEx. For LDA, a range of 5-20 unsupervised topics was tested, with the most
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interpretable results obtained with 10 topics (Table 1). The topic coherence ranged
from 0.01 to 0.34 (mean: 0.13). For each topic, bi-gram topic labels were assigned
with the labeling algorithm implemented in textmineR. We can observe that topics
are related to politics or leaders (Topics 3, 7 and 10), environmental scientists or
climate journalists (Topics 1 and 5), energy sources (Topics 4 and 8) and effects
of climate change (Topics 2, 6 and 9). The intertopic distance map obtained with
LDAvis is shown in Figure 4. The area of each circle is proportional to the relative
prevalence of that topic in the corpus, while inter-topic distances are computed based
on Jensen-Shannon divergence.

Table 1 Top terms for the ten topics identified with LDA.

dana_nuccitelli air_pollution barack_obama renewable_energy john_abraham

dana pollution fight energy john
dana_ nuccitelli air obama renewable trump
nuccitelli air_pollution trump renewable_energy australia
live study plan uk tackle
trump finds battle sustainability abraham

air_pollution donald_trump fossil_fuel extreme_weather pope_francis

pollution trump report world pollution
air schoolstrike fossil paris study
air_pollution school ipcc leaders tackling
uk great warns talks pope
tackle donald stop deal scientists

Fig. 4 Intertopic distance map.
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Finally, we conducted a semi-supervised topic modeling analysis based on an-
chored words using CorEx. When anchoring a word to a topic, CorEx maximizes the
mutual information between that word and the topic, thus guiding the topic model
towards specific subsets of words. A model with 5 topics and three anchored words
for each topic (Table 2) showed a total correlation (i.e. the measure maximized by
CorEx when constructing the topic model) of 4.36. This value was higher compared
to the one observed with an unsupervised CorEx analysis with the same number of
topics (total correlation = 0.97, topics not shown due to space limits). Topics related
to politics (Topic 3) and science (Topic 5) were found to be the most informative in
our dataset based on the total correlation metric.

Table 2 Topics with anchored words and examples of tweets.

Topic Topic words Examples of tweets per topic

1 school, strike, march, schoolstrik, climat-
estrikeuk, ukschoolstrik, schoolstrikeclim,
climatemarch, arabia, saudi

EPAwipes its climate change site day before
march on Washington

2 ocean, ice, environment, john, dana, nuc-
citelli, air, abraham, sea, reed

Chasing Ice filmmakers plumb the ’bottom-
less’ depths of climate change - new clip
from @GuardianEco

3 trump, obama, lead, donald, barack,
ivanka, brighton, repli, administr, pick

Trump administration pollution rule strikes
final blow against environment

4 plastic, fuel, oil, fossil, compani, pictur,
wast, big, bay, photo

Engaging with oil companies on climate
change is futile

5 studi, scientist, research, find, link, say,
show, death, prematur, speci

Microplastic pollution revealed ‘absolutely
everywhere’ by new research

The anchored words are reported in bold.

4 Discussion

The present study aims to evaluate how some of the most relevant British and
American newspapers have given space to the topic of climate change on their
Twitter page in the last decade. Apart from The Guardian, which shows a decreasing
trend in the number of tweets related to climate change, all the other newspapers
showed an overall growing trend, except during 2020. During this year, the number
of tweets related to climate change declined for all six newspapers. This was most
probably due to the COVID-19 outbreak that was massively covered by all media.
By analyzing the breakpoints in Figure 3, it is possible to observe that 2019 was
a relevant year for climate change. This is plausible considering that, starting from
the end of 2018, the strikes launched by the Fridays for Future movement to raise
awareness on the issue of climate change, gained high media coverage.

409



G. Zammarchi et al.

Our topic modeling analysis showed that the main topics defined using unsuper-
vised models such as LDA are mostly related to politics, environmental scientists,
energy sources and effects of climate change. While unsupervised models capture
relevant topics, using CorEx we found a semi-supervised model to be able to reach
a higher total correlation, which is a measure of informativeness of the topics,
compared to an unsupervised model with the same number of topics.

As future developments, we plan to extend our analyses to newspapers from other
countries. We believe our work to be useful to gain more knowledge and awareness
about the climate change topic and on how much space relevant newspapers have
given to this issue on social media. Increasing the knowledge about the nature of the
topics covered by newspapers will lay the basis for future studies aimed at evaluating
public awareness on this highly relevant challenge.
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